i915_gem.c 136 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. struct change_domains {
  37. uint32_t invalidate_domains;
  38. uint32_t flush_domains;
  39. uint32_t flush_rings;
  40. };
  41. static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
  42. static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
  43. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  44. bool pipelined);
  45. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  46. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  47. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  48. int write);
  49. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  50. uint64_t offset,
  51. uint64_t size);
  52. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  53. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  54. bool interruptible);
  55. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  56. unsigned alignment,
  57. bool map_and_fenceable);
  58. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  59. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  60. struct drm_i915_gem_pwrite *args,
  61. struct drm_file *file_priv);
  62. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  63. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  64. int nr_to_scan,
  65. gfp_t gfp_mask);
  66. /* some bookkeeping */
  67. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  68. size_t size)
  69. {
  70. dev_priv->mm.object_count++;
  71. dev_priv->mm.object_memory += size;
  72. }
  73. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  74. size_t size)
  75. {
  76. dev_priv->mm.object_count--;
  77. dev_priv->mm.object_memory -= size;
  78. }
  79. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  80. struct drm_i915_gem_object *obj)
  81. {
  82. dev_priv->mm.gtt_count++;
  83. dev_priv->mm.gtt_memory += obj->gtt_space->size;
  84. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  85. dev_priv->mm.mappable_gtt_used +=
  86. min_t(size_t, obj->gtt_space->size,
  87. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  88. }
  89. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  90. }
  91. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  92. struct drm_i915_gem_object *obj)
  93. {
  94. dev_priv->mm.gtt_count--;
  95. dev_priv->mm.gtt_memory -= obj->gtt_space->size;
  96. if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
  97. dev_priv->mm.mappable_gtt_used -=
  98. min_t(size_t, obj->gtt_space->size,
  99. dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
  100. }
  101. list_del_init(&obj->gtt_list);
  102. }
  103. /**
  104. * Update the mappable working set counters. Call _only_ when there is a change
  105. * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
  106. * @mappable: new state the changed mappable flag (either pin_ or fault_).
  107. */
  108. static void
  109. i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
  110. struct drm_i915_gem_object *obj,
  111. bool mappable)
  112. {
  113. if (mappable) {
  114. if (obj->pin_mappable && obj->fault_mappable)
  115. /* Combined state was already mappable. */
  116. return;
  117. dev_priv->mm.gtt_mappable_count++;
  118. dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
  119. } else {
  120. if (obj->pin_mappable || obj->fault_mappable)
  121. /* Combined state still mappable. */
  122. return;
  123. dev_priv->mm.gtt_mappable_count--;
  124. dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
  125. }
  126. }
  127. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  128. struct drm_i915_gem_object *obj,
  129. bool mappable)
  130. {
  131. dev_priv->mm.pin_count++;
  132. dev_priv->mm.pin_memory += obj->gtt_space->size;
  133. if (mappable) {
  134. obj->pin_mappable = true;
  135. i915_gem_info_update_mappable(dev_priv, obj, true);
  136. }
  137. }
  138. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  139. struct drm_i915_gem_object *obj)
  140. {
  141. dev_priv->mm.pin_count--;
  142. dev_priv->mm.pin_memory -= obj->gtt_space->size;
  143. if (obj->pin_mappable) {
  144. obj->pin_mappable = false;
  145. i915_gem_info_update_mappable(dev_priv, obj, false);
  146. }
  147. }
  148. int
  149. i915_gem_check_is_wedged(struct drm_device *dev)
  150. {
  151. struct drm_i915_private *dev_priv = dev->dev_private;
  152. struct completion *x = &dev_priv->error_completion;
  153. unsigned long flags;
  154. int ret;
  155. if (!atomic_read(&dev_priv->mm.wedged))
  156. return 0;
  157. ret = wait_for_completion_interruptible(x);
  158. if (ret)
  159. return ret;
  160. /* Success, we reset the GPU! */
  161. if (!atomic_read(&dev_priv->mm.wedged))
  162. return 0;
  163. /* GPU is hung, bump the completion count to account for
  164. * the token we just consumed so that we never hit zero and
  165. * end up waiting upon a subsequent completion event that
  166. * will never happen.
  167. */
  168. spin_lock_irqsave(&x->wait.lock, flags);
  169. x->done++;
  170. spin_unlock_irqrestore(&x->wait.lock, flags);
  171. return -EIO;
  172. }
  173. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  174. {
  175. struct drm_i915_private *dev_priv = dev->dev_private;
  176. int ret;
  177. ret = i915_gem_check_is_wedged(dev);
  178. if (ret)
  179. return ret;
  180. ret = mutex_lock_interruptible(&dev->struct_mutex);
  181. if (ret)
  182. return ret;
  183. if (atomic_read(&dev_priv->mm.wedged)) {
  184. mutex_unlock(&dev->struct_mutex);
  185. return -EAGAIN;
  186. }
  187. WARN_ON(i915_verify_lists(dev));
  188. return 0;
  189. }
  190. static inline bool
  191. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  192. {
  193. return obj_priv->gtt_space &&
  194. !obj_priv->active &&
  195. obj_priv->pin_count == 0;
  196. }
  197. int i915_gem_do_init(struct drm_device *dev,
  198. unsigned long start,
  199. unsigned long mappable_end,
  200. unsigned long end)
  201. {
  202. drm_i915_private_t *dev_priv = dev->dev_private;
  203. if (start >= end ||
  204. (start & (PAGE_SIZE - 1)) != 0 ||
  205. (end & (PAGE_SIZE - 1)) != 0) {
  206. return -EINVAL;
  207. }
  208. drm_mm_init(&dev_priv->mm.gtt_space, start,
  209. end - start);
  210. dev_priv->mm.gtt_total = end - start;
  211. dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
  212. dev_priv->mm.gtt_mappable_end = mappable_end;
  213. return 0;
  214. }
  215. int
  216. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  217. struct drm_file *file_priv)
  218. {
  219. struct drm_i915_gem_init *args = data;
  220. int ret;
  221. mutex_lock(&dev->struct_mutex);
  222. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
  223. mutex_unlock(&dev->struct_mutex);
  224. return ret;
  225. }
  226. int
  227. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  228. struct drm_file *file_priv)
  229. {
  230. struct drm_i915_private *dev_priv = dev->dev_private;
  231. struct drm_i915_gem_get_aperture *args = data;
  232. if (!(dev->driver->driver_features & DRIVER_GEM))
  233. return -ENODEV;
  234. mutex_lock(&dev->struct_mutex);
  235. args->aper_size = dev_priv->mm.gtt_total;
  236. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  237. mutex_unlock(&dev->struct_mutex);
  238. return 0;
  239. }
  240. /**
  241. * Creates a new mm object and returns a handle to it.
  242. */
  243. int
  244. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  245. struct drm_file *file_priv)
  246. {
  247. struct drm_i915_gem_create *args = data;
  248. struct drm_gem_object *obj;
  249. int ret;
  250. u32 handle;
  251. args->size = roundup(args->size, PAGE_SIZE);
  252. /* Allocate the new object */
  253. obj = i915_gem_alloc_object(dev, args->size);
  254. if (obj == NULL)
  255. return -ENOMEM;
  256. ret = drm_gem_handle_create(file_priv, obj, &handle);
  257. if (ret) {
  258. drm_gem_object_release(obj);
  259. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  260. kfree(obj);
  261. return ret;
  262. }
  263. /* drop reference from allocate - handle holds it now */
  264. drm_gem_object_unreference(obj);
  265. trace_i915_gem_object_create(obj);
  266. args->handle = handle;
  267. return 0;
  268. }
  269. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  270. {
  271. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  272. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  273. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  274. obj_priv->tiling_mode != I915_TILING_NONE;
  275. }
  276. static inline void
  277. slow_shmem_copy(struct page *dst_page,
  278. int dst_offset,
  279. struct page *src_page,
  280. int src_offset,
  281. int length)
  282. {
  283. char *dst_vaddr, *src_vaddr;
  284. dst_vaddr = kmap(dst_page);
  285. src_vaddr = kmap(src_page);
  286. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  287. kunmap(src_page);
  288. kunmap(dst_page);
  289. }
  290. static inline void
  291. slow_shmem_bit17_copy(struct page *gpu_page,
  292. int gpu_offset,
  293. struct page *cpu_page,
  294. int cpu_offset,
  295. int length,
  296. int is_read)
  297. {
  298. char *gpu_vaddr, *cpu_vaddr;
  299. /* Use the unswizzled path if this page isn't affected. */
  300. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  301. if (is_read)
  302. return slow_shmem_copy(cpu_page, cpu_offset,
  303. gpu_page, gpu_offset, length);
  304. else
  305. return slow_shmem_copy(gpu_page, gpu_offset,
  306. cpu_page, cpu_offset, length);
  307. }
  308. gpu_vaddr = kmap(gpu_page);
  309. cpu_vaddr = kmap(cpu_page);
  310. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  311. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  312. */
  313. while (length > 0) {
  314. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  315. int this_length = min(cacheline_end - gpu_offset, length);
  316. int swizzled_gpu_offset = gpu_offset ^ 64;
  317. if (is_read) {
  318. memcpy(cpu_vaddr + cpu_offset,
  319. gpu_vaddr + swizzled_gpu_offset,
  320. this_length);
  321. } else {
  322. memcpy(gpu_vaddr + swizzled_gpu_offset,
  323. cpu_vaddr + cpu_offset,
  324. this_length);
  325. }
  326. cpu_offset += this_length;
  327. gpu_offset += this_length;
  328. length -= this_length;
  329. }
  330. kunmap(cpu_page);
  331. kunmap(gpu_page);
  332. }
  333. /**
  334. * This is the fast shmem pread path, which attempts to copy_from_user directly
  335. * from the backing pages of the object to the user's address space. On a
  336. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  337. */
  338. static int
  339. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  340. struct drm_i915_gem_pread *args,
  341. struct drm_file *file_priv)
  342. {
  343. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  344. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  345. ssize_t remain;
  346. loff_t offset;
  347. char __user *user_data;
  348. int page_offset, page_length;
  349. user_data = (char __user *) (uintptr_t) args->data_ptr;
  350. remain = args->size;
  351. obj_priv = to_intel_bo(obj);
  352. offset = args->offset;
  353. while (remain > 0) {
  354. struct page *page;
  355. char *vaddr;
  356. int ret;
  357. /* Operation in this page
  358. *
  359. * page_offset = offset within page
  360. * page_length = bytes to copy for this page
  361. */
  362. page_offset = offset & (PAGE_SIZE-1);
  363. page_length = remain;
  364. if ((page_offset + remain) > PAGE_SIZE)
  365. page_length = PAGE_SIZE - page_offset;
  366. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  367. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  368. if (IS_ERR(page))
  369. return PTR_ERR(page);
  370. vaddr = kmap_atomic(page);
  371. ret = __copy_to_user_inatomic(user_data,
  372. vaddr + page_offset,
  373. page_length);
  374. kunmap_atomic(vaddr);
  375. mark_page_accessed(page);
  376. page_cache_release(page);
  377. if (ret)
  378. return -EFAULT;
  379. remain -= page_length;
  380. user_data += page_length;
  381. offset += page_length;
  382. }
  383. return 0;
  384. }
  385. /**
  386. * This is the fallback shmem pread path, which allocates temporary storage
  387. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  388. * can copy out of the object's backing pages while holding the struct mutex
  389. * and not take page faults.
  390. */
  391. static int
  392. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  393. struct drm_i915_gem_pread *args,
  394. struct drm_file *file_priv)
  395. {
  396. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  397. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  398. struct mm_struct *mm = current->mm;
  399. struct page **user_pages;
  400. ssize_t remain;
  401. loff_t offset, pinned_pages, i;
  402. loff_t first_data_page, last_data_page, num_pages;
  403. int shmem_page_offset;
  404. int data_page_index, data_page_offset;
  405. int page_length;
  406. int ret;
  407. uint64_t data_ptr = args->data_ptr;
  408. int do_bit17_swizzling;
  409. remain = args->size;
  410. /* Pin the user pages containing the data. We can't fault while
  411. * holding the struct mutex, yet we want to hold it while
  412. * dereferencing the user data.
  413. */
  414. first_data_page = data_ptr / PAGE_SIZE;
  415. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  416. num_pages = last_data_page - first_data_page + 1;
  417. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  418. if (user_pages == NULL)
  419. return -ENOMEM;
  420. mutex_unlock(&dev->struct_mutex);
  421. down_read(&mm->mmap_sem);
  422. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  423. num_pages, 1, 0, user_pages, NULL);
  424. up_read(&mm->mmap_sem);
  425. mutex_lock(&dev->struct_mutex);
  426. if (pinned_pages < num_pages) {
  427. ret = -EFAULT;
  428. goto out;
  429. }
  430. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  431. args->offset,
  432. args->size);
  433. if (ret)
  434. goto out;
  435. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  436. obj_priv = to_intel_bo(obj);
  437. offset = args->offset;
  438. while (remain > 0) {
  439. struct page *page;
  440. /* Operation in this page
  441. *
  442. * shmem_page_offset = offset within page in shmem file
  443. * data_page_index = page number in get_user_pages return
  444. * data_page_offset = offset with data_page_index page.
  445. * page_length = bytes to copy for this page
  446. */
  447. shmem_page_offset = offset & ~PAGE_MASK;
  448. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  449. data_page_offset = data_ptr & ~PAGE_MASK;
  450. page_length = remain;
  451. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  452. page_length = PAGE_SIZE - shmem_page_offset;
  453. if ((data_page_offset + page_length) > PAGE_SIZE)
  454. page_length = PAGE_SIZE - data_page_offset;
  455. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  456. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  457. if (IS_ERR(page))
  458. return PTR_ERR(page);
  459. if (do_bit17_swizzling) {
  460. slow_shmem_bit17_copy(page,
  461. shmem_page_offset,
  462. user_pages[data_page_index],
  463. data_page_offset,
  464. page_length,
  465. 1);
  466. } else {
  467. slow_shmem_copy(user_pages[data_page_index],
  468. data_page_offset,
  469. page,
  470. shmem_page_offset,
  471. page_length);
  472. }
  473. mark_page_accessed(page);
  474. page_cache_release(page);
  475. remain -= page_length;
  476. data_ptr += page_length;
  477. offset += page_length;
  478. }
  479. out:
  480. for (i = 0; i < pinned_pages; i++) {
  481. SetPageDirty(user_pages[i]);
  482. mark_page_accessed(user_pages[i]);
  483. page_cache_release(user_pages[i]);
  484. }
  485. drm_free_large(user_pages);
  486. return ret;
  487. }
  488. /**
  489. * Reads data from the object referenced by handle.
  490. *
  491. * On error, the contents of *data are undefined.
  492. */
  493. int
  494. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  495. struct drm_file *file_priv)
  496. {
  497. struct drm_i915_gem_pread *args = data;
  498. struct drm_gem_object *obj;
  499. struct drm_i915_gem_object *obj_priv;
  500. int ret = 0;
  501. if (args->size == 0)
  502. return 0;
  503. if (!access_ok(VERIFY_WRITE,
  504. (char __user *)(uintptr_t)args->data_ptr,
  505. args->size))
  506. return -EFAULT;
  507. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  508. args->size);
  509. if (ret)
  510. return -EFAULT;
  511. ret = i915_mutex_lock_interruptible(dev);
  512. if (ret)
  513. return ret;
  514. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  515. if (obj == NULL) {
  516. ret = -ENOENT;
  517. goto unlock;
  518. }
  519. obj_priv = to_intel_bo(obj);
  520. /* Bounds check source. */
  521. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  522. ret = -EINVAL;
  523. goto out;
  524. }
  525. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  526. args->offset,
  527. args->size);
  528. if (ret)
  529. goto out;
  530. ret = -EFAULT;
  531. if (!i915_gem_object_needs_bit17_swizzle(obj))
  532. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  533. if (ret == -EFAULT)
  534. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  535. out:
  536. drm_gem_object_unreference(obj);
  537. unlock:
  538. mutex_unlock(&dev->struct_mutex);
  539. return ret;
  540. }
  541. /* This is the fast write path which cannot handle
  542. * page faults in the source data
  543. */
  544. static inline int
  545. fast_user_write(struct io_mapping *mapping,
  546. loff_t page_base, int page_offset,
  547. char __user *user_data,
  548. int length)
  549. {
  550. char *vaddr_atomic;
  551. unsigned long unwritten;
  552. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  553. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  554. user_data, length);
  555. io_mapping_unmap_atomic(vaddr_atomic);
  556. return unwritten;
  557. }
  558. /* Here's the write path which can sleep for
  559. * page faults
  560. */
  561. static inline void
  562. slow_kernel_write(struct io_mapping *mapping,
  563. loff_t gtt_base, int gtt_offset,
  564. struct page *user_page, int user_offset,
  565. int length)
  566. {
  567. char __iomem *dst_vaddr;
  568. char *src_vaddr;
  569. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  570. src_vaddr = kmap(user_page);
  571. memcpy_toio(dst_vaddr + gtt_offset,
  572. src_vaddr + user_offset,
  573. length);
  574. kunmap(user_page);
  575. io_mapping_unmap(dst_vaddr);
  576. }
  577. /**
  578. * This is the fast pwrite path, where we copy the data directly from the
  579. * user into the GTT, uncached.
  580. */
  581. static int
  582. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  583. struct drm_i915_gem_pwrite *args,
  584. struct drm_file *file_priv)
  585. {
  586. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  587. drm_i915_private_t *dev_priv = dev->dev_private;
  588. ssize_t remain;
  589. loff_t offset, page_base;
  590. char __user *user_data;
  591. int page_offset, page_length;
  592. user_data = (char __user *) (uintptr_t) args->data_ptr;
  593. remain = args->size;
  594. obj_priv = to_intel_bo(obj);
  595. offset = obj_priv->gtt_offset + args->offset;
  596. while (remain > 0) {
  597. /* Operation in this page
  598. *
  599. * page_base = page offset within aperture
  600. * page_offset = offset within page
  601. * page_length = bytes to copy for this page
  602. */
  603. page_base = (offset & ~(PAGE_SIZE-1));
  604. page_offset = offset & (PAGE_SIZE-1);
  605. page_length = remain;
  606. if ((page_offset + remain) > PAGE_SIZE)
  607. page_length = PAGE_SIZE - page_offset;
  608. /* If we get a fault while copying data, then (presumably) our
  609. * source page isn't available. Return the error and we'll
  610. * retry in the slow path.
  611. */
  612. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  613. page_offset, user_data, page_length))
  614. return -EFAULT;
  615. remain -= page_length;
  616. user_data += page_length;
  617. offset += page_length;
  618. }
  619. return 0;
  620. }
  621. /**
  622. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  623. * the memory and maps it using kmap_atomic for copying.
  624. *
  625. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  626. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  627. */
  628. static int
  629. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  630. struct drm_i915_gem_pwrite *args,
  631. struct drm_file *file_priv)
  632. {
  633. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  634. drm_i915_private_t *dev_priv = dev->dev_private;
  635. ssize_t remain;
  636. loff_t gtt_page_base, offset;
  637. loff_t first_data_page, last_data_page, num_pages;
  638. loff_t pinned_pages, i;
  639. struct page **user_pages;
  640. struct mm_struct *mm = current->mm;
  641. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  642. int ret;
  643. uint64_t data_ptr = args->data_ptr;
  644. remain = args->size;
  645. /* Pin the user pages containing the data. We can't fault while
  646. * holding the struct mutex, and all of the pwrite implementations
  647. * want to hold it while dereferencing the user data.
