tcp_input.c 146 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  13. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  14. * Florian La Roche, <flla@stud.uni-sb.de>
  15. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  16. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  17. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  18. * Matthew Dillon, <dillon@apollo.west.oic.com>
  19. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  20. * Jorge Cwik, <jorge@laser.satlink.net>
  21. */
  22. /*
  23. * Changes:
  24. * Pedro Roque : Fast Retransmit/Recovery.
  25. * Two receive queues.
  26. * Retransmit queue handled by TCP.
  27. * Better retransmit timer handling.
  28. * New congestion avoidance.
  29. * Header prediction.
  30. * Variable renaming.
  31. *
  32. * Eric : Fast Retransmit.
  33. * Randy Scott : MSS option defines.
  34. * Eric Schenk : Fixes to slow start algorithm.
  35. * Eric Schenk : Yet another double ACK bug.
  36. * Eric Schenk : Delayed ACK bug fixes.
  37. * Eric Schenk : Floyd style fast retrans war avoidance.
  38. * David S. Miller : Don't allow zero congestion window.
  39. * Eric Schenk : Fix retransmitter so that it sends
  40. * next packet on ack of previous packet.
  41. * Andi Kleen : Moved open_request checking here
  42. * and process RSTs for open_requests.
  43. * Andi Kleen : Better prune_queue, and other fixes.
  44. * Andrey Savochkin: Fix RTT measurements in the presence of
  45. * timestamps.
  46. * Andrey Savochkin: Check sequence numbers correctly when
  47. * removing SACKs due to in sequence incoming
  48. * data segments.
  49. * Andi Kleen: Make sure we never ack data there is not
  50. * enough room for. Also make this condition
  51. * a fatal error if it might still happen.
  52. * Andi Kleen: Add tcp_measure_rcv_mss to make
  53. * connections with MSS<min(MTU,ann. MSS)
  54. * work without delayed acks.
  55. * Andi Kleen: Process packets with PSH set in the
  56. * fast path.
  57. * J Hadi Salim: ECN support
  58. * Andrei Gurtov,
  59. * Pasi Sarolahti,
  60. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  61. * engine. Lots of bugs are found.
  62. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  63. */
  64. #include <linux/mm.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <net/tcp.h>
  68. #include <net/inet_common.h>
  69. #include <linux/ipsec.h>
  70. #include <asm/unaligned.h>
  71. #include <net/netdma.h>
  72. int sysctl_tcp_timestamps __read_mostly = 1;
  73. int sysctl_tcp_window_scaling __read_mostly = 1;
  74. int sysctl_tcp_sack __read_mostly = 1;
  75. int sysctl_tcp_fack __read_mostly = 1;
  76. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  77. int sysctl_tcp_ecn __read_mostly;
  78. int sysctl_tcp_dsack __read_mostly = 1;
  79. int sysctl_tcp_app_win __read_mostly = 31;
  80. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  81. int sysctl_tcp_stdurg __read_mostly;
  82. int sysctl_tcp_rfc1337 __read_mostly;
  83. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84. int sysctl_tcp_frto __read_mostly;
  85. int sysctl_tcp_frto_response __read_mostly;
  86. int sysctl_tcp_nometrics_save __read_mostly;
  87. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  88. int sysctl_tcp_abc __read_mostly;
  89. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  90. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  91. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  92. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  93. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  94. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  95. #define FLAG_ECE 0x40 /* ECE in this ACK */
  96. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  97. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  98. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  99. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  100. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
  101. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  102. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  103. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  104. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  105. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  106. #define IsSackFrto() (sysctl_tcp_frto == 0x2)
  107. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  108. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  109. /* Adapt the MSS value used to make delayed ack decision to the
  110. * real world.
  111. */
  112. static void tcp_measure_rcv_mss(struct sock *sk,
  113. const struct sk_buff *skb)
  114. {
  115. struct inet_connection_sock *icsk = inet_csk(sk);
  116. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  117. unsigned int len;
  118. icsk->icsk_ack.last_seg_size = 0;
  119. /* skb->len may jitter because of SACKs, even if peer
  120. * sends good full-sized frames.
  121. */
  122. len = skb_shinfo(skb)->gso_size ?: skb->len;
  123. if (len >= icsk->icsk_ack.rcv_mss) {
  124. icsk->icsk_ack.rcv_mss = len;
  125. } else {
  126. /* Otherwise, we make more careful check taking into account,
  127. * that SACKs block is variable.
  128. *
  129. * "len" is invariant segment length, including TCP header.
  130. */
  131. len += skb->data - skb_transport_header(skb);
  132. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  133. /* If PSH is not set, packet should be
  134. * full sized, provided peer TCP is not badly broken.
  135. * This observation (if it is correct 8)) allows
  136. * to handle super-low mtu links fairly.
  137. */
  138. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  139. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  140. /* Subtract also invariant (if peer is RFC compliant),
  141. * tcp header plus fixed timestamp option length.
  142. * Resulting "len" is MSS free of SACK jitter.
  143. */
  144. len -= tcp_sk(sk)->tcp_header_len;
  145. icsk->icsk_ack.last_seg_size = len;
  146. if (len == lss) {
  147. icsk->icsk_ack.rcv_mss = len;
  148. return;
  149. }
  150. }
  151. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  152. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  153. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  154. }
  155. }
  156. static void tcp_incr_quickack(struct sock *sk)
  157. {
  158. struct inet_connection_sock *icsk = inet_csk(sk);
  159. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  160. if (quickacks==0)
  161. quickacks=2;
  162. if (quickacks > icsk->icsk_ack.quick)
  163. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  164. }
  165. void tcp_enter_quickack_mode(struct sock *sk)
  166. {
  167. struct inet_connection_sock *icsk = inet_csk(sk);
  168. tcp_incr_quickack(sk);
  169. icsk->icsk_ack.pingpong = 0;
  170. icsk->icsk_ack.ato = TCP_ATO_MIN;
  171. }
  172. /* Send ACKs quickly, if "quick" count is not exhausted
  173. * and the session is not interactive.
  174. */
  175. static inline int tcp_in_quickack_mode(const struct sock *sk)
  176. {
  177. const struct inet_connection_sock *icsk = inet_csk(sk);
  178. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  179. }
  180. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  181. {
  182. if (tp->ecn_flags&TCP_ECN_OK)
  183. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  184. }
  185. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  186. {
  187. if (tcp_hdr(skb)->cwr)
  188. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  189. }
  190. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  191. {
  192. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  193. }
  194. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  195. {
  196. if (tp->ecn_flags&TCP_ECN_OK) {
  197. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  198. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  199. /* Funny extension: if ECT is not set on a segment,
  200. * it is surely retransmit. It is not in ECN RFC,
  201. * but Linux follows this rule. */
  202. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  203. tcp_enter_quickack_mode((struct sock *)tp);
  204. }
  205. }
  206. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  207. {
  208. if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
  209. tp->ecn_flags &= ~TCP_ECN_OK;
  210. }
  211. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  212. {
  213. if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
  214. tp->ecn_flags &= ~TCP_ECN_OK;
  215. }
  216. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  217. {
  218. if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
  219. return 1;
  220. return 0;
  221. }
  222. /* Buffer size and advertised window tuning.
  223. *
  224. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  225. */
  226. static void tcp_fixup_sndbuf(struct sock *sk)
  227. {
  228. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  229. sizeof(struct sk_buff);
  230. if (sk->sk_sndbuf < 3 * sndmem)
  231. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  232. }
  233. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  234. *
  235. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  236. * forward and advertised in receiver window (tp->rcv_wnd) and
  237. * "application buffer", required to isolate scheduling/application
  238. * latencies from network.
  239. * window_clamp is maximal advertised window. It can be less than
  240. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  241. * is reserved for "application" buffer. The less window_clamp is
  242. * the smoother our behaviour from viewpoint of network, but the lower
  243. * throughput and the higher sensitivity of the connection to losses. 8)
  244. *
  245. * rcv_ssthresh is more strict window_clamp used at "slow start"
  246. * phase to predict further behaviour of this connection.
  247. * It is used for two goals:
  248. * - to enforce header prediction at sender, even when application
  249. * requires some significant "application buffer". It is check #1.
  250. * - to prevent pruning of receive queue because of misprediction
  251. * of receiver window. Check #2.
  252. *
  253. * The scheme does not work when sender sends good segments opening
  254. * window and then starts to feed us spaghetti. But it should work
  255. * in common situations. Otherwise, we have to rely on queue collapsing.
  256. */
  257. /* Slow part of check#2. */
  258. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  259. {
  260. struct tcp_sock *tp = tcp_sk(sk);
  261. /* Optimize this! */
  262. int truesize = tcp_win_from_space(skb->truesize)/2;
  263. int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
  264. while (tp->rcv_ssthresh <= window) {
  265. if (truesize <= skb->len)
  266. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  267. truesize >>= 1;
  268. window >>= 1;
  269. }
  270. return 0;
  271. }
  272. static void tcp_grow_window(struct sock *sk,
  273. struct sk_buff *skb)
  274. {
  275. struct tcp_sock *tp = tcp_sk(sk);
  276. /* Check #1 */
  277. if (tp->rcv_ssthresh < tp->window_clamp &&
  278. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  279. !tcp_memory_pressure) {
  280. int incr;
  281. /* Check #2. Increase window, if skb with such overhead
  282. * will fit to rcvbuf in future.
  283. */
  284. if (tcp_win_from_space(skb->truesize) <= skb->len)
  285. incr = 2*tp->advmss;
  286. else
  287. incr = __tcp_grow_window(sk, skb);
  288. if (incr) {
  289. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
  290. inet_csk(sk)->icsk_ack.quick |= 1;
  291. }
  292. }
  293. }
  294. /* 3. Tuning rcvbuf, when connection enters established state. */
  295. static void tcp_fixup_rcvbuf(struct sock *sk)
  296. {
  297. struct tcp_sock *tp = tcp_sk(sk);
  298. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  299. /* Try to select rcvbuf so that 4 mss-sized segments
  300. * will fit to window and corresponding skbs will fit to our rcvbuf.
  301. * (was 3; 4 is minimum to allow fast retransmit to work.)
  302. */
  303. while (tcp_win_from_space(rcvmem) < tp->advmss)
  304. rcvmem += 128;
  305. if (sk->sk_rcvbuf < 4 * rcvmem)
  306. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  307. }
  308. /* 4. Try to fixup all. It is made immediately after connection enters
  309. * established state.
  310. */
  311. static void tcp_init_buffer_space(struct sock *sk)
  312. {
  313. struct tcp_sock *tp = tcp_sk(sk);
  314. int maxwin;
  315. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  316. tcp_fixup_rcvbuf(sk);
  317. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  318. tcp_fixup_sndbuf(sk);
  319. tp->rcvq_space.space = tp->rcv_wnd;
  320. maxwin = tcp_full_space(sk);
  321. if (tp->window_clamp >= maxwin) {
  322. tp->window_clamp = maxwin;
  323. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  324. tp->window_clamp = max(maxwin -
  325. (maxwin >> sysctl_tcp_app_win),
  326. 4 * tp->advmss);
  327. }
  328. /* Force reservation of one segment. */
  329. if (sysctl_tcp_app_win &&
  330. tp->window_clamp > 2 * tp->advmss &&
  331. tp->window_clamp + tp->advmss > maxwin)
  332. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  333. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  334. tp->snd_cwnd_stamp = tcp_time_stamp;
  335. }
  336. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  337. static void tcp_clamp_window(struct sock *sk)
  338. {
  339. struct tcp_sock *tp = tcp_sk(sk);
  340. struct inet_connection_sock *icsk = inet_csk(sk);
  341. icsk->icsk_ack.quick = 0;
  342. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  343. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  344. !tcp_memory_pressure &&
  345. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  346. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  347. sysctl_tcp_rmem[2]);
  348. }
  349. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  350. tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
  351. }
  352. /* Initialize RCV_MSS value.
  353. * RCV_MSS is an our guess about MSS used by the peer.
  354. * We haven't any direct information about the MSS.
  355. * It's better to underestimate the RCV_MSS rather than overestimate.
  356. * Overestimations make us ACKing less frequently than needed.
  357. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  358. */
  359. void tcp_initialize_rcv_mss(struct sock *sk)
  360. {
  361. struct tcp_sock *tp = tcp_sk(sk);
  362. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  363. hint = min(hint, tp->rcv_wnd/2);
  364. hint = min(hint, TCP_MIN_RCVMSS);
  365. hint = max(hint, TCP_MIN_MSS);
  366. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  367. }
  368. /* Receiver "autotuning" code.
  369. *
  370. * The algorithm for RTT estimation w/o timestamps is based on
  371. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  372. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  373. *
  374. * More detail on this code can be found at
  375. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  376. * though this reference is out of date. A new paper
  377. * is pending.
  378. */
  379. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  380. {
  381. u32 new_sample = tp->rcv_rtt_est.rtt;
  382. long m = sample;
  383. if (m == 0)
  384. m = 1;
  385. if (new_sample != 0) {
  386. /* If we sample in larger samples in the non-timestamp
  387. * case, we could grossly overestimate the RTT especially
  388. * with chatty applications or bulk transfer apps which
  389. * are stalled on filesystem I/O.
  390. *
  391. * Also, since we are only going for a minimum in the
  392. * non-timestamp case, we do not smooth things out
  393. * else with timestamps disabled convergence takes too
  394. * long.
  395. */
  396. if (!win_dep) {
  397. m -= (new_sample >> 3);
  398. new_sample += m;
  399. } else if (m < new_sample)
  400. new_sample = m << 3;
  401. } else {
  402. /* No previous measure. */
  403. new_sample = m << 3;
  404. }
  405. if (tp->rcv_rtt_est.rtt != new_sample)
  406. tp->rcv_rtt_est.rtt = new_sample;
  407. }
  408. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  409. {
  410. if (tp->rcv_rtt_est.time == 0)
  411. goto new_measure;
  412. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  413. return;
  414. tcp_rcv_rtt_update(tp,
  415. jiffies - tp->rcv_rtt_est.time,
  416. 1);
  417. new_measure:
  418. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  419. tp->rcv_rtt_est.time = tcp_time_stamp;
  420. }
  421. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
  422. {
  423. struct tcp_sock *tp = tcp_sk(sk);
  424. if (tp->rx_opt.rcv_tsecr &&
  425. (TCP_SKB_CB(skb)->end_seq -
  426. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  427. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  428. }
  429. /*
  430. * This function should be called every time data is copied to user space.
  431. * It calculates the appropriate TCP receive buffer space.
  432. */
  433. void tcp_rcv_space_adjust(struct sock *sk)
  434. {
  435. struct tcp_sock *tp = tcp_sk(sk);
  436. int time;
  437. int space;
  438. if (tp->rcvq_space.time == 0)
  439. goto new_measure;
  440. time = tcp_time_stamp - tp->rcvq_space.time;
  441. if (time < (tp->rcv_rtt_est.rtt >> 3) ||
  442. tp->rcv_rtt_est.rtt == 0)
  443. return;
  444. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  445. space = max(tp->rcvq_space.space, space);
  446. if (tp->rcvq_space.space != space) {
  447. int rcvmem;
  448. tp->rcvq_space.space = space;
  449. if (sysctl_tcp_moderate_rcvbuf &&
  450. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  451. int new_clamp = space;
  452. /* Receive space grows, normalize in order to
  453. * take into account packet headers and sk_buff
  454. * structure overhead.
  455. */
  456. space /= tp->advmss;
  457. if (!space)
  458. space = 1;
  459. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  460. 16 + sizeof(struct sk_buff));
  461. while (tcp_win_from_space(rcvmem) < tp->advmss)
  462. rcvmem += 128;
  463. space *= rcvmem;
  464. space = min(space, sysctl_tcp_rmem[2]);
  465. if (space > sk->sk_rcvbuf) {
  466. sk->sk_rcvbuf = space;
  467. /* Make the window clamp follow along. */
  468. tp->window_clamp = new_clamp;
  469. }
  470. }
  471. }
  472. new_measure:
  473. tp->rcvq_space.seq = tp->copied_seq;
  474. tp->rcvq_space.time = tcp_time_stamp;
  475. }
  476. /* There is something which you must keep in mind when you analyze the
  477. * behavior of the tp->ato delayed ack timeout interval. When a
  478. * connection starts up, we want to ack as quickly as possible. The
  479. * problem is that "good" TCP's do slow start at the beginning of data
  480. * transmission. The means that until we send the first few ACK's the
  481. * sender will sit on his end and only queue most of his data, because
  482. * he can only send snd_cwnd unacked packets at any given time. For
  483. * each ACK we send, he increments snd_cwnd and transmits more of his
  484. * queue. -DaveM
  485. */
  486. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  487. {
  488. struct tcp_sock *tp = tcp_sk(sk);
  489. struct inet_connection_sock *icsk = inet_csk(sk);
  490. u32 now;
  491. inet_csk_schedule_ack(sk);
  492. tcp_measure_rcv_mss(sk, skb);
  493. tcp_rcv_rtt_measure(tp);
  494. now = tcp_time_stamp;
  495. if (!icsk->icsk_ack.ato) {
  496. /* The _first_ data packet received, initialize
  497. * delayed ACK engine.
  498. */
  499. tcp_incr_quickack(sk);
  500. icsk->icsk_ack.ato = TCP_ATO_MIN;
  501. } else {
  502. int m = now - icsk->icsk_ack.lrcvtime;
  503. if (m <= TCP_ATO_MIN/2) {
  504. /* The fastest case is the first. */
  505. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  506. } else if (m < icsk->icsk_ack.ato) {
  507. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  508. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  509. icsk->icsk_ack.ato = icsk->icsk_rto;
  510. } else if (m > icsk->icsk_rto) {
  511. /* Too long gap. Apparently sender failed to
  512. * restart window, so that we send ACKs quickly.
  513. */
  514. tcp_incr_quickack(sk);
  515. sk_stream_mem_reclaim(sk);
  516. }
  517. }
  518. icsk->icsk_ack.lrcvtime = now;
  519. TCP_ECN_check_ce(tp, skb);
  520. if (skb->len >= 128)
  521. tcp_grow_window(sk, skb);
  522. }
  523. static u32 tcp_rto_min(struct sock *sk)
  524. {
  525. struct dst_entry *dst = __sk_dst_get(sk);
  526. u32 rto_min = TCP_RTO_MIN;
  527. if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
  528. rto_min = dst->metrics[RTAX_RTO_MIN-1];
  529. return rto_min;
  530. }
  531. /* Called to compute a smoothed rtt estimate. The data fed to this
  532. * routine either comes from timestamps, or from segments that were
  533. * known _not_ to have been retransmitted [see Karn/Partridge
  534. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  535. * piece by Van Jacobson.
  536. * NOTE: the next three routines used to be one big routine.
  537. * To save cycles in the RFC 1323 implementation it was better to break
  538. * it up into three procedures. -- erics
  539. */
  540. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  541. {
  542. struct tcp_sock *tp = tcp_sk(sk);
  543. long m = mrtt; /* RTT */
  544. /* The following amusing code comes from Jacobson's
  545. * article in SIGCOMM '88. Note that rtt and mdev
  546. * are scaled versions of rtt and mean deviation.
  547. * This is designed to be as fast as possible
  548. * m stands for "measurement".
  549. *
  550. * On a 1990 paper the rto value is changed to:
  551. * RTO = rtt + 4 * mdev
  552. *
  553. * Funny. This algorithm seems to be very broken.
  554. * These formulae increase RTO, when it should be decreased, increase
  555. * too slowly, when it should be increased quickly, decrease too quickly
  556. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  557. * does not matter how to _calculate_ it. Seems, it was trap
  558. * that VJ failed to avoid. 8)
  559. */
  560. if (m == 0)
  561. m = 1;
  562. if (tp->srtt != 0) {
  563. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  564. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  565. if (m < 0) {
  566. m = -m; /* m is now abs(error) */
  567. m -= (tp->mdev >> 2); /* similar update on mdev */
  568. /* This is similar to one of Eifel findings.
  569. * Eifel blocks mdev updates when rtt decreases.
