sched.c 220 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define DEF_TIMESLICE (100 * HZ / 1000)
  103. /*
  104. * single value that denotes runtime == period, ie unlimited time.
  105. */
  106. #define RUNTIME_INF ((u64)~0ULL)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. struct rt_bandwidth {
  144. /* nests inside the rq lock: */
  145. spinlock_t rt_runtime_lock;
  146. ktime_t rt_period;
  147. u64 rt_runtime;
  148. struct hrtimer rt_period_timer;
  149. };
  150. static struct rt_bandwidth def_rt_bandwidth;
  151. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  152. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  153. {
  154. struct rt_bandwidth *rt_b =
  155. container_of(timer, struct rt_bandwidth, rt_period_timer);
  156. ktime_t now;
  157. int overrun;
  158. int idle = 0;
  159. for (;;) {
  160. now = hrtimer_cb_get_time(timer);
  161. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  162. if (!overrun)
  163. break;
  164. idle = do_sched_rt_period_timer(rt_b, overrun);
  165. }
  166. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  167. }
  168. static
  169. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  170. {
  171. rt_b->rt_period = ns_to_ktime(period);
  172. rt_b->rt_runtime = runtime;
  173. spin_lock_init(&rt_b->rt_runtime_lock);
  174. hrtimer_init(&rt_b->rt_period_timer,
  175. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  176. rt_b->rt_period_timer.function = sched_rt_period_timer;
  177. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  178. }
  179. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  180. {
  181. ktime_t now;
  182. if (rt_b->rt_runtime == RUNTIME_INF)
  183. return;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. return;
  186. spin_lock(&rt_b->rt_runtime_lock);
  187. for (;;) {
  188. if (hrtimer_active(&rt_b->rt_period_timer))
  189. break;
  190. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  191. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  192. hrtimer_start(&rt_b->rt_period_timer,
  193. rt_b->rt_period_timer.expires,
  194. HRTIMER_MODE_ABS);
  195. }
  196. spin_unlock(&rt_b->rt_runtime_lock);
  197. }
  198. #ifdef CONFIG_RT_GROUP_SCHED
  199. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  200. {
  201. hrtimer_cancel(&rt_b->rt_period_timer);
  202. }
  203. #endif
  204. /*
  205. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  206. * detach_destroy_domains and partition_sched_domains.
  207. */
  208. static DEFINE_MUTEX(sched_domains_mutex);
  209. #ifdef CONFIG_GROUP_SCHED
  210. #include <linux/cgroup.h>
  211. struct cfs_rq;
  212. static LIST_HEAD(task_groups);
  213. /* task group related information */
  214. struct task_group {
  215. #ifdef CONFIG_CGROUP_SCHED
  216. struct cgroup_subsys_state css;
  217. #endif
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. /* schedulable entities of this group on each cpu */
  220. struct sched_entity **se;
  221. /* runqueue "owned" by this group on each cpu */
  222. struct cfs_rq **cfs_rq;
  223. unsigned long shares;
  224. #endif
  225. #ifdef CONFIG_RT_GROUP_SCHED
  226. struct sched_rt_entity **rt_se;
  227. struct rt_rq **rt_rq;
  228. struct rt_bandwidth rt_bandwidth;
  229. #endif
  230. struct rcu_head rcu;
  231. struct list_head list;
  232. struct task_group *parent;
  233. struct list_head siblings;
  234. struct list_head children;
  235. };
  236. #ifdef CONFIG_USER_SCHED
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #else
  254. #define root_task_group init_task_group
  255. #endif
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_USER_SCHED
  262. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  263. #else
  264. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  265. #endif
  266. /*
  267. * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
  268. * (The default weight is 1024 - so there's no practical
  269. * limitation from this.)
  270. */
  271. #define MIN_SHARES 2
  272. #define MAX_SHARES (ULONG_MAX - 1)
  273. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  274. #endif
  275. /* Default task group.
  276. * Every task in system belong to this group at bootup.
  277. */
  278. struct task_group init_task_group;
  279. /* return group to which a task belongs */
  280. static inline struct task_group *task_group(struct task_struct *p)
  281. {
  282. struct task_group *tg;
  283. #ifdef CONFIG_USER_SCHED
  284. tg = p->user->tg;
  285. #elif defined(CONFIG_CGROUP_SCHED)
  286. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  287. struct task_group, css);
  288. #else
  289. tg = &init_task_group;
  290. #endif
  291. return tg;
  292. }
  293. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  294. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  295. {
  296. #ifdef CONFIG_FAIR_GROUP_SCHED
  297. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  298. p->se.parent = task_group(p)->se[cpu];
  299. #endif
  300. #ifdef CONFIG_RT_GROUP_SCHED
  301. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  302. p->rt.parent = task_group(p)->rt_se[cpu];
  303. #endif
  304. }
  305. #else
  306. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  307. #endif /* CONFIG_GROUP_SCHED */
  308. /* CFS-related fields in a runqueue */
  309. struct cfs_rq {
  310. struct load_weight load;
  311. unsigned long nr_running;
  312. u64 exec_clock;
  313. u64 min_vruntime;
  314. struct rb_root tasks_timeline;
  315. struct rb_node *rb_leftmost;
  316. struct list_head tasks;
  317. struct list_head *balance_iterator;
  318. /*
  319. * 'curr' points to currently running entity on this cfs_rq.
  320. * It is set to NULL otherwise (i.e when none are currently running).
  321. */
  322. struct sched_entity *curr, *next;
  323. unsigned long nr_spread_over;
  324. #ifdef CONFIG_FAIR_GROUP_SCHED
  325. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  326. /*
  327. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  328. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  329. * (like users, containers etc.)
  330. *
  331. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  332. * list is used during load balance.
  333. */
  334. struct list_head leaf_cfs_rq_list;
  335. struct task_group *tg; /* group that "owns" this runqueue */
  336. #ifdef CONFIG_SMP
  337. unsigned long task_weight;
  338. unsigned long shares;
  339. /*
  340. * We need space to build a sched_domain wide view of the full task
  341. * group tree, in order to avoid depending on dynamic memory allocation
  342. * during the load balancing we place this in the per cpu task group
  343. * hierarchy. This limits the load balancing to one instance per cpu,
  344. * but more should not be needed anyway.
  345. */
  346. struct aggregate_struct {
  347. /*
  348. * load = weight(cpus) * f(tg)
  349. *
  350. * Where f(tg) is the recursive weight fraction assigned to
  351. * this group.
  352. */
  353. unsigned long load;
  354. /*
  355. * part of the group weight distributed to this span.
  356. */
  357. unsigned long shares;
  358. /*
  359. * The sum of all runqueue weights within this span.
  360. */
  361. unsigned long rq_weight;
  362. /*
  363. * Weight contributed by tasks; this is the part we can
  364. * influence by moving tasks around.
  365. */
  366. unsigned long task_weight;
  367. } aggregate;
  368. #endif
  369. #endif
  370. };
  371. /* Real-Time classes' related field in a runqueue: */
  372. struct rt_rq {
  373. struct rt_prio_array active;
  374. unsigned long rt_nr_running;
  375. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  376. int highest_prio; /* highest queued rt task prio */
  377. #endif
  378. #ifdef CONFIG_SMP
  379. unsigned long rt_nr_migratory;
  380. int overloaded;
  381. #endif
  382. int rt_throttled;
  383. u64 rt_time;
  384. u64 rt_runtime;
  385. /* Nests inside the rq lock: */
  386. spinlock_t rt_runtime_lock;
  387. #ifdef CONFIG_RT_GROUP_SCHED
  388. unsigned long rt_nr_boosted;
  389. struct rq *rq;
  390. struct list_head leaf_rt_rq_list;
  391. struct task_group *tg;
  392. struct sched_rt_entity *rt_se;
  393. #endif
  394. };
  395. #ifdef CONFIG_SMP
  396. /*
  397. * We add the notion of a root-domain which will be used to define per-domain
  398. * variables. Each exclusive cpuset essentially defines an island domain by
  399. * fully partitioning the member cpus from any other cpuset. Whenever a new
  400. * exclusive cpuset is created, we also create and attach a new root-domain
  401. * object.
  402. *
  403. */
  404. struct root_domain {
  405. atomic_t refcount;
  406. cpumask_t span;
  407. cpumask_t online;
  408. /*
  409. * The "RT overload" flag: it gets set if a CPU has more than
  410. * one runnable RT task.
  411. */
  412. cpumask_t rto_mask;
  413. atomic_t rto_count;
  414. };
  415. /*
  416. * By default the system creates a single root-domain with all cpus as
  417. * members (mimicking the global state we have today).
  418. */
  419. static struct root_domain def_root_domain;
  420. #endif
  421. /*
  422. * This is the main, per-CPU runqueue data structure.
  423. *
  424. * Locking rule: those places that want to lock multiple runqueues
  425. * (such as the load balancing or the thread migration code), lock
  426. * acquire operations must be ordered by ascending &runqueue.
  427. */
  428. struct rq {
  429. /* runqueue lock: */
  430. spinlock_t lock;
  431. /*
  432. * nr_running and cpu_load should be in the same cacheline because
  433. * remote CPUs use both these fields when doing load calculation.
  434. */
  435. unsigned long nr_running;
  436. #define CPU_LOAD_IDX_MAX 5
  437. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  438. unsigned char idle_at_tick;
  439. #ifdef CONFIG_NO_HZ
  440. unsigned long last_tick_seen;
  441. unsigned char in_nohz_recently;
  442. #endif
  443. /* capture load from *all* tasks on this cpu: */
  444. struct load_weight load;
  445. unsigned long nr_load_updates;
  446. u64 nr_switches;
  447. struct cfs_rq cfs;
  448. struct rt_rq rt;
  449. #ifdef CONFIG_FAIR_GROUP_SCHED
  450. /* list of leaf cfs_rq on this cpu: */
  451. struct list_head leaf_cfs_rq_list;
  452. #endif
  453. #ifdef CONFIG_RT_GROUP_SCHED
  454. struct list_head leaf_rt_rq_list;
  455. #endif
  456. /*
  457. * This is part of a global counter where only the total sum
  458. * over all CPUs matters. A task can increase this counter on
  459. * one CPU and if it got migrated afterwards it may decrease
  460. * it on another CPU. Always updated under the runqueue lock:
  461. */
  462. unsigned long nr_uninterruptible;
  463. struct task_struct *curr, *idle;
  464. unsigned long next_balance;
  465. struct mm_struct *prev_mm;
  466. u64 clock;
  467. atomic_t nr_iowait;
  468. #ifdef CONFIG_SMP
  469. struct root_domain *rd;
  470. struct sched_domain *sd;
  471. /* For active balancing */
  472. int active_balance;
  473. int push_cpu;
  474. /* cpu of this runqueue: */
  475. int cpu;
  476. struct task_struct *migration_thread;
  477. struct list_head migration_queue;
  478. #endif
  479. #ifdef CONFIG_SCHED_HRTICK
  480. unsigned long hrtick_flags;
  481. ktime_t hrtick_expire;
  482. struct hrtimer hrtick_timer;
  483. #endif
  484. #ifdef CONFIG_SCHEDSTATS
  485. /* latency stats */
  486. struct sched_info rq_sched_info;
  487. /* sys_sched_yield() stats */
  488. unsigned int yld_exp_empty;
  489. unsigned int yld_act_empty;
  490. unsigned int yld_both_empty;
  491. unsigned int yld_count;
  492. /* schedule() stats */
  493. unsigned int sched_switch;
  494. unsigned int sched_count;
  495. unsigned int sched_goidle;
  496. /* try_to_wake_up() stats */
  497. unsigned int ttwu_count;
  498. unsigned int ttwu_local;
  499. /* BKL stats */
  500. unsigned int bkl_count;
  501. #endif
  502. struct lock_class_key rq_lock_key;
  503. };
  504. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  505. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  506. {
  507. rq->curr->sched_class->check_preempt_curr(rq, p);
  508. }
  509. static inline int cpu_of(struct rq *rq)
  510. {
  511. #ifdef CONFIG_SMP
  512. return rq->cpu;
  513. #else
  514. return 0;
  515. #endif
  516. }
  517. /*
  518. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  519. * See detach_destroy_domains: synchronize_sched for details.
  520. *
  521. * The domain tree of any CPU may only be accessed from within
  522. * preempt-disabled sections.
  523. */
  524. #define for_each_domain(cpu, __sd) \
  525. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  526. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  527. #define this_rq() (&__get_cpu_var(runqueues))
  528. #define task_rq(p) cpu_rq(task_cpu(p))
  529. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  530. static inline void update_rq_clock(struct rq *rq)
  531. {
  532. rq->clock = sched_clock_cpu(cpu_of(rq));
  533. }
  534. /*
  535. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  536. */
  537. #ifdef CONFIG_SCHED_DEBUG
  538. # define const_debug __read_mostly
  539. #else
  540. # define const_debug static const
  541. #endif
  542. /*
  543. * Debugging: various feature bits
  544. */
  545. #define SCHED_FEAT(name, enabled) \
  546. __SCHED_FEAT_##name ,
  547. enum {
  548. #include "sched_features.h"
  549. };
  550. #undef SCHED_FEAT
  551. #define SCHED_FEAT(name, enabled) \
  552. (1UL << __SCHED_FEAT_##name) * enabled |
  553. const_debug unsigned int sysctl_sched_features =
  554. #include "sched_features.h"
  555. 0;
  556. #undef SCHED_FEAT
  557. #ifdef CONFIG_SCHED_DEBUG
  558. #define SCHED_FEAT(name, enabled) \
  559. #name ,
  560. static __read_mostly char *sched_feat_names[] = {
  561. #include "sched_features.h"
  562. NULL
  563. };
  564. #undef SCHED_FEAT
  565. static int sched_feat_open(struct inode *inode, struct file *filp)
  566. {
  567. filp->private_data = inode->i_private;
  568. return 0;
  569. }
  570. static ssize_t
  571. sched_feat_read(struct file *filp, char __user *ubuf,
  572. size_t cnt, loff_t *ppos)
  573. {
  574. char *buf;
  575. int r = 0;
  576. int len = 0;
  577. int i;
  578. for (i = 0; sched_feat_names[i]; i++) {
  579. len += strlen(sched_feat_names[i]);
  580. len += 4;
  581. }
  582. buf = kmalloc(len + 2, GFP_KERNEL);
  583. if (!buf)
  584. return -ENOMEM;
  585. for (i = 0; sched_feat_names[i]; i++) {
  586. if (sysctl_sched_features & (1UL << i))
  587. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  588. else
  589. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  590. }
  591. r += sprintf(buf + r, "\n");
  592. WARN_ON(r >= len + 2);
  593. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  594. kfree(buf);
  595. return r;
  596. }
  597. static ssize_t
  598. sched_feat_write(struct file *filp, const char __user *ubuf,
  599. size_t cnt, loff_t *ppos)
  600. {
  601. char buf[64];
  602. char *cmp = buf;
  603. int neg = 0;
  604. int i;
  605. if (cnt > 63)
  606. cnt = 63;
  607. if (copy_from_user(&buf, ubuf, cnt))
  608. return -EFAULT;
  609. buf[cnt] = 0;
  610. if (strncmp(buf, "NO_", 3) == 0) {
  611. neg = 1;
  612. cmp += 3;
  613. }
  614. for (i = 0; sched_feat_names[i]; i++) {
  615. int len = strlen(sched_feat_names[i]);
  616. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  617. if (neg)
  618. sysctl_sched_features &= ~(1UL << i);
  619. else
  620. sysctl_sched_features |= (1UL << i);
  621. break;
  622. }
  623. }
  624. if (!sched_feat_names[i])
  625. return -EINVAL;
  626. filp->f_pos += cnt;
  627. return cnt;
  628. }
  629. static struct file_operations sched_feat_fops = {
  630. .open = sched_feat_open,
  631. .read = sched_feat_read,
  632. .write = sched_feat_write,
  633. };
  634. static __init int sched_init_debug(void)
  635. {
  636. debugfs_create_file("sched_features", 0644, NULL, NULL,
  637. &sched_feat_fops);
  638. return 0;
  639. }
  640. late_initcall(sched_init_debug);
  641. #endif
  642. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  643. /*
  644. * Number of tasks to iterate in a single balance run.
  645. * Limited because this is done with IRQs disabled.
  646. */
  647. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  648. /*
  649. * period over which we measure -rt task cpu usage in us.
  650. * default: 1s
  651. */
  652. unsigned int sysctl_sched_rt_period = 1000000;
  653. static __read_mostly int scheduler_running;
  654. /*
  655. * part of the period that we allow rt tasks to run in us.
  656. * default: 0.95s
  657. */
  658. int sysctl_sched_rt_runtime = 950000;
  659. static inline u64 global_rt_period(void)
  660. {
  661. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  662. }
  663. static inline u64 global_rt_runtime(void)
  664. {
  665. if (sysctl_sched_rt_period < 0)
  666. return RUNTIME_INF;
  667. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  668. }
  669. unsigned long long time_sync_thresh = 100000;
  670. static DEFINE_PER_CPU(unsigned long long, time_offset);
  671. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  672. /*
  673. * Global lock which we take every now and then to synchronize
  674. * the CPUs time. This method is not warp-safe, but it's good
  675. * enough to synchronize slowly diverging time sources and thus
  676. * it's good enough for tracing:
  677. */
  678. static DEFINE_SPINLOCK(time_sync_lock);
  679. static unsigned long long prev_global_time;
  680. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  681. {
  682. /*
  683. * We want this inlined, to not get tracer function calls
  684. * in this critical section:
  685. */
  686. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  687. __raw_spin_lock(&time_sync_lock.raw_lock);
  688. if (time < prev_global_time) {
  689. per_cpu(time_offset, cpu) += prev_global_time - time;
  690. time = prev_global_time;
  691. } else {
  692. prev_global_time = time;
  693. }
  694. __raw_spin_unlock(&time_sync_lock.raw_lock);
  695. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  696. return time;
  697. }
  698. static unsigned long long __cpu_clock(int cpu)
  699. {
  700. unsigned long long now;
  701. /*
  702. * Only call sched_clock() if the scheduler has already been
  703. * initialized (some code might call cpu_clock() very early):
  704. */
  705. if (unlikely(!scheduler_running))
  706. return 0;
  707. now = sched_clock_cpu(cpu);
  708. return now;
  709. }
  710. /*
  711. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  712. * clock constructed from sched_clock():
  713. */
  714. unsigned long long cpu_clock(int cpu)
  715. {
  716. unsigned long long prev_cpu_time, time, delta_time;
  717. unsigned long flags;
  718. local_irq_save(flags);
  719. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  720. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  721. delta_time = time-prev_cpu_time;
  722. if (unlikely(delta_time > time_sync_thresh)) {
  723. time = __sync_cpu_clock(time, cpu);
  724. per_cpu(prev_cpu_time, cpu) = time;
  725. }
  726. local_irq_restore(flags);
  727. return time;
  728. }
  729. EXPORT_SYMBOL_GPL(cpu_clock);
  730. #ifndef prepare_arch_switch
  731. # define prepare_arch_switch(next) do { } while (0)
  732. #endif
  733. #ifndef finish_arch_switch
  734. # define finish_arch_switch(prev) do { } while (0)
  735. #endif
  736. static inline int task_current(struct rq *rq, struct task_struct *p)
  737. {
  738. return rq->curr == p;
  739. }
  740. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  741. static inline int task_running(struct rq *rq, struct task_struct *p)
  742. {
  743. return task_current(rq, p);
  744. }
  745. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  746. {
  747. }
  748. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  749. {
  750. #ifdef CONFIG_DEBUG_SPINLOCK
  751. /* this is a valid case when another task releases the spinlock */
  752. rq->lock.owner = current;
  753. #endif
  754. /*
  755. * If we are tracking spinlock dependencies then we have to
  756. * fix up the runqueue lock - which gets 'carried over' from
  757. * prev into current:
  758. */
  759. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  760. spin_unlock_irq(&rq->lock);
  761. }
  762. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  763. static inline int task_running(struct rq *rq, struct task_struct *p)
  764. {
  765. #ifdef CONFIG_SMP
  766. return p->oncpu;
  767. #else
  768. return task_current(rq, p);
  769. #endif
  770. }
  771. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  772. {
  773. #ifdef CONFIG_SMP
  774. /*
  775. * We can optimise this out completely for !SMP, because the
  776. * SMP rebalancing from interrupt is the only thing that cares
  777. * here.
  778. */
  779. next->oncpu = 1;
  780. #endif
  781. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  782. spin_unlock_irq(&rq->lock);
  783. #else
  784. spin_unlock(&rq->lock);
  785. #endif
  786. }
  787. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  788. {
  789. #ifdef CONFIG_SMP
  790. /*
  791. * After ->oncpu is cleared, the task can be moved to a different CPU.
  792. * We must ensure this doesn't happen until the switch is completely
  793. * finished.
  794. */
  795. smp_wmb();
  796. prev->oncpu = 0;
  797. #endif
  798. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  799. local_irq_enable();
  800. #endif
  801. }
  802. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  803. /*
  804. * __task_rq_lock - lock the runqueue a given task resides on.
  805. * Must be called interrupts disabled.
  806. */
  807. static inline struct rq *__task_rq_lock(struct task_struct *p)
  808. __acquires(rq->lock)
  809. {
  810. for (;;) {
  811. struct rq *rq = task_rq(p);
  812. spin_lock(&rq->lock);
  813. if (likely(rq == task_rq(p)))
  814. return rq;
  815. spin_unlock(&rq->lock);
  816. }
  817. }
  818. /*
  819. * task_rq_lock - lock the runqueue a given task resides on and disable
  820. * interrupts. Note the ordering: we can safely lookup the task_rq without
  821. * explicitly disabling preemption.
  822. */
  823. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  824. __acquires(rq->lock)
  825. {
  826. struct rq *rq;
  827. for (;;) {
  828. local_irq_save(*flags);
  829. rq = task_rq(p);
  830. spin_lock(&rq->lock);
  831. if (likely(rq == task_rq(p)))
  832. return rq;
  833. spin_unlock_irqrestore(&rq->lock, *flags);
  834. }
  835. }
  836. static void __task_rq_unlock(struct rq *rq)
  837. __releases(rq->lock)
  838. {
  839. spin_unlock(&rq->lock);
  840. }
  841. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  842. __releases(rq->lock)
  843. {
  844. spin_unlock_irqrestore(&rq->lock, *flags);
  845. }
  846. /*
  847. * this_rq_lock - lock this runqueue and disable interrupts.
  848. */
  849. static struct rq *this_rq_lock(void)
  850. __acquires(rq->lock)
  851. {
  852. struct rq *rq;
  853. local_irq_disable();
  854. rq = this_rq();
  855. spin_lock(&rq->lock);
  856. return rq;
  857. }
  858. static void __resched_task(struct task_struct *p, int tif_bit);
  859. static inline void resched_task(struct task_struct *p)
  860. {
  861. __resched_task(p, TIF_NEED_RESCHED);
  862. }
  863. #ifdef CONFIG_SCHED_HRTICK
  864. /*
  865. * Use HR-timers to deliver accurate preemption points.
  866. *
  867. * Its all a bit involved since we cannot program an hrt while holding the
  868. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  869. * reschedule event.
  870. *
  871. * When we get rescheduled we reprogram the hrtick_timer outside of the
  872. * rq->lock.
  873. */
  874. static inline void resched_hrt(struct task_struct *p)
  875. {
  876. __resched_task(p, TIF_HRTICK_RESCHED);
  877. }
  878. static inline void resched_rq(struct rq *rq)
  879. {
  880. unsigned long flags;
  881. spin_lock_irqsave(&rq->lock, flags);
  882. resched_task(rq->curr);
  883. spin_unlock_irqrestore(&rq->lock, flags);
  884. }
  885. enum {
  886. HRTICK_SET, /* re-programm hrtick_timer */
  887. HRTICK_RESET, /* not a new slice */
  888. HRTICK_BLOCK, /* stop hrtick operations */
  889. };
  890. /*
  891. * Use hrtick when:
  892. * - enabled by features
  893. * - hrtimer is actually high res
  894. */
  895. static inline int hrtick_enabled(struct rq *rq)
  896. {
  897. if (!sched_feat(HRTICK))
  898. return 0;
  899. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  900. return 0;
  901. return hrtimer_is_hres_active(&rq->hrtick_timer);
  902. }
  903. /*
  904. * Called to set the hrtick timer state.
  905. *
  906. * called with rq->lock held and irqs disabled
  907. */
  908. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  909. {
  910. assert_spin_locked(&rq->lock);
  911. /*
  912. * preempt at: now + delay
  913. */
  914. rq->hrtick_expire =
  915. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  916. /*
  917. * indicate we need to program the timer
  918. */
  919. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  920. if (reset)
  921. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  922. /*
  923. * New slices are called from the schedule path and don't need a
  924. * forced reschedule.
  925. */
  926. if (reset)
  927. resched_hrt(rq->curr);
  928. }
  929. static void hrtick_clear(struct rq *rq)
  930. {
  931. if (hrtimer_active(&rq->hrtick_timer))
  932. hrtimer_cancel(&rq->hrtick_timer);
  933. }
  934. /*
  935. * Update the timer from the possible pending state.
  936. */
  937. static void hrtick_set(struct rq *rq)
  938. {
  939. ktime_t time;
  940. int set, reset;
  941. unsigned long flags;
  942. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  943. spin_lock_irqsave(&rq->lock, flags);
  944. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  945. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  946. time = rq->hrtick_expire;
  947. clear_thread_flag(TIF_HRTICK_RESCHED);
  948. spin_unlock_irqrestore(&rq->lock, flags);
  949. if (set) {
  950. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  951. if (reset && !hrtimer_active(&rq->hrtick_timer))
  952. resched_rq(rq);
  953. } else
  954. hrtick_clear(rq);
  955. }
  956. /*
  957. * High-resolution timer tick.
  958. * Runs from hardirq context with interrupts disabled.
  959. */
  960. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  961. {
  962. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  963. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  964. spin_lock(&rq->lock);
  965. update_rq_clock(rq);
  966. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  967. spin_unlock(&rq->lock);
  968. return HRTIMER_NORESTART;
  969. }
  970. static void hotplug_hrtick_disable(int cpu)
  971. {
  972. struct rq *rq = cpu_rq(cpu);
  973. unsigned long flags;
  974. spin_lock_irqsave(&rq->lock, flags);
  975. rq->hrtick_flags = 0;
  976. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  977. spin_unlock_irqrestore(&rq->lock, flags);
  978. hrtick_clear(rq);
  979. }
  980. static void hotplug_hrtick_enable(int cpu)
  981. {
  982. struct rq *rq = cpu_rq(cpu);
  983. unsigned long flags;
  984. spin_lock_irqsave(&rq->lock, flags);
  985. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  986. spin_unlock_irqrestore(&rq->lock, flags);
  987. }
  988. static int
  989. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  990. {
  991. int cpu = (int)(long)hcpu;
  992. switch (action) {
  993. case CPU_UP_CANCELED:
  994. case CPU_UP_CANCELED_FROZEN:
  995. case CPU_DOWN_PREPARE:
  996. case CPU_DOWN_PREPARE_FROZEN:
  997. case CPU_DEAD:
  998. case CPU_DEAD_FROZEN:
  999. hotplug_hrtick_disable(cpu);
  1000. return NOTIFY_OK;
  1001. case CPU_UP_PREPARE:
  1002. case CPU_UP_PREPARE_FROZEN:
  1003. case CPU_DOWN_FAILED:
  1004. case CPU_DOWN_FAILED_FROZEN:
  1005. case CPU_ONLINE:
  1006. case CPU_ONLINE_FROZEN:
  1007. hotplug_hrtick_enable(cpu);
  1008. return NOTIFY_OK;
  1009. }
  1010. return NOTIFY_DONE;
  1011. }
  1012. static void init_hrtick(void)
  1013. {
  1014. hotcpu_notifier(hotplug_hrtick, 0);
  1015. }
  1016. static void init_rq_hrtick(struct rq *rq)
  1017. {
  1018. rq->hrtick_flags = 0;
  1019. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1020. rq->hrtick_timer.function = hrtick;
  1021. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  1022. }
  1023. void hrtick_resched(void)
  1024. {
  1025. struct rq *rq;
  1026. unsigned long flags;
  1027. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  1028. return;
  1029. local_irq_save(flags);
  1030. rq = cpu_rq(smp_processor_id());
  1031. hrtick_set(rq);
  1032. local_irq_restore(flags);
  1033. }
  1034. #else
  1035. static inline void hrtick_clear(struct rq *rq)
  1036. {
  1037. }
  1038. static inline void hrtick_set(struct rq *rq)
  1039. {
  1040. }
  1041. static inline void init_rq_hrtick(struct rq *rq)
  1042. {
  1043. }
  1044. void hrtick_resched(void)
  1045. {
  1046. }
  1047. static inline void init_hrtick(void)
  1048. {
  1049. }
  1050. #endif
  1051. /*
  1052. * resched_task - mark a task 'to be rescheduled now'.
  1053. *
  1054. * On UP this means the setting of the need_resched flag, on SMP it
  1055. * might also involve a cross-CPU call to trigger the scheduler on
  1056. * the target CPU.
  1057. */
  1058. #ifdef CONFIG_SMP
  1059. #ifndef tsk_is_polling
  1060. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1061. #endif
  1062. static void __resched_task(struct task_struct *p, int tif_bit)
  1063. {
  1064. int cpu;
  1065. assert_spin_locked(&task_rq(p)->lock);
  1066. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1067. return;
  1068. set_tsk_thread_flag(p, tif_bit);
  1069. cpu = task_cpu(p);
  1070. if (cpu == smp_processor_id())
  1071. return;
  1072. /* NEED_RESCHED must be visible before we test polling */
  1073. smp_mb();
  1074. if (!tsk_is_polling(p))
  1075. smp_send_reschedule(cpu);
  1076. }
  1077. static void resched_cpu(int cpu)
  1078. {
  1079. struct rq *rq = cpu_rq(cpu);
  1080. unsigned long flags;
  1081. if (!spin_trylock_irqsave(&rq->lock, flags))
  1082. return;
  1083. resched_task(cpu_curr(cpu));
  1084. spin_unlock_irqrestore(&rq->lock, flags);
  1085. }
  1086. #ifdef CONFIG_NO_HZ
  1087. /*
  1088. * When add_timer_on() enqueues a timer into the timer wheel of an
  1089. * idle CPU then this timer might expire before the next timer event
  1090. * which is scheduled to wake up that CPU. In case of a completely
  1091. * idle system the next event might even be infinite time into the
  1092. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1093. * leaves the inner idle loop so the newly added timer is taken into
  1094. * account when the CPU goes back to idle and evaluates the timer
  1095. * wheel for the next timer event.
  1096. */
  1097. void wake_up_idle_cpu(int cpu)
  1098. {
  1099. struct rq *rq = cpu_rq(cpu);
  1100. if (cpu == smp_processor_id())
  1101. return;
  1102. /*
  1103. * This is safe, as this function is called with the timer
  1104. * wheel base lock of (cpu) held. When the CPU is on the way
  1105. * to idle and has not yet set rq->curr to idle then it will
  1106. * be serialized on the timer wheel base lock and take the new
  1107. * timer into account automatically.
  1108. */
  1109. if (rq->curr != rq->idle)
  1110. return;
  1111. /*
  1112. * We can set TIF_RESCHED on the idle task of the other CPU
  1113. * lockless. The worst case is that the other CPU runs the
  1114. * idle task through an additional NOOP schedule()
  1115. */
  1116. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1117. /* NEED_RESCHED must be visible before we test polling */
  1118. smp_mb();
  1119. if (!tsk_is_polling(rq->idle))
  1120. smp_send_reschedule(cpu);
  1121. }
  1122. #endif
  1123. #else
  1124. static void __resched_task(struct task_struct *p, int tif_bit)
  1125. {
  1126. assert_spin_locked(&task_rq(p)->lock);
  1127. set_tsk_thread_flag(p, tif_bit);
  1128. }
  1129. #endif
  1130. #if BITS_PER_LONG == 32
  1131. # define WMULT_CONST (~0UL)
  1132. #else
  1133. # define WMULT_CONST (1UL << 32)
  1134. #endif
  1135. #define WMULT_SHIFT 32
  1136. /*
  1137. * Shift right and round:
  1138. */
  1139. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1140. /*
  1141. * delta *= weight / lw
  1142. */
  1143. static unsigned long
  1144. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1145. struct load_weight *lw)
  1146. {
  1147. u64 tmp;
  1148. if (!lw->inv_weight)
  1149. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
  1150. tmp = (u64)delta_exec * weight;
  1151. /*
  1152. * Check whether we'd overflow the 64-bit multiplication:
  1153. */
  1154. if (unlikely(tmp > WMULT_CONST))
  1155. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1156. WMULT_SHIFT/2);
  1157. else
  1158. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1159. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1160. }
  1161. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1162. {
  1163. lw->weight += inc;
  1164. lw->inv_weight = 0;
  1165. }
  1166. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1167. {
  1168. lw->weight -= dec;
  1169. lw->inv_weight = 0;
  1170. }
  1171. /*
  1172. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1173. * of tasks with abnormal "nice" values across CPUs the contribution that
  1174. * each task makes to its run queue's load is weighted according to its
  1175. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1176. * scaled version of the new time slice allocation that they receive on time
  1177. * slice expiry etc.
