sched.c 155 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/security.h>
  33. #include <linux/notifier.h>
  34. #include <linux/profile.h>
  35. #include <linux/suspend.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/blkdev.h>
  38. #include <linux/delay.h>
  39. #include <linux/smp.h>
  40. #include <linux/threads.h>
  41. #include <linux/timer.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/cpu.h>
  44. #include <linux/cpuset.h>
  45. #include <linux/percpu.h>
  46. #include <linux/kthread.h>
  47. #include <linux/seq_file.h>
  48. #include <linux/syscalls.h>
  49. #include <linux/times.h>
  50. #include <linux/acct.h>
  51. #include <linux/kprobes.h>
  52. #include <asm/tlb.h>
  53. #include <asm/unistd.h>
  54. /*
  55. * Convert user-nice values [ -20 ... 0 ... 19 ]
  56. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  57. * and back.
  58. */
  59. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  60. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  61. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  62. /*
  63. * 'User priority' is the nice value converted to something we
  64. * can work with better when scaling various scheduler parameters,
  65. * it's a [ 0 ... 39 ] range.
  66. */
  67. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  68. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  69. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  70. /*
  71. * Some helpers for converting nanosecond timing to jiffy resolution
  72. */
  73. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  74. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  75. /*
  76. * These are the 'tuning knobs' of the scheduler:
  77. *
  78. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  79. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  80. * Timeslices get refilled after they expire.
  81. */
  82. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  83. #define DEF_TIMESLICE (100 * HZ / 1000)
  84. #define ON_RUNQUEUE_WEIGHT 30
  85. #define CHILD_PENALTY 95
  86. #define PARENT_PENALTY 100
  87. #define EXIT_WEIGHT 3
  88. #define PRIO_BONUS_RATIO 25
  89. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  90. #define INTERACTIVE_DELTA 2
  91. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  92. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  93. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  94. /*
  95. * If a task is 'interactive' then we reinsert it in the active
  96. * array after it has expired its current timeslice. (it will not
  97. * continue to run immediately, it will still roundrobin with
  98. * other interactive tasks.)
  99. *
  100. * This part scales the interactivity limit depending on niceness.
  101. *
  102. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  103. * Here are a few examples of different nice levels:
  104. *
  105. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  106. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  107. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  108. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  109. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  110. *
  111. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  112. * priority range a task can explore, a value of '1' means the
  113. * task is rated interactive.)
  114. *
  115. * Ie. nice +19 tasks can never get 'interactive' enough to be
  116. * reinserted into the active array. And only heavily CPU-hog nice -20
  117. * tasks will be expired. Default nice 0 tasks are somewhere between,
  118. * it takes some effort for them to get interactive, but it's not
  119. * too hard.
  120. */
  121. #define CURRENT_BONUS(p) \
  122. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  123. MAX_SLEEP_AVG)
  124. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  125. #ifdef CONFIG_SMP
  126. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  127. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  128. num_online_cpus())
  129. #else
  130. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  131. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  132. #endif
  133. #define SCALE(v1,v1_max,v2_max) \
  134. (v1) * (v2_max) / (v1_max)
  135. #define DELTA(p) \
  136. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  137. INTERACTIVE_DELTA)
  138. #define TASK_INTERACTIVE(p) \
  139. ((p)->prio <= (p)->static_prio - DELTA(p))
  140. #define INTERACTIVE_SLEEP(p) \
  141. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  142. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  143. #define TASK_PREEMPTS_CURR(p, rq) \
  144. ((p)->prio < (rq)->curr->prio)
  145. /*
  146. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  147. * to time slice values: [800ms ... 100ms ... 5ms]
  148. *
  149. * The higher a thread's priority, the bigger timeslices
  150. * it gets during one round of execution. But even the lowest
  151. * priority thread gets MIN_TIMESLICE worth of execution time.
  152. */
  153. #define SCALE_PRIO(x, prio) \
  154. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
  155. static unsigned int task_timeslice(task_t *p)
  156. {
  157. if (p->static_prio < NICE_TO_PRIO(0))
  158. return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
  159. else
  160. return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
  161. }
  162. #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
  163. < (long long) (sd)->cache_hot_time)
  164. /*
  165. * These are the runqueue data structures:
  166. */
  167. #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
  168. typedef struct runqueue runqueue_t;
  169. struct prio_array {
  170. unsigned int nr_active;
  171. unsigned long bitmap[BITMAP_SIZE];
  172. struct list_head queue[MAX_PRIO];
  173. };
  174. /*
  175. * This is the main, per-CPU runqueue data structure.
  176. *
  177. * Locking rule: those places that want to lock multiple runqueues
  178. * (such as the load balancing or the thread migration code), lock
  179. * acquire operations must be ordered by ascending &runqueue.
  180. */
  181. struct runqueue {
  182. spinlock_t lock;
  183. /*
  184. * nr_running and cpu_load should be in the same cacheline because
  185. * remote CPUs use both these fields when doing load calculation.
  186. */
  187. unsigned long nr_running;
  188. #ifdef CONFIG_SMP
  189. unsigned long cpu_load[3];
  190. #endif
  191. unsigned long long nr_switches;
  192. /*
  193. * This is part of a global counter where only the total sum
  194. * over all CPUs matters. A task can increase this counter on
  195. * one CPU and if it got migrated afterwards it may decrease
  196. * it on another CPU. Always updated under the runqueue lock:
  197. */
  198. unsigned long nr_uninterruptible;
  199. unsigned long expired_timestamp;
  200. unsigned long long timestamp_last_tick;
  201. task_t *curr, *idle;
  202. struct mm_struct *prev_mm;
  203. prio_array_t *active, *expired, arrays[2];
  204. int best_expired_prio;
  205. atomic_t nr_iowait;
  206. #ifdef CONFIG_SMP
  207. struct sched_domain *sd;
  208. /* For active balancing */
  209. int active_balance;
  210. int push_cpu;
  211. task_t *migration_thread;
  212. struct list_head migration_queue;
  213. int cpu;
  214. #endif
  215. #ifdef CONFIG_SCHEDSTATS
  216. /* latency stats */
  217. struct sched_info rq_sched_info;
  218. /* sys_sched_yield() stats */
  219. unsigned long yld_exp_empty;
  220. unsigned long yld_act_empty;
  221. unsigned long yld_both_empty;
  222. unsigned long yld_cnt;
  223. /* schedule() stats */
  224. unsigned long sched_switch;
  225. unsigned long sched_cnt;
  226. unsigned long sched_goidle;
  227. /* try_to_wake_up() stats */
  228. unsigned long ttwu_cnt;
  229. unsigned long ttwu_local;
  230. #endif
  231. };
  232. static DEFINE_PER_CPU(struct runqueue, runqueues);
  233. /*
  234. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  235. * See detach_destroy_domains: synchronize_sched for details.
  236. *
  237. * The domain tree of any CPU may only be accessed from within
  238. * preempt-disabled sections.
  239. */
  240. #define for_each_domain(cpu, domain) \
  241. for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
  242. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  243. #define this_rq() (&__get_cpu_var(runqueues))
  244. #define task_rq(p) cpu_rq(task_cpu(p))
  245. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  246. #ifndef prepare_arch_switch
  247. # define prepare_arch_switch(next) do { } while (0)
  248. #endif
  249. #ifndef finish_arch_switch
  250. # define finish_arch_switch(prev) do { } while (0)
  251. #endif
  252. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  253. static inline int task_running(runqueue_t *rq, task_t *p)
  254. {
  255. return rq->curr == p;
  256. }
  257. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  258. {
  259. }
  260. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  261. {
  262. #ifdef CONFIG_DEBUG_SPINLOCK
  263. /* this is a valid case when another task releases the spinlock */
  264. rq->lock.owner = current;
  265. #endif
  266. spin_unlock_irq(&rq->lock);
  267. }
  268. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  269. static inline int task_running(runqueue_t *rq, task_t *p)
  270. {
  271. #ifdef CONFIG_SMP
  272. return p->oncpu;
  273. #else
  274. return rq->curr == p;
  275. #endif
  276. }
  277. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  278. {
  279. #ifdef CONFIG_SMP
  280. /*
  281. * We can optimise this out completely for !SMP, because the
  282. * SMP rebalancing from interrupt is the only thing that cares
  283. * here.
  284. */
  285. next->oncpu = 1;
  286. #endif
  287. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  288. spin_unlock_irq(&rq->lock);
  289. #else
  290. spin_unlock(&rq->lock);
  291. #endif
  292. }
  293. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  294. {
  295. #ifdef CONFIG_SMP
  296. /*
  297. * After ->oncpu is cleared, the task can be moved to a different CPU.
  298. * We must ensure this doesn't happen until the switch is completely
  299. * finished.
  300. */
  301. smp_wmb();
  302. prev->oncpu = 0;
  303. #endif
  304. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  305. local_irq_enable();
  306. #endif
  307. }
  308. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  309. /*
  310. * task_rq_lock - lock the runqueue a given task resides on and disable
  311. * interrupts. Note the ordering: we can safely lookup the task_rq without
  312. * explicitly disabling preemption.
  313. */
  314. static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
  315. __acquires(rq->lock)
  316. {
  317. struct runqueue *rq;
  318. repeat_lock_task:
  319. local_irq_save(*flags);
  320. rq = task_rq(p);
  321. spin_lock(&rq->lock);
  322. if (unlikely(rq != task_rq(p))) {
  323. spin_unlock_irqrestore(&rq->lock, *flags);
  324. goto repeat_lock_task;
  325. }
  326. return rq;
  327. }
  328. static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
  329. __releases(rq->lock)
  330. {
  331. spin_unlock_irqrestore(&rq->lock, *flags);
  332. }
  333. #ifdef CONFIG_SCHEDSTATS
  334. /*
  335. * bump this up when changing the output format or the meaning of an existing
  336. * format, so that tools can adapt (or abort)
  337. */
  338. #define SCHEDSTAT_VERSION 12
  339. static int show_schedstat(struct seq_file *seq, void *v)
  340. {
  341. int cpu;
  342. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  343. seq_printf(seq, "timestamp %lu\n", jiffies);
  344. for_each_online_cpu(cpu) {
  345. runqueue_t *rq = cpu_rq(cpu);
  346. #ifdef CONFIG_SMP
  347. struct sched_domain *sd;
  348. int dcnt = 0;
  349. #endif
  350. /* runqueue-specific stats */
  351. seq_printf(seq,
  352. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  353. cpu, rq->yld_both_empty,
  354. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  355. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  356. rq->ttwu_cnt, rq->ttwu_local,
  357. rq->rq_sched_info.cpu_time,
  358. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  359. seq_printf(seq, "\n");
  360. #ifdef CONFIG_SMP
  361. /* domain-specific stats */
  362. preempt_disable();
  363. for_each_domain(cpu, sd) {
  364. enum idle_type itype;
  365. char mask_str[NR_CPUS];
  366. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  367. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  368. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  369. itype++) {
  370. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  371. sd->lb_cnt[itype],
  372. sd->lb_balanced[itype],
  373. sd->lb_failed[itype],
  374. sd->lb_imbalance[itype],
  375. sd->lb_gained[itype],
  376. sd->lb_hot_gained[itype],
  377. sd->lb_nobusyq[itype],
  378. sd->lb_nobusyg[itype]);
  379. }
  380. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  381. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  382. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  383. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  384. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  385. }
  386. preempt_enable();
  387. #endif
  388. }
  389. return 0;
  390. }
  391. static int schedstat_open(struct inode *inode, struct file *file)
  392. {
  393. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  394. char *buf = kmalloc(size, GFP_KERNEL);
  395. struct seq_file *m;
  396. int res;
  397. if (!buf)
  398. return -ENOMEM;
  399. res = single_open(file, show_schedstat, NULL);
  400. if (!res) {
  401. m = file->private_data;
  402. m->buf = buf;
  403. m->size = size;
  404. } else
  405. kfree(buf);
  406. return res;
  407. }
  408. struct file_operations proc_schedstat_operations = {
  409. .open = schedstat_open,
  410. .read = seq_read,
  411. .llseek = seq_lseek,
  412. .release = single_release,
  413. };
  414. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  415. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  416. #else /* !CONFIG_SCHEDSTATS */
  417. # define schedstat_inc(rq, field) do { } while (0)
  418. # define schedstat_add(rq, field, amt) do { } while (0)
  419. #endif
  420. /*
  421. * rq_lock - lock a given runqueue and disable interrupts.
  422. */
  423. static inline runqueue_t *this_rq_lock(void)
  424. __acquires(rq->lock)
  425. {
  426. runqueue_t *rq;
  427. local_irq_disable();
  428. rq = this_rq();
  429. spin_lock(&rq->lock);
  430. return rq;
  431. }
  432. #ifdef CONFIG_SCHEDSTATS
  433. /*
  434. * Called when a process is dequeued from the active array and given
  435. * the cpu. We should note that with the exception of interactive
  436. * tasks, the expired queue will become the active queue after the active
  437. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  438. * expired queue. (Interactive tasks may be requeued directly to the
  439. * active queue, thus delaying tasks in the expired queue from running;
  440. * see scheduler_tick()).
  441. *
  442. * This function is only called from sched_info_arrive(), rather than
  443. * dequeue_task(). Even though a task may be queued and dequeued multiple
  444. * times as it is shuffled about, we're really interested in knowing how
  445. * long it was from the *first* time it was queued to the time that it
  446. * finally hit a cpu.
  447. */
  448. static inline void sched_info_dequeued(task_t *t)
  449. {
  450. t->sched_info.last_queued = 0;
  451. }
  452. /*
  453. * Called when a task finally hits the cpu. We can now calculate how
  454. * long it was waiting to run. We also note when it began so that we
  455. * can keep stats on how long its timeslice is.
  456. */
  457. static void sched_info_arrive(task_t *t)
  458. {
  459. unsigned long now = jiffies, diff = 0;
  460. struct runqueue *rq = task_rq(t);
  461. if (t->sched_info.last_queued)
  462. diff = now - t->sched_info.last_queued;
  463. sched_info_dequeued(t);
  464. t->sched_info.run_delay += diff;
  465. t->sched_info.last_arrival = now;
  466. t->sched_info.pcnt++;
  467. if (!rq)
  468. return;
  469. rq->rq_sched_info.run_delay += diff;
  470. rq->rq_sched_info.pcnt++;
  471. }
  472. /*
  473. * Called when a process is queued into either the active or expired
  474. * array. The time is noted and later used to determine how long we
  475. * had to wait for us to reach the cpu. Since the expired queue will
  476. * become the active queue after active queue is empty, without dequeuing
  477. * and requeuing any tasks, we are interested in queuing to either. It
  478. * is unusual but not impossible for tasks to be dequeued and immediately
  479. * requeued in the same or another array: this can happen in sched_yield(),
  480. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  481. * to runqueue.
  482. *
  483. * This function is only called from enqueue_task(), but also only updates
  484. * the timestamp if it is already not set. It's assumed that
  485. * sched_info_dequeued() will clear that stamp when appropriate.
  486. */
  487. static inline void sched_info_queued(task_t *t)
  488. {
  489. if (!t->sched_info.last_queued)
  490. t->sched_info.last_queued = jiffies;
  491. }
  492. /*
  493. * Called when a process ceases being the active-running process, either
  494. * voluntarily or involuntarily. Now we can calculate how long we ran.
  495. */
  496. static inline void sched_info_depart(task_t *t)
  497. {
  498. struct runqueue *rq = task_rq(t);
  499. unsigned long diff = jiffies - t->sched_info.last_arrival;
  500. t->sched_info.cpu_time += diff;
  501. if (rq)
  502. rq->rq_sched_info.cpu_time += diff;
  503. }
  504. /*
  505. * Called when tasks are switched involuntarily due, typically, to expiring
  506. * their time slice. (This may also be called when switching to or from
  507. * the idle task.) We are only called when prev != next.
  508. */
  509. static inline void sched_info_switch(task_t *prev, task_t *next)
  510. {
  511. struct runqueue *rq = task_rq(prev);
  512. /*
  513. * prev now departs the cpu. It's not interesting to record
  514. * stats about how efficient we were at scheduling the idle
  515. * process, however.
  516. */
  517. if (prev != rq->idle)
  518. sched_info_depart(prev);
  519. if (next != rq->idle)
  520. sched_info_arrive(next);
  521. }
  522. #else
  523. #define sched_info_queued(t) do { } while (0)
  524. #define sched_info_switch(t, next) do { } while (0)
  525. #endif /* CONFIG_SCHEDSTATS */
  526. /*
  527. * Adding/removing a task to/from a priority array:
  528. */
  529. static void dequeue_task(struct task_struct *p, prio_array_t *array)
  530. {
  531. array->nr_active--;
  532. list_del(&p->run_list);
  533. if (list_empty(array->queue + p->prio))
  534. __clear_bit(p->prio, array->bitmap);
  535. }
  536. static void enqueue_task(struct task_struct *p, prio_array_t *array)
  537. {
  538. sched_info_queued(p);
  539. list_add_tail(&p->run_list, array->queue + p->prio);
  540. __set_bit(p->prio, array->bitmap);
  541. array->nr_active++;
  542. p->array = array;
  543. }
  544. /*
  545. * Put task to the end of the run list without the overhead of dequeue
  546. * followed by enqueue.
  547. */
  548. static void requeue_task(struct task_struct *p, prio_array_t *array)
  549. {
  550. list_move_tail(&p->run_list, array->queue + p->prio);
  551. }
  552. static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
  553. {
  554. list_add(&p->run_list, array->queue + p->prio);
  555. __set_bit(p->prio, array->bitmap);
  556. array->nr_active++;
  557. p->array = array;
  558. }
  559. /*
  560. * effective_prio - return the priority that is based on the static
  561. * priority but is modified by bonuses/penalties.
  562. *
  563. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  564. * into the -5 ... 0 ... +5 bonus/penalty range.
  565. *
  566. * We use 25% of the full 0...39 priority range so that:
  567. *
  568. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  569. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  570. *
  571. * Both properties are important to certain workloads.
  572. */
  573. static int effective_prio(task_t *p)
  574. {
  575. int bonus, prio;
  576. if (rt_task(p))
  577. return p->prio;
  578. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  579. prio = p->static_prio - bonus;
  580. if (prio < MAX_RT_PRIO)
  581. prio = MAX_RT_PRIO;
  582. if (prio > MAX_PRIO-1)
  583. prio = MAX_PRIO-1;
  584. return prio;
  585. }
  586. /*
  587. * __activate_task - move a task to the runqueue.
  588. */
  589. static inline void __activate_task(task_t *p, runqueue_t *rq)
  590. {
  591. enqueue_task(p, rq->active);
  592. rq->nr_running++;
  593. }
  594. /*
  595. * __activate_idle_task - move idle task to the _front_ of runqueue.
  596. */
  597. static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
  598. {
  599. enqueue_task_head(p, rq->active);
  600. rq->nr_running++;
  601. }
  602. static int recalc_task_prio(task_t *p, unsigned long long now)
  603. {
  604. /* Caller must always ensure 'now >= p->timestamp' */
  605. unsigned long long __sleep_time = now - p->timestamp;
  606. unsigned long sleep_time;
  607. if (unlikely(p->policy == SCHED_BATCH))
  608. sleep_time = 0;
  609. else {
  610. if (__sleep_time > NS_MAX_SLEEP_AVG)
  611. sleep_time = NS_MAX_SLEEP_AVG;
  612. else
  613. sleep_time = (unsigned long)__sleep_time;
  614. }
  615. if (likely(sleep_time > 0)) {
  616. /*
  617. * User tasks that sleep a long time are categorised as
  618. * idle. They will only have their sleep_avg increased to a
  619. * level that makes them just interactive priority to stay
  620. * active yet prevent them suddenly becoming cpu hogs and
  621. * starving other processes.
  622. */
  623. if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) {
  624. unsigned long ceiling;
  625. ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
  626. DEF_TIMESLICE);
  627. if (p->sleep_avg < ceiling)
  628. p->sleep_avg = ceiling;
  629. } else {
  630. /*
  631. * Tasks waking from uninterruptible sleep are
  632. * limited in their sleep_avg rise as they
  633. * are likely to be waiting on I/O
  634. */
  635. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  636. if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
  637. sleep_time = 0;
  638. else if (p->sleep_avg + sleep_time >=
  639. INTERACTIVE_SLEEP(p)) {
  640. p->sleep_avg = INTERACTIVE_SLEEP(p);
  641. sleep_time = 0;
  642. }
  643. }
  644. /*
  645. * This code gives a bonus to interactive tasks.
  646. *
  647. * The boost works by updating the 'average sleep time'
  648. * value here, based on ->timestamp. The more time a
  649. * task spends sleeping, the higher the average gets -
  650. * and the higher the priority boost gets as well.
  651. */
  652. p->sleep_avg += sleep_time;
  653. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  654. p->sleep_avg = NS_MAX_SLEEP_AVG;
  655. }
  656. }
  657. return effective_prio(p);
  658. }
  659. /*
  660. * activate_task - move a task to the runqueue and do priority recalculation
  661. *
  662. * Update all the scheduling statistics stuff. (sleep average
  663. * calculation, priority modifiers, etc.)
  664. */
  665. static void activate_task(task_t *p, runqueue_t *rq, int local)
  666. {
  667. unsigned long long now;
  668. now = sched_clock();
  669. #ifdef CONFIG_SMP
  670. if (!local) {
  671. /* Compensate for drifting sched_clock */
  672. runqueue_t *this_rq = this_rq();
  673. now = (now - this_rq->timestamp_last_tick)
  674. + rq->timestamp_last_tick;
  675. }
  676. #endif
  677. if (!rt_task(p))
  678. p->prio = recalc_task_prio(p, now);
  679. /*
  680. * This checks to make sure it's not an uninterruptible task
  681. * that is now waking up.
  682. */
  683. if (p->sleep_type == SLEEP_NORMAL) {
  684. /*
  685. * Tasks which were woken up by interrupts (ie. hw events)
  686. * are most likely of interactive nature. So we give them
  687. * the credit of extending their sleep time to the period
  688. * of time they spend on the runqueue, waiting for execution
  689. * on a CPU, first time around:
  690. */
  691. if (in_interrupt())
  692. p->sleep_type = SLEEP_INTERRUPTED;
  693. else {
  694. /*
  695. * Normal first-time wakeups get a credit too for
  696. * on-runqueue time, but it will be weighted down:
  697. */
  698. p->sleep_type = SLEEP_INTERACTIVE;
  699. }
  700. }
  701. p->timestamp = now;
  702. __activate_task(p, rq);
  703. }
  704. /*
  705. * deactivate_task - remove a task from the runqueue.
  706. */
  707. static void deactivate_task(struct task_struct *p, runqueue_t *rq)
  708. {
  709. rq->nr_running--;
  710. dequeue_task(p, p->array);
  711. p->array = NULL;
  712. }
  713. /*
  714. * resched_task - mark a task 'to be rescheduled now'.
  715. *
  716. * On UP this means the setting of the need_resched flag, on SMP it
  717. * might also involve a cross-CPU call to trigger the scheduler on
  718. * the target CPU.
  719. */
  720. #ifdef CONFIG_SMP
  721. static void resched_task(task_t *p)
  722. {
  723. int cpu;
  724. assert_spin_locked(&task_rq(p)->lock);
  725. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  726. return;
  727. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  728. cpu = task_cpu(p);
  729. if (cpu == smp_processor_id())
  730. return;
  731. /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
  732. smp_mb();
  733. if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
  734. smp_send_reschedule(cpu);
  735. }
  736. #else
  737. static inline void resched_task(task_t *p)
  738. {
  739. assert_spin_locked(&task_rq(p)->lock);
  740. set_tsk_need_resched(p);
  741. }
  742. #endif
  743. /**
  744. * task_curr - is this task currently executing on a CPU?
  745. * @p: the task in question.
  746. */
  747. inline int task_curr(const task_t *p)
  748. {
  749. return cpu_curr(task_cpu(p)) == p;
  750. }
  751. #ifdef CONFIG_SMP
  752. typedef struct {
  753. struct list_head list;
  754. task_t *task;
  755. int dest_cpu;
  756. struct completion done;
  757. } migration_req_t;
  758. /*
  759. * The task's runqueue lock must be held.