  570. * This solution is a bit different: we use finer gain
  571. * for mdev in this case (alpha*beta).
  572. * Like Eifel it also prevents growth of rto,
  573. * but also it limits too fast rto decreases,
  574. * happening in pure Eifel.
  575. */
  576. if (m > 0)
  577. m >>= 3;
  578. } else {
  579. m -= (tp->mdev >> 2); /* similar update on mdev */
  580. }
  581. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  582. if (tp->mdev > tp->mdev_max) {
  583. tp->mdev_max = tp->mdev;
  584. if (tp->mdev_max > tp->rttvar)
  585. tp->rttvar = tp->mdev_max;
  586. }
  587. if (after(tp->snd_una, tp->rtt_seq)) {
  588. if (tp->mdev_max < tp->rttvar)
  589. tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
  590. tp->rtt_seq = tp->snd_nxt;
  591. tp->mdev_max = tcp_rto_min(sk);
  592. }
  593. } else {
  594. /* no previous measure. */
  595. tp->srtt = m<<3; /* take the measured time to be rtt */
  596. tp->mdev = m<<1; /* make sure rto = 3*rtt */
  597. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  598. tp->rtt_seq = tp->snd_nxt;
  599. }
  600. }
  601. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  602. * routine referred to above.
  603. */
  604. static inline void tcp_set_rto(struct sock *sk)
  605. {
  606. const struct tcp_sock *tp = tcp_sk(sk);
  607. /* Old crap is replaced with new one. 8)
  608. *
  609. * More seriously:
  610. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  611. * It cannot be less due to utterly erratic ACK generation made
  612. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  613. * to do with delayed acks, because at cwnd>2 true delack timeout
  614. * is invisible. Actually, Linux-2.4 also generates erratic
  615. * ACKs in some circumstances.
  616. */
  617. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  618. /* 2. Fixups made earlier cannot be right.
  619. * If we do not estimate RTO correctly without them,
  620. * all the algo is pure shit and should be replaced
  621. * with correct one. It is exactly, which we pretend to do.
  622. */
  623. }
  624. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  625. * guarantees that rto is higher.
  626. */
  627. static inline void tcp_bound_rto(struct sock *sk)
  628. {
  629. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  630. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  631. }
  632. /* Save metrics learned by this TCP session.
  633. This function is called only, when TCP finishes successfully
  634. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  635. */
  636. void tcp_update_metrics(struct sock *sk)
  637. {
  638. struct tcp_sock *tp = tcp_sk(sk);
  639. struct dst_entry *dst = __sk_dst_get(sk);
  640. if (sysctl_tcp_nometrics_save)
  641. return;
  642. dst_confirm(dst);
  643. if (dst && (dst->flags&DST_HOST)) {
  644. const struct inet_connection_sock *icsk = inet_csk(sk);
  645. int m;
  646. if (icsk->icsk_backoff || !tp->srtt) {
  647. /* This session failed to estimate rtt. Why?
  648. * Probably, no packets returned in time.
  649. * Reset our results.
  650. */
  651. if (!(dst_metric_locked(dst, RTAX_RTT)))
  652. dst->metrics[RTAX_RTT-1] = 0;
  653. return;
  654. }
  655. m = dst_metric(dst, RTAX_RTT) - tp->srtt;
  656. /* If newly calculated rtt larger than stored one,
  657. * store new one. Otherwise, use EWMA. Remember,
  658. * rtt overestimation is always better than underestimation.
  659. */
  660. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  661. if (m <= 0)
  662. dst->metrics[RTAX_RTT-1] = tp->srtt;
  663. else
  664. dst->metrics[RTAX_RTT-1] -= (m>>3);
  665. }
  666. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  667. if (m < 0)
  668. m = -m;
  669. /* Scale deviation to rttvar fixed point */
  670. m >>= 1;
  671. if (m < tp->mdev)
  672. m = tp->mdev;
  673. if (m >= dst_metric(dst, RTAX_RTTVAR))
  674. dst->metrics[RTAX_RTTVAR-1] = m;
  675. else
  676. dst->metrics[RTAX_RTTVAR-1] -=
  677. (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
  678. }
  679. if (tp->snd_ssthresh >= 0xFFFF) {
  680. /* Slow start still did not finish. */
  681. if (dst_metric(dst, RTAX_SSTHRESH) &&
  682. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  683. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  684. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  685. if (!dst_metric_locked(dst, RTAX_CWND) &&
  686. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  687. dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
  688. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  689. icsk->icsk_ca_state == TCP_CA_Open) {
  690. /* Cong. avoidance phase, cwnd is reliable. */
  691. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  692. dst->metrics[RTAX_SSTHRESH-1] =
  693. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  694. if (!dst_metric_locked(dst, RTAX_CWND))
  695. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
  696. } else {
  697. /* Else slow start did not finish, cwnd is non-sense,
  698. ssthresh may be also invalid.
  699. */
  700. if (!dst_metric_locked(dst, RTAX_CWND))
  701. dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
  702. if (dst->metrics[RTAX_SSTHRESH-1] &&
  703. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  704. tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
  705. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  706. }
  707. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  708. if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
  709. tp->reordering != sysctl_tcp_reordering)
  710. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  711. }
  712. }
  713. }
  714. /* Numbers are taken from RFC3390.
  715. *
  716. * John Heffner states:
  717. *
  718. * The RFC specifies a window of no more than 4380 bytes
  719. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  720. * is a bit misleading because they use a clamp at 4380 bytes
  721. * rather than use a multiplier in the relevant range.
  722. */
  723. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  724. {
  725. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  726. if (!cwnd) {
  727. if (tp->mss_cache > 1460)
  728. cwnd = 2;
  729. else
  730. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  731. }
  732. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  733. }
  734. /* Set slow start threshold and cwnd not falling to slow start */
  735. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  736. {
  737. struct tcp_sock *tp = tcp_sk(sk);
  738. const struct inet_connection_sock *icsk = inet_csk(sk);
  739. tp->prior_ssthresh = 0;
  740. tp->bytes_acked = 0;
  741. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  742. tp->undo_marker = 0;
  743. if (set_ssthresh)
  744. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  745. tp->snd_cwnd = min(tp->snd_cwnd,
  746. tcp_packets_in_flight(tp) + 1U);
  747. tp->snd_cwnd_cnt = 0;
  748. tp->high_seq = tp->snd_nxt;
  749. tp->snd_cwnd_stamp = tcp_time_stamp;
  750. TCP_ECN_queue_cwr(tp);
  751. tcp_set_ca_state(sk, TCP_CA_CWR);
  752. }
  753. }
  754. /*
  755. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  756. * disables it when reordering is detected
  757. */
  758. static void tcp_disable_fack(struct tcp_sock *tp)
  759. {
  760. tp->rx_opt.sack_ok &= ~2;
  761. }
  762. /* Take a notice that peer is sending DSACKs */
  763. static void tcp_dsack_seen(struct tcp_sock *tp)
  764. {
  765. tp->rx_opt.sack_ok |= 4;
  766. }
  767. /* Initialize metrics on socket. */
  768. static void tcp_init_metrics(struct sock *sk)
  769. {
  770. struct tcp_sock *tp = tcp_sk(sk);
  771. struct dst_entry *dst = __sk_dst_get(sk);
  772. if (dst == NULL)
  773. goto reset;
  774. dst_confirm(dst);
  775. if (dst_metric_locked(dst, RTAX_CWND))
  776. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  777. if (dst_metric(dst, RTAX_SSTHRESH)) {
  778. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  779. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  780. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  781. }
  782. if (dst_metric(dst, RTAX_REORDERING) &&
  783. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  784. tcp_disable_fack(tp);
  785. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  786. }
  787. if (dst_metric(dst, RTAX_RTT) == 0)
  788. goto reset;
  789. if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  790. goto reset;
  791. /* Initial rtt is determined from SYN,SYN-ACK.
  792. * The segment is small and rtt may appear much
  793. * less than real one. Use per-dst memory
  794. * to make it more realistic.
  795. *
  796. * A bit of theory. RTT is time passed after "normal" sized packet
  797. * is sent until it is ACKed. In normal circumstances sending small
  798. * packets force peer to delay ACKs and calculation is correct too.
  799. * The algorithm is adaptive and, provided we follow specs, it
  800. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  801. * tricks sort of "quick acks" for time long enough to decrease RTT
  802. * to low value, and then abruptly stops to do it and starts to delay
  803. * ACKs, wait for troubles.
  804. */
  805. if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
  806. tp->srtt = dst_metric(dst, RTAX_RTT);
  807. tp->rtt_seq = tp->snd_nxt;
  808. }
  809. if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
  810. tp->mdev = dst_metric(dst, RTAX_RTTVAR);
  811. tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
  812. }
  813. tcp_set_rto(sk);
  814. tcp_bound_rto(sk);
  815. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  816. goto reset;
  817. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  818. tp->snd_cwnd_stamp = tcp_time_stamp;
  819. return;
  820. reset:
  821. /* Play conservative. If timestamps are not
  822. * supported, TCP will fail to recalculate correct
  823. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  824. */
  825. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  826. tp->srtt = 0;
  827. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  828. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  829. }
  830. }
  831. static void tcp_update_reordering(struct sock *sk, const int metric,
  832. const int ts)
  833. {
  834. struct tcp_sock *tp = tcp_sk(sk);
  835. if (metric > tp->reordering) {
  836. tp->reordering = min(TCP_MAX_REORDERING, metric);
  837. /* This exciting event is worth to be remembered. 8) */
  838. if (ts)
  839. NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
  840. else if (tcp_is_reno(tp))
  841. NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
  842. else if (tcp_is_fack(tp))
  843. NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
  844. else
  845. NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
  846. #if FASTRETRANS_DEBUG > 1
  847. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  848. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  849. tp->reordering,
  850. tp->fackets_out,
  851. tp->sacked_out,
  852. tp->undo_marker ? tp->undo_retrans : 0);
  853. #endif
  854. tcp_disable_fack(tp);
  855. }
  856. }
  857. /* This procedure tags the retransmission queue when SACKs arrive.
  858. *
  859. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  860. * Packets in queue with these bits set are counted in variables
  861. * sacked_out, retrans_out and lost_out, correspondingly.
  862. *
  863. * Valid combinations are:
  864. * Tag InFlight Description
  865. * 0 1 - orig segment is in flight.
  866. * S 0 - nothing flies, orig reached receiver.
  867. * L 0 - nothing flies, orig lost by net.
  868. * R 2 - both orig and retransmit are in flight.
  869. * L|R 1 - orig is lost, retransmit is in flight.
  870. * S|R 1 - orig reached receiver, retrans is still in flight.
  871. * (L|S|R is logically valid, it could occur when L|R is sacked,
  872. * but it is equivalent to plain S and code short-curcuits it to S.
  873. * L|S is logically invalid, it would mean -1 packet in flight 8))
  874. *
  875. * These 6 states form finite state machine, controlled by the following events:
  876. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  877. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  878. * 3. Loss detection event of one of three flavors:
  879. * A. Scoreboard estimator decided the packet is lost.
  880. * A'. Reno "three dupacks" marks head of queue lost.
  881. * A''. Its FACK modfication, head until snd.fack is lost.
  882. * B. SACK arrives sacking data transmitted after never retransmitted
  883. * hole was sent out.
  884. * C. SACK arrives sacking SND.NXT at the moment, when the
  885. * segment was retransmitted.
  886. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  887. *
  888. * It is pleasant to note, that state diagram turns out to be commutative,
  889. * so that we are allowed not to be bothered by order of our actions,
  890. * when multiple events arrive simultaneously. (see the function below).
  891. *
  892. * Reordering detection.
  893. * --------------------
  894. * Reordering metric is maximal distance, which a packet can be displaced
  895. * in packet stream. With SACKs we can estimate it:
  896. *
  897. * 1. SACK fills old hole and the corresponding segment was not
  898. * ever retransmitted -> reordering. Alas, we cannot use it
  899. * when segment was retransmitted.
  900. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  901. * for retransmitted and already SACKed segment -> reordering..
  902. * Both of these heuristics are not used in Loss state, when we cannot
  903. * account for retransmits accurately.
  904. *
  905. * SACK block validation.
  906. * ----------------------
  907. *
  908. * SACK block range validation checks that the received SACK block fits to
  909. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  910. * Note that SND.UNA is not included to the range though being valid because
  911. * it means that the receiver is rather inconsistent with itself (reports
  912. * SACK reneging when it should advance SND.UNA).
  913. *
  914. * Implements also blockage to start_seq wrap-around. Problem lies in the
  915. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  916. * there's no guarantee that it will be before snd_nxt (n). The problem
  917. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  918. * wrap (s_w):
  919. *
  920. * <- outs wnd -> <- wrapzone ->
  921. * u e n u_w e_w s n_w
  922. * | | | | | | |
  923. * |<------------+------+----- TCP seqno space --------------+---------->|
  924. * ...-- <2^31 ->| |<--------...
  925. * ...---- >2^31 ------>| |<--------...
  926. *
  927. * Current code wouldn't be vulnerable but it's better still to discard such
  928. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  929. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  930. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  931. * equal to the ideal case (infinite seqno space without wrap caused issues).
  932. *
  933. * With D-SACK the lower bound is extended to cover sequence space below
  934. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  935. * again, DSACK block must not to go across snd_una (for the same reason as
  936. * for the normal SACK blocks, explained above). But there all simplicity
  937. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  938. * fully below undo_marker they do not affect behavior in anyway and can
  939. * therefore be safely ignored. In rare cases (which are more or less
  940. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  941. * fragmentation and packet reordering past skb's retransmission. To consider
  942. * them correctly, the acceptable range must be extended even more though
  943. * the exact amount is rather hard to quantify. However, tp->max_window can
  944. * be used as an exaggerated estimate.
  945. */
  946. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  947. u32 start_seq, u32 end_seq)
  948. {
  949. /* Too far in future, or reversed (interpretation is ambiguous) */
  950. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  951. return 0;
  952. /* Nasty start_seq wrap-around check (see comments above) */
  953. if (!before(start_seq, tp->snd_nxt))
  954. return 0;
  955. /* In outstanding window? ...This is valid exit for DSACKs too.
  956. * start_seq == snd_una is non-sensical (see comments above)
  957. */
  958. if (after(start_seq, tp->snd_una))
  959. return 1;
  960. if (!is_dsack || !tp->undo_marker)
  961. return 0;
  962. /* ...Then it's D-SACK, and must reside below snd_una completely */
  963. if (!after(end_seq, tp->snd_una))
  964. return 0;
  965. if (!before(start_seq, tp->undo_marker))
  966. return 1;
  967. /* Too old */
  968. if (!after(end_seq, tp->undo_marker))
  969. return 0;
  970. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  971. * start_seq < undo_marker and end_seq >= undo_marker.
  972. */
  973. return !before(start_seq, end_seq - tp->max_window);
  974. }
  975. static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
  976. struct tcp_sack_block_wire *sp, int num_sacks,
  977. u32 prior_snd_una)
  978. {
  979. u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
  980. u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
  981. int dup_sack = 0;
  982. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  983. dup_sack = 1;
  984. tcp_dsack_seen(tp);
  985. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
  986. } else if (num_sacks > 1) {
  987. u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
  988. u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
  989. if (!after(end_seq_0, end_seq_1) &&
  990. !before(start_seq_0, start_seq_1)) {
  991. dup_sack = 1;
  992. tcp_dsack_seen(tp);
  993. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
  994. }
  995. }
  996. /* D-SACK for already forgotten data... Do dumb counting. */
  997. if (dup_sack &&
  998. !after(end_seq_0, prior_snd_una) &&
  999. after(end_seq_0, tp->undo_marker))
  1000. tp->undo_retrans--;
  1001. return dup_sack;
  1002. }
  1003. static int
  1004. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
  1005. {
  1006. const struct inet_connection_sock *icsk = inet_csk(sk);
  1007. struct tcp_sock *tp = tcp_sk(sk);
  1008. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1009. TCP_SKB_CB(ack_skb)->sacked);
  1010. struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
  1011. struct sk_buff *cached_skb;
  1012. int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
  1013. int reord = tp->packets_out;
  1014. int prior_fackets;
  1015. u32 lost_retrans = 0;
  1016. int flag = 0;
  1017. int found_dup_sack = 0;
  1018. int cached_fack_count;
  1019. int i;
  1020. int first_sack_index;
  1021. if (!tp->sacked_out) {
  1022. tp->fackets_out = 0;
  1023. tp->highest_sack = tp->snd_una;
  1024. }
  1025. prior_fackets = tp->fackets_out;
  1026. found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
  1027. num_sacks, prior_snd_una);
  1028. if (found_dup_sack)
  1029. flag |= FLAG_DSACKING_ACK;
  1030. /* Eliminate too old ACKs, but take into
  1031. * account more or less fresh ones, they can
  1032. * contain valid SACK info.
  1033. */
  1034. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1035. return 0;
  1036. /* SACK fastpath:
  1037. * if the only SACK change is the increase of the end_seq of
  1038. * the first block then only apply that SACK block
  1039. * and use retrans queue hinting otherwise slowpath */
  1040. flag = 1;
  1041. for (i = 0; i < num_sacks; i++) {
  1042. __be32 start_seq = sp[i].start_seq;
  1043. __be32 end_seq = sp[i].end_seq;
  1044. if (i == 0) {
  1045. if (tp->recv_sack_cache[i].start_seq != start_seq)
  1046. flag = 0;
  1047. } else {
  1048. if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
  1049. (tp->recv_sack_cache[i].end_seq != end_seq))
  1050. flag = 0;
  1051. }
  1052. tp->recv_sack_cache[i].start_seq = start_seq;
  1053. tp->recv_sack_cache[i].end_seq = end_seq;
  1054. }
  1055. /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
  1056. for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
  1057. tp->recv_sack_cache[i].start_seq = 0;
  1058. tp->recv_sack_cache[i].end_seq = 0;
  1059. }
  1060. first_sack_index = 0;
  1061. if (flag)
  1062. num_sacks = 1;
  1063. else {
  1064. int j;
  1065. tp->fastpath_skb_hint = NULL;
  1066. /* order SACK blocks to allow in order walk of the retrans queue */
  1067. for (i = num_sacks-1; i > 0; i--) {
  1068. for (j = 0; j < i; j++){
  1069. if (after(ntohl(sp[j].start_seq),
  1070. ntohl(sp[j+1].start_seq))){
  1071. struct tcp_sack_block_wire tmp;
  1072. tmp = sp[j];
  1073. sp[j] = sp[j+1];
  1074. sp[j+1] = tmp;
  1075. /* Track where the first SACK block goes to */
  1076. if (j == first_sack_index)
  1077. first_sack_index = j+1;
  1078. }
  1079. }
  1080. }
  1081. }
  1082. /* clear flag as used for different purpose in following code */
  1083. flag = 0;
  1084. /* Use SACK fastpath hint if valid */
  1085. cached_skb = tp->fastpath_skb_hint;
  1086. cached_fack_count = tp->fastpath_cnt_hint;
  1087. if (!cached_skb) {
  1088. cached_skb = tcp_write_queue_head(sk);
  1089. cached_fack_count = 0;
  1090. }
  1091. for (i=0; i<num_sacks; i++, sp++) {
  1092. struct sk_buff *skb;
  1093. __u32 start_seq = ntohl(sp->start_seq);
  1094. __u32 end_seq = ntohl(sp->end_seq);
  1095. int fack_count;
  1096. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1097. if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
  1098. if (dup_sack) {
  1099. if (!tp->undo_marker)
  1100. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
  1101. else
  1102. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
  1103. } else
  1104. NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
  1105. continue;
  1106. }
  1107. skb = cached_skb;
  1108. fack_count = cached_fack_count;
  1109. /* Event "B" in the comment above. */
  1110. if (after(end_seq, tp->high_seq))
  1111. flag |= FLAG_DATA_LOST;
  1112. tcp_for_write_queue_from(skb, sk) {
  1113. int in_sack, pcount;
  1114. u8 sacked;
  1115. if (skb == tcp_send_head(sk))
  1116. break;
  1117. cached_skb = skb;
  1118. cached_fack_count = fack_count;
  1119. if (i == first_sack_index) {
  1120. tp->fastpath_skb_hint = skb;
  1121. tp->fastpath_cnt_hint = fack_count;
  1122. }
  1123. /* The retransmission queue is always in order, so
  1124. * we can short-circuit the walk early.
