page-writeback.c 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. /*
  113. * couple the period to the dirty_ratio:
  114. *
  115. * period/2 ~ roundup_pow_of_two(dirty limit)
  116. */
  117. static int calc_period_shift(void)
  118. {
  119. unsigned long dirty_total;
  120. if (vm_dirty_bytes)
  121. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  122. else
  123. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  124. 100;
  125. return 2 + ilog2(dirty_total - 1);
  126. }
  127. /*
  128. * update the period when the dirty threshold changes.
  129. */
  130. static void update_completion_period(void)
  131. {
  132. int shift = calc_period_shift();
  133. prop_change_shift(&vm_completions, shift);
  134. writeback_set_ratelimit();
  135. }
  136. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  137. void __user *buffer, size_t *lenp,
  138. loff_t *ppos)
  139. {
  140. int ret;
  141. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  142. if (ret == 0 && write)
  143. dirty_background_bytes = 0;
  144. return ret;
  145. }
  146. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  147. void __user *buffer, size_t *lenp,
  148. loff_t *ppos)
  149. {
  150. int ret;
  151. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  152. if (ret == 0 && write)
  153. dirty_background_ratio = 0;
  154. return ret;
  155. }
  156. int dirty_ratio_handler(struct ctl_table *table, int write,
  157. void __user *buffer, size_t *lenp,
  158. loff_t *ppos)
  159. {
  160. int old_ratio = vm_dirty_ratio;
  161. int ret;
  162. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  163. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  164. update_completion_period();
  165. vm_dirty_bytes = 0;
  166. }
  167. return ret;
  168. }
  169. int dirty_bytes_handler(struct ctl_table *table, int write,
  170. void __user *buffer, size_t *lenp,
  171. loff_t *ppos)
  172. {
  173. unsigned long old_bytes = vm_dirty_bytes;
  174. int ret;
  175. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  176. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  177. update_completion_period();
  178. vm_dirty_ratio = 0;
  179. }
  180. return ret;
  181. }
  182. /*
  183. * Increment the BDI's writeout completion count and the global writeout
  184. * completion count. Called from test_clear_page_writeback().
  185. */
  186. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  187. {
  188. __inc_bdi_stat(bdi, BDI_WRITTEN);
  189. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  190. bdi->max_prop_frac);
  191. }
  192. void bdi_writeout_inc(struct backing_dev_info *bdi)
  193. {
  194. unsigned long flags;
  195. local_irq_save(flags);
  196. __bdi_writeout_inc(bdi);
  197. local_irq_restore(flags);
  198. }
  199. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  200. /*
  201. * Obtain an accurate fraction of the BDI's portion.
  202. */
  203. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  204. long *numerator, long *denominator)
  205. {
  206. prop_fraction_percpu(&vm_completions, &bdi->completions,
  207. numerator, denominator);
  208. }
  209. /*
  210. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  211. * registered backing devices, which, for obvious reasons, can not
  212. * exceed 100%.
  213. */
  214. static unsigned int bdi_min_ratio;
  215. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  216. {
  217. int ret = 0;
  218. spin_lock_bh(&bdi_lock);
  219. if (min_ratio > bdi->max_ratio) {
  220. ret = -EINVAL;
  221. } else {
  222. min_ratio -= bdi->min_ratio;
  223. if (bdi_min_ratio + min_ratio < 100) {
  224. bdi_min_ratio += min_ratio;
  225. bdi->min_ratio += min_ratio;
  226. } else {
  227. ret = -EINVAL;
  228. }
  229. }
  230. spin_unlock_bh(&bdi_lock);
  231. return ret;
  232. }
  233. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  234. {
  235. int ret = 0;
  236. if (max_ratio > 100)
  237. return -EINVAL;
  238. spin_lock_bh(&bdi_lock);
  239. if (bdi->min_ratio > max_ratio) {
  240. ret = -EINVAL;
  241. } else {
  242. bdi->max_ratio = max_ratio;
  243. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  244. }
  245. spin_unlock_bh(&bdi_lock);
  246. return ret;
  247. }
  248. EXPORT_SYMBOL(bdi_set_max_ratio);
  249. /*
  250. * Work out the current dirty-memory clamping and background writeout
  251. * thresholds.
  252. *
  253. * The main aim here is to lower them aggressively if there is a lot of mapped
  254. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  255. * pages. It is better to clamp down on writers than to start swapping, and
  256. * performing lots of scanning.
  257. *
  258. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  259. *
  260. * We don't permit the clamping level to fall below 5% - that is getting rather
  261. * excessive.
  262. *
  263. * We make sure that the background writeout level is below the adjusted
  264. * clamping level.
  265. */
  266. static unsigned long highmem_dirtyable_memory(unsigned long total)
  267. {
  268. #ifdef CONFIG_HIGHMEM
  269. int node;
  270. unsigned long x = 0;
  271. for_each_node_state(node, N_HIGH_MEMORY) {
  272. struct zone *z =
  273. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  274. x += zone_page_state(z, NR_FREE_PAGES) +
  275. zone_reclaimable_pages(z);
  276. }
  277. /*
  278. * Make sure that the number of highmem pages is never larger
  279. * than the number of the total dirtyable memory. This can only
  280. * occur in very strange VM situations but we want to make sure
  281. * that this does not occur.
  282. */
  283. return min(x, total);
  284. #else
  285. return 0;
  286. #endif
  287. }
  288. /**
  289. * determine_dirtyable_memory - amount of memory that may be used
  290. *
  291. * Returns the numebr of pages that can currently be freed and used
  292. * by the kernel for direct mappings.
  293. */
  294. unsigned long determine_dirtyable_memory(void)
  295. {
  296. unsigned long x;
  297. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  298. if (!vm_highmem_is_dirtyable)
  299. x -= highmem_dirtyable_memory(x);
  300. return x + 1; /* Ensure that we never return 0 */
  301. }
  302. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  303. unsigned long bg_thresh)
  304. {
  305. return (thresh + bg_thresh) / 2;
  306. }
  307. static unsigned long hard_dirty_limit(unsigned long thresh)
  308. {
  309. return max(thresh, global_dirty_limit);
  310. }
  311. /*
  312. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  313. *
  314. * Calculate the dirty thresholds based on sysctl parameters
  315. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  316. * - vm.dirty_ratio or vm.dirty_bytes
  317. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  318. * real-time tasks.
  319. */
  320. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  321. {
  322. unsigned long background;
  323. unsigned long dirty;
  324. unsigned long uninitialized_var(available_memory);
  325. struct task_struct *tsk;
  326. if (!vm_dirty_bytes || !dirty_background_bytes)
  327. available_memory = determine_dirtyable_memory();
  328. if (vm_dirty_bytes)
  329. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  330. else
  331. dirty = (vm_dirty_ratio * available_memory) / 100;
  332. if (dirty_background_bytes)
  333. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  334. else
  335. background = (dirty_background_ratio * available_memory) / 100;
  336. if (background >= dirty)
  337. background = dirty / 2;
  338. tsk = current;
  339. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  340. background += background / 4;
  341. dirty += dirty / 4;
  342. }
  343. *pbackground = background;
  344. *pdirty = dirty;
  345. trace_global_dirty_state(background, dirty);
  346. }
  347. /**
  348. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  349. * @bdi: the backing_dev_info to query
  350. * @dirty: global dirty limit in pages
  351. *
  352. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  353. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  354. *
  355. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  356. * when sleeping max_pause per page is not enough to keep the dirty pages under
  357. * control. For example, when the device is completely stalled due to some error
  358. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  359. * In the other normal situations, it acts more gently by throttling the tasks
  360. * more (rather than completely block them) when the bdi dirty pages go high.