  1178. */
  1179. #define WEIGHT_IDLEPRIO 2
  1180. #define WMULT_IDLEPRIO (1 << 31)
  1181. /*
  1182. * Nice levels are multiplicative, with a gentle 10% change for every
  1183. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1184. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1185. * that remained on nice 0.
  1186. *
  1187. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1188. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1189. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1190. * If a task goes up by ~10% and another task goes down by ~10% then
  1191. * the relative distance between them is ~25%.)
  1192. */
  1193. static const int prio_to_weight[40] = {
  1194. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1195. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1196. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1197. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1198. /* 0 */ 1024, 820, 655, 526, 423,
  1199. /* 5 */ 335, 272, 215, 172, 137,
  1200. /* 10 */ 110, 87, 70, 56, 45,
  1201. /* 15 */ 36, 29, 23, 18, 15,
  1202. };
  1203. /*
  1204. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1205. *
  1206. * In cases where the weight does not change often, we can use the
  1207. * precalculated inverse to speed up arithmetics by turning divisions
  1208. * into multiplications:
  1209. */
  1210. static const u32 prio_to_wmult[40] = {
  1211. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1212. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1213. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1214. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1215. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1216. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1217. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1218. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1219. };
  1220. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1221. /*
  1222. * runqueue iterator, to support SMP load-balancing between different
  1223. * scheduling classes, without having to expose their internal data
  1224. * structures to the load-balancing proper:
  1225. */
  1226. struct rq_iterator {
  1227. void *arg;
  1228. struct task_struct *(*start)(void *);
  1229. struct task_struct *(*next)(void *);
  1230. };
  1231. #ifdef CONFIG_SMP
  1232. static unsigned long
  1233. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1234. unsigned long max_load_move, struct sched_domain *sd,
  1235. enum cpu_idle_type idle, int *all_pinned,
  1236. int *this_best_prio, struct rq_iterator *iterator);
  1237. static int
  1238. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1239. struct sched_domain *sd, enum cpu_idle_type idle,
  1240. struct rq_iterator *iterator);
  1241. #endif
  1242. #ifdef CONFIG_CGROUP_CPUACCT
  1243. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1244. #else
  1245. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1246. #endif
  1247. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1248. {
  1249. update_load_add(&rq->load, load);
  1250. }
  1251. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1252. {
  1253. update_load_sub(&rq->load, load);
  1254. }
  1255. #ifdef CONFIG_SMP
  1256. static unsigned long source_load(int cpu, int type);
  1257. static unsigned long target_load(int cpu, int type);
  1258. static unsigned long cpu_avg_load_per_task(int cpu);
  1259. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1260. #ifdef CONFIG_FAIR_GROUP_SCHED
  1261. /*
  1262. * Group load balancing.
  1263. *
  1264. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1265. * Given the pictures below, and assuming each item has equal weight:
  1266. *
  1267. * root 1 - thread
  1268. * / | \ A - group
  1269. * A 1 B
  1270. * /|\ / \
  1271. * C 2 D 3 4
  1272. * | |
  1273. * 5 6
  1274. *
  1275. * load:
  1276. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1277. * which equals 1/9-th of the total load.
  1278. *
  1279. * shares:
  1280. * The weight of this group on the selected cpus.
  1281. *
  1282. * rq_weight:
  1283. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1284. * B would get 2.
  1285. *
  1286. * task_weight:
  1287. * Part of the rq_weight contributed by tasks; all groups except B would
  1288. * get 1, B gets 2.
  1289. */
  1290. static inline struct aggregate_struct *
  1291. aggregate(struct task_group *tg, struct sched_domain *sd)
  1292. {
  1293. return &tg->cfs_rq[sd->first_cpu]->aggregate;
  1294. }
  1295. typedef void (*aggregate_func)(struct task_group *, struct sched_domain *);
  1296. /*
  1297. * Iterate the full tree, calling @down when first entering a node and @up when
  1298. * leaving it for the final time.
  1299. */
  1300. static
  1301. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1302. struct sched_domain *sd)
  1303. {
  1304. struct task_group *parent, *child;
  1305. rcu_read_lock();
  1306. parent = &root_task_group;
  1307. down:
  1308. (*down)(parent, sd);
  1309. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1310. parent = child;
  1311. goto down;
  1312. up:
  1313. continue;
  1314. }
  1315. (*up)(parent, sd);
  1316. child = parent;
  1317. parent = parent->parent;
  1318. if (parent)
  1319. goto up;
  1320. rcu_read_unlock();
  1321. }
  1322. /*
  1323. * Calculate the aggregate runqueue weight.
  1324. */
  1325. static
  1326. void aggregate_group_weight(struct task_group *tg, struct sched_domain *sd)
  1327. {
  1328. unsigned long rq_weight = 0;
  1329. unsigned long task_weight = 0;
  1330. int i;
  1331. for_each_cpu_mask(i, sd->span) {
  1332. rq_weight += tg->cfs_rq[i]->load.weight;
  1333. task_weight += tg->cfs_rq[i]->task_weight;
  1334. }
  1335. aggregate(tg, sd)->rq_weight = rq_weight;
  1336. aggregate(tg, sd)->task_weight = task_weight;
  1337. }
  1338. /*
  1339. * Compute the weight of this group on the given cpus.
  1340. */
  1341. static
  1342. void aggregate_group_shares(struct task_group *tg, struct sched_domain *sd)
  1343. {
  1344. unsigned long shares = 0;
  1345. int i;
  1346. for_each_cpu_mask(i, sd->span)
  1347. shares += tg->cfs_rq[i]->shares;
  1348. if ((!shares && aggregate(tg, sd)->rq_weight) || shares > tg->shares)
  1349. shares = tg->shares;
  1350. aggregate(tg, sd)->shares = shares;
  1351. }
  1352. /*
  1353. * Compute the load fraction assigned to this group, relies on the aggregate
  1354. * weight and this group's parent's load, i.e. top-down.
  1355. */
  1356. static
  1357. void aggregate_group_load(struct task_group *tg, struct sched_domain *sd)
  1358. {
  1359. unsigned long load;
  1360. if (!tg->parent) {
  1361. int i;
  1362. load = 0;
  1363. for_each_cpu_mask(i, sd->span)
  1364. load += cpu_rq(i)->load.weight;
  1365. } else {
  1366. load = aggregate(tg->parent, sd)->load;
  1367. /*
  1368. * shares is our weight in the parent's rq so
  1369. * shares/parent->rq_weight gives our fraction of the load
  1370. */
  1371. load *= aggregate(tg, sd)->shares;
  1372. load /= aggregate(tg->parent, sd)->rq_weight + 1;
  1373. }
  1374. aggregate(tg, sd)->load = load;
  1375. }
  1376. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1377. /*
  1378. * Calculate and set the cpu's group shares.
  1379. */
  1380. static void
  1381. __update_group_shares_cpu(struct task_group *tg, struct sched_domain *sd,
  1382. int tcpu)
  1383. {
  1384. int boost = 0;
  1385. unsigned long shares;
  1386. unsigned long rq_weight;
  1387. if (!tg->se[tcpu])
  1388. return;
  1389. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1390. /*
  1391. * If there are currently no tasks on the cpu pretend there is one of
  1392. * average load so that when a new task gets to run here it will not
  1393. * get delayed by group starvation.
  1394. */
  1395. if (!rq_weight) {
  1396. boost = 1;
  1397. rq_weight = NICE_0_LOAD;
  1398. }
  1399. /*
  1400. * \Sum shares * rq_weight
  1401. * shares = -----------------------
  1402. * \Sum rq_weight
  1403. *
  1404. */
  1405. shares = aggregate(tg, sd)->shares * rq_weight;
  1406. shares /= aggregate(tg, sd)->rq_weight + 1;
  1407. /*
  1408. * record the actual number of shares, not the boosted amount.
  1409. */
  1410. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1411. if (shares < MIN_SHARES)
  1412. shares = MIN_SHARES;
  1413. else if (shares > MAX_SHARES)
  1414. shares = MAX_SHARES;
  1415. __set_se_shares(tg->se[tcpu], shares);
  1416. }
  1417. /*
  1418. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1419. * task went to.
  1420. */
  1421. static void
  1422. __move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1423. int scpu, int dcpu)
  1424. {
  1425. unsigned long shares;
  1426. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1427. __update_group_shares_cpu(tg, sd, scpu);
  1428. __update_group_shares_cpu(tg, sd, dcpu);
  1429. /*
  1430. * ensure we never loose shares due to rounding errors in the
  1431. * above redistribution.
  1432. */
  1433. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1434. if (shares)
  1435. tg->cfs_rq[dcpu]->shares += shares;
  1436. }
  1437. /*
  1438. * Because changing a group's shares changes the weight of the super-group
  1439. * we need to walk up the tree and change all shares until we hit the root.
  1440. */
  1441. static void
  1442. move_group_shares(struct task_group *tg, struct sched_domain *sd,
  1443. int scpu, int dcpu)
  1444. {
  1445. while (tg) {
  1446. __move_group_shares(tg, sd, scpu, dcpu);
  1447. tg = tg->parent;
  1448. }
  1449. }
  1450. static
  1451. void aggregate_group_set_shares(struct task_group *tg, struct sched_domain *sd)
  1452. {
  1453. unsigned long shares = aggregate(tg, sd)->shares;
  1454. int i;
  1455. for_each_cpu_mask(i, sd->span) {
  1456. struct rq *rq = cpu_rq(i);
  1457. unsigned long flags;
  1458. spin_lock_irqsave(&rq->lock, flags);
  1459. __update_group_shares_cpu(tg, sd, i);
  1460. spin_unlock_irqrestore(&rq->lock, flags);
  1461. }
  1462. aggregate_group_shares(tg, sd);
  1463. /*
  1464. * ensure we never loose shares due to rounding errors in the
  1465. * above redistribution.
  1466. */
  1467. shares -= aggregate(tg, sd)->shares;
  1468. if (shares) {
  1469. tg->cfs_rq[sd->first_cpu]->shares += shares;
  1470. aggregate(tg, sd)->shares += shares;
  1471. }
  1472. }
  1473. /*
  1474. * Calculate the accumulative weight and recursive load of each task group
  1475. * while walking down the tree.
  1476. */
  1477. static
  1478. void aggregate_get_down(struct task_group *tg, struct sched_domain *sd)
  1479. {
  1480. aggregate_group_weight(tg, sd);
  1481. aggregate_group_shares(tg, sd);
  1482. aggregate_group_load(tg, sd);
  1483. }
  1484. /*
  1485. * Rebalance the cpu shares while walking back up the tree.
  1486. */
  1487. static
  1488. void aggregate_get_up(struct task_group *tg, struct sched_domain *sd)
  1489. {
  1490. aggregate_group_set_shares(tg, sd);
  1491. }
  1492. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1493. static void __init init_aggregate(void)
  1494. {
  1495. int i;
  1496. for_each_possible_cpu(i)
  1497. spin_lock_init(&per_cpu(aggregate_lock, i));
  1498. }
  1499. static int get_aggregate(struct sched_domain *sd)
  1500. {
  1501. if (!spin_trylock(&per_cpu(aggregate_lock, sd->first_cpu)))
  1502. return 0;
  1503. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, sd);
  1504. return 1;
  1505. }
  1506. static void put_aggregate(struct sched_domain *sd)
  1507. {
  1508. spin_unlock(&per_cpu(aggregate_lock, sd->first_cpu));
  1509. }
  1510. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1511. {
  1512. cfs_rq->shares = shares;
  1513. }
  1514. #else
  1515. static inline void init_aggregate(void)
  1516. {
  1517. }
  1518. static inline int get_aggregate(struct sched_domain *sd)
  1519. {
  1520. return 0;
  1521. }
  1522. static inline void put_aggregate(struct sched_domain *sd)
  1523. {
  1524. }
  1525. #endif
  1526. #else /* CONFIG_SMP */
  1527. #ifdef CONFIG_FAIR_GROUP_SCHED
  1528. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1529. {
  1530. }
  1531. #endif
  1532. #endif /* CONFIG_SMP */
  1533. #include "sched_stats.h"
  1534. #include "sched_idletask.c"
  1535. #include "sched_fair.c"
  1536. #include "sched_rt.c"
  1537. #ifdef CONFIG_SCHED_DEBUG
  1538. # include "sched_debug.c"
  1539. #endif
  1540. #define sched_class_highest (&rt_sched_class)
  1541. static void inc_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running++;
  1544. }
  1545. static void dec_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running--;
  1548. }
  1549. static void set_load_weight(struct task_struct *p)
  1550. {
  1551. if (task_has_rt_policy(p)) {
  1552. p->se.load.weight = prio_to_weight[0] * 2;
  1553. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1554. return;
  1555. }
  1556. /*
  1557. * SCHED_IDLE tasks get minimal weight:
  1558. */
  1559. if (p->policy == SCHED_IDLE) {
  1560. p->se.load.weight = WEIGHT_IDLEPRIO;
  1561. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1562. return;
  1563. }
  1564. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1565. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1566. }
  1567. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1568. {
  1569. sched_info_queued(p);
  1570. p->sched_class->enqueue_task(rq, p, wakeup);
  1571. p->se.on_rq = 1;
  1572. }
  1573. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1574. {
  1575. p->sched_class->dequeue_task(rq, p, sleep);
  1576. p->se.on_rq = 0;
  1577. }
  1578. /*
  1579. * __normal_prio - return the priority that is based on the static prio
  1580. */
  1581. static inline int __normal_prio(struct task_struct *p)
  1582. {
  1583. return p->static_prio;
  1584. }
  1585. /*
  1586. * Calculate the expected normal priority: i.e. priority
  1587. * without taking RT-inheritance into account. Might be
  1588. * boosted by interactivity modifiers. Changes upon fork,
  1589. * setprio syscalls, and whenever the interactivity
  1590. * estimator recalculates.
  1591. */
  1592. static inline int normal_prio(struct task_struct *p)
  1593. {
  1594. int prio;
  1595. if (task_has_rt_policy(p))
  1596. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1597. else
  1598. prio = __normal_prio(p);
  1599. return prio;
  1600. }
  1601. /*
  1602. * Calculate the current priority, i.e. the priority
  1603. * taken into account by the scheduler. This value might
  1604. * be boosted by RT tasks, or might be boosted by
  1605. * interactivity modifiers. Will be RT if the task got
  1606. * RT-boosted. If not then it returns p->normal_prio.
  1607. */
  1608. static int effective_prio(struct task_struct *p)
  1609. {
  1610. p->normal_prio = normal_prio(p);
  1611. /*
  1612. * If we are RT tasks or we were boosted to RT priority,
  1613. * keep the priority unchanged. Otherwise, update priority
  1614. * to the normal priority:
  1615. */
  1616. if (!rt_prio(p->prio))
  1617. return p->normal_prio;
  1618. return p->prio;
  1619. }
  1620. /*
  1621. * activate_task - move a task to the runqueue.
  1622. */
  1623. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1624. {
  1625. if (task_contributes_to_load(p))
  1626. rq->nr_uninterruptible--;
  1627. enqueue_task(rq, p, wakeup);
  1628. inc_nr_running(rq);
  1629. }
  1630. /*
  1631. * deactivate_task - remove a task from the runqueue.
  1632. */
  1633. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1634. {
  1635. if (task_contributes_to_load(p))
  1636. rq->nr_uninterruptible++;
  1637. dequeue_task(rq, p, sleep);
  1638. dec_nr_running(rq);
  1639. }
  1640. /**
  1641. * task_curr - is this task currently executing on a CPU?
  1642. * @p: the task in question.
  1643. */
  1644. inline int task_curr(const struct task_struct *p)
  1645. {
  1646. return cpu_curr(task_cpu(p)) == p;
  1647. }
  1648. /* Used instead of source_load when we know the type == 0 */
  1649. unsigned long weighted_cpuload(const int cpu)
  1650. {
  1651. return cpu_rq(cpu)->load.weight;
  1652. }
  1653. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1654. {
  1655. set_task_rq(p, cpu);
  1656. #ifdef CONFIG_SMP
  1657. /*
  1658. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1659. * successfuly executed on another CPU. We must ensure that updates of
  1660. * per-task data have been completed by this moment.
  1661. */
  1662. smp_wmb();
  1663. task_thread_info(p)->cpu = cpu;
  1664. #endif
  1665. }
  1666. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1667. const struct sched_class *prev_class,
  1668. int oldprio, int running)
  1669. {
  1670. if (prev_class != p->sched_class) {
  1671. if (prev_class->switched_from)
  1672. prev_class->switched_from(rq, p, running);
  1673. p->sched_class->switched_to(rq, p, running);
  1674. } else
  1675. p->sched_class->prio_changed(rq, p, oldprio, running);
  1676. }
  1677. #ifdef CONFIG_SMP
  1678. /*
  1679. * Is this task likely cache-hot:
  1680. */
  1681. static int
  1682. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1683. {
  1684. s64 delta;
  1685. /*
  1686. * Buddy candidates are cache hot:
  1687. */
  1688. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1689. return 1;
  1690. if (p->sched_class != &fair_sched_class)
  1691. return 0;
  1692. if (sysctl_sched_migration_cost == -1)
  1693. return 1;
  1694. if (sysctl_sched_migration_cost == 0)
  1695. return 0;
  1696. delta = now - p->se.exec_start;
  1697. return delta < (s64)sysctl_sched_migration_cost;
  1698. }
  1699. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1700. {
  1701. int old_cpu = task_cpu(p);
  1702. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1703. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1704. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1705. u64 clock_offset;
  1706. clock_offset = old_rq->clock - new_rq->clock;
  1707. #ifdef CONFIG_SCHEDSTATS
  1708. if (p->se.wait_start)
  1709. p->se.wait_start -= clock_offset;
  1710. if (p->se.sleep_start)
  1711. p->se.sleep_start -= clock_offset;
  1712. if (p->se.block_start)
  1713. p->se.block_start -= clock_offset;
  1714. if (old_cpu != new_cpu) {
  1715. schedstat_inc(p, se.nr_migrations);
  1716. if (task_hot(p, old_rq->clock, NULL))
  1717. schedstat_inc(p, se.nr_forced2_migrations);
  1718. }
  1719. #endif
  1720. p->se.vruntime -= old_cfsrq->min_vruntime -
  1721. new_cfsrq->min_vruntime;
  1722. __set_task_cpu(p, new_cpu);
  1723. }
  1724. struct migration_req {
  1725. struct list_head list;
  1726. struct task_struct *task;
  1727. int dest_cpu;
  1728. struct completion done;
  1729. };
  1730. /*
  1731. * The task's runqueue lock must be held.
  1732. * Returns true if you have to wait for migration thread.
  1733. */
  1734. static int
  1735. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1736. {
  1737. struct rq *rq = task_rq(p);
  1738. /*
  1739. * If the task is not on a runqueue (and not running), then
  1740. * it is sufficient to simply update the task's cpu field.
  1741. */
  1742. if (!p->se.on_rq && !task_running(rq, p)) {
  1743. set_task_cpu(p, dest_cpu);
  1744. return 0;
  1745. }
  1746. init_completion(&req->done);
  1747. req->task = p;
  1748. req->dest_cpu = dest_cpu;
  1749. list_add(&req->list, &rq->migration_queue);
  1750. return 1;
  1751. }
  1752. /*
  1753. * wait_task_inactive - wait for a thread to unschedule.
  1754. *
  1755. * The caller must ensure that the task *will* unschedule sometime soon,
  1756. * else this function might spin for a *long* time. This function can't
  1757. * be called with interrupts off, or it may introduce deadlock with
  1758. * smp_call_function() if an IPI is sent by the same process we are
  1759. * waiting to become inactive.
  1760. */
  1761. void wait_task_inactive(struct task_struct *p)
  1762. {
  1763. unsigned long flags;
  1764. int running, on_rq;
  1765. struct rq *rq;
  1766. for (;;) {
  1767. /*
  1768. * We do the initial early heuristics without holding
  1769. * any task-queue locks at all. We'll only try to get
  1770. * the runqueue lock when things look like they will
  1771. * work out!
  1772. */
  1773. rq = task_rq(p);
  1774. /*
  1775. * If the task is actively running on another CPU
  1776. * still, just relax and busy-wait without holding
  1777. * any locks.
  1778. *
  1779. * NOTE! Since we don't hold any locks, it's not
  1780. * even sure that "rq" stays as the right runqueue!
  1781. * But we don't care, since "task_running()" will
  1782. * return false if the runqueue has changed and p
  1783. * is actually now running somewhere else!
  1784. */
  1785. while (task_running(rq, p))
  1786. cpu_relax();
  1787. /*
  1788. * Ok, time to look more closely! We need the rq
  1789. * lock now, to be *sure*. If we're wrong, we'll
  1790. * just go back and repeat.
  1791. */
  1792. rq = task_rq_lock(p, &flags);
  1793. running = task_running(rq, p);
  1794. on_rq = p->se.on_rq;
  1795. task_rq_unlock(rq, &flags);
  1796. /*
  1797. * Was it really running after all now that we
  1798. * checked with the proper locks actually held?
  1799. *
  1800. * Oops. Go back and try again..
  1801. */
  1802. if (unlikely(running)) {
  1803. cpu_relax();
  1804. continue;
  1805. }
  1806. /*
  1807. * It's not enough that it's not actively running,
  1808. * it must be off the runqueue _entirely_, and not
  1809. * preempted!
  1810. *
  1811. * So if it wa still runnable (but just not actively
  1812. * running right now), it's preempted, and we should
  1813. * yield - it could be a while.
  1814. */
  1815. if (unlikely(on_rq)) {
  1816. schedule_timeout_uninterruptible(1);
  1817. continue;
  1818. }
  1819. /*
  1820. * Ahh, all good. It wasn't running, and it wasn't
  1821. * runnable, which means that it will never become
  1822. * running in the future either. We're all done!
  1823. */
  1824. break;
  1825. }
  1826. }
  1827. /***
  1828. * kick_process - kick a running thread to enter/exit the kernel
  1829. * @p: the to-be-kicked thread
  1830. *
  1831. * Cause a process which is running on another CPU to enter
  1832. * kernel-mode, without any delay. (to get signals handled.)
  1833. *
  1834. * NOTE: this function doesnt have to take the runqueue lock,
  1835. * because all it wants to ensure is that the remote task enters
  1836. * the kernel. If the IPI races and the task has been migrated
  1837. * to another CPU then no harm is done and the purpose has been
  1838. * achieved as well.
  1839. */
  1840. void kick_process(struct task_struct *p)
  1841. {
  1842. int cpu;
  1843. preempt_disable();
  1844. cpu = task_cpu(p);
  1845. if ((cpu != smp_processor_id()) && task_curr(p))
  1846. smp_send_reschedule(cpu);
  1847. preempt_enable();
  1848. }
  1849. /*
  1850. * Return a low guess at the load of a migration-source cpu weighted
  1851. * according to the scheduling class and "nice" value.
  1852. *
  1853. * We want to under-estimate the load of migration sources, to
  1854. * balance conservatively.
  1855. */
  1856. static unsigned long source_load(int cpu, int type)
  1857. {
  1858. struct rq *rq = cpu_rq(cpu);
  1859. unsigned long total = weighted_cpuload(cpu);
  1860. if (type == 0)
  1861. return total;
  1862. return min(rq->cpu_load[type-1], total);
  1863. }
  1864. /*
  1865. * Return a high guess at the load of a migration-target cpu weighted
  1866. * according to the scheduling class and "nice" value.
  1867. */
  1868. static unsigned long target_load(int cpu, int type)
  1869. {
  1870. struct rq *rq = cpu_rq(cpu);
  1871. unsigned long total = weighted_cpuload(cpu);
  1872. if (type == 0)
  1873. return total;
  1874. return max(rq->cpu_load[type-1], total);
  1875. }
  1876. /*
  1877. * Return the average load per task on the cpu's run queue
  1878. */
  1879. static unsigned long cpu_avg_load_per_task(int cpu)
  1880. {
  1881. struct rq *rq = cpu_rq(cpu);
  1882. unsigned long total = weighted_cpuload(cpu);
  1883. unsigned long n = rq->nr_running;
  1884. return n ? total / n : SCHED_LOAD_SCALE;
  1885. }
  1886. /*
  1887. * find_idlest_group finds and returns the least busy CPU group within the
  1888. * domain.
  1889. */
  1890. static struct sched_group *
  1891. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1892. {
  1893. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1894. unsigned long min_load = ULONG_MAX, this_load = 0;
  1895. int load_idx = sd->forkexec_idx;
  1896. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1897. do {
  1898. unsigned long load, avg_load;
  1899. int local_group;
  1900. int i;
  1901. /* Skip over this group if it has no CPUs allowed */
  1902. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1903. continue;
  1904. local_group = cpu_isset(this_cpu, group->cpumask);
  1905. /* Tally up the load of all CPUs in the group */
  1906. avg_load = 0;
  1907. for_each_cpu_mask(i, group->cpumask) {
  1908. /* Bias balancing toward cpus of our domain */
  1909. if (local_group)
  1910. load = source_load(i, load_idx);
  1911. else
  1912. load = target_load(i, load_idx);
  1913. avg_load += load;
  1914. }
  1915. /* Adjust by relative CPU power of the group */
  1916. avg_load = sg_div_cpu_power(group,
  1917. avg_load * SCHED_LOAD_SCALE);
  1918. if (local_group) {
  1919. this_load = avg_load;
  1920. this = group;
  1921. } else if (avg_load < min_load) {
  1922. min_load = avg_load;
  1923. idlest = group;
  1924. }
  1925. } while (group = group->next, group != sd->groups);
  1926. if (!idlest || 100*this_load < imbalance*min_load)
  1927. return NULL;
  1928. return idlest;
  1929. }
  1930. /*
  1931. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1932. */
  1933. static int
  1934. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1935. cpumask_t *tmp)
  1936. {
  1937. unsigned long load, min_load = ULONG_MAX;
  1938. int idlest = -1;
  1939. int i;
  1940. /* Traverse only the allowed CPUs */
  1941. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1942. for_each_cpu_mask(i, *tmp) {
  1943. load = weighted_cpuload(i);
  1944. if (load < min_load || (load == min_load && i == this_cpu)) {
  1945. min_load = load;
  1946. idlest = i;
  1947. }
  1948. }
  1949. return idlest;
  1950. }
  1951. /*
  1952. * sched_balance_self: balance the current task (running on cpu) in domains
  1953. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1954. * SD_BALANCE_EXEC.
  1955. *
  1956. * Balance, ie. select the least loaded group.
  1957. *
  1958. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1959. *
  1960. * preempt must be disabled.
  1961. */
  1962. static int sched_balance_self(int cpu, int flag)
  1963. {
  1964. struct task_struct *t = current;
  1965. struct sched_domain *tmp, *sd = NULL;
  1966. for_each_domain(cpu, tmp) {
  1967. /*
  1968. * If power savings logic is enabled for a domain, stop there.
  1969. */
  1970. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1971. break;
  1972. if (tmp->flags & flag)
  1973. sd = tmp;
  1974. }
  1975. while (sd) {
  1976. cpumask_t span, tmpmask;
  1977. struct sched_group *group;
  1978. int new_cpu, weight;
  1979. if (!(sd->flags & flag)) {
  1980. sd = sd->child;
  1981. continue;
  1982. }
  1983. span = sd->span;
  1984. group = find_idlest_group(sd, t, cpu);
  1985. if (!group) {
  1986. sd = sd->child;
  1987. continue;
  1988. }
  1989. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1990. if (new_cpu == -1 || new_cpu == cpu) {
  1991. /* Now try balancing at a lower domain level of cpu */
  1992. sd = sd->child;
  1993. continue;
  1994. }
  1995. /* Now try balancing at a lower domain level of new_cpu */
  1996. cpu = new_cpu;
  1997. sd = NULL;
  1998. weight = cpus_weight(span);
  1999. for_each_domain(cpu, tmp) {
  2000. if (weight <= cpus_weight(tmp->span))
  2001. break;
  2002. if (tmp->flags & flag)
  2003. sd = tmp;
  2004. }
  2005. /* while loop will break here if sd == NULL */
  2006. }
  2007. return cpu;
  2008. }
  2009. #endif /* CONFIG_SMP */
  2010. /***
  2011. * try_to_wake_up - wake up a thread
  2012. * @p: the to-be-woken-up thread
  2013. * @state: the mask of task states that can be woken
  2014. * @sync: do a synchronous wakeup?
  2015. *
  2016. * Put it on the run-queue if it's not already there. The "current"
  2017. * thread is always on the run-queue (except when the actual
  2018. * re-schedule is in progress), and as such you're allowed to do
  2019. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2020. * runnable without the overhead of this.
  2021. *
  2022. * returns failure only if the task is already active.
  2023. */
  2024. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2025. {
  2026. int cpu, orig_cpu, this_cpu, success = 0;
  2027. unsigned long flags;
  2028. long old_state;
  2029. struct rq *rq;
  2030. if (!sched_feat(SYNC_WAKEUPS))
  2031. sync = 0;
  2032. smp_wmb();
  2033. rq = task_rq_lock(p, &flags);
  2034. old_state = p->state;
  2035. if (!(old_state & state))
  2036. goto out;
  2037. if (p->se.on_rq)
  2038. goto out_running;
  2039. cpu = task_cpu(p);
  2040. orig_cpu = cpu;
  2041. this_cpu = smp_processor_id();
  2042. #ifdef CONFIG_SMP
  2043. if (unlikely(task_running(rq, p)))
  2044. goto out_activate;
  2045. cpu = p->sched_class->select_task_rq(p, sync);
  2046. if (cpu != orig_cpu) {
  2047. set_task_cpu(p, cpu);
  2048. task_rq_unlock(rq, &flags);
  2049. /* might preempt at this point */
  2050. rq = task_rq_lock(p, &flags);
  2051. old_state = p->state;
  2052. if (!(old_state & state))
  2053. goto out;
  2054. if (p->se.on_rq)
  2055. goto out_running;
  2056. this_cpu = smp_processor_id();
  2057. cpu = task_cpu(p);
  2058. }
  2059. #ifdef CONFIG_SCHEDSTATS
  2060. schedstat_inc(rq, ttwu_count);
  2061. if (cpu == this_cpu)
  2062. schedstat_inc(rq, ttwu_local);
  2063. else {
  2064. struct sched_domain *sd;
  2065. for_each_domain(this_cpu, sd) {
  2066. if (cpu_isset(cpu, sd->span)) {
  2067. schedstat_inc(sd, ttwu_wake_remote);
  2068. break;
  2069. }
  2070. }
  2071. }
  2072. #endif
  2073. out_activate:
  2074. #endif /* CONFIG_SMP */
  2075. schedstat_inc(p, se.nr_wakeups);
  2076. if (sync)
  2077. schedstat_inc(p, se.nr_wakeups_sync);
  2078. if (orig_cpu != cpu)
  2079. schedstat_inc(p, se.nr_wakeups_migrate);
  2080. if (cpu == this_cpu)
  2081. schedstat_inc(p, se.nr_wakeups_local);
  2082. else
  2083. schedstat_inc(p, se.nr_wakeups_remote);
  2084. update_rq_clock(rq);
  2085. activate_task(rq, p, 1);
  2086. success = 1;
  2087. out_running:
  2088. check_preempt_curr(rq, p);
  2089. p->state = TASK_RUNNING;
  2090. #ifdef CONFIG_SMP
  2091. if (p->sched_class->task_wake_up)
  2092. p->sched_class->task_wake_up(rq, p);
  2093. #endif
  2094. out:
  2095. task_rq_unlock(rq, &flags);
  2096. return success;
  2097. }
  2098. int wake_up_process(struct task_struct *p)
  2099. {
  2100. return try_to_wake_up(p, TASK_ALL, 0);
  2101. }
  2102. EXPORT_SYMBOL(wake_up_process);
  2103. int wake_up_state(struct task_struct *p, unsigned int state)
  2104. {
  2105. return try_to_wake_up(p, state, 0);
  2106. }
  2107. /*
  2108. * Perform scheduler related setup for a newly forked process p.
  2109. * p is forked by current.
  2110. *
  2111. * __sched_fork() is basic setup used by init_idle() too:
  2112. */
  2113. static void __sched_fork(struct task_struct *p)
  2114. {
  2115. p->se.exec_start = 0;
  2116. p->se.sum_exec_runtime = 0;
  2117. p->se.prev_sum_exec_runtime = 0;
  2118. p->se.last_wakeup = 0;
  2119. p->se.avg_overlap = 0;
  2120. #ifdef CONFIG_SCHEDSTATS
  2121. p->se.wait_start = 0;
  2122. p->se.sum_sleep_runtime = 0;
  2123. p->se.sleep_start = 0;
  2124. p->se.block_start = 0;
  2125. p->se.sleep_max = 0;
  2126. p->se.block_max = 0;
  2127. p->se.exec_max = 0;
  2128. p->se.slice_max = 0;
  2129. p->se.wait_max = 0;
  2130. #endif
  2131. INIT_LIST_HEAD(&p->rt.run_list);
  2132. p->se.on_rq = 0;
  2133. INIT_LIST_HEAD(&p->se.group_node);
  2134. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2135. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2136. #endif
  2137. /*
  2138. * We mark the process as running here, but have not actually
  2139. * inserted it onto the runqueue yet. This guarantees that
  2140. * nobody will actually run it, and a signal or other external
  2141. * event cannot wake it up and insert it on the runqueue either.