  1125. */
  1126. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1127. break;
  1128. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1129. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1130. pcount = tcp_skb_pcount(skb);
  1131. if (pcount > 1 && !in_sack &&
  1132. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1133. unsigned int pkt_len;
  1134. in_sack = !after(start_seq,
  1135. TCP_SKB_CB(skb)->seq);
  1136. if (!in_sack)
  1137. pkt_len = (start_seq -
  1138. TCP_SKB_CB(skb)->seq);
  1139. else
  1140. pkt_len = (end_seq -
  1141. TCP_SKB_CB(skb)->seq);
  1142. if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
  1143. break;
  1144. pcount = tcp_skb_pcount(skb);
  1145. }
  1146. fack_count += pcount;
  1147. sacked = TCP_SKB_CB(skb)->sacked;
  1148. /* Account D-SACK for retransmitted packet. */
  1149. if ((dup_sack && in_sack) &&
  1150. (sacked & TCPCB_RETRANS) &&
  1151. after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1152. tp->undo_retrans--;
  1153. /* The frame is ACKed. */
  1154. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
  1155. if (sacked&TCPCB_RETRANS) {
  1156. if ((dup_sack && in_sack) &&
  1157. (sacked&TCPCB_SACKED_ACKED))
  1158. reord = min(fack_count, reord);
  1159. } else {
  1160. /* If it was in a hole, we detected reordering. */
  1161. if (fack_count < prior_fackets &&
  1162. !(sacked&TCPCB_SACKED_ACKED))
  1163. reord = min(fack_count, reord);
  1164. }
  1165. /* Nothing to do; acked frame is about to be dropped. */
  1166. continue;
  1167. }
  1168. if ((sacked&TCPCB_SACKED_RETRANS) &&
  1169. after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
  1170. (!lost_retrans || after(end_seq, lost_retrans)))
  1171. lost_retrans = end_seq;
  1172. if (!in_sack)
  1173. continue;
  1174. if (!(sacked&TCPCB_SACKED_ACKED)) {
  1175. if (sacked & TCPCB_SACKED_RETRANS) {
  1176. /* If the segment is not tagged as lost,
  1177. * we do not clear RETRANS, believing
  1178. * that retransmission is still in flight.
  1179. */
  1180. if (sacked & TCPCB_LOST) {
  1181. TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1182. tp->lost_out -= tcp_skb_pcount(skb);
  1183. tp->retrans_out -= tcp_skb_pcount(skb);
  1184. /* clear lost hint */
  1185. tp->retransmit_skb_hint = NULL;
  1186. }
  1187. } else {
  1188. /* New sack for not retransmitted frame,
  1189. * which was in hole. It is reordering.
  1190. */
  1191. if (!(sacked & TCPCB_RETRANS) &&
  1192. fack_count < prior_fackets)
  1193. reord = min(fack_count, reord);
  1194. if (sacked & TCPCB_LOST) {
  1195. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1196. tp->lost_out -= tcp_skb_pcount(skb);
  1197. /* clear lost hint */
  1198. tp->retransmit_skb_hint = NULL;
  1199. }
  1200. /* SACK enhanced F-RTO detection.
  1201. * Set flag if and only if non-rexmitted
  1202. * segments below frto_highmark are
  1203. * SACKed (RFC4138; Appendix B).
  1204. * Clearing correct due to in-order walk
  1205. */
  1206. if (after(end_seq, tp->frto_highmark)) {
  1207. flag &= ~FLAG_ONLY_ORIG_SACKED;
  1208. } else {
  1209. if (!(sacked & TCPCB_RETRANS))
  1210. flag |= FLAG_ONLY_ORIG_SACKED;
  1211. }
  1212. }
  1213. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  1214. flag |= FLAG_DATA_SACKED;
  1215. tp->sacked_out += tcp_skb_pcount(skb);
  1216. if (fack_count > tp->fackets_out)
  1217. tp->fackets_out = fack_count;
  1218. if (after(TCP_SKB_CB(skb)->seq,
  1219. tp->highest_sack))
  1220. tp->highest_sack = TCP_SKB_CB(skb)->seq;
  1221. } else {
  1222. if (dup_sack && (sacked&TCPCB_RETRANS))
  1223. reord = min(fack_count, reord);
  1224. }
  1225. /* D-SACK. We can detect redundant retransmission
  1226. * in S|R and plain R frames and clear it.
  1227. * undo_retrans is decreased above, L|R frames
  1228. * are accounted above as well.
  1229. */
  1230. if (dup_sack &&
  1231. (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
  1232. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1233. tp->retrans_out -= tcp_skb_pcount(skb);
  1234. tp->retransmit_skb_hint = NULL;
  1235. }
  1236. }
  1237. }
  1238. /* Check for lost retransmit. This superb idea is
  1239. * borrowed from "ratehalving". Event "C".
  1240. * Later note: FACK people cheated me again 8),
  1241. * we have to account for reordering! Ugly,
  1242. * but should help.
  1243. */
  1244. if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
  1245. struct sk_buff *skb;
  1246. tcp_for_write_queue(skb, sk) {
  1247. if (skb == tcp_send_head(sk))
  1248. break;
  1249. if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
  1250. break;
  1251. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1252. continue;
  1253. if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
  1254. after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
  1255. (tcp_is_fack(tp) ||
  1256. !before(lost_retrans,
  1257. TCP_SKB_CB(skb)->ack_seq + tp->reordering *
  1258. tp->mss_cache))) {
  1259. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1260. tp->retrans_out -= tcp_skb_pcount(skb);
  1261. /* clear lost hint */
  1262. tp->retransmit_skb_hint = NULL;
  1263. if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  1264. tp->lost_out += tcp_skb_pcount(skb);
  1265. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1266. flag |= FLAG_DATA_SACKED;
  1267. NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
  1268. }
  1269. }
  1270. }
  1271. }
  1272. tcp_verify_left_out(tp);
  1273. if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
  1274. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1275. tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
  1276. #if FASTRETRANS_DEBUG > 0
  1277. BUG_TRAP((int)tp->sacked_out >= 0);
  1278. BUG_TRAP((int)tp->lost_out >= 0);
  1279. BUG_TRAP((int)tp->retrans_out >= 0);
  1280. BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
  1281. #endif
  1282. return flag;
  1283. }
  1284. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1285. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1286. */
  1287. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1288. {
  1289. struct tcp_sock *tp = tcp_sk(sk);
  1290. u32 holes;
  1291. holes = max(tp->lost_out, 1U);
  1292. holes = min(holes, tp->packets_out);
  1293. if ((tp->sacked_out + holes) > tp->packets_out) {
  1294. tp->sacked_out = tp->packets_out - holes;
  1295. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1296. }
  1297. }
  1298. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1299. static void tcp_add_reno_sack(struct sock *sk)
  1300. {
  1301. struct tcp_sock *tp = tcp_sk(sk);
  1302. tp->sacked_out++;
  1303. tcp_check_reno_reordering(sk, 0);
  1304. tcp_verify_left_out(tp);
  1305. }
  1306. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1307. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1308. {
  1309. struct tcp_sock *tp = tcp_sk(sk);
  1310. if (acked > 0) {
  1311. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1312. if (acked-1 >= tp->sacked_out)
  1313. tp->sacked_out = 0;
  1314. else
  1315. tp->sacked_out -= acked-1;
  1316. }
  1317. tcp_check_reno_reordering(sk, acked);
  1318. tcp_verify_left_out(tp);
  1319. }
  1320. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1321. {
  1322. tp->sacked_out = 0;
  1323. }
  1324. int tcp_use_frto(struct sock *sk)
  1325. {
  1326. const struct tcp_sock *tp = tcp_sk(sk);
  1327. struct sk_buff *skb;
  1328. if (!sysctl_tcp_frto)
  1329. return 0;
  1330. if (IsSackFrto())
  1331. return 1;
  1332. /* Avoid expensive walking of rexmit queue if possible */
  1333. if (tp->retrans_out > 1)
  1334. return 0;
  1335. skb = tcp_write_queue_head(sk);
  1336. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1337. tcp_for_write_queue_from(skb, sk) {
  1338. if (skb == tcp_send_head(sk))
  1339. break;
  1340. if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
  1341. return 0;
  1342. /* Short-circuit when first non-SACKed skb has been checked */
  1343. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
  1344. break;
  1345. }
  1346. return 1;
  1347. }
  1348. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1349. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1350. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1351. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1352. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1353. * bits are handled if the Loss state is really to be entered (in
  1354. * tcp_enter_frto_loss).
  1355. *
  1356. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1357. * does:
  1358. * "Reduce ssthresh if it has not yet been made inside this window."
  1359. */
  1360. void tcp_enter_frto(struct sock *sk)
  1361. {
  1362. const struct inet_connection_sock *icsk = inet_csk(sk);
  1363. struct tcp_sock *tp = tcp_sk(sk);
  1364. struct sk_buff *skb;
  1365. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1366. tp->snd_una == tp->high_seq ||
  1367. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1368. !icsk->icsk_retransmits)) {
  1369. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1370. /* Our state is too optimistic in ssthresh() call because cwnd
  1371. * is not reduced until tcp_enter_frto_loss() when previous FRTO
  1372. * recovery has not yet completed. Pattern would be this: RTO,
  1373. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1374. * up here twice).
  1375. * RFC4138 should be more specific on what to do, even though
  1376. * RTO is quite unlikely to occur after the first Cumulative ACK
  1377. * due to back-off and complexity of triggering events ...
  1378. */
  1379. if (tp->frto_counter) {
  1380. u32 stored_cwnd;
  1381. stored_cwnd = tp->snd_cwnd;
  1382. tp->snd_cwnd = 2;
  1383. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1384. tp->snd_cwnd = stored_cwnd;
  1385. } else {
  1386. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1387. }
  1388. /* ... in theory, cong.control module could do "any tricks" in
  1389. * ssthresh(), which means that ca_state, lost bits and lost_out
  1390. * counter would have to be faked before the call occurs. We
  1391. * consider that too expensive, unlikely and hacky, so modules
  1392. * using these in ssthresh() must deal these incompatibility
  1393. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1394. */
  1395. tcp_ca_event(sk, CA_EVENT_FRTO);
  1396. }
  1397. tp->undo_marker = tp->snd_una;
  1398. tp->undo_retrans = 0;
  1399. skb = tcp_write_queue_head(sk);
  1400. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1401. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1402. tp->retrans_out -= tcp_skb_pcount(skb);
  1403. }
  1404. tcp_verify_left_out(tp);
  1405. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1406. * The last condition is necessary at least in tp->frto_counter case.
  1407. */
  1408. if (IsSackFrto() && (tp->frto_counter ||
  1409. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1410. after(tp->high_seq, tp->snd_una)) {
  1411. tp->frto_highmark = tp->high_seq;
  1412. } else {
  1413. tp->frto_highmark = tp->snd_nxt;
  1414. }
  1415. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1416. tp->high_seq = tp->snd_nxt;
  1417. tp->frto_counter = 1;
  1418. }
  1419. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1420. * which indicates that we should follow the traditional RTO recovery,
  1421. * i.e. mark everything lost and do go-back-N retransmission.
  1422. */
  1423. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1424. {
  1425. struct tcp_sock *tp = tcp_sk(sk);
  1426. struct sk_buff *skb;
  1427. tp->lost_out = 0;
  1428. tp->retrans_out = 0;
  1429. if (tcp_is_reno(tp))
  1430. tcp_reset_reno_sack(tp);
  1431. tcp_for_write_queue(skb, sk) {
  1432. if (skb == tcp_send_head(sk))
  1433. break;
  1434. /*
  1435. * Count the retransmission made on RTO correctly (only when
  1436. * waiting for the first ACK and did not get it)...
  1437. */
  1438. if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
  1439. /* For some reason this R-bit might get cleared? */
  1440. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1441. tp->retrans_out += tcp_skb_pcount(skb);
  1442. /* ...enter this if branch just for the first segment */
  1443. flag |= FLAG_DATA_ACKED;
  1444. } else {
  1445. TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1446. }
  1447. /* Don't lost mark skbs that were fwd transmitted after RTO */
  1448. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
  1449. !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
  1450. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1451. tp->lost_out += tcp_skb_pcount(skb);
  1452. }
  1453. }
  1454. tcp_verify_left_out(tp);
  1455. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1456. tp->snd_cwnd_cnt = 0;
  1457. tp->snd_cwnd_stamp = tcp_time_stamp;
  1458. tp->undo_marker = 0;
  1459. tp->frto_counter = 0;
  1460. tp->reordering = min_t(unsigned int, tp->reordering,
  1461. sysctl_tcp_reordering);
  1462. tcp_set_ca_state(sk, TCP_CA_Loss);
  1463. tp->high_seq = tp->frto_highmark;
  1464. TCP_ECN_queue_cwr(tp);
  1465. tcp_clear_all_retrans_hints(tp);
  1466. }
  1467. void tcp_clear_retrans(struct tcp_sock *tp)
  1468. {
  1469. tp->retrans_out = 0;
  1470. tp->fackets_out = 0;
  1471. tp->sacked_out = 0;
  1472. tp->lost_out = 0;
  1473. tp->undo_marker = 0;
  1474. tp->undo_retrans = 0;
  1475. }
  1476. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1477. * and reset tags completely, otherwise preserve SACKs. If receiver
  1478. * dropped its ofo queue, we will know this due to reneging detection.
  1479. */
  1480. void tcp_enter_loss(struct sock *sk, int how)
  1481. {
  1482. const struct inet_connection_sock *icsk = inet_csk(sk);
  1483. struct tcp_sock *tp = tcp_sk(sk);
  1484. struct sk_buff *skb;
  1485. int cnt = 0;
  1486. /* Reduce ssthresh if it has not yet been made inside this window. */
  1487. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1488. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1489. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1490. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1491. tcp_ca_event(sk, CA_EVENT_LOSS);
  1492. }
  1493. tp->snd_cwnd = 1;
  1494. tp->snd_cwnd_cnt = 0;
  1495. tp->snd_cwnd_stamp = tcp_time_stamp;
  1496. tp->bytes_acked = 0;
  1497. tcp_clear_retrans(tp);
  1498. /* Push undo marker, if it was plain RTO and nothing
  1499. * was retransmitted. */
  1500. if (!how)
  1501. tp->undo_marker = tp->snd_una;
  1502. tcp_for_write_queue(skb, sk) {
  1503. if (skb == tcp_send_head(sk))
  1504. break;
  1505. cnt += tcp_skb_pcount(skb);
  1506. if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
  1507. tp->undo_marker = 0;
  1508. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1509. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1510. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1511. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1512. tp->lost_out += tcp_skb_pcount(skb);
  1513. } else {
  1514. tp->sacked_out += tcp_skb_pcount(skb);
  1515. tp->fackets_out = cnt;
  1516. }
  1517. }
  1518. tcp_verify_left_out(tp);
  1519. tp->reordering = min_t(unsigned int, tp->reordering,
  1520. sysctl_tcp_reordering);
  1521. tcp_set_ca_state(sk, TCP_CA_Loss);
  1522. tp->high_seq = tp->snd_nxt;
  1523. TCP_ECN_queue_cwr(tp);
  1524. /* Abort FRTO algorithm if one is in progress */
  1525. tp->frto_counter = 0;
  1526. tcp_clear_all_retrans_hints(tp);
  1527. }
  1528. static int tcp_check_sack_reneging(struct sock *sk)
  1529. {
  1530. struct sk_buff *skb;
  1531. /* If ACK arrived pointing to a remembered SACK,
  1532. * it means that our remembered SACKs do not reflect
  1533. * real state of receiver i.e.
  1534. * receiver _host_ is heavily congested (or buggy).
  1535. * Do processing similar to RTO timeout.
  1536. */
  1537. if ((skb = tcp_write_queue_head(sk)) != NULL &&
  1538. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1539. struct inet_connection_sock *icsk = inet_csk(sk);
  1540. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
  1541. tcp_enter_loss(sk, 1);
  1542. icsk->icsk_retransmits++;
  1543. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1544. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1545. icsk->icsk_rto, TCP_RTO_MAX);
  1546. return 1;
  1547. }
  1548. return 0;
  1549. }
  1550. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1551. {
  1552. return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
  1553. }
  1554. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  1555. {
  1556. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  1557. }
  1558. static inline int tcp_head_timedout(struct sock *sk)
  1559. {
  1560. struct tcp_sock *tp = tcp_sk(sk);
  1561. return tp->packets_out &&
  1562. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1563. }
  1564. /* Linux NewReno/SACK/FACK/ECN state machine.
  1565. * --------------------------------------
  1566. *
  1567. * "Open" Normal state, no dubious events, fast path.
  1568. * "Disorder" In all the respects it is "Open",
  1569. * but requires a bit more attention. It is entered when
  1570. * we see some SACKs or dupacks. It is split of "Open"
  1571. * mainly to move some processing from fast path to slow one.
  1572. * "CWR" CWND was reduced due to some Congestion Notification event.
  1573. * It can be ECN, ICMP source quench, local device congestion.
  1574. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1575. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1576. *
  1577. * tcp_fastretrans_alert() is entered:
  1578. * - each incoming ACK, if state is not "Open"
  1579. * - when arrived ACK is unusual, namely:
  1580. * * SACK
  1581. * * Duplicate ACK.
  1582. * * ECN ECE.
  1583. *
  1584. * Counting packets in flight is pretty simple.
  1585. *
  1586. * in_flight = packets_out - left_out + retrans_out
  1587. *
  1588. * packets_out is SND.NXT-SND.UNA counted in packets.
  1589. *
  1590. * retrans_out is number of retransmitted segments.
  1591. *
  1592. * left_out is number of segments left network, but not ACKed yet.
  1593. *
  1594. * left_out = sacked_out + lost_out
  1595. *
  1596. * sacked_out: Packets, which arrived to receiver out of order
  1597. * and hence not ACKed. With SACKs this number is simply
  1598. * amount of SACKed data. Even without SACKs
  1599. * it is easy to give pretty reliable estimate of this number,
  1600. * counting duplicate ACKs.
  1601. *
  1602. * lost_out: Packets lost by network. TCP has no explicit
  1603. * "loss notification" feedback from network (for now).
  1604. * It means that this number can be only _guessed_.
  1605. * Actually, it is the heuristics to predict lossage that
  1606. * distinguishes different algorithms.
  1607. *
  1608. * F.e. after RTO, when all the queue is considered as lost,
  1609. * lost_out = packets_out and in_flight = retrans_out.
  1610. *
  1611. * Essentially, we have now two algorithms counting
  1612. * lost packets.
  1613. *
  1614. * FACK: It is the simplest heuristics. As soon as we decided
  1615. * that something is lost, we decide that _all_ not SACKed
  1616. * packets until the most forward SACK are lost. I.e.
  1617. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1618. * It is absolutely correct estimate, if network does not reorder
  1619. * packets. And it loses any connection to reality when reordering
  1620. * takes place. We use FACK by default until reordering
  1621. * is suspected on the path to this destination.
  1622. *
  1623. * NewReno: when Recovery is entered, we assume that one segment
  1624. * is lost (classic Reno). While we are in Recovery and
  1625. * a partial ACK arrives, we assume that one more packet
  1626. * is lost (NewReno). This heuristics are the same in NewReno
  1627. * and SACK.
  1628. *
  1629. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1630. * deflation etc. CWND is real congestion window, never inflated, changes
  1631. * only according to classic VJ rules.
  1632. *
  1633. * Really tricky (and requiring careful tuning) part of algorithm
  1634. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1635. * The first determines the moment _when_ we should reduce CWND and,
  1636. * hence, slow down forward transmission. In fact, it determines the moment
  1637. * when we decide that hole is caused by loss, rather than by a reorder.
  1638. *
  1639. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1640. * holes, caused by lost packets.