  361. *
  362. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  363. * - starving fast devices
  364. * - piling up dirty pages (that will take long time to sync) on slow devices
  365. *
  366. * The bdi's share of dirty limit will be adapting to its throughput and
  367. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  368. */
  369. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  370. {
  371. u64 bdi_dirty;
  372. long numerator, denominator;
  373. /*
  374. * Calculate this BDI's share of the dirty ratio.
  375. */
  376. bdi_writeout_fraction(bdi, &numerator, &denominator);
  377. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  378. bdi_dirty *= numerator;
  379. do_div(bdi_dirty, denominator);
  380. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  381. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  382. bdi_dirty = dirty * bdi->max_ratio / 100;
  383. return bdi_dirty;
  384. }
  385. /*
  386. * Dirty position control.
  387. *
  388. * (o) global/bdi setpoints
  389. *
  390. * We want the dirty pages be balanced around the global/bdi setpoints.
  391. * When the number of dirty pages is higher/lower than the setpoint, the
  392. * dirty position control ratio (and hence task dirty ratelimit) will be
  393. * decreased/increased to bring the dirty pages back to the setpoint.
  394. *
  395. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  396. *
  397. * if (dirty < setpoint) scale up pos_ratio
  398. * if (dirty > setpoint) scale down pos_ratio
  399. *
  400. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  401. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  402. *
  403. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  404. *
  405. * (o) global control line
  406. *
  407. * ^ pos_ratio
  408. * |
  409. * | |<===== global dirty control scope ======>|
  410. * 2.0 .............*
  411. * | .*
  412. * | . *
  413. * | . *
  414. * | . *
  415. * | . *
  416. * | . *
  417. * 1.0 ................................*
  418. * | . . *
  419. * | . . *
  420. * | . . *
  421. * | . . *
  422. * | . . *
  423. * 0 +------------.------------------.----------------------*------------->
  424. * freerun^ setpoint^ limit^ dirty pages
  425. *
  426. * (o) bdi control line
  427. *
  428. * ^ pos_ratio
  429. * |
  430. * | *
  431. * | *
  432. * | *
  433. * | *
  434. * | * |<=========== span ============>|
  435. * 1.0 .......................*
  436. * | . *
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * | . *
  443. * | . *
  444. * | . *
  445. * | . *
  446. * | . *
  447. * 1/4 ...............................................* * * * * * * * * * * *
  448. * | . .
  449. * | . .
  450. * | . .
  451. * 0 +----------------------.-------------------------------.------------->
  452. * bdi_setpoint^ x_intercept^
  453. *
  454. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  455. * be smoothly throttled down to normal if it starts high in situations like
  456. * - start writing to a slow SD card and a fast disk at the same time. The SD
  457. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  458. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  459. */
  460. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  461. unsigned long thresh,
  462. unsigned long bg_thresh,
  463. unsigned long dirty,
  464. unsigned long bdi_thresh,
  465. unsigned long bdi_dirty)
  466. {
  467. unsigned long write_bw = bdi->avg_write_bandwidth;
  468. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  469. unsigned long limit = hard_dirty_limit(thresh);
  470. unsigned long x_intercept;
  471. unsigned long setpoint; /* dirty pages' target balance point */
  472. unsigned long bdi_setpoint;
  473. unsigned long span;
  474. long long pos_ratio; /* for scaling up/down the rate limit */
  475. long x;
  476. if (unlikely(dirty >= limit))
  477. return 0;
  478. /*
  479. * global setpoint
  480. *
  481. * setpoint - dirty 3
  482. * f(dirty) := 1.0 + (----------------)
  483. * limit - setpoint
  484. *
  485. * it's a 3rd order polynomial that subjects to
  486. *
  487. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  488. * (2) f(setpoint) = 1.0 => the balance point
  489. * (3) f(limit) = 0 => the hard limit
  490. * (4) df/dx <= 0 => negative feedback control
  491. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  492. * => fast response on large errors; small oscillation near setpoint
  493. */
  494. setpoint = (freerun + limit) / 2;
  495. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  496. limit - setpoint + 1);
  497. pos_ratio = x;
  498. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  499. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  500. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  501. /*
  502. * We have computed basic pos_ratio above based on global situation. If
  503. * the bdi is over/under its share of dirty pages, we want to scale
  504. * pos_ratio further down/up. That is done by the following mechanism.
  505. */
  506. /*
  507. * bdi setpoint
  508. *
  509. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  510. *
  511. * x_intercept - bdi_dirty
  512. * := --------------------------
  513. * x_intercept - bdi_setpoint
  514. *
  515. * The main bdi control line is a linear function that subjects to
  516. *
  517. * (1) f(bdi_setpoint) = 1.0
  518. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  519. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  520. *
  521. * For single bdi case, the dirty pages are observed to fluctuate
  522. * regularly within range
  523. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  524. * for various filesystems, where (2) can yield in a reasonable 12.5%
  525. * fluctuation range for pos_ratio.
  526. *
  527. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  528. * own size, so move the slope over accordingly and choose a slope that
  529. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  530. */
  531. if (unlikely(bdi_thresh > thresh))
  532. bdi_thresh = thresh;
  533. /*
  534. * It's very possible that bdi_thresh is close to 0 not because the
  535. * device is slow, but that it has remained inactive for long time.
  536. * Honour such devices a reasonable good (hopefully IO efficient)
  537. * threshold, so that the occasional writes won't be blocked and active
  538. * writes can rampup the threshold quickly.
  539. */
  540. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  541. /*
  542. * scale global setpoint to bdi's:
  543. * bdi_setpoint = setpoint * bdi_thresh / thresh
  544. */
  545. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  546. bdi_setpoint = setpoint * (u64)x >> 16;
  547. /*
  548. * Use span=(8*write_bw) in single bdi case as indicated by
  549. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  550. *
  551. * bdi_thresh thresh - bdi_thresh
  552. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  553. * thresh thresh
  554. */
  555. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  556. x_intercept = bdi_setpoint + span;
  557. if (bdi_dirty < x_intercept - span / 4) {
  558. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  559. x_intercept - bdi_setpoint + 1);
  560. } else
  561. pos_ratio /= 4;
  562. /*
  563. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  564. * It may push the desired control point of global dirty pages higher
  565. * than setpoint.
  566. */
  567. x_intercept = bdi_thresh / 2;
  568. if (bdi_dirty < x_intercept) {
  569. if (bdi_dirty > x_intercept / 8)
  570. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  571. else
  572. pos_ratio *= 8;
  573. }
  574. return pos_ratio;
  575. }
  576. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  577. unsigned long elapsed,
  578. unsigned long written)
  579. {
  580. const unsigned long period = roundup_pow_of_two(3 * HZ);
  581. unsigned long avg = bdi->avg_write_bandwidth;
  582. unsigned long old = bdi->write_bandwidth;
  583. u64 bw;
  584. /*
  585. * bw = written * HZ / elapsed
  586. *
  587. * bw * elapsed + write_bandwidth * (period - elapsed)
  588. * write_bandwidth = ---------------------------------------------------
  589. * period
  590. */
  591. bw = written - bdi->written_stamp;
  592. bw *= HZ;
  593. if (unlikely(elapsed > period)) {
  594. do_div(bw, elapsed);
  595. avg = bw;
  596. goto out;
  597. }
  598. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  599. bw >>= ilog2(period);
  600. /*
  601. * one more level of smoothing, for filtering out sudden spikes
  602. */
  603. if (avg > old && old >= (unsigned long)bw)
  604. avg -= (avg - old) >> 3;
  605. if (avg < old && old <= (unsigned long)bw)
  606. avg += (old - avg) >> 3;
  607. out:
  608. bdi->write_bandwidth = bw;
  609. bdi->avg_write_bandwidth = avg;
  610. }
  611. /*
  612. * The global dirtyable memory and dirty threshold could be suddenly knocked
  613. * down by a large amount (eg. on the startup of KVM in a swapless system).