  648. */
  649. first_data_page = data_ptr / PAGE_SIZE;
  650. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  651. num_pages = last_data_page - first_data_page + 1;
  652. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  653. if (user_pages == NULL)
  654. return -ENOMEM;
  655. mutex_unlock(&dev->struct_mutex);
  656. down_read(&mm->mmap_sem);
  657. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  658. num_pages, 0, 0, user_pages, NULL);
  659. up_read(&mm->mmap_sem);
  660. mutex_lock(&dev->struct_mutex);
  661. if (pinned_pages < num_pages) {
  662. ret = -EFAULT;
  663. goto out_unpin_pages;
  664. }
  665. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  666. if (ret)
  667. goto out_unpin_pages;
  668. obj_priv = to_intel_bo(obj);
  669. offset = obj_priv->gtt_offset + args->offset;
  670. while (remain > 0) {
  671. /* Operation in this page
  672. *
  673. * gtt_page_base = page offset within aperture
  674. * gtt_page_offset = offset within page in aperture
  675. * data_page_index = page number in get_user_pages return
  676. * data_page_offset = offset with data_page_index page.
  677. * page_length = bytes to copy for this page
  678. */
  679. gtt_page_base = offset & PAGE_MASK;
  680. gtt_page_offset = offset & ~PAGE_MASK;
  681. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  682. data_page_offset = data_ptr & ~PAGE_MASK;
  683. page_length = remain;
  684. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  685. page_length = PAGE_SIZE - gtt_page_offset;
  686. if ((data_page_offset + page_length) > PAGE_SIZE)
  687. page_length = PAGE_SIZE - data_page_offset;
  688. slow_kernel_write(dev_priv->mm.gtt_mapping,
  689. gtt_page_base, gtt_page_offset,
  690. user_pages[data_page_index],
  691. data_page_offset,
  692. page_length);
  693. remain -= page_length;
  694. offset += page_length;
  695. data_ptr += page_length;
  696. }
  697. out_unpin_pages:
  698. for (i = 0; i < pinned_pages; i++)
  699. page_cache_release(user_pages[i]);
  700. drm_free_large(user_pages);
  701. return ret;
  702. }
  703. /**
  704. * This is the fast shmem pwrite path, which attempts to directly
  705. * copy_from_user into the kmapped pages backing the object.
  706. */
  707. static int
  708. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  709. struct drm_i915_gem_pwrite *args,
  710. struct drm_file *file_priv)
  711. {
  712. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  713. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  714. ssize_t remain;
  715. loff_t offset;
  716. char __user *user_data;
  717. int page_offset, page_length;
  718. user_data = (char __user *) (uintptr_t) args->data_ptr;
  719. remain = args->size;
  720. obj_priv = to_intel_bo(obj);
  721. offset = args->offset;
  722. obj_priv->dirty = 1;
  723. while (remain > 0) {
  724. struct page *page;
  725. char *vaddr;
  726. int ret;
  727. /* Operation in this page
  728. *
  729. * page_offset = offset within page
  730. * page_length = bytes to copy for this page
  731. */
  732. page_offset = offset & (PAGE_SIZE-1);
  733. page_length = remain;
  734. if ((page_offset + remain) > PAGE_SIZE)
  735. page_length = PAGE_SIZE - page_offset;
  736. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  737. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  738. if (IS_ERR(page))
  739. return PTR_ERR(page);
  740. vaddr = kmap_atomic(page, KM_USER0);
  741. ret = __copy_from_user_inatomic(vaddr + page_offset,
  742. user_data,
  743. page_length);
  744. kunmap_atomic(vaddr, KM_USER0);
  745. set_page_dirty(page);
  746. mark_page_accessed(page);
  747. page_cache_release(page);
  748. /* If we get a fault while copying data, then (presumably) our
  749. * source page isn't available. Return the error and we'll
  750. * retry in the slow path.
  751. */
  752. if (ret)
  753. return -EFAULT;
  754. remain -= page_length;
  755. user_data += page_length;
  756. offset += page_length;
  757. }
  758. return 0;
  759. }
  760. /**
  761. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  762. * the memory and maps it using kmap_atomic for copying.
  763. *
  764. * This avoids taking mmap_sem for faulting on the user's address while the
  765. * struct_mutex is held.
  766. */
  767. static int
  768. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  769. struct drm_i915_gem_pwrite *args,
  770. struct drm_file *file_priv)
  771. {
  772. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  773. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  774. struct mm_struct *mm = current->mm;
  775. struct page **user_pages;
  776. ssize_t remain;
  777. loff_t offset, pinned_pages, i;
  778. loff_t first_data_page, last_data_page, num_pages;
  779. int shmem_page_offset;
  780. int data_page_index, data_page_offset;
  781. int page_length;
  782. int ret;
  783. uint64_t data_ptr = args->data_ptr;
  784. int do_bit17_swizzling;
  785. remain = args->size;
  786. /* Pin the user pages containing the data. We can't fault while
  787. * holding the struct mutex, and all of the pwrite implementations
  788. * want to hold it while dereferencing the user data.
  789. */
  790. first_data_page = data_ptr / PAGE_SIZE;
  791. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  792. num_pages = last_data_page - first_data_page + 1;
  793. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  794. if (user_pages == NULL)
  795. return -ENOMEM;
  796. mutex_unlock(&dev->struct_mutex);
  797. down_read(&mm->mmap_sem);
  798. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  799. num_pages, 0, 0, user_pages, NULL);
  800. up_read(&mm->mmap_sem);
  801. mutex_lock(&dev->struct_mutex);
  802. if (pinned_pages < num_pages) {
  803. ret = -EFAULT;
  804. goto out;
  805. }
  806. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  807. if (ret)
  808. goto out;
  809. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  810. obj_priv = to_intel_bo(obj);
  811. offset = args->offset;
  812. obj_priv->dirty = 1;
  813. while (remain > 0) {
  814. struct page *page;
  815. /* Operation in this page
  816. *
  817. * shmem_page_offset = offset within page in shmem file
  818. * data_page_index = page number in get_user_pages return
  819. * data_page_offset = offset with data_page_index page.
  820. * page_length = bytes to copy for this page
  821. */
  822. shmem_page_offset = offset & ~PAGE_MASK;
  823. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  824. data_page_offset = data_ptr & ~PAGE_MASK;
  825. page_length = remain;
  826. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  827. page_length = PAGE_SIZE - shmem_page_offset;
  828. if ((data_page_offset + page_length) > PAGE_SIZE)
  829. page_length = PAGE_SIZE - data_page_offset;
  830. page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
  831. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  832. if (IS_ERR(page)) {
  833. ret = PTR_ERR(page);
  834. goto out;
  835. }
  836. if (do_bit17_swizzling) {
  837. slow_shmem_bit17_copy(page,
  838. shmem_page_offset,
  839. user_pages[data_page_index],
  840. data_page_offset,
  841. page_length,
  842. 0);
  843. } else {
  844. slow_shmem_copy(page,
  845. shmem_page_offset,
  846. user_pages[data_page_index],
  847. data_page_offset,
  848. page_length);
  849. }
  850. set_page_dirty(page);
  851. mark_page_accessed(page);
  852. page_cache_release(page);
  853. remain -= page_length;
  854. data_ptr += page_length;
  855. offset += page_length;
  856. }
  857. out:
  858. for (i = 0; i < pinned_pages; i++)
  859. page_cache_release(user_pages[i]);
  860. drm_free_large(user_pages);
  861. return ret;
  862. }
  863. /**
  864. * Writes data to the object referenced by handle.
  865. *
  866. * On error, the contents of the buffer that were to be modified are undefined.
  867. */
  868. int
  869. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  870. struct drm_file *file)
  871. {
  872. struct drm_i915_gem_pwrite *args = data;
  873. struct drm_gem_object *obj;
  874. struct drm_i915_gem_object *obj_priv;
  875. int ret;
  876. if (args->size == 0)
  877. return 0;
  878. if (!access_ok(VERIFY_READ,
  879. (char __user *)(uintptr_t)args->data_ptr,
  880. args->size))
  881. return -EFAULT;
  882. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  883. args->size);
  884. if (ret)
  885. return -EFAULT;
  886. ret = i915_mutex_lock_interruptible(dev);
  887. if (ret)
  888. return ret;
  889. obj = drm_gem_object_lookup(dev, file, args->handle);
  890. if (obj == NULL) {
  891. ret = -ENOENT;
  892. goto unlock;
  893. }
  894. obj_priv = to_intel_bo(obj);
  895. /* Bounds check destination. */
  896. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  897. ret = -EINVAL;
  898. goto out;
  899. }
  900. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  901. * it would end up going through the fenced access, and we'll get
  902. * different detiling behavior between reading and writing.
  903. * pread/pwrite currently are reading and writing from the CPU
  904. * perspective, requiring manual detiling by the client.
  905. */
  906. if (obj_priv->phys_obj)
  907. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  908. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  909. obj_priv->gtt_space &&
  910. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  911. ret = i915_gem_object_pin(obj, 0, true);
  912. if (ret)
  913. goto out;
  914. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  915. if (ret)
  916. goto out_unpin;
  917. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  918. if (ret == -EFAULT)
  919. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  920. out_unpin:
  921. i915_gem_object_unpin(obj);
  922. } else {
  923. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  924. if (ret)
  925. goto out;
  926. ret = -EFAULT;
  927. if (!i915_gem_object_needs_bit17_swizzle(obj))
  928. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  929. if (ret == -EFAULT)
  930. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  931. }
  932. out:
  933. drm_gem_object_unreference(obj);
  934. unlock:
  935. mutex_unlock(&dev->struct_mutex);
  936. return ret;
  937. }
  938. /**
  939. * Called when user space prepares to use an object with the CPU, either
  940. * through the mmap ioctl's mapping or a GTT mapping.
  941. */
  942. int
  943. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  944. struct drm_file *file_priv)
  945. {
  946. struct drm_i915_private *dev_priv = dev->dev_private;
  947. struct drm_i915_gem_set_domain *args = data;
  948. struct drm_gem_object *obj;
  949. struct drm_i915_gem_object *obj_priv;
  950. uint32_t read_domains = args->read_domains;
  951. uint32_t write_domain = args->write_domain;
  952. int ret;
  953. if (!(dev->driver->driver_features & DRIVER_GEM))
  954. return -ENODEV;
  955. /* Only handle setting domains to types used by the CPU. */
  956. if (write_domain & I915_GEM_GPU_DOMAINS)
  957. return -EINVAL;
  958. if (read_domains & I915_GEM_GPU_DOMAINS)
  959. return -EINVAL;
  960. /* Having something in the write domain implies it's in the read
  961. * domain, and only that read domain. Enforce that in the request.
  962. */
  963. if (write_domain != 0 && read_domains != write_domain)
  964. return -EINVAL;
  965. ret = i915_mutex_lock_interruptible(dev);
  966. if (ret)
  967. return ret;
  968. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  969. if (obj == NULL) {
  970. ret = -ENOENT;
  971. goto unlock;
  972. }
  973. obj_priv = to_intel_bo(obj);
  974. intel_mark_busy(dev, obj);
  975. if (read_domains & I915_GEM_DOMAIN_GTT) {
  976. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  977. /* Update the LRU on the fence for the CPU access that's
  978. * about to occur.
  979. */
  980. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  981. struct drm_i915_fence_reg *reg =
  982. &dev_priv->fence_regs[obj_priv->fence_reg];
  983. list_move_tail(&reg->lru_list,
  984. &dev_priv->mm.fence_list);
  985. }
  986. /* Silently promote "you're not bound, there was nothing to do"
  987. * to success, since the client was just asking us to
  988. * make sure everything was done.
  989. */
  990. if (ret == -EINVAL)
  991. ret = 0;
  992. } else {
  993. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  994. }
  995. /* Maintain LRU order of "inactive" objects */
  996. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  997. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  998. drm_gem_object_unreference(obj);
  999. unlock:
  1000. mutex_unlock(&dev->struct_mutex);
  1001. return ret;
  1002. }
  1003. /**
  1004. * Called when user space has done writes to this buffer
  1005. */
  1006. int
  1007. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1008. struct drm_file *file_priv)
  1009. {
  1010. struct drm_i915_gem_sw_finish *args = data;
  1011. struct drm_gem_object *obj;
  1012. int ret = 0;
  1013. if (!(dev->driver->driver_features & DRIVER_GEM))
  1014. return -ENODEV;
  1015. ret = i915_mutex_lock_interruptible(dev);
  1016. if (ret)
  1017. return ret;
  1018. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1019. if (obj == NULL) {
  1020. ret = -ENOENT;
  1021. goto unlock;
  1022. }
  1023. /* Pinned buffers may be scanout, so flush the cache */
  1024. if (to_intel_bo(obj)->pin_count)
  1025. i915_gem_object_flush_cpu_write_domain(obj);
  1026. drm_gem_object_unreference(obj);
  1027. unlock:
  1028. mutex_unlock(&dev->struct_mutex);
  1029. return ret;
  1030. }
  1031. /**
  1032. * Maps the contents of an object, returning the address it is mapped
  1033. * into.
  1034. *
  1035. * While the mapping holds a reference on the contents of the object, it doesn't
  1036. * imply a ref on the object itself.
  1037. */
  1038. int
  1039. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1040. struct drm_file *file_priv)
  1041. {
  1042. struct drm_i915_private *dev_priv = dev->dev_private;
  1043. struct drm_i915_gem_mmap *args = data;
  1044. struct drm_gem_object *obj;
  1045. loff_t offset;
  1046. unsigned long addr;
  1047. if (!(dev->driver->driver_features & DRIVER_GEM))
  1048. return -ENODEV;
  1049. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1050. if (obj == NULL)
  1051. return -ENOENT;
  1052. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1053. drm_gem_object_unreference_unlocked(obj);
  1054. return -E2BIG;
  1055. }
  1056. offset = args->offset;
  1057. down_write(&current->mm->mmap_sem);
  1058. addr = do_mmap(obj->filp, 0, args->size,
  1059. PROT_READ | PROT_WRITE, MAP_SHARED,
  1060. args->offset);
  1061. up_write(&current->mm->mmap_sem);
  1062. drm_gem_object_unreference_unlocked(obj);
  1063. if (IS_ERR((void *)addr))
  1064. return addr;
  1065. args->addr_ptr = (uint64_t) addr;
  1066. return 0;
  1067. }
  1068. /**
  1069. * i915_gem_fault - fault a page into the GTT
  1070. * vma: VMA in question
  1071. * vmf: fault info
  1072. *
  1073. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1074. * from userspace. The fault handler takes care of binding the object to
  1075. * the GTT (if needed), allocating and programming a fence register (again,
  1076. * only if needed based on whether the old reg is still valid or the object
  1077. * is tiled) and inserting a new PTE into the faulting process.
  1078. *
  1079. * Note that the faulting process may involve evicting existing objects
  1080. * from the GTT and/or fence registers to make room. So performance may
  1081. * suffer if the GTT working set is large or there are few fence registers
  1082. * left.
  1083. */
  1084. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1085. {
  1086. struct drm_gem_object *obj = vma->vm_private_data;
  1087. struct drm_device *dev = obj->dev;
  1088. drm_i915_private_t *dev_priv = dev->dev_private;
  1089. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1090. pgoff_t page_offset;
  1091. unsigned long pfn;
  1092. int ret = 0;
  1093. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1094. /* We don't use vmf->pgoff since that has the fake offset */
  1095. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1096. PAGE_SHIFT;
  1097. /* Now bind it into the GTT if needed */
  1098. mutex_lock(&dev->struct_mutex);
  1099. BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
  1100. if (obj_priv->gtt_space) {
  1101. if (!obj_priv->map_and_fenceable) {
  1102. ret = i915_gem_object_unbind(obj);
  1103. if (ret)
  1104. goto unlock;
  1105. }
  1106. }
  1107. if (!obj_priv->gtt_space) {
  1108. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  1109. if (ret)
  1110. goto unlock;
  1111. }
  1112. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1113. if (ret)
  1114. goto unlock;
  1115. if (!obj_priv->fault_mappable) {
  1116. obj_priv->fault_mappable = true;
  1117. i915_gem_info_update_mappable(dev_priv, obj_priv, true);
  1118. }
  1119. /* Need a new fence register? */
  1120. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1121. ret = i915_gem_object_get_fence_reg(obj, true);
  1122. if (ret)
  1123. goto unlock;
  1124. }
  1125. if (i915_gem_object_is_inactive(obj_priv))
  1126. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1127. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1128. page_offset;
  1129. /* Finally, remap it using the new GTT offset */
  1130. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1131. unlock:
  1132. mutex_unlock(&dev->struct_mutex);
  1133. switch (ret) {
  1134. case -EAGAIN:
  1135. set_need_resched();
  1136. case 0:
  1137. case -ERESTARTSYS:
  1138. return VM_FAULT_NOPAGE;
  1139. case -ENOMEM:
  1140. return VM_FAULT_OOM;
  1141. default:
  1142. return VM_FAULT_SIGBUS;
  1143. }
  1144. }
  1145. /**
  1146. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1147. * @obj: obj in question
  1148. *
  1149. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1150. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1151. * up the object based on the offset and sets up the various memory mapping
  1152. * structures.
  1153. *
  1154. * This routine allocates and attaches a fake offset for @obj.
  1155. */
  1156. static int
  1157. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1158. {
  1159. struct drm_device *dev = obj->dev;
  1160. struct drm_gem_mm *mm = dev->mm_private;
  1161. struct drm_map_list *list;
  1162. struct drm_local_map *map;
  1163. int ret = 0;
  1164. /* Set the object up for mmap'ing */
  1165. list = &obj->map_list;
  1166. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1167. if (!list->map)
  1168. return -ENOMEM;
  1169. map = list->map;
  1170. map->type = _DRM_GEM;
  1171. map->size = obj->size;
  1172. map->handle = obj;
  1173. /* Get a DRM GEM mmap offset allocated... */
  1174. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1175. obj->size / PAGE_SIZE, 0, 0);
  1176. if (!list->file_offset_node) {
  1177. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1178. ret = -ENOSPC;
  1179. goto out_free_list;
  1180. }
  1181. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1182. obj->size / PAGE_SIZE, 0);
  1183. if (!list->file_offset_node) {
  1184. ret = -ENOMEM;
  1185. goto out_free_list;
  1186. }
  1187. list->hash.key = list->file_offset_node->start;
  1188. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1189. if (ret) {
  1190. DRM_ERROR("failed to add to map hash\n");
  1191. goto out_free_mm;
  1192. }
  1193. return 0;
  1194. out_free_mm:
  1195. drm_mm_put_block(list->file_offset_node);
  1196. out_free_list:
  1197. kfree(list->map);
  1198. list->map = NULL;
  1199. return ret;
  1200. }
  1201. /**
  1202. * i915_gem_release_mmap - remove physical page mappings
  1203. * @obj: obj in question
  1204. *
  1205. * Preserve the reservation of the mmapping with the DRM core code, but
  1206. * relinquish ownership of the pages back to the system.
  1207. *
  1208. * It is vital that we remove the page mapping if we have mapped a tiled
  1209. * object through the GTT and then lose the fence register due to
  1210. * resource pressure. Similarly if the object has been moved out of the
  1211. * aperture, than pages mapped into userspace must be revoked. Removing the
  1212. * mapping will then trigger a page fault on the next user access, allowing
  1213. * fixup by i915_gem_fault().