  1641. *
  1642. * And the most logically complicated part of algorithm is undo
  1643. * heuristics. We detect false retransmits due to both too early
  1644. * fast retransmit (reordering) and underestimated RTO, analyzing
  1645. * timestamps and D-SACKs. When we detect that some segments were
  1646. * retransmitted by mistake and CWND reduction was wrong, we undo
  1647. * window reduction and abort recovery phase. This logic is hidden
  1648. * inside several functions named tcp_try_undo_<something>.
  1649. */
  1650. /* This function decides, when we should leave Disordered state
  1651. * and enter Recovery phase, reducing congestion window.
  1652. *
  1653. * Main question: may we further continue forward transmission
  1654. * with the same cwnd?
  1655. */
  1656. static int tcp_time_to_recover(struct sock *sk)
  1657. {
  1658. struct tcp_sock *tp = tcp_sk(sk);
  1659. __u32 packets_out;
  1660. /* Do not perform any recovery during FRTO algorithm */
  1661. if (tp->frto_counter)
  1662. return 0;
  1663. /* Trick#1: The loss is proven. */
  1664. if (tp->lost_out)
  1665. return 1;
  1666. /* Not-A-Trick#2 : Classic rule... */
  1667. if (tcp_fackets_out(tp) > tp->reordering)
  1668. return 1;
  1669. /* Trick#3 : when we use RFC2988 timer restart, fast
  1670. * retransmit can be triggered by timeout of queue head.
  1671. */
  1672. if (tcp_head_timedout(sk))
  1673. return 1;
  1674. /* Trick#4: It is still not OK... But will it be useful to delay
  1675. * recovery more?
  1676. */
  1677. packets_out = tp->packets_out;
  1678. if (packets_out <= tp->reordering &&
  1679. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1680. !tcp_may_send_now(sk)) {
  1681. /* We have nothing to send. This connection is limited
  1682. * either by receiver window or by application.
  1683. */
  1684. return 1;
  1685. }
  1686. return 0;
  1687. }
  1688. /* RFC: This is from the original, I doubt that this is necessary at all:
  1689. * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
  1690. * retransmitted past LOST markings in the first place? I'm not fully sure
  1691. * about undo and end of connection cases, which can cause R without L?
  1692. */
  1693. static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
  1694. struct sk_buff *skb)
  1695. {
  1696. if ((tp->retransmit_skb_hint != NULL) &&
  1697. before(TCP_SKB_CB(skb)->seq,
  1698. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  1699. tp->retransmit_skb_hint = NULL;
  1700. }
  1701. /* Mark head of queue up as lost. */
  1702. static void tcp_mark_head_lost(struct sock *sk,
  1703. int packets, u32 high_seq)
  1704. {
  1705. struct tcp_sock *tp = tcp_sk(sk);
  1706. struct sk_buff *skb;
  1707. int cnt;
  1708. BUG_TRAP(packets <= tp->packets_out);
  1709. if (tp->lost_skb_hint) {
  1710. skb = tp->lost_skb_hint;
  1711. cnt = tp->lost_cnt_hint;
  1712. } else {
  1713. skb = tcp_write_queue_head(sk);
  1714. cnt = 0;
  1715. }
  1716. tcp_for_write_queue_from(skb, sk) {
  1717. if (skb == tcp_send_head(sk))
  1718. break;
  1719. /* TODO: do this better */
  1720. /* this is not the most efficient way to do this... */
  1721. tp->lost_skb_hint = skb;
  1722. tp->lost_cnt_hint = cnt;
  1723. cnt += tcp_skb_pcount(skb);
  1724. if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
  1725. break;
  1726. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
  1727. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1728. tp->lost_out += tcp_skb_pcount(skb);
  1729. tcp_verify_retransmit_hint(tp, skb);
  1730. }
  1731. }
  1732. tcp_verify_left_out(tp);
  1733. }
  1734. /* Account newly detected lost packet(s) */
  1735. static void tcp_update_scoreboard(struct sock *sk)
  1736. {
  1737. struct tcp_sock *tp = tcp_sk(sk);
  1738. if (tcp_is_fack(tp)) {
  1739. int lost = tp->fackets_out - tp->reordering;
  1740. if (lost <= 0)
  1741. lost = 1;
  1742. tcp_mark_head_lost(sk, lost, tp->high_seq);
  1743. } else {
  1744. tcp_mark_head_lost(sk, 1, tp->high_seq);
  1745. }
  1746. /* New heuristics: it is possible only after we switched
  1747. * to restart timer each time when something is ACKed.
  1748. * Hence, we can detect timed out packets during fast
  1749. * retransmit without falling to slow start.
  1750. */
  1751. if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
  1752. struct sk_buff *skb;
  1753. skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
  1754. : tcp_write_queue_head(sk);
  1755. tcp_for_write_queue_from(skb, sk) {
  1756. if (skb == tcp_send_head(sk))
  1757. break;
  1758. if (!tcp_skb_timedout(sk, skb))
  1759. break;
  1760. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
  1761. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1762. tp->lost_out += tcp_skb_pcount(skb);
  1763. tcp_verify_retransmit_hint(tp, skb);
  1764. }
  1765. }
  1766. tp->scoreboard_skb_hint = skb;
  1767. tcp_verify_left_out(tp);
  1768. }
  1769. }
  1770. /* CWND moderation, preventing bursts due to too big ACKs
  1771. * in dubious situations.
  1772. */
  1773. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1774. {
  1775. tp->snd_cwnd = min(tp->snd_cwnd,
  1776. tcp_packets_in_flight(tp)+tcp_max_burst(tp));
  1777. tp->snd_cwnd_stamp = tcp_time_stamp;
  1778. }
  1779. /* Lower bound on congestion window is slow start threshold
  1780. * unless congestion avoidance choice decides to overide it.
  1781. */
  1782. static inline u32 tcp_cwnd_min(const struct sock *sk)
  1783. {
  1784. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1785. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  1786. }
  1787. /* Decrease cwnd each second ack. */
  1788. static void tcp_cwnd_down(struct sock *sk, int flag)
  1789. {
  1790. struct tcp_sock *tp = tcp_sk(sk);
  1791. int decr = tp->snd_cwnd_cnt + 1;
  1792. if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
  1793. (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
  1794. tp->snd_cwnd_cnt = decr&1;
  1795. decr >>= 1;
  1796. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  1797. tp->snd_cwnd -= decr;
  1798. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
  1799. tp->snd_cwnd_stamp = tcp_time_stamp;
  1800. }
  1801. }
  1802. /* Nothing was retransmitted or returned timestamp is less
  1803. * than timestamp of the first retransmission.
  1804. */
  1805. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  1806. {
  1807. return !tp->retrans_stamp ||
  1808. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1809. (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
  1810. }
  1811. /* Undo procedures. */
  1812. #if FASTRETRANS_DEBUG > 1
  1813. static void DBGUNDO(struct sock *sk, const char *msg)
  1814. {
  1815. struct tcp_sock *tp = tcp_sk(sk);
  1816. struct inet_sock *inet = inet_sk(sk);
  1817. printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
  1818. msg,
  1819. NIPQUAD(inet->daddr), ntohs(inet->dport),
  1820. tp->snd_cwnd, tcp_left_out(tp),
  1821. tp->snd_ssthresh, tp->prior_ssthresh,
  1822. tp->packets_out);
  1823. }
  1824. #else
  1825. #define DBGUNDO(x...) do { } while (0)
  1826. #endif
  1827. static void tcp_undo_cwr(struct sock *sk, const int undo)
  1828. {
  1829. struct tcp_sock *tp = tcp_sk(sk);
  1830. if (tp->prior_ssthresh) {
  1831. const struct inet_connection_sock *icsk = inet_csk(sk);
  1832. if (icsk->icsk_ca_ops->undo_cwnd)
  1833. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  1834. else
  1835. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
  1836. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  1837. tp->snd_ssthresh = tp->prior_ssthresh;
  1838. TCP_ECN_withdraw_cwr(tp);
  1839. }
  1840. } else {
  1841. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  1842. }
  1843. tcp_moderate_cwnd(tp);
  1844. tp->snd_cwnd_stamp = tcp_time_stamp;
  1845. /* There is something screwy going on with the retrans hints after
  1846. an undo */
  1847. tcp_clear_all_retrans_hints(tp);
  1848. }
  1849. static inline int tcp_may_undo(struct tcp_sock *tp)
  1850. {
  1851. return tp->undo_marker &&
  1852. (!tp->undo_retrans || tcp_packet_delayed(tp));
  1853. }
  1854. /* People celebrate: "We love our President!" */
  1855. static int tcp_try_undo_recovery(struct sock *sk)
  1856. {
  1857. struct tcp_sock *tp = tcp_sk(sk);
  1858. if (tcp_may_undo(tp)) {
  1859. /* Happy end! We did not retransmit anything
  1860. * or our original transmission succeeded.
  1861. */
  1862. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  1863. tcp_undo_cwr(sk, 1);
  1864. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  1865. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  1866. else
  1867. NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
  1868. tp->undo_marker = 0;
  1869. }
  1870. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  1871. /* Hold old state until something *above* high_seq
  1872. * is ACKed. For Reno it is MUST to prevent false
  1873. * fast retransmits (RFC2582). SACK TCP is safe. */
  1874. tcp_moderate_cwnd(tp);
  1875. return 1;
  1876. }
  1877. tcp_set_ca_state(sk, TCP_CA_Open);
  1878. return 0;
  1879. }
  1880. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  1881. static void tcp_try_undo_dsack(struct sock *sk)
  1882. {
  1883. struct tcp_sock *tp = tcp_sk(sk);
  1884. if (tp->undo_marker && !tp->undo_retrans) {
  1885. DBGUNDO(sk, "D-SACK");
  1886. tcp_undo_cwr(sk, 1);
  1887. tp->undo_marker = 0;
  1888. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
  1889. }
  1890. }
  1891. /* Undo during fast recovery after partial ACK. */
  1892. static int tcp_try_undo_partial(struct sock *sk, int acked)
  1893. {
  1894. struct tcp_sock *tp = tcp_sk(sk);
  1895. /* Partial ACK arrived. Force Hoe's retransmit. */
  1896. int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
  1897. if (tcp_may_undo(tp)) {
  1898. /* Plain luck! Hole if filled with delayed
  1899. * packet, rather than with a retransmit.
  1900. */
  1901. if (tp->retrans_out == 0)
  1902. tp->retrans_stamp = 0;
  1903. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  1904. DBGUNDO(sk, "Hoe");
  1905. tcp_undo_cwr(sk, 0);
  1906. NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
  1907. /* So... Do not make Hoe's retransmit yet.
  1908. * If the first packet was delayed, the rest
  1909. * ones are most probably delayed as well.
  1910. */
  1911. failed = 0;
  1912. }
  1913. return failed;
  1914. }
  1915. /* Undo during loss recovery after partial ACK. */
  1916. static int tcp_try_undo_loss(struct sock *sk)
  1917. {
  1918. struct tcp_sock *tp = tcp_sk(sk);
  1919. if (tcp_may_undo(tp)) {
  1920. struct sk_buff *skb;
  1921. tcp_for_write_queue(skb, sk) {
  1922. if (skb == tcp_send_head(sk))
  1923. break;
  1924. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1925. }
  1926. tcp_clear_all_retrans_hints(tp);
  1927. DBGUNDO(sk, "partial loss");
  1928. tp->lost_out = 0;
  1929. tcp_undo_cwr(sk, 1);
  1930. NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
  1931. inet_csk(sk)->icsk_retransmits = 0;
  1932. tp->undo_marker = 0;
  1933. if (tcp_is_sack(tp))
  1934. tcp_set_ca_state(sk, TCP_CA_Open);
  1935. return 1;
  1936. }
  1937. return 0;
  1938. }
  1939. static inline void tcp_complete_cwr(struct sock *sk)
  1940. {
  1941. struct tcp_sock *tp = tcp_sk(sk);
  1942. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  1943. tp->snd_cwnd_stamp = tcp_time_stamp;
  1944. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  1945. }
  1946. static void tcp_try_to_open(struct sock *sk, int flag)
  1947. {
  1948. struct tcp_sock *tp = tcp_sk(sk);
  1949. tcp_verify_left_out(tp);
  1950. if (tp->retrans_out == 0)
  1951. tp->retrans_stamp = 0;
  1952. if (flag&FLAG_ECE)
  1953. tcp_enter_cwr(sk, 1);
  1954. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  1955. int state = TCP_CA_Open;
  1956. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  1957. state = TCP_CA_Disorder;
  1958. if (inet_csk(sk)->icsk_ca_state != state) {
  1959. tcp_set_ca_state(sk, state);
  1960. tp->high_seq = tp->snd_nxt;
  1961. }
  1962. tcp_moderate_cwnd(tp);
  1963. } else {
  1964. tcp_cwnd_down(sk, flag);
  1965. }
  1966. }
  1967. static void tcp_mtup_probe_failed(struct sock *sk)
  1968. {
  1969. struct inet_connection_sock *icsk = inet_csk(sk);
  1970. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  1971. icsk->icsk_mtup.probe_size = 0;
  1972. }
  1973. static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
  1974. {
  1975. struct tcp_sock *tp = tcp_sk(sk);
  1976. struct inet_connection_sock *icsk = inet_csk(sk);
  1977. /* FIXME: breaks with very large cwnd */
  1978. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1979. tp->snd_cwnd = tp->snd_cwnd *
  1980. tcp_mss_to_mtu(sk, tp->mss_cache) /
  1981. icsk->icsk_mtup.probe_size;
  1982. tp->snd_cwnd_cnt = 0;
  1983. tp->snd_cwnd_stamp = tcp_time_stamp;
  1984. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  1985. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  1986. icsk->icsk_mtup.probe_size = 0;
  1987. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  1988. }
  1989. /* Process an event, which can update packets-in-flight not trivially.
  1990. * Main goal of this function is to calculate new estimate for left_out,
  1991. * taking into account both packets sitting in receiver's buffer and
  1992. * packets lost by network.
  1993. *
  1994. * Besides that it does CWND reduction, when packet loss is detected
  1995. * and changes state of machine.
  1996. *
  1997. * It does _not_ decide what to send, it is made in function
  1998. * tcp_xmit_retransmit_queue().
  1999. */
  2000. static void
  2001. tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2002. {
  2003. struct inet_connection_sock *icsk = inet_csk(sk);
  2004. struct tcp_sock *tp = tcp_sk(sk);
  2005. int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
  2006. int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
  2007. (tp->fackets_out > tp->reordering));
  2008. /* Some technical things:
  2009. * 1. Reno does not count dupacks (sacked_out) automatically. */
  2010. if (!tp->packets_out)
  2011. tp->sacked_out = 0;
  2012. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2013. tp->fackets_out = 0;
  2014. /* Now state machine starts.
  2015. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2016. if (flag&FLAG_ECE)
  2017. tp->prior_ssthresh = 0;
  2018. /* B. In all the states check for reneging SACKs. */
  2019. if (tp->sacked_out && tcp_check_sack_reneging(sk))
  2020. return;
  2021. /* C. Process data loss notification, provided it is valid. */
  2022. if ((flag&FLAG_DATA_LOST) &&
  2023. before(tp->snd_una, tp->high_seq) &&
  2024. icsk->icsk_ca_state != TCP_CA_Open &&
  2025. tp->fackets_out > tp->reordering) {
  2026. tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
  2027. NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
  2028. }
  2029. /* D. Check consistency of the current state. */
  2030. tcp_verify_left_out(tp);
  2031. /* E. Check state exit conditions. State can be terminated
  2032. * when high_seq is ACKed. */
  2033. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2034. BUG_TRAP(tp->retrans_out == 0);
  2035. tp->retrans_stamp = 0;
  2036. } else if (!before(tp->snd_una, tp->high_seq)) {
  2037. switch (icsk->icsk_ca_state) {
  2038. case TCP_CA_Loss:
  2039. icsk->icsk_retransmits = 0;
  2040. if (tcp_try_undo_recovery(sk))
  2041. return;
  2042. break;
  2043. case TCP_CA_CWR:
  2044. /* CWR is to be held something *above* high_seq
  2045. * is ACKed for CWR bit to reach receiver. */
  2046. if (tp->snd_una != tp->high_seq) {
  2047. tcp_complete_cwr(sk);
  2048. tcp_set_ca_state(sk, TCP_CA_Open);
  2049. }
  2050. break;
  2051. case TCP_CA_Disorder:
  2052. tcp_try_undo_dsack(sk);
  2053. if (!tp->undo_marker ||
  2054. /* For SACK case do not Open to allow to undo
  2055. * catching for all duplicate ACKs. */
  2056. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2057. tp->undo_marker = 0;
  2058. tcp_set_ca_state(sk, TCP_CA_Open);
  2059. }
  2060. break;
  2061. case TCP_CA_Recovery:
  2062. if (tcp_is_reno(tp))
  2063. tcp_reset_reno_sack(tp);
  2064. if (tcp_try_undo_recovery(sk))
  2065. return;
  2066. tcp_complete_cwr(sk);
  2067. break;
  2068. }
  2069. }
  2070. /* F. Process state. */
  2071. switch (icsk->icsk_ca_state) {
  2072. case TCP_CA_Recovery:
  2073. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2074. if (tcp_is_reno(tp) && is_dupack)
  2075. tcp_add_reno_sack(sk);
  2076. } else
  2077. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2078. break;
  2079. case TCP_CA_Loss:
  2080. if (flag&FLAG_DATA_ACKED)
  2081. icsk->icsk_retransmits = 0;
  2082. if (!tcp_try_undo_loss(sk)) {
  2083. tcp_moderate_cwnd(tp);
  2084. tcp_xmit_retransmit_queue(sk);
  2085. return;
  2086. }
  2087. if (icsk->icsk_ca_state != TCP_CA_Open)
  2088. return;
  2089. /* Loss is undone; fall through to processing in Open state. */
  2090. default:
  2091. if (tcp_is_reno(tp)) {
  2092. if (flag & FLAG_SND_UNA_ADVANCED)
  2093. tcp_reset_reno_sack(tp);
  2094. if (is_dupack)
  2095. tcp_add_reno_sack(sk);
  2096. }
  2097. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2098. tcp_try_undo_dsack(sk);
  2099. if (!tcp_time_to_recover(sk)) {
  2100. tcp_try_to_open(sk, flag);
  2101. return;
  2102. }
  2103. /* MTU probe failure: don't reduce cwnd */
  2104. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2105. icsk->icsk_mtup.probe_size &&
  2106. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2107. tcp_mtup_probe_failed(sk);
  2108. /* Restores the reduction we did in tcp_mtup_probe() */
  2109. tp->snd_cwnd++;
  2110. tcp_simple_retransmit(sk);
  2111. return;
  2112. }
  2113. /* Otherwise enter Recovery state */
  2114. if (tcp_is_reno(tp))
  2115. NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
  2116. else
  2117. NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
  2118. tp->high_seq = tp->snd_nxt;
  2119. tp->prior_ssthresh = 0;
  2120. tp->undo_marker = tp->snd_una;
  2121. tp->undo_retrans = tp->retrans_out;
  2122. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2123. if (!(flag&FLAG_ECE))
  2124. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2125. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2126. TCP_ECN_queue_cwr(tp);
  2127. }
  2128. tp->bytes_acked = 0;
  2129. tp->snd_cwnd_cnt = 0;
  2130. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2131. }
  2132. if (do_lost || tcp_head_timedout(sk))
  2133. tcp_update_scoreboard(sk);
  2134. tcp_cwnd_down(sk, flag);
  2135. tcp_xmit_retransmit_queue(sk);
  2136. }
  2137. /* Read draft-ietf-tcplw-high-performance before mucking
  2138. * with this code. (Supersedes RFC1323)
  2139. */
  2140. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2141. {
  2142. /* RTTM Rule: A TSecr value received in a segment is used to
  2143. * update the averaged RTT measurement only if the segment
  2144. * acknowledges some new data, i.e., only if it advances the
  2145. * left edge of the send window.
  2146. *
  2147. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2148. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2149. *
  2150. * Changed: reset backoff as soon as we see the first valid sample.