  760. * Returns true if you have to wait for migration thread.
  761. */
  762. static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  763. {
  764. runqueue_t *rq = task_rq(p);
  765. /*
  766. * If the task is not on a runqueue (and not running), then
  767. * it is sufficient to simply update the task's cpu field.
  768. */
  769. if (!p->array && !task_running(rq, p)) {
  770. set_task_cpu(p, dest_cpu);
  771. return 0;
  772. }
  773. init_completion(&req->done);
  774. req->task = p;
  775. req->dest_cpu = dest_cpu;
  776. list_add(&req->list, &rq->migration_queue);
  777. return 1;
  778. }
  779. /*
  780. * wait_task_inactive - wait for a thread to unschedule.
  781. *
  782. * The caller must ensure that the task *will* unschedule sometime soon,
  783. * else this function might spin for a *long* time. This function can't
  784. * be called with interrupts off, or it may introduce deadlock with
  785. * smp_call_function() if an IPI is sent by the same process we are
  786. * waiting to become inactive.
  787. */
  788. void wait_task_inactive(task_t *p)
  789. {
  790. unsigned long flags;
  791. runqueue_t *rq;
  792. int preempted;
  793. repeat:
  794. rq = task_rq_lock(p, &flags);
  795. /* Must be off runqueue entirely, not preempted. */
  796. if (unlikely(p->array || task_running(rq, p))) {
  797. /* If it's preempted, we yield. It could be a while. */
  798. preempted = !task_running(rq, p);
  799. task_rq_unlock(rq, &flags);
  800. cpu_relax();
  801. if (preempted)
  802. yield();
  803. goto repeat;
  804. }
  805. task_rq_unlock(rq, &flags);
  806. }
  807. /***
  808. * kick_process - kick a running thread to enter/exit the kernel
  809. * @p: the to-be-kicked thread
  810. *
  811. * Cause a process which is running on another CPU to enter
  812. * kernel-mode, without any delay. (to get signals handled.)
  813. *
  814. * NOTE: this function doesnt have to take the runqueue lock,
  815. * because all it wants to ensure is that the remote task enters
  816. * the kernel. If the IPI races and the task has been migrated
  817. * to another CPU then no harm is done and the purpose has been
  818. * achieved as well.
  819. */
  820. void kick_process(task_t *p)
  821. {
  822. int cpu;
  823. preempt_disable();
  824. cpu = task_cpu(p);
  825. if ((cpu != smp_processor_id()) && task_curr(p))
  826. smp_send_reschedule(cpu);
  827. preempt_enable();
  828. }
  829. /*
  830. * Return a low guess at the load of a migration-source cpu.
  831. *
  832. * We want to under-estimate the load of migration sources, to
  833. * balance conservatively.
  834. */
  835. static inline unsigned long source_load(int cpu, int type)
  836. {
  837. runqueue_t *rq = cpu_rq(cpu);
  838. unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
  839. if (type == 0)
  840. return load_now;
  841. return min(rq->cpu_load[type-1], load_now);
  842. }
  843. /*
  844. * Return a high guess at the load of a migration-target cpu
  845. */
  846. static inline unsigned long target_load(int cpu, int type)
  847. {
  848. runqueue_t *rq = cpu_rq(cpu);
  849. unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
  850. if (type == 0)
  851. return load_now;
  852. return max(rq->cpu_load[type-1], load_now);
  853. }
  854. /*
  855. * find_idlest_group finds and returns the least busy CPU group within the
  856. * domain.
  857. */
  858. static struct sched_group *
  859. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  860. {
  861. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  862. unsigned long min_load = ULONG_MAX, this_load = 0;
  863. int load_idx = sd->forkexec_idx;
  864. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  865. do {
  866. unsigned long load, avg_load;
  867. int local_group;
  868. int i;
  869. /* Skip over this group if it has no CPUs allowed */
  870. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  871. goto nextgroup;
  872. local_group = cpu_isset(this_cpu, group->cpumask);
  873. /* Tally up the load of all CPUs in the group */
  874. avg_load = 0;
  875. for_each_cpu_mask(i, group->cpumask) {
  876. /* Bias balancing toward cpus of our domain */
  877. if (local_group)
  878. load = source_load(i, load_idx);
  879. else
  880. load = target_load(i, load_idx);
  881. avg_load += load;
  882. }
  883. /* Adjust by relative CPU power of the group */
  884. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  885. if (local_group) {
  886. this_load = avg_load;
  887. this = group;
  888. } else if (avg_load < min_load) {
  889. min_load = avg_load;
  890. idlest = group;
  891. }
  892. nextgroup:
  893. group = group->next;
  894. } while (group != sd->groups);
  895. if (!idlest || 100*this_load < imbalance*min_load)
  896. return NULL;
  897. return idlest;
  898. }
  899. /*
  900. * find_idlest_queue - find the idlest runqueue among the cpus in group.
  901. */
  902. static int
  903. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  904. {
  905. cpumask_t tmp;
  906. unsigned long load, min_load = ULONG_MAX;
  907. int idlest = -1;
  908. int i;
  909. /* Traverse only the allowed CPUs */
  910. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  911. for_each_cpu_mask(i, tmp) {
  912. load = source_load(i, 0);
  913. if (load < min_load || (load == min_load && i == this_cpu)) {
  914. min_load = load;
  915. idlest = i;
  916. }
  917. }
  918. return idlest;
  919. }
  920. /*
  921. * sched_balance_self: balance the current task (running on cpu) in domains
  922. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  923. * SD_BALANCE_EXEC.
  924. *
  925. * Balance, ie. select the least loaded group.
  926. *
  927. * Returns the target CPU number, or the same CPU if no balancing is needed.
  928. *
  929. * preempt must be disabled.
  930. */
  931. static int sched_balance_self(int cpu, int flag)
  932. {
  933. struct task_struct *t = current;
  934. struct sched_domain *tmp, *sd = NULL;
  935. for_each_domain(cpu, tmp)
  936. if (tmp->flags & flag)
  937. sd = tmp;
  938. while (sd) {
  939. cpumask_t span;
  940. struct sched_group *group;
  941. int new_cpu;
  942. int weight;
  943. span = sd->span;
  944. group = find_idlest_group(sd, t, cpu);
  945. if (!group)
  946. goto nextlevel;
  947. new_cpu = find_idlest_cpu(group, t, cpu);
  948. if (new_cpu == -1 || new_cpu == cpu)
  949. goto nextlevel;
  950. /* Now try balancing at a lower domain level */
  951. cpu = new_cpu;
  952. nextlevel:
  953. sd = NULL;
  954. weight = cpus_weight(span);
  955. for_each_domain(cpu, tmp) {
  956. if (weight <= cpus_weight(tmp->span))
  957. break;
  958. if (tmp->flags & flag)
  959. sd = tmp;
  960. }
  961. /* while loop will break here if sd == NULL */
  962. }
  963. return cpu;
  964. }
  965. #endif /* CONFIG_SMP */
  966. /*
  967. * wake_idle() will wake a task on an idle cpu if task->cpu is
  968. * not idle and an idle cpu is available. The span of cpus to
  969. * search starts with cpus closest then further out as needed,
  970. * so we always favor a closer, idle cpu.
  971. *
  972. * Returns the CPU we should wake onto.
  973. */
  974. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  975. static int wake_idle(int cpu, task_t *p)
  976. {
  977. cpumask_t tmp;
  978. struct sched_domain *sd;
  979. int i;
  980. if (idle_cpu(cpu))
  981. return cpu;
  982. for_each_domain(cpu, sd) {
  983. if (sd->flags & SD_WAKE_IDLE) {
  984. cpus_and(tmp, sd->span, p->cpus_allowed);
  985. for_each_cpu_mask(i, tmp) {
  986. if (idle_cpu(i))
  987. return i;
  988. }
  989. }
  990. else
  991. break;
  992. }
  993. return cpu;
  994. }
  995. #else
  996. static inline int wake_idle(int cpu, task_t *p)
  997. {
  998. return cpu;
  999. }
  1000. #endif
  1001. /***
  1002. * try_to_wake_up - wake up a thread
  1003. * @p: the to-be-woken-up thread
  1004. * @state: the mask of task states that can be woken
  1005. * @sync: do a synchronous wakeup?
  1006. *
  1007. * Put it on the run-queue if it's not already there. The "current"
  1008. * thread is always on the run-queue (except when the actual
  1009. * re-schedule is in progress), and as such you're allowed to do
  1010. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1011. * runnable without the overhead of this.
  1012. *
  1013. * returns failure only if the task is already active.
  1014. */
  1015. static int try_to_wake_up(task_t *p, unsigned int state, int sync)
  1016. {
  1017. int cpu, this_cpu, success = 0;
  1018. unsigned long flags;
  1019. long old_state;
  1020. runqueue_t *rq;
  1021. #ifdef CONFIG_SMP
  1022. unsigned long load, this_load;
  1023. struct sched_domain *sd, *this_sd = NULL;
  1024. int new_cpu;
  1025. #endif
  1026. rq = task_rq_lock(p, &flags);
  1027. old_state = p->state;
  1028. if (!(old_state & state))
  1029. goto out;
  1030. if (p->array)
  1031. goto out_running;
  1032. cpu = task_cpu(p);
  1033. this_cpu = smp_processor_id();
  1034. #ifdef CONFIG_SMP
  1035. if (unlikely(task_running(rq, p)))
  1036. goto out_activate;
  1037. new_cpu = cpu;
  1038. schedstat_inc(rq, ttwu_cnt);
  1039. if (cpu == this_cpu) {
  1040. schedstat_inc(rq, ttwu_local);
  1041. goto out_set_cpu;
  1042. }
  1043. for_each_domain(this_cpu, sd) {
  1044. if (cpu_isset(cpu, sd->span)) {
  1045. schedstat_inc(sd, ttwu_wake_remote);
  1046. this_sd = sd;
  1047. break;
  1048. }
  1049. }
  1050. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1051. goto out_set_cpu;
  1052. /*
  1053. * Check for affine wakeup and passive balancing possibilities.
  1054. */
  1055. if (this_sd) {
  1056. int idx = this_sd->wake_idx;
  1057. unsigned int imbalance;
  1058. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1059. load = source_load(cpu, idx);
  1060. this_load = target_load(this_cpu, idx);
  1061. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1062. if (this_sd->flags & SD_WAKE_AFFINE) {
  1063. unsigned long tl = this_load;
  1064. /*
  1065. * If sync wakeup then subtract the (maximum possible)
  1066. * effect of the currently running task from the load
  1067. * of the current CPU:
  1068. */
  1069. if (sync)
  1070. tl -= SCHED_LOAD_SCALE;
  1071. if ((tl <= load &&
  1072. tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
  1073. 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
  1074. /*
  1075. * This domain has SD_WAKE_AFFINE and
  1076. * p is cache cold in this domain, and
  1077. * there is no bad imbalance.
  1078. */
  1079. schedstat_inc(this_sd, ttwu_move_affine);
  1080. goto out_set_cpu;
  1081. }
  1082. }
  1083. /*
  1084. * Start passive balancing when half the imbalance_pct
  1085. * limit is reached.
  1086. */
  1087. if (this_sd->flags & SD_WAKE_BALANCE) {
  1088. if (imbalance*this_load <= 100*load) {
  1089. schedstat_inc(this_sd, ttwu_move_balance);
  1090. goto out_set_cpu;
  1091. }
  1092. }
  1093. }
  1094. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1095. out_set_cpu:
  1096. new_cpu = wake_idle(new_cpu, p);
  1097. if (new_cpu != cpu) {
  1098. set_task_cpu(p, new_cpu);
  1099. task_rq_unlock(rq, &flags);
  1100. /* might preempt at this point */
  1101. rq = task_rq_lock(p, &flags);
  1102. old_state = p->state;
  1103. if (!(old_state & state))
  1104. goto out;
  1105. if (p->array)
  1106. goto out_running;
  1107. this_cpu = smp_processor_id();
  1108. cpu = task_cpu(p);
  1109. }
  1110. out_activate:
  1111. #endif /* CONFIG_SMP */
  1112. if (old_state == TASK_UNINTERRUPTIBLE) {
  1113. rq->nr_uninterruptible--;
  1114. /*
  1115. * Tasks on involuntary sleep don't earn
  1116. * sleep_avg beyond just interactive state.
  1117. */
  1118. p->sleep_type = SLEEP_NONINTERACTIVE;
  1119. } else
  1120. /*
  1121. * Tasks that have marked their sleep as noninteractive get
  1122. * woken up with their sleep average not weighted in an
  1123. * interactive way.
  1124. */
  1125. if (old_state & TASK_NONINTERACTIVE)
  1126. p->sleep_type = SLEEP_NONINTERACTIVE;
  1127. activate_task(p, rq, cpu == this_cpu);
  1128. /*
  1129. * Sync wakeups (i.e. those types of wakeups where the waker
  1130. * has indicated that it will leave the CPU in short order)
  1131. * don't trigger a preemption, if the woken up task will run on
  1132. * this cpu. (in this case the 'I will reschedule' promise of
  1133. * the waker guarantees that the freshly woken up task is going
  1134. * to be considered on this CPU.)
  1135. */
  1136. if (!sync || cpu != this_cpu) {
  1137. if (TASK_PREEMPTS_CURR(p, rq))
  1138. resched_task(rq->curr);
  1139. }
  1140. success = 1;
  1141. out_running:
  1142. p->state = TASK_RUNNING;
  1143. out:
  1144. task_rq_unlock(rq, &flags);
  1145. return success;
  1146. }
  1147. int fastcall wake_up_process(task_t *p)
  1148. {
  1149. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1150. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1151. }
  1152. EXPORT_SYMBOL(wake_up_process);
  1153. int fastcall wake_up_state(task_t *p, unsigned int state)
  1154. {
  1155. return try_to_wake_up(p, state, 0);
  1156. }
  1157. /*
  1158. * Perform scheduler related setup for a newly forked process p.
  1159. * p is forked by current.
  1160. */
  1161. void fastcall sched_fork(task_t *p, int clone_flags)
  1162. {
  1163. int cpu = get_cpu();
  1164. #ifdef CONFIG_SMP
  1165. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1166. #endif
  1167. set_task_cpu(p, cpu);
  1168. /*
  1169. * We mark the process as running here, but have not actually
  1170. * inserted it onto the runqueue yet. This guarantees that
  1171. * nobody will actually run it, and a signal or other external
  1172. * event cannot wake it up and insert it on the runqueue either.
  1173. */
  1174. p->state = TASK_RUNNING;
  1175. INIT_LIST_HEAD(&p->run_list);
  1176. p->array = NULL;
  1177. #ifdef CONFIG_SCHEDSTATS
  1178. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1179. #endif
  1180. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1181. p->oncpu = 0;
  1182. #endif
  1183. #ifdef CONFIG_PREEMPT
  1184. /* Want to start with kernel preemption disabled. */
  1185. task_thread_info(p)->preempt_count = 1;
  1186. #endif
  1187. /*
  1188. * Share the timeslice between parent and child, thus the
  1189. * total amount of pending timeslices in the system doesn't change,
  1190. * resulting in more scheduling fairness.
  1191. */
  1192. local_irq_disable();
  1193. p->time_slice = (current->time_slice + 1) >> 1;
  1194. /*
  1195. * The remainder of the first timeslice might be recovered by
  1196. * the parent if the child exits early enough.
  1197. */
  1198. p->first_time_slice = 1;
  1199. current->time_slice >>= 1;
  1200. p->timestamp = sched_clock();
  1201. if (unlikely(!current->time_slice)) {
  1202. /*
  1203. * This case is rare, it happens when the parent has only
  1204. * a single jiffy left from its timeslice. Taking the
  1205. * runqueue lock is not a problem.
  1206. */
  1207. current->time_slice = 1;
  1208. scheduler_tick();
  1209. }
  1210. local_irq_enable();
  1211. put_cpu();
  1212. }
  1213. /*
  1214. * wake_up_new_task - wake up a newly created task for the first time.
  1215. *
  1216. * This function will do some initial scheduler statistics housekeeping
  1217. * that must be done for every newly created context, then puts the task
  1218. * on the runqueue and wakes it.
  1219. */
  1220. void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
  1221. {
  1222. unsigned long flags;
  1223. int this_cpu, cpu;
  1224. runqueue_t *rq, *this_rq;
  1225. rq = task_rq_lock(p, &flags);
  1226. BUG_ON(p->state != TASK_RUNNING);
  1227. this_cpu = smp_processor_id();
  1228. cpu = task_cpu(p);
  1229. /*
  1230. * We decrease the sleep average of forking parents
  1231. * and children as well, to keep max-interactive tasks
  1232. * from forking tasks that are max-interactive. The parent
  1233. * (current) is done further down, under its lock.
  1234. */
  1235. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1236. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1237. p->prio = effective_prio(p);
  1238. if (likely(cpu == this_cpu)) {
  1239. if (!(clone_flags & CLONE_VM)) {
  1240. /*
  1241. * The VM isn't cloned, so we're in a good position to
  1242. * do child-runs-first in anticipation of an exec. This
  1243. * usually avoids a lot of COW overhead.
  1244. */
  1245. if (unlikely(!current->array))
  1246. __activate_task(p, rq);
  1247. else {
  1248. p->prio = current->prio;
  1249. list_add_tail(&p->run_list, &current->run_list);
  1250. p->array = current->array;
  1251. p->array->nr_active++;
  1252. rq->nr_running++;
  1253. }
  1254. set_need_resched();
  1255. } else
  1256. /* Run child last */
  1257. __activate_task(p, rq);
  1258. /*
  1259. * We skip the following code due to cpu == this_cpu
  1260. *
  1261. * task_rq_unlock(rq, &flags);
  1262. * this_rq = task_rq_lock(current, &flags);
  1263. */
  1264. this_rq = rq;
  1265. } else {
  1266. this_rq = cpu_rq(this_cpu);
  1267. /*
  1268. * Not the local CPU - must adjust timestamp. This should
  1269. * get optimised away in the !CONFIG_SMP case.
  1270. */
  1271. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1272. + rq->timestamp_last_tick;
  1273. __activate_task(p, rq);
  1274. if (TASK_PREEMPTS_CURR(p, rq))
  1275. resched_task(rq->curr);
  1276. /*
  1277. * Parent and child are on different CPUs, now get the
  1278. * parent runqueue to update the parent's ->sleep_avg:
  1279. */
  1280. task_rq_unlock(rq, &flags);
  1281. this_rq = task_rq_lock(current, &flags);
  1282. }
  1283. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1284. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1285. task_rq_unlock(this_rq, &flags);
  1286. }
  1287. /*
  1288. * Potentially available exiting-child timeslices are
  1289. * retrieved here - this way the parent does not get
  1290. * penalized for creating too many threads.
  1291. *
  1292. * (this cannot be used to 'generate' timeslices
  1293. * artificially, because any timeslice recovered here
  1294. * was given away by the parent in the first place.)
  1295. */
  1296. void fastcall sched_exit(task_t *p)
  1297. {
  1298. unsigned long flags;
  1299. runqueue_t *rq;
  1300. /*
  1301. * If the child was a (relative-) CPU hog then decrease
  1302. * the sleep_avg of the parent as well.
  1303. */
  1304. rq = task_rq_lock(p->parent, &flags);
  1305. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1306. p->parent->time_slice += p->time_slice;
  1307. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1308. p->parent->time_slice = task_timeslice(p);
  1309. }
  1310. if (p->sleep_avg < p->parent->sleep_avg)
  1311. p->parent->sleep_avg = p->parent->sleep_avg /
  1312. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1313. (EXIT_WEIGHT + 1);
  1314. task_rq_unlock(rq, &flags);
  1315. }
  1316. /**
  1317. * prepare_task_switch - prepare to switch tasks
  1318. * @rq: the runqueue preparing to switch
  1319. * @next: the task we are going to switch to.
  1320. *
  1321. * This is called with the rq lock held and interrupts off. It must
  1322. * be paired with a subsequent finish_task_switch after the context
  1323. * switch.
  1324. *
  1325. * prepare_task_switch sets up locking and calls architecture specific
  1326. * hooks.
  1327. */
  1328. static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
  1329. {
  1330. prepare_lock_switch(rq, next);
  1331. prepare_arch_switch(next);
  1332. }
  1333. /**
  1334. * finish_task_switch - clean up after a task-switch
  1335. * @rq: runqueue associated with task-switch
  1336. * @prev: the thread we just switched away from.
  1337. *
  1338. * finish_task_switch must be called after the context switch, paired
  1339. * with a prepare_task_switch call before the context switch.
  1340. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1341. * and do any other architecture-specific cleanup actions.
  1342. *
  1343. * Note that we may have delayed dropping an mm in context_switch(). If
  1344. * so, we finish that here outside of the runqueue lock. (Doing it
  1345. * with the lock held can cause deadlocks; see schedule() for
  1346. * details.)
  1347. */
  1348. static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
  1349. __releases(rq->lock)
  1350. {
  1351. struct mm_struct *mm = rq->prev_mm;
  1352. unsigned long prev_task_flags;
  1353. rq->prev_mm = NULL;
  1354. /*
  1355. * A task struct has one reference for the use as "current".
  1356. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1357. * calls schedule one last time. The schedule call will never return,
  1358. * and the scheduled task must drop that reference.
  1359. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1360. * still held, otherwise prev could be scheduled on another cpu, die
  1361. * there before we look at prev->state, and then the reference would
  1362. * be dropped twice.
  1363. * Manfred Spraul <manfred@colorfullife.com>
  1364. */
  1365. prev_task_flags = prev->flags;
  1366. finish_arch_switch(prev);
  1367. finish_lock_switch(rq, prev);
  1368. if (mm)
  1369. mmdrop(mm);
  1370. if (unlikely(prev_task_flags & PF_DEAD)) {
  1371. /*
  1372. * Remove function-return probe instances associated with this
  1373. * task and put them back on the free list.
  1374. */
  1375. kprobe_flush_task(prev);
  1376. put_task_struct(prev);
  1377. }
  1378. }
  1379. /**
  1380. * schedule_tail - first thing a freshly forked thread must call.
  1381. * @prev: the thread we just switched away from.
  1382. */
  1383. asmlinkage void schedule_tail(task_t *prev)
  1384. __releases(rq->lock)
  1385. {
  1386. runqueue_t *rq = this_rq();
  1387. finish_task_switch(rq, prev);
  1388. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1389. /* In this case, finish_task_switch does not reenable preemption */
  1390. preempt_enable();
  1391. #endif
  1392. if (current->set_child_tid)
  1393. put_user(current->pid, current->set_child_tid);
  1394. }
  1395. /*
  1396. * context_switch - switch to the new MM and the new
  1397. * thread's register state.
  1398. */
  1399. static inline
  1400. task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
  1401. {
  1402. struct mm_struct *mm = next->mm;
  1403. struct mm_struct *oldmm = prev->active_mm;
  1404. if (unlikely(!mm)) {
  1405. next->active_mm = oldmm;
  1406. atomic_inc(&oldmm->mm_count);
  1407. enter_lazy_tlb(oldmm, next);
  1408. } else
  1409. switch_mm(oldmm, mm, next);
  1410. if (unlikely(!prev->mm)) {
  1411. prev->active_mm = NULL;
  1412. WARN_ON(rq->prev_mm);
  1413. rq->prev_mm = oldmm;
  1414. }
  1415. /* Here we just switch the register state and the stack. */
  1416. switch_to(prev, next, prev);
  1417. return prev;
  1418. }
  1419. /*
  1420. * nr_running, nr_uninterruptible and nr_context_switches:
  1421. *
  1422. * externally visible scheduler statistics: current number of runnable
  1423. * threads, current number of uninterruptible-sleeping threads, total
  1424. * number of context switches performed since bootup.