  1214. */
  1215. void
  1216. i915_gem_release_mmap(struct drm_gem_object *obj)
  1217. {
  1218. struct drm_device *dev = obj->dev;
  1219. struct drm_i915_private *dev_priv = dev->dev_private;
  1220. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1221. if (unlikely(obj->map_list.map && dev->dev_mapping))
  1222. unmap_mapping_range(dev->dev_mapping,
  1223. (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
  1224. obj->size, 1);
  1225. if (obj_priv->fault_mappable) {
  1226. obj_priv->fault_mappable = false;
  1227. i915_gem_info_update_mappable(dev_priv, obj_priv, false);
  1228. }
  1229. }
  1230. static void
  1231. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1232. {
  1233. struct drm_device *dev = obj->dev;
  1234. struct drm_gem_mm *mm = dev->mm_private;
  1235. struct drm_map_list *list = &obj->map_list;
  1236. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1237. drm_mm_put_block(list->file_offset_node);
  1238. kfree(list->map);
  1239. list->map = NULL;
  1240. }
  1241. /**
  1242. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1243. * @obj: object to check
  1244. *
  1245. * Return the required GTT alignment for an object, taking into account
  1246. * potential fence register mapping.
  1247. */
  1248. static uint32_t
  1249. i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1250. {
  1251. struct drm_device *dev = obj_priv->base.dev;
  1252. /*
  1253. * Minimum alignment is 4k (GTT page size), but might be greater
  1254. * if a fence register is needed for the object.
  1255. */
  1256. if (INTEL_INFO(dev)->gen >= 4 ||
  1257. obj_priv->tiling_mode == I915_TILING_NONE)
  1258. return 4096;
  1259. /*
  1260. * Previous chips need to be aligned to the size of the smallest
  1261. * fence register that can contain the object.
  1262. */
  1263. return i915_gem_get_gtt_size(obj_priv);
  1264. }
  1265. /**
  1266. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1267. * unfenced object
  1268. * @obj: object to check
  1269. *
  1270. * Return the required GTT alignment for an object, only taking into account
  1271. * unfenced tiled surface requirements.
  1272. */
  1273. static uint32_t
  1274. i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
  1275. {
  1276. struct drm_device *dev = obj_priv->base.dev;
  1277. int tile_height;
  1278. /*
  1279. * Minimum alignment is 4k (GTT page size) for sane hw.
  1280. */
  1281. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1282. obj_priv->tiling_mode == I915_TILING_NONE)
  1283. return 4096;
  1284. /*
  1285. * Older chips need unfenced tiled buffers to be aligned to the left
  1286. * edge of an even tile row (where tile rows are counted as if the bo is
  1287. * placed in a fenced gtt region).
  1288. */
  1289. if (IS_GEN2(dev) ||
  1290. (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
  1291. tile_height = 32;
  1292. else
  1293. tile_height = 8;
  1294. return tile_height * obj_priv->stride * 2;
  1295. }
  1296. static uint32_t
  1297. i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
  1298. {
  1299. struct drm_device *dev = obj_priv->base.dev;
  1300. uint32_t size;
  1301. /*
  1302. * Minimum alignment is 4k (GTT page size), but might be greater
  1303. * if a fence register is needed for the object.
  1304. */
  1305. if (INTEL_INFO(dev)->gen >= 4)
  1306. return obj_priv->base.size;
  1307. /*
  1308. * Previous chips need to be aligned to the size of the smallest
  1309. * fence register that can contain the object.
  1310. */
  1311. if (INTEL_INFO(dev)->gen == 3)
  1312. size = 1024*1024;
  1313. else
  1314. size = 512*1024;
  1315. while (size < obj_priv->base.size)
  1316. size <<= 1;
  1317. return size;
  1318. }
  1319. /**
  1320. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1321. * @dev: DRM device
  1322. * @data: GTT mapping ioctl data
  1323. * @file_priv: GEM object info
  1324. *
  1325. * Simply returns the fake offset to userspace so it can mmap it.
  1326. * The mmap call will end up in drm_gem_mmap(), which will set things
  1327. * up so we can get faults in the handler above.
  1328. *
  1329. * The fault handler will take care of binding the object into the GTT
  1330. * (since it may have been evicted to make room for something), allocating
  1331. * a fence register, and mapping the appropriate aperture address into
  1332. * userspace.
  1333. */
  1334. int
  1335. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1336. struct drm_file *file_priv)
  1337. {
  1338. struct drm_i915_private *dev_priv = dev->dev_private;
  1339. struct drm_i915_gem_mmap_gtt *args = data;
  1340. struct drm_gem_object *obj;
  1341. struct drm_i915_gem_object *obj_priv;
  1342. int ret;
  1343. if (!(dev->driver->driver_features & DRIVER_GEM))
  1344. return -ENODEV;
  1345. ret = i915_mutex_lock_interruptible(dev);
  1346. if (ret)
  1347. return ret;
  1348. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1349. if (obj == NULL) {
  1350. ret = -ENOENT;
  1351. goto unlock;
  1352. }
  1353. obj_priv = to_intel_bo(obj);
  1354. if (obj->size > dev_priv->mm.gtt_mappable_end) {
  1355. ret = -E2BIG;
  1356. goto unlock;
  1357. }
  1358. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1359. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1360. ret = -EINVAL;
  1361. goto out;
  1362. }
  1363. if (!obj->map_list.map) {
  1364. ret = i915_gem_create_mmap_offset(obj);
  1365. if (ret)
  1366. goto out;
  1367. }
  1368. args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
  1369. out:
  1370. drm_gem_object_unreference(obj);
  1371. unlock:
  1372. mutex_unlock(&dev->struct_mutex);
  1373. return ret;
  1374. }
  1375. static int
  1376. i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
  1377. gfp_t gfpmask)
  1378. {
  1379. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1380. int page_count, i;
  1381. struct address_space *mapping;
  1382. struct inode *inode;
  1383. struct page *page;
  1384. /* Get the list of pages out of our struct file. They'll be pinned
  1385. * at this point until we release them.
  1386. */
  1387. page_count = obj->size / PAGE_SIZE;
  1388. BUG_ON(obj_priv->pages != NULL);
  1389. obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1390. if (obj_priv->pages == NULL)
  1391. return -ENOMEM;
  1392. inode = obj->filp->f_path.dentry->d_inode;
  1393. mapping = inode->i_mapping;
  1394. for (i = 0; i < page_count; i++) {
  1395. page = read_cache_page_gfp(mapping, i,
  1396. GFP_HIGHUSER |
  1397. __GFP_COLD |
  1398. __GFP_RECLAIMABLE |
  1399. gfpmask);
  1400. if (IS_ERR(page))
  1401. goto err_pages;
  1402. obj_priv->pages[i] = page;
  1403. }
  1404. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1405. i915_gem_object_do_bit_17_swizzle(obj);
  1406. return 0;
  1407. err_pages:
  1408. while (i--)
  1409. page_cache_release(obj_priv->pages[i]);
  1410. drm_free_large(obj_priv->pages);
  1411. obj_priv->pages = NULL;
  1412. return PTR_ERR(page);
  1413. }
  1414. static void
  1415. i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
  1416. {
  1417. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1418. int page_count = obj->size / PAGE_SIZE;
  1419. int i;
  1420. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1421. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1422. i915_gem_object_save_bit_17_swizzle(obj);
  1423. if (obj_priv->madv == I915_MADV_DONTNEED)
  1424. obj_priv->dirty = 0;
  1425. for (i = 0; i < page_count; i++) {
  1426. if (obj_priv->dirty)
  1427. set_page_dirty(obj_priv->pages[i]);
  1428. if (obj_priv->madv == I915_MADV_WILLNEED)
  1429. mark_page_accessed(obj_priv->pages[i]);
  1430. page_cache_release(obj_priv->pages[i]);
  1431. }
  1432. obj_priv->dirty = 0;
  1433. drm_free_large(obj_priv->pages);
  1434. obj_priv->pages = NULL;
  1435. }
  1436. static uint32_t
  1437. i915_gem_next_request_seqno(struct drm_device *dev,
  1438. struct intel_ring_buffer *ring)
  1439. {
  1440. drm_i915_private_t *dev_priv = dev->dev_private;
  1441. return ring->outstanding_lazy_request = dev_priv->next_seqno;
  1442. }
  1443. static void
  1444. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1445. struct intel_ring_buffer *ring)
  1446. {
  1447. struct drm_device *dev = obj->dev;
  1448. struct drm_i915_private *dev_priv = dev->dev_private;
  1449. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1450. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1451. BUG_ON(ring == NULL);
  1452. obj_priv->ring = ring;
  1453. /* Add a reference if we're newly entering the active list. */
  1454. if (!obj_priv->active) {
  1455. drm_gem_object_reference(obj);
  1456. obj_priv->active = 1;
  1457. }
  1458. /* Move from whatever list we were on to the tail of execution. */
  1459. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1460. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1461. obj_priv->last_rendering_seqno = seqno;
  1462. }
  1463. static void
  1464. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1465. {
  1466. struct drm_device *dev = obj->dev;
  1467. drm_i915_private_t *dev_priv = dev->dev_private;
  1468. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1469. BUG_ON(!obj_priv->active);
  1470. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1471. list_del_init(&obj_priv->ring_list);
  1472. obj_priv->last_rendering_seqno = 0;
  1473. }
  1474. /* Immediately discard the backing storage */
  1475. static void
  1476. i915_gem_object_truncate(struct drm_gem_object *obj)
  1477. {
  1478. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1479. struct inode *inode;
  1480. /* Our goal here is to return as much of the memory as
  1481. * is possible back to the system as we are called from OOM.
  1482. * To do this we must instruct the shmfs to drop all of its
  1483. * backing pages, *now*. Here we mirror the actions taken
  1484. * when by shmem_delete_inode() to release the backing store.
  1485. */
  1486. inode = obj->filp->f_path.dentry->d_inode;
  1487. truncate_inode_pages(inode->i_mapping, 0);
  1488. if (inode->i_op->truncate_range)
  1489. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1490. obj_priv->madv = __I915_MADV_PURGED;
  1491. }
  1492. static inline int
  1493. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1494. {
  1495. return obj_priv->madv == I915_MADV_DONTNEED;
  1496. }
  1497. static void
  1498. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1499. {
  1500. struct drm_device *dev = obj->dev;
  1501. drm_i915_private_t *dev_priv = dev->dev_private;
  1502. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1503. if (obj_priv->pin_count != 0)
  1504. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1505. else
  1506. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1507. list_del_init(&obj_priv->ring_list);
  1508. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1509. obj_priv->last_rendering_seqno = 0;
  1510. obj_priv->ring = NULL;
  1511. if (obj_priv->active) {
  1512. obj_priv->active = 0;
  1513. drm_gem_object_unreference(obj);
  1514. }
  1515. WARN_ON(i915_verify_lists(dev));
  1516. }
  1517. static void
  1518. i915_gem_process_flushing_list(struct drm_device *dev,
  1519. uint32_t flush_domains,
  1520. struct intel_ring_buffer *ring)
  1521. {
  1522. drm_i915_private_t *dev_priv = dev->dev_private;
  1523. struct drm_i915_gem_object *obj_priv, *next;
  1524. list_for_each_entry_safe(obj_priv, next,
  1525. &ring->gpu_write_list,
  1526. gpu_write_list) {
  1527. struct drm_gem_object *obj = &obj_priv->base;
  1528. if (obj->write_domain & flush_domains) {
  1529. uint32_t old_write_domain = obj->write_domain;
  1530. obj->write_domain = 0;
  1531. list_del_init(&obj_priv->gpu_write_list);
  1532. i915_gem_object_move_to_active(obj, ring);
  1533. /* update the fence lru list */
  1534. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1535. struct drm_i915_fence_reg *reg =
  1536. &dev_priv->fence_regs[obj_priv->fence_reg];
  1537. list_move_tail(&reg->lru_list,
  1538. &dev_priv->mm.fence_list);
  1539. }
  1540. trace_i915_gem_object_change_domain(obj,
  1541. obj->read_domains,
  1542. old_write_domain);
  1543. }
  1544. }
  1545. }
  1546. int
  1547. i915_add_request(struct drm_device *dev,
  1548. struct drm_file *file,
  1549. struct drm_i915_gem_request *request,
  1550. struct intel_ring_buffer *ring)
  1551. {
  1552. drm_i915_private_t *dev_priv = dev->dev_private;
  1553. struct drm_i915_file_private *file_priv = NULL;
  1554. uint32_t seqno;
  1555. int was_empty;
  1556. int ret;
  1557. BUG_ON(request == NULL);
  1558. if (file != NULL)
  1559. file_priv = file->driver_priv;
  1560. ret = ring->add_request(ring, &seqno);
  1561. if (ret)
  1562. return ret;
  1563. ring->outstanding_lazy_request = false;
  1564. request->seqno = seqno;
  1565. request->ring = ring;
  1566. request->emitted_jiffies = jiffies;
  1567. was_empty = list_empty(&ring->request_list);
  1568. list_add_tail(&request->list, &ring->request_list);
  1569. if (file_priv) {
  1570. spin_lock(&file_priv->mm.lock);
  1571. request->file_priv = file_priv;
  1572. list_add_tail(&request->client_list,
  1573. &file_priv->mm.request_list);
  1574. spin_unlock(&file_priv->mm.lock);
  1575. }
  1576. if (!dev_priv->mm.suspended) {
  1577. mod_timer(&dev_priv->hangcheck_timer,
  1578. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1579. if (was_empty)
  1580. queue_delayed_work(dev_priv->wq,
  1581. &dev_priv->mm.retire_work, HZ);
  1582. }
  1583. return 0;
  1584. }
  1585. /**
  1586. * Command execution barrier
  1587. *
  1588. * Ensures that all commands in the ring are finished
  1589. * before signalling the CPU
  1590. */
  1591. static void
  1592. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1593. {
  1594. uint32_t flush_domains = 0;
  1595. /* The sampler always gets flushed on i965 (sigh) */
  1596. if (INTEL_INFO(dev)->gen >= 4)
  1597. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1598. ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
  1599. }
  1600. static inline void
  1601. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1602. {
  1603. struct drm_i915_file_private *file_priv = request->file_priv;
  1604. if (!file_priv)
  1605. return;
  1606. spin_lock(&file_priv->mm.lock);
  1607. list_del(&request->client_list);
  1608. request->file_priv = NULL;
  1609. spin_unlock(&file_priv->mm.lock);
  1610. }
  1611. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1612. struct intel_ring_buffer *ring)
  1613. {
  1614. while (!list_empty(&ring->request_list)) {
  1615. struct drm_i915_gem_request *request;
  1616. request = list_first_entry(&ring->request_list,
  1617. struct drm_i915_gem_request,
  1618. list);
  1619. list_del(&request->list);
  1620. i915_gem_request_remove_from_client(request);
  1621. kfree(request);
  1622. }
  1623. while (!list_empty(&ring->active_list)) {
  1624. struct drm_i915_gem_object *obj_priv;
  1625. obj_priv = list_first_entry(&ring->active_list,
  1626. struct drm_i915_gem_object,
  1627. ring_list);
  1628. obj_priv->base.write_domain = 0;
  1629. list_del_init(&obj_priv->gpu_write_list);
  1630. i915_gem_object_move_to_inactive(&obj_priv->base);
  1631. }
  1632. }
  1633. void i915_gem_reset(struct drm_device *dev)
  1634. {
  1635. struct drm_i915_private *dev_priv = dev->dev_private;
  1636. struct drm_i915_gem_object *obj_priv;
  1637. int i;
  1638. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1639. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1640. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1641. /* Remove anything from the flushing lists. The GPU cache is likely
  1642. * to be lost on reset along with the data, so simply move the
  1643. * lost bo to the inactive list.
  1644. */
  1645. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1646. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1647. struct drm_i915_gem_object,
  1648. mm_list);
  1649. obj_priv->base.write_domain = 0;
  1650. list_del_init(&obj_priv->gpu_write_list);
  1651. i915_gem_object_move_to_inactive(&obj_priv->base);
  1652. }
  1653. /* Move everything out of the GPU domains to ensure we do any
  1654. * necessary invalidation upon reuse.
  1655. */
  1656. list_for_each_entry(obj_priv,
  1657. &dev_priv->mm.inactive_list,
  1658. mm_list)
  1659. {
  1660. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1661. }
  1662. /* The fence registers are invalidated so clear them out */
  1663. for (i = 0; i < 16; i++) {
  1664. struct drm_i915_fence_reg *reg;
  1665. reg = &dev_priv->fence_regs[i];
  1666. if (!reg->obj)
  1667. continue;
  1668. i915_gem_clear_fence_reg(reg->obj);
  1669. }
  1670. }
  1671. /**
  1672. * This function clears the request list as sequence numbers are passed.
  1673. */
  1674. static void
  1675. i915_gem_retire_requests_ring(struct drm_device *dev,
  1676. struct intel_ring_buffer *ring)
  1677. {
  1678. drm_i915_private_t *dev_priv = dev->dev_private;
  1679. uint32_t seqno;
  1680. if (!ring->status_page.page_addr ||
  1681. list_empty(&ring->request_list))
  1682. return;
  1683. WARN_ON(i915_verify_lists(dev));
  1684. seqno = ring->get_seqno(ring);
  1685. while (!list_empty(&ring->request_list)) {
  1686. struct drm_i915_gem_request *request;
  1687. request = list_first_entry(&ring->request_list,
  1688. struct drm_i915_gem_request,
  1689. list);
  1690. if (!i915_seqno_passed(seqno, request->seqno))
  1691. break;
  1692. trace_i915_gem_request_retire(dev, request->seqno);
  1693. list_del(&request->list);
  1694. i915_gem_request_remove_from_client(request);
  1695. kfree(request);
  1696. }
  1697. /* Move any buffers on the active list that are no longer referenced
  1698. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1699. */
  1700. while (!list_empty(&ring->active_list)) {
  1701. struct drm_gem_object *obj;
  1702. struct drm_i915_gem_object *obj_priv;
  1703. obj_priv = list_first_entry(&ring->active_list,
  1704. struct drm_i915_gem_object,
  1705. ring_list);
  1706. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1707. break;
  1708. obj = &obj_priv->base;
  1709. if (obj->write_domain != 0)
  1710. i915_gem_object_move_to_flushing(obj);
  1711. else
  1712. i915_gem_object_move_to_inactive(obj);
  1713. }
  1714. if (unlikely (dev_priv->trace_irq_seqno &&
  1715. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1716. ring->user_irq_put(ring);
  1717. dev_priv->trace_irq_seqno = 0;
  1718. }
  1719. WARN_ON(i915_verify_lists(dev));
  1720. }
  1721. void
  1722. i915_gem_retire_requests(struct drm_device *dev)
  1723. {
  1724. drm_i915_private_t *dev_priv = dev->dev_private;
  1725. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1726. struct drm_i915_gem_object *obj_priv, *tmp;
  1727. /* We must be careful that during unbind() we do not
  1728. * accidentally infinitely recurse into retire requests.
