ptrace.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. #ifndef _LINUX_PTRACE_H
  2. #define _LINUX_PTRACE_H
  3. #include <linux/compiler.h> /* For unlikely. */
  4. #include <linux/sched.h> /* For struct task_struct. */
  5. #include <linux/err.h> /* for IS_ERR_VALUE */
  6. #include <linux/bug.h> /* For BUG_ON. */
  7. #include <uapi/linux/ptrace.h>
  8. /*
  9. * Ptrace flags
  10. *
  11. * The owner ship rules for task->ptrace which holds the ptrace
  12. * flags is simple. When a task is running it owns it's task->ptrace
  13. * flags. When the a task is stopped the ptracer owns task->ptrace.
  14. */
  15. #define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
  16. #define PT_PTRACED 0x00000001
  17. #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
  18. #define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
  19. #define PT_OPT_FLAG_SHIFT 3
  20. /* PT_TRACE_* event enable flags */
  21. #define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
  22. #define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
  23. #define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
  24. #define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
  25. #define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
  26. #define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
  27. #define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
  28. #define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
  29. #define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
  30. #define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
  31. /* single stepping state bits (used on ARM and PA-RISC) */
  32. #define PT_SINGLESTEP_BIT 31
  33. #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
  34. #define PT_BLOCKSTEP_BIT 30
  35. #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
  36. extern long arch_ptrace(struct task_struct *child, long request,
  37. unsigned long addr, unsigned long data);
  38. extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
  39. extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
  40. extern void ptrace_disable(struct task_struct *);
  41. extern int ptrace_request(struct task_struct *child, long request,
  42. unsigned long addr, unsigned long data);
  43. extern void ptrace_notify(int exit_code);
  44. extern void __ptrace_link(struct task_struct *child,
  45. struct task_struct *new_parent);
  46. extern void __ptrace_unlink(struct task_struct *child);
  47. extern void exit_ptrace(struct task_struct *tracer);
  48. #define PTRACE_MODE_READ 0x01
  49. #define PTRACE_MODE_ATTACH 0x02
  50. #define PTRACE_MODE_NOAUDIT 0x04
  51. /* Returns true on success, false on denial. */
  52. extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
  53. static inline int ptrace_reparented(struct task_struct *child)
  54. {
  55. return !same_thread_group(child->real_parent, child->parent);
  56. }
  57. static inline void ptrace_unlink(struct task_struct *child)
  58. {
  59. if (unlikely(child->ptrace))
  60. __ptrace_unlink(child);
  61. }
  62. int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
  63. unsigned long data);
  64. int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
  65. unsigned long data);
  66. /**
  67. * ptrace_parent - return the task that is tracing the given task
  68. * @task: task to consider
  69. *
  70. * Returns %NULL if no one is tracing @task, or the &struct task_struct
  71. * pointer to its tracer.
  72. *
  73. * Must called under rcu_read_lock(). The pointer returned might be kept
  74. * live only by RCU. During exec, this may be called with task_lock() held
  75. * on @task, still held from when check_unsafe_exec() was called.
  76. */
  77. static inline struct task_struct *ptrace_parent(struct task_struct *task)
  78. {
  79. if (unlikely(task->ptrace))
  80. return rcu_dereference(task->parent);
  81. return NULL;
  82. }
  83. /**
  84. * ptrace_event_enabled - test whether a ptrace event is enabled
  85. * @task: ptracee of interest
  86. * @event: %PTRACE_EVENT_* to test
  87. *
  88. * Test whether @event is enabled for ptracee @task.
  89. *
  90. * Returns %true if @event is enabled, %false otherwise.
  91. */
  92. static inline bool ptrace_event_enabled(struct task_struct *task, int event)
  93. {
  94. return task->ptrace & PT_EVENT_FLAG(event);
  95. }
  96. /**
  97. * ptrace_event - possibly stop for a ptrace event notification
  98. * @event: %PTRACE_EVENT_* value to report
  99. * @message: value for %PTRACE_GETEVENTMSG to return
  100. *
  101. * Check whether @event is enabled and, if so, report @event and @message
  102. * to the ptrace parent.
  103. *
  104. * Called without locks.