  1425. */
  1426. unsigned long nr_running(void)
  1427. {
  1428. unsigned long i, sum = 0;
  1429. for_each_online_cpu(i)
  1430. sum += cpu_rq(i)->nr_running;
  1431. return sum;
  1432. }
  1433. unsigned long nr_uninterruptible(void)
  1434. {
  1435. unsigned long i, sum = 0;
  1436. for_each_possible_cpu(i)
  1437. sum += cpu_rq(i)->nr_uninterruptible;
  1438. /*
  1439. * Since we read the counters lockless, it might be slightly
  1440. * inaccurate. Do not allow it to go below zero though:
  1441. */
  1442. if (unlikely((long)sum < 0))
  1443. sum = 0;
  1444. return sum;
  1445. }
  1446. unsigned long long nr_context_switches(void)
  1447. {
  1448. unsigned long long i, sum = 0;
  1449. for_each_possible_cpu(i)
  1450. sum += cpu_rq(i)->nr_switches;
  1451. return sum;
  1452. }
  1453. unsigned long nr_iowait(void)
  1454. {
  1455. unsigned long i, sum = 0;
  1456. for_each_possible_cpu(i)
  1457. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1458. return sum;
  1459. }
  1460. unsigned long nr_active(void)
  1461. {
  1462. unsigned long i, running = 0, uninterruptible = 0;
  1463. for_each_online_cpu(i) {
  1464. running += cpu_rq(i)->nr_running;
  1465. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1466. }
  1467. if (unlikely((long)uninterruptible < 0))
  1468. uninterruptible = 0;
  1469. return running + uninterruptible;
  1470. }
  1471. #ifdef CONFIG_SMP
  1472. /*
  1473. * double_rq_lock - safely lock two runqueues
  1474. *
  1475. * We must take them in cpu order to match code in
  1476. * dependent_sleeper and wake_dependent_sleeper.
  1477. *
  1478. * Note this does not disable interrupts like task_rq_lock,
  1479. * you need to do so manually before calling.
  1480. */
  1481. static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  1482. __acquires(rq1->lock)
  1483. __acquires(rq2->lock)
  1484. {
  1485. if (rq1 == rq2) {
  1486. spin_lock(&rq1->lock);
  1487. __acquire(rq2->lock); /* Fake it out ;) */
  1488. } else {
  1489. if (rq1->cpu < rq2->cpu) {
  1490. spin_lock(&rq1->lock);
  1491. spin_lock(&rq2->lock);
  1492. } else {
  1493. spin_lock(&rq2->lock);
  1494. spin_lock(&rq1->lock);
  1495. }
  1496. }
  1497. }
  1498. /*
  1499. * double_rq_unlock - safely unlock two runqueues
  1500. *
  1501. * Note this does not restore interrupts like task_rq_unlock,
  1502. * you need to do so manually after calling.
  1503. */
  1504. static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
  1505. __releases(rq1->lock)
  1506. __releases(rq2->lock)
  1507. {
  1508. spin_unlock(&rq1->lock);
  1509. if (rq1 != rq2)
  1510. spin_unlock(&rq2->lock);
  1511. else
  1512. __release(rq2->lock);
  1513. }
  1514. /*
  1515. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1516. */
  1517. static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
  1518. __releases(this_rq->lock)
  1519. __acquires(busiest->lock)
  1520. __acquires(this_rq->lock)
  1521. {
  1522. if (unlikely(!spin_trylock(&busiest->lock))) {
  1523. if (busiest->cpu < this_rq->cpu) {
  1524. spin_unlock(&this_rq->lock);
  1525. spin_lock(&busiest->lock);
  1526. spin_lock(&this_rq->lock);
  1527. } else
  1528. spin_lock(&busiest->lock);
  1529. }
  1530. }
  1531. /*
  1532. * If dest_cpu is allowed for this process, migrate the task to it.
  1533. * This is accomplished by forcing the cpu_allowed mask to only
  1534. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1535. * the cpu_allowed mask is restored.
  1536. */
  1537. static void sched_migrate_task(task_t *p, int dest_cpu)
  1538. {
  1539. migration_req_t req;
  1540. runqueue_t *rq;
  1541. unsigned long flags;
  1542. rq = task_rq_lock(p, &flags);
  1543. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1544. || unlikely(cpu_is_offline(dest_cpu)))
  1545. goto out;
  1546. /* force the process onto the specified CPU */
  1547. if (migrate_task(p, dest_cpu, &req)) {
  1548. /* Need to wait for migration thread (might exit: take ref). */
  1549. struct task_struct *mt = rq->migration_thread;
  1550. get_task_struct(mt);
  1551. task_rq_unlock(rq, &flags);
  1552. wake_up_process(mt);
  1553. put_task_struct(mt);
  1554. wait_for_completion(&req.done);
  1555. return;
  1556. }
  1557. out:
  1558. task_rq_unlock(rq, &flags);
  1559. }
  1560. /*
  1561. * sched_exec - execve() is a valuable balancing opportunity, because at
  1562. * this point the task has the smallest effective memory and cache footprint.
  1563. */
  1564. void sched_exec(void)
  1565. {
  1566. int new_cpu, this_cpu = get_cpu();
  1567. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1568. put_cpu();
  1569. if (new_cpu != this_cpu)
  1570. sched_migrate_task(current, new_cpu);
  1571. }
  1572. /*
  1573. * pull_task - move a task from a remote runqueue to the local runqueue.
  1574. * Both runqueues must be locked.
  1575. */
  1576. static
  1577. void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
  1578. runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
  1579. {
  1580. dequeue_task(p, src_array);
  1581. src_rq->nr_running--;
  1582. set_task_cpu(p, this_cpu);
  1583. this_rq->nr_running++;
  1584. enqueue_task(p, this_array);
  1585. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1586. + this_rq->timestamp_last_tick;
  1587. /*
  1588. * Note that idle threads have a prio of MAX_PRIO, for this test
  1589. * to be always true for them.
  1590. */
  1591. if (TASK_PREEMPTS_CURR(p, this_rq))
  1592. resched_task(this_rq->curr);
  1593. }
  1594. /*
  1595. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1596. */
  1597. static
  1598. int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
  1599. struct sched_domain *sd, enum idle_type idle,
  1600. int *all_pinned)
  1601. {
  1602. /*
  1603. * We do not migrate tasks that are:
  1604. * 1) running (obviously), or
  1605. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1606. * 3) are cache-hot on their current CPU.
  1607. */
  1608. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1609. return 0;
  1610. *all_pinned = 0;
  1611. if (task_running(rq, p))
  1612. return 0;
  1613. /*
  1614. * Aggressive migration if:
  1615. * 1) task is cache cold, or
  1616. * 2) too many balance attempts have failed.
  1617. */
  1618. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1619. return 1;
  1620. if (task_hot(p, rq->timestamp_last_tick, sd))
  1621. return 0;
  1622. return 1;
  1623. }
  1624. /*
  1625. * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
  1626. * as part of a balancing operation within "domain". Returns the number of
  1627. * tasks moved.
  1628. *
  1629. * Called with both runqueues locked.
  1630. */
  1631. static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
  1632. unsigned long max_nr_move, struct sched_domain *sd,
  1633. enum idle_type idle, int *all_pinned)
  1634. {
  1635. prio_array_t *array, *dst_array;
  1636. struct list_head *head, *curr;
  1637. int idx, pulled = 0, pinned = 0;
  1638. task_t *tmp;
  1639. if (max_nr_move == 0)
  1640. goto out;
  1641. pinned = 1;
  1642. /*
  1643. * We first consider expired tasks. Those will likely not be
  1644. * executed in the near future, and they are most likely to
  1645. * be cache-cold, thus switching CPUs has the least effect
  1646. * on them.
  1647. */
  1648. if (busiest->expired->nr_active) {
  1649. array = busiest->expired;
  1650. dst_array = this_rq->expired;
  1651. } else {
  1652. array = busiest->active;
  1653. dst_array = this_rq->active;
  1654. }
  1655. new_array:
  1656. /* Start searching at priority 0: */
  1657. idx = 0;
  1658. skip_bitmap:
  1659. if (!idx)
  1660. idx = sched_find_first_bit(array->bitmap);
  1661. else
  1662. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1663. if (idx >= MAX_PRIO) {
  1664. if (array == busiest->expired && busiest->active->nr_active) {
  1665. array = busiest->active;
  1666. dst_array = this_rq->active;
  1667. goto new_array;
  1668. }
  1669. goto out;
  1670. }
  1671. head = array->queue + idx;
  1672. curr = head->prev;
  1673. skip_queue:
  1674. tmp = list_entry(curr, task_t, run_list);
  1675. curr = curr->prev;
  1676. if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1677. if (curr != head)
  1678. goto skip_queue;
  1679. idx++;
  1680. goto skip_bitmap;
  1681. }
  1682. #ifdef CONFIG_SCHEDSTATS
  1683. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1684. schedstat_inc(sd, lb_hot_gained[idle]);
  1685. #endif
  1686. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1687. pulled++;
  1688. /* We only want to steal up to the prescribed number of tasks. */
  1689. if (pulled < max_nr_move) {
  1690. if (curr != head)
  1691. goto skip_queue;
  1692. idx++;
  1693. goto skip_bitmap;
  1694. }
  1695. out:
  1696. /*
  1697. * Right now, this is the only place pull_task() is called,
  1698. * so we can safely collect pull_task() stats here rather than
  1699. * inside pull_task().
  1700. */
  1701. schedstat_add(sd, lb_gained[idle], pulled);
  1702. if (all_pinned)
  1703. *all_pinned = pinned;
  1704. return pulled;
  1705. }
  1706. /*
  1707. * find_busiest_group finds and returns the busiest CPU group within the
  1708. * domain. It calculates and returns the number of tasks which should be
  1709. * moved to restore balance via the imbalance parameter.
  1710. */
  1711. static struct sched_group *
  1712. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1713. unsigned long *imbalance, enum idle_type idle, int *sd_idle)
  1714. {
  1715. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1716. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1717. unsigned long max_pull;
  1718. int load_idx;
  1719. max_load = this_load = total_load = total_pwr = 0;
  1720. if (idle == NOT_IDLE)
  1721. load_idx = sd->busy_idx;
  1722. else if (idle == NEWLY_IDLE)
  1723. load_idx = sd->newidle_idx;
  1724. else
  1725. load_idx = sd->idle_idx;
  1726. do {
  1727. unsigned long load;
  1728. int local_group;
  1729. int i;
  1730. local_group = cpu_isset(this_cpu, group->cpumask);
  1731. /* Tally up the load of all CPUs in the group */
  1732. avg_load = 0;
  1733. for_each_cpu_mask(i, group->cpumask) {
  1734. if (*sd_idle && !idle_cpu(i))
  1735. *sd_idle = 0;
  1736. /* Bias balancing toward cpus of our domain */
  1737. if (local_group)
  1738. load = target_load(i, load_idx);
  1739. else
  1740. load = source_load(i, load_idx);
  1741. avg_load += load;
  1742. }
  1743. total_load += avg_load;
  1744. total_pwr += group->cpu_power;
  1745. /* Adjust by relative CPU power of the group */
  1746. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1747. if (local_group) {
  1748. this_load = avg_load;
  1749. this = group;
  1750. } else if (avg_load > max_load) {
  1751. max_load = avg_load;
  1752. busiest = group;
  1753. }
  1754. group = group->next;
  1755. } while (group != sd->groups);
  1756. if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
  1757. goto out_balanced;
  1758. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  1759. if (this_load >= avg_load ||
  1760. 100*max_load <= sd->imbalance_pct*this_load)
  1761. goto out_balanced;
  1762. /*
  1763. * We're trying to get all the cpus to the average_load, so we don't
  1764. * want to push ourselves above the average load, nor do we wish to
  1765. * reduce the max loaded cpu below the average load, as either of these
  1766. * actions would just result in more rebalancing later, and ping-pong
  1767. * tasks around. Thus we look for the minimum possible imbalance.
  1768. * Negative imbalances (*we* are more loaded than anyone else) will
  1769. * be counted as no imbalance for these purposes -- we can't fix that
  1770. * by pulling tasks to us. Be careful of negative numbers as they'll
  1771. * appear as very large values with unsigned longs.
  1772. */
  1773. /* Don't want to pull so many tasks that a group would go idle */
  1774. max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
  1775. /* How much load to actually move to equalise the imbalance */
  1776. *imbalance = min(max_pull * busiest->cpu_power,
  1777. (avg_load - this_load) * this->cpu_power)
  1778. / SCHED_LOAD_SCALE;
  1779. if (*imbalance < SCHED_LOAD_SCALE) {
  1780. unsigned long pwr_now = 0, pwr_move = 0;
  1781. unsigned long tmp;
  1782. if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
  1783. *imbalance = 1;
  1784. return busiest;
  1785. }
  1786. /*
  1787. * OK, we don't have enough imbalance to justify moving tasks,
  1788. * however we may be able to increase total CPU power used by
  1789. * moving them.
  1790. */
  1791. pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
  1792. pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
  1793. pwr_now /= SCHED_LOAD_SCALE;
  1794. /* Amount of load we'd subtract */
  1795. tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
  1796. if (max_load > tmp)
  1797. pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
  1798. max_load - tmp);
  1799. /* Amount of load we'd add */
  1800. if (max_load*busiest->cpu_power <
  1801. SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
  1802. tmp = max_load*busiest->cpu_power/this->cpu_power;
  1803. else
  1804. tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
  1805. pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
  1806. pwr_move /= SCHED_LOAD_SCALE;
  1807. /* Move if we gain throughput */
  1808. if (pwr_move <= pwr_now)
  1809. goto out_balanced;
  1810. *imbalance = 1;
  1811. return busiest;
  1812. }
  1813. /* Get rid of the scaling factor, rounding down as we divide */
  1814. *imbalance = *imbalance / SCHED_LOAD_SCALE;
  1815. return busiest;
  1816. out_balanced:
  1817. *imbalance = 0;
  1818. return NULL;
  1819. }
  1820. /*
  1821. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  1822. */
  1823. static runqueue_t *find_busiest_queue(struct sched_group *group,
  1824. enum idle_type idle)
  1825. {
  1826. unsigned long load, max_load = 0;
  1827. runqueue_t *busiest = NULL;
  1828. int i;
  1829. for_each_cpu_mask(i, group->cpumask) {
  1830. load = source_load(i, 0);
  1831. if (load > max_load) {
  1832. max_load = load;
  1833. busiest = cpu_rq(i);
  1834. }
  1835. }
  1836. return busiest;
  1837. }
  1838. /*
  1839. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  1840. * so long as it is large enough.
  1841. */
  1842. #define MAX_PINNED_INTERVAL 512
  1843. /*
  1844. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  1845. * tasks if there is an imbalance.
  1846. *
  1847. * Called with this_rq unlocked.
  1848. */
  1849. static int load_balance(int this_cpu, runqueue_t *this_rq,
  1850. struct sched_domain *sd, enum idle_type idle)
  1851. {
  1852. struct sched_group *group;
  1853. runqueue_t *busiest;
  1854. unsigned long imbalance;
  1855. int nr_moved, all_pinned = 0;
  1856. int active_balance = 0;
  1857. int sd_idle = 0;
  1858. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
  1859. sd_idle = 1;
  1860. schedstat_inc(sd, lb_cnt[idle]);
  1861. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
  1862. if (!group) {
  1863. schedstat_inc(sd, lb_nobusyg[idle]);
  1864. goto out_balanced;
  1865. }
  1866. busiest = find_busiest_queue(group, idle);
  1867. if (!busiest) {
  1868. schedstat_inc(sd, lb_nobusyq[idle]);
  1869. goto out_balanced;
  1870. }
  1871. BUG_ON(busiest == this_rq);
  1872. schedstat_add(sd, lb_imbalance[idle], imbalance);
  1873. nr_moved = 0;
  1874. if (busiest->nr_running > 1) {
  1875. /*
  1876. * Attempt to move tasks. If find_busiest_group has found
  1877. * an imbalance but busiest->nr_running <= 1, the group is
  1878. * still unbalanced. nr_moved simply stays zero, so it is
  1879. * correctly treated as an imbalance.
  1880. */
  1881. double_rq_lock(this_rq, busiest);
  1882. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  1883. imbalance, sd, idle, &all_pinned);
  1884. double_rq_unlock(this_rq, busiest);
  1885. /* All tasks on this runqueue were pinned by CPU affinity */
  1886. if (unlikely(all_pinned))
  1887. goto out_balanced;
  1888. }
  1889. if (!nr_moved) {
  1890. schedstat_inc(sd, lb_failed[idle]);
  1891. sd->nr_balance_failed++;
  1892. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  1893. spin_lock(&busiest->lock);
  1894. /* don't kick the migration_thread, if the curr
  1895. * task on busiest cpu can't be moved to this_cpu
  1896. */
  1897. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  1898. spin_unlock(&busiest->lock);
  1899. all_pinned = 1;
  1900. goto out_one_pinned;
  1901. }
  1902. if (!busiest->active_balance) {
  1903. busiest->active_balance = 1;
  1904. busiest->push_cpu = this_cpu;
  1905. active_balance = 1;
  1906. }
  1907. spin_unlock(&busiest->lock);
  1908. if (active_balance)
  1909. wake_up_process(busiest->migration_thread);
  1910. /*
  1911. * We've kicked active balancing, reset the failure
  1912. * counter.
  1913. */
  1914. sd->nr_balance_failed = sd->cache_nice_tries+1;
  1915. }
  1916. } else
  1917. sd->nr_balance_failed = 0;
  1918. if (likely(!active_balance)) {
  1919. /* We were unbalanced, so reset the balancing interval */
  1920. sd->balance_interval = sd->min_interval;
  1921. } else {
  1922. /*
  1923. * If we've begun active balancing, start to back off. This
  1924. * case may not be covered by the all_pinned logic if there
  1925. * is only 1 task on the busy runqueue (because we don't call
  1926. * move_tasks).
  1927. */
  1928. if (sd->balance_interval < sd->max_interval)
  1929. sd->balance_interval *= 2;
  1930. }
  1931. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1932. return -1;
  1933. return nr_moved;
  1934. out_balanced:
  1935. schedstat_inc(sd, lb_balanced[idle]);
  1936. sd->nr_balance_failed = 0;
  1937. out_one_pinned:
  1938. /* tune up the balancing interval */
  1939. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  1940. (sd->balance_interval < sd->max_interval))
  1941. sd->balance_interval *= 2;
  1942. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1943. return -1;
  1944. return 0;
  1945. }
  1946. /*
  1947. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  1948. * tasks if there is an imbalance.
  1949. *
  1950. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  1951. * this_rq is locked.
  1952. */
  1953. static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
  1954. struct sched_domain *sd)
  1955. {
  1956. struct sched_group *group;
  1957. runqueue_t *busiest = NULL;
  1958. unsigned long imbalance;
  1959. int nr_moved = 0;
  1960. int sd_idle = 0;
  1961. if (sd->flags & SD_SHARE_CPUPOWER)
  1962. sd_idle = 1;
  1963. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  1964. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
  1965. if (!group) {
  1966. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  1967. goto out_balanced;
  1968. }
  1969. busiest = find_busiest_queue(group, NEWLY_IDLE);
  1970. if (!busiest) {
  1971. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  1972. goto out_balanced;
  1973. }
  1974. BUG_ON(busiest == this_rq);
  1975. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  1976. nr_moved = 0;
  1977. if (busiest->nr_running > 1) {
  1978. /* Attempt to move tasks */
  1979. double_lock_balance(this_rq, busiest);
  1980. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  1981. imbalance, sd, NEWLY_IDLE, NULL);
  1982. spin_unlock(&busiest->lock);
  1983. }
  1984. if (!nr_moved) {
  1985. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  1986. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1987. return -1;
  1988. } else
  1989. sd->nr_balance_failed = 0;
  1990. return nr_moved;
  1991. out_balanced:
  1992. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  1993. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  1994. return -1;
  1995. sd->nr_balance_failed = 0;
  1996. return 0;
  1997. }
  1998. /*
  1999. * idle_balance is called by schedule() if this_cpu is about to become
  2000. * idle. Attempts to pull tasks from other CPUs.
  2001. */
  2002. static void idle_balance(int this_cpu, runqueue_t *this_rq)
  2003. {
  2004. struct sched_domain *sd;
  2005. for_each_domain(this_cpu, sd) {
  2006. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2007. if (load_balance_newidle(this_cpu, this_rq, sd)) {
  2008. /* We've pulled tasks over so stop searching */
  2009. break;
  2010. }
  2011. }
  2012. }
  2013. }
  2014. /*
  2015. * active_load_balance is run by migration threads. It pushes running tasks
  2016. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2017. * running on each physical CPU where possible, and avoids physical /
  2018. * logical imbalances.
  2019. *
  2020. * Called with busiest_rq locked.
  2021. */
  2022. static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
  2023. {
  2024. struct sched_domain *sd;
  2025. runqueue_t *target_rq;
  2026. int target_cpu = busiest_rq->push_cpu;
  2027. if (busiest_rq->nr_running <= 1)
  2028. /* no task to move */
  2029. return;
  2030. target_rq = cpu_rq(target_cpu);
  2031. /*
  2032. * This condition is "impossible", if it occurs
  2033. * we need to fix it. Originally reported by
  2034. * Bjorn Helgaas on a 128-cpu setup.
  2035. */
  2036. BUG_ON(busiest_rq == target_rq);
  2037. /* move a task from busiest_rq to target_rq */
  2038. double_lock_balance(busiest_rq, target_rq);
  2039. /* Search for an sd spanning us and the target CPU. */
  2040. for_each_domain(target_cpu, sd)
  2041. if ((sd->flags & SD_LOAD_BALANCE) &&
  2042. cpu_isset(busiest_cpu, sd->span))
  2043. break;
  2044. if (unlikely(sd == NULL))
  2045. goto out;
  2046. schedstat_inc(sd, alb_cnt);
  2047. if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
  2048. schedstat_inc(sd, alb_pushed);
  2049. else
  2050. schedstat_inc(sd, alb_failed);
  2051. out:
  2052. spin_unlock(&target_rq->lock);
  2053. }
  2054. /*
  2055. * rebalance_tick will get called every timer tick, on every CPU.
  2056. *
  2057. * It checks each scheduling domain to see if it is due to be balanced,
  2058. * and initiates a balancing operation if so.
  2059. *
  2060. * Balancing parameters are set up in arch_init_sched_domains.
  2061. */
  2062. /* Don't have all balancing operations going off at once */
  2063. #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
  2064. static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
  2065. enum idle_type idle)
  2066. {
  2067. unsigned long old_load, this_load;
  2068. unsigned long j = jiffies + CPU_OFFSET(this_cpu);
  2069. struct sched_domain *sd;
  2070. int i;
  2071. this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
  2072. /* Update our load */
  2073. for (i = 0; i < 3; i++) {
  2074. unsigned long new_load = this_load;
  2075. int scale = 1 << i;
  2076. old_load = this_rq->cpu_load[i];
  2077. /*
  2078. * Round up the averaging division if load is increasing. This
  2079. * prevents us from getting stuck on 9 if the load is 10, for
  2080. * example.
  2081. */
  2082. if (new_load > old_load)
  2083. new_load += scale-1;
  2084. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2085. }
  2086. for_each_domain(this_cpu, sd) {
  2087. unsigned long interval;
  2088. if (!(sd->flags & SD_LOAD_BALANCE))
  2089. continue;
  2090. interval = sd->balance_interval;
  2091. if (idle != SCHED_IDLE)
  2092. interval *= sd->busy_factor;
  2093. /* scale ms to jiffies */
  2094. interval = msecs_to_jiffies(interval);
  2095. if (unlikely(!interval))
  2096. interval = 1;
  2097. if (j - sd->last_balance >= interval) {
  2098. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2099. /*
  2100. * We've pulled tasks over so either we're no
  2101. * longer idle, or one of our SMT siblings is
  2102. * not idle.
  2103. */
  2104. idle = NOT_IDLE;
  2105. }
  2106. sd->last_balance += interval;
  2107. }
  2108. }
  2109. }
  2110. #else
  2111. /*
  2112. * on UP we do not need to balance between CPUs:
  2113. */
  2114. static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
  2115. {
  2116. }
  2117. static inline void idle_balance(int cpu, runqueue_t *rq)
  2118. {
  2119. }
  2120. #endif
  2121. static inline int wake_priority_sleeper(runqueue_t *rq)
  2122. {
  2123. int ret = 0;
  2124. #ifdef CONFIG_SCHED_SMT
  2125. spin_lock(&rq->lock);
  2126. /*
  2127. * If an SMT sibling task has been put to sleep for priority
  2128. * reasons reschedule the idle task to see if it can now run.