  2142. */
  2143. p->state = TASK_RUNNING;
  2144. }
  2145. /*
  2146. * fork()/clone()-time setup:
  2147. */
  2148. void sched_fork(struct task_struct *p, int clone_flags)
  2149. {
  2150. int cpu = get_cpu();
  2151. __sched_fork(p);
  2152. #ifdef CONFIG_SMP
  2153. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2154. #endif
  2155. set_task_cpu(p, cpu);
  2156. /*
  2157. * Make sure we do not leak PI boosting priority to the child:
  2158. */
  2159. p->prio = current->normal_prio;
  2160. if (!rt_prio(p->prio))
  2161. p->sched_class = &fair_sched_class;
  2162. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2163. if (likely(sched_info_on()))
  2164. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2165. #endif
  2166. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2167. p->oncpu = 0;
  2168. #endif
  2169. #ifdef CONFIG_PREEMPT
  2170. /* Want to start with kernel preemption disabled. */
  2171. task_thread_info(p)->preempt_count = 1;
  2172. #endif
  2173. put_cpu();
  2174. }
  2175. /*
  2176. * wake_up_new_task - wake up a newly created task for the first time.
  2177. *
  2178. * This function will do some initial scheduler statistics housekeeping
  2179. * that must be done for every newly created context, then puts the task
  2180. * on the runqueue and wakes it.
  2181. */
  2182. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2183. {
  2184. unsigned long flags;
  2185. struct rq *rq;
  2186. rq = task_rq_lock(p, &flags);
  2187. BUG_ON(p->state != TASK_RUNNING);
  2188. update_rq_clock(rq);
  2189. p->prio = effective_prio(p);
  2190. if (!p->sched_class->task_new || !current->se.on_rq) {
  2191. activate_task(rq, p, 0);
  2192. } else {
  2193. /*
  2194. * Let the scheduling class do new task startup
  2195. * management (if any):
  2196. */
  2197. p->sched_class->task_new(rq, p);
  2198. inc_nr_running(rq);
  2199. }
  2200. check_preempt_curr(rq, p);
  2201. #ifdef CONFIG_SMP
  2202. if (p->sched_class->task_wake_up)
  2203. p->sched_class->task_wake_up(rq, p);
  2204. #endif
  2205. task_rq_unlock(rq, &flags);
  2206. }
  2207. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2208. /**
  2209. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2210. * @notifier: notifier struct to register
  2211. */
  2212. void preempt_notifier_register(struct preempt_notifier *notifier)
  2213. {
  2214. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2215. }
  2216. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2217. /**
  2218. * preempt_notifier_unregister - no longer interested in preemption notifications
  2219. * @notifier: notifier struct to unregister
  2220. *
  2221. * This is safe to call from within a preemption notifier.
  2222. */
  2223. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2224. {
  2225. hlist_del(&notifier->link);
  2226. }
  2227. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2228. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2229. {
  2230. struct preempt_notifier *notifier;
  2231. struct hlist_node *node;
  2232. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2233. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2234. }
  2235. static void
  2236. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2237. struct task_struct *next)
  2238. {
  2239. struct preempt_notifier *notifier;
  2240. struct hlist_node *node;
  2241. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2242. notifier->ops->sched_out(notifier, next);
  2243. }
  2244. #else
  2245. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2246. {
  2247. }
  2248. static void
  2249. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2250. struct task_struct *next)
  2251. {
  2252. }
  2253. #endif
  2254. /**
  2255. * prepare_task_switch - prepare to switch tasks
  2256. * @rq: the runqueue preparing to switch
  2257. * @prev: the current task that is being switched out
  2258. * @next: the task we are going to switch to.
  2259. *
  2260. * This is called with the rq lock held and interrupts off. It must
  2261. * be paired with a subsequent finish_task_switch after the context
  2262. * switch.
  2263. *
  2264. * prepare_task_switch sets up locking and calls architecture specific
  2265. * hooks.
  2266. */
  2267. static inline void
  2268. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2269. struct task_struct *next)
  2270. {
  2271. fire_sched_out_preempt_notifiers(prev, next);
  2272. prepare_lock_switch(rq, next);
  2273. prepare_arch_switch(next);
  2274. }
  2275. /**
  2276. * finish_task_switch - clean up after a task-switch
  2277. * @rq: runqueue associated with task-switch
  2278. * @prev: the thread we just switched away from.
  2279. *
  2280. * finish_task_switch must be called after the context switch, paired
  2281. * with a prepare_task_switch call before the context switch.
  2282. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2283. * and do any other architecture-specific cleanup actions.
  2284. *
  2285. * Note that we may have delayed dropping an mm in context_switch(). If
  2286. * so, we finish that here outside of the runqueue lock. (Doing it
  2287. * with the lock held can cause deadlocks; see schedule() for
  2288. * details.)
  2289. */
  2290. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2291. __releases(rq->lock)
  2292. {
  2293. struct mm_struct *mm = rq->prev_mm;
  2294. long prev_state;
  2295. rq->prev_mm = NULL;
  2296. /*
  2297. * A task struct has one reference for the use as "current".
  2298. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2299. * schedule one last time. The schedule call will never return, and
  2300. * the scheduled task must drop that reference.
  2301. * The test for TASK_DEAD must occur while the runqueue locks are
  2302. * still held, otherwise prev could be scheduled on another cpu, die
  2303. * there before we look at prev->state, and then the reference would
  2304. * be dropped twice.
  2305. * Manfred Spraul <manfred@colorfullife.com>
  2306. */
  2307. prev_state = prev->state;
  2308. finish_arch_switch(prev);
  2309. finish_lock_switch(rq, prev);
  2310. #ifdef CONFIG_SMP
  2311. if (current->sched_class->post_schedule)
  2312. current->sched_class->post_schedule(rq);
  2313. #endif
  2314. fire_sched_in_preempt_notifiers(current);
  2315. if (mm)
  2316. mmdrop(mm);
  2317. if (unlikely(prev_state == TASK_DEAD)) {
  2318. /*
  2319. * Remove function-return probe instances associated with this
  2320. * task and put them back on the free list.
  2321. */
  2322. kprobe_flush_task(prev);
  2323. put_task_struct(prev);
  2324. }
  2325. }
  2326. /**
  2327. * schedule_tail - first thing a freshly forked thread must call.
  2328. * @prev: the thread we just switched away from.
  2329. */
  2330. asmlinkage void schedule_tail(struct task_struct *prev)
  2331. __releases(rq->lock)
  2332. {
  2333. struct rq *rq = this_rq();
  2334. finish_task_switch(rq, prev);
  2335. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2336. /* In this case, finish_task_switch does not reenable preemption */
  2337. preempt_enable();
  2338. #endif
  2339. if (current->set_child_tid)
  2340. put_user(task_pid_vnr(current), current->set_child_tid);
  2341. }
  2342. /*
  2343. * context_switch - switch to the new MM and the new
  2344. * thread's register state.
  2345. */
  2346. static inline void
  2347. context_switch(struct rq *rq, struct task_struct *prev,
  2348. struct task_struct *next)
  2349. {
  2350. struct mm_struct *mm, *oldmm;
  2351. prepare_task_switch(rq, prev, next);
  2352. mm = next->mm;
  2353. oldmm = prev->active_mm;
  2354. /*
  2355. * For paravirt, this is coupled with an exit in switch_to to
  2356. * combine the page table reload and the switch backend into
  2357. * one hypercall.
  2358. */
  2359. arch_enter_lazy_cpu_mode();
  2360. if (unlikely(!mm)) {
  2361. next->active_mm = oldmm;
  2362. atomic_inc(&oldmm->mm_count);
  2363. enter_lazy_tlb(oldmm, next);
  2364. } else
  2365. switch_mm(oldmm, mm, next);
  2366. if (unlikely(!prev->mm)) {
  2367. prev->active_mm = NULL;
  2368. rq->prev_mm = oldmm;
  2369. }
  2370. /*
  2371. * Since the runqueue lock will be released by the next
  2372. * task (which is an invalid locking op but in the case
  2373. * of the scheduler it's an obvious special-case), so we
  2374. * do an early lockdep release here:
  2375. */
  2376. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2377. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2378. #endif
  2379. /* Here we just switch the register state and the stack. */
  2380. switch_to(prev, next, prev);
  2381. barrier();
  2382. /*
  2383. * this_rq must be evaluated again because prev may have moved
  2384. * CPUs since it called schedule(), thus the 'rq' on its stack
  2385. * frame will be invalid.
  2386. */
  2387. finish_task_switch(this_rq(), prev);
  2388. }
  2389. /*
  2390. * nr_running, nr_uninterruptible and nr_context_switches:
  2391. *
  2392. * externally visible scheduler statistics: current number of runnable
  2393. * threads, current number of uninterruptible-sleeping threads, total
  2394. * number of context switches performed since bootup.
  2395. */
  2396. unsigned long nr_running(void)
  2397. {
  2398. unsigned long i, sum = 0;
  2399. for_each_online_cpu(i)
  2400. sum += cpu_rq(i)->nr_running;
  2401. return sum;
  2402. }
  2403. unsigned long nr_uninterruptible(void)
  2404. {
  2405. unsigned long i, sum = 0;
  2406. for_each_possible_cpu(i)
  2407. sum += cpu_rq(i)->nr_uninterruptible;
  2408. /*
  2409. * Since we read the counters lockless, it might be slightly
  2410. * inaccurate. Do not allow it to go below zero though:
  2411. */
  2412. if (unlikely((long)sum < 0))
  2413. sum = 0;
  2414. return sum;
  2415. }
  2416. unsigned long long nr_context_switches(void)
  2417. {
  2418. int i;
  2419. unsigned long long sum = 0;
  2420. for_each_possible_cpu(i)
  2421. sum += cpu_rq(i)->nr_switches;
  2422. return sum;
  2423. }
  2424. unsigned long nr_iowait(void)
  2425. {
  2426. unsigned long i, sum = 0;
  2427. for_each_possible_cpu(i)
  2428. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2429. return sum;
  2430. }
  2431. unsigned long nr_active(void)
  2432. {
  2433. unsigned long i, running = 0, uninterruptible = 0;
  2434. for_each_online_cpu(i) {
  2435. running += cpu_rq(i)->nr_running;
  2436. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2437. }
  2438. if (unlikely((long)uninterruptible < 0))
  2439. uninterruptible = 0;
  2440. return running + uninterruptible;
  2441. }
  2442. /*
  2443. * Update rq->cpu_load[] statistics. This function is usually called every
  2444. * scheduler tick (TICK_NSEC).
  2445. */
  2446. static void update_cpu_load(struct rq *this_rq)
  2447. {
  2448. unsigned long this_load = this_rq->load.weight;
  2449. int i, scale;
  2450. this_rq->nr_load_updates++;
  2451. /* Update our load: */
  2452. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2453. unsigned long old_load, new_load;
  2454. /* scale is effectively 1 << i now, and >> i divides by scale */
  2455. old_load = this_rq->cpu_load[i];
  2456. new_load = this_load;
  2457. /*
  2458. * Round up the averaging division if load is increasing. This
  2459. * prevents us from getting stuck on 9 if the load is 10, for
  2460. * example.
  2461. */
  2462. if (new_load > old_load)
  2463. new_load += scale-1;
  2464. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2465. }
  2466. }
  2467. #ifdef CONFIG_SMP
  2468. /*
  2469. * double_rq_lock - safely lock two runqueues
  2470. *
  2471. * Note this does not disable interrupts like task_rq_lock,
  2472. * you need to do so manually before calling.
  2473. */
  2474. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2475. __acquires(rq1->lock)
  2476. __acquires(rq2->lock)
  2477. {
  2478. BUG_ON(!irqs_disabled());
  2479. if (rq1 == rq2) {
  2480. spin_lock(&rq1->lock);
  2481. __acquire(rq2->lock); /* Fake it out ;) */
  2482. } else {
  2483. if (rq1 < rq2) {
  2484. spin_lock(&rq1->lock);
  2485. spin_lock(&rq2->lock);
  2486. } else {
  2487. spin_lock(&rq2->lock);
  2488. spin_lock(&rq1->lock);
  2489. }
  2490. }
  2491. update_rq_clock(rq1);
  2492. update_rq_clock(rq2);
  2493. }
  2494. /*
  2495. * double_rq_unlock - safely unlock two runqueues
  2496. *
  2497. * Note this does not restore interrupts like task_rq_unlock,
  2498. * you need to do so manually after calling.
  2499. */
  2500. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2501. __releases(rq1->lock)
  2502. __releases(rq2->lock)
  2503. {
  2504. spin_unlock(&rq1->lock);
  2505. if (rq1 != rq2)
  2506. spin_unlock(&rq2->lock);
  2507. else
  2508. __release(rq2->lock);
  2509. }
  2510. /*
  2511. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2512. */
  2513. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2514. __releases(this_rq->lock)
  2515. __acquires(busiest->lock)
  2516. __acquires(this_rq->lock)
  2517. {
  2518. int ret = 0;
  2519. if (unlikely(!irqs_disabled())) {
  2520. /* printk() doesn't work good under rq->lock */
  2521. spin_unlock(&this_rq->lock);
  2522. BUG_ON(1);
  2523. }
  2524. if (unlikely(!spin_trylock(&busiest->lock))) {
  2525. if (busiest < this_rq) {
  2526. spin_unlock(&this_rq->lock);
  2527. spin_lock(&busiest->lock);
  2528. spin_lock(&this_rq->lock);
  2529. ret = 1;
  2530. } else
  2531. spin_lock(&busiest->lock);
  2532. }
  2533. return ret;
  2534. }
  2535. /*
  2536. * If dest_cpu is allowed for this process, migrate the task to it.
  2537. * This is accomplished by forcing the cpu_allowed mask to only
  2538. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2539. * the cpu_allowed mask is restored.
  2540. */
  2541. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2542. {
  2543. struct migration_req req;
  2544. unsigned long flags;
  2545. struct rq *rq;
  2546. rq = task_rq_lock(p, &flags);
  2547. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2548. || unlikely(cpu_is_offline(dest_cpu)))
  2549. goto out;
  2550. /* force the process onto the specified CPU */
  2551. if (migrate_task(p, dest_cpu, &req)) {
  2552. /* Need to wait for migration thread (might exit: take ref). */
  2553. struct task_struct *mt = rq->migration_thread;
  2554. get_task_struct(mt);
  2555. task_rq_unlock(rq, &flags);
  2556. wake_up_process(mt);
  2557. put_task_struct(mt);
  2558. wait_for_completion(&req.done);
  2559. return;
  2560. }
  2561. out:
  2562. task_rq_unlock(rq, &flags);
  2563. }
  2564. /*
  2565. * sched_exec - execve() is a valuable balancing opportunity, because at
  2566. * this point the task has the smallest effective memory and cache footprint.
  2567. */
  2568. void sched_exec(void)
  2569. {
  2570. int new_cpu, this_cpu = get_cpu();
  2571. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2572. put_cpu();
  2573. if (new_cpu != this_cpu)
  2574. sched_migrate_task(current, new_cpu);
  2575. }
  2576. /*
  2577. * pull_task - move a task from a remote runqueue to the local runqueue.
  2578. * Both runqueues must be locked.
  2579. */
  2580. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2581. struct rq *this_rq, int this_cpu)
  2582. {
  2583. deactivate_task(src_rq, p, 0);
  2584. set_task_cpu(p, this_cpu);
  2585. activate_task(this_rq, p, 0);
  2586. /*
  2587. * Note that idle threads have a prio of MAX_PRIO, for this test
  2588. * to be always true for them.
  2589. */
  2590. check_preempt_curr(this_rq, p);
  2591. }
  2592. /*
  2593. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2594. */
  2595. static
  2596. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2597. struct sched_domain *sd, enum cpu_idle_type idle,
  2598. int *all_pinned)
  2599. {
  2600. /*
  2601. * We do not migrate tasks that are:
  2602. * 1) running (obviously), or
  2603. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2604. * 3) are cache-hot on their current CPU.
  2605. */
  2606. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2607. schedstat_inc(p, se.nr_failed_migrations_affine);
  2608. return 0;
  2609. }
  2610. *all_pinned = 0;
  2611. if (task_running(rq, p)) {
  2612. schedstat_inc(p, se.nr_failed_migrations_running);
  2613. return 0;
  2614. }
  2615. /*
  2616. * Aggressive migration if:
  2617. * 1) task is cache cold, or
  2618. * 2) too many balance attempts have failed.
  2619. */
  2620. if (!task_hot(p, rq->clock, sd) ||
  2621. sd->nr_balance_failed > sd->cache_nice_tries) {
  2622. #ifdef CONFIG_SCHEDSTATS
  2623. if (task_hot(p, rq->clock, sd)) {
  2624. schedstat_inc(sd, lb_hot_gained[idle]);
  2625. schedstat_inc(p, se.nr_forced_migrations);
  2626. }
  2627. #endif
  2628. return 1;
  2629. }
  2630. if (task_hot(p, rq->clock, sd)) {
  2631. schedstat_inc(p, se.nr_failed_migrations_hot);
  2632. return 0;
  2633. }
  2634. return 1;
  2635. }
  2636. static unsigned long
  2637. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2638. unsigned long max_load_move, struct sched_domain *sd,
  2639. enum cpu_idle_type idle, int *all_pinned,
  2640. int *this_best_prio, struct rq_iterator *iterator)
  2641. {
  2642. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2643. struct task_struct *p;
  2644. long rem_load_move = max_load_move;
  2645. if (max_load_move == 0)
  2646. goto out;
  2647. pinned = 1;
  2648. /*
  2649. * Start the load-balancing iterator:
  2650. */
  2651. p = iterator->start(iterator->arg);
  2652. next:
  2653. if (!p || loops++ > sysctl_sched_nr_migrate)
  2654. goto out;
  2655. /*
  2656. * To help distribute high priority tasks across CPUs we don't
  2657. * skip a task if it will be the highest priority task (i.e. smallest
  2658. * prio value) on its new queue regardless of its load weight
  2659. */
  2660. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2661. SCHED_LOAD_SCALE_FUZZ;
  2662. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2663. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2664. p = iterator->next(iterator->arg);
  2665. goto next;
  2666. }
  2667. pull_task(busiest, p, this_rq, this_cpu);
  2668. pulled++;
  2669. rem_load_move -= p->se.load.weight;
  2670. /*
  2671. * We only want to steal up to the prescribed amount of weighted load.
  2672. */
  2673. if (rem_load_move > 0) {
  2674. if (p->prio < *this_best_prio)
  2675. *this_best_prio = p->prio;
  2676. p = iterator->next(iterator->arg);
  2677. goto next;
  2678. }
  2679. out:
  2680. /*
  2681. * Right now, this is one of only two places pull_task() is called,
  2682. * so we can safely collect pull_task() stats here rather than
  2683. * inside pull_task().
  2684. */
  2685. schedstat_add(sd, lb_gained[idle], pulled);
  2686. if (all_pinned)
  2687. *all_pinned = pinned;
  2688. return max_load_move - rem_load_move;
  2689. }
  2690. /*
  2691. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2692. * this_rq, as part of a balancing operation within domain "sd".
  2693. * Returns 1 if successful and 0 otherwise.
  2694. *
  2695. * Called with both runqueues locked.
  2696. */
  2697. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2698. unsigned long max_load_move,
  2699. struct sched_domain *sd, enum cpu_idle_type idle,
  2700. int *all_pinned)
  2701. {
  2702. const struct sched_class *class = sched_class_highest;
  2703. unsigned long total_load_moved = 0;
  2704. int this_best_prio = this_rq->curr->prio;
  2705. do {
  2706. total_load_moved +=
  2707. class->load_balance(this_rq, this_cpu, busiest,
  2708. max_load_move - total_load_moved,
  2709. sd, idle, all_pinned, &this_best_prio);
  2710. class = class->next;
  2711. } while (class && max_load_move > total_load_moved);
  2712. return total_load_moved > 0;
  2713. }
  2714. static int
  2715. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2716. struct sched_domain *sd, enum cpu_idle_type idle,
  2717. struct rq_iterator *iterator)
  2718. {
  2719. struct task_struct *p = iterator->start(iterator->arg);
  2720. int pinned = 0;
  2721. while (p) {
  2722. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2723. pull_task(busiest, p, this_rq, this_cpu);
  2724. /*
  2725. * Right now, this is only the second place pull_task()
  2726. * is called, so we can safely collect pull_task()
  2727. * stats here rather than inside pull_task().
  2728. */
  2729. schedstat_inc(sd, lb_gained[idle]);
  2730. return 1;
  2731. }
  2732. p = iterator->next(iterator->arg);
  2733. }
  2734. return 0;
  2735. }
  2736. /*
  2737. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2738. * part of active balancing operations within "domain".
  2739. * Returns 1 if successful and 0 otherwise.
  2740. *
  2741. * Called with both runqueues locked.
  2742. */
  2743. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2744. struct sched_domain *sd, enum cpu_idle_type idle)
  2745. {
  2746. const struct sched_class *class;
  2747. for (class = sched_class_highest; class; class = class->next)
  2748. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2749. return 1;
  2750. return 0;
  2751. }
  2752. /*
  2753. * find_busiest_group finds and returns the busiest CPU group within the
  2754. * domain. It calculates and returns the amount of weighted load which
  2755. * should be moved to restore balance via the imbalance parameter.
  2756. */
  2757. static struct sched_group *
  2758. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2759. unsigned long *imbalance, enum cpu_idle_type idle,
  2760. int *sd_idle, const cpumask_t *cpus, int *balance)
  2761. {
  2762. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2763. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2764. unsigned long max_pull;
  2765. unsigned long busiest_load_per_task, busiest_nr_running;
  2766. unsigned long this_load_per_task, this_nr_running;
  2767. int load_idx, group_imb = 0;
  2768. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2769. int power_savings_balance = 1;
  2770. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2771. unsigned long min_nr_running = ULONG_MAX;
  2772. struct sched_group *group_min = NULL, *group_leader = NULL;
  2773. #endif
  2774. max_load = this_load = total_load = total_pwr = 0;
  2775. busiest_load_per_task = busiest_nr_running = 0;
  2776. this_load_per_task = this_nr_running = 0;
  2777. if (idle == CPU_NOT_IDLE)
  2778. load_idx = sd->busy_idx;
  2779. else if (idle == CPU_NEWLY_IDLE)
  2780. load_idx = sd->newidle_idx;
  2781. else
  2782. load_idx = sd->idle_idx;
  2783. do {
  2784. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2785. int local_group;
  2786. int i;
  2787. int __group_imb = 0;
  2788. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2789. unsigned long sum_nr_running, sum_weighted_load;
  2790. local_group = cpu_isset(this_cpu, group->cpumask);
  2791. if (local_group)
  2792. balance_cpu = first_cpu(group->cpumask);
  2793. /* Tally up the load of all CPUs in the group */
  2794. sum_weighted_load = sum_nr_running = avg_load = 0;
  2795. max_cpu_load = 0;
  2796. min_cpu_load = ~0UL;
  2797. for_each_cpu_mask(i, group->cpumask) {
  2798. struct rq *rq;
  2799. if (!cpu_isset(i, *cpus))
  2800. continue;
  2801. rq = cpu_rq(i);
  2802. if (*sd_idle && rq->nr_running)
  2803. *sd_idle = 0;
  2804. /* Bias balancing toward cpus of our domain */
  2805. if (local_group) {
  2806. if (idle_cpu(i) && !first_idle_cpu) {
  2807. first_idle_cpu = 1;
  2808. balance_cpu = i;
  2809. }
  2810. load = target_load(i, load_idx);
  2811. } else {
  2812. load = source_load(i, load_idx);
  2813. if (load > max_cpu_load)
  2814. max_cpu_load = load;
  2815. if (min_cpu_load > load)
  2816. min_cpu_load = load;
  2817. }
  2818. avg_load += load;
  2819. sum_nr_running += rq->nr_running;
  2820. sum_weighted_load += weighted_cpuload(i);
  2821. }
  2822. /*
  2823. * First idle cpu or the first cpu(busiest) in this sched group
  2824. * is eligible for doing load balancing at this and above
  2825. * domains. In the newly idle case, we will allow all the cpu's
  2826. * to do the newly idle load balance.
  2827. */
  2828. if (idle != CPU_NEWLY_IDLE && local_group &&
  2829. balance_cpu != this_cpu && balance) {
  2830. *balance = 0;
  2831. goto ret;
  2832. }
  2833. total_load += avg_load;
  2834. total_pwr += group->__cpu_power;
  2835. /* Adjust by relative CPU power of the group */
  2836. avg_load = sg_div_cpu_power(group,
  2837. avg_load * SCHED_LOAD_SCALE);
  2838. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2839. __group_imb = 1;
  2840. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2841. if (local_group) {
  2842. this_load = avg_load;
  2843. this = group;
  2844. this_nr_running = sum_nr_running;
  2845. this_load_per_task = sum_weighted_load;
  2846. } else if (avg_load > max_load &&
  2847. (sum_nr_running > group_capacity || __group_imb)) {
  2848. max_load = avg_load;
  2849. busiest = group;
  2850. busiest_nr_running = sum_nr_running;
  2851. busiest_load_per_task = sum_weighted_load;
  2852. group_imb = __group_imb;
  2853. }
  2854. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2855. /*
  2856. * Busy processors will not participate in power savings
  2857. * balance.
  2858. */
  2859. if (idle == CPU_NOT_IDLE ||
  2860. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2861. goto group_next;
  2862. /*
  2863. * If the local group is idle or completely loaded
  2864. * no need to do power savings balance at this domain
  2865. */
  2866. if (local_group && (this_nr_running >= group_capacity ||
  2867. !this_nr_running))
  2868. power_savings_balance = 0;
  2869. /*
  2870. * If a group is already running at full capacity or idle,
  2871. * don't include that group in power savings calculations
  2872. */
  2873. if (!power_savings_balance || sum_nr_running >= group_capacity
  2874. || !sum_nr_running)
  2875. goto group_next;
  2876. /*
  2877. * Calculate the group which has the least non-idle load.
  2878. * This is the group from where we need to pick up the load
  2879. * for saving power
  2880. */
  2881. if ((sum_nr_running < min_nr_running) ||
  2882. (sum_nr_running == min_nr_running &&
  2883. first_cpu(group->cpumask) <
  2884. first_cpu(group_min->cpumask))) {
  2885. group_min = group;
  2886. min_nr_running = sum_nr_running;
  2887. min_load_per_task = sum_weighted_load /
  2888. sum_nr_running;
  2889. }
  2890. /*
  2891. * Calculate the group which is almost near its
  2892. * capacity but still has some space to pick up some load
  2893. * from other group and save more power
  2894. */
  2895. if (sum_nr_running <= group_capacity - 1) {
  2896. if (sum_nr_running > leader_nr_running ||
  2897. (sum_nr_running == leader_nr_running &&
  2898. first_cpu(group->cpumask) >
  2899. first_cpu(group_leader->cpumask))) {
  2900. group_leader = group;
  2901. leader_nr_running = sum_nr_running;
  2902. }
  2903. }
  2904. group_next:
  2905. #endif
  2906. group = group->next;
  2907. } while (group != sd->groups);
  2908. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2909. goto out_balanced;
  2910. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2911. if (this_load >= avg_load ||
  2912. 100*max_load <= sd->imbalance_pct*this_load)
  2913. goto out_balanced;
  2914. busiest_load_per_task /= busiest_nr_running;
  2915. if (group_imb)
  2916. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2917. /*
  2918. * We're trying to get all the cpus to the average_load, so we don't
  2919. * want to push ourselves above the average load, nor do we wish to
  2920. * reduce the max loaded cpu below the average load, as either of these
  2921. * actions would just result in more rebalancing later, and ping-pong
  2922. * tasks around. Thus we look for the minimum possible imbalance.
  2923. * Negative imbalances (*we* are more loaded than anyone else) will
  2924. * be counted as no imbalance for these purposes -- we can't fix that
  2925. * by pulling tasks to us. Be careful of negative numbers as they'll
  2926. * appear as very large values with unsigned longs.
  2927. */
  2928. if (max_load <= busiest_load_per_task)
  2929. goto out_balanced;
  2930. /*
  2931. * In the presence of smp nice balancing, certain scenarios can have
  2932. * max load less than avg load(as we skip the groups at or below
  2933. * its cpu_power, while calculating max_load..)
  2934. */
  2935. if (max_load < avg_load) {
  2936. *imbalance = 0;
  2937. goto small_imbalance;
  2938. }
  2939. /* Don't want to pull so many tasks that a group would go idle */
  2940. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2941. /* How much load to actually move to equalise the imbalance */
  2942. *imbalance = min(max_pull * busiest->__cpu_power,
  2943. (avg_load - this_load) * this->__cpu_power)
  2944. / SCHED_LOAD_SCALE;
  2945. /*
  2946. * if *imbalance is less than the average load per runnable task
  2947. * there is no gaurantee that any tasks will be moved so we'll have
  2948. * a think about bumping its value to force at least one task to be
  2949. * moved
  2950. */
  2951. if (*imbalance < busiest_load_per_task) {
  2952. unsigned long tmp, pwr_now, pwr_move;
  2953. unsigned int imbn;
  2954. small_imbalance:
  2955. pwr_move = pwr_now = 0;
  2956. imbn = 2;
  2957. if (this_nr_running) {
  2958. this_load_per_task /= this_nr_running;
  2959. if (busiest_load_per_task > this_load_per_task)
  2960. imbn = 1;
  2961. } else
  2962. this_load_per_task = SCHED_LOAD_SCALE;
  2963. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2964. busiest_load_per_task * imbn) {
  2965. *imbalance = busiest_load_per_task;
  2966. return busiest;
  2967. }
  2968. /*
  2969. * OK, we don't have enough imbalance to justify moving tasks,
  2970. * however we may be able to increase total CPU power used by
  2971. * moving them.
  2972. */
  2973. pwr_now += busiest->__cpu_power *
  2974. min(busiest_load_per_task, max_load);
  2975. pwr_now += this->__cpu_power *
  2976. min(this_load_per_task, this_load);
  2977. pwr_now /= SCHED_LOAD_SCALE;
  2978. /* Amount of load we'd subtract */
  2979. tmp = sg_div_cpu_power(busiest,
  2980. busiest_load_per_task * SCHED_LOAD_SCALE);
  2981. if (max_load > tmp)
  2982. pwr_move += busiest->__cpu_power *
  2983. min(busiest_load_per_task, max_load - tmp);
  2984. /* Amount of load we'd add */
  2985. if (max_load * busiest->__cpu_power <
  2986. busiest_load_per_task * SCHED_LOAD_SCALE)
  2987. tmp = sg_div_cpu_power(this,
  2988. max_load * busiest->__cpu_power);
  2989. else
  2990. tmp = sg_div_cpu_power(this,
  2991. busiest_load_per_task * SCHED_LOAD_SCALE);
  2992. pwr_move += this->__cpu_power *
  2993. min(this_load_per_task, this_load + tmp);
  2994. pwr_move /= SCHED_LOAD_SCALE;
  2995. /* Move if we gain throughput */
  2996. if (pwr_move > pwr_now)
  2997. *imbalance = busiest_load_per_task;
  2998. }
  2999. return busiest;
  3000. out_balanced:
  3001. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3002. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3003. goto ret;
  3004. if (this == group_leader && group_leader != group_min) {
  3005. *imbalance = min_load_per_task;
  3006. return group_min;
  3007. }
  3008. #endif
  3009. ret:
  3010. *imbalance = 0;
  3011. return NULL;
  3012. }
  3013. /*
  3014. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3015. */
  3016. static struct rq *
  3017. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3018. unsigned long imbalance, const cpumask_t *cpus)
  3019. {
  3020. struct rq *busiest = NULL, *rq;
  3021. unsigned long max_load = 0;
  3022. int i;
  3023. for_each_cpu_mask(i, group->cpumask) {
  3024. unsigned long wl;
  3025. if (!cpu_isset(i, *cpus))
  3026. continue;
  3027. rq = cpu_rq(i);
  3028. wl = weighted_cpuload(i);
  3029. if (rq->nr_running == 1 && wl > imbalance)
  3030. continue;
  3031. if (wl > max_load) {
  3032. max_load = wl;
  3033. busiest = rq;
  3034. }
  3035. }
  3036. return busiest;
  3037. }
  3038. /*
  3039. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3040. * so long as it is large enough.
  3041. */
  3042. #define MAX_PINNED_INTERVAL 512
  3043. /*
  3044. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3045. * tasks if there is an imbalance.
  3046. */
  3047. static int load_balance(int this_cpu, struct rq *this_rq,
  3048. struct sched_domain *sd, enum cpu_idle_type idle,
  3049. int *balance, cpumask_t *cpus)
  3050. {
  3051. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3052. struct sched_group *group;
  3053. unsigned long imbalance;
  3054. struct rq *busiest;
  3055. unsigned long flags;
  3056. int unlock_aggregate;
  3057. cpus_setall(*cpus);
  3058. unlock_aggregate = get_aggregate(sd);
  3059. /*
  3060. * When power savings policy is enabled for the parent domain, idle
  3061. * sibling can pick up load irrespective of busy siblings. In this case,
  3062. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3063. * portraying it as CPU_NOT_IDLE.
