kvm-ia64.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/gcc_intrin.h>
  35. #include <asm/pal.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/div64.h>
  38. #include <asm/tlb.h>
  39. #include "misc.h"
  40. #include "vti.h"
  41. #include "iodev.h"
  42. #include "ioapic.h"
  43. #include "lapic.h"
  44. static unsigned long kvm_vmm_base;
  45. static unsigned long kvm_vsa_base;
  46. static unsigned long kvm_vm_buffer;
  47. static unsigned long kvm_vm_buffer_size;
  48. unsigned long kvm_vmm_gp;
  49. static long vp_env_info;
  50. static struct kvm_vmm_info *kvm_vmm_info;
  51. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  52. struct kvm_stats_debugfs_item debugfs_entries[] = {
  53. { NULL }
  54. };
  55. struct fdesc{
  56. unsigned long ip;
  57. unsigned long gp;
  58. };
  59. static void kvm_flush_icache(unsigned long start, unsigned long len)
  60. {
  61. int l;
  62. for (l = 0; l < (len + 32); l += 32)
  63. ia64_fc(start + l);
  64. ia64_sync_i();
  65. ia64_srlz_i();
  66. }
  67. static void kvm_flush_tlb_all(void)
  68. {
  69. unsigned long i, j, count0, count1, stride0, stride1, addr;
  70. long flags;
  71. addr = local_cpu_data->ptce_base;
  72. count0 = local_cpu_data->ptce_count[0];
  73. count1 = local_cpu_data->ptce_count[1];
  74. stride0 = local_cpu_data->ptce_stride[0];
  75. stride1 = local_cpu_data->ptce_stride[1];
  76. local_irq_save(flags);
  77. for (i = 0; i < count0; ++i) {
  78. for (j = 0; j < count1; ++j) {
  79. ia64_ptce(addr);
  80. addr += stride1;
  81. }
  82. addr += stride0;
  83. }
  84. local_irq_restore(flags);
  85. ia64_srlz_i(); /* srlz.i implies srlz.d */
  86. }
  87. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  88. {
  89. struct ia64_pal_retval iprv;
  90. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  91. (u64)opt_handler);
  92. return iprv.status;
  93. }
  94. static DEFINE_SPINLOCK(vp_lock);
  95. void kvm_arch_hardware_enable(void *garbage)
  96. {
  97. long status;
  98. long tmp_base;
  99. unsigned long pte;
  100. unsigned long saved_psr;
  101. int slot;
  102. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  103. PAGE_KERNEL));
  104. local_irq_save(saved_psr);
  105. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  106. if (slot < 0)
  107. return;
  108. local_irq_restore(saved_psr);
  109. spin_lock(&vp_lock);
  110. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  111. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  112. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  113. if (status != 0) {
  114. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  115. return ;
  116. }
  117. if (!kvm_vsa_base) {
  118. kvm_vsa_base = tmp_base;
  119. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  120. }
  121. spin_unlock(&vp_lock);
  122. ia64_ptr_entry(0x3, slot);
  123. }
  124. void kvm_arch_hardware_disable(void *garbage)
  125. {
  126. long status;
  127. int slot;
  128. unsigned long pte;
  129. unsigned long saved_psr;
  130. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  131. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  132. PAGE_KERNEL));
  133. local_irq_save(saved_psr);
  134. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  135. if (slot < 0)
  136. return;
  137. local_irq_restore(saved_psr);
  138. status = ia64_pal_vp_exit_env(host_iva);
  139. if (status)
  140. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  141. status);
  142. ia64_ptr_entry(0x3, slot);
  143. }
  144. void kvm_arch_check_processor_compat(void *rtn)
  145. {
  146. *(int *)rtn = 0;
  147. }
  148. int kvm_dev_ioctl_check_extension(long ext)
  149. {
  150. int r;
  151. switch (ext) {
  152. case KVM_CAP_IRQCHIP:
  153. case KVM_CAP_USER_MEMORY:
  154. r = 1;
  155. break;
  156. default:
  157. r = 0;
  158. }
  159. return r;
  160. }
  161. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  162. gpa_t addr)
  163. {
  164. struct kvm_io_device *dev;
  165. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  166. return dev;
  167. }
  168. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  169. {
  170. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  171. kvm_run->hw.hardware_exit_reason = 1;
  172. return 0;
  173. }
  174. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  175. {
  176. struct kvm_mmio_req *p;
  177. struct kvm_io_device *mmio_dev;
  178. p = kvm_get_vcpu_ioreq(vcpu);
  179. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  180. goto mmio;
  181. vcpu->mmio_needed = 1;
  182. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  183. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  184. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  185. if (vcpu->mmio_is_write)
  186. memcpy(vcpu->mmio_data, &p->data, p->size);
  187. memcpy(kvm_run->mmio.data, &p->data, p->size);
  188. kvm_run->exit_reason = KVM_EXIT_MMIO;
  189. return 0;
  190. mmio:
  191. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr);
  192. if (mmio_dev) {
  193. if (!p->dir)
  194. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  195. &p->data);
  196. else
  197. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  198. &p->data);
  199. } else
  200. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  201. p->state = STATE_IORESP_READY;
  202. return 1;
  203. }
  204. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  205. {
  206. struct exit_ctl_data *p;
  207. p = kvm_get_exit_data(vcpu);
  208. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  209. return kvm_pal_emul(vcpu, kvm_run);
  210. else {
  211. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  212. kvm_run->hw.hardware_exit_reason = 2;
  213. return 0;
  214. }
  215. }
  216. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  217. {
  218. struct exit_ctl_data *p;
  219. p = kvm_get_exit_data(vcpu);
  220. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  221. kvm_sal_emul(vcpu);
  222. return 1;
  223. } else {
  224. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  225. kvm_run->hw.hardware_exit_reason = 3;
  226. return 0;
  227. }
  228. }
  229. /*
  230. * offset: address offset to IPI space.