  2129. */
  2130. if (rq->nr_running) {
  2131. resched_task(rq->idle);
  2132. ret = 1;
  2133. }
  2134. spin_unlock(&rq->lock);
  2135. #endif
  2136. return ret;
  2137. }
  2138. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2139. EXPORT_PER_CPU_SYMBOL(kstat);
  2140. /*
  2141. * This is called on clock ticks and on context switches.
  2142. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2143. */
  2144. static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
  2145. unsigned long long now)
  2146. {
  2147. unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
  2148. p->sched_time += now - last;
  2149. }
  2150. /*
  2151. * Return current->sched_time plus any more ns on the sched_clock
  2152. * that have not yet been banked.
  2153. */
  2154. unsigned long long current_sched_time(const task_t *tsk)
  2155. {
  2156. unsigned long long ns;
  2157. unsigned long flags;
  2158. local_irq_save(flags);
  2159. ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
  2160. ns = tsk->sched_time + (sched_clock() - ns);
  2161. local_irq_restore(flags);
  2162. return ns;
  2163. }
  2164. /*
  2165. * We place interactive tasks back into the active array, if possible.
  2166. *
  2167. * To guarantee that this does not starve expired tasks we ignore the
  2168. * interactivity of a task if the first expired task had to wait more
  2169. * than a 'reasonable' amount of time. This deadline timeout is
  2170. * load-dependent, as the frequency of array switched decreases with
  2171. * increasing number of running tasks. We also ignore the interactivity
  2172. * if a better static_prio task has expired:
  2173. */
  2174. #define EXPIRED_STARVING(rq) \
  2175. ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
  2176. (jiffies - (rq)->expired_timestamp >= \
  2177. STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
  2178. ((rq)->curr->static_prio > (rq)->best_expired_prio))
  2179. /*
  2180. * Account user cpu time to a process.
  2181. * @p: the process that the cpu time gets accounted to
  2182. * @hardirq_offset: the offset to subtract from hardirq_count()
  2183. * @cputime: the cpu time spent in user space since the last update
  2184. */
  2185. void account_user_time(struct task_struct *p, cputime_t cputime)
  2186. {
  2187. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2188. cputime64_t tmp;
  2189. p->utime = cputime_add(p->utime, cputime);
  2190. /* Add user time to cpustat. */
  2191. tmp = cputime_to_cputime64(cputime);
  2192. if (TASK_NICE(p) > 0)
  2193. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2194. else
  2195. cpustat->user = cputime64_add(cpustat->user, tmp);
  2196. }
  2197. /*
  2198. * Account system cpu time to a process.
  2199. * @p: the process that the cpu time gets accounted to
  2200. * @hardirq_offset: the offset to subtract from hardirq_count()
  2201. * @cputime: the cpu time spent in kernel space since the last update
  2202. */
  2203. void account_system_time(struct task_struct *p, int hardirq_offset,
  2204. cputime_t cputime)
  2205. {
  2206. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2207. runqueue_t *rq = this_rq();
  2208. cputime64_t tmp;
  2209. p->stime = cputime_add(p->stime, cputime);
  2210. /* Add system time to cpustat. */
  2211. tmp = cputime_to_cputime64(cputime);
  2212. if (hardirq_count() - hardirq_offset)
  2213. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2214. else if (softirq_count())
  2215. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2216. else if (p != rq->idle)
  2217. cpustat->system = cputime64_add(cpustat->system, tmp);
  2218. else if (atomic_read(&rq->nr_iowait) > 0)
  2219. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2220. else
  2221. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2222. /* Account for system time used */
  2223. acct_update_integrals(p);
  2224. }
  2225. /*
  2226. * Account for involuntary wait time.
  2227. * @p: the process from which the cpu time has been stolen
  2228. * @steal: the cpu time spent in involuntary wait
  2229. */
  2230. void account_steal_time(struct task_struct *p, cputime_t steal)
  2231. {
  2232. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2233. cputime64_t tmp = cputime_to_cputime64(steal);
  2234. runqueue_t *rq = this_rq();
  2235. if (p == rq->idle) {
  2236. p->stime = cputime_add(p->stime, steal);
  2237. if (atomic_read(&rq->nr_iowait) > 0)
  2238. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2239. else
  2240. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2241. } else
  2242. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2243. }
  2244. /*
  2245. * This function gets called by the timer code, with HZ frequency.
  2246. * We call it with interrupts disabled.
  2247. *
  2248. * It also gets called by the fork code, when changing the parent's
  2249. * timeslices.
  2250. */
  2251. void scheduler_tick(void)
  2252. {
  2253. int cpu = smp_processor_id();
  2254. runqueue_t *rq = this_rq();
  2255. task_t *p = current;
  2256. unsigned long long now = sched_clock();
  2257. update_cpu_clock(p, rq, now);
  2258. rq->timestamp_last_tick = now;
  2259. if (p == rq->idle) {
  2260. if (wake_priority_sleeper(rq))
  2261. goto out;
  2262. rebalance_tick(cpu, rq, SCHED_IDLE);
  2263. return;
  2264. }
  2265. /* Task might have expired already, but not scheduled off yet */
  2266. if (p->array != rq->active) {
  2267. set_tsk_need_resched(p);
  2268. goto out;
  2269. }
  2270. spin_lock(&rq->lock);
  2271. /*
  2272. * The task was running during this tick - update the
  2273. * time slice counter. Note: we do not update a thread's
  2274. * priority until it either goes to sleep or uses up its
  2275. * timeslice. This makes it possible for interactive tasks
  2276. * to use up their timeslices at their highest priority levels.
  2277. */
  2278. if (rt_task(p)) {
  2279. /*
  2280. * RR tasks need a special form of timeslice management.
  2281. * FIFO tasks have no timeslices.
  2282. */
  2283. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2284. p->time_slice = task_timeslice(p);
  2285. p->first_time_slice = 0;
  2286. set_tsk_need_resched(p);
  2287. /* put it at the end of the queue: */
  2288. requeue_task(p, rq->active);
  2289. }
  2290. goto out_unlock;
  2291. }
  2292. if (!--p->time_slice) {
  2293. dequeue_task(p, rq->active);
  2294. set_tsk_need_resched(p);
  2295. p->prio = effective_prio(p);
  2296. p->time_slice = task_timeslice(p);
  2297. p->first_time_slice = 0;
  2298. if (!rq->expired_timestamp)
  2299. rq->expired_timestamp = jiffies;
  2300. if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
  2301. enqueue_task(p, rq->expired);
  2302. if (p->static_prio < rq->best_expired_prio)
  2303. rq->best_expired_prio = p->static_prio;
  2304. } else
  2305. enqueue_task(p, rq->active);
  2306. } else {
  2307. /*
  2308. * Prevent a too long timeslice allowing a task to monopolize
  2309. * the CPU. We do this by splitting up the timeslice into
  2310. * smaller pieces.
  2311. *
  2312. * Note: this does not mean the task's timeslices expire or
  2313. * get lost in any way, they just might be preempted by
  2314. * another task of equal priority. (one with higher
  2315. * priority would have preempted this task already.) We
  2316. * requeue this task to the end of the list on this priority
  2317. * level, which is in essence a round-robin of tasks with
  2318. * equal priority.
  2319. *
  2320. * This only applies to tasks in the interactive
  2321. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2322. */
  2323. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2324. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2325. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2326. (p->array == rq->active)) {
  2327. requeue_task(p, rq->active);
  2328. set_tsk_need_resched(p);
  2329. }
  2330. }
  2331. out_unlock:
  2332. spin_unlock(&rq->lock);
  2333. out:
  2334. rebalance_tick(cpu, rq, NOT_IDLE);
  2335. }
  2336. #ifdef CONFIG_SCHED_SMT
  2337. static inline void wakeup_busy_runqueue(runqueue_t *rq)
  2338. {
  2339. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2340. if (rq->curr == rq->idle && rq->nr_running)
  2341. resched_task(rq->idle);
  2342. }
  2343. static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
  2344. {
  2345. struct sched_domain *tmp, *sd = NULL;
  2346. cpumask_t sibling_map;
  2347. int i;
  2348. for_each_domain(this_cpu, tmp)
  2349. if (tmp->flags & SD_SHARE_CPUPOWER)
  2350. sd = tmp;
  2351. if (!sd)
  2352. return;
  2353. /*
  2354. * Unlock the current runqueue because we have to lock in
  2355. * CPU order to avoid deadlocks. Caller knows that we might
  2356. * unlock. We keep IRQs disabled.
  2357. */
  2358. spin_unlock(&this_rq->lock);
  2359. sibling_map = sd->span;
  2360. for_each_cpu_mask(i, sibling_map)
  2361. spin_lock(&cpu_rq(i)->lock);
  2362. /*
  2363. * We clear this CPU from the mask. This both simplifies the
  2364. * inner loop and keps this_rq locked when we exit:
  2365. */
  2366. cpu_clear(this_cpu, sibling_map);
  2367. for_each_cpu_mask(i, sibling_map) {
  2368. runqueue_t *smt_rq = cpu_rq(i);
  2369. wakeup_busy_runqueue(smt_rq);
  2370. }
  2371. for_each_cpu_mask(i, sibling_map)
  2372. spin_unlock(&cpu_rq(i)->lock);
  2373. /*
  2374. * We exit with this_cpu's rq still held and IRQs
  2375. * still disabled:
  2376. */
  2377. }
  2378. /*
  2379. * number of 'lost' timeslices this task wont be able to fully
  2380. * utilize, if another task runs on a sibling. This models the
  2381. * slowdown effect of other tasks running on siblings:
  2382. */
  2383. static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
  2384. {
  2385. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2386. }
  2387. static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
  2388. {
  2389. struct sched_domain *tmp, *sd = NULL;
  2390. cpumask_t sibling_map;
  2391. prio_array_t *array;
  2392. int ret = 0, i;
  2393. task_t *p;
  2394. for_each_domain(this_cpu, tmp)
  2395. if (tmp->flags & SD_SHARE_CPUPOWER)
  2396. sd = tmp;
  2397. if (!sd)
  2398. return 0;
  2399. /*
  2400. * The same locking rules and details apply as for
  2401. * wake_sleeping_dependent():
  2402. */
  2403. spin_unlock(&this_rq->lock);
  2404. sibling_map = sd->span;
  2405. for_each_cpu_mask(i, sibling_map)
  2406. spin_lock(&cpu_rq(i)->lock);
  2407. cpu_clear(this_cpu, sibling_map);
  2408. /*
  2409. * Establish next task to be run - it might have gone away because
  2410. * we released the runqueue lock above:
  2411. */
  2412. if (!this_rq->nr_running)
  2413. goto out_unlock;
  2414. array = this_rq->active;
  2415. if (!array->nr_active)
  2416. array = this_rq->expired;
  2417. BUG_ON(!array->nr_active);
  2418. p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
  2419. task_t, run_list);
  2420. for_each_cpu_mask(i, sibling_map) {
  2421. runqueue_t *smt_rq = cpu_rq(i);
  2422. task_t *smt_curr = smt_rq->curr;
  2423. /* Kernel threads do not participate in dependent sleeping */
  2424. if (!p->mm || !smt_curr->mm || rt_task(p))
  2425. goto check_smt_task;
  2426. /*
  2427. * If a user task with lower static priority than the
  2428. * running task on the SMT sibling is trying to schedule,
  2429. * delay it till there is proportionately less timeslice
  2430. * left of the sibling task to prevent a lower priority
  2431. * task from using an unfair proportion of the
  2432. * physical cpu's resources. -ck
  2433. */
  2434. if (rt_task(smt_curr)) {
  2435. /*
  2436. * With real time tasks we run non-rt tasks only
  2437. * per_cpu_gain% of the time.
  2438. */
  2439. if ((jiffies % DEF_TIMESLICE) >
  2440. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2441. ret = 1;
  2442. } else
  2443. if (smt_curr->static_prio < p->static_prio &&
  2444. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2445. smt_slice(smt_curr, sd) > task_timeslice(p))
  2446. ret = 1;
  2447. check_smt_task:
  2448. if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
  2449. rt_task(smt_curr))
  2450. continue;
  2451. if (!p->mm) {
  2452. wakeup_busy_runqueue(smt_rq);
  2453. continue;
  2454. }
  2455. /*
  2456. * Reschedule a lower priority task on the SMT sibling for
  2457. * it to be put to sleep, or wake it up if it has been put to
  2458. * sleep for priority reasons to see if it should run now.
  2459. */
  2460. if (rt_task(p)) {
  2461. if ((jiffies % DEF_TIMESLICE) >
  2462. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2463. resched_task(smt_curr);
  2464. } else {
  2465. if (TASK_PREEMPTS_CURR(p, smt_rq) &&
  2466. smt_slice(p, sd) > task_timeslice(smt_curr))
  2467. resched_task(smt_curr);
  2468. else
  2469. wakeup_busy_runqueue(smt_rq);
  2470. }
  2471. }
  2472. out_unlock:
  2473. for_each_cpu_mask(i, sibling_map)
  2474. spin_unlock(&cpu_rq(i)->lock);
  2475. return ret;
  2476. }
  2477. #else
  2478. static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
  2479. {
  2480. }
  2481. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
  2482. {
  2483. return 0;
  2484. }
  2485. #endif
  2486. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2487. void fastcall add_preempt_count(int val)
  2488. {
  2489. /*
  2490. * Underflow?
  2491. */
  2492. BUG_ON((preempt_count() < 0));
  2493. preempt_count() += val;
  2494. /*
  2495. * Spinlock count overflowing soon?
  2496. */
  2497. BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2498. }
  2499. EXPORT_SYMBOL(add_preempt_count);
  2500. void fastcall sub_preempt_count(int val)
  2501. {
  2502. /*
  2503. * Underflow?
  2504. */
  2505. BUG_ON(val > preempt_count());
  2506. /*
  2507. * Is the spinlock portion underflowing?
  2508. */
  2509. BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
  2510. preempt_count() -= val;
  2511. }
  2512. EXPORT_SYMBOL(sub_preempt_count);
  2513. #endif
  2514. static inline int interactive_sleep(enum sleep_type sleep_type)
  2515. {
  2516. return (sleep_type == SLEEP_INTERACTIVE ||
  2517. sleep_type == SLEEP_INTERRUPTED);
  2518. }
  2519. /*
  2520. * schedule() is the main scheduler function.
  2521. */
  2522. asmlinkage void __sched schedule(void)
  2523. {
  2524. long *switch_count;
  2525. task_t *prev, *next;
  2526. runqueue_t *rq;
  2527. prio_array_t *array;
  2528. struct list_head *queue;
  2529. unsigned long long now;
  2530. unsigned long run_time;
  2531. int cpu, idx, new_prio;
  2532. /*
  2533. * Test if we are atomic. Since do_exit() needs to call into
  2534. * schedule() atomically, we ignore that path for now.
  2535. * Otherwise, whine if we are scheduling when we should not be.
  2536. */
  2537. if (unlikely(in_atomic() && !current->exit_state)) {
  2538. printk(KERN_ERR "BUG: scheduling while atomic: "
  2539. "%s/0x%08x/%d\n",
  2540. current->comm, preempt_count(), current->pid);
  2541. dump_stack();
  2542. }
  2543. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2544. need_resched:
  2545. preempt_disable();
  2546. prev = current;
  2547. release_kernel_lock(prev);
  2548. need_resched_nonpreemptible:
  2549. rq = this_rq();
  2550. /*
  2551. * The idle thread is not allowed to schedule!
  2552. * Remove this check after it has been exercised a bit.
  2553. */
  2554. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2555. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2556. dump_stack();
  2557. }
  2558. schedstat_inc(rq, sched_cnt);
  2559. now = sched_clock();
  2560. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2561. run_time = now - prev->timestamp;
  2562. if (unlikely((long long)(now - prev->timestamp) < 0))
  2563. run_time = 0;
  2564. } else
  2565. run_time = NS_MAX_SLEEP_AVG;
  2566. /*
  2567. * Tasks charged proportionately less run_time at high sleep_avg to
  2568. * delay them losing their interactive status
  2569. */
  2570. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2571. spin_lock_irq(&rq->lock);
  2572. if (unlikely(prev->flags & PF_DEAD))
  2573. prev->state = EXIT_DEAD;
  2574. switch_count = &prev->nivcsw;
  2575. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2576. switch_count = &prev->nvcsw;
  2577. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2578. unlikely(signal_pending(prev))))
  2579. prev->state = TASK_RUNNING;
  2580. else {
  2581. if (prev->state == TASK_UNINTERRUPTIBLE)
  2582. rq->nr_uninterruptible++;
  2583. deactivate_task(prev, rq);
  2584. }
  2585. }
  2586. cpu = smp_processor_id();
  2587. if (unlikely(!rq->nr_running)) {
  2588. go_idle:
  2589. idle_balance(cpu, rq);
  2590. if (!rq->nr_running) {
  2591. next = rq->idle;
  2592. rq->expired_timestamp = 0;
  2593. wake_sleeping_dependent(cpu, rq);
  2594. /*
  2595. * wake_sleeping_dependent() might have released
  2596. * the runqueue, so break out if we got new
  2597. * tasks meanwhile:
  2598. */
  2599. if (!rq->nr_running)
  2600. goto switch_tasks;
  2601. }
  2602. } else {
  2603. if (dependent_sleeper(cpu, rq)) {
  2604. next = rq->idle;
  2605. goto switch_tasks;
  2606. }
  2607. /*
  2608. * dependent_sleeper() releases and reacquires the runqueue
  2609. * lock, hence go into the idle loop if the rq went
  2610. * empty meanwhile:
  2611. */
  2612. if (unlikely(!rq->nr_running))
  2613. goto go_idle;
  2614. }
  2615. array = rq->active;
  2616. if (unlikely(!array->nr_active)) {
  2617. /*
  2618. * Switch the active and expired arrays.
  2619. */
  2620. schedstat_inc(rq, sched_switch);
  2621. rq->active = rq->expired;
  2622. rq->expired = array;
  2623. array = rq->active;
  2624. rq->expired_timestamp = 0;
  2625. rq->best_expired_prio = MAX_PRIO;
  2626. }
  2627. idx = sched_find_first_bit(array->bitmap);
  2628. queue = array->queue + idx;
  2629. next = list_entry(queue->next, task_t, run_list);
  2630. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2631. unsigned long long delta = now - next->timestamp;
  2632. if (unlikely((long long)(now - next->timestamp) < 0))
  2633. delta = 0;
  2634. if (next->sleep_type == SLEEP_INTERACTIVE)
  2635. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2636. array = next->array;
  2637. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2638. if (unlikely(next->prio != new_prio)) {
  2639. dequeue_task(next, array);
  2640. next->prio = new_prio;
  2641. enqueue_task(next, array);
  2642. }
  2643. }
  2644. next->sleep_type = SLEEP_NORMAL;
  2645. switch_tasks:
  2646. if (next == rq->idle)
  2647. schedstat_inc(rq, sched_goidle);
  2648. prefetch(next);
  2649. prefetch_stack(next);
  2650. clear_tsk_need_resched(prev);
  2651. rcu_qsctr_inc(task_cpu(prev));
  2652. update_cpu_clock(prev, rq, now);
  2653. prev->sleep_avg -= run_time;
  2654. if ((long)prev->sleep_avg <= 0)
  2655. prev->sleep_avg = 0;
  2656. prev->timestamp = prev->last_ran = now;
  2657. sched_info_switch(prev, next);
  2658. if (likely(prev != next)) {
  2659. next->timestamp = now;
  2660. rq->nr_switches++;
  2661. rq->curr = next;
  2662. ++*switch_count;
  2663. prepare_task_switch(rq, next);
  2664. prev = context_switch(rq, prev, next);
  2665. barrier();
  2666. /*
  2667. * this_rq must be evaluated again because prev may have moved
  2668. * CPUs since it called schedule(), thus the 'rq' on its stack
  2669. * frame will be invalid.
  2670. */
  2671. finish_task_switch(this_rq(), prev);
  2672. } else
  2673. spin_unlock_irq(&rq->lock);
  2674. prev = current;
  2675. if (unlikely(reacquire_kernel_lock(prev) < 0))
  2676. goto need_resched_nonpreemptible;
  2677. preempt_enable_no_resched();
  2678. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2679. goto need_resched;
  2680. }
  2681. EXPORT_SYMBOL(schedule);
  2682. #ifdef CONFIG_PREEMPT
  2683. /*
  2684. * this is is the entry point to schedule() from in-kernel preemption
  2685. * off of preempt_enable. Kernel preemptions off return from interrupt
  2686. * occur there and call schedule directly.
  2687. */
  2688. asmlinkage void __sched preempt_schedule(void)
  2689. {
  2690. struct thread_info *ti = current_thread_info();
  2691. #ifdef CONFIG_PREEMPT_BKL
  2692. struct task_struct *task = current;
  2693. int saved_lock_depth;
  2694. #endif
  2695. /*
  2696. * If there is a non-zero preempt_count or interrupts are disabled,
  2697. * we do not want to preempt the current task. Just return..
  2698. */
  2699. if (unlikely(ti->preempt_count || irqs_disabled()))
  2700. return;
  2701. need_resched:
  2702. add_preempt_count(PREEMPT_ACTIVE);
  2703. /*
  2704. * We keep the big kernel semaphore locked, but we
  2705. * clear ->lock_depth so that schedule() doesnt
  2706. * auto-release the semaphore:
  2707. */
  2708. #ifdef CONFIG_PREEMPT_BKL
  2709. saved_lock_depth = task->lock_depth;
  2710. task->lock_depth = -1;
  2711. #endif
  2712. schedule();
  2713. #ifdef CONFIG_PREEMPT_BKL
  2714. task->lock_depth = saved_lock_depth;
  2715. #endif
  2716. sub_preempt_count(PREEMPT_ACTIVE);
  2717. /* we could miss a preemption opportunity between schedule and now */
  2718. barrier();
  2719. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2720. goto need_resched;
  2721. }
  2722. EXPORT_SYMBOL(preempt_schedule);
  2723. /*
  2724. * this is is the entry point to schedule() from kernel preemption
  2725. * off of irq context.
  2726. * Note, that this is called and return with irqs disabled. This will
  2727. * protect us against recursive calling from irq.
  2728. */
  2729. asmlinkage void __sched preempt_schedule_irq(void)
  2730. {
  2731. struct thread_info *ti = current_thread_info();
  2732. #ifdef CONFIG_PREEMPT_BKL
  2733. struct task_struct *task = current;
  2734. int saved_lock_depth;
  2735. #endif
  2736. /* Catch callers which need to be fixed*/
  2737. BUG_ON(ti->preempt_count || !irqs_disabled());
  2738. need_resched:
  2739. add_preempt_count(PREEMPT_ACTIVE);
  2740. /*
  2741. * We keep the big kernel semaphore locked, but we
  2742. * clear ->lock_depth so that schedule() doesnt
  2743. * auto-release the semaphore:
  2744. */
  2745. #ifdef CONFIG_PREEMPT_BKL
  2746. saved_lock_depth = task->lock_depth;
  2747. task->lock_depth = -1;
  2748. #endif
  2749. local_irq_enable();
  2750. schedule();
  2751. local_irq_disable();
  2752. #ifdef CONFIG_PREEMPT_BKL
  2753. task->lock_depth = saved_lock_depth;
  2754. #endif
  2755. sub_preempt_count(PREEMPT_ACTIVE);
  2756. /* we could miss a preemption opportunity between schedule and now */
  2757. barrier();
  2758. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2759. goto need_resched;
  2760. }
  2761. #endif /* CONFIG_PREEMPT */
  2762. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  2763. void *key)
  2764. {
  2765. task_t *p = curr->private;
  2766. return try_to_wake_up(p, mode, sync);
  2767. }
  2768. EXPORT_SYMBOL(default_wake_function);
  2769. /*
  2770. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2771. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2772. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2773. *
  2774. * There are circumstances in which we can try to wake a task which has already
  2775. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2776. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2777. */
  2778. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2779. int nr_exclusive, int sync, void *key)
  2780. {
  2781. struct list_head *tmp, *next;
  2782. list_for_each_safe(tmp, next, &q->task_list) {
  2783. wait_queue_t *curr;
  2784. unsigned flags;
  2785. curr = list_entry(tmp, wait_queue_t, task_list);
  2786. flags = curr->flags;
  2787. if (curr->func(curr, mode, sync, key) &&
  2788. (flags & WQ_FLAG_EXCLUSIVE) &&
  2789. !--nr_exclusive)
  2790. break;
  2791. }
  2792. }
  2793. /**
  2794. * __wake_up - wake up threads blocked on a waitqueue.