  614. * This may throw the system into deep dirty exceeded state and throttle
  615. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  616. * global_dirty_limit for tracking slowly down to the knocked down dirty
  617. * threshold.
  618. */
  619. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  620. {
  621. unsigned long limit = global_dirty_limit;
  622. /*
  623. * Follow up in one step.
  624. */
  625. if (limit < thresh) {
  626. limit = thresh;
  627. goto update;
  628. }
  629. /*
  630. * Follow down slowly. Use the higher one as the target, because thresh
  631. * may drop below dirty. This is exactly the reason to introduce
  632. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  633. */
  634. thresh = max(thresh, dirty);
  635. if (limit > thresh) {
  636. limit -= (limit - thresh) >> 5;
  637. goto update;
  638. }
  639. return;
  640. update:
  641. global_dirty_limit = limit;
  642. }
  643. static void global_update_bandwidth(unsigned long thresh,
  644. unsigned long dirty,
  645. unsigned long now)
  646. {
  647. static DEFINE_SPINLOCK(dirty_lock);
  648. static unsigned long update_time;
  649. /*
  650. * check locklessly first to optimize away locking for the most time
  651. */
  652. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  653. return;
  654. spin_lock(&dirty_lock);
  655. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  656. update_dirty_limit(thresh, dirty);
  657. update_time = now;
  658. }
  659. spin_unlock(&dirty_lock);
  660. }
  661. /*
  662. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  663. *
  664. * Normal bdi tasks will be curbed at or below it in long term.
  665. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  666. */
  667. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  668. unsigned long thresh,
  669. unsigned long bg_thresh,
  670. unsigned long dirty,
  671. unsigned long bdi_thresh,
  672. unsigned long bdi_dirty,
  673. unsigned long dirtied,
  674. unsigned long elapsed)
  675. {
  676. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  677. unsigned long limit = hard_dirty_limit(thresh);
  678. unsigned long setpoint = (freerun + limit) / 2;
  679. unsigned long write_bw = bdi->avg_write_bandwidth;
  680. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  681. unsigned long dirty_rate;
  682. unsigned long task_ratelimit;
  683. unsigned long balanced_dirty_ratelimit;
  684. unsigned long pos_ratio;
  685. unsigned long step;
  686. unsigned long x;
  687. /*
  688. * The dirty rate will match the writeout rate in long term, except
  689. * when dirty pages are truncated by userspace or re-dirtied by FS.
  690. */
  691. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  692. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  693. bdi_thresh, bdi_dirty);
  694. /*
  695. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  696. */
  697. task_ratelimit = (u64)dirty_ratelimit *
  698. pos_ratio >> RATELIMIT_CALC_SHIFT;
  699. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  700. /*
  701. * A linear estimation of the "balanced" throttle rate. The theory is,
  702. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  703. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  704. * formula will yield the balanced rate limit (write_bw / N).
  705. *
  706. * Note that the expanded form is not a pure rate feedback:
  707. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  708. * but also takes pos_ratio into account:
  709. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  710. *
  711. * (1) is not realistic because pos_ratio also takes part in balancing
  712. * the dirty rate. Consider the state
  713. * pos_ratio = 0.5 (3)
  714. * rate = 2 * (write_bw / N) (4)
  715. * If (1) is used, it will stuck in that state! Because each dd will
  716. * be throttled at
  717. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  718. * yielding
  719. * dirty_rate = N * task_ratelimit = write_bw (6)
  720. * put (6) into (1) we get
  721. * rate_(i+1) = rate_(i) (7)
  722. *
  723. * So we end up using (2) to always keep
  724. * rate_(i+1) ~= (write_bw / N) (8)
  725. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  726. * pos_ratio is able to drive itself to 1.0, which is not only where
  727. * the dirty count meet the setpoint, but also where the slope of
  728. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  729. */
  730. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  731. dirty_rate | 1);
  732. /*
  733. * We could safely do this and return immediately:
  734. *
  735. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  736. *
  737. * However to get a more stable dirty_ratelimit, the below elaborated
  738. * code makes use of task_ratelimit to filter out sigular points and
  739. * limit the step size.
  740. *
  741. * The below code essentially only uses the relative value of
  742. *
  743. * task_ratelimit - dirty_ratelimit
  744. * = (pos_ratio - 1) * dirty_ratelimit
  745. *
  746. * which reflects the direction and size of dirty position error.
  747. */
  748. /*
  749. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  750. * task_ratelimit is on the same side of dirty_ratelimit, too.
  751. * For example, when
  752. * - dirty_ratelimit > balanced_dirty_ratelimit
  753. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  754. * lowering dirty_ratelimit will help meet both the position and rate
  755. * control targets. Otherwise, don't update dirty_ratelimit if it will
  756. * only help meet the rate target. After all, what the users ultimately
  757. * feel and care are stable dirty rate and small position error.
  758. *
  759. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  760. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  761. * keeps jumping around randomly and can even leap far away at times
  762. * due to the small 200ms estimation period of dirty_rate (we want to
  763. * keep that period small to reduce time lags).
  764. */
  765. step = 0;
  766. if (dirty < setpoint) {
  767. x = min(bdi->balanced_dirty_ratelimit,
  768. min(balanced_dirty_ratelimit, task_ratelimit));
  769. if (dirty_ratelimit < x)
  770. step = x - dirty_ratelimit;
  771. } else {
  772. x = max(bdi->balanced_dirty_ratelimit,
  773. max(balanced_dirty_ratelimit, task_ratelimit));
  774. if (dirty_ratelimit > x)
  775. step = dirty_ratelimit - x;
  776. }
  777. /*
  778. * Don't pursue 100% rate matching. It's impossible since the balanced
  779. * rate itself is constantly fluctuating. So decrease the track speed
  780. * when it gets close to the target. Helps eliminate pointless tremors.
  781. */
  782. step >>= dirty_ratelimit / (2 * step + 1);
  783. /*
  784. * Limit the tracking speed to avoid overshooting.
  785. */
  786. step = (step + 7) / 8;
  787. if (dirty_ratelimit < balanced_dirty_ratelimit)
  788. dirty_ratelimit += step;
  789. else
  790. dirty_ratelimit -= step;
  791. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  792. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  793. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  794. }
  795. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  796. unsigned long thresh,
  797. unsigned long bg_thresh,
  798. unsigned long dirty,
  799. unsigned long bdi_thresh,
  800. unsigned long bdi_dirty,
  801. unsigned long start_time)
  802. {
  803. unsigned long now = jiffies;
  804. unsigned long elapsed = now - bdi->bw_time_stamp;
  805. unsigned long dirtied;
  806. unsigned long written;
  807. /*
  808. * rate-limit, only update once every 200ms.
  809. */
  810. if (elapsed < BANDWIDTH_INTERVAL)
  811. return;
  812. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  813. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  814. /*
  815. * Skip quiet periods when disk bandwidth is under-utilized.
  816. * (at least 1s idle time between two flusher runs)
  817. */
  818. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  819. goto snapshot;
  820. if (thresh) {
  821. global_update_bandwidth(thresh, dirty, now);
  822. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  823. bdi_thresh, bdi_dirty,
  824. dirtied, elapsed);
  825. }
  826. bdi_update_write_bandwidth(bdi, elapsed, written);
  827. snapshot:
  828. bdi->dirtied_stamp = dirtied;
  829. bdi->written_stamp = written;
  830. bdi->bw_time_stamp = now;
  831. }
  832. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  833. unsigned long thresh,
  834. unsigned long bg_thresh,
  835. unsigned long dirty,
  836. unsigned long bdi_thresh,
  837. unsigned long bdi_dirty,
  838. unsigned long start_time)
  839. {
  840. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  841. return;
  842. spin_lock(&bdi->wb.list_lock);
  843. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  844. bdi_thresh, bdi_dirty, start_time);
  845. spin_unlock(&bdi->wb.list_lock);
  846. }
  847. /*
  848. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  849. * will look to see if it needs to start dirty throttling.