  105. */
  106. static inline void ptrace_event(int event, unsigned long message)
  107. {
  108. if (unlikely(ptrace_event_enabled(current, event))) {
  109. current->ptrace_message = message;
  110. ptrace_notify((event << 8) | SIGTRAP);
  111. } else if (event == PTRACE_EVENT_EXEC) {
  112. /* legacy EXEC report via SIGTRAP */
  113. if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
  114. send_sig(SIGTRAP, current, 0);
  115. }
  116. }
  117. /**
  118. * ptrace_init_task - initialize ptrace state for a new child
  119. * @child: new child task
  120. * @ptrace: true if child should be ptrace'd by parent's tracer
  121. *
  122. * This is called immediately after adding @child to its parent's children
  123. * list. @ptrace is false in the normal case, and true to ptrace @child.
  124. *
  125. * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
  126. */
  127. static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
  128. {
  129. INIT_LIST_HEAD(&child->ptrace_entry);
  130. INIT_LIST_HEAD(&child->ptraced);
  131. child->jobctl = 0;
  132. child->ptrace = 0;
  133. child->parent = child->real_parent;
  134. if (unlikely(ptrace) && current->ptrace) {
  135. child->ptrace = current->ptrace;
  136. __ptrace_link(child, current->parent);
  137. if (child->ptrace & PT_SEIZED)
  138. task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
  139. else
  140. sigaddset(&child->pending.signal, SIGSTOP);
  141. set_tsk_thread_flag(child, TIF_SIGPENDING);
  142. }
  143. }
  144. /**
  145. * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
  146. * @task: task in %EXIT_DEAD state
  147. *
  148. * Called with write_lock(&tasklist_lock) held.
  149. */
  150. static inline void ptrace_release_task(struct task_struct *task)
  151. {
  152. BUG_ON(!list_empty(&task->ptraced));
  153. ptrace_unlink(task);
  154. BUG_ON(!list_empty(&task->ptrace_entry));
  155. }
  156. #ifndef force_successful_syscall_return
  157. /*
  158. * System call handlers that, upon successful completion, need to return a
  159. * negative value should call force_successful_syscall_return() right before
  160. * returning. On architectures where the syscall convention provides for a
  161. * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
  162. * others), this macro can be used to ensure that the error flag will not get
  163. * set. On architectures which do not support a separate error flag, the macro
  164. * is a no-op and the spurious error condition needs to be filtered out by some
  165. * other means (e.g., in user-level, by passing an extra argument to the
  166. * syscall handler, or something along those lines).
  167. */
  168. #define force_successful_syscall_return() do { } while (0)
  169. #endif
  170. #ifndef is_syscall_success
  171. /*
  172. * On most systems we can tell if a syscall is a success based on if the retval
  173. * is an error value. On some systems like ia64 and powerpc they have different
  174. * indicators of success/failure and must define their own.
  175. */
  176. #define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
  177. #endif
  178. /*
  179. * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
  180. *
  181. * These do-nothing inlines are used when the arch does not
  182. * implement single-step. The kerneldoc comments are here
  183. * to document the interface for all arch definitions.
  184. */
  185. #ifndef arch_has_single_step
  186. /**
  187. * arch_has_single_step - does this CPU support user-mode single-step?
  188. *
  189. * If this is defined, then there must be function declarations or
  190. * inlines for user_enable_single_step() and user_disable_single_step().
  191. * arch_has_single_step() should evaluate to nonzero iff the machine
  192. * supports instruction single-step for user mode.
  193. * It can be a constant or it can test a CPU feature bit.
  194. */
  195. #define arch_has_single_step() (0)
  196. /**
  197. * user_enable_single_step - single-step in user-mode task
  198. * @task: either current or a task stopped in %TASK_TRACED
  199. *
  200. * This can only be called when arch_has_single_step() has returned nonzero.
  201. * Set @task so that when it returns to user mode, it will trap after the
  202. * next single instruction executes. If arch_has_block_step() is defined,
  203. * this must clear the effects of user_enable_block_step() too.
  204. */
  205. static inline void user_enable_single_step(struct task_struct *task)
  206. {
  207. BUG(); /* This can never be called. */
  208. }
  209. /**
  210. * user_disable_single_step - cancel user-mode single-step
  211. * @task: either current or a task stopped in %TASK_TRACED
  212. *
  213. * Clear @task of the effects of user_enable_single_step() and
  214. * user_enable_block_step(). This can be called whether or not either
  215. * of those was ever called on @task, and even if arch_has_single_step()
  216. * returned zero.