  231. * value: deliver value.
  232. */
  233. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  234. uint64_t vector)
  235. {
  236. switch (dm) {
  237. case SAPIC_FIXED:
  238. kvm_apic_set_irq(vcpu, vector, 0);
  239. break;
  240. case SAPIC_NMI:
  241. kvm_apic_set_irq(vcpu, 2, 0);
  242. break;
  243. case SAPIC_EXTINT:
  244. kvm_apic_set_irq(vcpu, 0, 0);
  245. break;
  246. case SAPIC_INIT:
  247. case SAPIC_PMI:
  248. default:
  249. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  250. break;
  251. }
  252. }
  253. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  254. unsigned long eid)
  255. {
  256. union ia64_lid lid;
  257. int i;
  258. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  259. if (kvm->vcpus[i]) {
  260. lid.val = VCPU_LID(kvm->vcpus[i]);
  261. if (lid.id == id && lid.eid == eid)
  262. return kvm->vcpus[i];
  263. }
  264. }
  265. return NULL;
  266. }
  267. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  268. {
  269. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  270. struct kvm_vcpu *target_vcpu;
  271. struct kvm_pt_regs *regs;
  272. union ia64_ipi_a addr = p->u.ipi_data.addr;
  273. union ia64_ipi_d data = p->u.ipi_data.data;
  274. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  275. if (!target_vcpu)
  276. return handle_vm_error(vcpu, kvm_run);
  277. if (!target_vcpu->arch.launched) {
  278. regs = vcpu_regs(target_vcpu);
  279. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  280. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  281. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  282. if (waitqueue_active(&target_vcpu->wq))
  283. wake_up_interruptible(&target_vcpu->wq);
  284. } else {
  285. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  286. if (target_vcpu != vcpu)
  287. kvm_vcpu_kick(target_vcpu);
  288. }
  289. return 1;
  290. }
  291. struct call_data {
  292. struct kvm_ptc_g ptc_g_data;
  293. struct kvm_vcpu *vcpu;
  294. };
  295. static void vcpu_global_purge(void *info)
  296. {
  297. struct call_data *p = (struct call_data *)info;
  298. struct kvm_vcpu *vcpu = p->vcpu;
  299. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  300. return;
  301. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  302. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  303. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  304. p->ptc_g_data;
  305. } else {
  306. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  307. vcpu->arch.ptc_g_count = 0;
  308. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  309. }
  310. }
  311. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  312. {
  313. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  314. struct kvm *kvm = vcpu->kvm;
  315. struct call_data call_data;
  316. int i;
  317. call_data.ptc_g_data = p->u.ptc_g_data;
  318. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  319. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  320. KVM_MP_STATE_UNINITIALIZED ||
  321. vcpu == kvm->vcpus[i])
  322. continue;
  323. if (waitqueue_active(&kvm->vcpus[i]->wq))
  324. wake_up_interruptible(&kvm->vcpus[i]->wq);
  325. if (kvm->vcpus[i]->cpu != -1) {
  326. call_data.vcpu = kvm->vcpus[i];
  327. smp_call_function_single(kvm->vcpus[i]->cpu,
  328. vcpu_global_purge, &call_data, 1);
  329. } else
  330. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  331. }
  332. return 1;
  333. }
  334. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  335. {
  336. return 1;
  337. }
  338. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  339. {
  340. ktime_t kt;
  341. long itc_diff;
  342. unsigned long vcpu_now_itc;
  343. unsigned long expires;
  344. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  345. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  346. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  347. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  348. if (time_after(vcpu_now_itc, vpd->itm)) {
  349. vcpu->arch.timer_check = 1;
  350. return 1;
  351. }
  352. itc_diff = vpd->itm - vcpu_now_itc;
  353. if (itc_diff < 0)
  354. itc_diff = -itc_diff;
  355. expires = div64_u64(itc_diff, cyc_per_usec);
  356. kt = ktime_set(0, 1000 * expires);
  357. vcpu->arch.ht_active = 1;
  358. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  359. if (irqchip_in_kernel(vcpu->kvm)) {
  360. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  361. kvm_vcpu_block(vcpu);
  362. hrtimer_cancel(p_ht);
  363. vcpu->arch.ht_active = 0;
  364. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  365. return -EINTR;
  366. return 1;
  367. } else {
  368. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  369. return 0;
  370. }
  371. }
  372. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  373. struct kvm_run *kvm_run)
  374. {
  375. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  376. return 0;
  377. }
  378. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  379. struct kvm_run *kvm_run)
  380. {
  381. return 1;
  382. }
  383. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  384. struct kvm_run *kvm_run) = {
  385. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  386. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  387. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  388. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  389. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  390. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  391. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  392. [EXIT_REASON_IPI] = handle_ipi,
  393. [EXIT_REASON_PTC_G] = handle_global_purge,
  394. };
  395. static const int kvm_vti_max_exit_handlers =
  396. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  397. static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  398. {
  399. }
  400. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  401. {
  402. struct exit_ctl_data *p_exit_data;
  403. p_exit_data = kvm_get_exit_data(vcpu);
  404. return p_exit_data->exit_reason;
  405. }
  406. /*
  407. * The guest has exited. See if we can fix it or if we need userspace
  408. * assistance.