  2151. * If we do not, we get strongly overestimated rto. With timestamps
  2152. * samples are accepted even from very old segments: f.e., when rtt=1
  2153. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2154. * answer arrives rto becomes 120 seconds! If at least one of segments
  2155. * in window is lost... Voila. --ANK (010210)
  2156. */
  2157. struct tcp_sock *tp = tcp_sk(sk);
  2158. const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2159. tcp_rtt_estimator(sk, seq_rtt);
  2160. tcp_set_rto(sk);
  2161. inet_csk(sk)->icsk_backoff = 0;
  2162. tcp_bound_rto(sk);
  2163. }
  2164. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2165. {
  2166. /* We don't have a timestamp. Can only use
  2167. * packets that are not retransmitted to determine
  2168. * rtt estimates. Also, we must not reset the
  2169. * backoff for rto until we get a non-retransmitted
  2170. * packet. This allows us to deal with a situation
  2171. * where the network delay has increased suddenly.
  2172. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2173. */
  2174. if (flag & FLAG_RETRANS_DATA_ACKED)
  2175. return;
  2176. tcp_rtt_estimator(sk, seq_rtt);
  2177. tcp_set_rto(sk);
  2178. inet_csk(sk)->icsk_backoff = 0;
  2179. tcp_bound_rto(sk);
  2180. }
  2181. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2182. const s32 seq_rtt)
  2183. {
  2184. const struct tcp_sock *tp = tcp_sk(sk);
  2185. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2186. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2187. tcp_ack_saw_tstamp(sk, flag);
  2188. else if (seq_rtt >= 0)
  2189. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2190. }
  2191. static void tcp_cong_avoid(struct sock *sk, u32 ack,
  2192. u32 in_flight, int good)
  2193. {
  2194. const struct inet_connection_sock *icsk = inet_csk(sk);
  2195. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
  2196. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2197. }
  2198. /* Restart timer after forward progress on connection.
  2199. * RFC2988 recommends to restart timer to now+rto.
  2200. */
  2201. static void tcp_rearm_rto(struct sock *sk)
  2202. {
  2203. struct tcp_sock *tp = tcp_sk(sk);
  2204. if (!tp->packets_out) {
  2205. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2206. } else {
  2207. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2208. }
  2209. }
  2210. /* If we get here, the whole TSO packet has not been acked. */
  2211. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2212. {
  2213. struct tcp_sock *tp = tcp_sk(sk);
  2214. u32 packets_acked;
  2215. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2216. packets_acked = tcp_skb_pcount(skb);
  2217. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2218. return 0;
  2219. packets_acked -= tcp_skb_pcount(skb);
  2220. if (packets_acked) {
  2221. BUG_ON(tcp_skb_pcount(skb) == 0);
  2222. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2223. }
  2224. return packets_acked;
  2225. }
  2226. /* Remove acknowledged frames from the retransmission queue. If our packet
  2227. * is before the ack sequence we can discard it as it's confirmed to have
  2228. * arrived at the other end.
  2229. */
  2230. static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
  2231. {
  2232. struct tcp_sock *tp = tcp_sk(sk);
  2233. const struct inet_connection_sock *icsk = inet_csk(sk);
  2234. struct sk_buff *skb;
  2235. u32 now = tcp_time_stamp;
  2236. int fully_acked = 1;
  2237. int flag = 0;
  2238. int prior_packets = tp->packets_out;
  2239. s32 seq_rtt = -1;
  2240. ktime_t last_ackt = net_invalid_timestamp();
  2241. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2242. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2243. u32 end_seq;
  2244. u32 packets_acked;
  2245. u8 sacked = scb->sacked;
  2246. if (after(scb->end_seq, tp->snd_una)) {
  2247. if (tcp_skb_pcount(skb) == 1 ||
  2248. !after(tp->snd_una, scb->seq))
  2249. break;
  2250. packets_acked = tcp_tso_acked(sk, skb);
  2251. if (!packets_acked)
  2252. break;
  2253. fully_acked = 0;
  2254. end_seq = tp->snd_una;
  2255. } else {
  2256. packets_acked = tcp_skb_pcount(skb);
  2257. end_seq = scb->end_seq;
  2258. }
  2259. /* Initial outgoing SYN's get put onto the write_queue
  2260. * just like anything else we transmit. It is not
  2261. * true data, and if we misinform our callers that
  2262. * this ACK acks real data, we will erroneously exit
  2263. * connection startup slow start one packet too
  2264. * quickly. This is severely frowned upon behavior.
  2265. */
  2266. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2267. flag |= FLAG_DATA_ACKED;
  2268. } else {
  2269. flag |= FLAG_SYN_ACKED;
  2270. tp->retrans_stamp = 0;
  2271. }
  2272. /* MTU probing checks */
  2273. if (fully_acked && icsk->icsk_mtup.probe_size &&
  2274. !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
  2275. tcp_mtup_probe_success(sk, skb);
  2276. }
  2277. if (sacked) {
  2278. if (sacked & TCPCB_RETRANS) {
  2279. if (sacked & TCPCB_SACKED_RETRANS)
  2280. tp->retrans_out -= packets_acked;
  2281. flag |= FLAG_RETRANS_DATA_ACKED;
  2282. seq_rtt = -1;
  2283. } else if (seq_rtt < 0) {
  2284. seq_rtt = now - scb->when;
  2285. if (fully_acked)
  2286. last_ackt = skb->tstamp;
  2287. }
  2288. if (sacked & TCPCB_SACKED_ACKED)
  2289. tp->sacked_out -= packets_acked;
  2290. if (sacked & TCPCB_LOST)
  2291. tp->lost_out -= packets_acked;
  2292. if ((sacked & TCPCB_URG) && tp->urg_mode &&
  2293. !before(end_seq, tp->snd_up))
  2294. tp->urg_mode = 0;
  2295. } else if (seq_rtt < 0) {
  2296. seq_rtt = now - scb->when;
  2297. if (fully_acked)
  2298. last_ackt = skb->tstamp;
  2299. }
  2300. tp->packets_out -= packets_acked;
  2301. if (!fully_acked)
  2302. break;
  2303. tcp_unlink_write_queue(skb, sk);
  2304. sk_stream_free_skb(sk, skb);
  2305. tcp_clear_all_retrans_hints(tp);
  2306. }
  2307. if (flag & FLAG_ACKED) {
  2308. u32 pkts_acked = prior_packets - tp->packets_out;
  2309. const struct tcp_congestion_ops *ca_ops
  2310. = inet_csk(sk)->icsk_ca_ops;
  2311. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2312. tcp_rearm_rto(sk);
  2313. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2314. /* hint's skb might be NULL but we don't need to care */
  2315. tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
  2316. tp->fastpath_cnt_hint);
  2317. if (tcp_is_reno(tp))
  2318. tcp_remove_reno_sacks(sk, pkts_acked);
  2319. if (ca_ops->pkts_acked) {
  2320. s32 rtt_us = -1;
  2321. /* Is the ACK triggering packet unambiguous? */
  2322. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2323. /* High resolution needed and available? */
  2324. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2325. !ktime_equal(last_ackt,
  2326. net_invalid_timestamp()))
  2327. rtt_us = ktime_us_delta(ktime_get_real(),
  2328. last_ackt);
  2329. else if (seq_rtt > 0)
  2330. rtt_us = jiffies_to_usecs(seq_rtt);
  2331. }
  2332. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2333. }
  2334. }
  2335. #if FASTRETRANS_DEBUG > 0
  2336. BUG_TRAP((int)tp->sacked_out >= 0);
  2337. BUG_TRAP((int)tp->lost_out >= 0);
  2338. BUG_TRAP((int)tp->retrans_out >= 0);
  2339. if (!tp->packets_out && tcp_is_sack(tp)) {
  2340. const struct inet_connection_sock *icsk = inet_csk(sk);
  2341. if (tp->lost_out) {
  2342. printk(KERN_DEBUG "Leak l=%u %d\n",
  2343. tp->lost_out, icsk->icsk_ca_state);
  2344. tp->lost_out = 0;
  2345. }
  2346. if (tp->sacked_out) {
  2347. printk(KERN_DEBUG "Leak s=%u %d\n",
  2348. tp->sacked_out, icsk->icsk_ca_state);
  2349. tp->sacked_out = 0;
  2350. }
  2351. if (tp->retrans_out) {
  2352. printk(KERN_DEBUG "Leak r=%u %d\n",
  2353. tp->retrans_out, icsk->icsk_ca_state);
  2354. tp->retrans_out = 0;
  2355. }
  2356. }
  2357. #endif
  2358. *seq_rtt_p = seq_rtt;
  2359. return flag;
  2360. }
  2361. static void tcp_ack_probe(struct sock *sk)
  2362. {
  2363. const struct tcp_sock *tp = tcp_sk(sk);
  2364. struct inet_connection_sock *icsk = inet_csk(sk);
  2365. /* Was it a usable window open? */
  2366. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
  2367. tp->snd_una + tp->snd_wnd)) {
  2368. icsk->icsk_backoff = 0;
  2369. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2370. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2371. * This function is not for random using!
  2372. */
  2373. } else {
  2374. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2375. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2376. TCP_RTO_MAX);
  2377. }
  2378. }
  2379. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2380. {
  2381. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2382. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2383. }
  2384. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2385. {
  2386. const struct tcp_sock *tp = tcp_sk(sk);
  2387. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2388. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2389. }
  2390. /* Check that window update is acceptable.
  2391. * The function assumes that snd_una<=ack<=snd_next.
  2392. */
  2393. static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
  2394. const u32 ack_seq, const u32 nwin)
  2395. {
  2396. return (after(ack, tp->snd_una) ||
  2397. after(ack_seq, tp->snd_wl1) ||
  2398. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2399. }
  2400. /* Update our send window.
  2401. *
  2402. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2403. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2404. */
  2405. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2406. u32 ack_seq)
  2407. {
  2408. struct tcp_sock *tp = tcp_sk(sk);
  2409. int flag = 0;
  2410. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2411. if (likely(!tcp_hdr(skb)->syn))
  2412. nwin <<= tp->rx_opt.snd_wscale;
  2413. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2414. flag |= FLAG_WIN_UPDATE;
  2415. tcp_update_wl(tp, ack, ack_seq);
  2416. if (tp->snd_wnd != nwin) {
  2417. tp->snd_wnd = nwin;
  2418. /* Note, it is the only place, where
  2419. * fast path is recovered for sending TCP.
  2420. */
  2421. tp->pred_flags = 0;
  2422. tcp_fast_path_check(sk);
  2423. if (nwin > tp->max_window) {
  2424. tp->max_window = nwin;
  2425. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2426. }
  2427. }
  2428. }
  2429. tp->snd_una = ack;
  2430. return flag;
  2431. }
  2432. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2433. * continue in congestion avoidance.
  2434. */
  2435. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2436. {
  2437. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2438. tp->snd_cwnd_cnt = 0;
  2439. TCP_ECN_queue_cwr(tp);
  2440. tcp_moderate_cwnd(tp);
  2441. }
  2442. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2443. * rate halving and continue in congestion avoidance.
  2444. */
  2445. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2446. {
  2447. tcp_enter_cwr(sk, 0);
  2448. }
  2449. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2450. {
  2451. if (flag&FLAG_ECE)
  2452. tcp_ratehalving_spur_to_response(sk);
  2453. else
  2454. tcp_undo_cwr(sk, 1);
  2455. }
  2456. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2457. *
  2458. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2459. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2460. * window (but not to or beyond highest sequence sent before RTO):
  2461. * On First ACK, send two new segments out.
  2462. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2463. * algorithm is not part of the F-RTO detection algorithm
  2464. * given in RFC4138 but can be selected separately).
  2465. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2466. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2467. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2468. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2469. *
  2470. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2471. * original window even after we transmit two new data segments.
  2472. *
  2473. * SACK version:
  2474. * on first step, wait until first cumulative ACK arrives, then move to
  2475. * the second step. In second step, the next ACK decides.
  2476. *
  2477. * F-RTO is implemented (mainly) in four functions:
  2478. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2479. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2480. * called when tcp_use_frto() showed green light
  2481. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2482. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2483. * to prove that the RTO is indeed spurious. It transfers the control
  2484. * from F-RTO to the conventional RTO recovery
  2485. */
  2486. static int tcp_process_frto(struct sock *sk, int flag)
  2487. {
  2488. struct tcp_sock *tp = tcp_sk(sk);
  2489. tcp_verify_left_out(tp);
  2490. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  2491. if (flag&FLAG_DATA_ACKED)
  2492. inet_csk(sk)->icsk_retransmits = 0;
  2493. if (!before(tp->snd_una, tp->frto_highmark)) {
  2494. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  2495. return 1;
  2496. }
  2497. if (!IsSackFrto() || tcp_is_reno(tp)) {
  2498. /* RFC4138 shortcoming in step 2; should also have case c):
  2499. * ACK isn't duplicate nor advances window, e.g., opposite dir
  2500. * data, winupdate
  2501. */
  2502. if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
  2503. return 1;
  2504. if (!(flag&FLAG_DATA_ACKED)) {
  2505. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  2506. flag);
  2507. return 1;
  2508. }
  2509. } else {
  2510. if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  2511. /* Prevent sending of new data. */
  2512. tp->snd_cwnd = min(tp->snd_cwnd,
  2513. tcp_packets_in_flight(tp));
  2514. return 1;
  2515. }
  2516. if ((tp->frto_counter >= 2) &&
  2517. (!(flag&FLAG_FORWARD_PROGRESS) ||
  2518. ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
  2519. /* RFC4138 shortcoming (see comment above) */
  2520. if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
  2521. return 1;
  2522. tcp_enter_frto_loss(sk, 3, flag);
  2523. return 1;
  2524. }
  2525. }
  2526. if (tp->frto_counter == 1) {
  2527. /* Sending of the next skb must be allowed or no FRTO */
  2528. if (!tcp_send_head(sk) ||
  2529. after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
  2530. tp->snd_una + tp->snd_wnd)) {
  2531. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
  2532. flag);
  2533. return 1;
  2534. }
  2535. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2536. tp->frto_counter = 2;
  2537. return 1;
  2538. } else {
  2539. switch (sysctl_tcp_frto_response) {
  2540. case 2:
  2541. tcp_undo_spur_to_response(sk, flag);
  2542. break;
  2543. case 1:
  2544. tcp_conservative_spur_to_response(tp);
  2545. break;
  2546. default:
  2547. tcp_ratehalving_spur_to_response(sk);
  2548. break;
  2549. }
  2550. tp->frto_counter = 0;
  2551. }
  2552. return 0;
  2553. }
  2554. /* This routine deals with incoming acks, but not outgoing ones. */
  2555. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2556. {
  2557. struct inet_connection_sock *icsk = inet_csk(sk);
  2558. struct tcp_sock *tp = tcp_sk(sk);
  2559. u32 prior_snd_una = tp->snd_una;
  2560. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2561. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2562. u32 prior_in_flight;
  2563. s32 seq_rtt;
  2564. int prior_packets;
  2565. int frto_cwnd = 0;
  2566. /* If the ack is newer than sent or older than previous acks
  2567. * then we can probably ignore it.
  2568. */
  2569. if (after(ack, tp->snd_nxt))
  2570. goto uninteresting_ack;
  2571. if (before(ack, prior_snd_una))
  2572. goto old_ack;
  2573. if (after(ack, prior_snd_una))
  2574. flag |= FLAG_SND_UNA_ADVANCED;
  2575. if (sysctl_tcp_abc) {
  2576. if (icsk->icsk_ca_state < TCP_CA_CWR)
  2577. tp->bytes_acked += ack - prior_snd_una;
  2578. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  2579. /* we assume just one segment left network */
  2580. tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
  2581. }
  2582. if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2583. /* Window is constant, pure forward advance.
  2584. * No more checks are required.
  2585. * Note, we use the fact that SND.UNA>=SND.WL2.
  2586. */
  2587. tcp_update_wl(tp, ack, ack_seq);
  2588. tp->snd_una = ack;
  2589. flag |= FLAG_WIN_UPDATE;
  2590. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2591. NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
  2592. } else {
  2593. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2594. flag |= FLAG_DATA;
  2595. else
  2596. NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
  2597. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2598. if (TCP_SKB_CB(skb)->sacked)
  2599. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2600. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2601. flag |= FLAG_ECE;
  2602. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2603. }
  2604. /* We passed data and got it acked, remove any soft error
  2605. * log. Something worked...
  2606. */
  2607. sk->sk_err_soft = 0;
  2608. tp->rcv_tstamp = tcp_time_stamp;
  2609. prior_packets = tp->packets_out;
  2610. if (!prior_packets)
  2611. goto no_queue;
  2612. prior_in_flight = tcp_packets_in_flight(tp);
  2613. /* See if we can take anything off of the retransmit queue. */
  2614. flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
  2615. if (tp->frto_counter)
  2616. frto_cwnd = tcp_process_frto(sk, flag);
  2617. if (tcp_ack_is_dubious(sk, flag)) {
  2618. /* Advance CWND, if state allows this. */
  2619. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  2620. tcp_may_raise_cwnd(sk, flag))
  2621. tcp_cong_avoid(sk, ack, prior_in_flight, 0);
  2622. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
  2623. } else {
  2624. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  2625. tcp_cong_avoid(sk, ack, prior_in_flight, 1);
  2626. }
  2627. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
  2628. dst_confirm(sk->sk_dst_cache);
  2629. return 1;
  2630. no_queue:
  2631. icsk->icsk_probes_out = 0;
  2632. /* If this ack opens up a zero window, clear backoff. It was
  2633. * being used to time the probes, and is probably far higher than
  2634. * it needs to be for normal retransmission.
  2635. */
  2636. if (tcp_send_head(sk))
  2637. tcp_ack_probe(sk);
  2638. return 1;
  2639. old_ack:
  2640. if (TCP_SKB_CB(skb)->sacked)
  2641. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2642. uninteresting_ack:
  2643. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2644. return 0;
  2645. }
  2646. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2647. * But, this can also be called on packets in the established flow when
  2648. * the fast version below fails.
  2649. */
  2650. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
  2651. {
  2652. unsigned char *ptr;
  2653. struct tcphdr *th = tcp_hdr(skb);
  2654. int length=(th->doff*4)-sizeof(struct tcphdr);
  2655. ptr = (unsigned char *)(th + 1);
  2656. opt_rx->saw_tstamp = 0;
  2657. while (length > 0) {
  2658. int opcode=*ptr++;
  2659. int opsize;
  2660. switch (opcode) {
  2661. case TCPOPT_EOL:
  2662. return;
  2663. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2664. length--;
  2665. continue;
  2666. default:
  2667. opsize=*ptr++;
  2668. if (opsize < 2) /* "silly options" */
  2669. return;
  2670. if (opsize > length)
  2671. return; /* don't parse partial options */
  2672. switch (opcode) {
  2673. case TCPOPT_MSS:
  2674. if (opsize==TCPOLEN_MSS && th->syn && !estab) {
  2675. u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
  2676. if (in_mss) {
  2677. if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
  2678. in_mss = opt_rx->user_mss;
  2679. opt_rx->mss_clamp = in_mss;
  2680. }
  2681. }
  2682. break;
  2683. case TCPOPT_WINDOW:
  2684. if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
  2685. if (sysctl_tcp_window_scaling) {
  2686. __u8 snd_wscale = *(__u8 *) ptr;
  2687. opt_rx->wscale_ok = 1;
  2688. if (snd_wscale > 14) {
  2689. if (net_ratelimit())
  2690. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2691. "scaling value %d >14 received.\n",
  2692. snd_wscale);
  2693. snd_wscale = 14;
  2694. }
  2695. opt_rx->snd_wscale = snd_wscale;
  2696. }
  2697. break;
  2698. case TCPOPT_TIMESTAMP:
  2699. if (opsize==TCPOLEN_TIMESTAMP) {
  2700. if ((estab && opt_rx->tstamp_ok) ||
  2701. (!estab && sysctl_tcp_timestamps)) {
  2702. opt_rx->saw_tstamp = 1;
  2703. opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
  2704. opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
  2705. }
  2706. }
  2707. break;
  2708. case TCPOPT_SACK_PERM:
  2709. if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
  2710. if (sysctl_tcp_sack) {
  2711. opt_rx->sack_ok = 1;
  2712. tcp_sack_reset(opt_rx);
  2713. }
  2714. }
  2715. break;
  2716. case TCPOPT_SACK:
  2717. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2718. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2719. opt_rx->sack_ok) {
  2720. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2721. }
  2722. break;
  2723. #ifdef CONFIG_TCP_MD5SIG
  2724. case TCPOPT_MD5SIG:
  2725. /*
  2726. * The MD5 Hash has already been
  2727. * checked (see tcp_v{4,6}_do_rcv()).