  3064. */
  3065. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3066. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3067. sd_idle = 1;
  3068. schedstat_inc(sd, lb_count[idle]);
  3069. redo:
  3070. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3071. cpus, balance);
  3072. if (*balance == 0)
  3073. goto out_balanced;
  3074. if (!group) {
  3075. schedstat_inc(sd, lb_nobusyg[idle]);
  3076. goto out_balanced;
  3077. }
  3078. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3079. if (!busiest) {
  3080. schedstat_inc(sd, lb_nobusyq[idle]);
  3081. goto out_balanced;
  3082. }
  3083. BUG_ON(busiest == this_rq);
  3084. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3085. ld_moved = 0;
  3086. if (busiest->nr_running > 1) {
  3087. /*
  3088. * Attempt to move tasks. If find_busiest_group has found
  3089. * an imbalance but busiest->nr_running <= 1, the group is
  3090. * still unbalanced. ld_moved simply stays zero, so it is
  3091. * correctly treated as an imbalance.
  3092. */
  3093. local_irq_save(flags);
  3094. double_rq_lock(this_rq, busiest);
  3095. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3096. imbalance, sd, idle, &all_pinned);
  3097. double_rq_unlock(this_rq, busiest);
  3098. local_irq_restore(flags);
  3099. /*
  3100. * some other cpu did the load balance for us.
  3101. */
  3102. if (ld_moved && this_cpu != smp_processor_id())
  3103. resched_cpu(this_cpu);
  3104. /* All tasks on this runqueue were pinned by CPU affinity */
  3105. if (unlikely(all_pinned)) {
  3106. cpu_clear(cpu_of(busiest), *cpus);
  3107. if (!cpus_empty(*cpus))
  3108. goto redo;
  3109. goto out_balanced;
  3110. }
  3111. }
  3112. if (!ld_moved) {
  3113. schedstat_inc(sd, lb_failed[idle]);
  3114. sd->nr_balance_failed++;
  3115. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3116. spin_lock_irqsave(&busiest->lock, flags);
  3117. /* don't kick the migration_thread, if the curr
  3118. * task on busiest cpu can't be moved to this_cpu
  3119. */
  3120. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3121. spin_unlock_irqrestore(&busiest->lock, flags);
  3122. all_pinned = 1;
  3123. goto out_one_pinned;
  3124. }
  3125. if (!busiest->active_balance) {
  3126. busiest->active_balance = 1;
  3127. busiest->push_cpu = this_cpu;
  3128. active_balance = 1;
  3129. }
  3130. spin_unlock_irqrestore(&busiest->lock, flags);
  3131. if (active_balance)
  3132. wake_up_process(busiest->migration_thread);
  3133. /*
  3134. * We've kicked active balancing, reset the failure
  3135. * counter.
  3136. */
  3137. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3138. }
  3139. } else
  3140. sd->nr_balance_failed = 0;
  3141. if (likely(!active_balance)) {
  3142. /* We were unbalanced, so reset the balancing interval */
  3143. sd->balance_interval = sd->min_interval;
  3144. } else {
  3145. /*
  3146. * If we've begun active balancing, start to back off. This
  3147. * case may not be covered by the all_pinned logic if there
  3148. * is only 1 task on the busy runqueue (because we don't call
  3149. * move_tasks).
  3150. */
  3151. if (sd->balance_interval < sd->max_interval)
  3152. sd->balance_interval *= 2;
  3153. }
  3154. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3155. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3156. ld_moved = -1;
  3157. goto out;
  3158. out_balanced:
  3159. schedstat_inc(sd, lb_balanced[idle]);
  3160. sd->nr_balance_failed = 0;
  3161. out_one_pinned:
  3162. /* tune up the balancing interval */
  3163. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3164. (sd->balance_interval < sd->max_interval))
  3165. sd->balance_interval *= 2;
  3166. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3167. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3168. ld_moved = -1;
  3169. else
  3170. ld_moved = 0;
  3171. out:
  3172. if (unlock_aggregate)
  3173. put_aggregate(sd);
  3174. return ld_moved;
  3175. }
  3176. /*
  3177. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3178. * tasks if there is an imbalance.
  3179. *
  3180. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3181. * this_rq is locked.
  3182. */
  3183. static int
  3184. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3185. cpumask_t *cpus)
  3186. {
  3187. struct sched_group *group;
  3188. struct rq *busiest = NULL;
  3189. unsigned long imbalance;
  3190. int ld_moved = 0;
  3191. int sd_idle = 0;
  3192. int all_pinned = 0;
  3193. cpus_setall(*cpus);
  3194. /*
  3195. * When power savings policy is enabled for the parent domain, idle
  3196. * sibling can pick up load irrespective of busy siblings. In this case,
  3197. * let the state of idle sibling percolate up as IDLE, instead of
  3198. * portraying it as CPU_NOT_IDLE.
  3199. */
  3200. if (sd->flags & SD_SHARE_CPUPOWER &&
  3201. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3202. sd_idle = 1;
  3203. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3204. redo:
  3205. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3206. &sd_idle, cpus, NULL);
  3207. if (!group) {
  3208. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3209. goto out_balanced;
  3210. }
  3211. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3212. if (!busiest) {
  3213. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3214. goto out_balanced;
  3215. }
  3216. BUG_ON(busiest == this_rq);
  3217. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3218. ld_moved = 0;
  3219. if (busiest->nr_running > 1) {
  3220. /* Attempt to move tasks */
  3221. double_lock_balance(this_rq, busiest);
  3222. /* this_rq->clock is already updated */
  3223. update_rq_clock(busiest);
  3224. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3225. imbalance, sd, CPU_NEWLY_IDLE,
  3226. &all_pinned);
  3227. spin_unlock(&busiest->lock);
  3228. if (unlikely(all_pinned)) {
  3229. cpu_clear(cpu_of(busiest), *cpus);
  3230. if (!cpus_empty(*cpus))
  3231. goto redo;
  3232. }
  3233. }
  3234. if (!ld_moved) {
  3235. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3236. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3237. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3238. return -1;
  3239. } else
  3240. sd->nr_balance_failed = 0;
  3241. return ld_moved;
  3242. out_balanced:
  3243. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3244. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3245. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3246. return -1;
  3247. sd->nr_balance_failed = 0;
  3248. return 0;
  3249. }
  3250. /*
  3251. * idle_balance is called by schedule() if this_cpu is about to become
  3252. * idle. Attempts to pull tasks from other CPUs.
  3253. */
  3254. static void idle_balance(int this_cpu, struct rq *this_rq)
  3255. {
  3256. struct sched_domain *sd;
  3257. int pulled_task = -1;
  3258. unsigned long next_balance = jiffies + HZ;
  3259. cpumask_t tmpmask;
  3260. for_each_domain(this_cpu, sd) {
  3261. unsigned long interval;
  3262. if (!(sd->flags & SD_LOAD_BALANCE))
  3263. continue;
  3264. if (sd->flags & SD_BALANCE_NEWIDLE)
  3265. /* If we've pulled tasks over stop searching: */
  3266. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3267. sd, &tmpmask);
  3268. interval = msecs_to_jiffies(sd->balance_interval);
  3269. if (time_after(next_balance, sd->last_balance + interval))
  3270. next_balance = sd->last_balance + interval;
  3271. if (pulled_task)
  3272. break;
  3273. }
  3274. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3275. /*
  3276. * We are going idle. next_balance may be set based on
  3277. * a busy processor. So reset next_balance.
  3278. */
  3279. this_rq->next_balance = next_balance;
  3280. }
  3281. }
  3282. /*
  3283. * active_load_balance is run by migration threads. It pushes running tasks
  3284. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3285. * running on each physical CPU where possible, and avoids physical /
  3286. * logical imbalances.
  3287. *
  3288. * Called with busiest_rq locked.
  3289. */
  3290. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3291. {
  3292. int target_cpu = busiest_rq->push_cpu;
  3293. struct sched_domain *sd;
  3294. struct rq *target_rq;
  3295. /* Is there any task to move? */
  3296. if (busiest_rq->nr_running <= 1)
  3297. return;
  3298. target_rq = cpu_rq(target_cpu);
  3299. /*
  3300. * This condition is "impossible", if it occurs
  3301. * we need to fix it. Originally reported by
  3302. * Bjorn Helgaas on a 128-cpu setup.
  3303. */
  3304. BUG_ON(busiest_rq == target_rq);
  3305. /* move a task from busiest_rq to target_rq */
  3306. double_lock_balance(busiest_rq, target_rq);
  3307. update_rq_clock(busiest_rq);
  3308. update_rq_clock(target_rq);
  3309. /* Search for an sd spanning us and the target CPU. */
  3310. for_each_domain(target_cpu, sd) {
  3311. if ((sd->flags & SD_LOAD_BALANCE) &&
  3312. cpu_isset(busiest_cpu, sd->span))
  3313. break;
  3314. }
  3315. if (likely(sd)) {
  3316. schedstat_inc(sd, alb_count);
  3317. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3318. sd, CPU_IDLE))
  3319. schedstat_inc(sd, alb_pushed);
  3320. else
  3321. schedstat_inc(sd, alb_failed);
  3322. }
  3323. spin_unlock(&target_rq->lock);
  3324. }
  3325. #ifdef CONFIG_NO_HZ
  3326. static struct {
  3327. atomic_t load_balancer;
  3328. cpumask_t cpu_mask;
  3329. } nohz ____cacheline_aligned = {
  3330. .load_balancer = ATOMIC_INIT(-1),
  3331. .cpu_mask = CPU_MASK_NONE,
  3332. };
  3333. /*
  3334. * This routine will try to nominate the ilb (idle load balancing)
  3335. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3336. * load balancing on behalf of all those cpus. If all the cpus in the system
  3337. * go into this tickless mode, then there will be no ilb owner (as there is
  3338. * no need for one) and all the cpus will sleep till the next wakeup event
  3339. * arrives...
  3340. *
  3341. * For the ilb owner, tick is not stopped. And this tick will be used
  3342. * for idle load balancing. ilb owner will still be part of
  3343. * nohz.cpu_mask..
  3344. *
  3345. * While stopping the tick, this cpu will become the ilb owner if there
  3346. * is no other owner. And will be the owner till that cpu becomes busy
  3347. * or if all cpus in the system stop their ticks at which point
  3348. * there is no need for ilb owner.
  3349. *
  3350. * When the ilb owner becomes busy, it nominates another owner, during the
  3351. * next busy scheduler_tick()
  3352. */
  3353. int select_nohz_load_balancer(int stop_tick)
  3354. {
  3355. int cpu = smp_processor_id();
  3356. if (stop_tick) {
  3357. cpu_set(cpu, nohz.cpu_mask);
  3358. cpu_rq(cpu)->in_nohz_recently = 1;
  3359. /*
  3360. * If we are going offline and still the leader, give up!
  3361. */
  3362. if (cpu_is_offline(cpu) &&
  3363. atomic_read(&nohz.load_balancer) == cpu) {
  3364. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3365. BUG();
  3366. return 0;
  3367. }
  3368. /* time for ilb owner also to sleep */
  3369. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3370. if (atomic_read(&nohz.load_balancer) == cpu)
  3371. atomic_set(&nohz.load_balancer, -1);
  3372. return 0;
  3373. }
  3374. if (atomic_read(&nohz.load_balancer) == -1) {
  3375. /* make me the ilb owner */
  3376. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3377. return 1;
  3378. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3379. return 1;
  3380. } else {
  3381. if (!cpu_isset(cpu, nohz.cpu_mask))
  3382. return 0;
  3383. cpu_clear(cpu, nohz.cpu_mask);
  3384. if (atomic_read(&nohz.load_balancer) == cpu)
  3385. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3386. BUG();
  3387. }
  3388. return 0;
  3389. }
  3390. #endif
  3391. static DEFINE_SPINLOCK(balancing);
  3392. /*
  3393. * It checks each scheduling domain to see if it is due to be balanced,
  3394. * and initiates a balancing operation if so.
  3395. *
  3396. * Balancing parameters are set up in arch_init_sched_domains.
  3397. */
  3398. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3399. {
  3400. int balance = 1;
  3401. struct rq *rq = cpu_rq(cpu);
  3402. unsigned long interval;
  3403. struct sched_domain *sd;
  3404. /* Earliest time when we have to do rebalance again */
  3405. unsigned long next_balance = jiffies + 60*HZ;
  3406. int update_next_balance = 0;
  3407. cpumask_t tmp;
  3408. for_each_domain(cpu, sd) {
  3409. if (!(sd->flags & SD_LOAD_BALANCE))
  3410. continue;
  3411. interval = sd->balance_interval;
  3412. if (idle != CPU_IDLE)
  3413. interval *= sd->busy_factor;
  3414. /* scale ms to jiffies */
  3415. interval = msecs_to_jiffies(interval);
  3416. if (unlikely(!interval))
  3417. interval = 1;
  3418. if (interval > HZ*NR_CPUS/10)
  3419. interval = HZ*NR_CPUS/10;
  3420. if (sd->flags & SD_SERIALIZE) {
  3421. if (!spin_trylock(&balancing))
  3422. goto out;
  3423. }
  3424. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3425. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3426. /*
  3427. * We've pulled tasks over so either we're no
  3428. * longer idle, or one of our SMT siblings is
  3429. * not idle.
  3430. */
  3431. idle = CPU_NOT_IDLE;
  3432. }
  3433. sd->last_balance = jiffies;
  3434. }
  3435. if (sd->flags & SD_SERIALIZE)
  3436. spin_unlock(&balancing);
  3437. out:
  3438. if (time_after(next_balance, sd->last_balance + interval)) {
  3439. next_balance = sd->last_balance + interval;
  3440. update_next_balance = 1;
  3441. }
  3442. /*
  3443. * Stop the load balance at this level. There is another
  3444. * CPU in our sched group which is doing load balancing more
  3445. * actively.
  3446. */
  3447. if (!balance)
  3448. break;
  3449. }
  3450. /*
  3451. * next_balance will be updated only when there is a need.
  3452. * When the cpu is attached to null domain for ex, it will not be
  3453. * updated.
  3454. */
  3455. if (likely(update_next_balance))
  3456. rq->next_balance = next_balance;
  3457. }
  3458. /*
  3459. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3460. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3461. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3462. */
  3463. static void run_rebalance_domains(struct softirq_action *h)
  3464. {
  3465. int this_cpu = smp_processor_id();
  3466. struct rq *this_rq = cpu_rq(this_cpu);
  3467. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3468. CPU_IDLE : CPU_NOT_IDLE;
  3469. rebalance_domains(this_cpu, idle);
  3470. #ifdef CONFIG_NO_HZ
  3471. /*
  3472. * If this cpu is the owner for idle load balancing, then do the
  3473. * balancing on behalf of the other idle cpus whose ticks are
  3474. * stopped.
  3475. */
  3476. if (this_rq->idle_at_tick &&
  3477. atomic_read(&nohz.load_balancer) == this_cpu) {
  3478. cpumask_t cpus = nohz.cpu_mask;
  3479. struct rq *rq;
  3480. int balance_cpu;
  3481. cpu_clear(this_cpu, cpus);
  3482. for_each_cpu_mask(balance_cpu, cpus) {
  3483. /*
  3484. * If this cpu gets work to do, stop the load balancing
  3485. * work being done for other cpus. Next load
  3486. * balancing owner will pick it up.
  3487. */
  3488. if (need_resched())
  3489. break;
  3490. rebalance_domains(balance_cpu, CPU_IDLE);
  3491. rq = cpu_rq(balance_cpu);
  3492. if (time_after(this_rq->next_balance, rq->next_balance))
  3493. this_rq->next_balance = rq->next_balance;
  3494. }
  3495. }
  3496. #endif
  3497. }
  3498. /*
  3499. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3500. *
  3501. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3502. * idle load balancing owner or decide to stop the periodic load balancing,
  3503. * if the whole system is idle.
  3504. */
  3505. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3506. {
  3507. #ifdef CONFIG_NO_HZ
  3508. /*
  3509. * If we were in the nohz mode recently and busy at the current
  3510. * scheduler tick, then check if we need to nominate new idle
  3511. * load balancer.
  3512. */
  3513. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3514. rq->in_nohz_recently = 0;
  3515. if (atomic_read(&nohz.load_balancer) == cpu) {
  3516. cpu_clear(cpu, nohz.cpu_mask);
  3517. atomic_set(&nohz.load_balancer, -1);
  3518. }
  3519. if (atomic_read(&nohz.load_balancer) == -1) {
  3520. /*
  3521. * simple selection for now: Nominate the
  3522. * first cpu in the nohz list to be the next
  3523. * ilb owner.
  3524. *
  3525. * TBD: Traverse the sched domains and nominate
  3526. * the nearest cpu in the nohz.cpu_mask.
  3527. */
  3528. int ilb = first_cpu(nohz.cpu_mask);
  3529. if (ilb < nr_cpu_ids)
  3530. resched_cpu(ilb);
  3531. }
  3532. }
  3533. /*
  3534. * If this cpu is idle and doing idle load balancing for all the
  3535. * cpus with ticks stopped, is it time for that to stop?
  3536. */
  3537. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3538. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3539. resched_cpu(cpu);
  3540. return;
  3541. }
  3542. /*
  3543. * If this cpu is idle and the idle load balancing is done by
  3544. * someone else, then no need raise the SCHED_SOFTIRQ
  3545. */
  3546. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3547. cpu_isset(cpu, nohz.cpu_mask))
  3548. return;
  3549. #endif
  3550. if (time_after_eq(jiffies, rq->next_balance))
  3551. raise_softirq(SCHED_SOFTIRQ);
  3552. }
  3553. #else /* CONFIG_SMP */
  3554. /*
  3555. * on UP we do not need to balance between CPUs:
  3556. */
  3557. static inline void idle_balance(int cpu, struct rq *rq)
  3558. {
  3559. }
  3560. #endif
  3561. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3562. EXPORT_PER_CPU_SYMBOL(kstat);
  3563. /*
  3564. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3565. * that have not yet been banked in case the task is currently running.
  3566. */
  3567. unsigned long long task_sched_runtime(struct task_struct *p)
  3568. {
  3569. unsigned long flags;
  3570. u64 ns, delta_exec;
  3571. struct rq *rq;
  3572. rq = task_rq_lock(p, &flags);
  3573. ns = p->se.sum_exec_runtime;
  3574. if (task_current(rq, p)) {
  3575. update_rq_clock(rq);
  3576. delta_exec = rq->clock - p->se.exec_start;
  3577. if ((s64)delta_exec > 0)
  3578. ns += delta_exec;
  3579. }
  3580. task_rq_unlock(rq, &flags);
  3581. return ns;
  3582. }
  3583. /*
  3584. * Account user cpu time to a process.
  3585. * @p: the process that the cpu time gets accounted to
  3586. * @cputime: the cpu time spent in user space since the last update
  3587. */
  3588. void account_user_time(struct task_struct *p, cputime_t cputime)
  3589. {
  3590. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3591. cputime64_t tmp;
  3592. p->utime = cputime_add(p->utime, cputime);
  3593. /* Add user time to cpustat. */
  3594. tmp = cputime_to_cputime64(cputime);
  3595. if (TASK_NICE(p) > 0)
  3596. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3597. else
  3598. cpustat->user = cputime64_add(cpustat->user, tmp);
  3599. }
  3600. /*
  3601. * Account guest cpu time to a process.
  3602. * @p: the process that the cpu time gets accounted to
  3603. * @cputime: the cpu time spent in virtual machine since the last update
  3604. */
  3605. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3606. {
  3607. cputime64_t tmp;
  3608. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3609. tmp = cputime_to_cputime64(cputime);
  3610. p->utime = cputime_add(p->utime, cputime);
  3611. p->gtime = cputime_add(p->gtime, cputime);
  3612. cpustat->user = cputime64_add(cpustat->user, tmp);
  3613. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3614. }
  3615. /*
  3616. * Account scaled user cpu time to a process.
  3617. * @p: the process that the cpu time gets accounted to
  3618. * @cputime: the cpu time spent in user space since the last update
  3619. */
  3620. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3621. {
  3622. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3623. }
  3624. /*
  3625. * Account system cpu time to a process.
  3626. * @p: the process that the cpu time gets accounted to
  3627. * @hardirq_offset: the offset to subtract from hardirq_count()
  3628. * @cputime: the cpu time spent in kernel space since the last update
  3629. */
  3630. void account_system_time(struct task_struct *p, int hardirq_offset,
  3631. cputime_t cputime)
  3632. {
  3633. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3634. struct rq *rq = this_rq();
  3635. cputime64_t tmp;
  3636. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3637. account_guest_time(p, cputime);
  3638. return;
  3639. }
  3640. p->stime = cputime_add(p->stime, cputime);
  3641. /* Add system time to cpustat. */
  3642. tmp = cputime_to_cputime64(cputime);
  3643. if (hardirq_count() - hardirq_offset)
  3644. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3645. else if (softirq_count())
  3646. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3647. else if (p != rq->idle)
  3648. cpustat->system = cputime64_add(cpustat->system, tmp);
  3649. else if (atomic_read(&rq->nr_iowait) > 0)
  3650. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3651. else
  3652. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3653. /* Account for system time used */
  3654. acct_update_integrals(p);
  3655. }
  3656. /*
  3657. * Account scaled system cpu time to a process.
  3658. * @p: the process that the cpu time gets accounted to
  3659. * @hardirq_offset: the offset to subtract from hardirq_count()
  3660. * @cputime: the cpu time spent in kernel space since the last update
  3661. */
  3662. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3663. {
  3664. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3665. }
  3666. /*
  3667. * Account for involuntary wait time.
  3668. * @p: the process from which the cpu time has been stolen
  3669. * @steal: the cpu time spent in involuntary wait
  3670. */
  3671. void account_steal_time(struct task_struct *p, cputime_t steal)
  3672. {
  3673. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3674. cputime64_t tmp = cputime_to_cputime64(steal);
  3675. struct rq *rq = this_rq();
  3676. if (p == rq->idle) {
  3677. p->stime = cputime_add(p->stime, steal);
  3678. if (atomic_read(&rq->nr_iowait) > 0)
  3679. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3680. else
  3681. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3682. } else
  3683. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3684. }
  3685. /*
  3686. * This function gets called by the timer code, with HZ frequency.
  3687. * We call it with interrupts disabled.
  3688. *
  3689. * It also gets called by the fork code, when changing the parent's
  3690. * timeslices.
  3691. */
  3692. void scheduler_tick(void)
  3693. {
  3694. int cpu = smp_processor_id();
  3695. struct rq *rq = cpu_rq(cpu);
  3696. struct task_struct *curr = rq->curr;
  3697. sched_clock_tick();
  3698. spin_lock(&rq->lock);
  3699. update_rq_clock(rq);
  3700. update_cpu_load(rq);
  3701. curr->sched_class->task_tick(rq, curr, 0);
  3702. spin_unlock(&rq->lock);
  3703. #ifdef CONFIG_SMP
  3704. rq->idle_at_tick = idle_cpu(cpu);
  3705. trigger_load_balance(rq, cpu);
  3706. #endif
  3707. }
  3708. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3709. void __kprobes add_preempt_count(int val)
  3710. {
  3711. /*
  3712. * Underflow?
  3713. */
  3714. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3715. return;
  3716. preempt_count() += val;
  3717. /*
  3718. * Spinlock count overflowing soon?
  3719. */
  3720. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3721. PREEMPT_MASK - 10);
  3722. }
  3723. EXPORT_SYMBOL(add_preempt_count);
  3724. void __kprobes sub_preempt_count(int val)
  3725. {
  3726. /*
  3727. * Underflow?
  3728. */
  3729. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3730. return;
  3731. /*
  3732. * Is the spinlock portion underflowing?
  3733. */
  3734. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3735. !(preempt_count() & PREEMPT_MASK)))
  3736. return;
  3737. preempt_count() -= val;
  3738. }
  3739. EXPORT_SYMBOL(sub_preempt_count);
  3740. #endif
  3741. /*
  3742. * Print scheduling while atomic bug:
  3743. */
  3744. static noinline void __schedule_bug(struct task_struct *prev)
  3745. {
  3746. struct pt_regs *regs = get_irq_regs();
  3747. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3748. prev->comm, prev->pid, preempt_count());
  3749. debug_show_held_locks(prev);
  3750. if (irqs_disabled())
  3751. print_irqtrace_events(prev);
  3752. if (regs)
  3753. show_regs(regs);
  3754. else
  3755. dump_stack();
  3756. }
  3757. /*
  3758. * Various schedule()-time debugging checks and statistics:
  3759. */
  3760. static inline void schedule_debug(struct task_struct *prev)
  3761. {
  3762. /*
  3763. * Test if we are atomic. Since do_exit() needs to call into
  3764. * schedule() atomically, we ignore that path for now.
  3765. * Otherwise, whine if we are scheduling when we should not be.
  3766. */
  3767. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  3768. __schedule_bug(prev);
  3769. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3770. schedstat_inc(this_rq(), sched_count);
  3771. #ifdef CONFIG_SCHEDSTATS
  3772. if (unlikely(prev->lock_depth >= 0)) {
  3773. schedstat_inc(this_rq(), bkl_count);
  3774. schedstat_inc(prev, sched_info.bkl_count);
  3775. }
  3776. #endif
  3777. }
  3778. /*
  3779. * Pick up the highest-prio task:
  3780. */
  3781. static inline struct task_struct *
  3782. pick_next_task(struct rq *rq, struct task_struct *prev)
  3783. {
  3784. const struct sched_class *class;
  3785. struct task_struct *p;
  3786. /*
  3787. * Optimization: we know that if all tasks are in
  3788. * the fair class we can call that function directly:
  3789. */
  3790. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3791. p = fair_sched_class.pick_next_task(rq);
  3792. if (likely(p))
  3793. return p;
  3794. }
  3795. class = sched_class_highest;
  3796. for ( ; ; ) {
  3797. p = class->pick_next_task(rq);
  3798. if (p)
  3799. return p;
  3800. /*
  3801. * Will never be NULL as the idle class always
  3802. * returns a non-NULL p:
  3803. */
  3804. class = class->next;
  3805. }
  3806. }
  3807. /*
  3808. * schedule() is the main scheduler function.
  3809. */
  3810. asmlinkage void __sched schedule(void)
  3811. {
  3812. struct task_struct *prev, *next;
  3813. unsigned long *switch_count;
  3814. struct rq *rq;
  3815. int cpu;
  3816. need_resched:
  3817. preempt_disable();
  3818. cpu = smp_processor_id();
  3819. rq = cpu_rq(cpu);
  3820. rcu_qsctr_inc(cpu);
  3821. prev = rq->curr;
  3822. switch_count = &prev->nivcsw;
  3823. release_kernel_lock(prev);
  3824. need_resched_nonpreemptible:
  3825. schedule_debug(prev);
  3826. hrtick_clear(rq);
  3827. /*
  3828. * Do the rq-clock update outside the rq lock:
  3829. */
  3830. local_irq_disable();
  3831. update_rq_clock(rq);
  3832. spin_lock(&rq->lock);
  3833. clear_tsk_need_resched(prev);
  3834. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3835. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  3836. signal_pending(prev))) {
  3837. prev->state = TASK_RUNNING;
  3838. } else {
  3839. deactivate_task(rq, prev, 1);
  3840. }
  3841. switch_count = &prev->nvcsw;
  3842. }
  3843. #ifdef CONFIG_SMP
  3844. if (prev->sched_class->pre_schedule)
  3845. prev->sched_class->pre_schedule(rq, prev);
  3846. #endif
  3847. if (unlikely(!rq->nr_running))
  3848. idle_balance(cpu, rq);
  3849. prev->sched_class->put_prev_task(rq, prev);
  3850. next = pick_next_task(rq, prev);
  3851. if (likely(prev != next)) {
  3852. sched_info_switch(prev, next);
  3853. rq->nr_switches++;
  3854. rq->curr = next;
  3855. ++*switch_count;
  3856. context_switch(rq, prev, next); /* unlocks the rq */
  3857. /*
  3858. * the context switch might have flipped the stack from under
  3859. * us, hence refresh the local variables.
  3860. */
  3861. cpu = smp_processor_id();
  3862. rq = cpu_rq(cpu);
  3863. } else
  3864. spin_unlock_irq(&rq->lock);
  3865. hrtick_set(rq);
  3866. if (unlikely(reacquire_kernel_lock(current) < 0))
  3867. goto need_resched_nonpreemptible;
  3868. preempt_enable_no_resched();
  3869. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3870. goto need_resched;
  3871. }
  3872. EXPORT_SYMBOL(schedule);
  3873. #ifdef CONFIG_PREEMPT
  3874. /*
  3875. * this is the entry point to schedule() from in-kernel preemption
  3876. * off of preempt_enable. Kernel preemptions off return from interrupt
  3877. * occur there and call schedule directly.
  3878. */
  3879. asmlinkage void __sched preempt_schedule(void)
  3880. {
  3881. struct thread_info *ti = current_thread_info();
  3882. /*
  3883. * If there is a non-zero preempt_count or interrupts are disabled,
  3884. * we do not want to preempt the current task. Just return..
  3885. */
  3886. if (likely(ti->preempt_count || irqs_disabled()))
  3887. return;
  3888. do {
  3889. add_preempt_count(PREEMPT_ACTIVE);
  3890. schedule();
  3891. sub_preempt_count(PREEMPT_ACTIVE);
  3892. /*
  3893. * Check again in case we missed a preemption opportunity
  3894. * between schedule and now.
  3895. */
  3896. barrier();
  3897. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3898. }
  3899. EXPORT_SYMBOL(preempt_schedule);
  3900. /*
  3901. * this is the entry point to schedule() from kernel preemption
  3902. * off of irq context.
  3903. * Note, that this is called and return with irqs disabled. This will
  3904. * protect us against recursive calling from irq.
  3905. */
  3906. asmlinkage void __sched preempt_schedule_irq(void)
  3907. {
  3908. struct thread_info *ti = current_thread_info();
  3909. /* Catch callers which need to be fixed */
  3910. BUG_ON(ti->preempt_count || !irqs_disabled());
  3911. do {
  3912. add_preempt_count(PREEMPT_ACTIVE);
  3913. local_irq_enable();
  3914. schedule();
  3915. local_irq_disable();
  3916. sub_preempt_count(PREEMPT_ACTIVE);
  3917. /*
  3918. * Check again in case we missed a preemption opportunity
  3919. * between schedule and now.
  3920. */
  3921. barrier();
  3922. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3923. }
  3924. #endif /* CONFIG_PREEMPT */
  3925. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3926. void *key)
  3927. {
  3928. return try_to_wake_up(curr->private, mode, sync);
  3929. }
  3930. EXPORT_SYMBOL(default_wake_function);
  3931. /*
  3932. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3933. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3934. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3935. *
  3936. * There are circumstances in which we can try to wake a task which has already
  3937. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3938. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3939. */
  3940. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3941. int nr_exclusive, int sync, void *key)
  3942. {
  3943. wait_queue_t *curr, *next;
  3944. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3945. unsigned flags = curr->flags;
  3946. if (curr->func(curr, mode, sync, key) &&
  3947. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3948. break;
  3949. }
  3950. }
  3951. /**
  3952. * __wake_up - wake up threads blocked on a waitqueue.
  3953. * @q: the waitqueue
  3954. * @mode: which threads
  3955. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3956. * @key: is directly passed to the wakeup function
  3957. */
  3958. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3959. int nr_exclusive, void *key)
  3960. {
  3961. unsigned long flags;
  3962. spin_lock_irqsave(&q->lock, flags);
  3963. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3964. spin_unlock_irqrestore(&q->lock, flags);
  3965. }
  3966. EXPORT_SYMBOL(__wake_up);
  3967. /*
  3968. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3969. */
  3970. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3971. {
  3972. __wake_up_common(q, mode, 1, 0, NULL);
  3973. }
  3974. /**
  3975. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3976. * @q: the waitqueue
  3977. * @mode: which threads
  3978. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3979. *
  3980. * The sync wakeup differs that the waker knows that it will schedule
  3981. * away soon, so while the target thread will be woken up, it will not
  3982. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3983. * with each other. This can prevent needless bouncing between CPUs.
  3984. *
  3985. * On UP it can prevent extra preemption.