  850. *
  851. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  852. * global_page_state() too often. So scale it near-sqrt to the safety margin
  853. * (the number of pages we may dirty without exceeding the dirty limits).
  854. */
  855. static unsigned long dirty_poll_interval(unsigned long dirty,
  856. unsigned long thresh)
  857. {
  858. if (thresh > dirty)
  859. return 1UL << (ilog2(thresh - dirty) >> 1);
  860. return 1;
  861. }
  862. static long bdi_max_pause(struct backing_dev_info *bdi,
  863. unsigned long bdi_dirty)
  864. {
  865. long bw = bdi->avg_write_bandwidth;
  866. long t;
  867. /*
  868. * Limit pause time for small memory systems. If sleeping for too long
  869. * time, a small pool of dirty/writeback pages may go empty and disk go
  870. * idle.
  871. *
  872. * 8 serves as the safety ratio.
  873. */
  874. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  875. t++;
  876. return min_t(long, t, MAX_PAUSE);
  877. }
  878. static long bdi_min_pause(struct backing_dev_info *bdi,
  879. long max_pause,
  880. unsigned long task_ratelimit,
  881. unsigned long dirty_ratelimit,
  882. int *nr_dirtied_pause)
  883. {
  884. long hi = ilog2(bdi->avg_write_bandwidth);
  885. long lo = ilog2(bdi->dirty_ratelimit);
  886. long t; /* target pause */
  887. long pause; /* estimated next pause */
  888. int pages; /* target nr_dirtied_pause */
  889. /* target for 10ms pause on 1-dd case */
  890. t = max(1, HZ / 100);
  891. /*
  892. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  893. * overheads.
  894. *
  895. * (N * 10ms) on 2^N concurrent tasks.
  896. */
  897. if (hi > lo)
  898. t += (hi - lo) * (10 * HZ) / 1024;
  899. /*
  900. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  901. * on the much more stable dirty_ratelimit. However the next pause time
  902. * will be computed based on task_ratelimit and the two rate limits may
  903. * depart considerably at some time. Especially if task_ratelimit goes
  904. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  905. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  906. * result task_ratelimit won't be executed faithfully, which could
  907. * eventually bring down dirty_ratelimit.
  908. *
  909. * We apply two rules to fix it up:
  910. * 1) try to estimate the next pause time and if necessary, use a lower
  911. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  912. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  913. * 2) limit the target pause time to max_pause/2, so that the normal
  914. * small fluctuations of task_ratelimit won't trigger rule (1) and
  915. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  916. */
  917. t = min(t, 1 + max_pause / 2);
  918. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  919. pause = HZ * pages / (task_ratelimit + 1);
  920. if (pause > max_pause) {
  921. t = max_pause;
  922. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  923. }
  924. *nr_dirtied_pause = pages;
  925. /*
  926. * The minimal pause time will normally be half the target pause time.
  927. */
  928. return 1 + t / 2;
  929. }
  930. /*
  931. * balance_dirty_pages() must be called by processes which are generating dirty
  932. * data. It looks at the number of dirty pages in the machine and will force
  933. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  934. * If we're over `background_thresh' then the writeback threads are woken to
  935. * perform some writeout.
  936. */
  937. static void balance_dirty_pages(struct address_space *mapping,
  938. unsigned long pages_dirtied)
  939. {
  940. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  941. unsigned long bdi_reclaimable;
  942. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  943. unsigned long bdi_dirty;
  944. unsigned long freerun;
  945. unsigned long background_thresh;
  946. unsigned long dirty_thresh;
  947. unsigned long bdi_thresh;
  948. long period;
  949. long pause;
  950. long max_pause;
  951. long min_pause;
  952. int nr_dirtied_pause;
  953. bool dirty_exceeded = false;
  954. unsigned long task_ratelimit;
  955. unsigned long dirty_ratelimit;
  956. unsigned long pos_ratio;
  957. struct backing_dev_info *bdi = mapping->backing_dev_info;
  958. unsigned long start_time = jiffies;
  959. for (;;) {
  960. unsigned long now = jiffies;
  961. /*
  962. * Unstable writes are a feature of certain networked
  963. * filesystems (i.e. NFS) in which data may have been
  964. * written to the server's write cache, but has not yet
  965. * been flushed to permanent storage.
  966. */
  967. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  968. global_page_state(NR_UNSTABLE_NFS);
  969. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  970. global_dirty_limits(&background_thresh, &dirty_thresh);
  971. /*
  972. * Throttle it only when the background writeback cannot
  973. * catch-up. This avoids (excessively) small writeouts
  974. * when the bdi limits are ramping up.
  975. */
  976. freerun = dirty_freerun_ceiling(dirty_thresh,
  977. background_thresh);
  978. if (nr_dirty <= freerun) {
  979. current->dirty_paused_when = now;
  980. current->nr_dirtied = 0;
  981. current->nr_dirtied_pause =
  982. dirty_poll_interval(nr_dirty, dirty_thresh);
  983. break;
  984. }
  985. if (unlikely(!writeback_in_progress(bdi)))
  986. bdi_start_background_writeback(bdi);
  987. /*
  988. * bdi_thresh is not treated as some limiting factor as
  989. * dirty_thresh, due to reasons
  990. * - in JBOD setup, bdi_thresh can fluctuate a lot
  991. * - in a system with HDD and USB key, the USB key may somehow
  992. * go into state (bdi_dirty >> bdi_thresh) either because
  993. * bdi_dirty starts high, or because bdi_thresh drops low.
  994. * In this case we don't want to hard throttle the USB key
  995. * dirtiers for 100 seconds until bdi_dirty drops under
  996. * bdi_thresh. Instead the auxiliary bdi control line in
  997. * bdi_position_ratio() will let the dirtier task progress
  998. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  999. */
  1000. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1001. /*
  1002. * In order to avoid the stacked BDI deadlock we need
  1003. * to ensure we accurately count the 'dirty' pages when
  1004. * the threshold is low.
  1005. *
  1006. * Otherwise it would be possible to get thresh+n pages
  1007. * reported dirty, even though there are thresh-m pages
  1008. * actually dirty; with m+n sitting in the percpu
  1009. * deltas.
  1010. */
  1011. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1012. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1013. bdi_dirty = bdi_reclaimable +
  1014. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1015. } else {
  1016. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1017. bdi_dirty = bdi_reclaimable +
  1018. bdi_stat(bdi, BDI_WRITEBACK);
  1019. }
  1020. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  1021. (nr_dirty > dirty_thresh);
  1022. if (dirty_exceeded && !bdi->dirty_exceeded)
  1023. bdi->dirty_exceeded = 1;
  1024. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1025. nr_dirty, bdi_thresh, bdi_dirty,
  1026. start_time);
  1027. dirty_ratelimit = bdi->dirty_ratelimit;
  1028. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1029. background_thresh, nr_dirty,
  1030. bdi_thresh, bdi_dirty);
  1031. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1032. RATELIMIT_CALC_SHIFT;
  1033. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1034. min_pause = bdi_min_pause(bdi, max_pause,
  1035. task_ratelimit, dirty_ratelimit,
  1036. &nr_dirtied_pause);
  1037. if (unlikely(task_ratelimit == 0)) {
  1038. period = max_pause;
  1039. pause = max_pause;
  1040. goto pause;
  1041. }
  1042. period = HZ * pages_dirtied / task_ratelimit;
  1043. pause = period;
  1044. if (current->dirty_paused_when)
  1045. pause -= now - current->dirty_paused_when;
  1046. /*
  1047. * For less than 1s think time (ext3/4 may block the dirtier
  1048. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1049. * however at much less frequency), try to compensate it in
  1050. * future periods by updating the virtual time; otherwise just
  1051. * do a reset, as it may be a light dirtier.