  2728. */
  2729. break;
  2730. #endif
  2731. }
  2732. ptr+=opsize-2;
  2733. length-=opsize;
  2734. }
  2735. }
  2736. }
  2737. /* Fast parse options. This hopes to only see timestamps.
  2738. * If it is wrong it falls back on tcp_parse_options().
  2739. */
  2740. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  2741. struct tcp_sock *tp)
  2742. {
  2743. if (th->doff == sizeof(struct tcphdr)>>2) {
  2744. tp->rx_opt.saw_tstamp = 0;
  2745. return 0;
  2746. } else if (tp->rx_opt.tstamp_ok &&
  2747. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  2748. __be32 *ptr = (__be32 *)(th + 1);
  2749. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  2750. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  2751. tp->rx_opt.saw_tstamp = 1;
  2752. ++ptr;
  2753. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  2754. ++ptr;
  2755. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  2756. return 1;
  2757. }
  2758. }
  2759. tcp_parse_options(skb, &tp->rx_opt, 1);
  2760. return 1;
  2761. }
  2762. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  2763. {
  2764. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2765. tp->rx_opt.ts_recent_stamp = get_seconds();
  2766. }
  2767. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2768. {
  2769. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2770. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2771. * extra check below makes sure this can only happen
  2772. * for pure ACK frames. -DaveM
  2773. *
  2774. * Not only, also it occurs for expired timestamps.
  2775. */
  2776. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  2777. get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  2778. tcp_store_ts_recent(tp);
  2779. }
  2780. }
  2781. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  2782. *
  2783. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  2784. * it can pass through stack. So, the following predicate verifies that
  2785. * this segment is not used for anything but congestion avoidance or
  2786. * fast retransmit. Moreover, we even are able to eliminate most of such
  2787. * second order effects, if we apply some small "replay" window (~RTO)
  2788. * to timestamp space.
  2789. *
  2790. * All these measures still do not guarantee that we reject wrapped ACKs
  2791. * on networks with high bandwidth, when sequence space is recycled fastly,
  2792. * but it guarantees that such events will be very rare and do not affect
  2793. * connection seriously. This doesn't look nice, but alas, PAWS is really
  2794. * buggy extension.
  2795. *
  2796. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  2797. * states that events when retransmit arrives after original data are rare.
  2798. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  2799. * the biggest problem on large power networks even with minor reordering.
  2800. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  2801. * up to bandwidth of 18Gigabit/sec. 8) ]
  2802. */
  2803. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  2804. {
  2805. struct tcp_sock *tp = tcp_sk(sk);
  2806. struct tcphdr *th = tcp_hdr(skb);
  2807. u32 seq = TCP_SKB_CB(skb)->seq;
  2808. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2809. return (/* 1. Pure ACK with correct sequence number. */
  2810. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  2811. /* 2. ... and duplicate ACK. */
  2812. ack == tp->snd_una &&
  2813. /* 3. ... and does not update window. */
  2814. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  2815. /* 4. ... and sits in replay window. */
  2816. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  2817. }
  2818. static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
  2819. {
  2820. const struct tcp_sock *tp = tcp_sk(sk);
  2821. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  2822. get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  2823. !tcp_disordered_ack(sk, skb));
  2824. }
  2825. /* Check segment sequence number for validity.
  2826. *
  2827. * Segment controls are considered valid, if the segment
  2828. * fits to the window after truncation to the window. Acceptability
  2829. * of data (and SYN, FIN, of course) is checked separately.
  2830. * See tcp_data_queue(), for example.
  2831. *
  2832. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  2833. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  2834. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  2835. * (borrowed from freebsd)
  2836. */
  2837. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  2838. {
  2839. return !before(end_seq, tp->rcv_wup) &&
  2840. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  2841. }
  2842. /* When we get a reset we do this. */
  2843. static void tcp_reset(struct sock *sk)
  2844. {
  2845. /* We want the right error as BSD sees it (and indeed as we do). */
  2846. switch (sk->sk_state) {
  2847. case TCP_SYN_SENT:
  2848. sk->sk_err = ECONNREFUSED;
  2849. break;
  2850. case TCP_CLOSE_WAIT:
  2851. sk->sk_err = EPIPE;
  2852. break;
  2853. case TCP_CLOSE:
  2854. return;
  2855. default:
  2856. sk->sk_err = ECONNRESET;
  2857. }
  2858. if (!sock_flag(sk, SOCK_DEAD))
  2859. sk->sk_error_report(sk);
  2860. tcp_done(sk);
  2861. }
  2862. /*
  2863. * Process the FIN bit. This now behaves as it is supposed to work
  2864. * and the FIN takes effect when it is validly part of sequence
  2865. * space. Not before when we get holes.
  2866. *
  2867. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  2868. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  2869. * TIME-WAIT)
  2870. *
  2871. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  2872. * close and we go into CLOSING (and later onto TIME-WAIT)
  2873. *
  2874. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  2875. */
  2876. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  2877. {
  2878. struct tcp_sock *tp = tcp_sk(sk);
  2879. inet_csk_schedule_ack(sk);
  2880. sk->sk_shutdown |= RCV_SHUTDOWN;
  2881. sock_set_flag(sk, SOCK_DONE);
  2882. switch (sk->sk_state) {
  2883. case TCP_SYN_RECV:
  2884. case TCP_ESTABLISHED:
  2885. /* Move to CLOSE_WAIT */
  2886. tcp_set_state(sk, TCP_CLOSE_WAIT);
  2887. inet_csk(sk)->icsk_ack.pingpong = 1;
  2888. break;
  2889. case TCP_CLOSE_WAIT:
  2890. case TCP_CLOSING:
  2891. /* Received a retransmission of the FIN, do
  2892. * nothing.
  2893. */
  2894. break;
  2895. case TCP_LAST_ACK:
  2896. /* RFC793: Remain in the LAST-ACK state. */
  2897. break;
  2898. case TCP_FIN_WAIT1:
  2899. /* This case occurs when a simultaneous close
  2900. * happens, we must ack the received FIN and
  2901. * enter the CLOSING state.
  2902. */
  2903. tcp_send_ack(sk);
  2904. tcp_set_state(sk, TCP_CLOSING);
  2905. break;
  2906. case TCP_FIN_WAIT2:
  2907. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  2908. tcp_send_ack(sk);
  2909. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  2910. break;
  2911. default:
  2912. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  2913. * cases we should never reach this piece of code.
  2914. */
  2915. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  2916. __FUNCTION__, sk->sk_state);
  2917. break;
  2918. }
  2919. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  2920. * Probably, we should reset in this case. For now drop them.
  2921. */
  2922. __skb_queue_purge(&tp->out_of_order_queue);
  2923. if (tcp_is_sack(tp))
  2924. tcp_sack_reset(&tp->rx_opt);
  2925. sk_stream_mem_reclaim(sk);
  2926. if (!sock_flag(sk, SOCK_DEAD)) {
  2927. sk->sk_state_change(sk);
  2928. /* Do not send POLL_HUP for half duplex close. */
  2929. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  2930. sk->sk_state == TCP_CLOSE)
  2931. sk_wake_async(sk, 1, POLL_HUP);
  2932. else
  2933. sk_wake_async(sk, 1, POLL_IN);
  2934. }
  2935. }
  2936. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
  2937. {
  2938. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  2939. if (before(seq, sp->start_seq))
  2940. sp->start_seq = seq;
  2941. if (after(end_seq, sp->end_seq))
  2942. sp->end_seq = end_seq;
  2943. return 1;
  2944. }
  2945. return 0;
  2946. }
  2947. static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
  2948. {
  2949. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  2950. if (before(seq, tp->rcv_nxt))
  2951. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
  2952. else
  2953. NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
  2954. tp->rx_opt.dsack = 1;
  2955. tp->duplicate_sack[0].start_seq = seq;
  2956. tp->duplicate_sack[0].end_seq = end_seq;
  2957. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
  2958. }
  2959. }
  2960. static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
  2961. {
  2962. if (!tp->rx_opt.dsack)
  2963. tcp_dsack_set(tp, seq, end_seq);
  2964. else
  2965. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  2966. }
  2967. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  2968. {
  2969. struct tcp_sock *tp = tcp_sk(sk);
  2970. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  2971. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  2972. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  2973. tcp_enter_quickack_mode(sk);
  2974. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  2975. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  2976. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  2977. end_seq = tp->rcv_nxt;
  2978. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
  2979. }
  2980. }
  2981. tcp_send_ack(sk);
  2982. }
  2983. /* These routines update the SACK block as out-of-order packets arrive or
  2984. * in-order packets close up the sequence space.
  2985. */
  2986. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  2987. {
  2988. int this_sack;
  2989. struct tcp_sack_block *sp = &tp->selective_acks[0];
  2990. struct tcp_sack_block *swalk = sp+1;
  2991. /* See if the recent change to the first SACK eats into
  2992. * or hits the sequence space of other SACK blocks, if so coalesce.
  2993. */
  2994. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
  2995. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  2996. int i;
  2997. /* Zap SWALK, by moving every further SACK up by one slot.
  2998. * Decrease num_sacks.
  2999. */
  3000. tp->rx_opt.num_sacks--;
  3001. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3002. for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
  3003. sp[i] = sp[i+1];
  3004. continue;
  3005. }
  3006. this_sack++, swalk++;
  3007. }
  3008. }
  3009. static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
  3010. {
  3011. __u32 tmp;
  3012. tmp = sack1->start_seq;
  3013. sack1->start_seq = sack2->start_seq;
  3014. sack2->start_seq = tmp;
  3015. tmp = sack1->end_seq;
  3016. sack1->end_seq = sack2->end_seq;
  3017. sack2->end_seq = tmp;
  3018. }
  3019. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3020. {
  3021. struct tcp_sock *tp = tcp_sk(sk);
  3022. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3023. int cur_sacks = tp->rx_opt.num_sacks;
  3024. int this_sack;
  3025. if (!cur_sacks)
  3026. goto new_sack;
  3027. for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
  3028. if (tcp_sack_extend(sp, seq, end_seq)) {
  3029. /* Rotate this_sack to the first one. */
  3030. for (; this_sack>0; this_sack--, sp--)
  3031. tcp_sack_swap(sp, sp-1);
  3032. if (cur_sacks > 1)
  3033. tcp_sack_maybe_coalesce(tp);
  3034. return;
  3035. }
  3036. }
  3037. /* Could not find an adjacent existing SACK, build a new one,
  3038. * put it at the front, and shift everyone else down. We
  3039. * always know there is at least one SACK present already here.
  3040. *
  3041. * If the sack array is full, forget about the last one.
  3042. */
  3043. if (this_sack >= 4) {
  3044. this_sack--;
  3045. tp->rx_opt.num_sacks--;
  3046. sp--;
  3047. }
  3048. for (; this_sack > 0; this_sack--, sp--)
  3049. *sp = *(sp-1);
  3050. new_sack:
  3051. /* Build the new head SACK, and we're done. */
  3052. sp->start_seq = seq;
  3053. sp->end_seq = end_seq;
  3054. tp->rx_opt.num_sacks++;
  3055. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3056. }
  3057. /* RCV.NXT advances, some SACKs should be eaten. */
  3058. static void tcp_sack_remove(struct tcp_sock *tp)
  3059. {
  3060. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3061. int num_sacks = tp->rx_opt.num_sacks;
  3062. int this_sack;
  3063. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3064. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3065. tp->rx_opt.num_sacks = 0;
  3066. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3067. return;
  3068. }
  3069. for (this_sack = 0; this_sack < num_sacks; ) {
  3070. /* Check if the start of the sack is covered by RCV.NXT. */
  3071. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3072. int i;
  3073. /* RCV.NXT must cover all the block! */
  3074. BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
  3075. /* Zap this SACK, by moving forward any other SACKS. */
  3076. for (i=this_sack+1; i < num_sacks; i++)
  3077. tp->selective_acks[i-1] = tp->selective_acks[i];
  3078. num_sacks--;
  3079. continue;
  3080. }
  3081. this_sack++;
  3082. sp++;
  3083. }
  3084. if (num_sacks != tp->rx_opt.num_sacks) {
  3085. tp->rx_opt.num_sacks = num_sacks;
  3086. tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
  3087. }
  3088. }
  3089. /* This one checks to see if we can put data from the
  3090. * out_of_order queue into the receive_queue.
  3091. */
  3092. static void tcp_ofo_queue(struct sock *sk)
  3093. {
  3094. struct tcp_sock *tp = tcp_sk(sk);
  3095. __u32 dsack_high = tp->rcv_nxt;
  3096. struct sk_buff *skb;
  3097. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3098. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3099. break;
  3100. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3101. __u32 dsack = dsack_high;
  3102. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3103. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3104. tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
  3105. }
  3106. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3107. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3108. __skb_unlink(skb, &tp->out_of_order_queue);
  3109. __kfree_skb(skb);
  3110. continue;
  3111. }
  3112. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3113. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3114. TCP_SKB_CB(skb)->end_seq);
  3115. __skb_unlink(skb, &tp->out_of_order_queue);
  3116. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3117. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3118. if (tcp_hdr(skb)->fin)
  3119. tcp_fin(skb, sk, tcp_hdr(skb));
  3120. }
  3121. }
  3122. static int tcp_prune_queue(struct sock *sk);
  3123. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3124. {
  3125. struct tcphdr *th = tcp_hdr(skb);
  3126. struct tcp_sock *tp = tcp_sk(sk);
  3127. int eaten = -1;
  3128. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3129. goto drop;
  3130. __skb_pull(skb, th->doff*4);
  3131. TCP_ECN_accept_cwr(tp, skb);
  3132. if (tp->rx_opt.dsack) {
  3133. tp->rx_opt.dsack = 0;
  3134. tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
  3135. 4 - tp->rx_opt.tstamp_ok);
  3136. }
  3137. /* Queue data for delivery to the user.
  3138. * Packets in sequence go to the receive queue.
  3139. * Out of sequence packets to the out_of_order_queue.
  3140. */
  3141. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3142. if (tcp_receive_window(tp) == 0)
  3143. goto out_of_window;
  3144. /* Ok. In sequence. In window. */
  3145. if (tp->ucopy.task == current &&
  3146. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3147. sock_owned_by_user(sk) && !tp->urg_data) {
  3148. int chunk = min_t(unsigned int, skb->len,
  3149. tp->ucopy.len);
  3150. __set_current_state(TASK_RUNNING);
  3151. local_bh_enable();
  3152. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3153. tp->ucopy.len -= chunk;
  3154. tp->copied_seq += chunk;
  3155. eaten = (chunk == skb->len && !th->fin);
  3156. tcp_rcv_space_adjust(sk);
  3157. }
  3158. local_bh_disable();
  3159. }
  3160. if (eaten <= 0) {
  3161. queue_and_out:
  3162. if (eaten < 0 &&
  3163. (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3164. !sk_stream_rmem_schedule(sk, skb))) {
  3165. if (tcp_prune_queue(sk) < 0 ||
  3166. !sk_stream_rmem_schedule(sk, skb))
  3167. goto drop;
  3168. }
  3169. sk_stream_set_owner_r(skb, sk);
  3170. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3171. }
  3172. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3173. if (skb->len)
  3174. tcp_event_data_recv(sk, skb);
  3175. if (th->fin)
  3176. tcp_fin(skb, sk, th);
  3177. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3178. tcp_ofo_queue(sk);
  3179. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3180. * gap in queue is filled.
  3181. */
  3182. if (skb_queue_empty(&tp->out_of_order_queue))
  3183. inet_csk(sk)->icsk_ack.pingpong = 0;
  3184. }
  3185. if (tp->rx_opt.num_sacks)
  3186. tcp_sack_remove(tp);
  3187. tcp_fast_path_check(sk);
  3188. if (eaten > 0)
  3189. __kfree_skb(skb);
  3190. else if (!sock_flag(sk, SOCK_DEAD))
  3191. sk->sk_data_ready(sk, 0);
  3192. return;
  3193. }
  3194. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3195. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3196. NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
  3197. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3198. out_of_window:
  3199. tcp_enter_quickack_mode(sk);
  3200. inet_csk_schedule_ack(sk);
  3201. drop:
  3202. __kfree_skb(skb);
  3203. return;
  3204. }
  3205. /* Out of window. F.e. zero window probe. */
  3206. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3207. goto out_of_window;
  3208. tcp_enter_quickack_mode(sk);
  3209. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3210. /* Partial packet, seq < rcv_next < end_seq */
  3211. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3212. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3213. TCP_SKB_CB(skb)->end_seq);
  3214. tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3215. /* If window is closed, drop tail of packet. But after
  3216. * remembering D-SACK for its head made in previous line.
  3217. */
  3218. if (!tcp_receive_window(tp))
  3219. goto out_of_window;
  3220. goto queue_and_out;
  3221. }
  3222. TCP_ECN_check_ce(tp, skb);
  3223. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3224. !sk_stream_rmem_schedule(sk, skb)) {
  3225. if (tcp_prune_queue(sk) < 0 ||
  3226. !sk_stream_rmem_schedule(sk, skb))
  3227. goto drop;
  3228. }
  3229. /* Disable header prediction. */
  3230. tp->pred_flags = 0;
  3231. inet_csk_schedule_ack(sk);
  3232. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3233. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3234. sk_stream_set_owner_r(skb, sk);
  3235. if (!skb_peek(&tp->out_of_order_queue)) {
  3236. /* Initial out of order segment, build 1 SACK. */
  3237. if (tcp_is_sack(tp)) {
  3238. tp->rx_opt.num_sacks = 1;
  3239. tp->rx_opt.dsack = 0;
  3240. tp->rx_opt.eff_sacks = 1;
  3241. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3242. tp->selective_acks[0].end_seq =
  3243. TCP_SKB_CB(skb)->end_seq;
  3244. }
  3245. __skb_queue_head(&tp->out_of_order_queue,skb);
  3246. } else {
  3247. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3248. u32 seq = TCP_SKB_CB(skb)->seq;
  3249. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3250. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3251. __skb_append(skb1, skb, &tp->out_of_order_queue);
  3252. if (!tp->rx_opt.num_sacks ||
  3253. tp->selective_acks[0].end_seq != seq)
  3254. goto add_sack;
  3255. /* Common case: data arrive in order after hole. */
  3256. tp->selective_acks[0].end_seq = end_seq;
  3257. return;
  3258. }
  3259. /* Find place to insert this segment. */
  3260. do {
  3261. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3262. break;
  3263. } while ((skb1 = skb1->prev) !=
  3264. (struct sk_buff*)&tp->out_of_order_queue);
  3265. /* Do skb overlap to previous one? */
  3266. if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
  3267. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3268. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3269. /* All the bits are present. Drop. */
  3270. __kfree_skb(skb);
  3271. tcp_dsack_set(tp, seq, end_seq);
  3272. goto add_sack;
  3273. }
  3274. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3275. /* Partial overlap. */
  3276. tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
  3277. } else {
  3278. skb1 = skb1->prev;
  3279. }
  3280. }
  3281. __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
  3282. /* And clean segments covered by new one as whole. */
  3283. while ((skb1 = skb->next) !=
  3284. (struct sk_buff*)&tp->out_of_order_queue &&
  3285. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3286. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3287. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
  3288. break;
  3289. }
  3290. __skb_unlink(skb1, &tp->out_of_order_queue);
  3291. tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
  3292. __kfree_skb(skb1);
  3293. }
  3294. add_sack:
  3295. if (tcp_is_sack(tp))
  3296. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3297. }
  3298. }
  3299. /* Collapse contiguous sequence of skbs head..tail with
  3300. * sequence numbers start..end.