  3986. */
  3987. void
  3988. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3989. {
  3990. unsigned long flags;
  3991. int sync = 1;
  3992. if (unlikely(!q))
  3993. return;
  3994. if (unlikely(!nr_exclusive))
  3995. sync = 0;
  3996. spin_lock_irqsave(&q->lock, flags);
  3997. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3998. spin_unlock_irqrestore(&q->lock, flags);
  3999. }
  4000. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4001. void complete(struct completion *x)
  4002. {
  4003. unsigned long flags;
  4004. spin_lock_irqsave(&x->wait.lock, flags);
  4005. x->done++;
  4006. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4007. spin_unlock_irqrestore(&x->wait.lock, flags);
  4008. }
  4009. EXPORT_SYMBOL(complete);
  4010. void complete_all(struct completion *x)
  4011. {
  4012. unsigned long flags;
  4013. spin_lock_irqsave(&x->wait.lock, flags);
  4014. x->done += UINT_MAX/2;
  4015. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4016. spin_unlock_irqrestore(&x->wait.lock, flags);
  4017. }
  4018. EXPORT_SYMBOL(complete_all);
  4019. static inline long __sched
  4020. do_wait_for_common(struct completion *x, long timeout, int state)
  4021. {
  4022. if (!x->done) {
  4023. DECLARE_WAITQUEUE(wait, current);
  4024. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4025. __add_wait_queue_tail(&x->wait, &wait);
  4026. do {
  4027. if ((state == TASK_INTERRUPTIBLE &&
  4028. signal_pending(current)) ||
  4029. (state == TASK_KILLABLE &&
  4030. fatal_signal_pending(current))) {
  4031. __remove_wait_queue(&x->wait, &wait);
  4032. return -ERESTARTSYS;
  4033. }
  4034. __set_current_state(state);
  4035. spin_unlock_irq(&x->wait.lock);
  4036. timeout = schedule_timeout(timeout);
  4037. spin_lock_irq(&x->wait.lock);
  4038. if (!timeout) {
  4039. __remove_wait_queue(&x->wait, &wait);
  4040. return timeout;
  4041. }
  4042. } while (!x->done);
  4043. __remove_wait_queue(&x->wait, &wait);
  4044. }
  4045. x->done--;
  4046. return timeout;
  4047. }
  4048. static long __sched
  4049. wait_for_common(struct completion *x, long timeout, int state)
  4050. {
  4051. might_sleep();
  4052. spin_lock_irq(&x->wait.lock);
  4053. timeout = do_wait_for_common(x, timeout, state);
  4054. spin_unlock_irq(&x->wait.lock);
  4055. return timeout;
  4056. }
  4057. void __sched wait_for_completion(struct completion *x)
  4058. {
  4059. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4060. }
  4061. EXPORT_SYMBOL(wait_for_completion);
  4062. unsigned long __sched
  4063. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4064. {
  4065. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4066. }
  4067. EXPORT_SYMBOL(wait_for_completion_timeout);
  4068. int __sched wait_for_completion_interruptible(struct completion *x)
  4069. {
  4070. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4071. if (t == -ERESTARTSYS)
  4072. return t;
  4073. return 0;
  4074. }
  4075. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4076. unsigned long __sched
  4077. wait_for_completion_interruptible_timeout(struct completion *x,
  4078. unsigned long timeout)
  4079. {
  4080. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4081. }
  4082. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4083. int __sched wait_for_completion_killable(struct completion *x)
  4084. {
  4085. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4086. if (t == -ERESTARTSYS)
  4087. return t;
  4088. return 0;
  4089. }
  4090. EXPORT_SYMBOL(wait_for_completion_killable);
  4091. static long __sched
  4092. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4093. {
  4094. unsigned long flags;
  4095. wait_queue_t wait;
  4096. init_waitqueue_entry(&wait, current);
  4097. __set_current_state(state);
  4098. spin_lock_irqsave(&q->lock, flags);
  4099. __add_wait_queue(q, &wait);
  4100. spin_unlock(&q->lock);
  4101. timeout = schedule_timeout(timeout);
  4102. spin_lock_irq(&q->lock);
  4103. __remove_wait_queue(q, &wait);
  4104. spin_unlock_irqrestore(&q->lock, flags);
  4105. return timeout;
  4106. }
  4107. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4108. {
  4109. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4110. }
  4111. EXPORT_SYMBOL(interruptible_sleep_on);
  4112. long __sched
  4113. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4114. {
  4115. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4116. }
  4117. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4118. void __sched sleep_on(wait_queue_head_t *q)
  4119. {
  4120. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4121. }
  4122. EXPORT_SYMBOL(sleep_on);
  4123. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4124. {
  4125. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4126. }
  4127. EXPORT_SYMBOL(sleep_on_timeout);
  4128. #ifdef CONFIG_RT_MUTEXES
  4129. /*
  4130. * rt_mutex_setprio - set the current priority of a task
  4131. * @p: task
  4132. * @prio: prio value (kernel-internal form)
  4133. *
  4134. * This function changes the 'effective' priority of a task. It does
  4135. * not touch ->normal_prio like __setscheduler().
  4136. *
  4137. * Used by the rt_mutex code to implement priority inheritance logic.
  4138. */
  4139. void rt_mutex_setprio(struct task_struct *p, int prio)
  4140. {
  4141. unsigned long flags;
  4142. int oldprio, on_rq, running;
  4143. struct rq *rq;
  4144. const struct sched_class *prev_class = p->sched_class;
  4145. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4146. rq = task_rq_lock(p, &flags);
  4147. update_rq_clock(rq);
  4148. oldprio = p->prio;
  4149. on_rq = p->se.on_rq;
  4150. running = task_current(rq, p);
  4151. if (on_rq)
  4152. dequeue_task(rq, p, 0);
  4153. if (running)
  4154. p->sched_class->put_prev_task(rq, p);
  4155. if (rt_prio(prio))
  4156. p->sched_class = &rt_sched_class;
  4157. else
  4158. p->sched_class = &fair_sched_class;
  4159. p->prio = prio;
  4160. if (running)
  4161. p->sched_class->set_curr_task(rq);
  4162. if (on_rq) {
  4163. enqueue_task(rq, p, 0);
  4164. check_class_changed(rq, p, prev_class, oldprio, running);
  4165. }
  4166. task_rq_unlock(rq, &flags);
  4167. }
  4168. #endif
  4169. void set_user_nice(struct task_struct *p, long nice)
  4170. {
  4171. int old_prio, delta, on_rq;
  4172. unsigned long flags;
  4173. struct rq *rq;
  4174. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4175. return;
  4176. /*
  4177. * We have to be careful, if called from sys_setpriority(),
  4178. * the task might be in the middle of scheduling on another CPU.
  4179. */
  4180. rq = task_rq_lock(p, &flags);
  4181. update_rq_clock(rq);
  4182. /*
  4183. * The RT priorities are set via sched_setscheduler(), but we still
  4184. * allow the 'normal' nice value to be set - but as expected
  4185. * it wont have any effect on scheduling until the task is
  4186. * SCHED_FIFO/SCHED_RR:
  4187. */
  4188. if (task_has_rt_policy(p)) {
  4189. p->static_prio = NICE_TO_PRIO(nice);
  4190. goto out_unlock;
  4191. }
  4192. on_rq = p->se.on_rq;
  4193. if (on_rq)
  4194. dequeue_task(rq, p, 0);
  4195. p->static_prio = NICE_TO_PRIO(nice);
  4196. set_load_weight(p);
  4197. old_prio = p->prio;
  4198. p->prio = effective_prio(p);
  4199. delta = p->prio - old_prio;
  4200. if (on_rq) {
  4201. enqueue_task(rq, p, 0);
  4202. /*
  4203. * If the task increased its priority or is running and
  4204. * lowered its priority, then reschedule its CPU:
  4205. */
  4206. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4207. resched_task(rq->curr);
  4208. }
  4209. out_unlock:
  4210. task_rq_unlock(rq, &flags);
  4211. }
  4212. EXPORT_SYMBOL(set_user_nice);
  4213. /*
  4214. * can_nice - check if a task can reduce its nice value
  4215. * @p: task
  4216. * @nice: nice value
  4217. */
  4218. int can_nice(const struct task_struct *p, const int nice)
  4219. {
  4220. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4221. int nice_rlim = 20 - nice;
  4222. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4223. capable(CAP_SYS_NICE));
  4224. }
  4225. #ifdef __ARCH_WANT_SYS_NICE
  4226. /*
  4227. * sys_nice - change the priority of the current process.
  4228. * @increment: priority increment
  4229. *
  4230. * sys_setpriority is a more generic, but much slower function that
  4231. * does similar things.
  4232. */
  4233. asmlinkage long sys_nice(int increment)
  4234. {
  4235. long nice, retval;
  4236. /*
  4237. * Setpriority might change our priority at the same moment.
  4238. * We don't have to worry. Conceptually one call occurs first
  4239. * and we have a single winner.
  4240. */
  4241. if (increment < -40)
  4242. increment = -40;
  4243. if (increment > 40)
  4244. increment = 40;
  4245. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4246. if (nice < -20)
  4247. nice = -20;
  4248. if (nice > 19)
  4249. nice = 19;
  4250. if (increment < 0 && !can_nice(current, nice))
  4251. return -EPERM;
  4252. retval = security_task_setnice(current, nice);
  4253. if (retval)
  4254. return retval;
  4255. set_user_nice(current, nice);
  4256. return 0;
  4257. }
  4258. #endif
  4259. /**
  4260. * task_prio - return the priority value of a given task.
  4261. * @p: the task in question.
  4262. *
  4263. * This is the priority value as seen by users in /proc.
  4264. * RT tasks are offset by -200. Normal tasks are centered
  4265. * around 0, value goes from -16 to +15.
  4266. */
  4267. int task_prio(const struct task_struct *p)
  4268. {
  4269. return p->prio - MAX_RT_PRIO;
  4270. }
  4271. /**
  4272. * task_nice - return the nice value of a given task.
  4273. * @p: the task in question.
  4274. */
  4275. int task_nice(const struct task_struct *p)
  4276. {
  4277. return TASK_NICE(p);
  4278. }
  4279. EXPORT_SYMBOL(task_nice);
  4280. /**
  4281. * idle_cpu - is a given cpu idle currently?
  4282. * @cpu: the processor in question.
  4283. */
  4284. int idle_cpu(int cpu)
  4285. {
  4286. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4287. }
  4288. /**
  4289. * idle_task - return the idle task for a given cpu.
  4290. * @cpu: the processor in question.
  4291. */
  4292. struct task_struct *idle_task(int cpu)
  4293. {
  4294. return cpu_rq(cpu)->idle;
  4295. }
  4296. /**
  4297. * find_process_by_pid - find a process with a matching PID value.
  4298. * @pid: the pid in question.
  4299. */
  4300. static struct task_struct *find_process_by_pid(pid_t pid)
  4301. {
  4302. return pid ? find_task_by_vpid(pid) : current;
  4303. }
  4304. /* Actually do priority change: must hold rq lock. */
  4305. static void
  4306. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4307. {
  4308. BUG_ON(p->se.on_rq);
  4309. p->policy = policy;
  4310. switch (p->policy) {
  4311. case SCHED_NORMAL:
  4312. case SCHED_BATCH:
  4313. case SCHED_IDLE:
  4314. p->sched_class = &fair_sched_class;
  4315. break;
  4316. case SCHED_FIFO:
  4317. case SCHED_RR:
  4318. p->sched_class = &rt_sched_class;
  4319. break;
  4320. }
  4321. p->rt_priority = prio;
  4322. p->normal_prio = normal_prio(p);
  4323. /* we are holding p->pi_lock already */
  4324. p->prio = rt_mutex_getprio(p);
  4325. set_load_weight(p);
  4326. }
  4327. /**
  4328. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4329. * @p: the task in question.
  4330. * @policy: new policy.
  4331. * @param: structure containing the new RT priority.
  4332. *
  4333. * NOTE that the task may be already dead.
  4334. */
  4335. int sched_setscheduler(struct task_struct *p, int policy,
  4336. struct sched_param *param)
  4337. {
  4338. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4339. unsigned long flags;
  4340. const struct sched_class *prev_class = p->sched_class;
  4341. struct rq *rq;
  4342. /* may grab non-irq protected spin_locks */
  4343. BUG_ON(in_interrupt());
  4344. recheck:
  4345. /* double check policy once rq lock held */
  4346. if (policy < 0)
  4347. policy = oldpolicy = p->policy;
  4348. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4349. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4350. policy != SCHED_IDLE)
  4351. return -EINVAL;
  4352. /*
  4353. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4354. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4355. * SCHED_BATCH and SCHED_IDLE is 0.
  4356. */
  4357. if (param->sched_priority < 0 ||
  4358. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4359. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4360. return -EINVAL;
  4361. if (rt_policy(policy) != (param->sched_priority != 0))
  4362. return -EINVAL;
  4363. /*
  4364. * Allow unprivileged RT tasks to decrease priority:
  4365. */
  4366. if (!capable(CAP_SYS_NICE)) {
  4367. if (rt_policy(policy)) {
  4368. unsigned long rlim_rtprio;
  4369. if (!lock_task_sighand(p, &flags))
  4370. return -ESRCH;
  4371. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4372. unlock_task_sighand(p, &flags);
  4373. /* can't set/change the rt policy */
  4374. if (policy != p->policy && !rlim_rtprio)
  4375. return -EPERM;
  4376. /* can't increase priority */
  4377. if (param->sched_priority > p->rt_priority &&
  4378. param->sched_priority > rlim_rtprio)
  4379. return -EPERM;
  4380. }
  4381. /*
  4382. * Like positive nice levels, dont allow tasks to
  4383. * move out of SCHED_IDLE either:
  4384. */
  4385. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4386. return -EPERM;
  4387. /* can't change other user's priorities */
  4388. if ((current->euid != p->euid) &&
  4389. (current->euid != p->uid))
  4390. return -EPERM;
  4391. }
  4392. #ifdef CONFIG_RT_GROUP_SCHED
  4393. /*
  4394. * Do not allow realtime tasks into groups that have no runtime
  4395. * assigned.
  4396. */
  4397. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4398. return -EPERM;
  4399. #endif
  4400. retval = security_task_setscheduler(p, policy, param);
  4401. if (retval)
  4402. return retval;
  4403. /*
  4404. * make sure no PI-waiters arrive (or leave) while we are
  4405. * changing the priority of the task:
  4406. */
  4407. spin_lock_irqsave(&p->pi_lock, flags);
  4408. /*
  4409. * To be able to change p->policy safely, the apropriate
  4410. * runqueue lock must be held.
  4411. */
  4412. rq = __task_rq_lock(p);
  4413. /* recheck policy now with rq lock held */
  4414. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4415. policy = oldpolicy = -1;
  4416. __task_rq_unlock(rq);
  4417. spin_unlock_irqrestore(&p->pi_lock, flags);
  4418. goto recheck;
  4419. }
  4420. update_rq_clock(rq);
  4421. on_rq = p->se.on_rq;
  4422. running = task_current(rq, p);
  4423. if (on_rq)
  4424. deactivate_task(rq, p, 0);
  4425. if (running)
  4426. p->sched_class->put_prev_task(rq, p);
  4427. oldprio = p->prio;
  4428. __setscheduler(rq, p, policy, param->sched_priority);
  4429. if (running)
  4430. p->sched_class->set_curr_task(rq);
  4431. if (on_rq) {
  4432. activate_task(rq, p, 0);
  4433. check_class_changed(rq, p, prev_class, oldprio, running);
  4434. }
  4435. __task_rq_unlock(rq);
  4436. spin_unlock_irqrestore(&p->pi_lock, flags);
  4437. rt_mutex_adjust_pi(p);
  4438. return 0;
  4439. }
  4440. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4441. static int
  4442. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4443. {
  4444. struct sched_param lparam;
  4445. struct task_struct *p;
  4446. int retval;
  4447. if (!param || pid < 0)
  4448. return -EINVAL;
  4449. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4450. return -EFAULT;
  4451. rcu_read_lock();
  4452. retval = -ESRCH;
  4453. p = find_process_by_pid(pid);
  4454. if (p != NULL)
  4455. retval = sched_setscheduler(p, policy, &lparam);
  4456. rcu_read_unlock();
  4457. return retval;
  4458. }
  4459. /**
  4460. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4461. * @pid: the pid in question.
  4462. * @policy: new policy.
  4463. * @param: structure containing the new RT priority.
  4464. */
  4465. asmlinkage long
  4466. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4467. {
  4468. /* negative values for policy are not valid */
  4469. if (policy < 0)
  4470. return -EINVAL;
  4471. return do_sched_setscheduler(pid, policy, param);
  4472. }
  4473. /**
  4474. * sys_sched_setparam - set/change the RT priority of a thread
  4475. * @pid: the pid in question.
  4476. * @param: structure containing the new RT priority.
  4477. */
  4478. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4479. {
  4480. return do_sched_setscheduler(pid, -1, param);
  4481. }
  4482. /**
  4483. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4484. * @pid: the pid in question.
  4485. */
  4486. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4487. {
  4488. struct task_struct *p;
  4489. int retval;
  4490. if (pid < 0)
  4491. return -EINVAL;
  4492. retval = -ESRCH;
  4493. read_lock(&tasklist_lock);
  4494. p = find_process_by_pid(pid);
  4495. if (p) {
  4496. retval = security_task_getscheduler(p);
  4497. if (!retval)
  4498. retval = p->policy;
  4499. }
  4500. read_unlock(&tasklist_lock);
  4501. return retval;
  4502. }
  4503. /**
  4504. * sys_sched_getscheduler - get the RT priority of a thread
  4505. * @pid: the pid in question.
  4506. * @param: structure containing the RT priority.
  4507. */
  4508. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4509. {
  4510. struct sched_param lp;
  4511. struct task_struct *p;
  4512. int retval;
  4513. if (!param || pid < 0)
  4514. return -EINVAL;
  4515. read_lock(&tasklist_lock);
  4516. p = find_process_by_pid(pid);
  4517. retval = -ESRCH;
  4518. if (!p)
  4519. goto out_unlock;
  4520. retval = security_task_getscheduler(p);
  4521. if (retval)
  4522. goto out_unlock;
  4523. lp.sched_priority = p->rt_priority;
  4524. read_unlock(&tasklist_lock);
  4525. /*
  4526. * This one might sleep, we cannot do it with a spinlock held ...
  4527. */
  4528. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4529. return retval;
  4530. out_unlock:
  4531. read_unlock(&tasklist_lock);
  4532. return retval;
  4533. }
  4534. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4535. {
  4536. cpumask_t cpus_allowed;
  4537. cpumask_t new_mask = *in_mask;
  4538. struct task_struct *p;
  4539. int retval;
  4540. get_online_cpus();
  4541. read_lock(&tasklist_lock);
  4542. p = find_process_by_pid(pid);
  4543. if (!p) {
  4544. read_unlock(&tasklist_lock);
  4545. put_online_cpus();
  4546. return -ESRCH;
  4547. }
  4548. /*
  4549. * It is not safe to call set_cpus_allowed with the
  4550. * tasklist_lock held. We will bump the task_struct's
  4551. * usage count and then drop tasklist_lock.
  4552. */
  4553. get_task_struct(p);
  4554. read_unlock(&tasklist_lock);
  4555. retval = -EPERM;
  4556. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4557. !capable(CAP_SYS_NICE))
  4558. goto out_unlock;
  4559. retval = security_task_setscheduler(p, 0, NULL);
  4560. if (retval)
  4561. goto out_unlock;
  4562. cpuset_cpus_allowed(p, &cpus_allowed);
  4563. cpus_and(new_mask, new_mask, cpus_allowed);
  4564. again:
  4565. retval = set_cpus_allowed_ptr(p, &new_mask);
  4566. if (!retval) {
  4567. cpuset_cpus_allowed(p, &cpus_allowed);
  4568. if (!cpus_subset(new_mask, cpus_allowed)) {
  4569. /*
  4570. * We must have raced with a concurrent cpuset
  4571. * update. Just reset the cpus_allowed to the
  4572. * cpuset's cpus_allowed
  4573. */
  4574. new_mask = cpus_allowed;
  4575. goto again;
  4576. }
  4577. }
  4578. out_unlock:
  4579. put_task_struct(p);
  4580. put_online_cpus();
  4581. return retval;
  4582. }
  4583. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4584. cpumask_t *new_mask)
  4585. {
  4586. if (len < sizeof(cpumask_t)) {
  4587. memset(new_mask, 0, sizeof(cpumask_t));
  4588. } else if (len > sizeof(cpumask_t)) {
  4589. len = sizeof(cpumask_t);
  4590. }
  4591. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4592. }
  4593. /**
  4594. * sys_sched_setaffinity - set the cpu affinity of a process
  4595. * @pid: pid of the process
  4596. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4597. * @user_mask_ptr: user-space pointer to the new cpu mask
  4598. */
  4599. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4600. unsigned long __user *user_mask_ptr)
  4601. {
  4602. cpumask_t new_mask;
  4603. int retval;
  4604. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4605. if (retval)
  4606. return retval;
  4607. return sched_setaffinity(pid, &new_mask);
  4608. }
  4609. /*
  4610. * Represents all cpu's present in the system
  4611. * In systems capable of hotplug, this map could dynamically grow
  4612. * as new cpu's are detected in the system via any platform specific
  4613. * method, such as ACPI for e.g.
  4614. */
  4615. cpumask_t cpu_present_map __read_mostly;
  4616. EXPORT_SYMBOL(cpu_present_map);
  4617. #ifndef CONFIG_SMP
  4618. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4619. EXPORT_SYMBOL(cpu_online_map);
  4620. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4621. EXPORT_SYMBOL(cpu_possible_map);
  4622. #endif
  4623. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4624. {
  4625. struct task_struct *p;
  4626. int retval;
  4627. get_online_cpus();
  4628. read_lock(&tasklist_lock);
  4629. retval = -ESRCH;
  4630. p = find_process_by_pid(pid);
  4631. if (!p)
  4632. goto out_unlock;
  4633. retval = security_task_getscheduler(p);
  4634. if (retval)
  4635. goto out_unlock;
  4636. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4637. out_unlock:
  4638. read_unlock(&tasklist_lock);
  4639. put_online_cpus();
  4640. return retval;
  4641. }
  4642. /**
  4643. * sys_sched_getaffinity - get the cpu affinity of a process
  4644. * @pid: pid of the process
  4645. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4646. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4647. */
  4648. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4649. unsigned long __user *user_mask_ptr)
  4650. {
  4651. int ret;
  4652. cpumask_t mask;
  4653. if (len < sizeof(cpumask_t))
  4654. return -EINVAL;
  4655. ret = sched_getaffinity(pid, &mask);
  4656. if (ret < 0)
  4657. return ret;
  4658. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4659. return -EFAULT;
  4660. return sizeof(cpumask_t);
  4661. }
  4662. /**
  4663. * sys_sched_yield - yield the current processor to other threads.
  4664. *
  4665. * This function yields the current CPU to other tasks. If there are no
  4666. * other threads running on this CPU then this function will return.
  4667. */
  4668. asmlinkage long sys_sched_yield(void)
  4669. {
  4670. struct rq *rq = this_rq_lock();
  4671. schedstat_inc(rq, yld_count);
  4672. current->sched_class->yield_task(rq);
  4673. /*
  4674. * Since we are going to call schedule() anyway, there's
  4675. * no need to preempt or enable interrupts:
  4676. */
  4677. __release(rq->lock);
  4678. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4679. _raw_spin_unlock(&rq->lock);
  4680. preempt_enable_no_resched();
  4681. schedule();
  4682. return 0;
  4683. }
  4684. static void __cond_resched(void)
  4685. {
  4686. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4687. __might_sleep(__FILE__, __LINE__);
  4688. #endif
  4689. /*
  4690. * The BKS might be reacquired before we have dropped
  4691. * PREEMPT_ACTIVE, which could trigger a second
  4692. * cond_resched() call.
  4693. */
  4694. do {
  4695. add_preempt_count(PREEMPT_ACTIVE);
  4696. schedule();
  4697. sub_preempt_count(PREEMPT_ACTIVE);
  4698. } while (need_resched());
  4699. }
  4700. int __sched _cond_resched(void)
  4701. {
  4702. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4703. system_state == SYSTEM_RUNNING) {
  4704. __cond_resched();
  4705. return 1;
  4706. }
  4707. return 0;
  4708. }
  4709. EXPORT_SYMBOL(_cond_resched);
  4710. /*
  4711. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4712. * call schedule, and on return reacquire the lock.
  4713. *
  4714. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4715. * operations here to prevent schedule() from being called twice (once via
  4716. * spin_unlock(), once by hand).
  4717. */
  4718. int cond_resched_lock(spinlock_t *lock)
  4719. {
  4720. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4721. int ret = 0;
  4722. if (spin_needbreak(lock) || resched) {
  4723. spin_unlock(lock);
  4724. if (resched && need_resched())
  4725. __cond_resched();
  4726. else
  4727. cpu_relax();
  4728. ret = 1;
  4729. spin_lock(lock);
  4730. }
  4731. return ret;
  4732. }
  4733. EXPORT_SYMBOL(cond_resched_lock);
  4734. int __sched cond_resched_softirq(void)
  4735. {
  4736. BUG_ON(!in_softirq());
  4737. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4738. local_bh_enable();
  4739. __cond_resched();
  4740. local_bh_disable();
  4741. return 1;
  4742. }
  4743. return 0;
  4744. }
  4745. EXPORT_SYMBOL(cond_resched_softirq);
  4746. /**
  4747. * yield - yield the current processor to other threads.
  4748. *
  4749. * This is a shortcut for kernel-space yielding - it marks the
  4750. * thread runnable and calls sys_sched_yield().
  4751. */
  4752. void __sched yield(void)
  4753. {
  4754. set_current_state(TASK_RUNNING);
  4755. sys_sched_yield();
  4756. }
  4757. EXPORT_SYMBOL(yield);
  4758. /*
  4759. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4760. * that process accounting knows that this is a task in IO wait state.
  4761. *
  4762. * But don't do that if it is a deliberate, throttling IO wait (this task
  4763. * has set its backing_dev_info: the queue against which it should throttle)
  4764. */
  4765. void __sched io_schedule(void)
  4766. {
  4767. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4768. delayacct_blkio_start();
  4769. atomic_inc(&rq->nr_iowait);
  4770. schedule();
  4771. atomic_dec(&rq->nr_iowait);
  4772. delayacct_blkio_end();
  4773. }
  4774. EXPORT_SYMBOL(io_schedule);
  4775. long __sched io_schedule_timeout(long timeout)
  4776. {
  4777. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4778. long ret;
  4779. delayacct_blkio_start();
  4780. atomic_inc(&rq->nr_iowait);
  4781. ret = schedule_timeout(timeout);
  4782. atomic_dec(&rq->nr_iowait);
  4783. delayacct_blkio_end();
  4784. return ret;
  4785. }
  4786. /**
  4787. * sys_sched_get_priority_max - return maximum RT priority.
  4788. * @policy: scheduling class.
  4789. *
  4790. * this syscall returns the maximum rt_priority that can be used
  4791. * by a given scheduling class.
  4792. */
  4793. asmlinkage long sys_sched_get_priority_max(int policy)
  4794. {
  4795. int ret = -EINVAL;
  4796. switch (policy) {
  4797. case SCHED_FIFO:
  4798. case SCHED_RR:
  4799. ret = MAX_USER_RT_PRIO-1;
  4800. break;
  4801. case SCHED_NORMAL:
  4802. case SCHED_BATCH:
  4803. case SCHED_IDLE:
  4804. ret = 0;
  4805. break;
  4806. }
  4807. return ret;
  4808. }
  4809. /**
  4810. * sys_sched_get_priority_min - return minimum RT priority.
  4811. * @policy: scheduling class.
  4812. *
  4813. * this syscall returns the minimum rt_priority that can be used
  4814. * by a given scheduling class.
  4815. */
  4816. asmlinkage long sys_sched_get_priority_min(int policy)
  4817. {
  4818. int ret = -EINVAL;
  4819. switch (policy) {
  4820. case SCHED_FIFO:
  4821. case SCHED_RR:
  4822. ret = 1;
  4823. break;
  4824. case SCHED_NORMAL:
  4825. case SCHED_BATCH:
  4826. case SCHED_IDLE:
  4827. ret = 0;
  4828. }
  4829. return ret;
  4830. }
  4831. /**
  4832. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4833. * @pid: pid of the process.
  4834. * @interval: userspace pointer to the timeslice value.
  4835. *
  4836. * this syscall writes the default timeslice value of a given process
  4837. * into the user-space timespec buffer. A value of '0' means infinity.
  4838. */
  4839. asmlinkage
  4840. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4841. {
  4842. struct task_struct *p;
  4843. unsigned int time_slice;
  4844. int retval;
  4845. struct timespec t;
  4846. if (pid < 0)
  4847. return -EINVAL;
  4848. retval = -ESRCH;
  4849. read_lock(&tasklist_lock);
  4850. p = find_process_by_pid(pid);
  4851. if (!p)
  4852. goto out_unlock;
  4853. retval = security_task_getscheduler(p);
  4854. if (retval)
  4855. goto out_unlock;
  4856. /*
  4857. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4858. * tasks that are on an otherwise idle runqueue:
  4859. */
  4860. time_slice = 0;
  4861. if (p->policy == SCHED_RR) {
  4862. time_slice = DEF_TIMESLICE;
  4863. } else if (p->policy != SCHED_FIFO) {
  4864. struct sched_entity *se = &p->se;
  4865. unsigned long flags;
  4866. struct rq *rq;
  4867. rq = task_rq_lock(p, &flags);
  4868. if (rq->cfs.load.weight)
  4869. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4870. task_rq_unlock(rq, &flags);
  4871. }
  4872. read_unlock(&tasklist_lock);
  4873. jiffies_to_timespec(time_slice, &t);
  4874. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4875. return retval;
  4876. out_unlock:
  4877. read_unlock(&tasklist_lock);
  4878. return retval;
  4879. }
  4880. static const char stat_nam[] = "RSDTtZX";
  4881. void sched_show_task(struct task_struct *p)
  4882. {
  4883. unsigned long free = 0;
  4884. unsigned state;
  4885. state = p->state ? __ffs(p->state) + 1 : 0;
  4886. printk(KERN_INFO "%-13.13s %c", p->comm,
  4887. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4888. #if BITS_PER_LONG == 32
  4889. if (state == TASK_RUNNING)
  4890. printk(KERN_CONT " running ");
  4891. else
  4892. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4893. #else
  4894. if (state == TASK_RUNNING)
  4895. printk(KERN_CONT " running task ");
  4896. else
  4897. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4898. #endif
  4899. #ifdef CONFIG_DEBUG_STACK_USAGE
  4900. free = stack_not_used(p);
  4901. #endif
  4902. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4903. task_pid_nr(p), task_pid_nr(p->real_parent));
  4904. show_stack(p, NULL);
  4905. }
  4906. void show_state_filter(unsigned long state_filter)
  4907. {
  4908. struct task_struct *g, *p;
  4909. #if BITS_PER_LONG == 32
  4910. printk(KERN_INFO
  4911. " task PC stack pid father\n");
  4912. #else
  4913. printk(KERN_INFO
  4914. " task PC stack pid father\n");
  4915. #endif
  4916. read_lock(&tasklist_lock);
  4917. do_each_thread(g, p) {
  4918. /*
  4919. * reset the NMI-timeout, listing all files on a slow
  4920. * console might take alot of time:
  4921. */
  4922. touch_nmi_watchdog();
  4923. if (!state_filter || (p->state & state_filter))
  4924. sched_show_task(p);
  4925. } while_each_thread(g, p);
  4926. touch_all_softlockup_watchdogs();
  4927. #ifdef CONFIG_SCHED_DEBUG
  4928. sysrq_sched_debug_show();
  4929. #endif
  4930. read_unlock(&tasklist_lock);
  4931. /*
  4932. * Only show locks if all tasks are dumped:
  4933. */
  4934. if (state_filter == -1)
  4935. debug_show_all_locks();
  4936. }
  4937. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4938. {
  4939. idle->sched_class = &idle_sched_class;
  4940. }
  4941. /**
  4942. * init_idle - set up an idle thread for a given CPU
  4943. * @idle: task in question
  4944. * @cpu: cpu the idle task belongs to
  4945. *
  4946. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4947. * flag, to make booting more robust.
  4948. */
  4949. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4950. {
  4951. struct rq *rq = cpu_rq(cpu);
  4952. unsigned long flags;
  4953. __sched_fork(idle);
  4954. idle->se.exec_start = sched_clock();
  4955. idle->prio = idle->normal_prio = MAX_PRIO;
  4956. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4957. __set_task_cpu(idle, cpu);
  4958. spin_lock_irqsave(&rq->lock, flags);
  4959. rq->curr = rq->idle = idle;
  4960. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4961. idle->oncpu = 1;
  4962. #endif
  4963. spin_unlock_irqrestore(&rq->lock, flags);
  4964. /* Set the preempt count _outside_ the spinlocks! */
  4965. #if defined(CONFIG_PREEMPT)
  4966. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4967. #else
  4968. task_thread_info(idle)->preempt_count = 0;
  4969. #endif
  4970. /*
  4971. * The idle tasks have their own, simple scheduling class:
  4972. */
  4973. idle->sched_class = &idle_sched_class;
  4974. }
  4975. /*
  4976. * In a system that switches off the HZ timer nohz_cpu_mask
  4977. * indicates which cpus entered this state. This is used
  4978. * in the rcu update to wait only for active cpus. For system
  4979. * which do not switch off the HZ timer nohz_cpu_mask should
  4980. * always be CPU_MASK_NONE.
  4981. */
  4982. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4983. /*
  4984. * Increase the granularity value when there are more CPUs,
  4985. * because with more CPUs the 'effective latency' as visible
  4986. * to users decreases. But the relationship is not linear,
  4987. * so pick a second-best guess by going with the log2 of the
  4988. * number of CPUs.
  4989. *
  4990. * This idea comes from the SD scheduler of Con Kolivas:
  4991. */
  4992. static inline void sched_init_granularity(void)
  4993. {
  4994. unsigned int factor = 1 + ilog2(num_online_cpus());
  4995. const unsigned long limit = 200000000;
  4996. sysctl_sched_min_granularity *= factor;
  4997. if (sysctl_sched_min_granularity > limit)
  4998. sysctl_sched_min_granularity = limit;
  4999. sysctl_sched_latency *= factor;
  5000. if (sysctl_sched_latency > limit)
  5001. sysctl_sched_latency = limit;
  5002. sysctl_sched_wakeup_granularity *= factor;
  5003. }
  5004. #ifdef CONFIG_SMP
  5005. /*
  5006. * This is how migration works:
  5007. *
  5008. * 1) we queue a struct migration_req structure in the source CPU's
  5009. * runqueue and wake up that CPU's migration thread.