  1729. * Currently:
  1730. * retire -> free -> unbind -> wait -> retire_ring
  1731. */
  1732. list_for_each_entry_safe(obj_priv, tmp,
  1733. &dev_priv->mm.deferred_free_list,
  1734. mm_list)
  1735. i915_gem_free_object_tail(&obj_priv->base);
  1736. }
  1737. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1738. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1739. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1740. }
  1741. static void
  1742. i915_gem_retire_work_handler(struct work_struct *work)
  1743. {
  1744. drm_i915_private_t *dev_priv;
  1745. struct drm_device *dev;
  1746. dev_priv = container_of(work, drm_i915_private_t,
  1747. mm.retire_work.work);
  1748. dev = dev_priv->dev;
  1749. /* Come back later if the device is busy... */
  1750. if (!mutex_trylock(&dev->struct_mutex)) {
  1751. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1752. return;
  1753. }
  1754. i915_gem_retire_requests(dev);
  1755. if (!dev_priv->mm.suspended &&
  1756. (!list_empty(&dev_priv->render_ring.request_list) ||
  1757. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1758. !list_empty(&dev_priv->blt_ring.request_list)))
  1759. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1760. mutex_unlock(&dev->struct_mutex);
  1761. }
  1762. int
  1763. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1764. bool interruptible, struct intel_ring_buffer *ring)
  1765. {
  1766. drm_i915_private_t *dev_priv = dev->dev_private;
  1767. u32 ier;
  1768. int ret = 0;
  1769. BUG_ON(seqno == 0);
  1770. if (atomic_read(&dev_priv->mm.wedged))
  1771. return -EAGAIN;
  1772. if (seqno == ring->outstanding_lazy_request) {
  1773. struct drm_i915_gem_request *request;
  1774. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1775. if (request == NULL)
  1776. return -ENOMEM;
  1777. ret = i915_add_request(dev, NULL, request, ring);
  1778. if (ret) {
  1779. kfree(request);
  1780. return ret;
  1781. }
  1782. seqno = request->seqno;
  1783. }
  1784. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1785. if (HAS_PCH_SPLIT(dev))
  1786. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1787. else
  1788. ier = I915_READ(IER);
  1789. if (!ier) {
  1790. DRM_ERROR("something (likely vbetool) disabled "
  1791. "interrupts, re-enabling\n");
  1792. i915_driver_irq_preinstall(dev);
  1793. i915_driver_irq_postinstall(dev);
  1794. }
  1795. trace_i915_gem_request_wait_begin(dev, seqno);
  1796. ring->waiting_seqno = seqno;
  1797. ring->user_irq_get(ring);
  1798. if (interruptible)
  1799. ret = wait_event_interruptible(ring->irq_queue,
  1800. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1801. || atomic_read(&dev_priv->mm.wedged));
  1802. else
  1803. wait_event(ring->irq_queue,
  1804. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1805. || atomic_read(&dev_priv->mm.wedged));
  1806. ring->user_irq_put(ring);
  1807. ring->waiting_seqno = 0;
  1808. trace_i915_gem_request_wait_end(dev, seqno);
  1809. }
  1810. if (atomic_read(&dev_priv->mm.wedged))
  1811. ret = -EAGAIN;
  1812. if (ret && ret != -ERESTARTSYS)
  1813. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1814. __func__, ret, seqno, ring->get_seqno(ring),
  1815. dev_priv->next_seqno);
  1816. /* Directly dispatch request retiring. While we have the work queue
  1817. * to handle this, the waiter on a request often wants an associated
  1818. * buffer to have made it to the inactive list, and we would need
  1819. * a separate wait queue to handle that.
  1820. */
  1821. if (ret == 0)
  1822. i915_gem_retire_requests_ring(dev, ring);
  1823. return ret;
  1824. }
  1825. /**
  1826. * Waits for a sequence number to be signaled, and cleans up the
  1827. * request and object lists appropriately for that event.
  1828. */
  1829. static int
  1830. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1831. struct intel_ring_buffer *ring)
  1832. {
  1833. return i915_do_wait_request(dev, seqno, 1, ring);
  1834. }
  1835. static void
  1836. i915_gem_flush_ring(struct drm_device *dev,
  1837. struct drm_file *file_priv,
  1838. struct intel_ring_buffer *ring,
  1839. uint32_t invalidate_domains,
  1840. uint32_t flush_domains)
  1841. {
  1842. ring->flush(ring, invalidate_domains, flush_domains);
  1843. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1844. }
  1845. static void
  1846. i915_gem_flush(struct drm_device *dev,
  1847. struct drm_file *file_priv,
  1848. uint32_t invalidate_domains,
  1849. uint32_t flush_domains,
  1850. uint32_t flush_rings)
  1851. {
  1852. drm_i915_private_t *dev_priv = dev->dev_private;
  1853. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1854. intel_gtt_chipset_flush();
  1855. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1856. if (flush_rings & RING_RENDER)
  1857. i915_gem_flush_ring(dev, file_priv,
  1858. &dev_priv->render_ring,
  1859. invalidate_domains, flush_domains);
  1860. if (flush_rings & RING_BSD)
  1861. i915_gem_flush_ring(dev, file_priv,
  1862. &dev_priv->bsd_ring,
  1863. invalidate_domains, flush_domains);
  1864. if (flush_rings & RING_BLT)
  1865. i915_gem_flush_ring(dev, file_priv,
  1866. &dev_priv->blt_ring,
  1867. invalidate_domains, flush_domains);
  1868. }
  1869. }
  1870. /**
  1871. * Ensures that all rendering to the object has completed and the object is
  1872. * safe to unbind from the GTT or access from the CPU.
  1873. */
  1874. static int
  1875. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1876. bool interruptible)
  1877. {
  1878. struct drm_device *dev = obj->dev;
  1879. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1880. int ret;
  1881. /* This function only exists to support waiting for existing rendering,
  1882. * not for emitting required flushes.
  1883. */
  1884. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1885. /* If there is rendering queued on the buffer being evicted, wait for
  1886. * it.
  1887. */
  1888. if (obj_priv->active) {
  1889. ret = i915_do_wait_request(dev,
  1890. obj_priv->last_rendering_seqno,
  1891. interruptible,
  1892. obj_priv->ring);
  1893. if (ret)
  1894. return ret;
  1895. }
  1896. return 0;
  1897. }
  1898. /**
  1899. * Unbinds an object from the GTT aperture.
  1900. */
  1901. int
  1902. i915_gem_object_unbind(struct drm_gem_object *obj)
  1903. {
  1904. struct drm_device *dev = obj->dev;
  1905. struct drm_i915_private *dev_priv = dev->dev_private;
  1906. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1907. int ret = 0;
  1908. if (obj_priv->gtt_space == NULL)
  1909. return 0;
  1910. if (obj_priv->pin_count != 0) {
  1911. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1912. return -EINVAL;
  1913. }
  1914. /* blow away mappings if mapped through GTT */
  1915. i915_gem_release_mmap(obj);
  1916. /* Move the object to the CPU domain to ensure that
  1917. * any possible CPU writes while it's not in the GTT
  1918. * are flushed when we go to remap it. This will
  1919. * also ensure that all pending GPU writes are finished
  1920. * before we unbind.
  1921. */
  1922. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1923. if (ret == -ERESTARTSYS)
  1924. return ret;
  1925. /* Continue on if we fail due to EIO, the GPU is hung so we
  1926. * should be safe and we need to cleanup or else we might
  1927. * cause memory corruption through use-after-free.
  1928. */
  1929. if (ret) {
  1930. i915_gem_clflush_object(obj);
  1931. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1932. }
  1933. /* release the fence reg _after_ flushing */
  1934. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1935. i915_gem_clear_fence_reg(obj);
  1936. i915_gem_gtt_unbind_object(obj);
  1937. i915_gem_object_put_pages_gtt(obj);
  1938. i915_gem_info_remove_gtt(dev_priv, obj_priv);
  1939. list_del_init(&obj_priv->mm_list);
  1940. /* Avoid an unnecessary call to unbind on rebind. */
  1941. obj_priv->map_and_fenceable = true;
  1942. drm_mm_put_block(obj_priv->gtt_space);
  1943. obj_priv->gtt_space = NULL;
  1944. obj_priv->gtt_offset = 0;
  1945. if (i915_gem_object_is_purgeable(obj_priv))
  1946. i915_gem_object_truncate(obj);
  1947. trace_i915_gem_object_unbind(obj);
  1948. return ret;
  1949. }
  1950. static int i915_ring_idle(struct drm_device *dev,
  1951. struct intel_ring_buffer *ring)
  1952. {
  1953. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1954. return 0;
  1955. i915_gem_flush_ring(dev, NULL, ring,
  1956. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1957. return i915_wait_request(dev,
  1958. i915_gem_next_request_seqno(dev, ring),
  1959. ring);
  1960. }
  1961. int
  1962. i915_gpu_idle(struct drm_device *dev)
  1963. {
  1964. drm_i915_private_t *dev_priv = dev->dev_private;
  1965. bool lists_empty;
  1966. int ret;
  1967. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1968. list_empty(&dev_priv->mm.active_list));
  1969. if (lists_empty)
  1970. return 0;
  1971. /* Flush everything onto the inactive list. */
  1972. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1973. if (ret)
  1974. return ret;
  1975. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1976. if (ret)
  1977. return ret;
  1978. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1979. if (ret)
  1980. return ret;
  1981. return 0;
  1982. }
  1983. static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
  1984. {
  1985. struct drm_device *dev = obj->dev;
  1986. drm_i915_private_t *dev_priv = dev->dev_private;
  1987. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1988. u32 size = i915_gem_get_gtt_size(obj_priv);
  1989. int regnum = obj_priv->fence_reg;
  1990. uint64_t val;
  1991. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  1992. 0xfffff000) << 32;
  1993. val |= obj_priv->gtt_offset & 0xfffff000;
  1994. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1995. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1996. if (obj_priv->tiling_mode == I915_TILING_Y)
  1997. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1998. val |= I965_FENCE_REG_VALID;
  1999. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  2000. }
  2001. static void i965_write_fence_reg(struct drm_gem_object *obj)
  2002. {
  2003. struct drm_device *dev = obj->dev;
  2004. drm_i915_private_t *dev_priv = dev->dev_private;
  2005. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2006. u32 size = i915_gem_get_gtt_size(obj_priv);
  2007. int regnum = obj_priv->fence_reg;
  2008. uint64_t val;
  2009. val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
  2010. 0xfffff000) << 32;
  2011. val |= obj_priv->gtt_offset & 0xfffff000;
  2012. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2013. if (obj_priv->tiling_mode == I915_TILING_Y)
  2014. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2015. val |= I965_FENCE_REG_VALID;
  2016. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  2017. }
  2018. static void i915_write_fence_reg(struct drm_gem_object *obj)
  2019. {
  2020. struct drm_device *dev = obj->dev;
  2021. drm_i915_private_t *dev_priv = dev->dev_private;
  2022. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2023. u32 size = i915_gem_get_gtt_size(obj_priv);
  2024. uint32_t fence_reg, val, pitch_val;
  2025. int tile_width;
  2026. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  2027. (obj_priv->gtt_offset & (size - 1))) {
  2028. WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
  2029. __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
  2030. obj_priv->gtt_space->start, obj_priv->gtt_space->size);
  2031. return;
  2032. }
  2033. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2034. HAS_128_BYTE_Y_TILING(dev))
  2035. tile_width = 128;
  2036. else
  2037. tile_width = 512;
  2038. /* Note: pitch better be a power of two tile widths */
  2039. pitch_val = obj_priv->stride / tile_width;
  2040. pitch_val = ffs(pitch_val) - 1;
  2041. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2042. HAS_128_BYTE_Y_TILING(dev))
  2043. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2044. else
  2045. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2046. val = obj_priv->gtt_offset;
  2047. if (obj_priv->tiling_mode == I915_TILING_Y)
  2048. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2049. val |= I915_FENCE_SIZE_BITS(size);
  2050. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2051. val |= I830_FENCE_REG_VALID;
  2052. fence_reg = obj_priv->fence_reg;
  2053. if (fence_reg < 8)
  2054. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2055. else
  2056. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2057. I915_WRITE(fence_reg, val);
  2058. }
  2059. static void i830_write_fence_reg(struct drm_gem_object *obj)
  2060. {
  2061. struct drm_device *dev = obj->dev;
  2062. drm_i915_private_t *dev_priv = dev->dev_private;
  2063. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2064. u32 size = i915_gem_get_gtt_size(obj_priv);
  2065. int regnum = obj_priv->fence_reg;
  2066. uint32_t val;
  2067. uint32_t pitch_val;
  2068. uint32_t fence_size_bits;
  2069. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2070. (obj_priv->gtt_offset & (obj->size - 1))) {
  2071. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2072. __func__, obj_priv->gtt_offset);
  2073. return;
  2074. }
  2075. pitch_val = obj_priv->stride / 128;
  2076. pitch_val = ffs(pitch_val) - 1;
  2077. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2078. val = obj_priv->gtt_offset;
  2079. if (obj_priv->tiling_mode == I915_TILING_Y)
  2080. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2081. fence_size_bits = I830_FENCE_SIZE_BITS(size);
  2082. WARN_ON(fence_size_bits & ~0x00000f00);
  2083. val |= fence_size_bits;
  2084. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2085. val |= I830_FENCE_REG_VALID;
  2086. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2087. }
  2088. static int i915_find_fence_reg(struct drm_device *dev,
  2089. bool interruptible)
  2090. {
  2091. struct drm_i915_private *dev_priv = dev->dev_private;
  2092. struct drm_i915_fence_reg *reg;
  2093. struct drm_i915_gem_object *obj_priv = NULL;
  2094. int i, avail, ret;
  2095. /* First try to find a free reg */
  2096. avail = 0;
  2097. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2098. reg = &dev_priv->fence_regs[i];
  2099. if (!reg->obj)
  2100. return i;
  2101. obj_priv = to_intel_bo(reg->obj);
  2102. if (!obj_priv->pin_count)
  2103. avail++;
  2104. }
  2105. if (avail == 0)
  2106. return -ENOSPC;
  2107. /* None available, try to steal one or wait for a user to finish */
  2108. avail = I915_FENCE_REG_NONE;
  2109. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2110. lru_list) {
  2111. obj_priv = to_intel_bo(reg->obj);
  2112. if (obj_priv->pin_count)
  2113. continue;
  2114. /* found one! */
  2115. avail = obj_priv->fence_reg;
  2116. break;
  2117. }
  2118. BUG_ON(avail == I915_FENCE_REG_NONE);
  2119. /* We only have a reference on obj from the active list. put_fence_reg
  2120. * might drop that one, causing a use-after-free in it. So hold a
  2121. * private reference to obj like the other callers of put_fence_reg
  2122. * (set_tiling ioctl) do. */
  2123. drm_gem_object_reference(&obj_priv->base);
  2124. ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
  2125. drm_gem_object_unreference(&obj_priv->base);
  2126. if (ret != 0)
  2127. return ret;
  2128. return avail;
  2129. }
  2130. /**
  2131. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2132. * @obj: object to map through a fence reg
  2133. *
  2134. * When mapping objects through the GTT, userspace wants to be able to write
  2135. * to them without having to worry about swizzling if the object is tiled.
  2136. *
  2137. * This function walks the fence regs looking for a free one for @obj,
  2138. * stealing one if it can't find any.
  2139. *
  2140. * It then sets up the reg based on the object's properties: address, pitch
  2141. * and tiling format.
  2142. */
  2143. int
  2144. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2145. bool interruptible)
  2146. {
  2147. struct drm_device *dev = obj->dev;
  2148. struct drm_i915_private *dev_priv = dev->dev_private;
  2149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2150. struct drm_i915_fence_reg *reg = NULL;
  2151. int ret;
  2152. /* Just update our place in the LRU if our fence is getting used. */
  2153. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2154. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2155. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2156. return 0;
  2157. }
  2158. switch (obj_priv->tiling_mode) {
  2159. case I915_TILING_NONE:
  2160. WARN(1, "allocating a fence for non-tiled object?\n");
  2161. break;
  2162. case I915_TILING_X:
  2163. if (!obj_priv->stride)
  2164. return -EINVAL;
  2165. WARN((obj_priv->stride & (512 - 1)),
  2166. "object 0x%08x is X tiled but has non-512B pitch\n",
  2167. obj_priv->gtt_offset);
  2168. break;
  2169. case I915_TILING_Y:
  2170. if (!obj_priv->stride)
  2171. return -EINVAL;
  2172. WARN((obj_priv->stride & (128 - 1)),
  2173. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2174. obj_priv->gtt_offset);
  2175. break;
  2176. }
  2177. ret = i915_find_fence_reg(dev, interruptible);
  2178. if (ret < 0)
  2179. return ret;
  2180. obj_priv->fence_reg = ret;
  2181. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2182. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2183. reg->obj = obj;
  2184. switch (INTEL_INFO(dev)->gen) {
  2185. case 6:
  2186. sandybridge_write_fence_reg(obj);
  2187. break;
  2188. case 5:
  2189. case 4:
  2190. i965_write_fence_reg(obj);
  2191. break;
  2192. case 3:
  2193. i915_write_fence_reg(obj);
  2194. break;
  2195. case 2:
  2196. i830_write_fence_reg(obj);
  2197. break;
  2198. }
  2199. trace_i915_gem_object_get_fence(obj,
  2200. obj_priv->fence_reg,
  2201. obj_priv->tiling_mode);
  2202. return 0;
  2203. }
  2204. /**
  2205. * i915_gem_clear_fence_reg - clear out fence register info
  2206. * @obj: object to clear
  2207. *
  2208. * Zeroes out the fence register itself and clears out the associated
  2209. * data structures in dev_priv and obj_priv.
  2210. */
  2211. static void
  2212. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2213. {
  2214. struct drm_device *dev = obj->dev;
  2215. drm_i915_private_t *dev_priv = dev->dev_private;
  2216. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2217. struct drm_i915_fence_reg *reg =
  2218. &dev_priv->fence_regs[obj_priv->fence_reg];
  2219. uint32_t fence_reg;
  2220. switch (INTEL_INFO(dev)->gen) {
  2221. case 6:
  2222. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2223. (obj_priv->fence_reg * 8), 0);
  2224. break;
  2225. case 5:
  2226. case 4:
  2227. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2228. break;
  2229. case 3:
  2230. if (obj_priv->fence_reg >= 8)
  2231. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2232. else
  2233. case 2:
  2234. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2235. I915_WRITE(fence_reg, 0);
  2236. break;
  2237. }
  2238. reg->obj = NULL;
  2239. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2240. list_del_init(&reg->lru_list);
  2241. }
  2242. /**
  2243. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2244. * to the buffer to finish, and then resets the fence register.
  2245. * @obj: tiled object holding a fence register.
  2246. * @bool: whether the wait upon the fence is interruptible
  2247. *
  2248. * Zeroes out the fence register itself and clears out the associated
  2249. * data structures in dev_priv and obj_priv.
  2250. */
  2251. int
  2252. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2253. bool interruptible)
  2254. {
  2255. struct drm_device *dev = obj->dev;
  2256. struct drm_i915_private *dev_priv = dev->dev_private;
  2257. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2258. struct drm_i915_fence_reg *reg;
  2259. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2260. return 0;
  2261. /* If we've changed tiling, GTT-mappings of the object
  2262. * need to re-fault to ensure that the correct fence register
  2263. * setup is in place.
  2264. */
  2265. i915_gem_release_mmap(obj);
  2266. /* On the i915, GPU access to tiled buffers is via a fence,
  2267. * therefore we must wait for any outstanding access to complete
  2268. * before clearing the fence.