  2795. * @q: the waitqueue
  2796. * @mode: which threads
  2797. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2798. * @key: is directly passed to the wakeup function
  2799. */
  2800. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  2801. int nr_exclusive, void *key)
  2802. {
  2803. unsigned long flags;
  2804. spin_lock_irqsave(&q->lock, flags);
  2805. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2806. spin_unlock_irqrestore(&q->lock, flags);
  2807. }
  2808. EXPORT_SYMBOL(__wake_up);
  2809. /*
  2810. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2811. */
  2812. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2813. {
  2814. __wake_up_common(q, mode, 1, 0, NULL);
  2815. }
  2816. /**
  2817. * __wake_up_sync - wake up threads blocked on a waitqueue.
  2818. * @q: the waitqueue
  2819. * @mode: which threads
  2820. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2821. *
  2822. * The sync wakeup differs that the waker knows that it will schedule
  2823. * away soon, so while the target thread will be woken up, it will not
  2824. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2825. * with each other. This can prevent needless bouncing between CPUs.
  2826. *
  2827. * On UP it can prevent extra preemption.
  2828. */
  2829. void fastcall
  2830. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2831. {
  2832. unsigned long flags;
  2833. int sync = 1;
  2834. if (unlikely(!q))
  2835. return;
  2836. if (unlikely(!nr_exclusive))
  2837. sync = 0;
  2838. spin_lock_irqsave(&q->lock, flags);
  2839. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  2840. spin_unlock_irqrestore(&q->lock, flags);
  2841. }
  2842. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2843. void fastcall complete(struct completion *x)
  2844. {
  2845. unsigned long flags;
  2846. spin_lock_irqsave(&x->wait.lock, flags);
  2847. x->done++;
  2848. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2849. 1, 0, NULL);
  2850. spin_unlock_irqrestore(&x->wait.lock, flags);
  2851. }
  2852. EXPORT_SYMBOL(complete);
  2853. void fastcall complete_all(struct completion *x)
  2854. {
  2855. unsigned long flags;
  2856. spin_lock_irqsave(&x->wait.lock, flags);
  2857. x->done += UINT_MAX/2;
  2858. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2859. 0, 0, NULL);
  2860. spin_unlock_irqrestore(&x->wait.lock, flags);
  2861. }
  2862. EXPORT_SYMBOL(complete_all);
  2863. void fastcall __sched wait_for_completion(struct completion *x)
  2864. {
  2865. might_sleep();
  2866. spin_lock_irq(&x->wait.lock);
  2867. if (!x->done) {
  2868. DECLARE_WAITQUEUE(wait, current);
  2869. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2870. __add_wait_queue_tail(&x->wait, &wait);
  2871. do {
  2872. __set_current_state(TASK_UNINTERRUPTIBLE);
  2873. spin_unlock_irq(&x->wait.lock);
  2874. schedule();
  2875. spin_lock_irq(&x->wait.lock);
  2876. } while (!x->done);
  2877. __remove_wait_queue(&x->wait, &wait);
  2878. }
  2879. x->done--;
  2880. spin_unlock_irq(&x->wait.lock);
  2881. }
  2882. EXPORT_SYMBOL(wait_for_completion);
  2883. unsigned long fastcall __sched
  2884. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2885. {
  2886. might_sleep();
  2887. spin_lock_irq(&x->wait.lock);
  2888. if (!x->done) {
  2889. DECLARE_WAITQUEUE(wait, current);
  2890. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2891. __add_wait_queue_tail(&x->wait, &wait);
  2892. do {
  2893. __set_current_state(TASK_UNINTERRUPTIBLE);
  2894. spin_unlock_irq(&x->wait.lock);
  2895. timeout = schedule_timeout(timeout);
  2896. spin_lock_irq(&x->wait.lock);
  2897. if (!timeout) {
  2898. __remove_wait_queue(&x->wait, &wait);
  2899. goto out;
  2900. }
  2901. } while (!x->done);
  2902. __remove_wait_queue(&x->wait, &wait);
  2903. }
  2904. x->done--;
  2905. out:
  2906. spin_unlock_irq(&x->wait.lock);
  2907. return timeout;
  2908. }
  2909. EXPORT_SYMBOL(wait_for_completion_timeout);
  2910. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  2911. {
  2912. int ret = 0;
  2913. might_sleep();
  2914. spin_lock_irq(&x->wait.lock);
  2915. if (!x->done) {
  2916. DECLARE_WAITQUEUE(wait, current);
  2917. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2918. __add_wait_queue_tail(&x->wait, &wait);
  2919. do {
  2920. if (signal_pending(current)) {
  2921. ret = -ERESTARTSYS;
  2922. __remove_wait_queue(&x->wait, &wait);
  2923. goto out;
  2924. }
  2925. __set_current_state(TASK_INTERRUPTIBLE);
  2926. spin_unlock_irq(&x->wait.lock);
  2927. schedule();
  2928. spin_lock_irq(&x->wait.lock);
  2929. } while (!x->done);
  2930. __remove_wait_queue(&x->wait, &wait);
  2931. }
  2932. x->done--;
  2933. out:
  2934. spin_unlock_irq(&x->wait.lock);
  2935. return ret;
  2936. }
  2937. EXPORT_SYMBOL(wait_for_completion_interruptible);
  2938. unsigned long fastcall __sched
  2939. wait_for_completion_interruptible_timeout(struct completion *x,
  2940. unsigned long timeout)
  2941. {
  2942. might_sleep();
  2943. spin_lock_irq(&x->wait.lock);
  2944. if (!x->done) {
  2945. DECLARE_WAITQUEUE(wait, current);
  2946. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2947. __add_wait_queue_tail(&x->wait, &wait);
  2948. do {
  2949. if (signal_pending(current)) {
  2950. timeout = -ERESTARTSYS;
  2951. __remove_wait_queue(&x->wait, &wait);
  2952. goto out;
  2953. }
  2954. __set_current_state(TASK_INTERRUPTIBLE);
  2955. spin_unlock_irq(&x->wait.lock);
  2956. timeout = schedule_timeout(timeout);
  2957. spin_lock_irq(&x->wait.lock);
  2958. if (!timeout) {
  2959. __remove_wait_queue(&x->wait, &wait);
  2960. goto out;
  2961. }
  2962. } while (!x->done);
  2963. __remove_wait_queue(&x->wait, &wait);
  2964. }
  2965. x->done--;
  2966. out:
  2967. spin_unlock_irq(&x->wait.lock);
  2968. return timeout;
  2969. }
  2970. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  2971. #define SLEEP_ON_VAR \
  2972. unsigned long flags; \
  2973. wait_queue_t wait; \
  2974. init_waitqueue_entry(&wait, current);
  2975. #define SLEEP_ON_HEAD \
  2976. spin_lock_irqsave(&q->lock,flags); \
  2977. __add_wait_queue(q, &wait); \
  2978. spin_unlock(&q->lock);
  2979. #define SLEEP_ON_TAIL \
  2980. spin_lock_irq(&q->lock); \
  2981. __remove_wait_queue(q, &wait); \
  2982. spin_unlock_irqrestore(&q->lock, flags);
  2983. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  2984. {
  2985. SLEEP_ON_VAR
  2986. current->state = TASK_INTERRUPTIBLE;
  2987. SLEEP_ON_HEAD
  2988. schedule();
  2989. SLEEP_ON_TAIL
  2990. }
  2991. EXPORT_SYMBOL(interruptible_sleep_on);
  2992. long fastcall __sched
  2993. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2994. {
  2995. SLEEP_ON_VAR
  2996. current->state = TASK_INTERRUPTIBLE;
  2997. SLEEP_ON_HEAD
  2998. timeout = schedule_timeout(timeout);
  2999. SLEEP_ON_TAIL
  3000. return timeout;
  3001. }
  3002. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3003. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3004. {
  3005. SLEEP_ON_VAR
  3006. current->state = TASK_UNINTERRUPTIBLE;
  3007. SLEEP_ON_HEAD
  3008. schedule();
  3009. SLEEP_ON_TAIL
  3010. }
  3011. EXPORT_SYMBOL(sleep_on);
  3012. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3013. {
  3014. SLEEP_ON_VAR
  3015. current->state = TASK_UNINTERRUPTIBLE;
  3016. SLEEP_ON_HEAD
  3017. timeout = schedule_timeout(timeout);
  3018. SLEEP_ON_TAIL
  3019. return timeout;
  3020. }
  3021. EXPORT_SYMBOL(sleep_on_timeout);
  3022. void set_user_nice(task_t *p, long nice)
  3023. {
  3024. unsigned long flags;
  3025. prio_array_t *array;
  3026. runqueue_t *rq;
  3027. int old_prio, new_prio, delta;
  3028. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3029. return;
  3030. /*
  3031. * We have to be careful, if called from sys_setpriority(),
  3032. * the task might be in the middle of scheduling on another CPU.
  3033. */
  3034. rq = task_rq_lock(p, &flags);
  3035. /*
  3036. * The RT priorities are set via sched_setscheduler(), but we still
  3037. * allow the 'normal' nice value to be set - but as expected
  3038. * it wont have any effect on scheduling until the task is
  3039. * not SCHED_NORMAL/SCHED_BATCH:
  3040. */
  3041. if (rt_task(p)) {
  3042. p->static_prio = NICE_TO_PRIO(nice);
  3043. goto out_unlock;
  3044. }
  3045. array = p->array;
  3046. if (array)
  3047. dequeue_task(p, array);
  3048. old_prio = p->prio;
  3049. new_prio = NICE_TO_PRIO(nice);
  3050. delta = new_prio - old_prio;
  3051. p->static_prio = NICE_TO_PRIO(nice);
  3052. p->prio += delta;
  3053. if (array) {
  3054. enqueue_task(p, array);
  3055. /*
  3056. * If the task increased its priority or is running and
  3057. * lowered its priority, then reschedule its CPU:
  3058. */
  3059. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3060. resched_task(rq->curr);
  3061. }
  3062. out_unlock:
  3063. task_rq_unlock(rq, &flags);
  3064. }
  3065. EXPORT_SYMBOL(set_user_nice);
  3066. /*
  3067. * can_nice - check if a task can reduce its nice value
  3068. * @p: task
  3069. * @nice: nice value
  3070. */
  3071. int can_nice(const task_t *p, const int nice)
  3072. {
  3073. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3074. int nice_rlim = 20 - nice;
  3075. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3076. capable(CAP_SYS_NICE));
  3077. }
  3078. #ifdef __ARCH_WANT_SYS_NICE
  3079. /*
  3080. * sys_nice - change the priority of the current process.
  3081. * @increment: priority increment
  3082. *
  3083. * sys_setpriority is a more generic, but much slower function that
  3084. * does similar things.
  3085. */
  3086. asmlinkage long sys_nice(int increment)
  3087. {
  3088. int retval;
  3089. long nice;
  3090. /*
  3091. * Setpriority might change our priority at the same moment.
  3092. * We don't have to worry. Conceptually one call occurs first
  3093. * and we have a single winner.
  3094. */
  3095. if (increment < -40)
  3096. increment = -40;
  3097. if (increment > 40)
  3098. increment = 40;
  3099. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3100. if (nice < -20)
  3101. nice = -20;
  3102. if (nice > 19)
  3103. nice = 19;
  3104. if (increment < 0 && !can_nice(current, nice))
  3105. return -EPERM;
  3106. retval = security_task_setnice(current, nice);
  3107. if (retval)
  3108. return retval;
  3109. set_user_nice(current, nice);
  3110. return 0;
  3111. }
  3112. #endif
  3113. /**
  3114. * task_prio - return the priority value of a given task.
  3115. * @p: the task in question.
  3116. *
  3117. * This is the priority value as seen by users in /proc.
  3118. * RT tasks are offset by -200. Normal tasks are centered
  3119. * around 0, value goes from -16 to +15.
  3120. */
  3121. int task_prio(const task_t *p)
  3122. {
  3123. return p->prio - MAX_RT_PRIO;
  3124. }
  3125. /**
  3126. * task_nice - return the nice value of a given task.
  3127. * @p: the task in question.
  3128. */
  3129. int task_nice(const task_t *p)
  3130. {
  3131. return TASK_NICE(p);
  3132. }
  3133. EXPORT_SYMBOL_GPL(task_nice);
  3134. /**
  3135. * idle_cpu - is a given cpu idle currently?
  3136. * @cpu: the processor in question.
  3137. */
  3138. int idle_cpu(int cpu)
  3139. {
  3140. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3141. }
  3142. /**
  3143. * idle_task - return the idle task for a given cpu.
  3144. * @cpu: the processor in question.
  3145. */
  3146. task_t *idle_task(int cpu)
  3147. {
  3148. return cpu_rq(cpu)->idle;
  3149. }
  3150. /**
  3151. * find_process_by_pid - find a process with a matching PID value.
  3152. * @pid: the pid in question.
  3153. */
  3154. static inline task_t *find_process_by_pid(pid_t pid)
  3155. {
  3156. return pid ? find_task_by_pid(pid) : current;
  3157. }
  3158. /* Actually do priority change: must hold rq lock. */
  3159. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3160. {
  3161. BUG_ON(p->array);
  3162. p->policy = policy;
  3163. p->rt_priority = prio;
  3164. if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
  3165. p->prio = MAX_RT_PRIO-1 - p->rt_priority;
  3166. } else {
  3167. p->prio = p->static_prio;
  3168. /*
  3169. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3170. */
  3171. if (policy == SCHED_BATCH)
  3172. p->sleep_avg = 0;
  3173. }
  3174. }
  3175. /**
  3176. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3177. * a thread.
  3178. * @p: the task in question.
  3179. * @policy: new policy.
  3180. * @param: structure containing the new RT priority.
  3181. */
  3182. int sched_setscheduler(struct task_struct *p, int policy,
  3183. struct sched_param *param)
  3184. {
  3185. int retval;
  3186. int oldprio, oldpolicy = -1;
  3187. prio_array_t *array;
  3188. unsigned long flags;
  3189. runqueue_t *rq;
  3190. recheck:
  3191. /* double check policy once rq lock held */
  3192. if (policy < 0)
  3193. policy = oldpolicy = p->policy;
  3194. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3195. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3196. return -EINVAL;
  3197. /*
  3198. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3199. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3200. * SCHED_BATCH is 0.
  3201. */
  3202. if (param->sched_priority < 0 ||
  3203. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3204. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3205. return -EINVAL;
  3206. if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
  3207. != (param->sched_priority == 0))
  3208. return -EINVAL;
  3209. /*
  3210. * Allow unprivileged RT tasks to decrease priority:
  3211. */
  3212. if (!capable(CAP_SYS_NICE)) {
  3213. /*
  3214. * can't change policy, except between SCHED_NORMAL
  3215. * and SCHED_BATCH:
  3216. */
  3217. if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
  3218. (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
  3219. !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3220. return -EPERM;
  3221. /* can't increase priority */
  3222. if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
  3223. param->sched_priority > p->rt_priority &&
  3224. param->sched_priority >
  3225. p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3226. return -EPERM;
  3227. /* can't change other user's priorities */
  3228. if ((current->euid != p->euid) &&
  3229. (current->euid != p->uid))
  3230. return -EPERM;
  3231. }
  3232. retval = security_task_setscheduler(p, policy, param);
  3233. if (retval)
  3234. return retval;
  3235. /*
  3236. * To be able to change p->policy safely, the apropriate
  3237. * runqueue lock must be held.
  3238. */
  3239. rq = task_rq_lock(p, &flags);
  3240. /* recheck policy now with rq lock held */
  3241. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3242. policy = oldpolicy = -1;
  3243. task_rq_unlock(rq, &flags);
  3244. goto recheck;
  3245. }
  3246. array = p->array;
  3247. if (array)
  3248. deactivate_task(p, rq);
  3249. oldprio = p->prio;
  3250. __setscheduler(p, policy, param->sched_priority);
  3251. if (array) {
  3252. __activate_task(p, rq);
  3253. /*
  3254. * Reschedule if we are currently running on this runqueue and
  3255. * our priority decreased, or if we are not currently running on
  3256. * this runqueue and our priority is higher than the current's
  3257. */
  3258. if (task_running(rq, p)) {
  3259. if (p->prio > oldprio)
  3260. resched_task(rq->curr);
  3261. } else if (TASK_PREEMPTS_CURR(p, rq))
  3262. resched_task(rq->curr);
  3263. }
  3264. task_rq_unlock(rq, &flags);
  3265. return 0;
  3266. }
  3267. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3268. static int
  3269. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3270. {
  3271. int retval;
  3272. struct sched_param lparam;
  3273. struct task_struct *p;
  3274. if (!param || pid < 0)
  3275. return -EINVAL;
  3276. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3277. return -EFAULT;
  3278. read_lock_irq(&tasklist_lock);
  3279. p = find_process_by_pid(pid);
  3280. if (!p) {
  3281. read_unlock_irq(&tasklist_lock);
  3282. return -ESRCH;
  3283. }
  3284. retval = sched_setscheduler(p, policy, &lparam);
  3285. read_unlock_irq(&tasklist_lock);
  3286. return retval;
  3287. }
  3288. /**
  3289. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3290. * @pid: the pid in question.
  3291. * @policy: new policy.
  3292. * @param: structure containing the new RT priority.
  3293. */
  3294. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3295. struct sched_param __user *param)
  3296. {
  3297. /* negative values for policy are not valid */
  3298. if (policy < 0)
  3299. return -EINVAL;
  3300. return do_sched_setscheduler(pid, policy, param);
  3301. }
  3302. /**
  3303. * sys_sched_setparam - set/change the RT priority of a thread
  3304. * @pid: the pid in question.
  3305. * @param: structure containing the new RT priority.
  3306. */
  3307. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3308. {
  3309. return do_sched_setscheduler(pid, -1, param);
  3310. }
  3311. /**
  3312. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3313. * @pid: the pid in question.
  3314. */
  3315. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3316. {
  3317. int retval = -EINVAL;
  3318. task_t *p;
  3319. if (pid < 0)
  3320. goto out_nounlock;
  3321. retval = -ESRCH;
  3322. read_lock(&tasklist_lock);
  3323. p = find_process_by_pid(pid);
  3324. if (p) {
  3325. retval = security_task_getscheduler(p);
  3326. if (!retval)
  3327. retval = p->policy;
  3328. }
  3329. read_unlock(&tasklist_lock);
  3330. out_nounlock:
  3331. return retval;
  3332. }
  3333. /**
  3334. * sys_sched_getscheduler - get the RT priority of a thread
  3335. * @pid: the pid in question.
  3336. * @param: structure containing the RT priority.
  3337. */
  3338. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3339. {
  3340. struct sched_param lp;
  3341. int retval = -EINVAL;
  3342. task_t *p;
  3343. if (!param || pid < 0)
  3344. goto out_nounlock;
  3345. read_lock(&tasklist_lock);
  3346. p = find_process_by_pid(pid);
  3347. retval = -ESRCH;
  3348. if (!p)
  3349. goto out_unlock;
  3350. retval = security_task_getscheduler(p);
  3351. if (retval)
  3352. goto out_unlock;
  3353. lp.sched_priority = p->rt_priority;
  3354. read_unlock(&tasklist_lock);
  3355. /*
  3356. * This one might sleep, we cannot do it with a spinlock held ...
  3357. */
  3358. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3359. out_nounlock:
  3360. return retval;
  3361. out_unlock:
  3362. read_unlock(&tasklist_lock);
  3363. return retval;
  3364. }
  3365. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3366. {
  3367. task_t *p;
  3368. int retval;
  3369. cpumask_t cpus_allowed;
  3370. lock_cpu_hotplug();
  3371. read_lock(&tasklist_lock);
  3372. p = find_process_by_pid(pid);
  3373. if (!p) {
  3374. read_unlock(&tasklist_lock);
  3375. unlock_cpu_hotplug();
  3376. return -ESRCH;
  3377. }
  3378. /*
  3379. * It is not safe to call set_cpus_allowed with the
  3380. * tasklist_lock held. We will bump the task_struct's
  3381. * usage count and then drop tasklist_lock.
  3382. */
  3383. get_task_struct(p);
  3384. read_unlock(&tasklist_lock);
  3385. retval = -EPERM;
  3386. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3387. !capable(CAP_SYS_NICE))
  3388. goto out_unlock;
  3389. cpus_allowed = cpuset_cpus_allowed(p);
  3390. cpus_and(new_mask, new_mask, cpus_allowed);
  3391. retval = set_cpus_allowed(p, new_mask);
  3392. out_unlock:
  3393. put_task_struct(p);
  3394. unlock_cpu_hotplug();
  3395. return retval;
  3396. }
  3397. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3398. cpumask_t *new_mask)
  3399. {
  3400. if (len < sizeof(cpumask_t)) {
  3401. memset(new_mask, 0, sizeof(cpumask_t));
  3402. } else if (len > sizeof(cpumask_t)) {
  3403. len = sizeof(cpumask_t);
  3404. }
  3405. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3406. }
  3407. /**
  3408. * sys_sched_setaffinity - set the cpu affinity of a process
  3409. * @pid: pid of the process
  3410. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3411. * @user_mask_ptr: user-space pointer to the new cpu mask
  3412. */
  3413. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3414. unsigned long __user *user_mask_ptr)
  3415. {
  3416. cpumask_t new_mask;
  3417. int retval;
  3418. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3419. if (retval)
  3420. return retval;
  3421. return sched_setaffinity(pid, new_mask);
  3422. }
  3423. /*
  3424. * Represents all cpu's present in the system
  3425. * In systems capable of hotplug, this map could dynamically grow
  3426. * as new cpu's are detected in the system via any platform specific
  3427. * method, such as ACPI for e.g.
  3428. */
  3429. cpumask_t cpu_present_map __read_mostly;
  3430. EXPORT_SYMBOL(cpu_present_map);
  3431. #ifndef CONFIG_SMP
  3432. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3433. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3434. #endif
  3435. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3436. {
  3437. int retval;
  3438. task_t *p;
  3439. lock_cpu_hotplug();
  3440. read_lock(&tasklist_lock);
  3441. retval = -ESRCH;
  3442. p = find_process_by_pid(pid);
  3443. if (!p)
  3444. goto out_unlock;
  3445. retval = 0;
  3446. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3447. out_unlock:
  3448. read_unlock(&tasklist_lock);
  3449. unlock_cpu_hotplug();
  3450. if (retval)
  3451. return retval;
  3452. return 0;
  3453. }
  3454. /**
  3455. * sys_sched_getaffinity - get the cpu affinity of a process
  3456. * @pid: pid of the process
  3457. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3458. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3459. */
  3460. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3461. unsigned long __user *user_mask_ptr)
  3462. {
  3463. int ret;
  3464. cpumask_t mask;
  3465. if (len < sizeof(cpumask_t))
  3466. return -EINVAL;
  3467. ret = sched_getaffinity(pid, &mask);
  3468. if (ret < 0)
  3469. return ret;
  3470. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3471. return -EFAULT;
  3472. return sizeof(cpumask_t);
  3473. }
  3474. /**
  3475. * sys_sched_yield - yield the current processor to other threads.
  3476. *
  3477. * this function yields the current CPU by moving the calling thread
  3478. * to the expired array. If there are no other threads running on this
  3479. * CPU then this function will return.
  3480. */
  3481. asmlinkage long sys_sched_yield(void)
  3482. {
  3483. runqueue_t *rq = this_rq_lock();
  3484. prio_array_t *array = current->array;
  3485. prio_array_t *target = rq->expired;
  3486. schedstat_inc(rq, yld_cnt);
  3487. /*
  3488. * We implement yielding by moving the task into the expired
  3489. * queue.
  3490. *
  3491. * (special rule: RT tasks will just roundrobin in the active
  3492. * array.)