  3301. * Segments with FIN/SYN are not collapsed (only because this
  3302. * simplifies code)
  3303. */
  3304. static void
  3305. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3306. struct sk_buff *head, struct sk_buff *tail,
  3307. u32 start, u32 end)
  3308. {
  3309. struct sk_buff *skb;
  3310. /* First, check that queue is collapsible and find
  3311. * the point where collapsing can be useful. */
  3312. for (skb = head; skb != tail; ) {
  3313. /* No new bits? It is possible on ofo queue. */
  3314. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3315. struct sk_buff *next = skb->next;
  3316. __skb_unlink(skb, list);
  3317. __kfree_skb(skb);
  3318. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3319. skb = next;
  3320. continue;
  3321. }
  3322. /* The first skb to collapse is:
  3323. * - not SYN/FIN and
  3324. * - bloated or contains data before "start" or
  3325. * overlaps to the next one.
  3326. */
  3327. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3328. (tcp_win_from_space(skb->truesize) > skb->len ||
  3329. before(TCP_SKB_CB(skb)->seq, start) ||
  3330. (skb->next != tail &&
  3331. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3332. break;
  3333. /* Decided to skip this, advance start seq. */
  3334. start = TCP_SKB_CB(skb)->end_seq;
  3335. skb = skb->next;
  3336. }
  3337. if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3338. return;
  3339. while (before(start, end)) {
  3340. struct sk_buff *nskb;
  3341. int header = skb_headroom(skb);
  3342. int copy = SKB_MAX_ORDER(header, 0);
  3343. /* Too big header? This can happen with IPv6. */
  3344. if (copy < 0)
  3345. return;
  3346. if (end-start < copy)
  3347. copy = end-start;
  3348. nskb = alloc_skb(copy+header, GFP_ATOMIC);
  3349. if (!nskb)
  3350. return;
  3351. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3352. skb_set_network_header(nskb, (skb_network_header(skb) -
  3353. skb->head));
  3354. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3355. skb->head));
  3356. skb_reserve(nskb, header);
  3357. memcpy(nskb->head, skb->head, header);
  3358. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3359. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3360. __skb_insert(nskb, skb->prev, skb, list);
  3361. sk_stream_set_owner_r(nskb, sk);
  3362. /* Copy data, releasing collapsed skbs. */
  3363. while (copy > 0) {
  3364. int offset = start - TCP_SKB_CB(skb)->seq;
  3365. int size = TCP_SKB_CB(skb)->end_seq - start;
  3366. BUG_ON(offset < 0);
  3367. if (size > 0) {
  3368. size = min(copy, size);
  3369. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3370. BUG();
  3371. TCP_SKB_CB(nskb)->end_seq += size;
  3372. copy -= size;
  3373. start += size;
  3374. }
  3375. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3376. struct sk_buff *next = skb->next;
  3377. __skb_unlink(skb, list);
  3378. __kfree_skb(skb);
  3379. NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
  3380. skb = next;
  3381. if (skb == tail ||
  3382. tcp_hdr(skb)->syn ||
  3383. tcp_hdr(skb)->fin)
  3384. return;
  3385. }
  3386. }
  3387. }
  3388. }
  3389. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3390. * and tcp_collapse() them until all the queue is collapsed.
  3391. */
  3392. static void tcp_collapse_ofo_queue(struct sock *sk)
  3393. {
  3394. struct tcp_sock *tp = tcp_sk(sk);
  3395. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3396. struct sk_buff *head;
  3397. u32 start, end;
  3398. if (skb == NULL)
  3399. return;
  3400. start = TCP_SKB_CB(skb)->seq;
  3401. end = TCP_SKB_CB(skb)->end_seq;
  3402. head = skb;
  3403. for (;;) {
  3404. skb = skb->next;
  3405. /* Segment is terminated when we see gap or when
  3406. * we are at the end of all the queue. */
  3407. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3408. after(TCP_SKB_CB(skb)->seq, end) ||
  3409. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3410. tcp_collapse(sk, &tp->out_of_order_queue,
  3411. head, skb, start, end);
  3412. head = skb;
  3413. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3414. break;
  3415. /* Start new segment */
  3416. start = TCP_SKB_CB(skb)->seq;
  3417. end = TCP_SKB_CB(skb)->end_seq;
  3418. } else {
  3419. if (before(TCP_SKB_CB(skb)->seq, start))
  3420. start = TCP_SKB_CB(skb)->seq;
  3421. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3422. end = TCP_SKB_CB(skb)->end_seq;
  3423. }
  3424. }
  3425. }
  3426. /* Reduce allocated memory if we can, trying to get
  3427. * the socket within its memory limits again.
  3428. *
  3429. * Return less than zero if we should start dropping frames
  3430. * until the socket owning process reads some of the data
  3431. * to stabilize the situation.
  3432. */
  3433. static int tcp_prune_queue(struct sock *sk)
  3434. {
  3435. struct tcp_sock *tp = tcp_sk(sk);
  3436. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3437. NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
  3438. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3439. tcp_clamp_window(sk);
  3440. else if (tcp_memory_pressure)
  3441. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3442. tcp_collapse_ofo_queue(sk);
  3443. tcp_collapse(sk, &sk->sk_receive_queue,
  3444. sk->sk_receive_queue.next,
  3445. (struct sk_buff*)&sk->sk_receive_queue,
  3446. tp->copied_seq, tp->rcv_nxt);
  3447. sk_stream_mem_reclaim(sk);
  3448. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3449. return 0;
  3450. /* Collapsing did not help, destructive actions follow.
  3451. * This must not ever occur. */
  3452. /* First, purge the out_of_order queue. */
  3453. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3454. NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
  3455. __skb_queue_purge(&tp->out_of_order_queue);
  3456. /* Reset SACK state. A conforming SACK implementation will
  3457. * do the same at a timeout based retransmit. When a connection
  3458. * is in a sad state like this, we care only about integrity
  3459. * of the connection not performance.
  3460. */
  3461. if (tcp_is_sack(tp))
  3462. tcp_sack_reset(&tp->rx_opt);
  3463. sk_stream_mem_reclaim(sk);
  3464. }
  3465. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3466. return 0;
  3467. /* If we are really being abused, tell the caller to silently
  3468. * drop receive data on the floor. It will get retransmitted
  3469. * and hopefully then we'll have sufficient space.
  3470. */
  3471. NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
  3472. /* Massive buffer overcommit. */
  3473. tp->pred_flags = 0;
  3474. return -1;
  3475. }
  3476. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3477. * As additional protections, we do not touch cwnd in retransmission phases,
  3478. * and if application hit its sndbuf limit recently.
  3479. */
  3480. void tcp_cwnd_application_limited(struct sock *sk)
  3481. {
  3482. struct tcp_sock *tp = tcp_sk(sk);
  3483. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3484. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3485. /* Limited by application or receiver window. */
  3486. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3487. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3488. if (win_used < tp->snd_cwnd) {
  3489. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3490. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3491. }
  3492. tp->snd_cwnd_used = 0;
  3493. }
  3494. tp->snd_cwnd_stamp = tcp_time_stamp;
  3495. }
  3496. static int tcp_should_expand_sndbuf(struct sock *sk)
  3497. {
  3498. struct tcp_sock *tp = tcp_sk(sk);
  3499. /* If the user specified a specific send buffer setting, do
  3500. * not modify it.
  3501. */
  3502. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  3503. return 0;
  3504. /* If we are under global TCP memory pressure, do not expand. */
  3505. if (tcp_memory_pressure)
  3506. return 0;
  3507. /* If we are under soft global TCP memory pressure, do not expand. */
  3508. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  3509. return 0;
  3510. /* If we filled the congestion window, do not expand. */
  3511. if (tp->packets_out >= tp->snd_cwnd)
  3512. return 0;
  3513. return 1;
  3514. }
  3515. /* When incoming ACK allowed to free some skb from write_queue,
  3516. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3517. * on the exit from tcp input handler.
  3518. *
  3519. * PROBLEM: sndbuf expansion does not work well with largesend.
  3520. */
  3521. static void tcp_new_space(struct sock *sk)
  3522. {
  3523. struct tcp_sock *tp = tcp_sk(sk);
  3524. if (tcp_should_expand_sndbuf(sk)) {
  3525. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  3526. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3527. demanded = max_t(unsigned int, tp->snd_cwnd,
  3528. tp->reordering + 1);
  3529. sndmem *= 2*demanded;
  3530. if (sndmem > sk->sk_sndbuf)
  3531. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3532. tp->snd_cwnd_stamp = tcp_time_stamp;
  3533. }
  3534. sk->sk_write_space(sk);
  3535. }
  3536. static void tcp_check_space(struct sock *sk)
  3537. {
  3538. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3539. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3540. if (sk->sk_socket &&
  3541. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3542. tcp_new_space(sk);
  3543. }
  3544. }
  3545. static inline void tcp_data_snd_check(struct sock *sk)
  3546. {
  3547. tcp_push_pending_frames(sk);
  3548. tcp_check_space(sk);
  3549. }
  3550. /*
  3551. * Check if sending an ack is needed.
  3552. */
  3553. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3554. {
  3555. struct tcp_sock *tp = tcp_sk(sk);
  3556. /* More than one full frame received... */
  3557. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  3558. /* ... and right edge of window advances far enough.
  3559. * (tcp_recvmsg() will send ACK otherwise). Or...
  3560. */
  3561. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3562. /* We ACK each frame or... */
  3563. tcp_in_quickack_mode(sk) ||
  3564. /* We have out of order data. */
  3565. (ofo_possible &&
  3566. skb_peek(&tp->out_of_order_queue))) {
  3567. /* Then ack it now */
  3568. tcp_send_ack(sk);
  3569. } else {
  3570. /* Else, send delayed ack. */
  3571. tcp_send_delayed_ack(sk);
  3572. }
  3573. }
  3574. static inline void tcp_ack_snd_check(struct sock *sk)
  3575. {
  3576. if (!inet_csk_ack_scheduled(sk)) {
  3577. /* We sent a data segment already. */
  3578. return;
  3579. }
  3580. __tcp_ack_snd_check(sk, 1);
  3581. }
  3582. /*
  3583. * This routine is only called when we have urgent data
  3584. * signaled. Its the 'slow' part of tcp_urg. It could be
  3585. * moved inline now as tcp_urg is only called from one
  3586. * place. We handle URGent data wrong. We have to - as
  3587. * BSD still doesn't use the correction from RFC961.
  3588. * For 1003.1g we should support a new option TCP_STDURG to permit
  3589. * either form (or just set the sysctl tcp_stdurg).
  3590. */
  3591. static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
  3592. {
  3593. struct tcp_sock *tp = tcp_sk(sk);
  3594. u32 ptr = ntohs(th->urg_ptr);
  3595. if (ptr && !sysctl_tcp_stdurg)
  3596. ptr--;
  3597. ptr += ntohl(th->seq);
  3598. /* Ignore urgent data that we've already seen and read. */
  3599. if (after(tp->copied_seq, ptr))
  3600. return;
  3601. /* Do not replay urg ptr.
  3602. *
  3603. * NOTE: interesting situation not covered by specs.
  3604. * Misbehaving sender may send urg ptr, pointing to segment,
  3605. * which we already have in ofo queue. We are not able to fetch
  3606. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3607. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3608. * situations. But it is worth to think about possibility of some
  3609. * DoSes using some hypothetical application level deadlock.
  3610. */
  3611. if (before(ptr, tp->rcv_nxt))
  3612. return;
  3613. /* Do we already have a newer (or duplicate) urgent pointer? */
  3614. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3615. return;
  3616. /* Tell the world about our new urgent pointer. */
  3617. sk_send_sigurg(sk);
  3618. /* We may be adding urgent data when the last byte read was
  3619. * urgent. To do this requires some care. We cannot just ignore
  3620. * tp->copied_seq since we would read the last urgent byte again
  3621. * as data, nor can we alter copied_seq until this data arrives
  3622. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  3623. *
  3624. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3625. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3626. * and expect that both A and B disappear from stream. This is _wrong_.
  3627. * Though this happens in BSD with high probability, this is occasional.
  3628. * Any application relying on this is buggy. Note also, that fix "works"
  3629. * only in this artificial test. Insert some normal data between A and B and we will
  3630. * decline of BSD again. Verdict: it is better to remove to trap
  3631. * buggy users.
  3632. */
  3633. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3634. !sock_flag(sk, SOCK_URGINLINE) &&
  3635. tp->copied_seq != tp->rcv_nxt) {
  3636. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3637. tp->copied_seq++;
  3638. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3639. __skb_unlink(skb, &sk->sk_receive_queue);
  3640. __kfree_skb(skb);
  3641. }
  3642. }
  3643. tp->urg_data = TCP_URG_NOTYET;
  3644. tp->urg_seq = ptr;
  3645. /* Disable header prediction. */
  3646. tp->pred_flags = 0;
  3647. }
  3648. /* This is the 'fast' part of urgent handling. */
  3649. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3650. {
  3651. struct tcp_sock *tp = tcp_sk(sk);
  3652. /* Check if we get a new urgent pointer - normally not. */
  3653. if (th->urg)
  3654. tcp_check_urg(sk,th);
  3655. /* Do we wait for any urgent data? - normally not... */
  3656. if (tp->urg_data == TCP_URG_NOTYET) {
  3657. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3658. th->syn;
  3659. /* Is the urgent pointer pointing into this packet? */
  3660. if (ptr < skb->len) {
  3661. u8 tmp;
  3662. if (skb_copy_bits(skb, ptr, &tmp, 1))
  3663. BUG();
  3664. tp->urg_data = TCP_URG_VALID | tmp;
  3665. if (!sock_flag(sk, SOCK_DEAD))
  3666. sk->sk_data_ready(sk, 0);
  3667. }
  3668. }
  3669. }
  3670. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  3671. {
  3672. struct tcp_sock *tp = tcp_sk(sk);
  3673. int chunk = skb->len - hlen;
  3674. int err;
  3675. local_bh_enable();
  3676. if (skb_csum_unnecessary(skb))
  3677. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  3678. else
  3679. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  3680. tp->ucopy.iov);
  3681. if (!err) {
  3682. tp->ucopy.len -= chunk;
  3683. tp->copied_seq += chunk;
  3684. tcp_rcv_space_adjust(sk);
  3685. }
  3686. local_bh_disable();
  3687. return err;
  3688. }
  3689. static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
  3690. {
  3691. __sum16 result;
  3692. if (sock_owned_by_user(sk)) {
  3693. local_bh_enable();
  3694. result = __tcp_checksum_complete(skb);
  3695. local_bh_disable();
  3696. } else {
  3697. result = __tcp_checksum_complete(skb);
  3698. }
  3699. return result;
  3700. }
  3701. static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
  3702. {
  3703. return !skb_csum_unnecessary(skb) &&
  3704. __tcp_checksum_complete_user(sk, skb);
  3705. }
  3706. #ifdef CONFIG_NET_DMA
  3707. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
  3708. {
  3709. struct tcp_sock *tp = tcp_sk(sk);
  3710. int chunk = skb->len - hlen;
  3711. int dma_cookie;
  3712. int copied_early = 0;
  3713. if (tp->ucopy.wakeup)
  3714. return 0;
  3715. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  3716. tp->ucopy.dma_chan = get_softnet_dma();
  3717. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  3718. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  3719. skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
  3720. if (dma_cookie < 0)
  3721. goto out;
  3722. tp->ucopy.dma_cookie = dma_cookie;
  3723. copied_early = 1;
  3724. tp->ucopy.len -= chunk;
  3725. tp->copied_seq += chunk;
  3726. tcp_rcv_space_adjust(sk);
  3727. if ((tp->ucopy.len == 0) ||
  3728. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  3729. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  3730. tp->ucopy.wakeup = 1;
  3731. sk->sk_data_ready(sk, 0);
  3732. }
  3733. } else if (chunk > 0) {
  3734. tp->ucopy.wakeup = 1;
  3735. sk->sk_data_ready(sk, 0);
  3736. }
  3737. out:
  3738. return copied_early;
  3739. }
  3740. #endif /* CONFIG_NET_DMA */
  3741. /*
  3742. * TCP receive function for the ESTABLISHED state.
  3743. *
  3744. * It is split into a fast path and a slow path. The fast path is
  3745. * disabled when:
  3746. * - A zero window was announced from us - zero window probing
  3747. * is only handled properly in the slow path.
  3748. * - Out of order segments arrived.
  3749. * - Urgent data is expected.
  3750. * - There is no buffer space left
  3751. * - Unexpected TCP flags/window values/header lengths are received
  3752. * (detected by checking the TCP header against pred_flags)
  3753. * - Data is sent in both directions. Fast path only supports pure senders
  3754. * or pure receivers (this means either the sequence number or the ack
  3755. * value must stay constant)
  3756. * - Unexpected TCP option.
  3757. *
  3758. * When these conditions are not satisfied it drops into a standard
  3759. * receive procedure patterned after RFC793 to handle all cases.
  3760. * The first three cases are guaranteed by proper pred_flags setting,
  3761. * the rest is checked inline. Fast processing is turned on in
  3762. * tcp_data_queue when everything is OK.
  3763. */
  3764. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  3765. struct tcphdr *th, unsigned len)
  3766. {
  3767. struct tcp_sock *tp = tcp_sk(sk);
  3768. /*
  3769. * Header prediction.
  3770. * The code loosely follows the one in the famous
  3771. * "30 instruction TCP receive" Van Jacobson mail.
  3772. *
  3773. * Van's trick is to deposit buffers into socket queue
  3774. * on a device interrupt, to call tcp_recv function
  3775. * on the receive process context and checksum and copy
  3776. * the buffer to user space. smart...
  3777. *
  3778. * Our current scheme is not silly either but we take the
  3779. * extra cost of the net_bh soft interrupt processing...
  3780. * We do checksum and copy also but from device to kernel.
  3781. */
  3782. tp->rx_opt.saw_tstamp = 0;
  3783. /* pred_flags is 0xS?10 << 16 + snd_wnd
  3784. * if header_prediction is to be made
  3785. * 'S' will always be tp->tcp_header_len >> 2
  3786. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  3787. * turn it off (when there are holes in the receive
  3788. * space for instance)
  3789. * PSH flag is ignored.
  3790. */
  3791. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  3792. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3793. int tcp_header_len = tp->tcp_header_len;
  3794. /* Timestamp header prediction: tcp_header_len
  3795. * is automatically equal to th->doff*4 due to pred_flags
  3796. * match.
  3797. */
  3798. /* Check timestamp */
  3799. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  3800. __be32 *ptr = (__be32 *)(th + 1);
  3801. /* No? Slow path! */
  3802. if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3803. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
  3804. goto slow_path;
  3805. tp->rx_opt.saw_tstamp = 1;
  3806. ++ptr;
  3807. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3808. ++ptr;
  3809. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3810. /* If PAWS failed, check it more carefully in slow path */
  3811. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  3812. goto slow_path;
  3813. /* DO NOT update ts_recent here, if checksum fails
  3814. * and timestamp was corrupted part, it will result
  3815. * in a hung connection since we will drop all
  3816. * future packets due to the PAWS test.
  3817. */
  3818. }
  3819. if (len <= tcp_header_len) {
  3820. /* Bulk data transfer: sender */
  3821. if (len == tcp_header_len) {
  3822. /* Predicted packet is in window by definition.
  3823. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  3824. * Hence, check seq<=rcv_wup reduces to:
  3825. */
  3826. if (tcp_header_len ==
  3827. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  3828. tp->rcv_nxt == tp->rcv_wup)
  3829. tcp_store_ts_recent(tp);
  3830. /* We know that such packets are checksummed
  3831. * on entry.