  2269. */
  2270. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2271. if (reg->gpu) {
  2272. int ret;
  2273. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2274. if (ret)
  2275. return ret;
  2276. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2277. if (ret)
  2278. return ret;
  2279. reg->gpu = false;
  2280. }
  2281. i915_gem_object_flush_gtt_write_domain(obj);
  2282. i915_gem_clear_fence_reg(obj);
  2283. return 0;
  2284. }
  2285. /**
  2286. * Finds free space in the GTT aperture and binds the object there.
  2287. */
  2288. static int
  2289. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  2290. unsigned alignment,
  2291. bool map_and_fenceable)
  2292. {
  2293. struct drm_device *dev = obj->dev;
  2294. drm_i915_private_t *dev_priv = dev->dev_private;
  2295. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2296. struct drm_mm_node *free_space;
  2297. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2298. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2299. bool mappable, fenceable;
  2300. int ret;
  2301. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2302. DRM_ERROR("Attempting to bind a purgeable object\n");
  2303. return -EINVAL;
  2304. }
  2305. fence_size = i915_gem_get_gtt_size(obj_priv);
  2306. fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
  2307. unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
  2308. if (alignment == 0)
  2309. alignment = map_and_fenceable ? fence_alignment :
  2310. unfenced_alignment;
  2311. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2312. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2313. return -EINVAL;
  2314. }
  2315. size = map_and_fenceable ? fence_size : obj->size;
  2316. /* If the object is bigger than the entire aperture, reject it early
  2317. * before evicting everything in a vain attempt to find space.
  2318. */
  2319. if (obj->size >
  2320. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2321. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2322. return -E2BIG;
  2323. }
  2324. search_free:
  2325. if (map_and_fenceable)
  2326. free_space =
  2327. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2328. size, alignment, 0,
  2329. dev_priv->mm.gtt_mappable_end,
  2330. 0);
  2331. else
  2332. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2333. size, alignment, 0);
  2334. if (free_space != NULL) {
  2335. if (map_and_fenceable)
  2336. obj_priv->gtt_space =
  2337. drm_mm_get_block_range_generic(free_space,
  2338. size, alignment, 0,
  2339. dev_priv->mm.gtt_mappable_end,
  2340. 0);
  2341. else
  2342. obj_priv->gtt_space =
  2343. drm_mm_get_block(free_space, size, alignment);
  2344. }
  2345. if (obj_priv->gtt_space == NULL) {
  2346. /* If the gtt is empty and we're still having trouble
  2347. * fitting our object in, we're out of memory.
  2348. */
  2349. ret = i915_gem_evict_something(dev, size, alignment,
  2350. map_and_fenceable);
  2351. if (ret)
  2352. return ret;
  2353. goto search_free;
  2354. }
  2355. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2356. if (ret) {
  2357. drm_mm_put_block(obj_priv->gtt_space);
  2358. obj_priv->gtt_space = NULL;
  2359. if (ret == -ENOMEM) {
  2360. /* first try to clear up some space from the GTT */
  2361. ret = i915_gem_evict_something(dev, size,
  2362. alignment,
  2363. map_and_fenceable);
  2364. if (ret) {
  2365. /* now try to shrink everyone else */
  2366. if (gfpmask) {
  2367. gfpmask = 0;
  2368. goto search_free;
  2369. }
  2370. return ret;
  2371. }
  2372. goto search_free;
  2373. }
  2374. return ret;
  2375. }
  2376. ret = i915_gem_gtt_bind_object(obj);
  2377. if (ret) {
  2378. i915_gem_object_put_pages_gtt(obj);
  2379. drm_mm_put_block(obj_priv->gtt_space);
  2380. obj_priv->gtt_space = NULL;
  2381. ret = i915_gem_evict_something(dev, size,
  2382. alignment, map_and_fenceable);
  2383. if (ret)
  2384. return ret;
  2385. goto search_free;
  2386. }
  2387. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2388. /* keep track of bounds object by adding it to the inactive list */
  2389. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2390. i915_gem_info_add_gtt(dev_priv, obj_priv);
  2391. /* Assert that the object is not currently in any GPU domain. As it
  2392. * wasn't in the GTT, there shouldn't be any way it could have been in
  2393. * a GPU cache
  2394. */
  2395. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2396. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2397. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
  2398. fenceable =
  2399. obj_priv->gtt_space->size == fence_size &&
  2400. (obj_priv->gtt_space->start & (fence_alignment -1)) == 0;
  2401. mappable =
  2402. obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;
  2403. obj_priv->map_and_fenceable = mappable && fenceable;
  2404. return 0;
  2405. }
  2406. void
  2407. i915_gem_clflush_object(struct drm_gem_object *obj)
  2408. {
  2409. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2410. /* If we don't have a page list set up, then we're not pinned
  2411. * to GPU, and we can ignore the cache flush because it'll happen
  2412. * again at bind time.
  2413. */
  2414. if (obj_priv->pages == NULL)
  2415. return;
  2416. trace_i915_gem_object_clflush(obj);
  2417. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2418. }
  2419. /** Flushes any GPU write domain for the object if it's dirty. */
  2420. static int
  2421. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2422. bool pipelined)
  2423. {
  2424. struct drm_device *dev = obj->dev;
  2425. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2426. return 0;
  2427. /* Queue the GPU write cache flushing we need. */
  2428. i915_gem_flush_ring(dev, NULL,
  2429. to_intel_bo(obj)->ring,
  2430. 0, obj->write_domain);
  2431. BUG_ON(obj->write_domain);
  2432. if (pipelined)
  2433. return 0;
  2434. return i915_gem_object_wait_rendering(obj, true);
  2435. }
  2436. /** Flushes the GTT write domain for the object if it's dirty. */
  2437. static void
  2438. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2439. {
  2440. uint32_t old_write_domain;
  2441. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2442. return;
  2443. /* No actual flushing is required for the GTT write domain. Writes
  2444. * to it immediately go to main memory as far as we know, so there's
  2445. * no chipset flush. It also doesn't land in render cache.
  2446. */
  2447. i915_gem_release_mmap(obj);
  2448. old_write_domain = obj->write_domain;
  2449. obj->write_domain = 0;
  2450. trace_i915_gem_object_change_domain(obj,
  2451. obj->read_domains,
  2452. old_write_domain);
  2453. }
  2454. /** Flushes the CPU write domain for the object if it's dirty. */
  2455. static void
  2456. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2457. {
  2458. uint32_t old_write_domain;
  2459. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2460. return;
  2461. i915_gem_clflush_object(obj);
  2462. intel_gtt_chipset_flush();
  2463. old_write_domain = obj->write_domain;
  2464. obj->write_domain = 0;
  2465. trace_i915_gem_object_change_domain(obj,
  2466. obj->read_domains,
  2467. old_write_domain);
  2468. }
  2469. /**
  2470. * Moves a single object to the GTT read, and possibly write domain.
  2471. *
  2472. * This function returns when the move is complete, including waiting on
  2473. * flushes to occur.
  2474. */
  2475. int
  2476. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2477. {
  2478. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2479. uint32_t old_write_domain, old_read_domains;
  2480. int ret;
  2481. /* Not valid to be called on unbound objects. */
  2482. if (obj_priv->gtt_space == NULL)
  2483. return -EINVAL;
  2484. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2485. if (ret != 0)
  2486. return ret;
  2487. i915_gem_object_flush_cpu_write_domain(obj);
  2488. if (write) {
  2489. ret = i915_gem_object_wait_rendering(obj, true);
  2490. if (ret)
  2491. return ret;
  2492. }
  2493. old_write_domain = obj->write_domain;
  2494. old_read_domains = obj->read_domains;
  2495. /* It should now be out of any other write domains, and we can update
  2496. * the domain values for our changes.
  2497. */
  2498. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2499. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2500. if (write) {
  2501. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2502. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2503. obj_priv->dirty = 1;
  2504. }
  2505. trace_i915_gem_object_change_domain(obj,
  2506. old_read_domains,
  2507. old_write_domain);
  2508. return 0;
  2509. }
  2510. /*
  2511. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2512. * wait, as in modesetting process we're not supposed to be interrupted.
  2513. */
  2514. int
  2515. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2516. bool pipelined)
  2517. {
  2518. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2519. uint32_t old_read_domains;
  2520. int ret;
  2521. /* Not valid to be called on unbound objects. */
  2522. if (obj_priv->gtt_space == NULL)
  2523. return -EINVAL;
  2524. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2525. if (ret)
  2526. return ret;
  2527. /* Currently, we are always called from an non-interruptible context. */
  2528. if (!pipelined) {
  2529. ret = i915_gem_object_wait_rendering(obj, false);
  2530. if (ret)
  2531. return ret;
  2532. }
  2533. i915_gem_object_flush_cpu_write_domain(obj);
  2534. old_read_domains = obj->read_domains;
  2535. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2536. trace_i915_gem_object_change_domain(obj,
  2537. old_read_domains,
  2538. obj->write_domain);
  2539. return 0;
  2540. }
  2541. int
  2542. i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
  2543. bool interruptible)
  2544. {
  2545. if (!obj->active)
  2546. return 0;
  2547. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
  2548. i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
  2549. 0, obj->base.write_domain);
  2550. return i915_gem_object_wait_rendering(&obj->base, interruptible);
  2551. }
  2552. /**
  2553. * Moves a single object to the CPU read, and possibly write domain.
  2554. *
  2555. * This function returns when the move is complete, including waiting on
  2556. * flushes to occur.
  2557. */
  2558. static int
  2559. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2560. {
  2561. uint32_t old_write_domain, old_read_domains;
  2562. int ret;
  2563. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2564. if (ret != 0)
  2565. return ret;
  2566. i915_gem_object_flush_gtt_write_domain(obj);
  2567. /* If we have a partially-valid cache of the object in the CPU,
  2568. * finish invalidating it and free the per-page flags.
  2569. */
  2570. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2571. if (write) {
  2572. ret = i915_gem_object_wait_rendering(obj, true);
  2573. if (ret)
  2574. return ret;
  2575. }
  2576. old_write_domain = obj->write_domain;
  2577. old_read_domains = obj->read_domains;
  2578. /* Flush the CPU cache if it's still invalid. */
  2579. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2580. i915_gem_clflush_object(obj);
  2581. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2582. }
  2583. /* It should now be out of any other write domains, and we can update
  2584. * the domain values for our changes.
  2585. */
  2586. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2587. /* If we're writing through the CPU, then the GPU read domains will
  2588. * need to be invalidated at next use.
  2589. */
  2590. if (write) {
  2591. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2592. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2593. }
  2594. trace_i915_gem_object_change_domain(obj,
  2595. old_read_domains,
  2596. old_write_domain);
  2597. return 0;
  2598. }
  2599. /*
  2600. * Set the next domain for the specified object. This
  2601. * may not actually perform the necessary flushing/invaliding though,
  2602. * as that may want to be batched with other set_domain operations
  2603. *
  2604. * This is (we hope) the only really tricky part of gem. The goal
  2605. * is fairly simple -- track which caches hold bits of the object
  2606. * and make sure they remain coherent. A few concrete examples may
  2607. * help to explain how it works. For shorthand, we use the notation
  2608. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2609. * a pair of read and write domain masks.
  2610. *
  2611. * Case 1: the batch buffer
  2612. *
  2613. * 1. Allocated
  2614. * 2. Written by CPU
  2615. * 3. Mapped to GTT
  2616. * 4. Read by GPU
  2617. * 5. Unmapped from GTT
  2618. * 6. Freed
  2619. *
  2620. * Let's take these a step at a time
  2621. *
  2622. * 1. Allocated
  2623. * Pages allocated from the kernel may still have
  2624. * cache contents, so we set them to (CPU, CPU) always.
  2625. * 2. Written by CPU (using pwrite)
  2626. * The pwrite function calls set_domain (CPU, CPU) and
  2627. * this function does nothing (as nothing changes)
  2628. * 3. Mapped by GTT
  2629. * This function asserts that the object is not
  2630. * currently in any GPU-based read or write domains
  2631. * 4. Read by GPU
  2632. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2633. * As write_domain is zero, this function adds in the
  2634. * current read domains (CPU+COMMAND, 0).
  2635. * flush_domains is set to CPU.
  2636. * invalidate_domains is set to COMMAND
  2637. * clflush is run to get data out of the CPU caches
  2638. * then i915_dev_set_domain calls i915_gem_flush to
  2639. * emit an MI_FLUSH and drm_agp_chipset_flush
  2640. * 5. Unmapped from GTT
  2641. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2642. * flush_domains and invalidate_domains end up both zero
  2643. * so no flushing/invalidating happens
  2644. * 6. Freed
  2645. * yay, done
  2646. *
  2647. * Case 2: The shared render buffer
  2648. *
  2649. * 1. Allocated
  2650. * 2. Mapped to GTT
  2651. * 3. Read/written by GPU
  2652. * 4. set_domain to (CPU,CPU)
  2653. * 5. Read/written by CPU
  2654. * 6. Read/written by GPU
  2655. *
  2656. * 1. Allocated
  2657. * Same as last example, (CPU, CPU)
  2658. * 2. Mapped to GTT
  2659. * Nothing changes (assertions find that it is not in the GPU)
  2660. * 3. Read/written by GPU
  2661. * execbuffer calls set_domain (RENDER, RENDER)
  2662. * flush_domains gets CPU
  2663. * invalidate_domains gets GPU
  2664. * clflush (obj)
  2665. * MI_FLUSH and drm_agp_chipset_flush
  2666. * 4. set_domain (CPU, CPU)
  2667. * flush_domains gets GPU
  2668. * invalidate_domains gets CPU
  2669. * wait_rendering (obj) to make sure all drawing is complete.
  2670. * This will include an MI_FLUSH to get the data from GPU
  2671. * to memory
  2672. * clflush (obj) to invalidate the CPU cache
  2673. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2674. * 5. Read/written by CPU
  2675. * cache lines are loaded and dirtied
  2676. * 6. Read written by GPU
  2677. * Same as last GPU access
  2678. *
  2679. * Case 3: The constant buffer
  2680. *
  2681. * 1. Allocated
  2682. * 2. Written by CPU
  2683. * 3. Read by GPU
  2684. * 4. Updated (written) by CPU again
  2685. * 5. Read by GPU
  2686. *
  2687. * 1. Allocated
  2688. * (CPU, CPU)
  2689. * 2. Written by CPU
  2690. * (CPU, CPU)
  2691. * 3. Read by GPU
  2692. * (CPU+RENDER, 0)
  2693. * flush_domains = CPU
  2694. * invalidate_domains = RENDER
  2695. * clflush (obj)
  2696. * MI_FLUSH
  2697. * drm_agp_chipset_flush
  2698. * 4. Updated (written) by CPU again
  2699. * (CPU, CPU)
  2700. * flush_domains = 0 (no previous write domain)
  2701. * invalidate_domains = 0 (no new read domains)
  2702. * 5. Read by GPU
  2703. * (CPU+RENDER, 0)
  2704. * flush_domains = CPU
  2705. * invalidate_domains = RENDER
  2706. * clflush (obj)
  2707. * MI_FLUSH
  2708. * drm_agp_chipset_flush
  2709. */
  2710. static void
  2711. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2712. struct intel_ring_buffer *ring,
  2713. struct change_domains *cd)
  2714. {
  2715. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2716. uint32_t invalidate_domains = 0;
  2717. uint32_t flush_domains = 0;
  2718. /*
  2719. * If the object isn't moving to a new write domain,
  2720. * let the object stay in multiple read domains
  2721. */
  2722. if (obj->pending_write_domain == 0)
  2723. obj->pending_read_domains |= obj->read_domains;
  2724. /*
  2725. * Flush the current write domain if
  2726. * the new read domains don't match. Invalidate
  2727. * any read domains which differ from the old
  2728. * write domain
  2729. */
  2730. if (obj->write_domain &&
  2731. (obj->write_domain != obj->pending_read_domains ||
  2732. obj_priv->ring != ring)) {
  2733. flush_domains |= obj->write_domain;
  2734. invalidate_domains |=
  2735. obj->pending_read_domains & ~obj->write_domain;
  2736. }
  2737. /*
  2738. * Invalidate any read caches which may have
  2739. * stale data. That is, any new read domains.
  2740. */
  2741. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2742. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2743. i915_gem_clflush_object(obj);
  2744. /* blow away mappings if mapped through GTT */
  2745. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
  2746. i915_gem_release_mmap(obj);
  2747. /* The actual obj->write_domain will be updated with
  2748. * pending_write_domain after we emit the accumulated flush for all
  2749. * of our domain changes in execbuffers (which clears objects'
  2750. * write_domains). So if we have a current write domain that we
  2751. * aren't changing, set pending_write_domain to that.
  2752. */
  2753. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2754. obj->pending_write_domain = obj->write_domain;
  2755. cd->invalidate_domains |= invalidate_domains;
  2756. cd->flush_domains |= flush_domains;
  2757. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2758. cd->flush_rings |= obj_priv->ring->id;
  2759. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2760. cd->flush_rings |= ring->id;
  2761. }
  2762. /**
  2763. * Moves the object from a partially CPU read to a full one.
  2764. *
  2765. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2766. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2767. */
  2768. static void
  2769. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2770. {
  2771. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2772. if (!obj_priv->page_cpu_valid)
  2773. return;
  2774. /* If we're partially in the CPU read domain, finish moving it in.
  2775. */
  2776. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2777. int i;
  2778. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2779. if (obj_priv->page_cpu_valid[i])
  2780. continue;
  2781. drm_clflush_pages(obj_priv->pages + i, 1);
  2782. }
  2783. }
  2784. /* Free the page_cpu_valid mappings which are now stale, whether
  2785. * or not we've got I915_GEM_DOMAIN_CPU.
  2786. */
  2787. kfree(obj_priv->page_cpu_valid);
  2788. obj_priv->page_cpu_valid = NULL;
  2789. }
  2790. /**
  2791. * Set the CPU read domain on a range of the object.
  2792. *
  2793. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2794. * not entirely valid. The page_cpu_valid member of the object flags which
  2795. * pages have been flushed, and will be respected by
  2796. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2797. * of the whole object.
  2798. *
  2799. * This function returns when the move is complete, including waiting on
  2800. * flushes to occur.
  2801. */
  2802. static int
  2803. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2804. uint64_t offset, uint64_t size)
  2805. {
  2806. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2807. uint32_t old_read_domains;
  2808. int i, ret;
  2809. if (offset == 0 && size == obj->size)
  2810. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2811. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2812. if (ret != 0)
  2813. return ret;
  2814. i915_gem_object_flush_gtt_write_domain(obj);
  2815. /* If we're already fully in the CPU read domain, we're done. */
  2816. if (obj_priv->page_cpu_valid == NULL &&
  2817. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2818. return 0;
  2819. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2820. * newly adding I915_GEM_DOMAIN_CPU
  2821. */
  2822. if (obj_priv->page_cpu_valid == NULL) {
  2823. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2824. GFP_KERNEL);
  2825. if (obj_priv->page_cpu_valid == NULL)
  2826. return -ENOMEM;
  2827. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2828. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2829. /* Flush the cache on any pages that are still invalid from the CPU's
  2830. * perspective.
  2831. */
  2832. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2833. i++) {
  2834. if (obj_priv->page_cpu_valid[i])
  2835. continue;
  2836. drm_clflush_pages(obj_priv->pages + i, 1);
  2837. obj_priv->page_cpu_valid[i] = 1;
  2838. }
  2839. /* It should now be out of any other write domains, and we can update
  2840. * the domain values for our changes.