  3493. */
  3494. if (rt_task(current))
  3495. target = rq->active;
  3496. if (array->nr_active == 1) {
  3497. schedstat_inc(rq, yld_act_empty);
  3498. if (!rq->expired->nr_active)
  3499. schedstat_inc(rq, yld_both_empty);
  3500. } else if (!rq->expired->nr_active)
  3501. schedstat_inc(rq, yld_exp_empty);
  3502. if (array != target) {
  3503. dequeue_task(current, array);
  3504. enqueue_task(current, target);
  3505. } else
  3506. /*
  3507. * requeue_task is cheaper so perform that if possible.
  3508. */
  3509. requeue_task(current, array);
  3510. /*
  3511. * Since we are going to call schedule() anyway, there's
  3512. * no need to preempt or enable interrupts:
  3513. */
  3514. __release(rq->lock);
  3515. _raw_spin_unlock(&rq->lock);
  3516. preempt_enable_no_resched();
  3517. schedule();
  3518. return 0;
  3519. }
  3520. static inline void __cond_resched(void)
  3521. {
  3522. /*
  3523. * The BKS might be reacquired before we have dropped
  3524. * PREEMPT_ACTIVE, which could trigger a second
  3525. * cond_resched() call.
  3526. */
  3527. if (unlikely(preempt_count()))
  3528. return;
  3529. if (unlikely(system_state != SYSTEM_RUNNING))
  3530. return;
  3531. do {
  3532. add_preempt_count(PREEMPT_ACTIVE);
  3533. schedule();
  3534. sub_preempt_count(PREEMPT_ACTIVE);
  3535. } while (need_resched());
  3536. }
  3537. int __sched cond_resched(void)
  3538. {
  3539. if (need_resched()) {
  3540. __cond_resched();
  3541. return 1;
  3542. }
  3543. return 0;
  3544. }
  3545. EXPORT_SYMBOL(cond_resched);
  3546. /*
  3547. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3548. * call schedule, and on return reacquire the lock.
  3549. *
  3550. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3551. * operations here to prevent schedule() from being called twice (once via
  3552. * spin_unlock(), once by hand).
  3553. */
  3554. int cond_resched_lock(spinlock_t *lock)
  3555. {
  3556. int ret = 0;
  3557. if (need_lockbreak(lock)) {
  3558. spin_unlock(lock);
  3559. cpu_relax();
  3560. ret = 1;
  3561. spin_lock(lock);
  3562. }
  3563. if (need_resched()) {
  3564. _raw_spin_unlock(lock);
  3565. preempt_enable_no_resched();
  3566. __cond_resched();
  3567. ret = 1;
  3568. spin_lock(lock);
  3569. }
  3570. return ret;
  3571. }
  3572. EXPORT_SYMBOL(cond_resched_lock);
  3573. int __sched cond_resched_softirq(void)
  3574. {
  3575. BUG_ON(!in_softirq());
  3576. if (need_resched()) {
  3577. __local_bh_enable();
  3578. __cond_resched();
  3579. local_bh_disable();
  3580. return 1;
  3581. }
  3582. return 0;
  3583. }
  3584. EXPORT_SYMBOL(cond_resched_softirq);
  3585. /**
  3586. * yield - yield the current processor to other threads.
  3587. *
  3588. * this is a shortcut for kernel-space yielding - it marks the
  3589. * thread runnable and calls sys_sched_yield().
  3590. */
  3591. void __sched yield(void)
  3592. {
  3593. set_current_state(TASK_RUNNING);
  3594. sys_sched_yield();
  3595. }
  3596. EXPORT_SYMBOL(yield);
  3597. /*
  3598. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3599. * that process accounting knows that this is a task in IO wait state.
  3600. *
  3601. * But don't do that if it is a deliberate, throttling IO wait (this task
  3602. * has set its backing_dev_info: the queue against which it should throttle)
  3603. */
  3604. void __sched io_schedule(void)
  3605. {
  3606. struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
  3607. atomic_inc(&rq->nr_iowait);
  3608. schedule();
  3609. atomic_dec(&rq->nr_iowait);
  3610. }
  3611. EXPORT_SYMBOL(io_schedule);
  3612. long __sched io_schedule_timeout(long timeout)
  3613. {
  3614. struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
  3615. long ret;
  3616. atomic_inc(&rq->nr_iowait);
  3617. ret = schedule_timeout(timeout);
  3618. atomic_dec(&rq->nr_iowait);
  3619. return ret;
  3620. }
  3621. /**
  3622. * sys_sched_get_priority_max - return maximum RT priority.
  3623. * @policy: scheduling class.
  3624. *
  3625. * this syscall returns the maximum rt_priority that can be used
  3626. * by a given scheduling class.
  3627. */
  3628. asmlinkage long sys_sched_get_priority_max(int policy)
  3629. {
  3630. int ret = -EINVAL;
  3631. switch (policy) {
  3632. case SCHED_FIFO:
  3633. case SCHED_RR:
  3634. ret = MAX_USER_RT_PRIO-1;
  3635. break;
  3636. case SCHED_NORMAL:
  3637. case SCHED_BATCH:
  3638. ret = 0;
  3639. break;
  3640. }
  3641. return ret;
  3642. }
  3643. /**
  3644. * sys_sched_get_priority_min - return minimum RT priority.
  3645. * @policy: scheduling class.
  3646. *
  3647. * this syscall returns the minimum rt_priority that can be used
  3648. * by a given scheduling class.
  3649. */
  3650. asmlinkage long sys_sched_get_priority_min(int policy)
  3651. {
  3652. int ret = -EINVAL;
  3653. switch (policy) {
  3654. case SCHED_FIFO:
  3655. case SCHED_RR:
  3656. ret = 1;
  3657. break;
  3658. case SCHED_NORMAL:
  3659. case SCHED_BATCH:
  3660. ret = 0;
  3661. }
  3662. return ret;
  3663. }
  3664. /**
  3665. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3666. * @pid: pid of the process.
  3667. * @interval: userspace pointer to the timeslice value.
  3668. *
  3669. * this syscall writes the default timeslice value of a given process
  3670. * into the user-space timespec buffer. A value of '0' means infinity.
  3671. */
  3672. asmlinkage
  3673. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3674. {
  3675. int retval = -EINVAL;
  3676. struct timespec t;
  3677. task_t *p;
  3678. if (pid < 0)
  3679. goto out_nounlock;
  3680. retval = -ESRCH;
  3681. read_lock(&tasklist_lock);
  3682. p = find_process_by_pid(pid);
  3683. if (!p)
  3684. goto out_unlock;
  3685. retval = security_task_getscheduler(p);
  3686. if (retval)
  3687. goto out_unlock;
  3688. jiffies_to_timespec(p->policy & SCHED_FIFO ?
  3689. 0 : task_timeslice(p), &t);
  3690. read_unlock(&tasklist_lock);
  3691. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3692. out_nounlock:
  3693. return retval;
  3694. out_unlock:
  3695. read_unlock(&tasklist_lock);
  3696. return retval;
  3697. }
  3698. static inline struct task_struct *eldest_child(struct task_struct *p)
  3699. {
  3700. if (list_empty(&p->children)) return NULL;
  3701. return list_entry(p->children.next,struct task_struct,sibling);
  3702. }
  3703. static inline struct task_struct *older_sibling(struct task_struct *p)
  3704. {
  3705. if (p->sibling.prev==&p->parent->children) return NULL;
  3706. return list_entry(p->sibling.prev,struct task_struct,sibling);
  3707. }
  3708. static inline struct task_struct *younger_sibling(struct task_struct *p)
  3709. {
  3710. if (p->sibling.next==&p->parent->children) return NULL;
  3711. return list_entry(p->sibling.next,struct task_struct,sibling);
  3712. }
  3713. static void show_task(task_t *p)
  3714. {
  3715. task_t *relative;
  3716. unsigned state;
  3717. unsigned long free = 0;
  3718. static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
  3719. printk("%-13.13s ", p->comm);
  3720. state = p->state ? __ffs(p->state) + 1 : 0;
  3721. if (state < ARRAY_SIZE(stat_nam))
  3722. printk(stat_nam[state]);
  3723. else
  3724. printk("?");
  3725. #if (BITS_PER_LONG == 32)
  3726. if (state == TASK_RUNNING)
  3727. printk(" running ");
  3728. else
  3729. printk(" %08lX ", thread_saved_pc(p));
  3730. #else
  3731. if (state == TASK_RUNNING)
  3732. printk(" running task ");
  3733. else
  3734. printk(" %016lx ", thread_saved_pc(p));
  3735. #endif
  3736. #ifdef CONFIG_DEBUG_STACK_USAGE
  3737. {
  3738. unsigned long *n = end_of_stack(p);
  3739. while (!*n)
  3740. n++;
  3741. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  3742. }
  3743. #endif
  3744. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  3745. if ((relative = eldest_child(p)))
  3746. printk("%5d ", relative->pid);
  3747. else
  3748. printk(" ");
  3749. if ((relative = younger_sibling(p)))
  3750. printk("%7d", relative->pid);
  3751. else
  3752. printk(" ");
  3753. if ((relative = older_sibling(p)))
  3754. printk(" %5d", relative->pid);
  3755. else
  3756. printk(" ");
  3757. if (!p->mm)
  3758. printk(" (L-TLB)\n");
  3759. else
  3760. printk(" (NOTLB)\n");
  3761. if (state != TASK_RUNNING)
  3762. show_stack(p, NULL);
  3763. }
  3764. void show_state(void)
  3765. {
  3766. task_t *g, *p;
  3767. #if (BITS_PER_LONG == 32)
  3768. printk("\n"
  3769. " sibling\n");
  3770. printk(" task PC pid father child younger older\n");
  3771. #else
  3772. printk("\n"
  3773. " sibling\n");
  3774. printk(" task PC pid father child younger older\n");
  3775. #endif
  3776. read_lock(&tasklist_lock);
  3777. do_each_thread(g, p) {
  3778. /*
  3779. * reset the NMI-timeout, listing all files on a slow
  3780. * console might take alot of time:
  3781. */
  3782. touch_nmi_watchdog();
  3783. show_task(p);
  3784. } while_each_thread(g, p);
  3785. read_unlock(&tasklist_lock);
  3786. mutex_debug_show_all_locks();
  3787. }
  3788. /**
  3789. * init_idle - set up an idle thread for a given CPU
  3790. * @idle: task in question
  3791. * @cpu: cpu the idle task belongs to
  3792. *
  3793. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3794. * flag, to make booting more robust.
  3795. */
  3796. void __devinit init_idle(task_t *idle, int cpu)
  3797. {
  3798. runqueue_t *rq = cpu_rq(cpu);
  3799. unsigned long flags;
  3800. idle->timestamp = sched_clock();
  3801. idle->sleep_avg = 0;
  3802. idle->array = NULL;
  3803. idle->prio = MAX_PRIO;
  3804. idle->state = TASK_RUNNING;
  3805. idle->cpus_allowed = cpumask_of_cpu(cpu);
  3806. set_task_cpu(idle, cpu);
  3807. spin_lock_irqsave(&rq->lock, flags);
  3808. rq->curr = rq->idle = idle;
  3809. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  3810. idle->oncpu = 1;
  3811. #endif
  3812. spin_unlock_irqrestore(&rq->lock, flags);
  3813. /* Set the preempt count _outside_ the spinlocks! */
  3814. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  3815. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  3816. #else
  3817. task_thread_info(idle)->preempt_count = 0;
  3818. #endif
  3819. }
  3820. /*
  3821. * In a system that switches off the HZ timer nohz_cpu_mask
  3822. * indicates which cpus entered this state. This is used
  3823. * in the rcu update to wait only for active cpus. For system
  3824. * which do not switch off the HZ timer nohz_cpu_mask should
  3825. * always be CPU_MASK_NONE.
  3826. */
  3827. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  3828. #ifdef CONFIG_SMP
  3829. /*
  3830. * This is how migration works:
  3831. *
  3832. * 1) we queue a migration_req_t structure in the source CPU's
  3833. * runqueue and wake up that CPU's migration thread.
  3834. * 2) we down() the locked semaphore => thread blocks.
  3835. * 3) migration thread wakes up (implicitly it forces the migrated
  3836. * thread off the CPU)
  3837. * 4) it gets the migration request and checks whether the migrated
  3838. * task is still in the wrong runqueue.
  3839. * 5) if it's in the wrong runqueue then the migration thread removes
  3840. * it and puts it into the right queue.
  3841. * 6) migration thread up()s the semaphore.
  3842. * 7) we wake up and the migration is done.
  3843. */
  3844. /*
  3845. * Change a given task's CPU affinity. Migrate the thread to a
  3846. * proper CPU and schedule it away if the CPU it's executing on
  3847. * is removed from the allowed bitmask.
  3848. *
  3849. * NOTE: the caller must have a valid reference to the task, the
  3850. * task must not exit() & deallocate itself prematurely. The
  3851. * call is not atomic; no spinlocks may be held.
  3852. */
  3853. int set_cpus_allowed(task_t *p, cpumask_t new_mask)
  3854. {
  3855. unsigned long flags;
  3856. int ret = 0;
  3857. migration_req_t req;
  3858. runqueue_t *rq;
  3859. rq = task_rq_lock(p, &flags);
  3860. if (!cpus_intersects(new_mask, cpu_online_map)) {
  3861. ret = -EINVAL;
  3862. goto out;
  3863. }
  3864. p->cpus_allowed = new_mask;
  3865. /* Can the task run on the task's current CPU? If so, we're done */
  3866. if (cpu_isset(task_cpu(p), new_mask))
  3867. goto out;
  3868. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  3869. /* Need help from migration thread: drop lock and wait. */
  3870. task_rq_unlock(rq, &flags);
  3871. wake_up_process(rq->migration_thread);
  3872. wait_for_completion(&req.done);
  3873. tlb_migrate_finish(p->mm);
  3874. return 0;
  3875. }
  3876. out:
  3877. task_rq_unlock(rq, &flags);
  3878. return ret;
  3879. }
  3880. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  3881. /*
  3882. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3883. * this because either it can't run here any more (set_cpus_allowed()
  3884. * away from this CPU, or CPU going down), or because we're
  3885. * attempting to rebalance this task on exec (sched_exec).
  3886. *
  3887. * So we race with normal scheduler movements, but that's OK, as long
  3888. * as the task is no longer on this CPU.
  3889. */
  3890. static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3891. {
  3892. runqueue_t *rq_dest, *rq_src;
  3893. if (unlikely(cpu_is_offline(dest_cpu)))
  3894. return;
  3895. rq_src = cpu_rq(src_cpu);
  3896. rq_dest = cpu_rq(dest_cpu);
  3897. double_rq_lock(rq_src, rq_dest);
  3898. /* Already moved. */
  3899. if (task_cpu(p) != src_cpu)
  3900. goto out;
  3901. /* Affinity changed (again). */
  3902. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  3903. goto out;
  3904. set_task_cpu(p, dest_cpu);
  3905. if (p->array) {
  3906. /*
  3907. * Sync timestamp with rq_dest's before activating.
  3908. * The same thing could be achieved by doing this step
  3909. * afterwards, and pretending it was a local activate.
  3910. * This way is cleaner and logically correct.
  3911. */
  3912. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  3913. + rq_dest->timestamp_last_tick;
  3914. deactivate_task(p, rq_src);
  3915. activate_task(p, rq_dest, 0);
  3916. if (TASK_PREEMPTS_CURR(p, rq_dest))
  3917. resched_task(rq_dest->curr);
  3918. }
  3919. out:
  3920. double_rq_unlock(rq_src, rq_dest);
  3921. }
  3922. /*
  3923. * migration_thread - this is a highprio system thread that performs
  3924. * thread migration by bumping thread off CPU then 'pushing' onto
  3925. * another runqueue.
  3926. */
  3927. static int migration_thread(void *data)
  3928. {
  3929. runqueue_t *rq;
  3930. int cpu = (long)data;
  3931. rq = cpu_rq(cpu);
  3932. BUG_ON(rq->migration_thread != current);
  3933. set_current_state(TASK_INTERRUPTIBLE);
  3934. while (!kthread_should_stop()) {
  3935. struct list_head *head;
  3936. migration_req_t *req;
  3937. try_to_freeze();
  3938. spin_lock_irq(&rq->lock);
  3939. if (cpu_is_offline(cpu)) {
  3940. spin_unlock_irq(&rq->lock);
  3941. goto wait_to_die;
  3942. }
  3943. if (rq->active_balance) {
  3944. active_load_balance(rq, cpu);
  3945. rq->active_balance = 0;
  3946. }
  3947. head = &rq->migration_queue;
  3948. if (list_empty(head)) {
  3949. spin_unlock_irq(&rq->lock);
  3950. schedule();
  3951. set_current_state(TASK_INTERRUPTIBLE);
  3952. continue;
  3953. }
  3954. req = list_entry(head->next, migration_req_t, list);
  3955. list_del_init(head->next);
  3956. spin_unlock(&rq->lock);
  3957. __migrate_task(req->task, cpu, req->dest_cpu);
  3958. local_irq_enable();
  3959. complete(&req->done);
  3960. }
  3961. __set_current_state(TASK_RUNNING);
  3962. return 0;
  3963. wait_to_die:
  3964. /* Wait for kthread_stop */
  3965. set_current_state(TASK_INTERRUPTIBLE);
  3966. while (!kthread_should_stop()) {
  3967. schedule();
  3968. set_current_state(TASK_INTERRUPTIBLE);
  3969. }
  3970. __set_current_state(TASK_RUNNING);
  3971. return 0;
  3972. }
  3973. #ifdef CONFIG_HOTPLUG_CPU
  3974. /* Figure out where task on dead CPU should go, use force if neccessary. */
  3975. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
  3976. {
  3977. int dest_cpu;
  3978. cpumask_t mask;
  3979. /* On same node? */
  3980. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  3981. cpus_and(mask, mask, tsk->cpus_allowed);
  3982. dest_cpu = any_online_cpu(mask);
  3983. /* On any allowed CPU? */
  3984. if (dest_cpu == NR_CPUS)
  3985. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  3986. /* No more Mr. Nice Guy. */
  3987. if (dest_cpu == NR_CPUS) {
  3988. cpus_setall(tsk->cpus_allowed);
  3989. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  3990. /*
  3991. * Don't tell them about moving exiting tasks or
  3992. * kernel threads (both mm NULL), since they never
  3993. * leave kernel.
  3994. */
  3995. if (tsk->mm && printk_ratelimit())
  3996. printk(KERN_INFO "process %d (%s) no "
  3997. "longer affine to cpu%d\n",
  3998. tsk->pid, tsk->comm, dead_cpu);
  3999. }
  4000. __migrate_task(tsk, dead_cpu, dest_cpu);
  4001. }
  4002. /*
  4003. * While a dead CPU has no uninterruptible tasks queued at this point,
  4004. * it might still have a nonzero ->nr_uninterruptible counter, because
  4005. * for performance reasons the counter is not stricly tracking tasks to
  4006. * their home CPUs. So we just add the counter to another CPU's counter,
  4007. * to keep the global sum constant after CPU-down:
  4008. */
  4009. static void migrate_nr_uninterruptible(runqueue_t *rq_src)
  4010. {
  4011. runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4012. unsigned long flags;
  4013. local_irq_save(flags);
  4014. double_rq_lock(rq_src, rq_dest);
  4015. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4016. rq_src->nr_uninterruptible = 0;
  4017. double_rq_unlock(rq_src, rq_dest);
  4018. local_irq_restore(flags);
  4019. }
  4020. /* Run through task list and migrate tasks from the dead cpu. */
  4021. static void migrate_live_tasks(int src_cpu)
  4022. {
  4023. struct task_struct *tsk, *t;
  4024. write_lock_irq(&tasklist_lock);
  4025. do_each_thread(t, tsk) {
  4026. if (tsk == current)
  4027. continue;
  4028. if (task_cpu(tsk) == src_cpu)
  4029. move_task_off_dead_cpu(src_cpu, tsk);
  4030. } while_each_thread(t, tsk);
  4031. write_unlock_irq(&tasklist_lock);
  4032. }
  4033. /* Schedules idle task to be the next runnable task on current CPU.
  4034. * It does so by boosting its priority to highest possible and adding it to
  4035. * the _front_ of runqueue. Used by CPU offline code.
  4036. */
  4037. void sched_idle_next(void)
  4038. {
  4039. int cpu = smp_processor_id();
  4040. runqueue_t *rq = this_rq();
  4041. struct task_struct *p = rq->idle;
  4042. unsigned long flags;
  4043. /* cpu has to be offline */
  4044. BUG_ON(cpu_online(cpu));
  4045. /* Strictly not necessary since rest of the CPUs are stopped by now
  4046. * and interrupts disabled on current cpu.
  4047. */
  4048. spin_lock_irqsave(&rq->lock, flags);
  4049. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4050. /* Add idle task to _front_ of it's priority queue */
  4051. __activate_idle_task(p, rq);
  4052. spin_unlock_irqrestore(&rq->lock, flags);
  4053. }
  4054. /* Ensures that the idle task is using init_mm right before its cpu goes
  4055. * offline.
  4056. */
  4057. void idle_task_exit(void)
  4058. {
  4059. struct mm_struct *mm = current->active_mm;
  4060. BUG_ON(cpu_online(smp_processor_id()));
  4061. if (mm != &init_mm)
  4062. switch_mm(mm, &init_mm, current);
  4063. mmdrop(mm);
  4064. }
  4065. static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
  4066. {
  4067. struct runqueue *rq = cpu_rq(dead_cpu);
  4068. /* Must be exiting, otherwise would be on tasklist. */
  4069. BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
  4070. /* Cannot have done final schedule yet: would have vanished. */
  4071. BUG_ON(tsk->flags & PF_DEAD);
  4072. get_task_struct(tsk);
  4073. /*
  4074. * Drop lock around migration; if someone else moves it,
  4075. * that's OK. No task can be added to this CPU, so iteration is
  4076. * fine.
  4077. */
  4078. spin_unlock_irq(&rq->lock);
  4079. move_task_off_dead_cpu(dead_cpu, tsk);
  4080. spin_lock_irq(&rq->lock);
  4081. put_task_struct(tsk);
  4082. }
  4083. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4084. static void migrate_dead_tasks(unsigned int dead_cpu)
  4085. {
  4086. unsigned arr, i;
  4087. struct runqueue *rq = cpu_rq(dead_cpu);
  4088. for (arr = 0; arr < 2; arr++) {
  4089. for (i = 0; i < MAX_PRIO; i++) {
  4090. struct list_head *list = &rq->arrays[arr].queue[i];
  4091. while (!list_empty(list))
  4092. migrate_dead(dead_cpu,
  4093. list_entry(list->next, task_t,
  4094. run_list));
  4095. }
  4096. }
  4097. }
  4098. #endif /* CONFIG_HOTPLUG_CPU */
  4099. /*
  4100. * migration_call - callback that gets triggered when a CPU is added.
  4101. * Here we can start up the necessary migration thread for the new CPU.