  409. */
  410. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  411. {
  412. u32 exit_reason = kvm_get_exit_reason(vcpu);
  413. vcpu->arch.last_exit = exit_reason;
  414. if (exit_reason < kvm_vti_max_exit_handlers
  415. && kvm_vti_exit_handlers[exit_reason])
  416. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  417. else {
  418. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  419. kvm_run->hw.hardware_exit_reason = exit_reason;
  420. }
  421. return 0;
  422. }
  423. static inline void vti_set_rr6(unsigned long rr6)
  424. {
  425. ia64_set_rr(RR6, rr6);
  426. ia64_srlz_i();
  427. }
  428. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  429. {
  430. unsigned long pte;
  431. struct kvm *kvm = vcpu->kvm;
  432. int r;
  433. /*Insert a pair of tr to map vmm*/
  434. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  435. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  436. if (r < 0)
  437. goto out;
  438. vcpu->arch.vmm_tr_slot = r;
  439. /*Insert a pairt of tr to map data of vm*/
  440. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  441. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  442. pte, KVM_VM_DATA_SHIFT);
  443. if (r < 0)
  444. goto out;
  445. vcpu->arch.vm_tr_slot = r;
  446. r = 0;
  447. out:
  448. return r;
  449. }
  450. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  451. {
  452. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  453. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  454. }
  455. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  456. {
  457. int cpu = smp_processor_id();
  458. if (vcpu->arch.last_run_cpu != cpu ||
  459. per_cpu(last_vcpu, cpu) != vcpu) {
  460. per_cpu(last_vcpu, cpu) = vcpu;
  461. vcpu->arch.last_run_cpu = cpu;
  462. kvm_flush_tlb_all();
  463. }
  464. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  465. vti_set_rr6(vcpu->arch.vmm_rr);
  466. return kvm_insert_vmm_mapping(vcpu);
  467. }
  468. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  469. {
  470. kvm_purge_vmm_mapping(vcpu);
  471. vti_set_rr6(vcpu->arch.host_rr6);
  472. }
  473. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  474. {
  475. union context *host_ctx, *guest_ctx;
  476. int r;
  477. /*Get host and guest context with guest address space.*/
  478. host_ctx = kvm_get_host_context(vcpu);
  479. guest_ctx = kvm_get_guest_context(vcpu);
  480. r = kvm_vcpu_pre_transition(vcpu);
  481. if (r < 0)
  482. goto out;
  483. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  484. kvm_vcpu_post_transition(vcpu);
  485. r = 0;
  486. out:
  487. return r;
  488. }
  489. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  490. {
  491. int r;
  492. again:
  493. preempt_disable();
  494. kvm_prepare_guest_switch(vcpu);
  495. local_irq_disable();
  496. if (signal_pending(current)) {
  497. local_irq_enable();
  498. preempt_enable();
  499. r = -EINTR;
  500. kvm_run->exit_reason = KVM_EXIT_INTR;
  501. goto out;
  502. }
  503. vcpu->guest_mode = 1;
  504. kvm_guest_enter();
  505. r = vti_vcpu_run(vcpu, kvm_run);
  506. if (r < 0) {
  507. local_irq_enable();
  508. preempt_enable();
  509. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  510. goto out;
  511. }
  512. vcpu->arch.launched = 1;
  513. vcpu->guest_mode = 0;
  514. local_irq_enable();
  515. /*
  516. * We must have an instruction between local_irq_enable() and
  517. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  518. * the interrupt shadow. The stat.exits increment will do nicely.
  519. * But we need to prevent reordering, hence this barrier():
  520. */
  521. barrier();
  522. kvm_guest_exit();
  523. preempt_enable();
  524. r = kvm_handle_exit(kvm_run, vcpu);
  525. if (r > 0) {
  526. if (!need_resched())
  527. goto again;
  528. }
  529. out:
  530. if (r > 0) {
  531. kvm_resched(vcpu);
  532. goto again;
  533. }
  534. return r;
  535. }
  536. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  537. {
  538. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  539. if (!vcpu->mmio_is_write)
  540. memcpy(&p->data, vcpu->mmio_data, 8);
  541. p->state = STATE_IORESP_READY;
  542. }
  543. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  544. {
  545. int r;
  546. sigset_t sigsaved;
  547. vcpu_load(vcpu);
  548. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  549. kvm_vcpu_block(vcpu);
  550. vcpu_put(vcpu);
  551. return -EAGAIN;
  552. }
  553. if (vcpu->sigset_active)
  554. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  555. if (vcpu->mmio_needed) {
  556. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  557. kvm_set_mmio_data(vcpu);
  558. vcpu->mmio_read_completed = 1;
  559. vcpu->mmio_needed = 0;
  560. }
  561. r = __vcpu_run(vcpu, kvm_run);
  562. if (vcpu->sigset_active)
  563. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  564. vcpu_put(vcpu);
  565. return r;
  566. }
  567. /*
  568. * Allocate 16M memory for every vm to hold its specific data.
  569. * Its memory map is defined in kvm_host.h.