  5010. * 2) we down() the locked semaphore => thread blocks.
  5011. * 3) migration thread wakes up (implicitly it forces the migrated
  5012. * thread off the CPU)
  5013. * 4) it gets the migration request and checks whether the migrated
  5014. * task is still in the wrong runqueue.
  5015. * 5) if it's in the wrong runqueue then the migration thread removes
  5016. * it and puts it into the right queue.
  5017. * 6) migration thread up()s the semaphore.
  5018. * 7) we wake up and the migration is done.
  5019. */
  5020. /*
  5021. * Change a given task's CPU affinity. Migrate the thread to a
  5022. * proper CPU and schedule it away if the CPU it's executing on
  5023. * is removed from the allowed bitmask.
  5024. *
  5025. * NOTE: the caller must have a valid reference to the task, the
  5026. * task must not exit() & deallocate itself prematurely. The
  5027. * call is not atomic; no spinlocks may be held.
  5028. */
  5029. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5030. {
  5031. struct migration_req req;
  5032. unsigned long flags;
  5033. struct rq *rq;
  5034. int ret = 0;
  5035. rq = task_rq_lock(p, &flags);
  5036. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5037. ret = -EINVAL;
  5038. goto out;
  5039. }
  5040. if (p->sched_class->set_cpus_allowed)
  5041. p->sched_class->set_cpus_allowed(p, new_mask);
  5042. else {
  5043. p->cpus_allowed = *new_mask;
  5044. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5045. }
  5046. /* Can the task run on the task's current CPU? If so, we're done */
  5047. if (cpu_isset(task_cpu(p), *new_mask))
  5048. goto out;
  5049. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5050. /* Need help from migration thread: drop lock and wait. */
  5051. task_rq_unlock(rq, &flags);
  5052. wake_up_process(rq->migration_thread);
  5053. wait_for_completion(&req.done);
  5054. tlb_migrate_finish(p->mm);
  5055. return 0;
  5056. }
  5057. out:
  5058. task_rq_unlock(rq, &flags);
  5059. return ret;
  5060. }
  5061. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5062. /*
  5063. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5064. * this because either it can't run here any more (set_cpus_allowed()
  5065. * away from this CPU, or CPU going down), or because we're
  5066. * attempting to rebalance this task on exec (sched_exec).
  5067. *
  5068. * So we race with normal scheduler movements, but that's OK, as long
  5069. * as the task is no longer on this CPU.
  5070. *
  5071. * Returns non-zero if task was successfully migrated.
  5072. */
  5073. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5074. {
  5075. struct rq *rq_dest, *rq_src;
  5076. int ret = 0, on_rq;
  5077. if (unlikely(cpu_is_offline(dest_cpu)))
  5078. return ret;
  5079. rq_src = cpu_rq(src_cpu);
  5080. rq_dest = cpu_rq(dest_cpu);
  5081. double_rq_lock(rq_src, rq_dest);
  5082. /* Already moved. */
  5083. if (task_cpu(p) != src_cpu)
  5084. goto out;
  5085. /* Affinity changed (again). */
  5086. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5087. goto out;
  5088. on_rq = p->se.on_rq;
  5089. if (on_rq)
  5090. deactivate_task(rq_src, p, 0);
  5091. set_task_cpu(p, dest_cpu);
  5092. if (on_rq) {
  5093. activate_task(rq_dest, p, 0);
  5094. check_preempt_curr(rq_dest, p);
  5095. }
  5096. ret = 1;
  5097. out:
  5098. double_rq_unlock(rq_src, rq_dest);
  5099. return ret;
  5100. }
  5101. /*
  5102. * migration_thread - this is a highprio system thread that performs
  5103. * thread migration by bumping thread off CPU then 'pushing' onto
  5104. * another runqueue.
  5105. */
  5106. static int migration_thread(void *data)
  5107. {
  5108. int cpu = (long)data;
  5109. struct rq *rq;
  5110. rq = cpu_rq(cpu);
  5111. BUG_ON(rq->migration_thread != current);
  5112. set_current_state(TASK_INTERRUPTIBLE);
  5113. while (!kthread_should_stop()) {
  5114. struct migration_req *req;
  5115. struct list_head *head;
  5116. spin_lock_irq(&rq->lock);
  5117. if (cpu_is_offline(cpu)) {
  5118. spin_unlock_irq(&rq->lock);
  5119. goto wait_to_die;
  5120. }
  5121. if (rq->active_balance) {
  5122. active_load_balance(rq, cpu);
  5123. rq->active_balance = 0;
  5124. }
  5125. head = &rq->migration_queue;
  5126. if (list_empty(head)) {
  5127. spin_unlock_irq(&rq->lock);
  5128. schedule();
  5129. set_current_state(TASK_INTERRUPTIBLE);
  5130. continue;
  5131. }
  5132. req = list_entry(head->next, struct migration_req, list);
  5133. list_del_init(head->next);
  5134. spin_unlock(&rq->lock);
  5135. __migrate_task(req->task, cpu, req->dest_cpu);
  5136. local_irq_enable();
  5137. complete(&req->done);
  5138. }
  5139. __set_current_state(TASK_RUNNING);
  5140. return 0;
  5141. wait_to_die:
  5142. /* Wait for kthread_stop */
  5143. set_current_state(TASK_INTERRUPTIBLE);
  5144. while (!kthread_should_stop()) {
  5145. schedule();
  5146. set_current_state(TASK_INTERRUPTIBLE);
  5147. }
  5148. __set_current_state(TASK_RUNNING);
  5149. return 0;
  5150. }
  5151. #ifdef CONFIG_HOTPLUG_CPU
  5152. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5153. {
  5154. int ret;
  5155. local_irq_disable();
  5156. ret = __migrate_task(p, src_cpu, dest_cpu);
  5157. local_irq_enable();
  5158. return ret;
  5159. }
  5160. /*
  5161. * Figure out where task on dead CPU should go, use force if necessary.
  5162. * NOTE: interrupts should be disabled by the caller
  5163. */
  5164. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5165. {
  5166. unsigned long flags;
  5167. cpumask_t mask;
  5168. struct rq *rq;
  5169. int dest_cpu;
  5170. do {
  5171. /* On same node? */
  5172. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5173. cpus_and(mask, mask, p->cpus_allowed);
  5174. dest_cpu = any_online_cpu(mask);
  5175. /* On any allowed CPU? */
  5176. if (dest_cpu >= nr_cpu_ids)
  5177. dest_cpu = any_online_cpu(p->cpus_allowed);
  5178. /* No more Mr. Nice Guy. */
  5179. if (dest_cpu >= nr_cpu_ids) {
  5180. cpumask_t cpus_allowed;
  5181. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5182. /*
  5183. * Try to stay on the same cpuset, where the
  5184. * current cpuset may be a subset of all cpus.
  5185. * The cpuset_cpus_allowed_locked() variant of
  5186. * cpuset_cpus_allowed() will not block. It must be
  5187. * called within calls to cpuset_lock/cpuset_unlock.
  5188. */
  5189. rq = task_rq_lock(p, &flags);
  5190. p->cpus_allowed = cpus_allowed;
  5191. dest_cpu = any_online_cpu(p->cpus_allowed);
  5192. task_rq_unlock(rq, &flags);
  5193. /*
  5194. * Don't tell them about moving exiting tasks or
  5195. * kernel threads (both mm NULL), since they never
  5196. * leave kernel.
  5197. */
  5198. if (p->mm && printk_ratelimit()) {
  5199. printk(KERN_INFO "process %d (%s) no "
  5200. "longer affine to cpu%d\n",
  5201. task_pid_nr(p), p->comm, dead_cpu);
  5202. }
  5203. }
  5204. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5205. }
  5206. /*
  5207. * While a dead CPU has no uninterruptible tasks queued at this point,
  5208. * it might still have a nonzero ->nr_uninterruptible counter, because
  5209. * for performance reasons the counter is not stricly tracking tasks to
  5210. * their home CPUs. So we just add the counter to another CPU's counter,
  5211. * to keep the global sum constant after CPU-down:
  5212. */
  5213. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5214. {
  5215. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5216. unsigned long flags;
  5217. local_irq_save(flags);
  5218. double_rq_lock(rq_src, rq_dest);
  5219. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5220. rq_src->nr_uninterruptible = 0;
  5221. double_rq_unlock(rq_src, rq_dest);
  5222. local_irq_restore(flags);
  5223. }
  5224. /* Run through task list and migrate tasks from the dead cpu. */
  5225. static void migrate_live_tasks(int src_cpu)
  5226. {
  5227. struct task_struct *p, *t;
  5228. read_lock(&tasklist_lock);
  5229. do_each_thread(t, p) {
  5230. if (p == current)
  5231. continue;
  5232. if (task_cpu(p) == src_cpu)
  5233. move_task_off_dead_cpu(src_cpu, p);
  5234. } while_each_thread(t, p);
  5235. read_unlock(&tasklist_lock);
  5236. }
  5237. /*
  5238. * Schedules idle task to be the next runnable task on current CPU.
  5239. * It does so by boosting its priority to highest possible.
  5240. * Used by CPU offline code.
  5241. */
  5242. void sched_idle_next(void)
  5243. {
  5244. int this_cpu = smp_processor_id();
  5245. struct rq *rq = cpu_rq(this_cpu);
  5246. struct task_struct *p = rq->idle;
  5247. unsigned long flags;
  5248. /* cpu has to be offline */
  5249. BUG_ON(cpu_online(this_cpu));
  5250. /*
  5251. * Strictly not necessary since rest of the CPUs are stopped by now
  5252. * and interrupts disabled on the current cpu.
  5253. */
  5254. spin_lock_irqsave(&rq->lock, flags);
  5255. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5256. update_rq_clock(rq);
  5257. activate_task(rq, p, 0);
  5258. spin_unlock_irqrestore(&rq->lock, flags);
  5259. }
  5260. /*
  5261. * Ensures that the idle task is using init_mm right before its cpu goes
  5262. * offline.
  5263. */
  5264. void idle_task_exit(void)
  5265. {
  5266. struct mm_struct *mm = current->active_mm;
  5267. BUG_ON(cpu_online(smp_processor_id()));
  5268. if (mm != &init_mm)
  5269. switch_mm(mm, &init_mm, current);
  5270. mmdrop(mm);
  5271. }
  5272. /* called under rq->lock with disabled interrupts */
  5273. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5274. {
  5275. struct rq *rq = cpu_rq(dead_cpu);
  5276. /* Must be exiting, otherwise would be on tasklist. */
  5277. BUG_ON(!p->exit_state);
  5278. /* Cannot have done final schedule yet: would have vanished. */
  5279. BUG_ON(p->state == TASK_DEAD);
  5280. get_task_struct(p);
  5281. /*
  5282. * Drop lock around migration; if someone else moves it,
  5283. * that's OK. No task can be added to this CPU, so iteration is
  5284. * fine.
  5285. */
  5286. spin_unlock_irq(&rq->lock);
  5287. move_task_off_dead_cpu(dead_cpu, p);
  5288. spin_lock_irq(&rq->lock);
  5289. put_task_struct(p);
  5290. }
  5291. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5292. static void migrate_dead_tasks(unsigned int dead_cpu)
  5293. {
  5294. struct rq *rq = cpu_rq(dead_cpu);
  5295. struct task_struct *next;
  5296. for ( ; ; ) {
  5297. if (!rq->nr_running)
  5298. break;
  5299. update_rq_clock(rq);
  5300. next = pick_next_task(rq, rq->curr);
  5301. if (!next)
  5302. break;
  5303. migrate_dead(dead_cpu, next);
  5304. }
  5305. }
  5306. #endif /* CONFIG_HOTPLUG_CPU */
  5307. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5308. static struct ctl_table sd_ctl_dir[] = {
  5309. {
  5310. .procname = "sched_domain",
  5311. .mode = 0555,
  5312. },
  5313. {0, },
  5314. };
  5315. static struct ctl_table sd_ctl_root[] = {
  5316. {
  5317. .ctl_name = CTL_KERN,
  5318. .procname = "kernel",
  5319. .mode = 0555,
  5320. .child = sd_ctl_dir,
  5321. },
  5322. {0, },
  5323. };
  5324. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5325. {
  5326. struct ctl_table *entry =
  5327. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5328. return entry;
  5329. }
  5330. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5331. {
  5332. struct ctl_table *entry;
  5333. /*
  5334. * In the intermediate directories, both the child directory and
  5335. * procname are dynamically allocated and could fail but the mode
  5336. * will always be set. In the lowest directory the names are
  5337. * static strings and all have proc handlers.
  5338. */
  5339. for (entry = *tablep; entry->mode; entry++) {
  5340. if (entry->child)
  5341. sd_free_ctl_entry(&entry->child);
  5342. if (entry->proc_handler == NULL)
  5343. kfree(entry->procname);
  5344. }
  5345. kfree(*tablep);
  5346. *tablep = NULL;
  5347. }
  5348. static void
  5349. set_table_entry(struct ctl_table *entry,
  5350. const char *procname, void *data, int maxlen,
  5351. mode_t mode, proc_handler *proc_handler)
  5352. {
  5353. entry->procname = procname;
  5354. entry->data = data;
  5355. entry->maxlen = maxlen;
  5356. entry->mode = mode;
  5357. entry->proc_handler = proc_handler;
  5358. }
  5359. static struct ctl_table *
  5360. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5361. {
  5362. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5363. if (table == NULL)
  5364. return NULL;
  5365. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5366. sizeof(long), 0644, proc_doulongvec_minmax);
  5367. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5368. sizeof(long), 0644, proc_doulongvec_minmax);
  5369. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5370. sizeof(int), 0644, proc_dointvec_minmax);
  5371. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5372. sizeof(int), 0644, proc_dointvec_minmax);
  5373. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5374. sizeof(int), 0644, proc_dointvec_minmax);
  5375. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5376. sizeof(int), 0644, proc_dointvec_minmax);
  5377. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5378. sizeof(int), 0644, proc_dointvec_minmax);
  5379. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5380. sizeof(int), 0644, proc_dointvec_minmax);
  5381. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5382. sizeof(int), 0644, proc_dointvec_minmax);
  5383. set_table_entry(&table[9], "cache_nice_tries",
  5384. &sd->cache_nice_tries,
  5385. sizeof(int), 0644, proc_dointvec_minmax);
  5386. set_table_entry(&table[10], "flags", &sd->flags,
  5387. sizeof(int), 0644, proc_dointvec_minmax);
  5388. /* &table[11] is terminator */
  5389. return table;
  5390. }
  5391. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5392. {
  5393. struct ctl_table *entry, *table;
  5394. struct sched_domain *sd;
  5395. int domain_num = 0, i;
  5396. char buf[32];
  5397. for_each_domain(cpu, sd)
  5398. domain_num++;
  5399. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5400. if (table == NULL)
  5401. return NULL;
  5402. i = 0;
  5403. for_each_domain(cpu, sd) {
  5404. snprintf(buf, 32, "domain%d", i);
  5405. entry->procname = kstrdup(buf, GFP_KERNEL);
  5406. entry->mode = 0555;
  5407. entry->child = sd_alloc_ctl_domain_table(sd);
  5408. entry++;
  5409. i++;
  5410. }
  5411. return table;
  5412. }
  5413. static struct ctl_table_header *sd_sysctl_header;
  5414. static void register_sched_domain_sysctl(void)
  5415. {
  5416. int i, cpu_num = num_online_cpus();
  5417. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5418. char buf[32];
  5419. WARN_ON(sd_ctl_dir[0].child);
  5420. sd_ctl_dir[0].child = entry;
  5421. if (entry == NULL)
  5422. return;
  5423. for_each_online_cpu(i) {
  5424. snprintf(buf, 32, "cpu%d", i);
  5425. entry->procname = kstrdup(buf, GFP_KERNEL);
  5426. entry->mode = 0555;
  5427. entry->child = sd_alloc_ctl_cpu_table(i);
  5428. entry++;
  5429. }
  5430. WARN_ON(sd_sysctl_header);
  5431. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5432. }
  5433. /* may be called multiple times per register */
  5434. static void unregister_sched_domain_sysctl(void)
  5435. {
  5436. if (sd_sysctl_header)
  5437. unregister_sysctl_table(sd_sysctl_header);
  5438. sd_sysctl_header = NULL;
  5439. if (sd_ctl_dir[0].child)
  5440. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5441. }
  5442. #else
  5443. static void register_sched_domain_sysctl(void)
  5444. {
  5445. }
  5446. static void unregister_sched_domain_sysctl(void)
  5447. {
  5448. }
  5449. #endif
  5450. /*
  5451. * migration_call - callback that gets triggered when a CPU is added.
  5452. * Here we can start up the necessary migration thread for the new CPU.
  5453. */
  5454. static int __cpuinit
  5455. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5456. {
  5457. struct task_struct *p;
  5458. int cpu = (long)hcpu;
  5459. unsigned long flags;
  5460. struct rq *rq;
  5461. switch (action) {
  5462. case CPU_UP_PREPARE:
  5463. case CPU_UP_PREPARE_FROZEN:
  5464. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5465. if (IS_ERR(p))
  5466. return NOTIFY_BAD;
  5467. kthread_bind(p, cpu);
  5468. /* Must be high prio: stop_machine expects to yield to it. */
  5469. rq = task_rq_lock(p, &flags);
  5470. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5471. task_rq_unlock(rq, &flags);
  5472. cpu_rq(cpu)->migration_thread = p;
  5473. break;
  5474. case CPU_ONLINE:
  5475. case CPU_ONLINE_FROZEN:
  5476. /* Strictly unnecessary, as first user will wake it. */
  5477. wake_up_process(cpu_rq(cpu)->migration_thread);
  5478. /* Update our root-domain */
  5479. rq = cpu_rq(cpu);
  5480. spin_lock_irqsave(&rq->lock, flags);
  5481. if (rq->rd) {
  5482. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5483. cpu_set(cpu, rq->rd->online);
  5484. }
  5485. spin_unlock_irqrestore(&rq->lock, flags);
  5486. break;
  5487. #ifdef CONFIG_HOTPLUG_CPU
  5488. case CPU_UP_CANCELED:
  5489. case CPU_UP_CANCELED_FROZEN:
  5490. if (!cpu_rq(cpu)->migration_thread)
  5491. break;
  5492. /* Unbind it from offline cpu so it can run. Fall thru. */
  5493. kthread_bind(cpu_rq(cpu)->migration_thread,
  5494. any_online_cpu(cpu_online_map));
  5495. kthread_stop(cpu_rq(cpu)->migration_thread);
  5496. cpu_rq(cpu)->migration_thread = NULL;
  5497. break;
  5498. case CPU_DEAD:
  5499. case CPU_DEAD_FROZEN:
  5500. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5501. migrate_live_tasks(cpu);
  5502. rq = cpu_rq(cpu);
  5503. kthread_stop(rq->migration_thread);
  5504. rq->migration_thread = NULL;
  5505. /* Idle task back to normal (off runqueue, low prio) */
  5506. spin_lock_irq(&rq->lock);
  5507. update_rq_clock(rq);
  5508. deactivate_task(rq, rq->idle, 0);
  5509. rq->idle->static_prio = MAX_PRIO;
  5510. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5511. rq->idle->sched_class = &idle_sched_class;
  5512. migrate_dead_tasks(cpu);
  5513. spin_unlock_irq(&rq->lock);
  5514. cpuset_unlock();
  5515. migrate_nr_uninterruptible(rq);
  5516. BUG_ON(rq->nr_running != 0);
  5517. /*
  5518. * No need to migrate the tasks: it was best-effort if
  5519. * they didn't take sched_hotcpu_mutex. Just wake up
  5520. * the requestors.
  5521. */
  5522. spin_lock_irq(&rq->lock);
  5523. while (!list_empty(&rq->migration_queue)) {
  5524. struct migration_req *req;
  5525. req = list_entry(rq->migration_queue.next,
  5526. struct migration_req, list);
  5527. list_del_init(&req->list);
  5528. complete(&req->done);
  5529. }
  5530. spin_unlock_irq(&rq->lock);
  5531. break;
  5532. case CPU_DYING:
  5533. case CPU_DYING_FROZEN:
  5534. /* Update our root-domain */
  5535. rq = cpu_rq(cpu);
  5536. spin_lock_irqsave(&rq->lock, flags);
  5537. if (rq->rd) {
  5538. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5539. cpu_clear(cpu, rq->rd->online);
  5540. }
  5541. spin_unlock_irqrestore(&rq->lock, flags);
  5542. break;
  5543. #endif
  5544. }
  5545. return NOTIFY_OK;
  5546. }
  5547. /* Register at highest priority so that task migration (migrate_all_tasks)
  5548. * happens before everything else.
  5549. */
  5550. static struct notifier_block __cpuinitdata migration_notifier = {
  5551. .notifier_call = migration_call,
  5552. .priority = 10
  5553. };
  5554. void __init migration_init(void)
  5555. {
  5556. void *cpu = (void *)(long)smp_processor_id();
  5557. int err;
  5558. /* Start one for the boot CPU: */
  5559. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5560. BUG_ON(err == NOTIFY_BAD);
  5561. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5562. register_cpu_notifier(&migration_notifier);
  5563. }
  5564. #endif
  5565. #ifdef CONFIG_SMP
  5566. #ifdef CONFIG_SCHED_DEBUG
  5567. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5568. cpumask_t *groupmask)
  5569. {
  5570. struct sched_group *group = sd->groups;
  5571. char str[256];
  5572. cpulist_scnprintf(str, sizeof(str), sd->span);
  5573. cpus_clear(*groupmask);
  5574. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5575. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5576. printk("does not load-balance\n");
  5577. if (sd->parent)
  5578. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5579. " has parent");
  5580. return -1;
  5581. }
  5582. printk(KERN_CONT "span %s\n", str);
  5583. if (!cpu_isset(cpu, sd->span)) {
  5584. printk(KERN_ERR "ERROR: domain->span does not contain "
  5585. "CPU%d\n", cpu);
  5586. }
  5587. if (!cpu_isset(cpu, group->cpumask)) {
  5588. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5589. " CPU%d\n", cpu);
  5590. }
  5591. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5592. do {
  5593. if (!group) {
  5594. printk("\n");
  5595. printk(KERN_ERR "ERROR: group is NULL\n");
  5596. break;
  5597. }
  5598. if (!group->__cpu_power) {
  5599. printk(KERN_CONT "\n");
  5600. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5601. "set\n");
  5602. break;
  5603. }
  5604. if (!cpus_weight(group->cpumask)) {
  5605. printk(KERN_CONT "\n");
  5606. printk(KERN_ERR "ERROR: empty group\n");
  5607. break;
  5608. }
  5609. if (cpus_intersects(*groupmask, group->cpumask)) {
  5610. printk(KERN_CONT "\n");
  5611. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5612. break;
  5613. }
  5614. cpus_or(*groupmask, *groupmask, group->cpumask);
  5615. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5616. printk(KERN_CONT " %s", str);
  5617. group = group->next;
  5618. } while (group != sd->groups);
  5619. printk(KERN_CONT "\n");
  5620. if (!cpus_equal(sd->span, *groupmask))
  5621. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5622. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5623. printk(KERN_ERR "ERROR: parent span is not a superset "
  5624. "of domain->span\n");
  5625. return 0;
  5626. }
  5627. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5628. {
  5629. cpumask_t *groupmask;
  5630. int level = 0;
  5631. if (!sd) {
  5632. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5633. return;
  5634. }
  5635. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5636. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5637. if (!groupmask) {
  5638. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5639. return;
  5640. }
  5641. for (;;) {
  5642. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5643. break;
  5644. level++;
  5645. sd = sd->parent;
  5646. if (!sd)
  5647. break;
  5648. }
  5649. kfree(groupmask);
  5650. }
  5651. #else
  5652. # define sched_domain_debug(sd, cpu) do { } while (0)
  5653. #endif
  5654. static int sd_degenerate(struct sched_domain *sd)
  5655. {
  5656. if (cpus_weight(sd->span) == 1)
  5657. return 1;
  5658. /* Following flags need at least 2 groups */
  5659. if (sd->flags & (SD_LOAD_BALANCE |
  5660. SD_BALANCE_NEWIDLE |
  5661. SD_BALANCE_FORK |
  5662. SD_BALANCE_EXEC |
  5663. SD_SHARE_CPUPOWER |
  5664. SD_SHARE_PKG_RESOURCES)) {
  5665. if (sd->groups != sd->groups->next)
  5666. return 0;
  5667. }
  5668. /* Following flags don't use groups */
  5669. if (sd->flags & (SD_WAKE_IDLE |
  5670. SD_WAKE_AFFINE |
  5671. SD_WAKE_BALANCE))
  5672. return 0;
  5673. return 1;
  5674. }
  5675. static int
  5676. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5677. {
  5678. unsigned long cflags = sd->flags, pflags = parent->flags;
  5679. if (sd_degenerate(parent))
  5680. return 1;
  5681. if (!cpus_equal(sd->span, parent->span))
  5682. return 0;
  5683. /* Does parent contain flags not in child? */
  5684. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5685. if (cflags & SD_WAKE_AFFINE)
  5686. pflags &= ~SD_WAKE_BALANCE;
  5687. /* Flags needing groups don't count if only 1 group in parent */
  5688. if (parent->groups == parent->groups->next) {
  5689. pflags &= ~(SD_LOAD_BALANCE |
  5690. SD_BALANCE_NEWIDLE |
  5691. SD_BALANCE_FORK |
  5692. SD_BALANCE_EXEC |
  5693. SD_SHARE_CPUPOWER |
  5694. SD_SHARE_PKG_RESOURCES);
  5695. }
  5696. if (~cflags & pflags)
  5697. return 0;
  5698. return 1;
  5699. }
  5700. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5701. {
  5702. unsigned long flags;
  5703. const struct sched_class *class;
  5704. spin_lock_irqsave(&rq->lock, flags);
  5705. if (rq->rd) {
  5706. struct root_domain *old_rd = rq->rd;
  5707. for (class = sched_class_highest; class; class = class->next) {
  5708. if (class->leave_domain)
  5709. class->leave_domain(rq);
  5710. }
  5711. cpu_clear(rq->cpu, old_rd->span);
  5712. cpu_clear(rq->cpu, old_rd->online);
  5713. if (atomic_dec_and_test(&old_rd->refcount))
  5714. kfree(old_rd);
  5715. }
  5716. atomic_inc(&rd->refcount);
  5717. rq->rd = rd;
  5718. cpu_set(rq->cpu, rd->span);
  5719. if (cpu_isset(rq->cpu, cpu_online_map))
  5720. cpu_set(rq->cpu, rd->online);
  5721. for (class = sched_class_highest; class; class = class->next) {
  5722. if (class->join_domain)
  5723. class->join_domain(rq);
  5724. }
  5725. spin_unlock_irqrestore(&rq->lock, flags);
  5726. }
  5727. static void init_rootdomain(struct root_domain *rd)
  5728. {
  5729. memset(rd, 0, sizeof(*rd));
  5730. cpus_clear(rd->span);
  5731. cpus_clear(rd->online);
  5732. }
  5733. static void init_defrootdomain(void)
  5734. {
  5735. init_rootdomain(&def_root_domain);
  5736. atomic_set(&def_root_domain.refcount, 1);
  5737. }
  5738. static struct root_domain *alloc_rootdomain(void)
  5739. {
  5740. struct root_domain *rd;
  5741. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5742. if (!rd)
  5743. return NULL;
  5744. init_rootdomain(rd);
  5745. return rd;
  5746. }
  5747. /*
  5748. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5749. * hold the hotplug lock.
  5750. */
  5751. static void
  5752. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5753. {
  5754. struct rq *rq = cpu_rq(cpu);
  5755. struct sched_domain *tmp;
  5756. /* Remove the sched domains which do not contribute to scheduling. */
  5757. for (tmp = sd; tmp; tmp = tmp->parent) {
  5758. struct sched_domain *parent = tmp->parent;
  5759. if (!parent)
  5760. break;
  5761. if (sd_parent_degenerate(tmp, parent)) {
  5762. tmp->parent = parent->parent;
  5763. if (parent->parent)
  5764. parent->parent->child = tmp;
  5765. }
  5766. }
  5767. if (sd && sd_degenerate(sd)) {
  5768. sd = sd->parent;
  5769. if (sd)
  5770. sd->child = NULL;
  5771. }
  5772. sched_domain_debug(sd, cpu);
  5773. rq_attach_root(rq, rd);
  5774. rcu_assign_pointer(rq->sd, sd);
  5775. }
  5776. /* cpus with isolated domains */
  5777. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5778. /* Setup the mask of cpus configured for isolated domains */
  5779. static int __init isolated_cpu_setup(char *str)
  5780. {
  5781. int ints[NR_CPUS], i;
  5782. str = get_options(str, ARRAY_SIZE(ints), ints);
  5783. cpus_clear(cpu_isolated_map);
  5784. for (i = 1; i <= ints[0]; i++)
  5785. if (ints[i] < NR_CPUS)
  5786. cpu_set(ints[i], cpu_isolated_map);
  5787. return 1;
  5788. }
  5789. __setup("isolcpus=", isolated_cpu_setup);
  5790. /*
  5791. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5792. * to a function which identifies what group(along with sched group) a CPU
  5793. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5794. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5795. *
  5796. * init_sched_build_groups will build a circular linked list of the groups
  5797. * covered by the given span, and will set each group's ->cpumask correctly,
  5798. * and ->cpu_power to 0.
  5799. */
  5800. static void
  5801. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5802. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5803. struct sched_group **sg,
  5804. cpumask_t *tmpmask),
  5805. cpumask_t *covered, cpumask_t *tmpmask)
  5806. {
  5807. struct sched_group *first = NULL, *last = NULL;
  5808. int i;
  5809. cpus_clear(*covered);
  5810. for_each_cpu_mask(i, *span) {
  5811. struct sched_group *sg;
  5812. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5813. int j;
  5814. if (cpu_isset(i, *covered))
  5815. continue;
  5816. cpus_clear(sg->cpumask);
  5817. sg->__cpu_power = 0;
  5818. for_each_cpu_mask(j, *span) {
  5819. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5820. continue;
  5821. cpu_set(j, *covered);
  5822. cpu_set(j, sg->cpumask);
  5823. }
  5824. if (!first)
  5825. first = sg;
  5826. if (last)
  5827. last->next = sg;
  5828. last = sg;
  5829. }
  5830. last->next = first;
  5831. }
  5832. #define SD_NODES_PER_DOMAIN 16
  5833. #ifdef CONFIG_NUMA
  5834. /**
  5835. * find_next_best_node - find the next node to include in a sched_domain
  5836. * @node: node whose sched_domain we're building
  5837. * @used_nodes: nodes already in the sched_domain
  5838. *
  5839. * Find the next node to include in a given scheduling domain. Simply
  5840. * finds the closest node not already in the @used_nodes map.
  5841. *
  5842. * Should use nodemask_t.
  5843. */
  5844. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5845. {
  5846. int i, n, val, min_val, best_node = 0;
  5847. min_val = INT_MAX;
  5848. for (i = 0; i < MAX_NUMNODES; i++) {
  5849. /* Start at @node */
  5850. n = (node + i) % MAX_NUMNODES;
  5851. if (!nr_cpus_node(n))
  5852. continue;
  5853. /* Skip already used nodes */
  5854. if (node_isset(n, *used_nodes))
  5855. continue;
  5856. /* Simple min distance search */
  5857. val = node_distance(node, n);
  5858. if (val < min_val) {
  5859. min_val = val;
  5860. best_node = n;
  5861. }
  5862. }
  5863. node_set(best_node, *used_nodes);
  5864. return best_node;
  5865. }
  5866. /**
  5867. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5868. * @node: node whose cpumask we're constructing
  5869. * @span: resulting cpumask
  5870. *
  5871. * Given a node, construct a good cpumask for its sched_domain to span. It
  5872. * should be one that prevents unnecessary balancing, but also spreads tasks
  5873. * out optimally.