  2841. */
  2842. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2843. old_read_domains = obj->read_domains;
  2844. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2845. trace_i915_gem_object_change_domain(obj,
  2846. old_read_domains,
  2847. obj->write_domain);
  2848. return 0;
  2849. }
  2850. static int
  2851. i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
  2852. struct drm_file *file_priv,
  2853. struct drm_i915_gem_exec_object2 *entry,
  2854. struct drm_i915_gem_relocation_entry *reloc)
  2855. {
  2856. struct drm_device *dev = obj->base.dev;
  2857. struct drm_gem_object *target_obj;
  2858. uint32_t target_offset;
  2859. int ret = -EINVAL;
  2860. target_obj = drm_gem_object_lookup(dev, file_priv,
  2861. reloc->target_handle);
  2862. if (target_obj == NULL)
  2863. return -ENOENT;
  2864. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2865. #if WATCH_RELOC
  2866. DRM_INFO("%s: obj %p offset %08x target %d "
  2867. "read %08x write %08x gtt %08x "
  2868. "presumed %08x delta %08x\n",
  2869. __func__,
  2870. obj,
  2871. (int) reloc->offset,
  2872. (int) reloc->target_handle,
  2873. (int) reloc->read_domains,
  2874. (int) reloc->write_domain,
  2875. (int) target_offset,
  2876. (int) reloc->presumed_offset,
  2877. reloc->delta);
  2878. #endif
  2879. /* The target buffer should have appeared before us in the
  2880. * exec_object list, so it should have a GTT space bound by now.
  2881. */
  2882. if (target_offset == 0) {
  2883. DRM_ERROR("No GTT space found for object %d\n",
  2884. reloc->target_handle);
  2885. goto err;
  2886. }
  2887. /* Validate that the target is in a valid r/w GPU domain */
  2888. if (reloc->write_domain & (reloc->write_domain - 1)) {
  2889. DRM_ERROR("reloc with multiple write domains: "
  2890. "obj %p target %d offset %d "
  2891. "read %08x write %08x",
  2892. obj, reloc->target_handle,
  2893. (int) reloc->offset,
  2894. reloc->read_domains,
  2895. reloc->write_domain);
  2896. goto err;
  2897. }
  2898. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2899. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2900. DRM_ERROR("reloc with read/write CPU domains: "
  2901. "obj %p target %d offset %d "
  2902. "read %08x write %08x",
  2903. obj, reloc->target_handle,
  2904. (int) reloc->offset,
  2905. reloc->read_domains,
  2906. reloc->write_domain);
  2907. goto err;
  2908. }
  2909. if (reloc->write_domain && target_obj->pending_write_domain &&
  2910. reloc->write_domain != target_obj->pending_write_domain) {
  2911. DRM_ERROR("Write domain conflict: "
  2912. "obj %p target %d offset %d "
  2913. "new %08x old %08x\n",
  2914. obj, reloc->target_handle,
  2915. (int) reloc->offset,
  2916. reloc->write_domain,
  2917. target_obj->pending_write_domain);
  2918. goto err;
  2919. }
  2920. target_obj->pending_read_domains |= reloc->read_domains;
  2921. target_obj->pending_write_domain |= reloc->write_domain;
  2922. /* If the relocation already has the right value in it, no
  2923. * more work needs to be done.
  2924. */
  2925. if (target_offset == reloc->presumed_offset)
  2926. goto out;
  2927. /* Check that the relocation address is valid... */
  2928. if (reloc->offset > obj->base.size - 4) {
  2929. DRM_ERROR("Relocation beyond object bounds: "
  2930. "obj %p target %d offset %d size %d.\n",
  2931. obj, reloc->target_handle,
  2932. (int) reloc->offset,
  2933. (int) obj->base.size);
  2934. goto err;
  2935. }
  2936. if (reloc->offset & 3) {
  2937. DRM_ERROR("Relocation not 4-byte aligned: "
  2938. "obj %p target %d offset %d.\n",
  2939. obj, reloc->target_handle,
  2940. (int) reloc->offset);
  2941. goto err;
  2942. }
  2943. /* and points to somewhere within the target object. */
  2944. if (reloc->delta >= target_obj->size) {
  2945. DRM_ERROR("Relocation beyond target object bounds: "
  2946. "obj %p target %d delta %d size %d.\n",
  2947. obj, reloc->target_handle,
  2948. (int) reloc->delta,
  2949. (int) target_obj->size);
  2950. goto err;
  2951. }
  2952. reloc->delta += target_offset;
  2953. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2954. uint32_t page_offset = reloc->offset & ~PAGE_MASK;
  2955. char *vaddr;
  2956. vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
  2957. *(uint32_t *)(vaddr + page_offset) = reloc->delta;
  2958. kunmap_atomic(vaddr);
  2959. } else {
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. uint32_t __iomem *reloc_entry;
  2962. void __iomem *reloc_page;
  2963. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2964. if (ret)
  2965. goto err;
  2966. /* Map the page containing the relocation we're going to perform. */
  2967. reloc->offset += obj->gtt_offset;
  2968. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2969. reloc->offset & PAGE_MASK);
  2970. reloc_entry = (uint32_t __iomem *)
  2971. (reloc_page + (reloc->offset & ~PAGE_MASK));
  2972. iowrite32(reloc->delta, reloc_entry);
  2973. io_mapping_unmap_atomic(reloc_page);
  2974. }
  2975. /* and update the user's relocation entry */
  2976. reloc->presumed_offset = target_offset;
  2977. out:
  2978. ret = 0;
  2979. err:
  2980. drm_gem_object_unreference(target_obj);
  2981. return ret;
  2982. }
  2983. static int
  2984. i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
  2985. struct drm_file *file_priv,
  2986. struct drm_i915_gem_exec_object2 *entry)
  2987. {
  2988. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2989. int i, ret;
  2990. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2991. for (i = 0; i < entry->relocation_count; i++) {
  2992. struct drm_i915_gem_relocation_entry reloc;
  2993. if (__copy_from_user_inatomic(&reloc,
  2994. user_relocs+i,
  2995. sizeof(reloc)))
  2996. return -EFAULT;
  2997. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
  2998. if (ret)
  2999. return ret;
  3000. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  3001. &reloc.presumed_offset,
  3002. sizeof(reloc.presumed_offset)))
  3003. return -EFAULT;
  3004. }
  3005. return 0;
  3006. }
  3007. static int
  3008. i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
  3009. struct drm_file *file_priv,
  3010. struct drm_i915_gem_exec_object2 *entry,
  3011. struct drm_i915_gem_relocation_entry *relocs)
  3012. {
  3013. int i, ret;
  3014. for (i = 0; i < entry->relocation_count; i++) {
  3015. ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
  3016. if (ret)
  3017. return ret;
  3018. }
  3019. return 0;
  3020. }
  3021. static int
  3022. i915_gem_execbuffer_relocate(struct drm_device *dev,
  3023. struct drm_file *file,
  3024. struct drm_gem_object **object_list,
  3025. struct drm_i915_gem_exec_object2 *exec_list,
  3026. int count)
  3027. {
  3028. int i, ret;
  3029. for (i = 0; i < count; i++) {
  3030. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3031. obj->base.pending_read_domains = 0;
  3032. obj->base.pending_write_domain = 0;
  3033. ret = i915_gem_execbuffer_relocate_object(obj, file,
  3034. &exec_list[i]);
  3035. if (ret)
  3036. return ret;
  3037. }
  3038. return 0;
  3039. }
  3040. static int
  3041. i915_gem_execbuffer_reserve(struct drm_device *dev,
  3042. struct drm_file *file,
  3043. struct drm_gem_object **object_list,
  3044. struct drm_i915_gem_exec_object2 *exec_list,
  3045. int count)
  3046. {
  3047. struct drm_i915_private *dev_priv = dev->dev_private;
  3048. int ret, i, retry;
  3049. /* attempt to pin all of the buffers into the GTT */
  3050. retry = 0;
  3051. do {
  3052. ret = 0;
  3053. for (i = 0; i < count; i++) {
  3054. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  3055. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3056. bool need_fence =
  3057. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  3058. obj->tiling_mode != I915_TILING_NONE;
  3059. /* g33/pnv can't fence buffers in the unmappable part */
  3060. bool need_mappable =
  3061. entry->relocation_count ? true : need_fence;
  3062. /* Check fence reg constraints and rebind if necessary */
  3063. if (need_mappable && !obj->map_and_fenceable) {
  3064. ret = i915_gem_object_unbind(&obj->base);
  3065. if (ret)
  3066. break;
  3067. }
  3068. ret = i915_gem_object_pin(&obj->base,
  3069. entry->alignment,
  3070. need_mappable);
  3071. if (ret)
  3072. break;
  3073. /*
  3074. * Pre-965 chips need a fence register set up in order
  3075. * to properly handle blits to/from tiled surfaces.
  3076. */
  3077. if (need_fence) {
  3078. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  3079. if (ret) {
  3080. i915_gem_object_unpin(&obj->base);
  3081. break;
  3082. }
  3083. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  3084. }
  3085. entry->offset = obj->gtt_offset;
  3086. }
  3087. while (i--)
  3088. i915_gem_object_unpin(object_list[i]);
  3089. if (ret != -ENOSPC || retry > 1)
  3090. return ret;
  3091. /* First attempt, just clear anything that is purgeable.
  3092. * Second attempt, clear the entire GTT.
  3093. */
  3094. ret = i915_gem_evict_everything(dev, retry == 0);
  3095. if (ret)
  3096. return ret;
  3097. retry++;
  3098. } while (1);
  3099. }
  3100. static int
  3101. i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
  3102. struct drm_file *file,
  3103. struct drm_gem_object **object_list,
  3104. struct drm_i915_gem_exec_object2 *exec_list,
  3105. int count)
  3106. {
  3107. struct drm_i915_gem_relocation_entry *reloc;
  3108. int i, total, ret;
  3109. for (i = 0; i < count; i++) {
  3110. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3111. obj->in_execbuffer = false;
  3112. }
  3113. mutex_unlock(&dev->struct_mutex);
  3114. total = 0;
  3115. for (i = 0; i < count; i++)
  3116. total += exec_list[i].relocation_count;
  3117. reloc = drm_malloc_ab(total, sizeof(*reloc));
  3118. if (reloc == NULL) {
  3119. mutex_lock(&dev->struct_mutex);
  3120. return -ENOMEM;
  3121. }
  3122. total = 0;
  3123. for (i = 0; i < count; i++) {
  3124. struct drm_i915_gem_relocation_entry __user *user_relocs;
  3125. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  3126. if (copy_from_user(reloc+total, user_relocs,
  3127. exec_list[i].relocation_count *
  3128. sizeof(*reloc))) {
  3129. ret = -EFAULT;
  3130. mutex_lock(&dev->struct_mutex);
  3131. goto err;
  3132. }
  3133. total += exec_list[i].relocation_count;
  3134. }
  3135. ret = i915_mutex_lock_interruptible(dev);
  3136. if (ret) {
  3137. mutex_lock(&dev->struct_mutex);
  3138. goto err;
  3139. }
  3140. ret = i915_gem_execbuffer_reserve(dev, file,
  3141. object_list, exec_list,
  3142. count);
  3143. if (ret)
  3144. goto err;
  3145. total = 0;
  3146. for (i = 0; i < count; i++) {
  3147. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3148. obj->base.pending_read_domains = 0;
  3149. obj->base.pending_write_domain = 0;
  3150. ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
  3151. &exec_list[i],
  3152. reloc + total);
  3153. if (ret)
  3154. goto err;
  3155. total += exec_list[i].relocation_count;
  3156. }
  3157. /* Leave the user relocations as are, this is the painfully slow path,
  3158. * and we want to avoid the complication of dropping the lock whilst
  3159. * having buffers reserved in the aperture and so causing spurious
  3160. * ENOSPC for random operations.
  3161. */
  3162. err:
  3163. drm_free_large(reloc);
  3164. return ret;
  3165. }
  3166. static int
  3167. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  3168. struct drm_file *file,
  3169. struct intel_ring_buffer *ring,
  3170. struct drm_gem_object **objects,
  3171. int count)
  3172. {
  3173. struct change_domains cd;
  3174. int ret, i;
  3175. cd.invalidate_domains = 0;
  3176. cd.flush_domains = 0;
  3177. cd.flush_rings = 0;
  3178. for (i = 0; i < count; i++)
  3179. i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
  3180. if (cd.invalidate_domains | cd.flush_domains) {
  3181. #if WATCH_EXEC
  3182. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3183. __func__,
  3184. cd.invalidate_domains,
  3185. cd.flush_domains);
  3186. #endif
  3187. i915_gem_flush(dev, file,
  3188. cd.invalidate_domains,
  3189. cd.flush_domains,
  3190. cd.flush_rings);
  3191. }
  3192. for (i = 0; i < count; i++) {
  3193. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  3194. /* XXX replace with semaphores */
  3195. if (obj->ring && ring != obj->ring) {
  3196. ret = i915_gem_object_wait_rendering(&obj->base, true);
  3197. if (ret)
  3198. return ret;
  3199. }
  3200. }
  3201. return 0;
  3202. }
  3203. /* Throttle our rendering by waiting until the ring has completed our requests
  3204. * emitted over 20 msec ago.
  3205. *
  3206. * Note that if we were to use the current jiffies each time around the loop,
  3207. * we wouldn't escape the function with any frames outstanding if the time to
  3208. * render a frame was over 20ms.
  3209. *
  3210. * This should get us reasonable parallelism between CPU and GPU but also
  3211. * relatively low latency when blocking on a particular request to finish.
  3212. */
  3213. static int
  3214. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3215. {
  3216. struct drm_i915_private *dev_priv = dev->dev_private;
  3217. struct drm_i915_file_private *file_priv = file->driver_priv;
  3218. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3219. struct drm_i915_gem_request *request;
  3220. struct intel_ring_buffer *ring = NULL;
  3221. u32 seqno = 0;
  3222. int ret;
  3223. spin_lock(&file_priv->mm.lock);
  3224. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3225. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3226. break;
  3227. ring = request->ring;
  3228. seqno = request->seqno;
  3229. }
  3230. spin_unlock(&file_priv->mm.lock);
  3231. if (seqno == 0)
  3232. return 0;
  3233. ret = 0;
  3234. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  3235. /* And wait for the seqno passing without holding any locks and
  3236. * causing extra latency for others. This is safe as the irq
  3237. * generation is designed to be run atomically and so is
  3238. * lockless.
  3239. */
  3240. ring->user_irq_get(ring);
  3241. ret = wait_event_interruptible(ring->irq_queue,
  3242. i915_seqno_passed(ring->get_seqno(ring), seqno)
  3243. || atomic_read(&dev_priv->mm.wedged));
  3244. ring->user_irq_put(ring);
  3245. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3246. ret = -EIO;
  3247. }
  3248. if (ret == 0)
  3249. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3250. return ret;
  3251. }
  3252. static int
  3253. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3254. uint64_t exec_offset)
  3255. {
  3256. uint32_t exec_start, exec_len;
  3257. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3258. exec_len = (uint32_t) exec->batch_len;
  3259. if ((exec_start | exec_len) & 0x7)
  3260. return -EINVAL;
  3261. if (!exec_start)
  3262. return -EINVAL;
  3263. return 0;
  3264. }
  3265. static int
  3266. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3267. int count)
  3268. {
  3269. int i;
  3270. for (i = 0; i < count; i++) {
  3271. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3272. int length; /* limited by fault_in_pages_readable() */
  3273. /* First check for malicious input causing overflow */
  3274. if (exec[i].relocation_count >
  3275. INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
  3276. return -EINVAL;
  3277. length = exec[i].relocation_count *
  3278. sizeof(struct drm_i915_gem_relocation_entry);
  3279. if (!access_ok(VERIFY_READ, ptr, length))
  3280. return -EFAULT;
  3281. /* we may also need to update the presumed offsets */
  3282. if (!access_ok(VERIFY_WRITE, ptr, length))
  3283. return -EFAULT;
  3284. if (fault_in_pages_readable(ptr, length))
  3285. return -EFAULT;
  3286. }
  3287. return 0;
  3288. }
  3289. static int
  3290. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3291. struct drm_file *file,
  3292. struct drm_i915_gem_execbuffer2 *args,
  3293. struct drm_i915_gem_exec_object2 *exec_list)
  3294. {
  3295. drm_i915_private_t *dev_priv = dev->dev_private;
  3296. struct drm_gem_object **object_list = NULL;
  3297. struct drm_gem_object *batch_obj;
  3298. struct drm_clip_rect *cliprects = NULL;
  3299. struct drm_i915_gem_request *request = NULL;
  3300. int ret, i, flips;
  3301. uint64_t exec_offset;
  3302. struct intel_ring_buffer *ring = NULL;
  3303. ret = i915_gem_check_is_wedged(dev);
  3304. if (ret)
  3305. return ret;
  3306. ret = validate_exec_list(exec_list, args->buffer_count);
  3307. if (ret)
  3308. return ret;
  3309. #if WATCH_EXEC
  3310. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3311. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3312. #endif
  3313. switch (args->flags & I915_EXEC_RING_MASK) {
  3314. case I915_EXEC_DEFAULT:
  3315. case I915_EXEC_RENDER:
  3316. ring = &dev_priv->render_ring;
  3317. break;
  3318. case I915_EXEC_BSD:
  3319. if (!HAS_BSD(dev)) {
  3320. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3321. return -EINVAL;
  3322. }
  3323. ring = &dev_priv->bsd_ring;
  3324. break;
  3325. case I915_EXEC_BLT:
  3326. if (!HAS_BLT(dev)) {
  3327. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3328. return -EINVAL;
  3329. }
  3330. ring = &dev_priv->blt_ring;
  3331. break;
  3332. default:
  3333. DRM_ERROR("execbuf with unknown ring: %d\n",
  3334. (int)(args->flags & I915_EXEC_RING_MASK));
  3335. return -EINVAL;
  3336. }
  3337. if (args->buffer_count < 1) {
  3338. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3339. return -EINVAL;
  3340. }
  3341. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3342. if (object_list == NULL) {
  3343. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3344. args->buffer_count);
  3345. ret = -ENOMEM;
  3346. goto pre_mutex_err;
  3347. }
  3348. if (args->num_cliprects != 0) {
  3349. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3350. GFP_KERNEL);
  3351. if (cliprects == NULL) {
  3352. ret = -ENOMEM;
  3353. goto pre_mutex_err;
  3354. }
  3355. ret = copy_from_user(cliprects,
  3356. (struct drm_clip_rect __user *)
  3357. (uintptr_t) args->cliprects_ptr,
  3358. sizeof(*cliprects) * args->num_cliprects);
  3359. if (ret != 0) {
  3360. DRM_ERROR("copy %d cliprects failed: %d\n",
  3361. args->num_cliprects, ret);
  3362. ret = -EFAULT;
  3363. goto pre_mutex_err;
  3364. }
  3365. }
  3366. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3367. if (request == NULL) {
  3368. ret = -ENOMEM;
  3369. goto pre_mutex_err;
  3370. }
  3371. ret = i915_mutex_lock_interruptible(dev);
  3372. if (ret)
  3373. goto pre_mutex_err;
  3374. if (dev_priv->mm.suspended) {
  3375. mutex_unlock(&dev->struct_mutex);
  3376. ret = -EBUSY;
  3377. goto pre_mutex_err;
  3378. }
  3379. /* Look up object handles */
  3380. for (i = 0; i < args->buffer_count; i++) {
  3381. struct drm_i915_gem_object *obj_priv;
  3382. object_list[i] = drm_gem_object_lookup(dev, file,
  3383. exec_list[i].handle);
  3384. if (object_list[i] == NULL) {
  3385. DRM_ERROR("Invalid object handle %d at index %d\n",
  3386. exec_list[i].handle, i);
  3387. /* prevent error path from reading uninitialized data */
  3388. args->buffer_count = i + 1;
  3389. ret = -ENOENT;
  3390. goto err;
  3391. }
  3392. obj_priv = to_intel_bo(object_list[i]);
  3393. if (obj_priv->in_execbuffer) {
  3394. DRM_ERROR("Object %p appears more than once in object list\n",
  3395. object_list[i]);
  3396. /* prevent error path from reading uninitialized data */
  3397. args->buffer_count = i + 1;
  3398. ret = -EINVAL;
  3399. goto err;
  3400. }
  3401. obj_priv->in_execbuffer = true;
  3402. }
  3403. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3404. ret = i915_gem_execbuffer_reserve(dev, file,
  3405. object_list, exec_list,
  3406. args->buffer_count);
  3407. if (ret)
  3408. goto err;
  3409. /* The objects are in their final locations, apply the relocations. */
  3410. ret = i915_gem_execbuffer_relocate(dev, file,
  3411. object_list, exec_list,
  3412. args->buffer_count);
  3413. if (ret) {
  3414. if (ret == -EFAULT) {
  3415. ret = i915_gem_execbuffer_relocate_slow(dev, file,
  3416. object_list,
  3417. exec_list,
  3418. args->buffer_count);
  3419. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  3420. }
  3421. if (ret)
  3422. goto err;
  3423. }
  3424. /* Set the pending read domains for the batch buffer to COMMAND */
  3425. batch_obj = object_list[args->buffer_count-1];
  3426. if (batch_obj->pending_write_domain) {
  3427. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3428. ret = -EINVAL;
  3429. goto err;
  3430. }
  3431. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3432. /* Sanity check the batch buffer */
  3433. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3434. ret = i915_gem_check_execbuffer(args, exec_offset);
  3435. if (ret != 0) {
  3436. DRM_ERROR("execbuf with invalid offset/length\n");
  3437. goto err;
  3438. }
  3439. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3440. object_list, args->buffer_count);
  3441. if (ret)
  3442. goto err;
  3443. #if WATCH_COHERENCY
  3444. for (i = 0; i < args->buffer_count; i++) {
  3445. i915_gem_object_check_coherency(object_list[i],
  3446. exec_list[i].handle);
  3447. }
  3448. #endif
  3449. #if WATCH_EXEC
  3450. i915_gem_dump_object(batch_obj,
  3451. args->batch_len,
  3452. __func__,
  3453. ~0);
  3454. #endif
  3455. /* Check for any pending flips. As we only maintain a flip queue depth
  3456. * of 1, we can simply insert a WAIT for the next display flip prior
  3457. * to executing the batch and avoid stalling the CPU.