  570. */
  571. static struct kvm *kvm_alloc_kvm(void)
  572. {
  573. struct kvm *kvm;
  574. uint64_t vm_base;
  575. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  576. if (!vm_base)
  577. return ERR_PTR(-ENOMEM);
  578. printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
  579. /* Zero all pages before use! */
  580. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  581. kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
  582. kvm->arch.vm_base = vm_base;
  583. return kvm;
  584. }
  585. struct kvm_io_range {
  586. unsigned long start;
  587. unsigned long size;
  588. unsigned long type;
  589. };
  590. static const struct kvm_io_range io_ranges[] = {
  591. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  592. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  593. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  594. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  595. {PIB_START, PIB_SIZE, GPFN_PIB},
  596. };
  597. static void kvm_build_io_pmt(struct kvm *kvm)
  598. {
  599. unsigned long i, j;
  600. /* Mark I/O ranges */
  601. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  602. i++) {
  603. for (j = io_ranges[i].start;
  604. j < io_ranges[i].start + io_ranges[i].size;
  605. j += PAGE_SIZE)
  606. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  607. io_ranges[i].type, 0);
  608. }
  609. }
  610. /*Use unused rids to virtualize guest rid.*/
  611. #define GUEST_PHYSICAL_RR0 0x1739
  612. #define GUEST_PHYSICAL_RR4 0x2739
  613. #define VMM_INIT_RR 0x1660
  614. static void kvm_init_vm(struct kvm *kvm)
  615. {
  616. long vm_base;
  617. BUG_ON(!kvm);
  618. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  619. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  620. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  621. vm_base = kvm->arch.vm_base;
  622. if (vm_base) {
  623. kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
  624. kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
  625. kvm->arch.vpd_base = vm_base + KVM_VPD_OFS;
  626. }
  627. /*
  628. *Fill P2M entries for MMIO/IO ranges
  629. */
  630. kvm_build_io_pmt(kvm);
  631. }
  632. struct kvm *kvm_arch_create_vm(void)
  633. {
  634. struct kvm *kvm = kvm_alloc_kvm();
  635. if (IS_ERR(kvm))
  636. return ERR_PTR(-ENOMEM);
  637. kvm_init_vm(kvm);
  638. return kvm;
  639. }
  640. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  641. struct kvm_irqchip *chip)
  642. {
  643. int r;
  644. r = 0;
  645. switch (chip->chip_id) {
  646. case KVM_IRQCHIP_IOAPIC:
  647. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  648. sizeof(struct kvm_ioapic_state));
  649. break;
  650. default:
  651. r = -EINVAL;
  652. break;
  653. }
  654. return r;
  655. }
  656. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  657. {
  658. int r;
  659. r = 0;
  660. switch (chip->chip_id) {
  661. case KVM_IRQCHIP_IOAPIC:
  662. memcpy(ioapic_irqchip(kvm),
  663. &chip->chip.ioapic,
  664. sizeof(struct kvm_ioapic_state));
  665. break;
  666. default:
  667. r = -EINVAL;
  668. break;
  669. }
  670. return r;
  671. }
  672. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  673. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  674. {
  675. int i;
  676. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  677. int r;
  678. vcpu_load(vcpu);
  679. for (i = 0; i < 16; i++) {
  680. vpd->vgr[i] = regs->vpd.vgr[i];
  681. vpd->vbgr[i] = regs->vpd.vbgr[i];
  682. }
  683. for (i = 0; i < 128; i++)
  684. vpd->vcr[i] = regs->vpd.vcr[i];
  685. vpd->vhpi = regs->vpd.vhpi;
  686. vpd->vnat = regs->vpd.vnat;
  687. vpd->vbnat = regs->vpd.vbnat;
  688. vpd->vpsr = regs->vpd.vpsr;
  689. vpd->vpr = regs->vpd.vpr;
  690. r = -EFAULT;
  691. r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
  692. sizeof(union context));
  693. if (r)
  694. goto out;
  695. r = copy_from_user(vcpu + 1, regs->saved_stack +
  696. sizeof(struct kvm_vcpu),
  697. IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
  698. if (r)
  699. goto out;
  700. vcpu->arch.exit_data =
  701. ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
  702. RESTORE_REGS(mp_state);
  703. RESTORE_REGS(vmm_rr);
  704. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  705. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  706. RESTORE_REGS(itr_regions);
  707. RESTORE_REGS(dtr_regions);
  708. RESTORE_REGS(tc_regions);
  709. RESTORE_REGS(irq_check);
  710. RESTORE_REGS(itc_check);
  711. RESTORE_REGS(timer_check);
  712. RESTORE_REGS(timer_pending);
  713. RESTORE_REGS(last_itc);
  714. for (i = 0; i < 8; i++) {
  715. vcpu->arch.vrr[i] = regs->vrr[i];
  716. vcpu->arch.ibr[i] = regs->ibr[i];
  717. vcpu->arch.dbr[i] = regs->dbr[i];
  718. }
  719. for (i = 0; i < 4; i++)
  720. vcpu->arch.insvc[i] = regs->insvc[i];
  721. RESTORE_REGS(xtp);
  722. RESTORE_REGS(metaphysical_rr0);
  723. RESTORE_REGS(metaphysical_rr4);
  724. RESTORE_REGS(metaphysical_saved_rr0);
  725. RESTORE_REGS(metaphysical_saved_rr4);
  726. RESTORE_REGS(fp_psr);
  727. RESTORE_REGS(saved_gp);
  728. vcpu->arch.irq_new_pending = 1;
  729. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  730. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  731. vcpu_put(vcpu);
  732. r = 0;
  733. out:
  734. return r;
  735. }
  736. long kvm_arch_vm_ioctl(struct file *filp,
  737. unsigned int ioctl, unsigned long arg)
  738. {
  739. struct kvm *kvm = filp->private_data;
  740. void __user *argp = (void __user *)arg;
  741. int r = -EINVAL;
  742. switch (ioctl) {
  743. case KVM_SET_MEMORY_REGION: {
  744. struct kvm_memory_region kvm_mem;
  745. struct kvm_userspace_memory_region kvm_userspace_mem;
  746. r = -EFAULT;
  747. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  748. goto out;
  749. kvm_userspace_mem.slot = kvm_mem.slot;