  5874. */
  5875. static void sched_domain_node_span(int node, cpumask_t *span)
  5876. {
  5877. nodemask_t used_nodes;
  5878. node_to_cpumask_ptr(nodemask, node);
  5879. int i;
  5880. cpus_clear(*span);
  5881. nodes_clear(used_nodes);
  5882. cpus_or(*span, *span, *nodemask);
  5883. node_set(node, used_nodes);
  5884. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5885. int next_node = find_next_best_node(node, &used_nodes);
  5886. node_to_cpumask_ptr_next(nodemask, next_node);
  5887. cpus_or(*span, *span, *nodemask);
  5888. }
  5889. }
  5890. #endif
  5891. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5892. /*
  5893. * SMT sched-domains:
  5894. */
  5895. #ifdef CONFIG_SCHED_SMT
  5896. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5897. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5898. static int
  5899. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5900. cpumask_t *unused)
  5901. {
  5902. if (sg)
  5903. *sg = &per_cpu(sched_group_cpus, cpu);
  5904. return cpu;
  5905. }
  5906. #endif
  5907. /*
  5908. * multi-core sched-domains:
  5909. */
  5910. #ifdef CONFIG_SCHED_MC
  5911. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5912. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5913. #endif
  5914. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5915. static int
  5916. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5917. cpumask_t *mask)
  5918. {
  5919. int group;
  5920. *mask = per_cpu(cpu_sibling_map, cpu);
  5921. cpus_and(*mask, *mask, *cpu_map);
  5922. group = first_cpu(*mask);
  5923. if (sg)
  5924. *sg = &per_cpu(sched_group_core, group);
  5925. return group;
  5926. }
  5927. #elif defined(CONFIG_SCHED_MC)
  5928. static int
  5929. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5930. cpumask_t *unused)
  5931. {
  5932. if (sg)
  5933. *sg = &per_cpu(sched_group_core, cpu);
  5934. return cpu;
  5935. }
  5936. #endif
  5937. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5938. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5939. static int
  5940. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5941. cpumask_t *mask)
  5942. {
  5943. int group;
  5944. #ifdef CONFIG_SCHED_MC
  5945. *mask = cpu_coregroup_map(cpu);
  5946. cpus_and(*mask, *mask, *cpu_map);
  5947. group = first_cpu(*mask);
  5948. #elif defined(CONFIG_SCHED_SMT)
  5949. *mask = per_cpu(cpu_sibling_map, cpu);
  5950. cpus_and(*mask, *mask, *cpu_map);
  5951. group = first_cpu(*mask);
  5952. #else
  5953. group = cpu;
  5954. #endif
  5955. if (sg)
  5956. *sg = &per_cpu(sched_group_phys, group);
  5957. return group;
  5958. }
  5959. #ifdef CONFIG_NUMA
  5960. /*
  5961. * The init_sched_build_groups can't handle what we want to do with node
  5962. * groups, so roll our own. Now each node has its own list of groups which
  5963. * gets dynamically allocated.
  5964. */
  5965. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5966. static struct sched_group ***sched_group_nodes_bycpu;
  5967. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5968. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5969. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5970. struct sched_group **sg, cpumask_t *nodemask)
  5971. {
  5972. int group;
  5973. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5974. cpus_and(*nodemask, *nodemask, *cpu_map);
  5975. group = first_cpu(*nodemask);
  5976. if (sg)
  5977. *sg = &per_cpu(sched_group_allnodes, group);
  5978. return group;
  5979. }
  5980. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5981. {
  5982. struct sched_group *sg = group_head;
  5983. int j;
  5984. if (!sg)
  5985. return;
  5986. do {
  5987. for_each_cpu_mask(j, sg->cpumask) {
  5988. struct sched_domain *sd;
  5989. sd = &per_cpu(phys_domains, j);
  5990. if (j != first_cpu(sd->groups->cpumask)) {
  5991. /*
  5992. * Only add "power" once for each
  5993. * physical package.
  5994. */
  5995. continue;
  5996. }
  5997. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5998. }
  5999. sg = sg->next;
  6000. } while (sg != group_head);
  6001. }
  6002. #endif
  6003. #ifdef CONFIG_NUMA
  6004. /* Free memory allocated for various sched_group structures */
  6005. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6006. {
  6007. int cpu, i;
  6008. for_each_cpu_mask(cpu, *cpu_map) {
  6009. struct sched_group **sched_group_nodes
  6010. = sched_group_nodes_bycpu[cpu];
  6011. if (!sched_group_nodes)
  6012. continue;
  6013. for (i = 0; i < MAX_NUMNODES; i++) {
  6014. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6015. *nodemask = node_to_cpumask(i);
  6016. cpus_and(*nodemask, *nodemask, *cpu_map);
  6017. if (cpus_empty(*nodemask))
  6018. continue;
  6019. if (sg == NULL)
  6020. continue;
  6021. sg = sg->next;
  6022. next_sg:
  6023. oldsg = sg;
  6024. sg = sg->next;
  6025. kfree(oldsg);
  6026. if (oldsg != sched_group_nodes[i])
  6027. goto next_sg;
  6028. }
  6029. kfree(sched_group_nodes);
  6030. sched_group_nodes_bycpu[cpu] = NULL;
  6031. }
  6032. }
  6033. #else
  6034. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6035. {
  6036. }
  6037. #endif
  6038. /*
  6039. * Initialize sched groups cpu_power.
  6040. *
  6041. * cpu_power indicates the capacity of sched group, which is used while
  6042. * distributing the load between different sched groups in a sched domain.
  6043. * Typically cpu_power for all the groups in a sched domain will be same unless
  6044. * there are asymmetries in the topology. If there are asymmetries, group
  6045. * having more cpu_power will pickup more load compared to the group having
  6046. * less cpu_power.
  6047. *
  6048. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6049. * the maximum number of tasks a group can handle in the presence of other idle
  6050. * or lightly loaded groups in the same sched domain.
  6051. */
  6052. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6053. {
  6054. struct sched_domain *child;
  6055. struct sched_group *group;
  6056. WARN_ON(!sd || !sd->groups);
  6057. if (cpu != first_cpu(sd->groups->cpumask))
  6058. return;
  6059. child = sd->child;
  6060. sd->groups->__cpu_power = 0;
  6061. /*
  6062. * For perf policy, if the groups in child domain share resources
  6063. * (for example cores sharing some portions of the cache hierarchy
  6064. * or SMT), then set this domain groups cpu_power such that each group
  6065. * can handle only one task, when there are other idle groups in the
  6066. * same sched domain.
  6067. */
  6068. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6069. (child->flags &
  6070. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6071. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6072. return;
  6073. }
  6074. /*
  6075. * add cpu_power of each child group to this groups cpu_power
  6076. */
  6077. group = child->groups;
  6078. do {
  6079. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6080. group = group->next;
  6081. } while (group != child->groups);
  6082. }
  6083. /*
  6084. * Initializers for schedule domains
  6085. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6086. */
  6087. #define SD_INIT(sd, type) sd_init_##type(sd)
  6088. #define SD_INIT_FUNC(type) \
  6089. static noinline void sd_init_##type(struct sched_domain *sd) \
  6090. { \
  6091. memset(sd, 0, sizeof(*sd)); \
  6092. *sd = SD_##type##_INIT; \
  6093. sd->level = SD_LV_##type; \
  6094. }
  6095. SD_INIT_FUNC(CPU)
  6096. #ifdef CONFIG_NUMA
  6097. SD_INIT_FUNC(ALLNODES)
  6098. SD_INIT_FUNC(NODE)
  6099. #endif
  6100. #ifdef CONFIG_SCHED_SMT
  6101. SD_INIT_FUNC(SIBLING)
  6102. #endif
  6103. #ifdef CONFIG_SCHED_MC
  6104. SD_INIT_FUNC(MC)
  6105. #endif
  6106. /*
  6107. * To minimize stack usage kmalloc room for cpumasks and share the
  6108. * space as the usage in build_sched_domains() dictates. Used only
  6109. * if the amount of space is significant.
  6110. */
  6111. struct allmasks {
  6112. cpumask_t tmpmask; /* make this one first */
  6113. union {
  6114. cpumask_t nodemask;
  6115. cpumask_t this_sibling_map;
  6116. cpumask_t this_core_map;
  6117. };
  6118. cpumask_t send_covered;
  6119. #ifdef CONFIG_NUMA
  6120. cpumask_t domainspan;
  6121. cpumask_t covered;
  6122. cpumask_t notcovered;
  6123. #endif
  6124. };
  6125. #if NR_CPUS > 128
  6126. #define SCHED_CPUMASK_ALLOC 1
  6127. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6128. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6129. #else
  6130. #define SCHED_CPUMASK_ALLOC 0
  6131. #define SCHED_CPUMASK_FREE(v)
  6132. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6133. #endif
  6134. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6135. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6136. static int default_relax_domain_level = -1;
  6137. static int __init setup_relax_domain_level(char *str)
  6138. {
  6139. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  6140. return 1;
  6141. }
  6142. __setup("relax_domain_level=", setup_relax_domain_level);
  6143. static void set_domain_attribute(struct sched_domain *sd,
  6144. struct sched_domain_attr *attr)
  6145. {
  6146. int request;
  6147. if (!attr || attr->relax_domain_level < 0) {
  6148. if (default_relax_domain_level < 0)
  6149. return;
  6150. else
  6151. request = default_relax_domain_level;
  6152. } else
  6153. request = attr->relax_domain_level;
  6154. if (request < sd->level) {
  6155. /* turn off idle balance on this domain */
  6156. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6157. } else {
  6158. /* turn on idle balance on this domain */
  6159. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6160. }
  6161. }
  6162. /*
  6163. * Build sched domains for a given set of cpus and attach the sched domains
  6164. * to the individual cpus
  6165. */
  6166. static int __build_sched_domains(const cpumask_t *cpu_map,
  6167. struct sched_domain_attr *attr)
  6168. {
  6169. int i;
  6170. struct root_domain *rd;
  6171. SCHED_CPUMASK_DECLARE(allmasks);
  6172. cpumask_t *tmpmask;
  6173. #ifdef CONFIG_NUMA
  6174. struct sched_group **sched_group_nodes = NULL;
  6175. int sd_allnodes = 0;
  6176. /*
  6177. * Allocate the per-node list of sched groups
  6178. */
  6179. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6180. GFP_KERNEL);
  6181. if (!sched_group_nodes) {
  6182. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6183. return -ENOMEM;
  6184. }
  6185. #endif
  6186. rd = alloc_rootdomain();
  6187. if (!rd) {
  6188. printk(KERN_WARNING "Cannot alloc root domain\n");
  6189. #ifdef CONFIG_NUMA
  6190. kfree(sched_group_nodes);
  6191. #endif
  6192. return -ENOMEM;
  6193. }
  6194. #if SCHED_CPUMASK_ALLOC
  6195. /* get space for all scratch cpumask variables */
  6196. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6197. if (!allmasks) {
  6198. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6199. kfree(rd);
  6200. #ifdef CONFIG_NUMA
  6201. kfree(sched_group_nodes);
  6202. #endif
  6203. return -ENOMEM;
  6204. }
  6205. #endif
  6206. tmpmask = (cpumask_t *)allmasks;
  6207. #ifdef CONFIG_NUMA
  6208. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6209. #endif
  6210. /*
  6211. * Set up domains for cpus specified by the cpu_map.
  6212. */
  6213. for_each_cpu_mask(i, *cpu_map) {
  6214. struct sched_domain *sd = NULL, *p;
  6215. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6216. *nodemask = node_to_cpumask(cpu_to_node(i));
  6217. cpus_and(*nodemask, *nodemask, *cpu_map);
  6218. #ifdef CONFIG_NUMA
  6219. if (cpus_weight(*cpu_map) >
  6220. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6221. sd = &per_cpu(allnodes_domains, i);
  6222. SD_INIT(sd, ALLNODES);
  6223. set_domain_attribute(sd, attr);
  6224. sd->span = *cpu_map;
  6225. sd->first_cpu = first_cpu(sd->span);
  6226. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6227. p = sd;
  6228. sd_allnodes = 1;
  6229. } else
  6230. p = NULL;
  6231. sd = &per_cpu(node_domains, i);
  6232. SD_INIT(sd, NODE);
  6233. set_domain_attribute(sd, attr);
  6234. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6235. sd->first_cpu = first_cpu(sd->span);
  6236. sd->parent = p;
  6237. if (p)
  6238. p->child = sd;
  6239. cpus_and(sd->span, sd->span, *cpu_map);
  6240. #endif
  6241. p = sd;
  6242. sd = &per_cpu(phys_domains, i);
  6243. SD_INIT(sd, CPU);
  6244. set_domain_attribute(sd, attr);
  6245. sd->span = *nodemask;
  6246. sd->first_cpu = first_cpu(sd->span);
  6247. sd->parent = p;
  6248. if (p)
  6249. p->child = sd;
  6250. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6251. #ifdef CONFIG_SCHED_MC
  6252. p = sd;
  6253. sd = &per_cpu(core_domains, i);
  6254. SD_INIT(sd, MC);
  6255. set_domain_attribute(sd, attr);
  6256. sd->span = cpu_coregroup_map(i);
  6257. sd->first_cpu = first_cpu(sd->span);
  6258. cpus_and(sd->span, sd->span, *cpu_map);
  6259. sd->parent = p;
  6260. p->child = sd;
  6261. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6262. #endif
  6263. #ifdef CONFIG_SCHED_SMT
  6264. p = sd;
  6265. sd = &per_cpu(cpu_domains, i);
  6266. SD_INIT(sd, SIBLING);
  6267. set_domain_attribute(sd, attr);
  6268. sd->span = per_cpu(cpu_sibling_map, i);
  6269. sd->first_cpu = first_cpu(sd->span);
  6270. cpus_and(sd->span, sd->span, *cpu_map);
  6271. sd->parent = p;
  6272. p->child = sd;
  6273. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6274. #endif
  6275. }
  6276. #ifdef CONFIG_SCHED_SMT
  6277. /* Set up CPU (sibling) groups */
  6278. for_each_cpu_mask(i, *cpu_map) {
  6279. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6280. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6281. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6282. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6283. if (i != first_cpu(*this_sibling_map))
  6284. continue;
  6285. init_sched_build_groups(this_sibling_map, cpu_map,
  6286. &cpu_to_cpu_group,
  6287. send_covered, tmpmask);
  6288. }
  6289. #endif
  6290. #ifdef CONFIG_SCHED_MC
  6291. /* Set up multi-core groups */
  6292. for_each_cpu_mask(i, *cpu_map) {
  6293. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6294. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6295. *this_core_map = cpu_coregroup_map(i);
  6296. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6297. if (i != first_cpu(*this_core_map))
  6298. continue;
  6299. init_sched_build_groups(this_core_map, cpu_map,
  6300. &cpu_to_core_group,
  6301. send_covered, tmpmask);
  6302. }
  6303. #endif
  6304. /* Set up physical groups */
  6305. for (i = 0; i < MAX_NUMNODES; i++) {
  6306. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6307. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6308. *nodemask = node_to_cpumask(i);
  6309. cpus_and(*nodemask, *nodemask, *cpu_map);
  6310. if (cpus_empty(*nodemask))
  6311. continue;
  6312. init_sched_build_groups(nodemask, cpu_map,
  6313. &cpu_to_phys_group,
  6314. send_covered, tmpmask);
  6315. }
  6316. #ifdef CONFIG_NUMA
  6317. /* Set up node groups */
  6318. if (sd_allnodes) {
  6319. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6320. init_sched_build_groups(cpu_map, cpu_map,
  6321. &cpu_to_allnodes_group,
  6322. send_covered, tmpmask);
  6323. }
  6324. for (i = 0; i < MAX_NUMNODES; i++) {
  6325. /* Set up node groups */
  6326. struct sched_group *sg, *prev;
  6327. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6328. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6329. SCHED_CPUMASK_VAR(covered, allmasks);
  6330. int j;
  6331. *nodemask = node_to_cpumask(i);
  6332. cpus_clear(*covered);
  6333. cpus_and(*nodemask, *nodemask, *cpu_map);
  6334. if (cpus_empty(*nodemask)) {
  6335. sched_group_nodes[i] = NULL;
  6336. continue;
  6337. }
  6338. sched_domain_node_span(i, domainspan);
  6339. cpus_and(*domainspan, *domainspan, *cpu_map);
  6340. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6341. if (!sg) {
  6342. printk(KERN_WARNING "Can not alloc domain group for "
  6343. "node %d\n", i);
  6344. goto error;
  6345. }
  6346. sched_group_nodes[i] = sg;
  6347. for_each_cpu_mask(j, *nodemask) {
  6348. struct sched_domain *sd;
  6349. sd = &per_cpu(node_domains, j);
  6350. sd->groups = sg;
  6351. }
  6352. sg->__cpu_power = 0;
  6353. sg->cpumask = *nodemask;
  6354. sg->next = sg;
  6355. cpus_or(*covered, *covered, *nodemask);
  6356. prev = sg;
  6357. for (j = 0; j < MAX_NUMNODES; j++) {
  6358. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6359. int n = (i + j) % MAX_NUMNODES;
  6360. node_to_cpumask_ptr(pnodemask, n);
  6361. cpus_complement(*notcovered, *covered);
  6362. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6363. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6364. if (cpus_empty(*tmpmask))
  6365. break;
  6366. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6367. if (cpus_empty(*tmpmask))
  6368. continue;
  6369. sg = kmalloc_node(sizeof(struct sched_group),
  6370. GFP_KERNEL, i);
  6371. if (!sg) {
  6372. printk(KERN_WARNING
  6373. "Can not alloc domain group for node %d\n", j);
  6374. goto error;
  6375. }
  6376. sg->__cpu_power = 0;
  6377. sg->cpumask = *tmpmask;
  6378. sg->next = prev->next;
  6379. cpus_or(*covered, *covered, *tmpmask);
  6380. prev->next = sg;
  6381. prev = sg;
  6382. }
  6383. }
  6384. #endif
  6385. /* Calculate CPU power for physical packages and nodes */
  6386. #ifdef CONFIG_SCHED_SMT
  6387. for_each_cpu_mask(i, *cpu_map) {
  6388. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6389. init_sched_groups_power(i, sd);
  6390. }
  6391. #endif
  6392. #ifdef CONFIG_SCHED_MC
  6393. for_each_cpu_mask(i, *cpu_map) {
  6394. struct sched_domain *sd = &per_cpu(core_domains, i);
  6395. init_sched_groups_power(i, sd);
  6396. }
  6397. #endif
  6398. for_each_cpu_mask(i, *cpu_map) {
  6399. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6400. init_sched_groups_power(i, sd);
  6401. }
  6402. #ifdef CONFIG_NUMA
  6403. for (i = 0; i < MAX_NUMNODES; i++)
  6404. init_numa_sched_groups_power(sched_group_nodes[i]);
  6405. if (sd_allnodes) {
  6406. struct sched_group *sg;
  6407. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6408. tmpmask);
  6409. init_numa_sched_groups_power(sg);
  6410. }
  6411. #endif
  6412. /* Attach the domains */
  6413. for_each_cpu_mask(i, *cpu_map) {
  6414. struct sched_domain *sd;
  6415. #ifdef CONFIG_SCHED_SMT
  6416. sd = &per_cpu(cpu_domains, i);
  6417. #elif defined(CONFIG_SCHED_MC)
  6418. sd = &per_cpu(core_domains, i);
  6419. #else
  6420. sd = &per_cpu(phys_domains, i);
  6421. #endif
  6422. cpu_attach_domain(sd, rd, i);
  6423. }
  6424. SCHED_CPUMASK_FREE((void *)allmasks);
  6425. return 0;
  6426. #ifdef CONFIG_NUMA
  6427. error:
  6428. free_sched_groups(cpu_map, tmpmask);
  6429. SCHED_CPUMASK_FREE((void *)allmasks);
  6430. return -ENOMEM;
  6431. #endif
  6432. }
  6433. static int build_sched_domains(const cpumask_t *cpu_map)
  6434. {
  6435. return __build_sched_domains(cpu_map, NULL);
  6436. }
  6437. static cpumask_t *doms_cur; /* current sched domains */
  6438. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6439. static struct sched_domain_attr *dattr_cur; /* attribues of custom domains
  6440. in 'doms_cur' */
  6441. /*
  6442. * Special case: If a kmalloc of a doms_cur partition (array of
  6443. * cpumask_t) fails, then fallback to a single sched domain,
  6444. * as determined by the single cpumask_t fallback_doms.
  6445. */
  6446. static cpumask_t fallback_doms;
  6447. void __attribute__((weak)) arch_update_cpu_topology(void)
  6448. {
  6449. }
  6450. /*
  6451. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6452. * For now this just excludes isolated cpus, but could be used to
  6453. * exclude other special cases in the future.
  6454. */
  6455. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6456. {
  6457. int err;
  6458. arch_update_cpu_topology();
  6459. ndoms_cur = 1;
  6460. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6461. if (!doms_cur)
  6462. doms_cur = &fallback_doms;
  6463. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6464. dattr_cur = NULL;
  6465. err = build_sched_domains(doms_cur);
  6466. register_sched_domain_sysctl();
  6467. return err;
  6468. }
  6469. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6470. cpumask_t *tmpmask)
  6471. {
  6472. free_sched_groups(cpu_map, tmpmask);
  6473. }
  6474. /*
  6475. * Detach sched domains from a group of cpus specified in cpu_map
  6476. * These cpus will now be attached to the NULL domain
  6477. */
  6478. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6479. {
  6480. cpumask_t tmpmask;
  6481. int i;
  6482. unregister_sched_domain_sysctl();
  6483. for_each_cpu_mask(i, *cpu_map)
  6484. cpu_attach_domain(NULL, &def_root_domain, i);
  6485. synchronize_sched();
  6486. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6487. }
  6488. /* handle null as "default" */
  6489. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6490. struct sched_domain_attr *new, int idx_new)
  6491. {
  6492. struct sched_domain_attr tmp;
  6493. /* fast path */
  6494. if (!new && !cur)
  6495. return 1;
  6496. tmp = SD_ATTR_INIT;
  6497. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6498. new ? (new + idx_new) : &tmp,
  6499. sizeof(struct sched_domain_attr));
  6500. }
  6501. /*
  6502. * Partition sched domains as specified by the 'ndoms_new'
  6503. * cpumasks in the array doms_new[] of cpumasks. This compares
  6504. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6505. * It destroys each deleted domain and builds each new domain.
  6506. *
  6507. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6508. * The masks don't intersect (don't overlap.) We should setup one
  6509. * sched domain for each mask. CPUs not in any of the cpumasks will
  6510. * not be load balanced. If the same cpumask appears both in the
  6511. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6512. * it as it is.
  6513. *
  6514. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6515. * ownership of it and will kfree it when done with it. If the caller
  6516. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6517. * and partition_sched_domains() will fallback to the single partition
  6518. * 'fallback_doms'.
  6519. *
  6520. * Call with hotplug lock held
  6521. */
  6522. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6523. struct sched_domain_attr *dattr_new)
  6524. {
  6525. int i, j;
  6526. mutex_lock(&sched_domains_mutex);
  6527. /* always unregister in case we don't destroy any domains */
  6528. unregister_sched_domain_sysctl();
  6529. if (doms_new == NULL) {
  6530. ndoms_new = 1;
  6531. doms_new = &fallback_doms;
  6532. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6533. dattr_new = NULL;
  6534. }
  6535. /* Destroy deleted domains */
  6536. for (i = 0; i < ndoms_cur; i++) {
  6537. for (j = 0; j < ndoms_new; j++) {
  6538. if (cpus_equal(doms_cur[i], doms_new[j])
  6539. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6540. goto match1;
  6541. }
  6542. /* no match - a current sched domain not in new doms_new[] */
  6543. detach_destroy_domains(doms_cur + i);
  6544. match1:
  6545. ;
  6546. }
  6547. /* Build new domains */
  6548. for (i = 0; i < ndoms_new; i++) {
  6549. for (j = 0; j < ndoms_cur; j++) {
  6550. if (cpus_equal(doms_new[i], doms_cur[j])
  6551. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6552. goto match2;
  6553. }
  6554. /* no match - add a new doms_new */
  6555. __build_sched_domains(doms_new + i,
  6556. dattr_new ? dattr_new + i : NULL);
  6557. match2:
  6558. ;
  6559. }
  6560. /* Remember the new sched domains */
  6561. if (doms_cur != &fallback_doms)
  6562. kfree(doms_cur);
  6563. kfree(dattr_cur); /* kfree(NULL) is safe */
  6564. doms_cur = doms_new;
  6565. dattr_cur = dattr_new;
  6566. ndoms_cur = ndoms_new;
  6567. register_sched_domain_sysctl();
  6568. mutex_unlock(&sched_domains_mutex);
  6569. }
  6570. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6571. int arch_reinit_sched_domains(void)
  6572. {
  6573. int err;
  6574. get_online_cpus();
  6575. mutex_lock(&sched_domains_mutex);
  6576. detach_destroy_domains(&cpu_online_map);
  6577. err = arch_init_sched_domains(&cpu_online_map);
  6578. mutex_unlock(&sched_domains_mutex);
  6579. put_online_cpus();
  6580. return err;
  6581. }
  6582. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6583. {
  6584. int ret;
  6585. if (buf[0] != '0' && buf[0] != '1')
  6586. return -EINVAL;
  6587. if (smt)
  6588. sched_smt_power_savings = (buf[0] == '1');
  6589. else
  6590. sched_mc_power_savings = (buf[0] == '1');
  6591. ret = arch_reinit_sched_domains();
  6592. return ret ? ret : count;
  6593. }
  6594. #ifdef CONFIG_SCHED_MC
  6595. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6596. {
  6597. return sprintf(page, "%u\n", sched_mc_power_savings);
  6598. }
  6599. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6600. const char *buf, size_t count)
  6601. {
  6602. return sched_power_savings_store(buf, count, 0);
  6603. }
  6604. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6605. sched_mc_power_savings_store);
  6606. #endif
  6607. #ifdef CONFIG_SCHED_SMT
  6608. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6609. {
  6610. return sprintf(page, "%u\n", sched_smt_power_savings);
  6611. }
  6612. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6613. const char *buf, size_t count)
  6614. {
  6615. return sched_power_savings_store(buf, count, 1);
  6616. }
  6617. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6618. sched_smt_power_savings_store);
  6619. #endif
  6620. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6621. {
  6622. int err = 0;
  6623. #ifdef CONFIG_SCHED_SMT
  6624. if (smt_capable())
  6625. err = sysfs_create_file(&cls->kset.kobj,
  6626. &attr_sched_smt_power_savings.attr);
  6627. #endif
  6628. #ifdef CONFIG_SCHED_MC
  6629. if (!err && mc_capable())
  6630. err = sysfs_create_file(&cls->kset.kobj,
  6631. &attr_sched_mc_power_savings.attr);
  6632. #endif
  6633. return err;
  6634. }
  6635. #endif
  6636. /*
  6637. * Force a reinitialization of the sched domains hierarchy. The domains
  6638. * and groups cannot be updated in place without racing with the balancing
  6639. * code, so we temporarily attach all running cpus to the NULL domain
  6640. * which will prevent rebalancing while the sched domains are recalculated.
  6641. */
  6642. static int update_sched_domains(struct notifier_block *nfb,
  6643. unsigned long action, void *hcpu)
  6644. {
  6645. switch (action) {
  6646. case CPU_UP_PREPARE:
  6647. case CPU_UP_PREPARE_FROZEN:
  6648. case CPU_DOWN_PREPARE:
  6649. case CPU_DOWN_PREPARE_FROZEN:
  6650. detach_destroy_domains(&cpu_online_map);
  6651. return NOTIFY_OK;
  6652. case CPU_UP_CANCELED:
  6653. case CPU_UP_CANCELED_FROZEN:
  6654. case CPU_DOWN_FAILED:
  6655. case CPU_DOWN_FAILED_FROZEN:
  6656. case CPU_ONLINE:
  6657. case CPU_ONLINE_FROZEN:
  6658. case CPU_DEAD:
  6659. case CPU_DEAD_FROZEN:
  6660. /*
  6661. * Fall through and re-initialise the domains.
  6662. */
  6663. break;
  6664. default:
  6665. return NOTIFY_DONE;
  6666. }
  6667. /* The hotplug lock is already held by cpu_up/cpu_down */
  6668. arch_init_sched_domains(&cpu_online_map);
  6669. return NOTIFY_OK;
  6670. }
  6671. void __init sched_init_smp(void)
  6672. {
  6673. cpumask_t non_isolated_cpus;
  6674. #if defined(CONFIG_NUMA)
  6675. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6676. GFP_KERNEL);
  6677. BUG_ON(sched_group_nodes_bycpu == NULL);
  6678. #endif
  6679. get_online_cpus();
  6680. mutex_lock(&sched_domains_mutex);
  6681. arch_init_sched_domains(&cpu_online_map);
  6682. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6683. if (cpus_empty(non_isolated_cpus))
  6684. cpu_set(smp_processor_id(), non_isolated_cpus);
  6685. mutex_unlock(&sched_domains_mutex);
  6686. put_online_cpus();
  6687. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6688. hotcpu_notifier(update_sched_domains, 0);
  6689. init_hrtick();
  6690. /* Move init over to a non-isolated CPU */
  6691. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6692. BUG();
  6693. sched_init_granularity();
  6694. }
  6695. #else
  6696. void __init sched_init_smp(void)
  6697. {
  6698. sched_init_granularity();
  6699. }
  6700. #endif /* CONFIG_SMP */
  6701. int in_sched_functions(unsigned long addr)
  6702. {
  6703. return in_lock_functions(addr) ||
  6704. (addr >= (unsigned long)__sched_text_start
  6705. && addr < (unsigned long)__sched_text_end);
  6706. }
  6707. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6708. {
  6709. cfs_rq->tasks_timeline = RB_ROOT;
  6710. INIT_LIST_HEAD(&cfs_rq->tasks);
  6711. #ifdef CONFIG_FAIR_GROUP_SCHED
  6712. cfs_rq->rq = rq;
  6713. #endif
  6714. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6715. }
  6716. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6717. {
  6718. struct rt_prio_array *array;
  6719. int i;
  6720. array = &rt_rq->active;
  6721. for (i = 0; i < MAX_RT_PRIO; i++) {
  6722. INIT_LIST_HEAD(array->queue + i);
  6723. __clear_bit(i, array->bitmap);
  6724. }
  6725. /* delimiter for bitsearch: */
  6726. __set_bit(MAX_RT_PRIO, array->bitmap);
  6727. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6728. rt_rq->highest_prio = MAX_RT_PRIO;
  6729. #endif
  6730. #ifdef CONFIG_SMP
  6731. rt_rq->rt_nr_migratory = 0;
  6732. rt_rq->overloaded = 0;
  6733. #endif
  6734. rt_rq->rt_time = 0;
  6735. rt_rq->rt_throttled = 0;
  6736. rt_rq->rt_runtime = 0;
  6737. spin_lock_init(&rt_rq->rt_runtime_lock);
  6738. #ifdef CONFIG_RT_GROUP_SCHED
  6739. rt_rq->rt_nr_boosted = 0;
  6740. rt_rq->rq = rq;
  6741. #endif
  6742. }
  6743. #ifdef CONFIG_FAIR_GROUP_SCHED
  6744. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6745. struct sched_entity *se, int cpu, int add,
  6746. struct sched_entity *parent)
  6747. {
  6748. struct rq *rq = cpu_rq(cpu);
  6749. tg->cfs_rq[cpu] = cfs_rq;
  6750. init_cfs_rq(cfs_rq, rq);
  6751. cfs_rq->tg = tg;
  6752. if (add)
  6753. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6754. tg->se[cpu] = se;
  6755. /* se could be NULL for init_task_group */
  6756. if (!se)
  6757. return;
  6758. if (!parent)
  6759. se->cfs_rq = &rq->cfs;
  6760. else
  6761. se->cfs_rq = parent->my_q;
  6762. se->my_q = cfs_rq;
  6763. se->load.weight = tg->shares;
  6764. se->load.inv_weight = 0;
  6765. se->parent = parent;
  6766. }
  6767. #endif
  6768. #ifdef CONFIG_RT_GROUP_SCHED
  6769. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6770. struct sched_rt_entity *rt_se, int cpu, int add,
  6771. struct sched_rt_entity *parent)
  6772. {
  6773. struct rq *rq = cpu_rq(cpu);
  6774. tg->rt_rq[cpu] = rt_rq;
  6775. init_rt_rq(rt_rq, rq);
  6776. rt_rq->tg = tg;
  6777. rt_rq->rt_se = rt_se;
  6778. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6779. if (add)
  6780. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6781. tg->rt_se[cpu] = rt_se;
  6782. if (!rt_se)
  6783. return;
  6784. if (!parent)
  6785. rt_se->rt_rq = &rq->rt;
  6786. else
  6787. rt_se->rt_rq = parent->my_q;
  6788. rt_se->rt_rq = &rq->rt;
  6789. rt_se->my_q = rt_rq;
  6790. rt_se->parent = parent;
  6791. INIT_LIST_HEAD(&rt_se->run_list);
  6792. }
  6793. #endif
  6794. void __init sched_init(void)
  6795. {
  6796. int i, j;
  6797. unsigned long alloc_size = 0, ptr;
  6798. #ifdef CONFIG_FAIR_GROUP_SCHED
  6799. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6800. #endif
  6801. #ifdef CONFIG_RT_GROUP_SCHED
  6802. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6803. #endif
  6804. #ifdef CONFIG_USER_SCHED
  6805. alloc_size *= 2;
  6806. #endif
  6807. /*
  6808. * As sched_init() is called before page_alloc is setup,
  6809. * we use alloc_bootmem().