  1052. */
  1053. if (pause < min_pause) {
  1054. trace_balance_dirty_pages(bdi,
  1055. dirty_thresh,
  1056. background_thresh,
  1057. nr_dirty,
  1058. bdi_thresh,
  1059. bdi_dirty,
  1060. dirty_ratelimit,
  1061. task_ratelimit,
  1062. pages_dirtied,
  1063. period,
  1064. min(pause, 0L),
  1065. start_time);
  1066. if (pause < -HZ) {
  1067. current->dirty_paused_when = now;
  1068. current->nr_dirtied = 0;
  1069. } else if (period) {
  1070. current->dirty_paused_when += period;
  1071. current->nr_dirtied = 0;
  1072. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1073. current->nr_dirtied_pause += pages_dirtied;
  1074. break;
  1075. }
  1076. if (unlikely(pause > max_pause)) {
  1077. /* for occasional dropped task_ratelimit */
  1078. now += min(pause - max_pause, max_pause);
  1079. pause = max_pause;
  1080. }
  1081. pause:
  1082. trace_balance_dirty_pages(bdi,
  1083. dirty_thresh,
  1084. background_thresh,
  1085. nr_dirty,
  1086. bdi_thresh,
  1087. bdi_dirty,
  1088. dirty_ratelimit,
  1089. task_ratelimit,
  1090. pages_dirtied,
  1091. period,
  1092. pause,
  1093. start_time);
  1094. __set_current_state(TASK_KILLABLE);
  1095. io_schedule_timeout(pause);
  1096. current->dirty_paused_when = now + pause;
  1097. current->nr_dirtied = 0;
  1098. current->nr_dirtied_pause = nr_dirtied_pause;
  1099. /*
  1100. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1101. * also keep "1000+ dd on a slow USB stick" under control.
  1102. */
  1103. if (task_ratelimit)
  1104. break;
  1105. /*
  1106. * In the case of an unresponding NFS server and the NFS dirty
  1107. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1108. * to go through, so that tasks on them still remain responsive.
  1109. *
  1110. * In theory 1 page is enough to keep the comsumer-producer
  1111. * pipe going: the flusher cleans 1 page => the task dirties 1
  1112. * more page. However bdi_dirty has accounting errors. So use
  1113. * the larger and more IO friendly bdi_stat_error.
  1114. */
  1115. if (bdi_dirty <= bdi_stat_error(bdi))
  1116. break;
  1117. if (fatal_signal_pending(current))
  1118. break;
  1119. }
  1120. if (!dirty_exceeded && bdi->dirty_exceeded)
  1121. bdi->dirty_exceeded = 0;
  1122. if (writeback_in_progress(bdi))
  1123. return;
  1124. /*
  1125. * In laptop mode, we wait until hitting the higher threshold before
  1126. * starting background writeout, and then write out all the way down
  1127. * to the lower threshold. So slow writers cause minimal disk activity.
  1128. *
  1129. * In normal mode, we start background writeout at the lower
  1130. * background_thresh, to keep the amount of dirty memory low.
  1131. */
  1132. if (laptop_mode)
  1133. return;
  1134. if (nr_reclaimable > background_thresh)
  1135. bdi_start_background_writeback(bdi);
  1136. }
  1137. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1138. {
  1139. if (set_page_dirty(page) || page_mkwrite) {
  1140. struct address_space *mapping = page_mapping(page);
  1141. if (mapping)
  1142. balance_dirty_pages_ratelimited(mapping);
  1143. }
  1144. }
  1145. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1146. /*
  1147. * Normal tasks are throttled by
  1148. * loop {
  1149. * dirty tsk->nr_dirtied_pause pages;
  1150. * take a snap in balance_dirty_pages();
  1151. * }
  1152. * However there is a worst case. If every task exit immediately when dirtied
  1153. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1154. * called to throttle the page dirties. The solution is to save the not yet
  1155. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1156. * randomly into the running tasks. This works well for the above worst case,
  1157. * as the new task will pick up and accumulate the old task's leaked dirty
  1158. * count and eventually get throttled.
  1159. */
  1160. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1161. /**
  1162. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1163. * @mapping: address_space which was dirtied
  1164. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1165. *
  1166. * Processes which are dirtying memory should call in here once for each page
  1167. * which was newly dirtied. The function will periodically check the system's
  1168. * dirty state and will initiate writeback if needed.
  1169. *
  1170. * On really big machines, get_writeback_state is expensive, so try to avoid
  1171. * calling it too often (ratelimiting). But once we're over the dirty memory
  1172. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1173. * from overshooting the limit by (ratelimit_pages) each.
  1174. */
  1175. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1176. unsigned long nr_pages_dirtied)
  1177. {
  1178. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1179. int ratelimit;
  1180. int *p;
  1181. if (!bdi_cap_account_dirty(bdi))
  1182. return;
  1183. ratelimit = current->nr_dirtied_pause;
  1184. if (bdi->dirty_exceeded)
  1185. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1186. preempt_disable();
  1187. /*
  1188. * This prevents one CPU to accumulate too many dirtied pages without
  1189. * calling into balance_dirty_pages(), which can happen when there are
  1190. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1191. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1192. */
  1193. p = &__get_cpu_var(bdp_ratelimits);
  1194. if (unlikely(current->nr_dirtied >= ratelimit))
  1195. *p = 0;
  1196. else if (unlikely(*p >= ratelimit_pages)) {
  1197. *p = 0;
  1198. ratelimit = 0;
  1199. }
  1200. /*
  1201. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1202. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1203. * the dirty throttling and livelock other long-run dirtiers.
  1204. */
  1205. p = &__get_cpu_var(dirty_throttle_leaks);
  1206. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1207. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1208. *p -= nr_pages_dirtied;
  1209. current->nr_dirtied += nr_pages_dirtied;
  1210. }
  1211. preempt_enable();
  1212. if (unlikely(current->nr_dirtied >= ratelimit))
  1213. balance_dirty_pages(mapping, current->nr_dirtied);
  1214. }
  1215. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1216. void throttle_vm_writeout(gfp_t gfp_mask)
  1217. {
  1218. unsigned long background_thresh;
  1219. unsigned long dirty_thresh;
  1220. for ( ; ; ) {
  1221. global_dirty_limits(&background_thresh, &dirty_thresh);
  1222. /*
  1223. * Boost the allowable dirty threshold a bit for page
  1224. * allocators so they don't get DoS'ed by heavy writers
  1225. */
  1226. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1227. if (global_page_state(NR_UNSTABLE_NFS) +
  1228. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1229. break;
  1230. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1231. /*
  1232. * The caller might hold locks which can prevent IO completion
  1233. * or progress in the filesystem. So we cannot just sit here
  1234. * waiting for IO to complete.
  1235. */
  1236. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1237. break;
  1238. }
  1239. }
  1240. /*
  1241. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1242. */
  1243. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1244. void __user *buffer, size_t *length, loff_t *ppos)
  1245. {
  1246. proc_dointvec(table, write, buffer, length, ppos);
  1247. bdi_arm_supers_timer();
  1248. return 0;
  1249. }
  1250. #ifdef CONFIG_BLOCK
  1251. void laptop_mode_timer_fn(unsigned long data)
  1252. {
  1253. struct request_queue *q = (struct request_queue *)data;
  1254. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1255. global_page_state(NR_UNSTABLE_NFS);
  1256. /*
  1257. * We want to write everything out, not just down to the dirty
  1258. * threshold
  1259. */
  1260. if (bdi_has_dirty_io(&q->backing_dev_info))
  1261. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1262. WB_REASON_LAPTOP_TIMER);
  1263. }
  1264. /*
  1265. * We've spun up the disk and we're in laptop mode: schedule writeback
  1266. * of all dirty data a few seconds from now. If the flush is already scheduled
  1267. * then push it back - the user is still using the disk.