  750. kvm_userspace_mem.flags = kvm_mem.flags;
  751. kvm_userspace_mem.guest_phys_addr =
  752. kvm_mem.guest_phys_addr;
  753. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  754. r = kvm_vm_ioctl_set_memory_region(kvm,
  755. &kvm_userspace_mem, 0);
  756. if (r)
  757. goto out;
  758. break;
  759. }
  760. case KVM_CREATE_IRQCHIP:
  761. r = -EFAULT;
  762. r = kvm_ioapic_init(kvm);
  763. if (r)
  764. goto out;
  765. break;
  766. case KVM_IRQ_LINE: {
  767. struct kvm_irq_level irq_event;
  768. r = -EFAULT;
  769. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  770. goto out;
  771. if (irqchip_in_kernel(kvm)) {
  772. mutex_lock(&kvm->lock);
  773. kvm_ioapic_set_irq(kvm->arch.vioapic,
  774. irq_event.irq,
  775. irq_event.level);
  776. mutex_unlock(&kvm->lock);
  777. r = 0;
  778. }
  779. break;
  780. }
  781. case KVM_GET_IRQCHIP: {
  782. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  783. struct kvm_irqchip chip;
  784. r = -EFAULT;
  785. if (copy_from_user(&chip, argp, sizeof chip))
  786. goto out;
  787. r = -ENXIO;
  788. if (!irqchip_in_kernel(kvm))
  789. goto out;
  790. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  791. if (r)
  792. goto out;
  793. r = -EFAULT;
  794. if (copy_to_user(argp, &chip, sizeof chip))
  795. goto out;
  796. r = 0;
  797. break;
  798. }
  799. case KVM_SET_IRQCHIP: {
  800. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  801. struct kvm_irqchip chip;
  802. r = -EFAULT;
  803. if (copy_from_user(&chip, argp, sizeof chip))
  804. goto out;
  805. r = -ENXIO;
  806. if (!irqchip_in_kernel(kvm))
  807. goto out;
  808. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  809. if (r)
  810. goto out;
  811. r = 0;
  812. break;
  813. }
  814. default:
  815. ;
  816. }
  817. out:
  818. return r;
  819. }
  820. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  821. struct kvm_sregs *sregs)
  822. {
  823. return -EINVAL;
  824. }
  825. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  826. struct kvm_sregs *sregs)
  827. {
  828. return -EINVAL;
  829. }
  830. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  831. struct kvm_translation *tr)
  832. {
  833. return -EINVAL;
  834. }
  835. static int kvm_alloc_vmm_area(void)
  836. {
  837. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  838. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  839. get_order(KVM_VMM_SIZE));
  840. if (!kvm_vmm_base)
  841. return -ENOMEM;
  842. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  843. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  844. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  845. kvm_vmm_base, kvm_vm_buffer);
  846. }
  847. return 0;
  848. }
  849. static void kvm_free_vmm_area(void)
  850. {
  851. if (kvm_vmm_base) {
  852. /*Zero this area before free to avoid bits leak!!*/
  853. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  854. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  855. kvm_vmm_base = 0;
  856. kvm_vm_buffer = 0;
  857. kvm_vsa_base = 0;
  858. }
  859. }
  860. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  861. {
  862. }
  863. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  864. {
  865. int i;
  866. union cpuid3_t cpuid3;
  867. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  868. if (IS_ERR(vpd))
  869. return PTR_ERR(vpd);
  870. /* CPUID init */
  871. for (i = 0; i < 5; i++)
  872. vpd->vcpuid[i] = ia64_get_cpuid(i);
  873. /* Limit the CPUID number to 5 */
  874. cpuid3.value = vpd->vcpuid[3];
  875. cpuid3.number = 4; /* 5 - 1 */
  876. vpd->vcpuid[3] = cpuid3.value;
  877. /*Set vac and vdc fields*/
  878. vpd->vac.a_from_int_cr = 1;
  879. vpd->vac.a_to_int_cr = 1;
  880. vpd->vac.a_from_psr = 1;
  881. vpd->vac.a_from_cpuid = 1;
  882. vpd->vac.a_cover = 1;
  883. vpd->vac.a_bsw = 1;
  884. vpd->vac.a_int = 1;
  885. vpd->vdc.d_vmsw = 1;
  886. /*Set virtual buffer*/
  887. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  888. return 0;
  889. }
  890. static int vti_create_vp(struct kvm_vcpu *vcpu)
  891. {
  892. long ret;
  893. struct vpd *vpd = vcpu->arch.vpd;
  894. unsigned long vmm_ivt;
  895. vmm_ivt = kvm_vmm_info->vmm_ivt;
  896. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  897. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  898. if (ret) {
  899. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  900. return -EINVAL;
  901. }
  902. return 0;
  903. }
  904. static void init_ptce_info(struct kvm_vcpu *vcpu)
  905. {
  906. ia64_ptce_info_t ptce = {0};
  907. ia64_get_ptce(&ptce);
  908. vcpu->arch.ptce_base = ptce.base;
  909. vcpu->arch.ptce_count[0] = ptce.count[0];
  910. vcpu->arch.ptce_count[1] = ptce.count[1];
  911. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  912. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  913. }
  914. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  915. {
  916. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  917. if (hrtimer_cancel(p_ht))
  918. hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS);
  919. }
  920. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  921. {
  922. struct kvm_vcpu *vcpu;
  923. wait_queue_head_t *q;
  924. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  925. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  926. goto out;
  927. q = &vcpu->wq;
  928. if (waitqueue_active(q)) {
  929. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  930. wake_up_interruptible(q);
  931. }
  932. out:
  933. vcpu->arch.timer_check = 1;
  934. return HRTIMER_NORESTART;
  935. }
  936. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  937. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  938. {
  939. struct kvm_vcpu *v;
  940. int r;
  941. int i;
  942. long itc_offset;
  943. struct kvm *kvm = vcpu->kvm;