  6810. */
  6811. if (alloc_size) {
  6812. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6813. #ifdef CONFIG_FAIR_GROUP_SCHED
  6814. init_task_group.se = (struct sched_entity **)ptr;
  6815. ptr += nr_cpu_ids * sizeof(void **);
  6816. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6817. ptr += nr_cpu_ids * sizeof(void **);
  6818. #ifdef CONFIG_USER_SCHED
  6819. root_task_group.se = (struct sched_entity **)ptr;
  6820. ptr += nr_cpu_ids * sizeof(void **);
  6821. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6822. ptr += nr_cpu_ids * sizeof(void **);
  6823. #endif
  6824. #endif
  6825. #ifdef CONFIG_RT_GROUP_SCHED
  6826. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6827. ptr += nr_cpu_ids * sizeof(void **);
  6828. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6829. ptr += nr_cpu_ids * sizeof(void **);
  6830. #ifdef CONFIG_USER_SCHED
  6831. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6832. ptr += nr_cpu_ids * sizeof(void **);
  6833. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6834. ptr += nr_cpu_ids * sizeof(void **);
  6835. #endif
  6836. #endif
  6837. }
  6838. #ifdef CONFIG_SMP
  6839. init_aggregate();
  6840. init_defrootdomain();
  6841. #endif
  6842. init_rt_bandwidth(&def_rt_bandwidth,
  6843. global_rt_period(), global_rt_runtime());
  6844. #ifdef CONFIG_RT_GROUP_SCHED
  6845. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6846. global_rt_period(), global_rt_runtime());
  6847. #ifdef CONFIG_USER_SCHED
  6848. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6849. global_rt_period(), RUNTIME_INF);
  6850. #endif
  6851. #endif
  6852. #ifdef CONFIG_GROUP_SCHED
  6853. list_add(&init_task_group.list, &task_groups);
  6854. INIT_LIST_HEAD(&init_task_group.children);
  6855. #ifdef CONFIG_USER_SCHED
  6856. INIT_LIST_HEAD(&root_task_group.children);
  6857. init_task_group.parent = &root_task_group;
  6858. list_add(&init_task_group.siblings, &root_task_group.children);
  6859. #endif
  6860. #endif
  6861. for_each_possible_cpu(i) {
  6862. struct rq *rq;
  6863. rq = cpu_rq(i);
  6864. spin_lock_init(&rq->lock);
  6865. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6866. rq->nr_running = 0;
  6867. init_cfs_rq(&rq->cfs, rq);
  6868. init_rt_rq(&rq->rt, rq);
  6869. #ifdef CONFIG_FAIR_GROUP_SCHED
  6870. init_task_group.shares = init_task_group_load;
  6871. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6872. #ifdef CONFIG_CGROUP_SCHED
  6873. /*
  6874. * How much cpu bandwidth does init_task_group get?
  6875. *
  6876. * In case of task-groups formed thr' the cgroup filesystem, it
  6877. * gets 100% of the cpu resources in the system. This overall
  6878. * system cpu resource is divided among the tasks of
  6879. * init_task_group and its child task-groups in a fair manner,
  6880. * based on each entity's (task or task-group's) weight
  6881. * (se->load.weight).
  6882. *
  6883. * In other words, if init_task_group has 10 tasks of weight
  6884. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6885. * then A0's share of the cpu resource is:
  6886. *
  6887. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6888. *
  6889. * We achieve this by letting init_task_group's tasks sit
  6890. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6891. */
  6892. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6893. #elif defined CONFIG_USER_SCHED
  6894. root_task_group.shares = NICE_0_LOAD;
  6895. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6896. /*
  6897. * In case of task-groups formed thr' the user id of tasks,
  6898. * init_task_group represents tasks belonging to root user.
  6899. * Hence it forms a sibling of all subsequent groups formed.
  6900. * In this case, init_task_group gets only a fraction of overall
  6901. * system cpu resource, based on the weight assigned to root
  6902. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6903. * by letting tasks of init_task_group sit in a separate cfs_rq
  6904. * (init_cfs_rq) and having one entity represent this group of
  6905. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6906. */
  6907. init_tg_cfs_entry(&init_task_group,
  6908. &per_cpu(init_cfs_rq, i),
  6909. &per_cpu(init_sched_entity, i), i, 1,
  6910. root_task_group.se[i]);
  6911. #endif
  6912. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6913. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6914. #ifdef CONFIG_RT_GROUP_SCHED
  6915. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6916. #ifdef CONFIG_CGROUP_SCHED
  6917. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6918. #elif defined CONFIG_USER_SCHED
  6919. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6920. init_tg_rt_entry(&init_task_group,
  6921. &per_cpu(init_rt_rq, i),
  6922. &per_cpu(init_sched_rt_entity, i), i, 1,
  6923. root_task_group.rt_se[i]);
  6924. #endif
  6925. #endif
  6926. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6927. rq->cpu_load[j] = 0;
  6928. #ifdef CONFIG_SMP
  6929. rq->sd = NULL;
  6930. rq->rd = NULL;
  6931. rq->active_balance = 0;
  6932. rq->next_balance = jiffies;
  6933. rq->push_cpu = 0;
  6934. rq->cpu = i;
  6935. rq->migration_thread = NULL;
  6936. INIT_LIST_HEAD(&rq->migration_queue);
  6937. rq_attach_root(rq, &def_root_domain);
  6938. #endif
  6939. init_rq_hrtick(rq);
  6940. atomic_set(&rq->nr_iowait, 0);
  6941. }
  6942. set_load_weight(&init_task);
  6943. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6944. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6945. #endif
  6946. #ifdef CONFIG_SMP
  6947. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6948. #endif
  6949. #ifdef CONFIG_RT_MUTEXES
  6950. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6951. #endif
  6952. /*
  6953. * The boot idle thread does lazy MMU switching as well:
  6954. */
  6955. atomic_inc(&init_mm.mm_count);
  6956. enter_lazy_tlb(&init_mm, current);
  6957. /*
  6958. * Make us the idle thread. Technically, schedule() should not be
  6959. * called from this thread, however somewhere below it might be,
  6960. * but because we are the idle thread, we just pick up running again
  6961. * when this runqueue becomes "idle".
  6962. */
  6963. init_idle(current, smp_processor_id());
  6964. /*
  6965. * During early bootup we pretend to be a normal task:
  6966. */
  6967. current->sched_class = &fair_sched_class;
  6968. scheduler_running = 1;
  6969. }
  6970. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6971. void __might_sleep(char *file, int line)
  6972. {
  6973. #ifdef in_atomic
  6974. static unsigned long prev_jiffy; /* ratelimiting */
  6975. if ((in_atomic() || irqs_disabled()) &&
  6976. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6977. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6978. return;
  6979. prev_jiffy = jiffies;
  6980. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6981. " context at %s:%d\n", file, line);
  6982. printk("in_atomic():%d, irqs_disabled():%d\n",
  6983. in_atomic(), irqs_disabled());
  6984. debug_show_held_locks(current);
  6985. if (irqs_disabled())
  6986. print_irqtrace_events(current);
  6987. dump_stack();
  6988. }
  6989. #endif
  6990. }
  6991. EXPORT_SYMBOL(__might_sleep);
  6992. #endif
  6993. #ifdef CONFIG_MAGIC_SYSRQ
  6994. static void normalize_task(struct rq *rq, struct task_struct *p)
  6995. {
  6996. int on_rq;
  6997. update_rq_clock(rq);
  6998. on_rq = p->se.on_rq;
  6999. if (on_rq)
  7000. deactivate_task(rq, p, 0);
  7001. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7002. if (on_rq) {
  7003. activate_task(rq, p, 0);
  7004. resched_task(rq->curr);
  7005. }
  7006. }
  7007. void normalize_rt_tasks(void)
  7008. {
  7009. struct task_struct *g, *p;
  7010. unsigned long flags;
  7011. struct rq *rq;
  7012. read_lock_irqsave(&tasklist_lock, flags);
  7013. do_each_thread(g, p) {
  7014. /*
  7015. * Only normalize user tasks:
  7016. */
  7017. if (!p->mm)
  7018. continue;
  7019. p->se.exec_start = 0;
  7020. #ifdef CONFIG_SCHEDSTATS
  7021. p->se.wait_start = 0;
  7022. p->se.sleep_start = 0;
  7023. p->se.block_start = 0;
  7024. #endif
  7025. if (!rt_task(p)) {
  7026. /*
  7027. * Renice negative nice level userspace
  7028. * tasks back to 0:
  7029. */
  7030. if (TASK_NICE(p) < 0 && p->mm)
  7031. set_user_nice(p, 0);
  7032. continue;
  7033. }
  7034. spin_lock(&p->pi_lock);
  7035. rq = __task_rq_lock(p);
  7036. normalize_task(rq, p);
  7037. __task_rq_unlock(rq);
  7038. spin_unlock(&p->pi_lock);
  7039. } while_each_thread(g, p);
  7040. read_unlock_irqrestore(&tasklist_lock, flags);
  7041. }
  7042. #endif /* CONFIG_MAGIC_SYSRQ */
  7043. #ifdef CONFIG_IA64
  7044. /*
  7045. * These functions are only useful for the IA64 MCA handling.
  7046. *
  7047. * They can only be called when the whole system has been
  7048. * stopped - every CPU needs to be quiescent, and no scheduling
  7049. * activity can take place. Using them for anything else would
  7050. * be a serious bug, and as a result, they aren't even visible
  7051. * under any other configuration.
  7052. */
  7053. /**
  7054. * curr_task - return the current task for a given cpu.
  7055. * @cpu: the processor in question.
  7056. *
  7057. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7058. */
  7059. struct task_struct *curr_task(int cpu)
  7060. {
  7061. return cpu_curr(cpu);
  7062. }
  7063. /**
  7064. * set_curr_task - set the current task for a given cpu.
  7065. * @cpu: the processor in question.
  7066. * @p: the task pointer to set.
  7067. *
  7068. * Description: This function must only be used when non-maskable interrupts
  7069. * are serviced on a separate stack. It allows the architecture to switch the
  7070. * notion of the current task on a cpu in a non-blocking manner. This function
  7071. * must be called with all CPU's synchronized, and interrupts disabled, the
  7072. * and caller must save the original value of the current task (see
  7073. * curr_task() above) and restore that value before reenabling interrupts and
  7074. * re-starting the system.
  7075. *
  7076. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7077. */
  7078. void set_curr_task(int cpu, struct task_struct *p)
  7079. {
  7080. cpu_curr(cpu) = p;
  7081. }
  7082. #endif
  7083. #ifdef CONFIG_FAIR_GROUP_SCHED
  7084. static void free_fair_sched_group(struct task_group *tg)
  7085. {
  7086. int i;
  7087. for_each_possible_cpu(i) {
  7088. if (tg->cfs_rq)
  7089. kfree(tg->cfs_rq[i]);
  7090. if (tg->se)
  7091. kfree(tg->se[i]);
  7092. }
  7093. kfree(tg->cfs_rq);
  7094. kfree(tg->se);
  7095. }
  7096. static
  7097. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7098. {
  7099. struct cfs_rq *cfs_rq;
  7100. struct sched_entity *se, *parent_se;
  7101. struct rq *rq;
  7102. int i;
  7103. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7104. if (!tg->cfs_rq)
  7105. goto err;
  7106. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7107. if (!tg->se)
  7108. goto err;
  7109. tg->shares = NICE_0_LOAD;
  7110. for_each_possible_cpu(i) {
  7111. rq = cpu_rq(i);
  7112. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7113. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7114. if (!cfs_rq)
  7115. goto err;
  7116. se = kmalloc_node(sizeof(struct sched_entity),
  7117. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7118. if (!se)
  7119. goto err;
  7120. parent_se = parent ? parent->se[i] : NULL;
  7121. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7122. }
  7123. return 1;
  7124. err:
  7125. return 0;
  7126. }
  7127. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7128. {
  7129. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7130. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7131. }
  7132. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7133. {
  7134. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7135. }
  7136. #else
  7137. static inline void free_fair_sched_group(struct task_group *tg)
  7138. {
  7139. }
  7140. static inline
  7141. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7142. {
  7143. return 1;
  7144. }
  7145. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7146. {
  7147. }
  7148. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7149. {
  7150. }
  7151. #endif
  7152. #ifdef CONFIG_RT_GROUP_SCHED
  7153. static void free_rt_sched_group(struct task_group *tg)
  7154. {
  7155. int i;
  7156. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7157. for_each_possible_cpu(i) {
  7158. if (tg->rt_rq)
  7159. kfree(tg->rt_rq[i]);
  7160. if (tg->rt_se)
  7161. kfree(tg->rt_se[i]);
  7162. }
  7163. kfree(tg->rt_rq);
  7164. kfree(tg->rt_se);
  7165. }
  7166. static
  7167. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7168. {
  7169. struct rt_rq *rt_rq;
  7170. struct sched_rt_entity *rt_se, *parent_se;
  7171. struct rq *rq;
  7172. int i;
  7173. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7174. if (!tg->rt_rq)
  7175. goto err;
  7176. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7177. if (!tg->rt_se)
  7178. goto err;
  7179. init_rt_bandwidth(&tg->rt_bandwidth,
  7180. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7181. for_each_possible_cpu(i) {
  7182. rq = cpu_rq(i);
  7183. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7184. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7185. if (!rt_rq)
  7186. goto err;
  7187. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7188. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7189. if (!rt_se)
  7190. goto err;
  7191. parent_se = parent ? parent->rt_se[i] : NULL;
  7192. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7193. }
  7194. return 1;
  7195. err:
  7196. return 0;
  7197. }
  7198. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7199. {
  7200. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7201. &cpu_rq(cpu)->leaf_rt_rq_list);
  7202. }
  7203. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7204. {
  7205. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7206. }
  7207. #else
  7208. static inline void free_rt_sched_group(struct task_group *tg)
  7209. {
  7210. }
  7211. static inline
  7212. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7213. {
  7214. return 1;
  7215. }
  7216. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7217. {
  7218. }
  7219. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7220. {
  7221. }
  7222. #endif
  7223. #ifdef CONFIG_GROUP_SCHED
  7224. static void free_sched_group(struct task_group *tg)
  7225. {
  7226. free_fair_sched_group(tg);
  7227. free_rt_sched_group(tg);
  7228. kfree(tg);
  7229. }
  7230. /* allocate runqueue etc for a new task group */
  7231. struct task_group *sched_create_group(struct task_group *parent)
  7232. {
  7233. struct task_group *tg;
  7234. unsigned long flags;
  7235. int i;
  7236. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7237. if (!tg)
  7238. return ERR_PTR(-ENOMEM);
  7239. if (!alloc_fair_sched_group(tg, parent))
  7240. goto err;
  7241. if (!alloc_rt_sched_group(tg, parent))
  7242. goto err;
  7243. spin_lock_irqsave(&task_group_lock, flags);
  7244. for_each_possible_cpu(i) {
  7245. register_fair_sched_group(tg, i);
  7246. register_rt_sched_group(tg, i);
  7247. }
  7248. list_add_rcu(&tg->list, &task_groups);
  7249. WARN_ON(!parent); /* root should already exist */
  7250. tg->parent = parent;
  7251. list_add_rcu(&tg->siblings, &parent->children);
  7252. INIT_LIST_HEAD(&tg->children);
  7253. spin_unlock_irqrestore(&task_group_lock, flags);
  7254. return tg;
  7255. err:
  7256. free_sched_group(tg);
  7257. return ERR_PTR(-ENOMEM);
  7258. }
  7259. /* rcu callback to free various structures associated with a task group */
  7260. static void free_sched_group_rcu(struct rcu_head *rhp)
  7261. {
  7262. /* now it should be safe to free those cfs_rqs */
  7263. free_sched_group(container_of(rhp, struct task_group, rcu));
  7264. }
  7265. /* Destroy runqueue etc associated with a task group */
  7266. void sched_destroy_group(struct task_group *tg)
  7267. {
  7268. unsigned long flags;
  7269. int i;
  7270. spin_lock_irqsave(&task_group_lock, flags);
  7271. for_each_possible_cpu(i) {
  7272. unregister_fair_sched_group(tg, i);
  7273. unregister_rt_sched_group(tg, i);
  7274. }
  7275. list_del_rcu(&tg->list);
  7276. list_del_rcu(&tg->siblings);
  7277. spin_unlock_irqrestore(&task_group_lock, flags);
  7278. /* wait for possible concurrent references to cfs_rqs complete */
  7279. call_rcu(&tg->rcu, free_sched_group_rcu);
  7280. }
  7281. /* change task's runqueue when it moves between groups.
  7282. * The caller of this function should have put the task in its new group
  7283. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7284. * reflect its new group.
  7285. */
  7286. void sched_move_task(struct task_struct *tsk)
  7287. {
  7288. int on_rq, running;
  7289. unsigned long flags;
  7290. struct rq *rq;
  7291. rq = task_rq_lock(tsk, &flags);
  7292. update_rq_clock(rq);
  7293. running = task_current(rq, tsk);
  7294. on_rq = tsk->se.on_rq;
  7295. if (on_rq)
  7296. dequeue_task(rq, tsk, 0);
  7297. if (unlikely(running))
  7298. tsk->sched_class->put_prev_task(rq, tsk);
  7299. set_task_rq(tsk, task_cpu(tsk));
  7300. #ifdef CONFIG_FAIR_GROUP_SCHED
  7301. if (tsk->sched_class->moved_group)
  7302. tsk->sched_class->moved_group(tsk);
  7303. #endif
  7304. if (unlikely(running))
  7305. tsk->sched_class->set_curr_task(rq);
  7306. if (on_rq)
  7307. enqueue_task(rq, tsk, 0);
  7308. task_rq_unlock(rq, &flags);
  7309. }
  7310. #endif
  7311. #ifdef CONFIG_FAIR_GROUP_SCHED
  7312. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7313. {
  7314. struct cfs_rq *cfs_rq = se->cfs_rq;
  7315. int on_rq;
  7316. on_rq = se->on_rq;
  7317. if (on_rq)
  7318. dequeue_entity(cfs_rq, se, 0);
  7319. se->load.weight = shares;
  7320. se->load.inv_weight = 0;
  7321. if (on_rq)
  7322. enqueue_entity(cfs_rq, se, 0);
  7323. }
  7324. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7325. {
  7326. struct cfs_rq *cfs_rq = se->cfs_rq;
  7327. struct rq *rq = cfs_rq->rq;
  7328. unsigned long flags;
  7329. spin_lock_irqsave(&rq->lock, flags);
  7330. __set_se_shares(se, shares);
  7331. spin_unlock_irqrestore(&rq->lock, flags);
  7332. }
  7333. static DEFINE_MUTEX(shares_mutex);
  7334. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7335. {
  7336. int i;
  7337. unsigned long flags;
  7338. /*
  7339. * We can't change the weight of the root cgroup.
  7340. */
  7341. if (!tg->se[0])
  7342. return -EINVAL;
  7343. if (shares < MIN_SHARES)
  7344. shares = MIN_SHARES;
  7345. else if (shares > MAX_SHARES)
  7346. shares = MAX_SHARES;
  7347. mutex_lock(&shares_mutex);
  7348. if (tg->shares == shares)
  7349. goto done;
  7350. spin_lock_irqsave(&task_group_lock, flags);
  7351. for_each_possible_cpu(i)
  7352. unregister_fair_sched_group(tg, i);
  7353. list_del_rcu(&tg->siblings);
  7354. spin_unlock_irqrestore(&task_group_lock, flags);
  7355. /* wait for any ongoing reference to this group to finish */
  7356. synchronize_sched();
  7357. /*
  7358. * Now we are free to modify the group's share on each cpu
  7359. * w/o tripping rebalance_share or load_balance_fair.
  7360. */
  7361. tg->shares = shares;
  7362. for_each_possible_cpu(i) {
  7363. /*
  7364. * force a rebalance
  7365. */
  7366. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7367. set_se_shares(tg->se[i], shares);
  7368. }
  7369. /*
  7370. * Enable load balance activity on this group, by inserting it back on
  7371. * each cpu's rq->leaf_cfs_rq_list.
  7372. */
  7373. spin_lock_irqsave(&task_group_lock, flags);
  7374. for_each_possible_cpu(i)
  7375. register_fair_sched_group(tg, i);
  7376. list_add_rcu(&tg->siblings, &tg->parent->children);
  7377. spin_unlock_irqrestore(&task_group_lock, flags);
  7378. done:
  7379. mutex_unlock(&shares_mutex);
  7380. return 0;
  7381. }
  7382. unsigned long sched_group_shares(struct task_group *tg)
  7383. {
  7384. return tg->shares;
  7385. }
  7386. #endif
  7387. #ifdef CONFIG_RT_GROUP_SCHED
  7388. /*
  7389. * Ensure that the real time constraints are schedulable.
  7390. */
  7391. static DEFINE_MUTEX(rt_constraints_mutex);
  7392. static unsigned long to_ratio(u64 period, u64 runtime)
  7393. {
  7394. if (runtime == RUNTIME_INF)
  7395. return 1ULL << 16;
  7396. return div64_u64(runtime << 16, period);
  7397. }
  7398. #ifdef CONFIG_CGROUP_SCHED
  7399. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7400. {
  7401. struct task_group *tgi, *parent = tg->parent;
  7402. unsigned long total = 0;
  7403. if (!parent) {
  7404. if (global_rt_period() < period)
  7405. return 0;
  7406. return to_ratio(period, runtime) <
  7407. to_ratio(global_rt_period(), global_rt_runtime());
  7408. }
  7409. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7410. return 0;
  7411. rcu_read_lock();
  7412. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7413. if (tgi == tg)
  7414. continue;
  7415. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7416. tgi->rt_bandwidth.rt_runtime);
  7417. }
  7418. rcu_read_unlock();
  7419. return total + to_ratio(period, runtime) <
  7420. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7421. parent->rt_bandwidth.rt_runtime);
  7422. }
  7423. #elif defined CONFIG_USER_SCHED
  7424. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7425. {
  7426. struct task_group *tgi;
  7427. unsigned long total = 0;
  7428. unsigned long global_ratio =
  7429. to_ratio(global_rt_period(), global_rt_runtime());
  7430. rcu_read_lock();
  7431. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7432. if (tgi == tg)
  7433. continue;
  7434. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7435. tgi->rt_bandwidth.rt_runtime);
  7436. }
  7437. rcu_read_unlock();
  7438. return total + to_ratio(period, runtime) < global_ratio;
  7439. }
  7440. #endif
  7441. /* Must be called with tasklist_lock held */
  7442. static inline int tg_has_rt_tasks(struct task_group *tg)
  7443. {
  7444. struct task_struct *g, *p;
  7445. do_each_thread(g, p) {
  7446. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7447. return 1;
  7448. } while_each_thread(g, p);
  7449. return 0;
  7450. }
  7451. static int tg_set_bandwidth(struct task_group *tg,
  7452. u64 rt_period, u64 rt_runtime)
  7453. {
  7454. int i, err = 0;
  7455. mutex_lock(&rt_constraints_mutex);
  7456. read_lock(&tasklist_lock);
  7457. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7458. err = -EBUSY;
  7459. goto unlock;
  7460. }
  7461. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7462. err = -EINVAL;
  7463. goto unlock;
  7464. }
  7465. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7466. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7467. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7468. for_each_possible_cpu(i) {
  7469. struct rt_rq *rt_rq = tg->rt_rq[i];
  7470. spin_lock(&rt_rq->rt_runtime_lock);
  7471. rt_rq->rt_runtime = rt_runtime;
  7472. spin_unlock(&rt_rq->rt_runtime_lock);
  7473. }
  7474. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7475. unlock:
  7476. read_unlock(&tasklist_lock);
  7477. mutex_unlock(&rt_constraints_mutex);
  7478. return err;
  7479. }
  7480. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7481. {
  7482. u64 rt_runtime, rt_period;
  7483. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7484. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7485. if (rt_runtime_us < 0)
  7486. rt_runtime = RUNTIME_INF;
  7487. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7488. }
  7489. long sched_group_rt_runtime(struct task_group *tg)
  7490. {
  7491. u64 rt_runtime_us;
  7492. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7493. return -1;
  7494. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7495. do_div(rt_runtime_us, NSEC_PER_USEC);
  7496. return rt_runtime_us;
  7497. }
  7498. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7499. {
  7500. u64 rt_runtime, rt_period;
  7501. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7502. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7503. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7504. }
  7505. long sched_group_rt_period(struct task_group *tg)
  7506. {
  7507. u64 rt_period_us;
  7508. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7509. do_div(rt_period_us, NSEC_PER_USEC);
  7510. return rt_period_us;
  7511. }
  7512. static int sched_rt_global_constraints(void)
  7513. {
  7514. int ret = 0;
  7515. mutex_lock(&rt_constraints_mutex);
  7516. if (!__rt_schedulable(NULL, 1, 0))
  7517. ret = -EINVAL;
  7518. mutex_unlock(&rt_constraints_mutex);
  7519. return ret;
  7520. }
  7521. #else
  7522. static int sched_rt_global_constraints(void)
  7523. {
  7524. unsigned long flags;
  7525. int i;
  7526. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7527. for_each_possible_cpu(i) {
  7528. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7529. spin_lock(&rt_rq->rt_runtime_lock);
  7530. rt_rq->rt_runtime = global_rt_runtime();
  7531. spin_unlock(&rt_rq->rt_runtime_lock);
  7532. }
  7533. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7534. return 0;
  7535. }
  7536. #endif
  7537. int sched_rt_handler(struct ctl_table *table, int write,
  7538. struct file *filp, void __user *buffer, size_t *lenp,
  7539. loff_t *ppos)
  7540. {
  7541. int ret;
  7542. int old_period, old_runtime;
  7543. static DEFINE_MUTEX(mutex);
  7544. mutex_lock(&mutex);
  7545. old_period = sysctl_sched_rt_period;
  7546. old_runtime = sysctl_sched_rt_runtime;
  7547. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7548. if (!ret && write) {
  7549. ret = sched_rt_global_constraints();
  7550. if (ret) {
  7551. sysctl_sched_rt_period = old_period;
  7552. sysctl_sched_rt_runtime = old_runtime;
  7553. } else {
  7554. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7555. def_rt_bandwidth.rt_period =
  7556. ns_to_ktime(global_rt_period());
  7557. }
  7558. }
  7559. mutex_unlock(&mutex);
  7560. return ret;
  7561. }
  7562. #ifdef CONFIG_CGROUP_SCHED
  7563. /* return corresponding task_group object of a cgroup */
  7564. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7565. {
  7566. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7567. struct task_group, css);
  7568. }
  7569. static struct cgroup_subsys_state *
  7570. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7571. {
  7572. struct task_group *tg, *parent;
  7573. if (!cgrp->parent) {
  7574. /* This is early initialization for the top cgroup */
  7575. init_task_group.css.cgroup = cgrp;
  7576. return &init_task_group.css;
  7577. }
  7578. parent = cgroup_tg(cgrp->parent);
  7579. tg = sched_create_group(parent);
  7580. if (IS_ERR(tg))
  7581. return ERR_PTR(-ENOMEM);
  7582. /* Bind the cgroup to task_group object we just created */
  7583. tg->css.cgroup = cgrp;
  7584. return &tg->css;
  7585. }
  7586. static void
  7587. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7588. {
  7589. struct task_group *tg = cgroup_tg(cgrp);
  7590. sched_destroy_group(tg);
  7591. }
  7592. static int
  7593. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7594. struct task_struct *tsk)
  7595. {
  7596. #ifdef CONFIG_RT_GROUP_SCHED
  7597. /* Don't accept realtime tasks when there is no way for them to run */
  7598. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7599. return -EINVAL;
  7600. #else
  7601. /* We don't support RT-tasks being in separate groups */
  7602. if (tsk->sched_class != &fair_sched_class)
  7603. return -EINVAL;
  7604. #endif
  7605. return 0;
  7606. }
  7607. static void
  7608. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7609. struct cgroup *old_cont, struct task_struct *tsk)
  7610. {
  7611. sched_move_task(tsk);
  7612. }
  7613. #ifdef CONFIG_FAIR_GROUP_SCHED
  7614. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7615. u64 shareval)
  7616. {
  7617. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7618. }
  7619. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7620. {
  7621. struct task_group *tg = cgroup_tg(cgrp);
  7622. return (u64) tg->shares;
  7623. }
  7624. #endif
  7625. #ifdef CONFIG_RT_GROUP_SCHED
  7626. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7627. s64 val)
  7628. {
  7629. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7630. }
  7631. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7632. {
  7633. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7634. }
  7635. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7636. u64 rt_period_us)
  7637. {
  7638. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7639. }
  7640. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7641. {
  7642. return sched_group_rt_period(cgroup_tg(cgrp));
  7643. }
  7644. #endif
  7645. static struct cftype cpu_files[] = {
  7646. #ifdef CONFIG_FAIR_GROUP_SCHED
  7647. {
  7648. .name = "shares",
  7649. .read_u64 = cpu_shares_read_u64,
  7650. .write_u64 = cpu_shares_write_u64,
  7651. },
  7652. #endif
  7653. #ifdef CONFIG_RT_GROUP_SCHED
  7654. {
  7655. .name = "rt_runtime_us",
  7656. .read_s64 = cpu_rt_runtime_read,
  7657. .write_s64 = cpu_rt_runtime_write,
  7658. },
  7659. {
  7660. .name = "rt_period_us",
  7661. .read_u64 = cpu_rt_period_read_uint,
  7662. .write_u64 = cpu_rt_period_write_uint,
  7663. },
  7664. #endif
  7665. };
  7666. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7667. {
  7668. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7669. }
  7670. struct cgroup_subsys cpu_cgroup_subsys = {
  7671. .name = "cpu",
  7672. .create = cpu_cgroup_create,
  7673. .destroy = cpu_cgroup_destroy,
  7674. .can_attach = cpu_cgroup_can_attach,
  7675. .attach = cpu_cgroup_attach,
  7676. .populate = cpu_cgroup_populate,
  7677. .subsys_id = cpu_cgroup_subsys_id,
  7678. .early_init = 1,
  7679. };
  7680. #endif /* CONFIG_CGROUP_SCHED */
  7681. #ifdef CONFIG_CGROUP_CPUACCT
  7682. /*
  7683. * CPU accounting code for task groups.
  7684. *
  7685. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7686. * (balbir@in.ibm.com).
  7687. */
  7688. /* track cpu usage of a group of tasks */
  7689. struct cpuacct {
  7690. struct cgroup_subsys_state css;
  7691. /* cpuusage holds pointer to a u64-type object on every cpu */
  7692. u64 *cpuusage;
  7693. };
  7694. struct cgroup_subsys cpuacct_subsys;
  7695. /* return cpu accounting group corresponding to this container */
  7696. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7697. {
  7698. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7699. struct cpuacct, css);
  7700. }
  7701. /* return cpu accounting group to which this task belongs */
  7702. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7703. {
  7704. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7705. struct cpuacct, css);
  7706. }
  7707. /* create a new cpu accounting group */
  7708. static struct cgroup_subsys_state *cpuacct_create(
  7709. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7710. {
  7711. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7712. if (!ca)
  7713. return ERR_PTR(-ENOMEM);
  7714. ca->cpuusage = alloc_percpu(u64);
  7715. if (!ca->cpuusage) {
  7716. kfree(ca);
  7717. return ERR_PTR(-ENOMEM);
  7718. }
  7719. return &ca->css;
  7720. }
  7721. /* destroy an existing cpu accounting group */
  7722. static void
  7723. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7724. {
  7725. struct cpuacct *ca = cgroup_ca(cgrp);
  7726. free_percpu(ca->cpuusage);
  7727. kfree(ca);
  7728. }
  7729. /* return total cpu usage (in nanoseconds) of a group */
  7730. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7731. {
  7732. struct cpuacct *ca = cgroup_ca(cgrp);
  7733. u64 totalcpuusage = 0;
  7734. int i;
  7735. for_each_possible_cpu(i) {
  7736. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7737. /*
  7738. * Take rq->lock to make 64-bit addition safe on 32-bit
  7739. * platforms.
  7740. */
  7741. spin_lock_irq(&cpu_rq(i)->lock);
  7742. totalcpuusage += *cpuusage;
  7743. spin_unlock_irq(&cpu_rq(i)->lock);
  7744. }
  7745. return totalcpuusage;
  7746. }
  7747. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7748. u64 reset)
  7749. {
  7750. struct cpuacct *ca = cgroup_ca(cgrp);
  7751. int err = 0;
  7752. int i;
  7753. if (reset) {
  7754. err = -EINVAL;
  7755. goto out;
  7756. }
  7757. for_each_possible_cpu(i) {
  7758. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7759. spin_lock_irq(&cpu_rq(i)->lock);
  7760. *cpuusage = 0;
  7761. spin_unlock_irq(&cpu_rq(i)->lock);
  7762. }
  7763. out:
  7764. return err;
  7765. }
  7766. static struct cftype files[] = {
  7767. {
  7768. .name = "usage",
  7769. .read_u64 = cpuusage_read,
  7770. .write_u64 = cpuusage_write,
  7771. },
  7772. };
  7773. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7774. {
  7775. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7776. }
  7777. /*
  7778. * charge this task's execution time to its accounting group.
  7779. *
  7780. * called with rq->lock held.
  7781. */
  7782. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7783. {
  7784. struct cpuacct *ca;
  7785. if (!cpuacct_subsys.active)
  7786. return;
  7787. ca = task_ca(tsk);
  7788. if (ca) {
  7789. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7790. *cpuusage += cputime;
  7791. }
  7792. }
  7793. struct cgroup_subsys cpuacct_subsys = {
  7794. .name = "cpuacct",
  7795. .create = cpuacct_create,
  7796. .destroy = cpuacct_destroy,
  7797. .populate = cpuacct_populate,
  7798. .subsys_id = cpuacct_subsys_id,
  7799. };
  7800. #endif /* CONFIG_CGROUP_CPUACCT */