  1268. */
  1269. void laptop_io_completion(struct backing_dev_info *info)
  1270. {
  1271. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1272. }
  1273. /*
  1274. * We're in laptop mode and we've just synced. The sync's writes will have
  1275. * caused another writeback to be scheduled by laptop_io_completion.
  1276. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1277. */
  1278. void laptop_sync_completion(void)
  1279. {
  1280. struct backing_dev_info *bdi;
  1281. rcu_read_lock();
  1282. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1283. del_timer(&bdi->laptop_mode_wb_timer);
  1284. rcu_read_unlock();
  1285. }
  1286. #endif
  1287. /*
  1288. * If ratelimit_pages is too high then we can get into dirty-data overload
  1289. * if a large number of processes all perform writes at the same time.
  1290. * If it is too low then SMP machines will call the (expensive)
  1291. * get_writeback_state too often.
  1292. *
  1293. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1294. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1295. * thresholds.
  1296. */
  1297. void writeback_set_ratelimit(void)
  1298. {
  1299. unsigned long background_thresh;
  1300. unsigned long dirty_thresh;
  1301. global_dirty_limits(&background_thresh, &dirty_thresh);
  1302. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1303. if (ratelimit_pages < 16)
  1304. ratelimit_pages = 16;
  1305. }
  1306. static int __cpuinit
  1307. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1308. {
  1309. writeback_set_ratelimit();
  1310. return NOTIFY_DONE;
  1311. }
  1312. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1313. .notifier_call = ratelimit_handler,
  1314. .next = NULL,
  1315. };
  1316. /*
  1317. * Called early on to tune the page writeback dirty limits.
  1318. *
  1319. * We used to scale dirty pages according to how total memory
  1320. * related to pages that could be allocated for buffers (by
  1321. * comparing nr_free_buffer_pages() to vm_total_pages.
  1322. *
  1323. * However, that was when we used "dirty_ratio" to scale with
  1324. * all memory, and we don't do that any more. "dirty_ratio"
  1325. * is now applied to total non-HIGHPAGE memory (by subtracting
  1326. * totalhigh_pages from vm_total_pages), and as such we can't
  1327. * get into the old insane situation any more where we had
  1328. * large amounts of dirty pages compared to a small amount of
  1329. * non-HIGHMEM memory.
  1330. *
  1331. * But we might still want to scale the dirty_ratio by how
  1332. * much memory the box has..
  1333. */
  1334. void __init page_writeback_init(void)
  1335. {
  1336. int shift;
  1337. writeback_set_ratelimit();
  1338. register_cpu_notifier(&ratelimit_nb);
  1339. shift = calc_period_shift();
  1340. prop_descriptor_init(&vm_completions, shift);
  1341. }
  1342. /**
  1343. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1344. * @mapping: address space structure to write
  1345. * @start: starting page index
  1346. * @end: ending page index (inclusive)
  1347. *
  1348. * This function scans the page range from @start to @end (inclusive) and tags
  1349. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1350. * that write_cache_pages (or whoever calls this function) will then use
  1351. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1352. * used to avoid livelocking of writeback by a process steadily creating new
  1353. * dirty pages in the file (thus it is important for this function to be quick
  1354. * so that it can tag pages faster than a dirtying process can create them).
  1355. */
  1356. /*
  1357. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1358. */
  1359. void tag_pages_for_writeback(struct address_space *mapping,
  1360. pgoff_t start, pgoff_t end)
  1361. {
  1362. #define WRITEBACK_TAG_BATCH 4096
  1363. unsigned long tagged;
  1364. do {
  1365. spin_lock_irq(&mapping->tree_lock);
  1366. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1367. &start, end, WRITEBACK_TAG_BATCH,
  1368. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1369. spin_unlock_irq(&mapping->tree_lock);
  1370. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1371. cond_resched();
  1372. /* We check 'start' to handle wrapping when end == ~0UL */
  1373. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1374. }
  1375. EXPORT_SYMBOL(tag_pages_for_writeback);
  1376. /**
  1377. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1378. * @mapping: address space structure to write
  1379. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1380. * @writepage: function called for each page
  1381. * @data: data passed to writepage function
  1382. *
  1383. * If a page is already under I/O, write_cache_pages() skips it, even
  1384. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1385. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1386. * and msync() need to guarantee that all the data which was dirty at the time
  1387. * the call was made get new I/O started against them. If wbc->sync_mode is
  1388. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1389. * existing IO to complete.
  1390. *
  1391. * To avoid livelocks (when other process dirties new pages), we first tag
  1392. * pages which should be written back with TOWRITE tag and only then start
  1393. * writing them. For data-integrity sync we have to be careful so that we do
  1394. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1395. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1396. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1397. */
  1398. int write_cache_pages(struct address_space *mapping,
  1399. struct writeback_control *wbc, writepage_t writepage,
  1400. void *data)
  1401. {
  1402. int ret = 0;
  1403. int done = 0;
  1404. struct pagevec pvec;
  1405. int nr_pages;
  1406. pgoff_t uninitialized_var(writeback_index);
  1407. pgoff_t index;
  1408. pgoff_t end; /* Inclusive */
  1409. pgoff_t done_index;
  1410. int cycled;
  1411. int range_whole = 0;
  1412. int tag;
  1413. pagevec_init(&pvec, 0);
  1414. if (wbc->range_cyclic) {
  1415. writeback_index = mapping->writeback_index; /* prev offset */
  1416. index = writeback_index;
  1417. if (index == 0)
  1418. cycled = 1;
  1419. else
  1420. cycled = 0;
  1421. end = -1;
  1422. } else {
  1423. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1424. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1425. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1426. range_whole = 1;
  1427. cycled = 1; /* ignore range_cyclic tests */
  1428. }
  1429. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1430. tag = PAGECACHE_TAG_TOWRITE;
  1431. else
  1432. tag = PAGECACHE_TAG_DIRTY;
  1433. retry:
  1434. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1435. tag_pages_for_writeback(mapping, index, end);
  1436. done_index = index;
  1437. while (!done && (index <= end)) {
  1438. int i;
  1439. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1440. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1441. if (nr_pages == 0)
  1442. break;
  1443. for (i = 0; i < nr_pages; i++) {
  1444. struct page *page = pvec.pages[i];
  1445. /*
  1446. * At this point, the page may be truncated or
  1447. * invalidated (changing page->mapping to NULL), or
  1448. * even swizzled back from swapper_space to tmpfs file
  1449. * mapping. However, page->index will not change
  1450. * because we have a reference on the page.
  1451. */
  1452. if (page->index > end) {
  1453. /*
  1454. * can't be range_cyclic (1st pass) because
  1455. * end == -1 in that case.
  1456. */
  1457. done = 1;
  1458. break;
  1459. }
  1460. done_index = page->index;
  1461. lock_page(page);
  1462. /*
  1463. * Page truncated or invalidated. We can freely skip it
  1464. * then, even for data integrity operations: the page
  1465. * has disappeared concurrently, so there could be no
  1466. * real expectation of this data interity operation
  1467. * even if there is now a new, dirty page at the same
  1468. * pagecache address.
  1469. */
  1470. if (unlikely(page->mapping != mapping)) {
  1471. continue_unlock:
  1472. unlock_page(page);
  1473. continue;
  1474. }
  1475. if (!PageDirty(page)) {
  1476. /* someone wrote it for us */
  1477. goto continue_unlock;
  1478. }
  1479. if (PageWriteback(page)) {
  1480. if (wbc->sync_mode != WB_SYNC_NONE)
  1481. wait_on_page_writeback(page);
  1482. else
  1483. goto continue_unlock;
  1484. }
  1485. BUG_ON(PageWriteback(page));
  1486. if (!clear_page_dirty_for_io(page))
  1487. goto continue_unlock;
  1488. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1489. ret = (*writepage)(page, wbc, data);
  1490. if (unlikely(ret)) {
  1491. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1492. unlock_page(page);
  1493. ret = 0;
  1494. } else {
  1495. /*
  1496. * done_index is set past this page,
  1497. * so media errors will not choke
  1498. * background writeout for the entire
  1499. * file. This has consequences for
  1500. * range_cyclic semantics (ie. it may
  1501. * not be suitable for data integrity
  1502. * writeout).