  944. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  945. union context *p_ctx = &vcpu->arch.guest;
  946. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  947. /*Init vcpu context for first run.*/
  948. if (IS_ERR(vmm_vcpu))
  949. return PTR_ERR(vmm_vcpu);
  950. if (vcpu->vcpu_id == 0) {
  951. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  952. /*Set entry address for first run.*/
  953. regs->cr_iip = PALE_RESET_ENTRY;
  954. /*Initilize itc offset for vcpus*/
  955. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  956. for (i = 0; i < MAX_VCPU_NUM; i++) {
  957. v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
  958. v->arch.itc_offset = itc_offset;
  959. v->arch.last_itc = 0;
  960. }
  961. } else
  962. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  963. r = -ENOMEM;
  964. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  965. if (!vcpu->arch.apic)
  966. goto out;
  967. vcpu->arch.apic->vcpu = vcpu;
  968. p_ctx->gr[1] = 0;
  969. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
  970. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  971. p_ctx->psr = 0x1008522000UL;
  972. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  973. p_ctx->caller_unat = 0;
  974. p_ctx->pr = 0x0;
  975. p_ctx->ar[36] = 0x0; /*unat*/
  976. p_ctx->ar[19] = 0x0; /*rnat*/
  977. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  978. ((sizeof(struct kvm_vcpu)+15) & ~15);
  979. p_ctx->ar[64] = 0x0; /*pfs*/
  980. p_ctx->cr[0] = 0x7e04UL;
  981. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  982. p_ctx->cr[8] = 0x3c;
  983. /*Initilize region register*/
  984. p_ctx->rr[0] = 0x30;
  985. p_ctx->rr[1] = 0x30;
  986. p_ctx->rr[2] = 0x30;
  987. p_ctx->rr[3] = 0x30;
  988. p_ctx->rr[4] = 0x30;
  989. p_ctx->rr[5] = 0x30;
  990. p_ctx->rr[7] = 0x30;
  991. /*Initilize branch register 0*/
  992. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  993. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  994. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  995. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  996. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  997. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  998. vcpu->arch.last_run_cpu = -1;
  999. vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
  1000. vcpu->arch.vsa_base = kvm_vsa_base;
  1001. vcpu->arch.__gp = kvm_vmm_gp;
  1002. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1003. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
  1004. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
  1005. init_ptce_info(vcpu);
  1006. r = 0;
  1007. out:
  1008. return r;
  1009. }
  1010. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1011. {
  1012. unsigned long psr;
  1013. int r;
  1014. local_irq_save(psr);
  1015. r = kvm_insert_vmm_mapping(vcpu);
  1016. if (r)
  1017. goto fail;
  1018. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1019. if (r)
  1020. goto fail;
  1021. r = vti_init_vpd(vcpu);
  1022. if (r) {
  1023. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1024. goto uninit;
  1025. }
  1026. r = vti_create_vp(vcpu);
  1027. if (r)
  1028. goto uninit;
  1029. kvm_purge_vmm_mapping(vcpu);
  1030. local_irq_restore(psr);
  1031. return 0;
  1032. uninit:
  1033. kvm_vcpu_uninit(vcpu);
  1034. fail:
  1035. return r;
  1036. }
  1037. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1038. unsigned int id)
  1039. {
  1040. struct kvm_vcpu *vcpu;
  1041. unsigned long vm_base = kvm->arch.vm_base;
  1042. int r;
  1043. int cpu;
  1044. r = -ENOMEM;
  1045. if (!vm_base) {
  1046. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1047. goto fail;
  1048. }
  1049. vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
  1050. vcpu->kvm = kvm;
  1051. cpu = get_cpu();
  1052. vti_vcpu_load(vcpu, cpu);
  1053. r = vti_vcpu_setup(vcpu, id);
  1054. put_cpu();
  1055. if (r) {
  1056. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1057. goto fail;
  1058. }
  1059. return vcpu;
  1060. fail:
  1061. return ERR_PTR(r);
  1062. }
  1063. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1064. {
  1065. return 0;
  1066. }
  1067. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1068. {
  1069. return -EINVAL;
  1070. }
  1071. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1072. {
  1073. return -EINVAL;
  1074. }
  1075. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1076. struct kvm_debug_guest *dbg)
  1077. {
  1078. return -EINVAL;
  1079. }
  1080. static void free_kvm(struct kvm *kvm)
  1081. {
  1082. unsigned long vm_base = kvm->arch.vm_base;
  1083. if (vm_base) {
  1084. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1085. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1086. }
  1087. }
  1088. static void kvm_release_vm_pages(struct kvm *kvm)
  1089. {
  1090. struct kvm_memory_slot *memslot;
  1091. int i, j;
  1092. unsigned long base_gfn;
  1093. for (i = 0; i < kvm->nmemslots; i++) {
  1094. memslot = &kvm->memslots[i];
  1095. base_gfn = memslot->base_gfn;
  1096. for (j = 0; j < memslot->npages; j++) {
  1097. if (memslot->rmap[j])
  1098. put_page((struct page *)memslot->rmap[j]);
  1099. }
  1100. }
  1101. }
  1102. void kvm_arch_destroy_vm(struct kvm *kvm)
  1103. {
  1104. kfree(kvm->arch.vioapic);
  1105. kvm_release_vm_pages(kvm);
  1106. kvm_free_physmem(kvm);
  1107. free_kvm(kvm);
  1108. }
  1109. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1110. {
  1111. }
  1112. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1113. {
  1114. if (cpu != vcpu->cpu) {
  1115. vcpu->cpu = cpu;
  1116. if (vcpu->arch.ht_active)
  1117. kvm_migrate_hlt_timer(vcpu);
  1118. }
  1119. }
  1120. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1121. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1122. {
  1123. int i;
  1124. int r;