  217. */
  218. static inline void user_disable_single_step(struct task_struct *task)
  219. {
  220. }
  221. #else
  222. extern void user_enable_single_step(struct task_struct *);
  223. extern void user_disable_single_step(struct task_struct *);
  224. #endif /* arch_has_single_step */
  225. #ifndef arch_has_block_step
  226. /**
  227. * arch_has_block_step - does this CPU support user-mode block-step?
  228. *
  229. * If this is defined, then there must be a function declaration or inline
  230. * for user_enable_block_step(), and arch_has_single_step() must be defined
  231. * too. arch_has_block_step() should evaluate to nonzero iff the machine
  232. * supports step-until-branch for user mode. It can be a constant or it
  233. * can test a CPU feature bit.
  234. */
  235. #define arch_has_block_step() (0)
  236. /**
  237. * user_enable_block_step - step until branch in user-mode task
  238. * @task: either current or a task stopped in %TASK_TRACED
  239. *
  240. * This can only be called when arch_has_block_step() has returned nonzero,
  241. * and will never be called when single-instruction stepping is being used.
  242. * Set @task so that when it returns to user mode, it will trap after the
  243. * next branch or trap taken.
  244. */
  245. static inline void user_enable_block_step(struct task_struct *task)
  246. {
  247. BUG(); /* This can never be called. */
  248. }
  249. #else
  250. extern void user_enable_block_step(struct task_struct *);
  251. #endif /* arch_has_block_step */
  252. #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
  253. extern void user_single_step_siginfo(struct task_struct *tsk,
  254. struct pt_regs *regs, siginfo_t *info);
  255. #else
  256. static inline void user_single_step_siginfo(struct task_struct *tsk,
  257. struct pt_regs *regs, siginfo_t *info)
  258. {
  259. memset(info, 0, sizeof(*info));
  260. info->si_signo = SIGTRAP;
  261. }
  262. #endif
  263. #ifndef arch_ptrace_stop_needed
  264. /**
  265. * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
  266. * @code: current->exit_code value ptrace will stop with
  267. * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
  268. *
  269. * This is called with the siglock held, to decide whether or not it's
  270. * necessary to release the siglock and call arch_ptrace_stop() with the
  271. * same @code and @info arguments. It can be defined to a constant if
  272. * arch_ptrace_stop() is never required, or always is. On machines where
  273. * this makes sense, it should be defined to a quick test to optimize out
  274. * calling arch_ptrace_stop() when it would be superfluous. For example,
  275. * if the thread has not been back to user mode since the last stop, the
  276. * thread state might indicate that nothing needs to be done.
  277. */
  278. #define arch_ptrace_stop_needed(code, info) (0)
  279. #endif
  280. #ifndef arch_ptrace_stop
  281. /**
  282. * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
  283. * @code: current->exit_code value ptrace will stop with
  284. * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
  285. *
  286. * This is called with no locks held when arch_ptrace_stop_needed() has
  287. * just returned nonzero. It is allowed to block, e.g. for user memory
  288. * access. The arch can have machine-specific work to be done before
  289. * ptrace stops. On ia64, register backing store gets written back to user
  290. * memory here. Since this can be costly (requires dropping the siglock),
  291. * we only do it when the arch requires it for this particular stop, as
  292. * indicated by arch_ptrace_stop_needed().
  293. */
  294. #define arch_ptrace_stop(code, info) do { } while (0)
  295. #endif
  296. #ifndef current_pt_regs
  297. #define current_pt_regs() task_pt_regs(current)
  298. #endif
  299. #ifndef ptrace_signal_deliver
  300. #define ptrace_signal_deliver() ((void)0)
  301. #endif
  302. /*
  303. * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
  304. * on *all* architectures; the only reason to have a per-arch definition
  305. * is optimisation.
  306. */
  307. #ifndef signal_pt_regs
  308. #define signal_pt_regs() task_pt_regs(current)
  309. #endif
  310. #ifndef current_user_stack_pointer
  311. #define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
  312. #endif
  313. extern int task_current_syscall(struct task_struct *target, long *callno,
  314. unsigned long args[6], unsigned int maxargs,
  315. unsigned long *sp, unsigned long *pc);
  316. #endif