  3458. */
  3459. flips = 0;
  3460. for (i = 0; i < args->buffer_count; i++) {
  3461. if (object_list[i]->write_domain)
  3462. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3463. }
  3464. if (flips) {
  3465. int plane, flip_mask;
  3466. for (plane = 0; flips >> plane; plane++) {
  3467. if (((flips >> plane) & 1) == 0)
  3468. continue;
  3469. if (plane)
  3470. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3471. else
  3472. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3473. ret = intel_ring_begin(ring, 2);
  3474. if (ret)
  3475. goto err;
  3476. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  3477. intel_ring_emit(ring, MI_NOOP);
  3478. intel_ring_advance(ring);
  3479. }
  3480. }
  3481. /* Exec the batchbuffer */
  3482. ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
  3483. if (ret) {
  3484. DRM_ERROR("dispatch failed %d\n", ret);
  3485. goto err;
  3486. }
  3487. for (i = 0; i < args->buffer_count; i++) {
  3488. struct drm_gem_object *obj = object_list[i];
  3489. obj->read_domains = obj->pending_read_domains;
  3490. obj->write_domain = obj->pending_write_domain;
  3491. i915_gem_object_move_to_active(obj, ring);
  3492. if (obj->write_domain) {
  3493. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3494. obj_priv->dirty = 1;
  3495. list_move_tail(&obj_priv->gpu_write_list,
  3496. &ring->gpu_write_list);
  3497. intel_mark_busy(dev, obj);
  3498. }
  3499. trace_i915_gem_object_change_domain(obj,
  3500. obj->read_domains,
  3501. obj->write_domain);
  3502. }
  3503. /*
  3504. * Ensure that the commands in the batch buffer are
  3505. * finished before the interrupt fires
  3506. */
  3507. i915_retire_commands(dev, ring);
  3508. if (i915_add_request(dev, file, request, ring))
  3509. i915_gem_next_request_seqno(dev, ring);
  3510. else
  3511. request = NULL;
  3512. err:
  3513. for (i = 0; i < args->buffer_count; i++) {
  3514. if (object_list[i] == NULL)
  3515. break;
  3516. to_intel_bo(object_list[i])->in_execbuffer = false;
  3517. drm_gem_object_unreference(object_list[i]);
  3518. }
  3519. mutex_unlock(&dev->struct_mutex);
  3520. pre_mutex_err:
  3521. drm_free_large(object_list);
  3522. kfree(cliprects);
  3523. kfree(request);
  3524. return ret;
  3525. }
  3526. /*
  3527. * Legacy execbuffer just creates an exec2 list from the original exec object
  3528. * list array and passes it to the real function.
  3529. */
  3530. int
  3531. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3532. struct drm_file *file_priv)
  3533. {
  3534. struct drm_i915_gem_execbuffer *args = data;
  3535. struct drm_i915_gem_execbuffer2 exec2;
  3536. struct drm_i915_gem_exec_object *exec_list = NULL;
  3537. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3538. int ret, i;
  3539. #if WATCH_EXEC
  3540. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3541. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3542. #endif
  3543. if (args->buffer_count < 1) {
  3544. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3545. return -EINVAL;
  3546. }
  3547. /* Copy in the exec list from userland */
  3548. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3549. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3550. if (exec_list == NULL || exec2_list == NULL) {
  3551. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3552. args->buffer_count);
  3553. drm_free_large(exec_list);
  3554. drm_free_large(exec2_list);
  3555. return -ENOMEM;
  3556. }
  3557. ret = copy_from_user(exec_list,
  3558. (struct drm_i915_relocation_entry __user *)
  3559. (uintptr_t) args->buffers_ptr,
  3560. sizeof(*exec_list) * args->buffer_count);
  3561. if (ret != 0) {
  3562. DRM_ERROR("copy %d exec entries failed %d\n",
  3563. args->buffer_count, ret);
  3564. drm_free_large(exec_list);
  3565. drm_free_large(exec2_list);
  3566. return -EFAULT;
  3567. }
  3568. for (i = 0; i < args->buffer_count; i++) {
  3569. exec2_list[i].handle = exec_list[i].handle;
  3570. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3571. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3572. exec2_list[i].alignment = exec_list[i].alignment;
  3573. exec2_list[i].offset = exec_list[i].offset;
  3574. if (INTEL_INFO(dev)->gen < 4)
  3575. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3576. else
  3577. exec2_list[i].flags = 0;
  3578. }
  3579. exec2.buffers_ptr = args->buffers_ptr;
  3580. exec2.buffer_count = args->buffer_count;
  3581. exec2.batch_start_offset = args->batch_start_offset;
  3582. exec2.batch_len = args->batch_len;
  3583. exec2.DR1 = args->DR1;
  3584. exec2.DR4 = args->DR4;
  3585. exec2.num_cliprects = args->num_cliprects;
  3586. exec2.cliprects_ptr = args->cliprects_ptr;
  3587. exec2.flags = I915_EXEC_RENDER;
  3588. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3589. if (!ret) {
  3590. /* Copy the new buffer offsets back to the user's exec list. */
  3591. for (i = 0; i < args->buffer_count; i++)
  3592. exec_list[i].offset = exec2_list[i].offset;
  3593. /* ... and back out to userspace */
  3594. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3595. (uintptr_t) args->buffers_ptr,
  3596. exec_list,
  3597. sizeof(*exec_list) * args->buffer_count);
  3598. if (ret) {
  3599. ret = -EFAULT;
  3600. DRM_ERROR("failed to copy %d exec entries "
  3601. "back to user (%d)\n",
  3602. args->buffer_count, ret);
  3603. }
  3604. }
  3605. drm_free_large(exec_list);
  3606. drm_free_large(exec2_list);
  3607. return ret;
  3608. }
  3609. int
  3610. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3611. struct drm_file *file_priv)
  3612. {
  3613. struct drm_i915_gem_execbuffer2 *args = data;
  3614. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3615. int ret;
  3616. #if WATCH_EXEC
  3617. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3618. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3619. #endif
  3620. if (args->buffer_count < 1) {
  3621. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3622. return -EINVAL;
  3623. }
  3624. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3625. if (exec2_list == NULL) {
  3626. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3627. args->buffer_count);
  3628. return -ENOMEM;
  3629. }
  3630. ret = copy_from_user(exec2_list,
  3631. (struct drm_i915_relocation_entry __user *)
  3632. (uintptr_t) args->buffers_ptr,
  3633. sizeof(*exec2_list) * args->buffer_count);
  3634. if (ret != 0) {
  3635. DRM_ERROR("copy %d exec entries failed %d\n",
  3636. args->buffer_count, ret);
  3637. drm_free_large(exec2_list);
  3638. return -EFAULT;
  3639. }
  3640. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3641. if (!ret) {
  3642. /* Copy the new buffer offsets back to the user's exec list. */
  3643. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3644. (uintptr_t) args->buffers_ptr,
  3645. exec2_list,
  3646. sizeof(*exec2_list) * args->buffer_count);
  3647. if (ret) {
  3648. ret = -EFAULT;
  3649. DRM_ERROR("failed to copy %d exec entries "
  3650. "back to user (%d)\n",
  3651. args->buffer_count, ret);
  3652. }
  3653. }
  3654. drm_free_large(exec2_list);
  3655. return ret;
  3656. }
  3657. int
  3658. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
  3659. bool map_and_fenceable)
  3660. {
  3661. struct drm_device *dev = obj->dev;
  3662. struct drm_i915_private *dev_priv = dev->dev_private;
  3663. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3664. int ret;
  3665. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3666. BUG_ON(map_and_fenceable && !map_and_fenceable);
  3667. WARN_ON(i915_verify_lists(dev));
  3668. if (obj_priv->gtt_space != NULL) {
  3669. if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
  3670. (map_and_fenceable && !obj_priv->map_and_fenceable)) {
  3671. WARN(obj_priv->pin_count,
  3672. "bo is already pinned with incorrect alignment:"
  3673. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  3674. " obj->map_and_fenceable=%d\n",
  3675. obj_priv->gtt_offset, alignment,
  3676. map_and_fenceable,
  3677. obj_priv->map_and_fenceable);
  3678. ret = i915_gem_object_unbind(obj);
  3679. if (ret)
  3680. return ret;
  3681. }
  3682. }
  3683. if (obj_priv->gtt_space == NULL) {
  3684. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  3685. map_and_fenceable);
  3686. if (ret)
  3687. return ret;
  3688. }
  3689. if (obj_priv->pin_count++ == 0) {
  3690. i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
  3691. if (!obj_priv->active)
  3692. list_move_tail(&obj_priv->mm_list,
  3693. &dev_priv->mm.pinned_list);
  3694. }
  3695. BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
  3696. WARN_ON(i915_verify_lists(dev));
  3697. return 0;
  3698. }
  3699. void
  3700. i915_gem_object_unpin(struct drm_gem_object *obj)
  3701. {
  3702. struct drm_device *dev = obj->dev;
  3703. drm_i915_private_t *dev_priv = dev->dev_private;
  3704. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3705. WARN_ON(i915_verify_lists(dev));
  3706. BUG_ON(obj_priv->pin_count == 0);
  3707. BUG_ON(obj_priv->gtt_space == NULL);
  3708. if (--obj_priv->pin_count == 0) {
  3709. if (!obj_priv->active)
  3710. list_move_tail(&obj_priv->mm_list,
  3711. &dev_priv->mm.inactive_list);
  3712. i915_gem_info_remove_pin(dev_priv, obj_priv);
  3713. }
  3714. WARN_ON(i915_verify_lists(dev));
  3715. }
  3716. int
  3717. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3718. struct drm_file *file_priv)
  3719. {
  3720. struct drm_i915_gem_pin *args = data;
  3721. struct drm_gem_object *obj;
  3722. struct drm_i915_gem_object *obj_priv;
  3723. int ret;
  3724. ret = i915_mutex_lock_interruptible(dev);
  3725. if (ret)
  3726. return ret;
  3727. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3728. if (obj == NULL) {
  3729. ret = -ENOENT;
  3730. goto unlock;
  3731. }
  3732. obj_priv = to_intel_bo(obj);
  3733. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3734. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3735. ret = -EINVAL;
  3736. goto out;
  3737. }
  3738. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3739. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3740. args->handle);
  3741. ret = -EINVAL;
  3742. goto out;
  3743. }
  3744. obj_priv->user_pin_count++;
  3745. obj_priv->pin_filp = file_priv;
  3746. if (obj_priv->user_pin_count == 1) {
  3747. ret = i915_gem_object_pin(obj, args->alignment, true);
  3748. if (ret)
  3749. goto out;
  3750. }
  3751. /* XXX - flush the CPU caches for pinned objects
  3752. * as the X server doesn't manage domains yet
  3753. */
  3754. i915_gem_object_flush_cpu_write_domain(obj);
  3755. args->offset = obj_priv->gtt_offset;
  3756. out:
  3757. drm_gem_object_unreference(obj);
  3758. unlock:
  3759. mutex_unlock(&dev->struct_mutex);
  3760. return ret;
  3761. }
  3762. int
  3763. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3764. struct drm_file *file_priv)
  3765. {
  3766. struct drm_i915_gem_pin *args = data;
  3767. struct drm_gem_object *obj;
  3768. struct drm_i915_gem_object *obj_priv;
  3769. int ret;
  3770. ret = i915_mutex_lock_interruptible(dev);
  3771. if (ret)
  3772. return ret;
  3773. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3774. if (obj == NULL) {
  3775. ret = -ENOENT;
  3776. goto unlock;
  3777. }
  3778. obj_priv = to_intel_bo(obj);
  3779. if (obj_priv->pin_filp != file_priv) {
  3780. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3781. args->handle);
  3782. ret = -EINVAL;
  3783. goto out;
  3784. }
  3785. obj_priv->user_pin_count--;
  3786. if (obj_priv->user_pin_count == 0) {
  3787. obj_priv->pin_filp = NULL;
  3788. i915_gem_object_unpin(obj);
  3789. }
  3790. out:
  3791. drm_gem_object_unreference(obj);
  3792. unlock:
  3793. mutex_unlock(&dev->struct_mutex);
  3794. return ret;
  3795. }
  3796. int
  3797. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3798. struct drm_file *file_priv)
  3799. {
  3800. struct drm_i915_gem_busy *args = data;
  3801. struct drm_gem_object *obj;
  3802. struct drm_i915_gem_object *obj_priv;
  3803. int ret;
  3804. ret = i915_mutex_lock_interruptible(dev);
  3805. if (ret)
  3806. return ret;
  3807. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3808. if (obj == NULL) {
  3809. ret = -ENOENT;
  3810. goto unlock;
  3811. }
  3812. obj_priv = to_intel_bo(obj);
  3813. /* Count all active objects as busy, even if they are currently not used
  3814. * by the gpu. Users of this interface expect objects to eventually
  3815. * become non-busy without any further actions, therefore emit any
  3816. * necessary flushes here.
  3817. */
  3818. args->busy = obj_priv->active;
  3819. if (args->busy) {
  3820. /* Unconditionally flush objects, even when the gpu still uses this
  3821. * object. Userspace calling this function indicates that it wants to
  3822. * use this buffer rather sooner than later, so issuing the required
  3823. * flush earlier is beneficial.
  3824. */
  3825. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3826. i915_gem_flush_ring(dev, file_priv,
  3827. obj_priv->ring,
  3828. 0, obj->write_domain);
  3829. /* Update the active list for the hardware's current position.
  3830. * Otherwise this only updates on a delayed timer or when irqs
  3831. * are actually unmasked, and our working set ends up being
  3832. * larger than required.
  3833. */
  3834. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3835. args->busy = obj_priv->active;
  3836. }
  3837. drm_gem_object_unreference(obj);
  3838. unlock:
  3839. mutex_unlock(&dev->struct_mutex);
  3840. return ret;
  3841. }
  3842. int
  3843. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3844. struct drm_file *file_priv)
  3845. {
  3846. return i915_gem_ring_throttle(dev, file_priv);
  3847. }
  3848. int
  3849. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3850. struct drm_file *file_priv)
  3851. {
  3852. struct drm_i915_gem_madvise *args = data;
  3853. struct drm_gem_object *obj;
  3854. struct drm_i915_gem_object *obj_priv;
  3855. int ret;
  3856. switch (args->madv) {
  3857. case I915_MADV_DONTNEED:
  3858. case I915_MADV_WILLNEED:
  3859. break;
  3860. default:
  3861. return -EINVAL;
  3862. }
  3863. ret = i915_mutex_lock_interruptible(dev);
  3864. if (ret)
  3865. return ret;
  3866. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3867. if (obj == NULL) {
  3868. ret = -ENOENT;
  3869. goto unlock;
  3870. }
  3871. obj_priv = to_intel_bo(obj);
  3872. if (obj_priv->pin_count) {
  3873. ret = -EINVAL;
  3874. goto out;
  3875. }
  3876. if (obj_priv->madv != __I915_MADV_PURGED)
  3877. obj_priv->madv = args->madv;
  3878. /* if the object is no longer bound, discard its backing storage */
  3879. if (i915_gem_object_is_purgeable(obj_priv) &&
  3880. obj_priv->gtt_space == NULL)
  3881. i915_gem_object_truncate(obj);
  3882. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3883. out:
  3884. drm_gem_object_unreference(obj);
  3885. unlock:
  3886. mutex_unlock(&dev->struct_mutex);
  3887. return ret;
  3888. }
  3889. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3890. size_t size)
  3891. {
  3892. struct drm_i915_private *dev_priv = dev->dev_private;
  3893. struct drm_i915_gem_object *obj;
  3894. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3895. if (obj == NULL)
  3896. return NULL;
  3897. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3898. kfree(obj);
  3899. return NULL;
  3900. }
  3901. i915_gem_info_add_obj(dev_priv, size);
  3902. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3903. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3904. obj->agp_type = AGP_USER_MEMORY;
  3905. obj->base.driver_private = NULL;
  3906. obj->fence_reg = I915_FENCE_REG_NONE;
  3907. INIT_LIST_HEAD(&obj->mm_list);
  3908. INIT_LIST_HEAD(&obj->gtt_list);
  3909. INIT_LIST_HEAD(&obj->ring_list);
  3910. INIT_LIST_HEAD(&obj->gpu_write_list);
  3911. obj->madv = I915_MADV_WILLNEED;
  3912. /* Avoid an unnecessary call to unbind on the first bind. */
  3913. obj->map_and_fenceable = true;
  3914. return &obj->base;
  3915. }
  3916. int i915_gem_init_object(struct drm_gem_object *obj)
  3917. {
  3918. BUG();
  3919. return 0;
  3920. }
  3921. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3922. {
  3923. struct drm_device *dev = obj->dev;
  3924. drm_i915_private_t *dev_priv = dev->dev_private;
  3925. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3926. int ret;
  3927. ret = i915_gem_object_unbind(obj);
  3928. if (ret == -ERESTARTSYS) {
  3929. list_move(&obj_priv->mm_list,
  3930. &dev_priv->mm.deferred_free_list);
  3931. return;
  3932. }
  3933. if (obj->map_list.map)
  3934. i915_gem_free_mmap_offset(obj);
  3935. drm_gem_object_release(obj);
  3936. i915_gem_info_remove_obj(dev_priv, obj->size);
  3937. kfree(obj_priv->page_cpu_valid);
  3938. kfree(obj_priv->bit_17);
  3939. kfree(obj_priv);
  3940. }
  3941. void i915_gem_free_object(struct drm_gem_object *obj)
  3942. {
  3943. struct drm_device *dev = obj->dev;
  3944. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3945. trace_i915_gem_object_destroy(obj);
  3946. while (obj_priv->pin_count > 0)
  3947. i915_gem_object_unpin(obj);
  3948. if (obj_priv->phys_obj)
  3949. i915_gem_detach_phys_object(dev, obj);
  3950. i915_gem_free_object_tail(obj);
  3951. }
  3952. int
  3953. i915_gem_idle(struct drm_device *dev)
  3954. {
  3955. drm_i915_private_t *dev_priv = dev->dev_private;
  3956. int ret;
  3957. mutex_lock(&dev->struct_mutex);
  3958. if (dev_priv->mm.suspended) {
  3959. mutex_unlock(&dev->struct_mutex);
  3960. return 0;
  3961. }
  3962. ret = i915_gpu_idle(dev);
  3963. if (ret) {
  3964. mutex_unlock(&dev->struct_mutex);
  3965. return ret;
  3966. }
  3967. /* Under UMS, be paranoid and evict. */
  3968. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3969. ret = i915_gem_evict_inactive(dev, false);
  3970. if (ret) {
  3971. mutex_unlock(&dev->struct_mutex);
  3972. return ret;
  3973. }
  3974. }
  3975. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3976. * We need to replace this with a semaphore, or something.