  1503. */
  1504. done_index = page->index + 1;
  1505. done = 1;
  1506. break;
  1507. }
  1508. }
  1509. /*
  1510. * We stop writing back only if we are not doing
  1511. * integrity sync. In case of integrity sync we have to
  1512. * keep going until we have written all the pages
  1513. * we tagged for writeback prior to entering this loop.
  1514. */
  1515. if (--wbc->nr_to_write <= 0 &&
  1516. wbc->sync_mode == WB_SYNC_NONE) {
  1517. done = 1;
  1518. break;
  1519. }
  1520. }
  1521. pagevec_release(&pvec);
  1522. cond_resched();
  1523. }
  1524. if (!cycled && !done) {
  1525. /*
  1526. * range_cyclic:
  1527. * We hit the last page and there is more work to be done: wrap
  1528. * back to the start of the file
  1529. */
  1530. cycled = 1;
  1531. index = 0;
  1532. end = writeback_index - 1;
  1533. goto retry;
  1534. }
  1535. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1536. mapping->writeback_index = done_index;
  1537. return ret;
  1538. }
  1539. EXPORT_SYMBOL(write_cache_pages);
  1540. /*
  1541. * Function used by generic_writepages to call the real writepage
  1542. * function and set the mapping flags on error
  1543. */
  1544. static int __writepage(struct page *page, struct writeback_control *wbc,
  1545. void *data)
  1546. {
  1547. struct address_space *mapping = data;
  1548. int ret = mapping->a_ops->writepage(page, wbc);
  1549. mapping_set_error(mapping, ret);
  1550. return ret;
  1551. }
  1552. /**
  1553. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1554. * @mapping: address space structure to write
  1555. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1556. *
  1557. * This is a library function, which implements the writepages()
  1558. * address_space_operation.
  1559. */
  1560. int generic_writepages(struct address_space *mapping,
  1561. struct writeback_control *wbc)
  1562. {
  1563. struct blk_plug plug;
  1564. int ret;
  1565. /* deal with chardevs and other special file */
  1566. if (!mapping->a_ops->writepage)
  1567. return 0;
  1568. blk_start_plug(&plug);
  1569. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1570. blk_finish_plug(&plug);
  1571. return ret;
  1572. }
  1573. EXPORT_SYMBOL(generic_writepages);
  1574. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1575. {
  1576. int ret;
  1577. if (wbc->nr_to_write <= 0)
  1578. return 0;
  1579. if (mapping->a_ops->writepages)
  1580. ret = mapping->a_ops->writepages(mapping, wbc);
  1581. else
  1582. ret = generic_writepages(mapping, wbc);
  1583. return ret;
  1584. }
  1585. /**
  1586. * write_one_page - write out a single page and optionally wait on I/O
  1587. * @page: the page to write
  1588. * @wait: if true, wait on writeout
  1589. *
  1590. * The page must be locked by the caller and will be unlocked upon return.
  1591. *
  1592. * write_one_page() returns a negative error code if I/O failed.
  1593. */
  1594. int write_one_page(struct page *page, int wait)
  1595. {
  1596. struct address_space *mapping = page->mapping;
  1597. int ret = 0;
  1598. struct writeback_control wbc = {
  1599. .sync_mode = WB_SYNC_ALL,
  1600. .nr_to_write = 1,
  1601. };
  1602. BUG_ON(!PageLocked(page));
  1603. if (wait)
  1604. wait_on_page_writeback(page);
  1605. if (clear_page_dirty_for_io(page)) {
  1606. page_cache_get(page);
  1607. ret = mapping->a_ops->writepage(page, &wbc);
  1608. if (ret == 0 && wait) {
  1609. wait_on_page_writeback(page);
  1610. if (PageError(page))
  1611. ret = -EIO;
  1612. }
  1613. page_cache_release(page);
  1614. } else {
  1615. unlock_page(page);
  1616. }
  1617. return ret;
  1618. }
  1619. EXPORT_SYMBOL(write_one_page);
  1620. /*
  1621. * For address_spaces which do not use buffers nor write back.
  1622. */
  1623. int __set_page_dirty_no_writeback(struct page *page)
  1624. {
  1625. if (!PageDirty(page))
  1626. return !TestSetPageDirty(page);
  1627. return 0;
  1628. }
  1629. /*
  1630. * Helper function for set_page_dirty family.
  1631. * NOTE: This relies on being atomic wrt interrupts.
  1632. */
  1633. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1634. {
  1635. if (mapping_cap_account_dirty(mapping)) {
  1636. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1637. __inc_zone_page_state(page, NR_DIRTIED);
  1638. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1639. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1640. task_io_account_write(PAGE_CACHE_SIZE);
  1641. current->nr_dirtied++;
  1642. this_cpu_inc(bdp_ratelimits);
  1643. }
  1644. }
  1645. EXPORT_SYMBOL(account_page_dirtied);
  1646. /*
  1647. * Helper function for set_page_writeback family.
  1648. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1649. * wrt interrupts.
  1650. */
  1651. void account_page_writeback(struct page *page)
  1652. {
  1653. inc_zone_page_state(page, NR_WRITEBACK);
  1654. }
  1655. EXPORT_SYMBOL(account_page_writeback);
  1656. /*
  1657. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1658. * its radix tree.
  1659. *
  1660. * This is also used when a single buffer is being dirtied: we want to set the
  1661. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1662. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1663. *
  1664. * Most callers have locked the page, which pins the address_space in memory.
  1665. * But zap_pte_range() does not lock the page, however in that case the
  1666. * mapping is pinned by the vma's ->vm_file reference.
  1667. *
  1668. * We take care to handle the case where the page was truncated from the
  1669. * mapping by re-checking page_mapping() inside tree_lock.
  1670. */
  1671. int __set_page_dirty_nobuffers(struct page *page)
  1672. {
  1673. if (!TestSetPageDirty(page)) {
  1674. struct address_space *mapping = page_mapping(page);
  1675. struct address_space *mapping2;
  1676. if (!mapping)
  1677. return 1;
  1678. spin_lock_irq(&mapping->tree_lock);
  1679. mapping2 = page_mapping(page);
  1680. if (mapping2) { /* Race with truncate? */
  1681. BUG_ON(mapping2 != mapping);
  1682. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1683. account_page_dirtied(page, mapping);
  1684. radix_tree_tag_set(&mapping->page_tree,
  1685. page_index(page), PAGECACHE_TAG_DIRTY);
  1686. }
  1687. spin_unlock_irq(&mapping->tree_lock);
  1688. if (mapping->host) {
  1689. /* !PageAnon && !swapper_space */
  1690. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1691. }
  1692. return 1;
  1693. }
  1694. return 0;
  1695. }
  1696. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1697. /*
  1698. * Call this whenever redirtying a page, to de-account the dirty counters
  1699. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1700. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1701. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1702. * control.
  1703. */
  1704. void account_page_redirty(struct page *page)
  1705. {
  1706. struct address_space *mapping = page->mapping;
  1707. if (mapping && mapping_cap_account_dirty(mapping)) {
  1708. current->nr_dirtied--;
  1709. dec_zone_page_state(page, NR_DIRTIED);
  1710. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1711. }
  1712. }
  1713. EXPORT_SYMBOL(account_page_redirty);
  1714. /*
  1715. * When a writepage implementation decides that it doesn't want to write this
  1716. * page for some reason, it should redirty the locked page via
  1717. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1718. */
  1719. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1720. {
  1721. wbc->pages_skipped++;
  1722. account_page_redirty(page);
  1723. return __set_page_dirty_nobuffers(page);
  1724. }
  1725. EXPORT_SYMBOL(redirty_page_for_writepage);
  1726. /*
  1727. * Dirty a page.