  4102. */
  4103. static int migration_call(struct notifier_block *nfb, unsigned long action,
  4104. void *hcpu)
  4105. {
  4106. int cpu = (long)hcpu;
  4107. struct task_struct *p;
  4108. struct runqueue *rq;
  4109. unsigned long flags;
  4110. switch (action) {
  4111. case CPU_UP_PREPARE:
  4112. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4113. if (IS_ERR(p))
  4114. return NOTIFY_BAD;
  4115. p->flags |= PF_NOFREEZE;
  4116. kthread_bind(p, cpu);
  4117. /* Must be high prio: stop_machine expects to yield to it. */
  4118. rq = task_rq_lock(p, &flags);
  4119. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4120. task_rq_unlock(rq, &flags);
  4121. cpu_rq(cpu)->migration_thread = p;
  4122. break;
  4123. case CPU_ONLINE:
  4124. /* Strictly unneccessary, as first user will wake it. */
  4125. wake_up_process(cpu_rq(cpu)->migration_thread);
  4126. break;
  4127. #ifdef CONFIG_HOTPLUG_CPU
  4128. case CPU_UP_CANCELED:
  4129. /* Unbind it from offline cpu so it can run. Fall thru. */
  4130. kthread_bind(cpu_rq(cpu)->migration_thread,
  4131. any_online_cpu(cpu_online_map));
  4132. kthread_stop(cpu_rq(cpu)->migration_thread);
  4133. cpu_rq(cpu)->migration_thread = NULL;
  4134. break;
  4135. case CPU_DEAD:
  4136. migrate_live_tasks(cpu);
  4137. rq = cpu_rq(cpu);
  4138. kthread_stop(rq->migration_thread);
  4139. rq->migration_thread = NULL;
  4140. /* Idle task back to normal (off runqueue, low prio) */
  4141. rq = task_rq_lock(rq->idle, &flags);
  4142. deactivate_task(rq->idle, rq);
  4143. rq->idle->static_prio = MAX_PRIO;
  4144. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4145. migrate_dead_tasks(cpu);
  4146. task_rq_unlock(rq, &flags);
  4147. migrate_nr_uninterruptible(rq);
  4148. BUG_ON(rq->nr_running != 0);
  4149. /* No need to migrate the tasks: it was best-effort if
  4150. * they didn't do lock_cpu_hotplug(). Just wake up
  4151. * the requestors. */
  4152. spin_lock_irq(&rq->lock);
  4153. while (!list_empty(&rq->migration_queue)) {
  4154. migration_req_t *req;
  4155. req = list_entry(rq->migration_queue.next,
  4156. migration_req_t, list);
  4157. list_del_init(&req->list);
  4158. complete(&req->done);
  4159. }
  4160. spin_unlock_irq(&rq->lock);
  4161. break;
  4162. #endif
  4163. }
  4164. return NOTIFY_OK;
  4165. }
  4166. /* Register at highest priority so that task migration (migrate_all_tasks)
  4167. * happens before everything else.
  4168. */
  4169. static struct notifier_block __devinitdata migration_notifier = {
  4170. .notifier_call = migration_call,
  4171. .priority = 10
  4172. };
  4173. int __init migration_init(void)
  4174. {
  4175. void *cpu = (void *)(long)smp_processor_id();
  4176. /* Start one for boot CPU. */
  4177. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4178. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4179. register_cpu_notifier(&migration_notifier);
  4180. return 0;
  4181. }
  4182. #endif
  4183. #ifdef CONFIG_SMP
  4184. #undef SCHED_DOMAIN_DEBUG
  4185. #ifdef SCHED_DOMAIN_DEBUG
  4186. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4187. {
  4188. int level = 0;
  4189. if (!sd) {
  4190. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4191. return;
  4192. }
  4193. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4194. do {
  4195. int i;
  4196. char str[NR_CPUS];
  4197. struct sched_group *group = sd->groups;
  4198. cpumask_t groupmask;
  4199. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4200. cpus_clear(groupmask);
  4201. printk(KERN_DEBUG);
  4202. for (i = 0; i < level + 1; i++)
  4203. printk(" ");
  4204. printk("domain %d: ", level);
  4205. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4206. printk("does not load-balance\n");
  4207. if (sd->parent)
  4208. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4209. break;
  4210. }
  4211. printk("span %s\n", str);
  4212. if (!cpu_isset(cpu, sd->span))
  4213. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4214. if (!cpu_isset(cpu, group->cpumask))
  4215. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4216. printk(KERN_DEBUG);
  4217. for (i = 0; i < level + 2; i++)
  4218. printk(" ");
  4219. printk("groups:");
  4220. do {
  4221. if (!group) {
  4222. printk("\n");
  4223. printk(KERN_ERR "ERROR: group is NULL\n");
  4224. break;
  4225. }
  4226. if (!group->cpu_power) {
  4227. printk("\n");
  4228. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4229. }
  4230. if (!cpus_weight(group->cpumask)) {
  4231. printk("\n");
  4232. printk(KERN_ERR "ERROR: empty group\n");
  4233. }
  4234. if (cpus_intersects(groupmask, group->cpumask)) {
  4235. printk("\n");
  4236. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4237. }
  4238. cpus_or(groupmask, groupmask, group->cpumask);
  4239. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4240. printk(" %s", str);
  4241. group = group->next;
  4242. } while (group != sd->groups);
  4243. printk("\n");
  4244. if (!cpus_equal(sd->span, groupmask))
  4245. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4246. level++;
  4247. sd = sd->parent;
  4248. if (sd) {
  4249. if (!cpus_subset(groupmask, sd->span))
  4250. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4251. }
  4252. } while (sd);
  4253. }
  4254. #else
  4255. #define sched_domain_debug(sd, cpu) {}
  4256. #endif
  4257. static int sd_degenerate(struct sched_domain *sd)
  4258. {
  4259. if (cpus_weight(sd->span) == 1)
  4260. return 1;
  4261. /* Following flags need at least 2 groups */
  4262. if (sd->flags & (SD_LOAD_BALANCE |
  4263. SD_BALANCE_NEWIDLE |
  4264. SD_BALANCE_FORK |
  4265. SD_BALANCE_EXEC)) {
  4266. if (sd->groups != sd->groups->next)
  4267. return 0;
  4268. }
  4269. /* Following flags don't use groups */
  4270. if (sd->flags & (SD_WAKE_IDLE |
  4271. SD_WAKE_AFFINE |
  4272. SD_WAKE_BALANCE))
  4273. return 0;
  4274. return 1;
  4275. }
  4276. static int sd_parent_degenerate(struct sched_domain *sd,
  4277. struct sched_domain *parent)
  4278. {
  4279. unsigned long cflags = sd->flags, pflags = parent->flags;
  4280. if (sd_degenerate(parent))
  4281. return 1;
  4282. if (!cpus_equal(sd->span, parent->span))
  4283. return 0;
  4284. /* Does parent contain flags not in child? */
  4285. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4286. if (cflags & SD_WAKE_AFFINE)
  4287. pflags &= ~SD_WAKE_BALANCE;
  4288. /* Flags needing groups don't count if only 1 group in parent */
  4289. if (parent->groups == parent->groups->next) {
  4290. pflags &= ~(SD_LOAD_BALANCE |
  4291. SD_BALANCE_NEWIDLE |
  4292. SD_BALANCE_FORK |
  4293. SD_BALANCE_EXEC);
  4294. }
  4295. if (~cflags & pflags)
  4296. return 0;
  4297. return 1;
  4298. }
  4299. /*
  4300. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4301. * hold the hotplug lock.
  4302. */
  4303. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4304. {
  4305. runqueue_t *rq = cpu_rq(cpu);
  4306. struct sched_domain *tmp;
  4307. /* Remove the sched domains which do not contribute to scheduling. */
  4308. for (tmp = sd; tmp; tmp = tmp->parent) {
  4309. struct sched_domain *parent = tmp->parent;
  4310. if (!parent)
  4311. break;
  4312. if (sd_parent_degenerate(tmp, parent))
  4313. tmp->parent = parent->parent;
  4314. }
  4315. if (sd && sd_degenerate(sd))
  4316. sd = sd->parent;
  4317. sched_domain_debug(sd, cpu);
  4318. rcu_assign_pointer(rq->sd, sd);
  4319. }
  4320. /* cpus with isolated domains */
  4321. static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  4322. /* Setup the mask of cpus configured for isolated domains */
  4323. static int __init isolated_cpu_setup(char *str)
  4324. {
  4325. int ints[NR_CPUS], i;
  4326. str = get_options(str, ARRAY_SIZE(ints), ints);
  4327. cpus_clear(cpu_isolated_map);
  4328. for (i = 1; i <= ints[0]; i++)
  4329. if (ints[i] < NR_CPUS)
  4330. cpu_set(ints[i], cpu_isolated_map);
  4331. return 1;
  4332. }
  4333. __setup ("isolcpus=", isolated_cpu_setup);
  4334. /*
  4335. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4336. * to span, and a pointer to a function which identifies what group a CPU
  4337. * belongs to. The return value of group_fn must be a valid index into the
  4338. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4339. * keep track of groups covered with a cpumask_t).
  4340. *
  4341. * init_sched_build_groups will build a circular linked list of the groups
  4342. * covered by the given span, and will set each group's ->cpumask correctly,
  4343. * and ->cpu_power to 0.
  4344. */
  4345. static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4346. int (*group_fn)(int cpu))
  4347. {
  4348. struct sched_group *first = NULL, *last = NULL;
  4349. cpumask_t covered = CPU_MASK_NONE;
  4350. int i;
  4351. for_each_cpu_mask(i, span) {
  4352. int group = group_fn(i);
  4353. struct sched_group *sg = &groups[group];
  4354. int j;
  4355. if (cpu_isset(i, covered))
  4356. continue;
  4357. sg->cpumask = CPU_MASK_NONE;
  4358. sg->cpu_power = 0;
  4359. for_each_cpu_mask(j, span) {
  4360. if (group_fn(j) != group)
  4361. continue;
  4362. cpu_set(j, covered);
  4363. cpu_set(j, sg->cpumask);
  4364. }
  4365. if (!first)
  4366. first = sg;
  4367. if (last)
  4368. last->next = sg;
  4369. last = sg;
  4370. }
  4371. last->next = first;
  4372. }
  4373. #define SD_NODES_PER_DOMAIN 16
  4374. /*
  4375. * Self-tuning task migration cost measurement between source and target CPUs.
  4376. *
  4377. * This is done by measuring the cost of manipulating buffers of varying
  4378. * sizes. For a given buffer-size here are the steps that are taken:
  4379. *
  4380. * 1) the source CPU reads+dirties a shared buffer
  4381. * 2) the target CPU reads+dirties the same shared buffer
  4382. *
  4383. * We measure how long they take, in the following 4 scenarios:
  4384. *
  4385. * - source: CPU1, target: CPU2 | cost1
  4386. * - source: CPU2, target: CPU1 | cost2
  4387. * - source: CPU1, target: CPU1 | cost3
  4388. * - source: CPU2, target: CPU2 | cost4
  4389. *
  4390. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4391. * the cost of migration.
  4392. *
  4393. * We then start off from a small buffer-size and iterate up to larger
  4394. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4395. * doing a maximum search for the cost. (The maximum cost for a migration
  4396. * normally occurs when the working set size is around the effective cache
  4397. * size.)
  4398. */
  4399. #define SEARCH_SCOPE 2
  4400. #define MIN_CACHE_SIZE (64*1024U)
  4401. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4402. #define ITERATIONS 1
  4403. #define SIZE_THRESH 130
  4404. #define COST_THRESH 130
  4405. /*
  4406. * The migration cost is a function of 'domain distance'. Domain
  4407. * distance is the number of steps a CPU has to iterate down its
  4408. * domain tree to share a domain with the other CPU. The farther
  4409. * two CPUs are from each other, the larger the distance gets.
  4410. *
  4411. * Note that we use the distance only to cache measurement results,
  4412. * the distance value is not used numerically otherwise. When two
  4413. * CPUs have the same distance it is assumed that the migration
  4414. * cost is the same. (this is a simplification but quite practical)
  4415. */
  4416. #define MAX_DOMAIN_DISTANCE 32
  4417. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4418. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4419. /*
  4420. * Architectures may override the migration cost and thus avoid
  4421. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4422. * virtualized hardware:
  4423. */
  4424. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4425. CONFIG_DEFAULT_MIGRATION_COST
  4426. #else
  4427. -1LL
  4428. #endif
  4429. };
  4430. /*
  4431. * Allow override of migration cost - in units of microseconds.
  4432. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4433. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4434. */
  4435. static int __init migration_cost_setup(char *str)
  4436. {
  4437. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4438. str = get_options(str, ARRAY_SIZE(ints), ints);
  4439. printk("#ints: %d\n", ints[0]);
  4440. for (i = 1; i <= ints[0]; i++) {
  4441. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4442. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4443. }
  4444. return 1;
  4445. }
  4446. __setup ("migration_cost=", migration_cost_setup);
  4447. /*
  4448. * Global multiplier (divisor) for migration-cutoff values,
  4449. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4450. * longer cache-hot cutoff times.
  4451. *
  4452. * (We scale it from 100 to 128 to long long handling easier.)
  4453. */
  4454. #define MIGRATION_FACTOR_SCALE 128
  4455. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4456. static int __init setup_migration_factor(char *str)
  4457. {
  4458. get_option(&str, &migration_factor);
  4459. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4460. return 1;
  4461. }
  4462. __setup("migration_factor=", setup_migration_factor);
  4463. /*
  4464. * Estimated distance of two CPUs, measured via the number of domains
  4465. * we have to pass for the two CPUs to be in the same span:
  4466. */
  4467. static unsigned long domain_distance(int cpu1, int cpu2)
  4468. {
  4469. unsigned long distance = 0;
  4470. struct sched_domain *sd;
  4471. for_each_domain(cpu1, sd) {
  4472. WARN_ON(!cpu_isset(cpu1, sd->span));
  4473. if (cpu_isset(cpu2, sd->span))
  4474. return distance;
  4475. distance++;
  4476. }
  4477. if (distance >= MAX_DOMAIN_DISTANCE) {
  4478. WARN_ON(1);
  4479. distance = MAX_DOMAIN_DISTANCE-1;
  4480. }
  4481. return distance;
  4482. }
  4483. static unsigned int migration_debug;
  4484. static int __init setup_migration_debug(char *str)
  4485. {
  4486. get_option(&str, &migration_debug);
  4487. return 1;
  4488. }
  4489. __setup("migration_debug=", setup_migration_debug);
  4490. /*
  4491. * Maximum cache-size that the scheduler should try to measure.
  4492. * Architectures with larger caches should tune this up during
  4493. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4494. * bootup).
  4495. */
  4496. unsigned int max_cache_size;
  4497. static int __init setup_max_cache_size(char *str)
  4498. {
  4499. get_option(&str, &max_cache_size);
  4500. return 1;
  4501. }
  4502. __setup("max_cache_size=", setup_max_cache_size);
  4503. /*
  4504. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4505. * is the operation that is timed, so we try to generate unpredictable
  4506. * cachemisses that still end up filling the L2 cache:
  4507. */
  4508. static void touch_cache(void *__cache, unsigned long __size)
  4509. {
  4510. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4511. chunk2 = 2*size/3;
  4512. unsigned long *cache = __cache;
  4513. int i;
  4514. for (i = 0; i < size/6; i += 8) {
  4515. switch (i % 6) {
  4516. case 0: cache[i]++;
  4517. case 1: cache[size-1-i]++;
  4518. case 2: cache[chunk1-i]++;
  4519. case 3: cache[chunk1+i]++;
  4520. case 4: cache[chunk2-i]++;
  4521. case 5: cache[chunk2+i]++;
  4522. }
  4523. }
  4524. }
  4525. /*
  4526. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4527. */
  4528. static unsigned long long measure_one(void *cache, unsigned long size,
  4529. int source, int target)
  4530. {
  4531. cpumask_t mask, saved_mask;
  4532. unsigned long long t0, t1, t2, t3, cost;
  4533. saved_mask = current->cpus_allowed;
  4534. /*
  4535. * Flush source caches to RAM and invalidate them:
  4536. */
  4537. sched_cacheflush();
  4538. /*
  4539. * Migrate to the source CPU:
  4540. */
  4541. mask = cpumask_of_cpu(source);
  4542. set_cpus_allowed(current, mask);
  4543. WARN_ON(smp_processor_id() != source);
  4544. /*
  4545. * Dirty the working set:
  4546. */
  4547. t0 = sched_clock();
  4548. touch_cache(cache, size);
  4549. t1 = sched_clock();
  4550. /*
  4551. * Migrate to the target CPU, dirty the L2 cache and access
  4552. * the shared buffer. (which represents the working set
  4553. * of a migrated task.)
  4554. */
  4555. mask = cpumask_of_cpu(target);
  4556. set_cpus_allowed(current, mask);
  4557. WARN_ON(smp_processor_id() != target);
  4558. t2 = sched_clock();
  4559. touch_cache(cache, size);
  4560. t3 = sched_clock();
  4561. cost = t1-t0 + t3-t2;
  4562. if (migration_debug >= 2)
  4563. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  4564. source, target, t1-t0, t1-t0, t3-t2, cost);
  4565. /*
  4566. * Flush target caches to RAM and invalidate them:
  4567. */
  4568. sched_cacheflush();
  4569. set_cpus_allowed(current, saved_mask);
  4570. return cost;
  4571. }
  4572. /*
  4573. * Measure a series of task migrations and return the average
  4574. * result. Since this code runs early during bootup the system
  4575. * is 'undisturbed' and the average latency makes sense.
  4576. *
  4577. * The algorithm in essence auto-detects the relevant cache-size,
  4578. * so it will properly detect different cachesizes for different
  4579. * cache-hierarchies, depending on how the CPUs are connected.
  4580. *
  4581. * Architectures can prime the upper limit of the search range via
  4582. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  4583. */
  4584. static unsigned long long
  4585. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  4586. {
  4587. unsigned long long cost1, cost2;
  4588. int i;
  4589. /*
  4590. * Measure the migration cost of 'size' bytes, over an
  4591. * average of 10 runs:
  4592. *
  4593. * (We perturb the cache size by a small (0..4k)
  4594. * value to compensate size/alignment related artifacts.
  4595. * We also subtract the cost of the operation done on
  4596. * the same CPU.)
  4597. */
  4598. cost1 = 0;
  4599. /*
  4600. * dry run, to make sure we start off cache-cold on cpu1,
  4601. * and to get any vmalloc pagefaults in advance:
  4602. */
  4603. measure_one(cache, size, cpu1, cpu2);
  4604. for (i = 0; i < ITERATIONS; i++)
  4605. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  4606. measure_one(cache, size, cpu2, cpu1);
  4607. for (i = 0; i < ITERATIONS; i++)
  4608. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  4609. /*
  4610. * (We measure the non-migrating [cached] cost on both
  4611. * cpu1 and cpu2, to handle CPUs with different speeds)
  4612. */
  4613. cost2 = 0;
  4614. measure_one(cache, size, cpu1, cpu1);
  4615. for (i = 0; i < ITERATIONS; i++)
  4616. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  4617. measure_one(cache, size, cpu2, cpu2);
  4618. for (i = 0; i < ITERATIONS; i++)
  4619. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  4620. /*
  4621. * Get the per-iteration migration cost:
  4622. */
  4623. do_div(cost1, 2*ITERATIONS);
  4624. do_div(cost2, 2*ITERATIONS);
  4625. return cost1 - cost2;
  4626. }
  4627. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  4628. {
  4629. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  4630. unsigned int max_size, size, size_found = 0;
  4631. long long cost = 0, prev_cost;
  4632. void *cache;
  4633. /*
  4634. * Search from max_cache_size*5 down to 64K - the real relevant
  4635. * cachesize has to lie somewhere inbetween.
  4636. */
  4637. if (max_cache_size) {
  4638. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  4639. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  4640. } else {
  4641. /*
  4642. * Since we have no estimation about the relevant
  4643. * search range
  4644. */
  4645. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  4646. size = MIN_CACHE_SIZE;
  4647. }
  4648. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  4649. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  4650. return 0;
  4651. }
  4652. /*
  4653. * Allocate the working set:
  4654. */
  4655. cache = vmalloc(max_size);
  4656. if (!cache) {
  4657. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  4658. return 1000000; // return 1 msec on very small boxen
  4659. }
  4660. while (size <= max_size) {
  4661. prev_cost = cost;
  4662. cost = measure_cost(cpu1, cpu2, cache, size);
  4663. /*
  4664. * Update the max:
  4665. */
  4666. if (cost > 0) {
  4667. if (max_cost < cost) {
  4668. max_cost = cost;
  4669. size_found = size;
  4670. }
  4671. }
  4672. /*
  4673. * Calculate average fluctuation, we use this to prevent
  4674. * noise from triggering an early break out of the loop:
  4675. */
  4676. fluct = abs(cost - prev_cost);
  4677. avg_fluct = (avg_fluct + fluct)/2;
  4678. if (migration_debug)
  4679. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  4680. cpu1, cpu2, size,
  4681. (long)cost / 1000000,
  4682. ((long)cost / 100000) % 10,
  4683. (long)max_cost / 1000000,
  4684. ((long)max_cost / 100000) % 10,
  4685. domain_distance(cpu1, cpu2),
  4686. cost, avg_fluct);
  4687. /*
  4688. * If we iterated at least 20% past the previous maximum,
  4689. * and the cost has dropped by more than 20% already,
  4690. * (taking fluctuations into account) then we assume to
  4691. * have found the maximum and break out of the loop early:
  4692. */
  4693. if (size_found && (size*100 > size_found*SIZE_THRESH))
  4694. if (cost+avg_fluct <= 0 ||
  4695. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  4696. if (migration_debug)
  4697. printk("-> found max.\n");
  4698. break;
  4699. }
  4700. /*
  4701. * Increase the cachesize in 10% steps:
  4702. */
  4703. size = size * 10 / 9;
  4704. }
  4705. if (migration_debug)
  4706. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  4707. cpu1, cpu2, size_found, max_cost);
  4708. vfree(cache);
  4709. /*
  4710. * A task is considered 'cache cold' if at least 2 times
  4711. * the worst-case cost of migration has passed.
  4712. *
  4713. * (this limit is only listened to if the load-balancing
  4714. * situation is 'nice' - if there is a large imbalance we
  4715. * ignore it for the sake of CPU utilization and
  4716. * processing fairness.)
  4717. */
  4718. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  4719. }
  4720. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  4721. {
  4722. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  4723. unsigned long j0, j1, distance, max_distance = 0;
  4724. struct sched_domain *sd;
  4725. j0 = jiffies;
  4726. /*
  4727. * First pass - calculate the cacheflush times:
  4728. */
  4729. for_each_cpu_mask(cpu1, *cpu_map) {
  4730. for_each_cpu_mask(cpu2, *cpu_map) {
  4731. if (cpu1 == cpu2)
  4732. continue;
  4733. distance = domain_distance(cpu1, cpu2);
  4734. max_distance = max(max_distance, distance);
  4735. /*
  4736. * No result cached yet?
  4737. */
  4738. if (migration_cost[distance] == -1LL)
  4739. migration_cost[distance] =
  4740. measure_migration_cost(cpu1, cpu2);
  4741. }
  4742. }
  4743. /*
  4744. * Second pass - update the sched domain hierarchy with
  4745. * the new cache-hot-time estimations:
  4746. */
  4747. for_each_cpu_mask(cpu, *cpu_map) {
  4748. distance = 0;
  4749. for_each_domain(cpu, sd) {
  4750. sd->cache_hot_time = migration_cost[distance];
  4751. distance++;
  4752. }
  4753. }
  4754. /*
  4755. * Print the matrix:
  4756. */
  4757. if (migration_debug)
  4758. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  4759. max_cache_size,
  4760. #ifdef CONFIG_X86
  4761. cpu_khz/1000
  4762. #else
  4763. -1
  4764. #endif
  4765. );
  4766. if (system_state == SYSTEM_BOOTING) {
  4767. printk("migration_cost=");
  4768. for (distance = 0; distance <= max_distance; distance++) {
  4769. if (distance)
  4770. printk(",");
  4771. printk("%ld", (long)migration_cost[distance] / 1000);
  4772. }
  4773. printk("\n");
  4774. }
  4775. j1 = jiffies;
  4776. if (migration_debug)
  4777. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  4778. /*
  4779. * Move back to the original CPU. NUMA-Q gets confused
  4780. * if we migrate to another quad during bootup.
  4781. */
  4782. if (raw_smp_processor_id() != orig_cpu) {
  4783. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  4784. saved_mask = current->cpus_allowed;
  4785. set_cpus_allowed(current, mask);
  4786. set_cpus_allowed(current, saved_mask);
  4787. }
  4788. }
  4789. #ifdef CONFIG_NUMA
  4790. /**
  4791. * find_next_best_node - find the next node to include in a sched_domain
  4792. * @node: node whose sched_domain we're building
  4793. * @used_nodes: nodes already in the sched_domain
  4794. *
  4795. * Find the next node to include in a given scheduling domain. Simply
  4796. * finds the closest node not already in the @used_nodes map.
  4797. *
  4798. * Should use nodemask_t.