  1125. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1126. vcpu_load(vcpu);
  1127. for (i = 0; i < 16; i++) {
  1128. regs->vpd.vgr[i] = vpd->vgr[i];
  1129. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1130. }
  1131. for (i = 0; i < 128; i++)
  1132. regs->vpd.vcr[i] = vpd->vcr[i];
  1133. regs->vpd.vhpi = vpd->vhpi;
  1134. regs->vpd.vnat = vpd->vnat;
  1135. regs->vpd.vbnat = vpd->vbnat;
  1136. regs->vpd.vpsr = vpd->vpsr;
  1137. regs->vpd.vpr = vpd->vpr;
  1138. r = -EFAULT;
  1139. r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
  1140. sizeof(union context));
  1141. if (r)
  1142. goto out;
  1143. r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
  1144. if (r)
  1145. goto out;
  1146. SAVE_REGS(mp_state);
  1147. SAVE_REGS(vmm_rr);
  1148. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1149. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1150. SAVE_REGS(itr_regions);
  1151. SAVE_REGS(dtr_regions);
  1152. SAVE_REGS(tc_regions);
  1153. SAVE_REGS(irq_check);
  1154. SAVE_REGS(itc_check);
  1155. SAVE_REGS(timer_check);
  1156. SAVE_REGS(timer_pending);
  1157. SAVE_REGS(last_itc);
  1158. for (i = 0; i < 8; i++) {
  1159. regs->vrr[i] = vcpu->arch.vrr[i];
  1160. regs->ibr[i] = vcpu->arch.ibr[i];
  1161. regs->dbr[i] = vcpu->arch.dbr[i];
  1162. }
  1163. for (i = 0; i < 4; i++)
  1164. regs->insvc[i] = vcpu->arch.insvc[i];
  1165. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1166. SAVE_REGS(xtp);
  1167. SAVE_REGS(metaphysical_rr0);
  1168. SAVE_REGS(metaphysical_rr4);
  1169. SAVE_REGS(metaphysical_saved_rr0);
  1170. SAVE_REGS(metaphysical_saved_rr4);
  1171. SAVE_REGS(fp_psr);
  1172. SAVE_REGS(saved_gp);
  1173. vcpu_put(vcpu);
  1174. r = 0;
  1175. out:
  1176. return r;
  1177. }
  1178. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1179. {
  1180. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1181. kfree(vcpu->arch.apic);
  1182. }
  1183. long kvm_arch_vcpu_ioctl(struct file *filp,
  1184. unsigned int ioctl, unsigned long arg)
  1185. {
  1186. return -EINVAL;
  1187. }
  1188. int kvm_arch_set_memory_region(struct kvm *kvm,
  1189. struct kvm_userspace_memory_region *mem,
  1190. struct kvm_memory_slot old,
  1191. int user_alloc)
  1192. {
  1193. unsigned long i;
  1194. struct page *page;
  1195. int npages = mem->memory_size >> PAGE_SHIFT;
  1196. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1197. unsigned long base_gfn = memslot->base_gfn;
  1198. for (i = 0; i < npages; i++) {
  1199. page = gfn_to_page(kvm, base_gfn + i);
  1200. kvm_set_pmt_entry(kvm, base_gfn + i,
  1201. page_to_pfn(page) << PAGE_SHIFT,
  1202. _PAGE_AR_RWX|_PAGE_MA_WB);
  1203. memslot->rmap[i] = (unsigned long)page;
  1204. }
  1205. return 0;
  1206. }
  1207. long kvm_arch_dev_ioctl(struct file *filp,
  1208. unsigned int ioctl, unsigned long arg)
  1209. {
  1210. return -EINVAL;
  1211. }
  1212. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1213. {
  1214. kvm_vcpu_uninit(vcpu);
  1215. }
  1216. static int vti_cpu_has_kvm_support(void)
  1217. {
  1218. long avail = 1, status = 1, control = 1;
  1219. long ret;
  1220. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1221. if (ret)
  1222. goto out;
  1223. if (!(avail & PAL_PROC_VM_BIT))
  1224. goto out;
  1225. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1226. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1227. if (ret)
  1228. goto out;
  1229. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1230. if (!(vp_env_info & VP_OPCODE)) {
  1231. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1232. "vm_env_info:0x%lx\n", vp_env_info);
  1233. }
  1234. return 1;
  1235. out:
  1236. return 0;
  1237. }
  1238. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1239. struct module *module)
  1240. {
  1241. unsigned long module_base;
  1242. unsigned long vmm_size;
  1243. unsigned long vmm_offset, func_offset, fdesc_offset;
  1244. struct fdesc *p_fdesc;
  1245. BUG_ON(!module);
  1246. if (!kvm_vmm_base) {
  1247. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1248. return -EFAULT;
  1249. }
  1250. /*Calculate new position of relocated vmm module.*/
  1251. module_base = (unsigned long)module->module_core;
  1252. vmm_size = module->core_size;
  1253. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1254. return -EFAULT;
  1255. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1256. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1257. /*Recalculate kvm_vmm_info based on new VMM*/
  1258. vmm_offset = vmm_info->vmm_ivt - module_base;
  1259. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1260. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1261. kvm_vmm_info->vmm_ivt);
  1262. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1263. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1264. fdesc_offset);
  1265. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1266. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1267. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1268. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1269. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1270. KVM_VMM_BASE+func_offset);
  1271. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1272. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1273. fdesc_offset);
  1274. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1275. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1276. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1277. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1278. kvm_vmm_gp = p_fdesc->gp;
  1279. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1280. kvm_vmm_info->vmm_entry);
  1281. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1282. KVM_VMM_BASE + func_offset);
  1283. return 0;
  1284. }
  1285. int kvm_arch_init(void *opaque)
  1286. {