  3977. * And not confound mm.suspended!
  3978. */
  3979. dev_priv->mm.suspended = 1;
  3980. del_timer_sync(&dev_priv->hangcheck_timer);
  3981. i915_kernel_lost_context(dev);
  3982. i915_gem_cleanup_ringbuffer(dev);
  3983. mutex_unlock(&dev->struct_mutex);
  3984. /* Cancel the retire work handler, which should be idle now. */
  3985. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3986. return 0;
  3987. }
  3988. /*
  3989. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3990. * over cache flushing.
  3991. */
  3992. static int
  3993. i915_gem_init_pipe_control(struct drm_device *dev)
  3994. {
  3995. drm_i915_private_t *dev_priv = dev->dev_private;
  3996. struct drm_gem_object *obj;
  3997. struct drm_i915_gem_object *obj_priv;
  3998. int ret;
  3999. obj = i915_gem_alloc_object(dev, 4096);
  4000. if (obj == NULL) {
  4001. DRM_ERROR("Failed to allocate seqno page\n");
  4002. ret = -ENOMEM;
  4003. goto err;
  4004. }
  4005. obj_priv = to_intel_bo(obj);
  4006. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  4007. ret = i915_gem_object_pin(obj, 4096, true);
  4008. if (ret)
  4009. goto err_unref;
  4010. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  4011. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  4012. if (dev_priv->seqno_page == NULL)
  4013. goto err_unpin;
  4014. dev_priv->seqno_obj = obj;
  4015. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  4016. return 0;
  4017. err_unpin:
  4018. i915_gem_object_unpin(obj);
  4019. err_unref:
  4020. drm_gem_object_unreference(obj);
  4021. err:
  4022. return ret;
  4023. }
  4024. static void
  4025. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  4026. {
  4027. drm_i915_private_t *dev_priv = dev->dev_private;
  4028. struct drm_gem_object *obj;
  4029. struct drm_i915_gem_object *obj_priv;
  4030. obj = dev_priv->seqno_obj;
  4031. obj_priv = to_intel_bo(obj);
  4032. kunmap(obj_priv->pages[0]);
  4033. i915_gem_object_unpin(obj);
  4034. drm_gem_object_unreference(obj);
  4035. dev_priv->seqno_obj = NULL;
  4036. dev_priv->seqno_page = NULL;
  4037. }
  4038. int
  4039. i915_gem_init_ringbuffer(struct drm_device *dev)
  4040. {
  4041. drm_i915_private_t *dev_priv = dev->dev_private;
  4042. int ret;
  4043. if (HAS_PIPE_CONTROL(dev)) {
  4044. ret = i915_gem_init_pipe_control(dev);
  4045. if (ret)
  4046. return ret;
  4047. }
  4048. ret = intel_init_render_ring_buffer(dev);
  4049. if (ret)
  4050. goto cleanup_pipe_control;
  4051. if (HAS_BSD(dev)) {
  4052. ret = intel_init_bsd_ring_buffer(dev);
  4053. if (ret)
  4054. goto cleanup_render_ring;
  4055. }
  4056. if (HAS_BLT(dev)) {
  4057. ret = intel_init_blt_ring_buffer(dev);
  4058. if (ret)
  4059. goto cleanup_bsd_ring;
  4060. }
  4061. dev_priv->next_seqno = 1;
  4062. return 0;
  4063. cleanup_bsd_ring:
  4064. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  4065. cleanup_render_ring:
  4066. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  4067. cleanup_pipe_control:
  4068. if (HAS_PIPE_CONTROL(dev))
  4069. i915_gem_cleanup_pipe_control(dev);
  4070. return ret;
  4071. }
  4072. void
  4073. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  4074. {
  4075. drm_i915_private_t *dev_priv = dev->dev_private;
  4076. intel_cleanup_ring_buffer(&dev_priv->render_ring);
  4077. intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
  4078. intel_cleanup_ring_buffer(&dev_priv->blt_ring);
  4079. if (HAS_PIPE_CONTROL(dev))
  4080. i915_gem_cleanup_pipe_control(dev);
  4081. }
  4082. int
  4083. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  4084. struct drm_file *file_priv)
  4085. {
  4086. drm_i915_private_t *dev_priv = dev->dev_private;
  4087. int ret;
  4088. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4089. return 0;
  4090. if (atomic_read(&dev_priv->mm.wedged)) {
  4091. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  4092. atomic_set(&dev_priv->mm.wedged, 0);
  4093. }
  4094. mutex_lock(&dev->struct_mutex);
  4095. dev_priv->mm.suspended = 0;
  4096. ret = i915_gem_init_ringbuffer(dev);
  4097. if (ret != 0) {
  4098. mutex_unlock(&dev->struct_mutex);
  4099. return ret;
  4100. }
  4101. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  4102. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  4103. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  4104. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  4105. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  4106. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  4107. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  4108. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  4109. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  4110. mutex_unlock(&dev->struct_mutex);
  4111. ret = drm_irq_install(dev);
  4112. if (ret)
  4113. goto cleanup_ringbuffer;
  4114. return 0;
  4115. cleanup_ringbuffer:
  4116. mutex_lock(&dev->struct_mutex);
  4117. i915_gem_cleanup_ringbuffer(dev);
  4118. dev_priv->mm.suspended = 1;
  4119. mutex_unlock(&dev->struct_mutex);
  4120. return ret;
  4121. }
  4122. int
  4123. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  4124. struct drm_file *file_priv)
  4125. {
  4126. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4127. return 0;
  4128. drm_irq_uninstall(dev);
  4129. return i915_gem_idle(dev);
  4130. }
  4131. void
  4132. i915_gem_lastclose(struct drm_device *dev)
  4133. {
  4134. int ret;
  4135. if (drm_core_check_feature(dev, DRIVER_MODESET))
  4136. return;
  4137. ret = i915_gem_idle(dev);
  4138. if (ret)
  4139. DRM_ERROR("failed to idle hardware: %d\n", ret);
  4140. }
  4141. static void
  4142. init_ring_lists(struct intel_ring_buffer *ring)
  4143. {
  4144. INIT_LIST_HEAD(&ring->active_list);
  4145. INIT_LIST_HEAD(&ring->request_list);
  4146. INIT_LIST_HEAD(&ring->gpu_write_list);
  4147. }
  4148. void
  4149. i915_gem_load(struct drm_device *dev)
  4150. {
  4151. int i;
  4152. drm_i915_private_t *dev_priv = dev->dev_private;
  4153. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  4154. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  4155. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  4156. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  4157. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  4158. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  4159. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  4160. init_ring_lists(&dev_priv->render_ring);
  4161. init_ring_lists(&dev_priv->bsd_ring);
  4162. init_ring_lists(&dev_priv->blt_ring);
  4163. for (i = 0; i < 16; i++)
  4164. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  4165. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  4166. i915_gem_retire_work_handler);
  4167. init_completion(&dev_priv->error_completion);
  4168. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  4169. if (IS_GEN3(dev)) {
  4170. u32 tmp = I915_READ(MI_ARB_STATE);
  4171. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  4172. /* arb state is a masked write, so set bit + bit in mask */
  4173. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  4174. I915_WRITE(MI_ARB_STATE, tmp);
  4175. }
  4176. }
  4177. /* Old X drivers will take 0-2 for front, back, depth buffers */
  4178. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  4179. dev_priv->fence_reg_start = 3;
  4180. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4181. dev_priv->num_fence_regs = 16;
  4182. else
  4183. dev_priv->num_fence_regs = 8;
  4184. /* Initialize fence registers to zero */
  4185. switch (INTEL_INFO(dev)->gen) {
  4186. case 6:
  4187. for (i = 0; i < 16; i++)
  4188. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  4189. break;
  4190. case 5:
  4191. case 4:
  4192. for (i = 0; i < 16; i++)
  4193. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4194. break;
  4195. case 3:
  4196. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4197. for (i = 0; i < 8; i++)
  4198. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4199. case 2:
  4200. for (i = 0; i < 8; i++)
  4201. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4202. break;
  4203. }
  4204. i915_gem_detect_bit_6_swizzle(dev);
  4205. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4206. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  4207. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  4208. register_shrinker(&dev_priv->mm.inactive_shrinker);
  4209. }
  4210. /*
  4211. * Create a physically contiguous memory object for this object
  4212. * e.g. for cursor + overlay regs
  4213. */
  4214. static int i915_gem_init_phys_object(struct drm_device *dev,
  4215. int id, int size, int align)
  4216. {
  4217. drm_i915_private_t *dev_priv = dev->dev_private;
  4218. struct drm_i915_gem_phys_object *phys_obj;
  4219. int ret;
  4220. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4221. return 0;
  4222. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4223. if (!phys_obj)
  4224. return -ENOMEM;
  4225. phys_obj->id = id;
  4226. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4227. if (!phys_obj->handle) {
  4228. ret = -ENOMEM;
  4229. goto kfree_obj;
  4230. }
  4231. #ifdef CONFIG_X86
  4232. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4233. #endif
  4234. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4235. return 0;
  4236. kfree_obj:
  4237. kfree(phys_obj);
  4238. return ret;
  4239. }
  4240. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4241. {
  4242. drm_i915_private_t *dev_priv = dev->dev_private;
  4243. struct drm_i915_gem_phys_object *phys_obj;
  4244. if (!dev_priv->mm.phys_objs[id - 1])
  4245. return;
  4246. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4247. if (phys_obj->cur_obj) {
  4248. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4249. }
  4250. #ifdef CONFIG_X86
  4251. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4252. #endif
  4253. drm_pci_free(dev, phys_obj->handle);
  4254. kfree(phys_obj);
  4255. dev_priv->mm.phys_objs[id - 1] = NULL;
  4256. }
  4257. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4258. {
  4259. int i;
  4260. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4261. i915_gem_free_phys_object(dev, i);
  4262. }
  4263. void i915_gem_detach_phys_object(struct drm_device *dev,
  4264. struct drm_gem_object *obj)
  4265. {
  4266. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4267. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4268. char *vaddr;
  4269. int i;
  4270. int page_count;
  4271. if (!obj_priv->phys_obj)
  4272. return;
  4273. vaddr = obj_priv->phys_obj->handle->vaddr;
  4274. page_count = obj->size / PAGE_SIZE;
  4275. for (i = 0; i < page_count; i++) {
  4276. struct page *page = read_cache_page_gfp(mapping, i,
  4277. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4278. if (!IS_ERR(page)) {
  4279. char *dst = kmap_atomic(page);
  4280. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  4281. kunmap_atomic(dst);
  4282. drm_clflush_pages(&page, 1);
  4283. set_page_dirty(page);
  4284. mark_page_accessed(page);
  4285. page_cache_release(page);
  4286. }
  4287. }
  4288. intel_gtt_chipset_flush();
  4289. obj_priv->phys_obj->cur_obj = NULL;
  4290. obj_priv->phys_obj = NULL;
  4291. }
  4292. int
  4293. i915_gem_attach_phys_object(struct drm_device *dev,
  4294. struct drm_gem_object *obj,
  4295. int id,
  4296. int align)
  4297. {
  4298. struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
  4299. drm_i915_private_t *dev_priv = dev->dev_private;
  4300. struct drm_i915_gem_object *obj_priv;
  4301. int ret = 0;
  4302. int page_count;
  4303. int i;
  4304. if (id > I915_MAX_PHYS_OBJECT)
  4305. return -EINVAL;
  4306. obj_priv = to_intel_bo(obj);
  4307. if (obj_priv->phys_obj) {
  4308. if (obj_priv->phys_obj->id == id)
  4309. return 0;
  4310. i915_gem_detach_phys_object(dev, obj);
  4311. }
  4312. /* create a new object */
  4313. if (!dev_priv->mm.phys_objs[id - 1]) {
  4314. ret = i915_gem_init_phys_object(dev, id,
  4315. obj->size, align);
  4316. if (ret) {
  4317. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4318. return ret;
  4319. }
  4320. }
  4321. /* bind to the object */
  4322. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4323. obj_priv->phys_obj->cur_obj = obj;
  4324. page_count = obj->size / PAGE_SIZE;
  4325. for (i = 0; i < page_count; i++) {
  4326. struct page *page;
  4327. char *dst, *src;
  4328. page = read_cache_page_gfp(mapping, i,
  4329. GFP_HIGHUSER | __GFP_RECLAIMABLE);
  4330. if (IS_ERR(page))
  4331. return PTR_ERR(page);
  4332. src = kmap_atomic(page);
  4333. dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4334. memcpy(dst, src, PAGE_SIZE);
  4335. kunmap_atomic(src);
  4336. mark_page_accessed(page);
  4337. page_cache_release(page);
  4338. }
  4339. return 0;
  4340. }
  4341. static int
  4342. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4343. struct drm_i915_gem_pwrite *args,
  4344. struct drm_file *file_priv)
  4345. {
  4346. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4347. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4348. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4349. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4350. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4351. unsigned long unwritten;
  4352. /* The physical object once assigned is fixed for the lifetime
  4353. * of the obj, so we can safely drop the lock and continue
  4354. * to access vaddr.
  4355. */
  4356. mutex_unlock(&dev->struct_mutex);
  4357. unwritten = copy_from_user(vaddr, user_data, args->size);
  4358. mutex_lock(&dev->struct_mutex);
  4359. if (unwritten)
  4360. return -EFAULT;
  4361. }
  4362. intel_gtt_chipset_flush();
  4363. return 0;
  4364. }
  4365. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4366. {
  4367. struct drm_i915_file_private *file_priv = file->driver_priv;
  4368. /* Clean up our request list when the client is going away, so that
  4369. * later retire_requests won't dereference our soon-to-be-gone
  4370. * file_priv.
  4371. */
  4372. spin_lock(&file_priv->mm.lock);
  4373. while (!list_empty(&file_priv->mm.request_list)) {
  4374. struct drm_i915_gem_request *request;
  4375. request = list_first_entry(&file_priv->mm.request_list,
  4376. struct drm_i915_gem_request,
  4377. client_list);
  4378. list_del(&request->client_list);
  4379. request->file_priv = NULL;
  4380. }
  4381. spin_unlock(&file_priv->mm.lock);
  4382. }
  4383. static int
  4384. i915_gpu_is_active(struct drm_device *dev)
  4385. {
  4386. drm_i915_private_t *dev_priv = dev->dev_private;
  4387. int lists_empty;
  4388. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4389. list_empty(&dev_priv->mm.active_list);
  4390. return !lists_empty;
  4391. }
  4392. static int
  4393. i915_gem_inactive_shrink(struct shrinker *shrinker,
  4394. int nr_to_scan,
  4395. gfp_t gfp_mask)
  4396. {
  4397. struct drm_i915_private *dev_priv =
  4398. container_of(shrinker,
  4399. struct drm_i915_private,
  4400. mm.inactive_shrinker);
  4401. struct drm_device *dev = dev_priv->dev;
  4402. struct drm_i915_gem_object *obj, *next;
  4403. int cnt;
  4404. if (!mutex_trylock(&dev->struct_mutex))
  4405. return 0;
  4406. /* "fast-path" to count number of available objects */
  4407. if (nr_to_scan == 0) {
  4408. cnt = 0;
  4409. list_for_each_entry(obj,
  4410. &dev_priv->mm.inactive_list,
  4411. mm_list)
  4412. cnt++;
  4413. mutex_unlock(&dev->struct_mutex);
  4414. return cnt / 100 * sysctl_vfs_cache_pressure;
  4415. }
  4416. rescan:
  4417. /* first scan for clean buffers */
  4418. i915_gem_retire_requests(dev);
  4419. list_for_each_entry_safe(obj, next,
  4420. &dev_priv->mm.inactive_list,
  4421. mm_list) {
  4422. if (i915_gem_object_is_purgeable(obj)) {
  4423. i915_gem_object_unbind(&obj->base);
  4424. if (--nr_to_scan == 0)
  4425. break;
  4426. }
  4427. }
  4428. /* second pass, evict/count anything still on the inactive list */
  4429. cnt = 0;
  4430. list_for_each_entry_safe(obj, next,
  4431. &dev_priv->mm.inactive_list,
  4432. mm_list) {
  4433. if (nr_to_scan) {
  4434. i915_gem_object_unbind(&obj->base);
  4435. nr_to_scan--;
  4436. } else
  4437. cnt++;
  4438. }
  4439. if (nr_to_scan && i915_gpu_is_active(dev)) {
  4440. /*
  4441. * We are desperate for pages, so as a last resort, wait
  4442. * for the GPU to finish and discard whatever we can.
  4443. * This has a dramatic impact to reduce the number of
  4444. * OOM-killer events whilst running the GPU aggressively.
  4445. */
  4446. if (i915_gpu_idle(dev) == 0)
  4447. goto rescan;
  4448. }
  4449. mutex_unlock(&dev->struct_mutex);
  4450. return cnt / 100 * sysctl_vfs_cache_pressure;
  4451. }