  4799. */
  4800. static int find_next_best_node(int node, unsigned long *used_nodes)
  4801. {
  4802. int i, n, val, min_val, best_node = 0;
  4803. min_val = INT_MAX;
  4804. for (i = 0; i < MAX_NUMNODES; i++) {
  4805. /* Start at @node */
  4806. n = (node + i) % MAX_NUMNODES;
  4807. if (!nr_cpus_node(n))
  4808. continue;
  4809. /* Skip already used nodes */
  4810. if (test_bit(n, used_nodes))
  4811. continue;
  4812. /* Simple min distance search */
  4813. val = node_distance(node, n);
  4814. if (val < min_val) {
  4815. min_val = val;
  4816. best_node = n;
  4817. }
  4818. }
  4819. set_bit(best_node, used_nodes);
  4820. return best_node;
  4821. }
  4822. /**
  4823. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4824. * @node: node whose cpumask we're constructing
  4825. * @size: number of nodes to include in this span
  4826. *
  4827. * Given a node, construct a good cpumask for its sched_domain to span. It
  4828. * should be one that prevents unnecessary balancing, but also spreads tasks
  4829. * out optimally.
  4830. */
  4831. static cpumask_t sched_domain_node_span(int node)
  4832. {
  4833. int i;
  4834. cpumask_t span, nodemask;
  4835. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4836. cpus_clear(span);
  4837. bitmap_zero(used_nodes, MAX_NUMNODES);
  4838. nodemask = node_to_cpumask(node);
  4839. cpus_or(span, span, nodemask);
  4840. set_bit(node, used_nodes);
  4841. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4842. int next_node = find_next_best_node(node, used_nodes);
  4843. nodemask = node_to_cpumask(next_node);
  4844. cpus_or(span, span, nodemask);
  4845. }
  4846. return span;
  4847. }
  4848. #endif
  4849. /*
  4850. * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
  4851. * can switch it on easily if needed.
  4852. */
  4853. #ifdef CONFIG_SCHED_SMT
  4854. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4855. static struct sched_group sched_group_cpus[NR_CPUS];
  4856. static int cpu_to_cpu_group(int cpu)
  4857. {
  4858. return cpu;
  4859. }
  4860. #endif
  4861. #ifdef CONFIG_SCHED_MC
  4862. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4863. static struct sched_group sched_group_core[NR_CPUS];
  4864. #endif
  4865. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4866. static int cpu_to_core_group(int cpu)
  4867. {
  4868. return first_cpu(cpu_sibling_map[cpu]);
  4869. }
  4870. #elif defined(CONFIG_SCHED_MC)
  4871. static int cpu_to_core_group(int cpu)
  4872. {
  4873. return cpu;
  4874. }
  4875. #endif
  4876. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4877. static struct sched_group sched_group_phys[NR_CPUS];
  4878. static int cpu_to_phys_group(int cpu)
  4879. {
  4880. #if defined(CONFIG_SCHED_MC)
  4881. cpumask_t mask = cpu_coregroup_map(cpu);
  4882. return first_cpu(mask);
  4883. #elif defined(CONFIG_SCHED_SMT)
  4884. return first_cpu(cpu_sibling_map[cpu]);
  4885. #else
  4886. return cpu;
  4887. #endif
  4888. }
  4889. #ifdef CONFIG_NUMA
  4890. /*
  4891. * The init_sched_build_groups can't handle what we want to do with node
  4892. * groups, so roll our own. Now each node has its own list of groups which
  4893. * gets dynamically allocated.
  4894. */
  4895. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4896. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  4897. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  4898. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  4899. static int cpu_to_allnodes_group(int cpu)
  4900. {
  4901. return cpu_to_node(cpu);
  4902. }
  4903. static void init_numa_sched_groups_power(struct sched_group *group_head)
  4904. {
  4905. struct sched_group *sg = group_head;
  4906. int j;
  4907. if (!sg)
  4908. return;
  4909. next_sg:
  4910. for_each_cpu_mask(j, sg->cpumask) {
  4911. struct sched_domain *sd;
  4912. sd = &per_cpu(phys_domains, j);
  4913. if (j != first_cpu(sd->groups->cpumask)) {
  4914. /*
  4915. * Only add "power" once for each
  4916. * physical package.
  4917. */
  4918. continue;
  4919. }
  4920. sg->cpu_power += sd->groups->cpu_power;
  4921. }
  4922. sg = sg->next;
  4923. if (sg != group_head)
  4924. goto next_sg;
  4925. }
  4926. #endif
  4927. /*
  4928. * Build sched domains for a given set of cpus and attach the sched domains
  4929. * to the individual cpus
  4930. */
  4931. void build_sched_domains(const cpumask_t *cpu_map)
  4932. {
  4933. int i;
  4934. #ifdef CONFIG_NUMA
  4935. struct sched_group **sched_group_nodes = NULL;
  4936. struct sched_group *sched_group_allnodes = NULL;
  4937. /*
  4938. * Allocate the per-node list of sched groups
  4939. */
  4940. sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  4941. GFP_ATOMIC);
  4942. if (!sched_group_nodes) {
  4943. printk(KERN_WARNING "Can not alloc sched group node list\n");
  4944. return;
  4945. }
  4946. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  4947. #endif
  4948. /*
  4949. * Set up domains for cpus specified by the cpu_map.
  4950. */
  4951. for_each_cpu_mask(i, *cpu_map) {
  4952. int group;
  4953. struct sched_domain *sd = NULL, *p;
  4954. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  4955. cpus_and(nodemask, nodemask, *cpu_map);
  4956. #ifdef CONFIG_NUMA
  4957. if (cpus_weight(*cpu_map)
  4958. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  4959. if (!sched_group_allnodes) {
  4960. sched_group_allnodes
  4961. = kmalloc(sizeof(struct sched_group)
  4962. * MAX_NUMNODES,
  4963. GFP_KERNEL);
  4964. if (!sched_group_allnodes) {
  4965. printk(KERN_WARNING
  4966. "Can not alloc allnodes sched group\n");
  4967. break;
  4968. }
  4969. sched_group_allnodes_bycpu[i]
  4970. = sched_group_allnodes;
  4971. }
  4972. sd = &per_cpu(allnodes_domains, i);
  4973. *sd = SD_ALLNODES_INIT;
  4974. sd->span = *cpu_map;
  4975. group = cpu_to_allnodes_group(i);
  4976. sd->groups = &sched_group_allnodes[group];
  4977. p = sd;
  4978. } else
  4979. p = NULL;
  4980. sd = &per_cpu(node_domains, i);
  4981. *sd = SD_NODE_INIT;
  4982. sd->span = sched_domain_node_span(cpu_to_node(i));
  4983. sd->parent = p;
  4984. cpus_and(sd->span, sd->span, *cpu_map);
  4985. #endif
  4986. p = sd;
  4987. sd = &per_cpu(phys_domains, i);
  4988. group = cpu_to_phys_group(i);
  4989. *sd = SD_CPU_INIT;
  4990. sd->span = nodemask;
  4991. sd->parent = p;
  4992. sd->groups = &sched_group_phys[group];
  4993. #ifdef CONFIG_SCHED_MC
  4994. p = sd;
  4995. sd = &per_cpu(core_domains, i);
  4996. group = cpu_to_core_group(i);
  4997. *sd = SD_MC_INIT;
  4998. sd->span = cpu_coregroup_map(i);
  4999. cpus_and(sd->span, sd->span, *cpu_map);
  5000. sd->parent = p;
  5001. sd->groups = &sched_group_core[group];
  5002. #endif
  5003. #ifdef CONFIG_SCHED_SMT
  5004. p = sd;
  5005. sd = &per_cpu(cpu_domains, i);
  5006. group = cpu_to_cpu_group(i);
  5007. *sd = SD_SIBLING_INIT;
  5008. sd->span = cpu_sibling_map[i];
  5009. cpus_and(sd->span, sd->span, *cpu_map);
  5010. sd->parent = p;
  5011. sd->groups = &sched_group_cpus[group];
  5012. #endif
  5013. }
  5014. #ifdef CONFIG_SCHED_SMT
  5015. /* Set up CPU (sibling) groups */
  5016. for_each_cpu_mask(i, *cpu_map) {
  5017. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5018. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5019. if (i != first_cpu(this_sibling_map))
  5020. continue;
  5021. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5022. &cpu_to_cpu_group);
  5023. }
  5024. #endif
  5025. #ifdef CONFIG_SCHED_MC
  5026. /* Set up multi-core groups */
  5027. for_each_cpu_mask(i, *cpu_map) {
  5028. cpumask_t this_core_map = cpu_coregroup_map(i);
  5029. cpus_and(this_core_map, this_core_map, *cpu_map);
  5030. if (i != first_cpu(this_core_map))
  5031. continue;
  5032. init_sched_build_groups(sched_group_core, this_core_map,
  5033. &cpu_to_core_group);
  5034. }
  5035. #endif
  5036. /* Set up physical groups */
  5037. for (i = 0; i < MAX_NUMNODES; i++) {
  5038. cpumask_t nodemask = node_to_cpumask(i);
  5039. cpus_and(nodemask, nodemask, *cpu_map);
  5040. if (cpus_empty(nodemask))
  5041. continue;
  5042. init_sched_build_groups(sched_group_phys, nodemask,
  5043. &cpu_to_phys_group);
  5044. }
  5045. #ifdef CONFIG_NUMA
  5046. /* Set up node groups */
  5047. if (sched_group_allnodes)
  5048. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5049. &cpu_to_allnodes_group);
  5050. for (i = 0; i < MAX_NUMNODES; i++) {
  5051. /* Set up node groups */
  5052. struct sched_group *sg, *prev;
  5053. cpumask_t nodemask = node_to_cpumask(i);
  5054. cpumask_t domainspan;
  5055. cpumask_t covered = CPU_MASK_NONE;
  5056. int j;
  5057. cpus_and(nodemask, nodemask, *cpu_map);
  5058. if (cpus_empty(nodemask)) {
  5059. sched_group_nodes[i] = NULL;
  5060. continue;
  5061. }
  5062. domainspan = sched_domain_node_span(i);
  5063. cpus_and(domainspan, domainspan, *cpu_map);
  5064. sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
  5065. sched_group_nodes[i] = sg;
  5066. for_each_cpu_mask(j, nodemask) {
  5067. struct sched_domain *sd;
  5068. sd = &per_cpu(node_domains, j);
  5069. sd->groups = sg;
  5070. if (sd->groups == NULL) {
  5071. /* Turn off balancing if we have no groups */
  5072. sd->flags = 0;
  5073. }
  5074. }
  5075. if (!sg) {
  5076. printk(KERN_WARNING
  5077. "Can not alloc domain group for node %d\n", i);
  5078. continue;
  5079. }
  5080. sg->cpu_power = 0;
  5081. sg->cpumask = nodemask;
  5082. cpus_or(covered, covered, nodemask);
  5083. prev = sg;
  5084. for (j = 0; j < MAX_NUMNODES; j++) {
  5085. cpumask_t tmp, notcovered;
  5086. int n = (i + j) % MAX_NUMNODES;
  5087. cpus_complement(notcovered, covered);
  5088. cpus_and(tmp, notcovered, *cpu_map);
  5089. cpus_and(tmp, tmp, domainspan);
  5090. if (cpus_empty(tmp))
  5091. break;
  5092. nodemask = node_to_cpumask(n);
  5093. cpus_and(tmp, tmp, nodemask);
  5094. if (cpus_empty(tmp))
  5095. continue;
  5096. sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
  5097. if (!sg) {
  5098. printk(KERN_WARNING
  5099. "Can not alloc domain group for node %d\n", j);
  5100. break;
  5101. }
  5102. sg->cpu_power = 0;
  5103. sg->cpumask = tmp;
  5104. cpus_or(covered, covered, tmp);
  5105. prev->next = sg;
  5106. prev = sg;
  5107. }
  5108. prev->next = sched_group_nodes[i];
  5109. }
  5110. #endif
  5111. /* Calculate CPU power for physical packages and nodes */
  5112. for_each_cpu_mask(i, *cpu_map) {
  5113. int power;
  5114. struct sched_domain *sd;
  5115. #ifdef CONFIG_SCHED_SMT
  5116. sd = &per_cpu(cpu_domains, i);
  5117. power = SCHED_LOAD_SCALE;
  5118. sd->groups->cpu_power = power;
  5119. #endif
  5120. #ifdef CONFIG_SCHED_MC
  5121. sd = &per_cpu(core_domains, i);
  5122. power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
  5123. * SCHED_LOAD_SCALE / 10;
  5124. sd->groups->cpu_power = power;
  5125. sd = &per_cpu(phys_domains, i);
  5126. /*
  5127. * This has to be < 2 * SCHED_LOAD_SCALE
  5128. * Lets keep it SCHED_LOAD_SCALE, so that
  5129. * while calculating NUMA group's cpu_power
  5130. * we can simply do
  5131. * numa_group->cpu_power += phys_group->cpu_power;
  5132. *
  5133. * See "only add power once for each physical pkg"
  5134. * comment below
  5135. */
  5136. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5137. #else
  5138. sd = &per_cpu(phys_domains, i);
  5139. power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
  5140. (cpus_weight(sd->groups->cpumask)-1) / 10;
  5141. sd->groups->cpu_power = power;
  5142. #endif
  5143. }
  5144. #ifdef CONFIG_NUMA
  5145. for (i = 0; i < MAX_NUMNODES; i++)
  5146. init_numa_sched_groups_power(sched_group_nodes[i]);
  5147. init_numa_sched_groups_power(sched_group_allnodes);
  5148. #endif
  5149. /* Attach the domains */
  5150. for_each_cpu_mask(i, *cpu_map) {
  5151. struct sched_domain *sd;
  5152. #ifdef CONFIG_SCHED_SMT
  5153. sd = &per_cpu(cpu_domains, i);
  5154. #elif defined(CONFIG_SCHED_MC)
  5155. sd = &per_cpu(core_domains, i);
  5156. #else
  5157. sd = &per_cpu(phys_domains, i);
  5158. #endif
  5159. cpu_attach_domain(sd, i);
  5160. }
  5161. /*
  5162. * Tune cache-hot values:
  5163. */
  5164. calibrate_migration_costs(cpu_map);
  5165. }
  5166. /*
  5167. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5168. */
  5169. static void arch_init_sched_domains(const cpumask_t *cpu_map)
  5170. {
  5171. cpumask_t cpu_default_map;
  5172. /*
  5173. * Setup mask for cpus without special case scheduling requirements.
  5174. * For now this just excludes isolated cpus, but could be used to
  5175. * exclude other special cases in the future.
  5176. */
  5177. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5178. build_sched_domains(&cpu_default_map);
  5179. }
  5180. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5181. {
  5182. #ifdef CONFIG_NUMA
  5183. int i;
  5184. int cpu;
  5185. for_each_cpu_mask(cpu, *cpu_map) {
  5186. struct sched_group *sched_group_allnodes
  5187. = sched_group_allnodes_bycpu[cpu];
  5188. struct sched_group **sched_group_nodes
  5189. = sched_group_nodes_bycpu[cpu];
  5190. if (sched_group_allnodes) {
  5191. kfree(sched_group_allnodes);
  5192. sched_group_allnodes_bycpu[cpu] = NULL;
  5193. }
  5194. if (!sched_group_nodes)
  5195. continue;
  5196. for (i = 0; i < MAX_NUMNODES; i++) {
  5197. cpumask_t nodemask = node_to_cpumask(i);
  5198. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5199. cpus_and(nodemask, nodemask, *cpu_map);
  5200. if (cpus_empty(nodemask))
  5201. continue;
  5202. if (sg == NULL)
  5203. continue;
  5204. sg = sg->next;
  5205. next_sg:
  5206. oldsg = sg;
  5207. sg = sg->next;
  5208. kfree(oldsg);
  5209. if (oldsg != sched_group_nodes[i])
  5210. goto next_sg;
  5211. }
  5212. kfree(sched_group_nodes);
  5213. sched_group_nodes_bycpu[cpu] = NULL;
  5214. }
  5215. #endif
  5216. }
  5217. /*
  5218. * Detach sched domains from a group of cpus specified in cpu_map
  5219. * These cpus will now be attached to the NULL domain
  5220. */
  5221. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5222. {
  5223. int i;
  5224. for_each_cpu_mask(i, *cpu_map)
  5225. cpu_attach_domain(NULL, i);
  5226. synchronize_sched();
  5227. arch_destroy_sched_domains(cpu_map);
  5228. }
  5229. /*
  5230. * Partition sched domains as specified by the cpumasks below.
  5231. * This attaches all cpus from the cpumasks to the NULL domain,
  5232. * waits for a RCU quiescent period, recalculates sched
  5233. * domain information and then attaches them back to the
  5234. * correct sched domains
  5235. * Call with hotplug lock held
  5236. */
  5237. void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5238. {
  5239. cpumask_t change_map;
  5240. cpus_and(*partition1, *partition1, cpu_online_map);
  5241. cpus_and(*partition2, *partition2, cpu_online_map);
  5242. cpus_or(change_map, *partition1, *partition2);
  5243. /* Detach sched domains from all of the affected cpus */
  5244. detach_destroy_domains(&change_map);
  5245. if (!cpus_empty(*partition1))
  5246. build_sched_domains(partition1);
  5247. if (!cpus_empty(*partition2))
  5248. build_sched_domains(partition2);
  5249. }
  5250. #ifdef CONFIG_HOTPLUG_CPU
  5251. /*
  5252. * Force a reinitialization of the sched domains hierarchy. The domains
  5253. * and groups cannot be updated in place without racing with the balancing
  5254. * code, so we temporarily attach all running cpus to the NULL domain
  5255. * which will prevent rebalancing while the sched domains are recalculated.
  5256. */
  5257. static int update_sched_domains(struct notifier_block *nfb,
  5258. unsigned long action, void *hcpu)
  5259. {
  5260. switch (action) {
  5261. case CPU_UP_PREPARE:
  5262. case CPU_DOWN_PREPARE:
  5263. detach_destroy_domains(&cpu_online_map);
  5264. return NOTIFY_OK;
  5265. case CPU_UP_CANCELED:
  5266. case CPU_DOWN_FAILED:
  5267. case CPU_ONLINE:
  5268. case CPU_DEAD:
  5269. /*
  5270. * Fall through and re-initialise the domains.
  5271. */
  5272. break;
  5273. default:
  5274. return NOTIFY_DONE;
  5275. }
  5276. /* The hotplug lock is already held by cpu_up/cpu_down */
  5277. arch_init_sched_domains(&cpu_online_map);
  5278. return NOTIFY_OK;
  5279. }
  5280. #endif
  5281. void __init sched_init_smp(void)
  5282. {
  5283. lock_cpu_hotplug();
  5284. arch_init_sched_domains(&cpu_online_map);
  5285. unlock_cpu_hotplug();
  5286. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5287. hotcpu_notifier(update_sched_domains, 0);
  5288. }
  5289. #else
  5290. void __init sched_init_smp(void)
  5291. {
  5292. }
  5293. #endif /* CONFIG_SMP */
  5294. int in_sched_functions(unsigned long addr)
  5295. {
  5296. /* Linker adds these: start and end of __sched functions */
  5297. extern char __sched_text_start[], __sched_text_end[];
  5298. return in_lock_functions(addr) ||
  5299. (addr >= (unsigned long)__sched_text_start
  5300. && addr < (unsigned long)__sched_text_end);
  5301. }
  5302. void __init sched_init(void)
  5303. {
  5304. runqueue_t *rq;
  5305. int i, j, k;
  5306. for_each_possible_cpu(i) {
  5307. prio_array_t *array;
  5308. rq = cpu_rq(i);
  5309. spin_lock_init(&rq->lock);
  5310. rq->nr_running = 0;
  5311. rq->active = rq->arrays;
  5312. rq->expired = rq->arrays + 1;
  5313. rq->best_expired_prio = MAX_PRIO;
  5314. #ifdef CONFIG_SMP
  5315. rq->sd = NULL;
  5316. for (j = 1; j < 3; j++)
  5317. rq->cpu_load[j] = 0;
  5318. rq->active_balance = 0;
  5319. rq->push_cpu = 0;
  5320. rq->migration_thread = NULL;
  5321. INIT_LIST_HEAD(&rq->migration_queue);
  5322. rq->cpu = i;
  5323. #endif
  5324. atomic_set(&rq->nr_iowait, 0);
  5325. for (j = 0; j < 2; j++) {
  5326. array = rq->arrays + j;
  5327. for (k = 0; k < MAX_PRIO; k++) {
  5328. INIT_LIST_HEAD(array->queue + k);
  5329. __clear_bit(k, array->bitmap);
  5330. }
  5331. // delimiter for bitsearch
  5332. __set_bit(MAX_PRIO, array->bitmap);
  5333. }
  5334. }
  5335. /*
  5336. * The boot idle thread does lazy MMU switching as well:
  5337. */
  5338. atomic_inc(&init_mm.mm_count);
  5339. enter_lazy_tlb(&init_mm, current);
  5340. /*
  5341. * Make us the idle thread. Technically, schedule() should not be
  5342. * called from this thread, however somewhere below it might be,
  5343. * but because we are the idle thread, we just pick up running again
  5344. * when this runqueue becomes "idle".
  5345. */
  5346. init_idle(current, smp_processor_id());
  5347. }
  5348. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5349. void __might_sleep(char *file, int line)
  5350. {
  5351. #if defined(in_atomic)
  5352. static unsigned long prev_jiffy; /* ratelimiting */
  5353. if ((in_atomic() || irqs_disabled()) &&
  5354. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5355. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5356. return;
  5357. prev_jiffy = jiffies;
  5358. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5359. " context at %s:%d\n", file, line);
  5360. printk("in_atomic():%d, irqs_disabled():%d\n",
  5361. in_atomic(), irqs_disabled());
  5362. dump_stack();
  5363. }
  5364. #endif
  5365. }
  5366. EXPORT_SYMBOL(__might_sleep);
  5367. #endif
  5368. #ifdef CONFIG_MAGIC_SYSRQ
  5369. void normalize_rt_tasks(void)
  5370. {
  5371. struct task_struct *p;
  5372. prio_array_t *array;
  5373. unsigned long flags;
  5374. runqueue_t *rq;
  5375. read_lock_irq(&tasklist_lock);
  5376. for_each_process (p) {
  5377. if (!rt_task(p))
  5378. continue;
  5379. rq = task_rq_lock(p, &flags);
  5380. array = p->array;
  5381. if (array)
  5382. deactivate_task(p, task_rq(p));
  5383. __setscheduler(p, SCHED_NORMAL, 0);
  5384. if (array) {
  5385. __activate_task(p, task_rq(p));
  5386. resched_task(rq->curr);
  5387. }
  5388. task_rq_unlock(rq, &flags);
  5389. }
  5390. read_unlock_irq(&tasklist_lock);
  5391. }
  5392. #endif /* CONFIG_MAGIC_SYSRQ */
  5393. #ifdef CONFIG_IA64
  5394. /*
  5395. * These functions are only useful for the IA64 MCA handling.
  5396. *
  5397. * They can only be called when the whole system has been
  5398. * stopped - every CPU needs to be quiescent, and no scheduling
  5399. * activity can take place. Using them for anything else would
  5400. * be a serious bug, and as a result, they aren't even visible
  5401. * under any other configuration.
  5402. */
  5403. /**
  5404. * curr_task - return the current task for a given cpu.
  5405. * @cpu: the processor in question.
  5406. *
  5407. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5408. */
  5409. task_t *curr_task(int cpu)
  5410. {
  5411. return cpu_curr(cpu);
  5412. }
  5413. /**
  5414. * set_curr_task - set the current task for a given cpu.
  5415. * @cpu: the processor in question.
  5416. * @p: the task pointer to set.
  5417. *
  5418. * Description: This function must only be used when non-maskable interrupts
  5419. * are serviced on a separate stack. It allows the architecture to switch the
  5420. * notion of the current task on a cpu in a non-blocking manner. This function
  5421. * must be called with all CPU's synchronized, and interrupts disabled, the
  5422. * and caller must save the original value of the current task (see
  5423. * curr_task() above) and restore that value before reenabling interrupts and
  5424. * re-starting the system.
  5425. *
  5426. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5427. */
  5428. void set_curr_task(int cpu, task_t *p)
  5429. {
  5430. cpu_curr(cpu) = p;
  5431. }
  5432. #endif