  1728. *
  1729. * For pages with a mapping this should be done under the page lock
  1730. * for the benefit of asynchronous memory errors who prefer a consistent
  1731. * dirty state. This rule can be broken in some special cases,
  1732. * but should be better not to.
  1733. *
  1734. * If the mapping doesn't provide a set_page_dirty a_op, then
  1735. * just fall through and assume that it wants buffer_heads.
  1736. */
  1737. int set_page_dirty(struct page *page)
  1738. {
  1739. struct address_space *mapping = page_mapping(page);
  1740. if (likely(mapping)) {
  1741. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1742. /*
  1743. * readahead/lru_deactivate_page could remain
  1744. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1745. * About readahead, if the page is written, the flags would be
  1746. * reset. So no problem.
  1747. * About lru_deactivate_page, if the page is redirty, the flag
  1748. * will be reset. So no problem. but if the page is used by readahead
  1749. * it will confuse readahead and make it restart the size rampup
  1750. * process. But it's a trivial problem.
  1751. */
  1752. ClearPageReclaim(page);
  1753. #ifdef CONFIG_BLOCK
  1754. if (!spd)
  1755. spd = __set_page_dirty_buffers;
  1756. #endif
  1757. return (*spd)(page);
  1758. }
  1759. if (!PageDirty(page)) {
  1760. if (!TestSetPageDirty(page))
  1761. return 1;
  1762. }
  1763. return 0;
  1764. }
  1765. EXPORT_SYMBOL(set_page_dirty);
  1766. /*
  1767. * set_page_dirty() is racy if the caller has no reference against
  1768. * page->mapping->host, and if the page is unlocked. This is because another
  1769. * CPU could truncate the page off the mapping and then free the mapping.
  1770. *
  1771. * Usually, the page _is_ locked, or the caller is a user-space process which
  1772. * holds a reference on the inode by having an open file.
  1773. *
  1774. * In other cases, the page should be locked before running set_page_dirty().
  1775. */
  1776. int set_page_dirty_lock(struct page *page)
  1777. {
  1778. int ret;
  1779. lock_page(page);
  1780. ret = set_page_dirty(page);
  1781. unlock_page(page);
  1782. return ret;
  1783. }
  1784. EXPORT_SYMBOL(set_page_dirty_lock);
  1785. /*
  1786. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1787. * Returns true if the page was previously dirty.
  1788. *
  1789. * This is for preparing to put the page under writeout. We leave the page
  1790. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1791. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1792. * implementation will run either set_page_writeback() or set_page_dirty(),
  1793. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1794. * back into sync.
  1795. *
  1796. * This incoherency between the page's dirty flag and radix-tree tag is
  1797. * unfortunate, but it only exists while the page is locked.
  1798. */
  1799. int clear_page_dirty_for_io(struct page *page)
  1800. {
  1801. struct address_space *mapping = page_mapping(page);
  1802. BUG_ON(!PageLocked(page));
  1803. if (mapping && mapping_cap_account_dirty(mapping)) {
  1804. /*
  1805. * Yes, Virginia, this is indeed insane.
  1806. *
  1807. * We use this sequence to make sure that
  1808. * (a) we account for dirty stats properly
  1809. * (b) we tell the low-level filesystem to
  1810. * mark the whole page dirty if it was
  1811. * dirty in a pagetable. Only to then
  1812. * (c) clean the page again and return 1 to
  1813. * cause the writeback.
  1814. *
  1815. * This way we avoid all nasty races with the
  1816. * dirty bit in multiple places and clearing
  1817. * them concurrently from different threads.
  1818. *
  1819. * Note! Normally the "set_page_dirty(page)"
  1820. * has no effect on the actual dirty bit - since
  1821. * that will already usually be set. But we
  1822. * need the side effects, and it can help us
  1823. * avoid races.
  1824. *
  1825. * We basically use the page "master dirty bit"
  1826. * as a serialization point for all the different
  1827. * threads doing their things.
  1828. */
  1829. if (page_mkclean(page))
  1830. set_page_dirty(page);
  1831. /*
  1832. * We carefully synchronise fault handlers against
  1833. * installing a dirty pte and marking the page dirty
  1834. * at this point. We do this by having them hold the
  1835. * page lock at some point after installing their
  1836. * pte, but before marking the page dirty.
  1837. * Pages are always locked coming in here, so we get
  1838. * the desired exclusion. See mm/memory.c:do_wp_page()
  1839. * for more comments.
  1840. */
  1841. if (TestClearPageDirty(page)) {
  1842. dec_zone_page_state(page, NR_FILE_DIRTY);
  1843. dec_bdi_stat(mapping->backing_dev_info,
  1844. BDI_RECLAIMABLE);
  1845. return 1;
  1846. }
  1847. return 0;
  1848. }
  1849. return TestClearPageDirty(page);
  1850. }
  1851. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1852. int test_clear_page_writeback(struct page *page)
  1853. {
  1854. struct address_space *mapping = page_mapping(page);
  1855. int ret;
  1856. if (mapping) {
  1857. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1858. unsigned long flags;
  1859. spin_lock_irqsave(&mapping->tree_lock, flags);
  1860. ret = TestClearPageWriteback(page);
  1861. if (ret) {
  1862. radix_tree_tag_clear(&mapping->page_tree,
  1863. page_index(page),
  1864. PAGECACHE_TAG_WRITEBACK);
  1865. if (bdi_cap_account_writeback(bdi)) {
  1866. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1867. __bdi_writeout_inc(bdi);
  1868. }
  1869. }
  1870. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1871. } else {
  1872. ret = TestClearPageWriteback(page);
  1873. }
  1874. if (ret) {
  1875. dec_zone_page_state(page, NR_WRITEBACK);
  1876. inc_zone_page_state(page, NR_WRITTEN);
  1877. }
  1878. return ret;
  1879. }
  1880. int test_set_page_writeback(struct page *page)
  1881. {
  1882. struct address_space *mapping = page_mapping(page);
  1883. int ret;
  1884. if (mapping) {
  1885. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1886. unsigned long flags;
  1887. spin_lock_irqsave(&mapping->tree_lock, flags);
  1888. ret = TestSetPageWriteback(page);
  1889. if (!ret) {
  1890. radix_tree_tag_set(&mapping->page_tree,
  1891. page_index(page),
  1892. PAGECACHE_TAG_WRITEBACK);
  1893. if (bdi_cap_account_writeback(bdi))
  1894. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1895. }
  1896. if (!PageDirty(page))
  1897. radix_tree_tag_clear(&mapping->page_tree,
  1898. page_index(page),
  1899. PAGECACHE_TAG_DIRTY);
  1900. radix_tree_tag_clear(&mapping->page_tree,
  1901. page_index(page),
  1902. PAGECACHE_TAG_TOWRITE);
  1903. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1904. } else {
  1905. ret = TestSetPageWriteback(page);
  1906. }
  1907. if (!ret)
  1908. account_page_writeback(page);
  1909. return ret;
  1910. }
  1911. EXPORT_SYMBOL(test_set_page_writeback);
  1912. /*
  1913. * Return true if any of the pages in the mapping are marked with the
  1914. * passed tag.
  1915. */
  1916. int mapping_tagged(struct address_space *mapping, int tag)
  1917. {
  1918. return radix_tree_tagged(&mapping->page_tree, tag);
  1919. }
  1920. EXPORT_SYMBOL(mapping_tagged);