  1287. int r;
  1288. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1289. if (!vti_cpu_has_kvm_support()) {
  1290. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1291. r = -EOPNOTSUPP;
  1292. goto out;
  1293. }
  1294. if (kvm_vmm_info) {
  1295. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1296. r = -EEXIST;
  1297. goto out;
  1298. }
  1299. r = -ENOMEM;
  1300. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1301. if (!kvm_vmm_info)
  1302. goto out;
  1303. if (kvm_alloc_vmm_area())
  1304. goto out_free0;
  1305. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1306. if (r)
  1307. goto out_free1;
  1308. return 0;
  1309. out_free1:
  1310. kvm_free_vmm_area();
  1311. out_free0:
  1312. kfree(kvm_vmm_info);
  1313. out:
  1314. return r;
  1315. }
  1316. void kvm_arch_exit(void)
  1317. {
  1318. kvm_free_vmm_area();
  1319. kfree(kvm_vmm_info);
  1320. kvm_vmm_info = NULL;
  1321. }
  1322. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1323. struct kvm_dirty_log *log)
  1324. {
  1325. struct kvm_memory_slot *memslot;
  1326. int r, i;
  1327. long n, base;
  1328. unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
  1329. + KVM_MEM_DIRTY_LOG_OFS);
  1330. r = -EINVAL;
  1331. if (log->slot >= KVM_MEMORY_SLOTS)
  1332. goto out;
  1333. memslot = &kvm->memslots[log->slot];
  1334. r = -ENOENT;
  1335. if (!memslot->dirty_bitmap)
  1336. goto out;
  1337. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1338. base = memslot->base_gfn / BITS_PER_LONG;
  1339. for (i = 0; i < n/sizeof(long); ++i) {
  1340. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1341. dirty_bitmap[base + i] = 0;
  1342. }
  1343. r = 0;
  1344. out:
  1345. return r;
  1346. }
  1347. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1348. struct kvm_dirty_log *log)
  1349. {
  1350. int r;
  1351. int n;
  1352. struct kvm_memory_slot *memslot;
  1353. int is_dirty = 0;
  1354. spin_lock(&kvm->arch.dirty_log_lock);
  1355. r = kvm_ia64_sync_dirty_log(kvm, log);
  1356. if (r)
  1357. goto out;
  1358. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1359. if (r)
  1360. goto out;
  1361. /* If nothing is dirty, don't bother messing with page tables. */
  1362. if (is_dirty) {
  1363. kvm_flush_remote_tlbs(kvm);
  1364. memslot = &kvm->memslots[log->slot];
  1365. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1366. memset(memslot->dirty_bitmap, 0, n);
  1367. }
  1368. r = 0;
  1369. out:
  1370. spin_unlock(&kvm->arch.dirty_log_lock);
  1371. return r;
  1372. }
  1373. int kvm_arch_hardware_setup(void)
  1374. {
  1375. return 0;
  1376. }
  1377. void kvm_arch_hardware_unsetup(void)
  1378. {
  1379. }
  1380. static void vcpu_kick_intr(void *info)
  1381. {
  1382. #ifdef DEBUG
  1383. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1384. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1385. #endif
  1386. }
  1387. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1388. {
  1389. int ipi_pcpu = vcpu->cpu;
  1390. if (waitqueue_active(&vcpu->wq))
  1391. wake_up_interruptible(&vcpu->wq);
  1392. if (vcpu->guest_mode)
  1393. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1394. }
  1395. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1396. {
  1397. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1398. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1399. vcpu->arch.irq_new_pending = 1;
  1400. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  1401. kvm_vcpu_kick(vcpu);
  1402. else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
  1403. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  1404. if (waitqueue_active(&vcpu->wq))
  1405. wake_up_interruptible(&vcpu->wq);
  1406. }
  1407. return 1;
  1408. }
  1409. return 0;
  1410. }
  1411. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1412. {
  1413. return apic->vcpu->vcpu_id == dest;
  1414. }
  1415. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1416. {
  1417. return 0;
  1418. }
  1419. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1420. unsigned long bitmap)
  1421. {
  1422. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1423. int i;
  1424. for (i = 1; i < KVM_MAX_VCPUS; i++) {
  1425. if (!kvm->vcpus[i])
  1426. continue;
  1427. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1428. lvcpu = kvm->vcpus[i];
  1429. }
  1430. return lvcpu;
  1431. }
  1432. static int find_highest_bits(int *dat)
  1433. {
  1434. u32 bits, bitnum;
  1435. int i;
  1436. /* loop for all 256 bits */
  1437. for (i = 7; i >= 0 ; i--) {
  1438. bits = dat[i];
  1439. if (bits) {
  1440. bitnum = fls(bits);
  1441. return i * 32 + bitnum - 1;
  1442. }
  1443. }
  1444. return -1;
  1445. }
  1446. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1447. {
  1448. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1449. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1450. return NMI_VECTOR;
  1451. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1452. return ExtINT_VECTOR;
  1453. return find_highest_bits((int *)&vpd->irr[0]);
  1454. }
  1455. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1456. {
  1457. if (kvm_highest_pending_irq(vcpu) != -1)
  1458. return 1;
  1459. return 0;
  1460. }
  1461. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1462. {
  1463. return 0;
  1464. }
  1465. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1466. {
  1467. return gfn;
  1468. }
  1469. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1470. {
  1471. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1472. }
  1473. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1474. struct kvm_mp_state *mp_state)
  1475. {
  1476. return -EINVAL;
  1477. }
  1478. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1479. struct kvm_mp_state *mp_state)
  1480. {
  1481. return -EINVAL;
  1482. }