  3832. */
  3833. tcp_ack(sk, skb, 0);
  3834. __kfree_skb(skb);
  3835. tcp_data_snd_check(sk);
  3836. return 0;
  3837. } else { /* Header too small */
  3838. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  3839. goto discard;
  3840. }
  3841. } else {
  3842. int eaten = 0;
  3843. int copied_early = 0;
  3844. if (tp->copied_seq == tp->rcv_nxt &&
  3845. len - tcp_header_len <= tp->ucopy.len) {
  3846. #ifdef CONFIG_NET_DMA
  3847. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  3848. copied_early = 1;
  3849. eaten = 1;
  3850. }
  3851. #endif
  3852. if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
  3853. __set_current_state(TASK_RUNNING);
  3854. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  3855. eaten = 1;
  3856. }
  3857. if (eaten) {
  3858. /* Predicted packet is in window by definition.
  3859. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  3860. * Hence, check seq<=rcv_wup reduces to:
  3861. */
  3862. if (tcp_header_len ==
  3863. (sizeof(struct tcphdr) +
  3864. TCPOLEN_TSTAMP_ALIGNED) &&
  3865. tp->rcv_nxt == tp->rcv_wup)
  3866. tcp_store_ts_recent(tp);
  3867. tcp_rcv_rtt_measure_ts(sk, skb);
  3868. __skb_pull(skb, tcp_header_len);
  3869. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3870. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
  3871. }
  3872. if (copied_early)
  3873. tcp_cleanup_rbuf(sk, skb->len);
  3874. }
  3875. if (!eaten) {
  3876. if (tcp_checksum_complete_user(sk, skb))
  3877. goto csum_error;
  3878. /* Predicted packet is in window by definition.
  3879. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  3880. * Hence, check seq<=rcv_wup reduces to:
  3881. */
  3882. if (tcp_header_len ==
  3883. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  3884. tp->rcv_nxt == tp->rcv_wup)
  3885. tcp_store_ts_recent(tp);
  3886. tcp_rcv_rtt_measure_ts(sk, skb);
  3887. if ((int)skb->truesize > sk->sk_forward_alloc)
  3888. goto step5;
  3889. NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
  3890. /* Bulk data transfer: receiver */
  3891. __skb_pull(skb,tcp_header_len);
  3892. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3893. sk_stream_set_owner_r(skb, sk);
  3894. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3895. }
  3896. tcp_event_data_recv(sk, skb);
  3897. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  3898. /* Well, only one small jumplet in fast path... */
  3899. tcp_ack(sk, skb, FLAG_DATA);
  3900. tcp_data_snd_check(sk);
  3901. if (!inet_csk_ack_scheduled(sk))
  3902. goto no_ack;
  3903. }
  3904. __tcp_ack_snd_check(sk, 0);
  3905. no_ack:
  3906. #ifdef CONFIG_NET_DMA
  3907. if (copied_early)
  3908. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  3909. else
  3910. #endif
  3911. if (eaten)
  3912. __kfree_skb(skb);
  3913. else
  3914. sk->sk_data_ready(sk, 0);
  3915. return 0;
  3916. }
  3917. }
  3918. slow_path:
  3919. if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
  3920. goto csum_error;
  3921. /*
  3922. * RFC1323: H1. Apply PAWS check first.
  3923. */
  3924. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  3925. tcp_paws_discard(sk, skb)) {
  3926. if (!th->rst) {
  3927. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  3928. tcp_send_dupack(sk, skb);
  3929. goto discard;
  3930. }
  3931. /* Resets are accepted even if PAWS failed.
  3932. ts_recent update must be made after we are sure
  3933. that the packet is in window.
  3934. */
  3935. }
  3936. /*
  3937. * Standard slow path.
  3938. */
  3939. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  3940. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  3941. * (RST) segments are validated by checking their SEQ-fields."
  3942. * And page 69: "If an incoming segment is not acceptable,
  3943. * an acknowledgment should be sent in reply (unless the RST bit
  3944. * is set, if so drop the segment and return)".
  3945. */
  3946. if (!th->rst)
  3947. tcp_send_dupack(sk, skb);
  3948. goto discard;
  3949. }
  3950. if (th->rst) {
  3951. tcp_reset(sk);
  3952. goto discard;
  3953. }
  3954. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  3955. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3956. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  3957. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  3958. tcp_reset(sk);
  3959. return 1;
  3960. }
  3961. step5:
  3962. if (th->ack)
  3963. tcp_ack(sk, skb, FLAG_SLOWPATH);
  3964. tcp_rcv_rtt_measure_ts(sk, skb);
  3965. /* Process urgent data. */
  3966. tcp_urg(sk, skb, th);
  3967. /* step 7: process the segment text */
  3968. tcp_data_queue(sk, skb);
  3969. tcp_data_snd_check(sk);
  3970. tcp_ack_snd_check(sk);
  3971. return 0;
  3972. csum_error:
  3973. TCP_INC_STATS_BH(TCP_MIB_INERRS);
  3974. discard:
  3975. __kfree_skb(skb);
  3976. return 0;
  3977. }
  3978. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  3979. struct tcphdr *th, unsigned len)
  3980. {
  3981. struct tcp_sock *tp = tcp_sk(sk);
  3982. struct inet_connection_sock *icsk = inet_csk(sk);
  3983. int saved_clamp = tp->rx_opt.mss_clamp;
  3984. tcp_parse_options(skb, &tp->rx_opt, 0);
  3985. if (th->ack) {
  3986. /* rfc793:
  3987. * "If the state is SYN-SENT then
  3988. * first check the ACK bit
  3989. * If the ACK bit is set
  3990. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  3991. * a reset (unless the RST bit is set, if so drop
  3992. * the segment and return)"
  3993. *
  3994. * We do not send data with SYN, so that RFC-correct
  3995. * test reduces to:
  3996. */
  3997. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  3998. goto reset_and_undo;
  3999. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4000. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4001. tcp_time_stamp)) {
  4002. NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
  4003. goto reset_and_undo;
  4004. }
  4005. /* Now ACK is acceptable.
  4006. *
  4007. * "If the RST bit is set
  4008. * If the ACK was acceptable then signal the user "error:
  4009. * connection reset", drop the segment, enter CLOSED state,
  4010. * delete TCB, and return."
  4011. */
  4012. if (th->rst) {
  4013. tcp_reset(sk);
  4014. goto discard;
  4015. }
  4016. /* rfc793:
  4017. * "fifth, if neither of the SYN or RST bits is set then
  4018. * drop the segment and return."
  4019. *
  4020. * See note below!
  4021. * --ANK(990513)
  4022. */
  4023. if (!th->syn)
  4024. goto discard_and_undo;
  4025. /* rfc793:
  4026. * "If the SYN bit is on ...
  4027. * are acceptable then ...
  4028. * (our SYN has been ACKed), change the connection
  4029. * state to ESTABLISHED..."
  4030. */
  4031. TCP_ECN_rcv_synack(tp, th);
  4032. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4033. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4034. /* Ok.. it's good. Set up sequence numbers and
  4035. * move to established.
  4036. */
  4037. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4038. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4039. /* RFC1323: The window in SYN & SYN/ACK segments is
  4040. * never scaled.
  4041. */
  4042. tp->snd_wnd = ntohs(th->window);
  4043. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  4044. if (!tp->rx_opt.wscale_ok) {
  4045. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4046. tp->window_clamp = min(tp->window_clamp, 65535U);
  4047. }
  4048. if (tp->rx_opt.saw_tstamp) {
  4049. tp->rx_opt.tstamp_ok = 1;
  4050. tp->tcp_header_len =
  4051. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4052. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4053. tcp_store_ts_recent(tp);
  4054. } else {
  4055. tp->tcp_header_len = sizeof(struct tcphdr);
  4056. }
  4057. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4058. tcp_enable_fack(tp);
  4059. tcp_mtup_init(sk);
  4060. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4061. tcp_initialize_rcv_mss(sk);
  4062. /* Remember, tcp_poll() does not lock socket!
  4063. * Change state from SYN-SENT only after copied_seq
  4064. * is initialized. */
  4065. tp->copied_seq = tp->rcv_nxt;
  4066. smp_mb();
  4067. tcp_set_state(sk, TCP_ESTABLISHED);
  4068. security_inet_conn_established(sk, skb);
  4069. /* Make sure socket is routed, for correct metrics. */
  4070. icsk->icsk_af_ops->rebuild_header(sk);
  4071. tcp_init_metrics(sk);
  4072. tcp_init_congestion_control(sk);
  4073. /* Prevent spurious tcp_cwnd_restart() on first data
  4074. * packet.
  4075. */
  4076. tp->lsndtime = tcp_time_stamp;
  4077. tcp_init_buffer_space(sk);
  4078. if (sock_flag(sk, SOCK_KEEPOPEN))
  4079. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4080. if (!tp->rx_opt.snd_wscale)
  4081. __tcp_fast_path_on(tp, tp->snd_wnd);
  4082. else
  4083. tp->pred_flags = 0;
  4084. if (!sock_flag(sk, SOCK_DEAD)) {
  4085. sk->sk_state_change(sk);
  4086. sk_wake_async(sk, 0, POLL_OUT);
  4087. }
  4088. if (sk->sk_write_pending ||
  4089. icsk->icsk_accept_queue.rskq_defer_accept ||
  4090. icsk->icsk_ack.pingpong) {
  4091. /* Save one ACK. Data will be ready after
  4092. * several ticks, if write_pending is set.
  4093. *
  4094. * It may be deleted, but with this feature tcpdumps
  4095. * look so _wonderfully_ clever, that I was not able
  4096. * to stand against the temptation 8) --ANK
  4097. */
  4098. inet_csk_schedule_ack(sk);
  4099. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4100. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4101. tcp_incr_quickack(sk);
  4102. tcp_enter_quickack_mode(sk);
  4103. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4104. TCP_DELACK_MAX, TCP_RTO_MAX);
  4105. discard:
  4106. __kfree_skb(skb);
  4107. return 0;
  4108. } else {
  4109. tcp_send_ack(sk);
  4110. }
  4111. return -1;
  4112. }
  4113. /* No ACK in the segment */
  4114. if (th->rst) {
  4115. /* rfc793:
  4116. * "If the RST bit is set
  4117. *
  4118. * Otherwise (no ACK) drop the segment and return."
  4119. */
  4120. goto discard_and_undo;
  4121. }
  4122. /* PAWS check. */
  4123. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
  4124. goto discard_and_undo;
  4125. if (th->syn) {
  4126. /* We see SYN without ACK. It is attempt of
  4127. * simultaneous connect with crossed SYNs.
  4128. * Particularly, it can be connect to self.
  4129. */
  4130. tcp_set_state(sk, TCP_SYN_RECV);
  4131. if (tp->rx_opt.saw_tstamp) {
  4132. tp->rx_opt.tstamp_ok = 1;
  4133. tcp_store_ts_recent(tp);
  4134. tp->tcp_header_len =
  4135. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4136. } else {
  4137. tp->tcp_header_len = sizeof(struct tcphdr);
  4138. }
  4139. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4140. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4141. /* RFC1323: The window in SYN & SYN/ACK segments is
  4142. * never scaled.
  4143. */
  4144. tp->snd_wnd = ntohs(th->window);
  4145. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4146. tp->max_window = tp->snd_wnd;
  4147. TCP_ECN_rcv_syn(tp, th);
  4148. tcp_mtup_init(sk);
  4149. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4150. tcp_initialize_rcv_mss(sk);
  4151. tcp_send_synack(sk);
  4152. #if 0
  4153. /* Note, we could accept data and URG from this segment.
  4154. * There are no obstacles to make this.
  4155. *
  4156. * However, if we ignore data in ACKless segments sometimes,
  4157. * we have no reasons to accept it sometimes.
  4158. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4159. * is not flawless. So, discard packet for sanity.
  4160. * Uncomment this return to process the data.
  4161. */
  4162. return -1;
  4163. #else
  4164. goto discard;
  4165. #endif
  4166. }
  4167. /* "fifth, if neither of the SYN or RST bits is set then
  4168. * drop the segment and return."
  4169. */
  4170. discard_and_undo:
  4171. tcp_clear_options(&tp->rx_opt);
  4172. tp->rx_opt.mss_clamp = saved_clamp;
  4173. goto discard;
  4174. reset_and_undo:
  4175. tcp_clear_options(&tp->rx_opt);
  4176. tp->rx_opt.mss_clamp = saved_clamp;
  4177. return 1;
  4178. }
  4179. /*
  4180. * This function implements the receiving procedure of RFC 793 for
  4181. * all states except ESTABLISHED and TIME_WAIT.
  4182. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4183. * address independent.
  4184. */
  4185. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4186. struct tcphdr *th, unsigned len)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. struct inet_connection_sock *icsk = inet_csk(sk);
  4190. int queued = 0;
  4191. tp->rx_opt.saw_tstamp = 0;
  4192. switch (sk->sk_state) {
  4193. case TCP_CLOSE:
  4194. goto discard;
  4195. case TCP_LISTEN:
  4196. if (th->ack)
  4197. return 1;
  4198. if (th->rst)
  4199. goto discard;
  4200. if (th->syn) {
  4201. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4202. return 1;
  4203. /* Now we have several options: In theory there is
  4204. * nothing else in the frame. KA9Q has an option to
  4205. * send data with the syn, BSD accepts data with the
  4206. * syn up to the [to be] advertised window and
  4207. * Solaris 2.1 gives you a protocol error. For now
  4208. * we just ignore it, that fits the spec precisely
  4209. * and avoids incompatibilities. It would be nice in
  4210. * future to drop through and process the data.
  4211. *
  4212. * Now that TTCP is starting to be used we ought to
  4213. * queue this data.
  4214. * But, this leaves one open to an easy denial of
  4215. * service attack, and SYN cookies can't defend
  4216. * against this problem. So, we drop the data
  4217. * in the interest of security over speed unless
  4218. * it's still in use.
  4219. */
  4220. kfree_skb(skb);
  4221. return 0;
  4222. }
  4223. goto discard;
  4224. case TCP_SYN_SENT:
  4225. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4226. if (queued >= 0)
  4227. return queued;
  4228. /* Do step6 onward by hand. */
  4229. tcp_urg(sk, skb, th);
  4230. __kfree_skb(skb);
  4231. tcp_data_snd_check(sk);
  4232. return 0;
  4233. }
  4234. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4235. tcp_paws_discard(sk, skb)) {
  4236. if (!th->rst) {
  4237. NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
  4238. tcp_send_dupack(sk, skb);
  4239. goto discard;
  4240. }
  4241. /* Reset is accepted even if it did not pass PAWS. */
  4242. }
  4243. /* step 1: check sequence number */
  4244. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4245. if (!th->rst)
  4246. tcp_send_dupack(sk, skb);
  4247. goto discard;
  4248. }
  4249. /* step 2: check RST bit */
  4250. if (th->rst) {
  4251. tcp_reset(sk);
  4252. goto discard;
  4253. }
  4254. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4255. /* step 3: check security and precedence [ignored] */
  4256. /* step 4:
  4257. *
  4258. * Check for a SYN in window.
  4259. */
  4260. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4261. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
  4262. tcp_reset(sk);
  4263. return 1;
  4264. }
  4265. /* step 5: check the ACK field */
  4266. if (th->ack) {
  4267. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4268. switch (sk->sk_state) {
  4269. case TCP_SYN_RECV:
  4270. if (acceptable) {
  4271. tp->copied_seq = tp->rcv_nxt;
  4272. smp_mb();
  4273. tcp_set_state(sk, TCP_ESTABLISHED);
  4274. sk->sk_state_change(sk);
  4275. /* Note, that this wakeup is only for marginal
  4276. * crossed SYN case. Passively open sockets
  4277. * are not waked up, because sk->sk_sleep ==
  4278. * NULL and sk->sk_socket == NULL.
  4279. */
  4280. if (sk->sk_socket) {
  4281. sk_wake_async(sk,0,POLL_OUT);
  4282. }
  4283. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4284. tp->snd_wnd = ntohs(th->window) <<
  4285. tp->rx_opt.snd_wscale;
  4286. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4287. TCP_SKB_CB(skb)->seq);
  4288. /* tcp_ack considers this ACK as duplicate
  4289. * and does not calculate rtt.
  4290. * Fix it at least with timestamps.
  4291. */
  4292. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4293. !tp->srtt)
  4294. tcp_ack_saw_tstamp(sk, 0);
  4295. if (tp->rx_opt.tstamp_ok)
  4296. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4297. /* Make sure socket is routed, for
  4298. * correct metrics.
  4299. */
  4300. icsk->icsk_af_ops->rebuild_header(sk);
  4301. tcp_init_metrics(sk);
  4302. tcp_init_congestion_control(sk);
  4303. /* Prevent spurious tcp_cwnd_restart() on
  4304. * first data packet.
  4305. */
  4306. tp->lsndtime = tcp_time_stamp;
  4307. tcp_mtup_init(sk);
  4308. tcp_initialize_rcv_mss(sk);
  4309. tcp_init_buffer_space(sk);
  4310. tcp_fast_path_on(tp);
  4311. } else {
  4312. return 1;
  4313. }
  4314. break;
  4315. case TCP_FIN_WAIT1:
  4316. if (tp->snd_una == tp->write_seq) {
  4317. tcp_set_state(sk, TCP_FIN_WAIT2);
  4318. sk->sk_shutdown |= SEND_SHUTDOWN;
  4319. dst_confirm(sk->sk_dst_cache);
  4320. if (!sock_flag(sk, SOCK_DEAD))
  4321. /* Wake up lingering close() */
  4322. sk->sk_state_change(sk);
  4323. else {
  4324. int tmo;
  4325. if (tp->linger2 < 0 ||
  4326. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4327. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4328. tcp_done(sk);
  4329. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4330. return 1;
  4331. }
  4332. tmo = tcp_fin_time(sk);
  4333. if (tmo > TCP_TIMEWAIT_LEN) {
  4334. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4335. } else if (th->fin || sock_owned_by_user(sk)) {
  4336. /* Bad case. We could lose such FIN otherwise.
  4337. * It is not a big problem, but it looks confusing
  4338. * and not so rare event. We still can lose it now,
  4339. * if it spins in bh_lock_sock(), but it is really
  4340. * marginal case.
  4341. */
  4342. inet_csk_reset_keepalive_timer(sk, tmo);
  4343. } else {
  4344. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4345. goto discard;
  4346. }
  4347. }
  4348. }
  4349. break;
  4350. case TCP_CLOSING:
  4351. if (tp->snd_una == tp->write_seq) {
  4352. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4353. goto discard;
  4354. }
  4355. break;
  4356. case TCP_LAST_ACK:
  4357. if (tp->snd_una == tp->write_seq) {
  4358. tcp_update_metrics(sk);
  4359. tcp_done(sk);
  4360. goto discard;
  4361. }
  4362. break;
  4363. }
  4364. } else
  4365. goto discard;
  4366. /* step 6: check the URG bit */
  4367. tcp_urg(sk, skb, th);
  4368. /* step 7: process the segment text */
  4369. switch (sk->sk_state) {
  4370. case TCP_CLOSE_WAIT:
  4371. case TCP_CLOSING:
  4372. case TCP_LAST_ACK:
  4373. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4374. break;
  4375. case TCP_FIN_WAIT1:
  4376. case TCP_FIN_WAIT2:
  4377. /* RFC 793 says to queue data in these states,
  4378. * RFC 1122 says we MUST send a reset.
  4379. * BSD 4.4 also does reset.
  4380. */
  4381. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4382. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4383. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4384. NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
  4385. tcp_reset(sk);
  4386. return 1;
  4387. }
  4388. }
  4389. /* Fall through */
  4390. case TCP_ESTABLISHED:
  4391. tcp_data_queue(sk, skb);
  4392. queued = 1;
  4393. break;
  4394. }
  4395. /* tcp_data could move socket to TIME-WAIT */
  4396. if (sk->sk_state != TCP_CLOSE) {
  4397. tcp_data_snd_check(sk);
  4398. tcp_ack_snd_check(sk);
  4399. }
  4400. if (!queued) {
  4401. discard:
  4402. __kfree_skb(skb);
  4403. }
  4404. return 0;
  4405. }
  4406. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4407. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4408. EXPORT_SYMBOL(tcp_parse_options);
  4409. EXPORT_SYMBOL(tcp_rcv_established);
  4410. EXPORT_SYMBOL(tcp_rcv_state_process);
  4411. EXPORT_SYMBOL(tcp_initialize_rcv_mss);