iwl-eeprom.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093
  1. /******************************************************************************
  2. *
  3. * This file is provided under a dual BSD/GPLv2 license. When using or
  4. * redistributing this file, you may do so under either license.
  5. *
  6. * GPL LICENSE SUMMARY
  7. *
  8. * Copyright(c) 2008 - 2012 Intel Corporation. All rights reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of version 2 of the GNU General Public License as
  12. * published by the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
  22. * USA
  23. *
  24. * The full GNU General Public License is included in this distribution
  25. * in the file called LICENSE.GPL.
  26. *
  27. * Contact Information:
  28. * Intel Linux Wireless <ilw@linux.intel.com>
  29. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  30. *
  31. * BSD LICENSE
  32. *
  33. * Copyright(c) 2005 - 2012 Intel Corporation. All rights reserved.
  34. * All rights reserved.
  35. *
  36. * Redistribution and use in source and binary forms, with or without
  37. * modification, are permitted provided that the following conditions
  38. * are met:
  39. *
  40. * * Redistributions of source code must retain the above copyright
  41. * notice, this list of conditions and the following disclaimer.
  42. * * Redistributions in binary form must reproduce the above copyright
  43. * notice, this list of conditions and the following disclaimer in
  44. * the documentation and/or other materials provided with the
  45. * distribution.
  46. * * Neither the name Intel Corporation nor the names of its
  47. * contributors may be used to endorse or promote products derived
  48. * from this software without specific prior written permission.
  49. *
  50. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  51. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  52. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  53. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  54. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  55. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  56. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  57. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  58. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  59. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  60. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  61. *****************************************************************************/
  62. #include <linux/kernel.h>
  63. #include <linux/module.h>
  64. #include <linux/slab.h>
  65. #include <linux/init.h>
  66. #include <net/mac80211.h>
  67. #include "iwl-commands.h"
  68. #include "iwl-dev.h"
  69. #include "iwl-core.h"
  70. #include "iwl-debug.h"
  71. #include "iwl-agn.h"
  72. #include "iwl-eeprom.h"
  73. #include "iwl-io.h"
  74. /************************** EEPROM BANDS ****************************
  75. *
  76. * The iwl_eeprom_band definitions below provide the mapping from the
  77. * EEPROM contents to the specific channel number supported for each
  78. * band.
  79. *
  80. * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3
  81. * definition below maps to physical channel 42 in the 5.2GHz spectrum.
  82. * The specific geography and calibration information for that channel
  83. * is contained in the eeprom map itself.
  84. *
  85. * During init, we copy the eeprom information and channel map
  86. * information into priv->channel_info_24/52 and priv->channel_map_24/52
  87. *
  88. * channel_map_24/52 provides the index in the channel_info array for a
  89. * given channel. We have to have two separate maps as there is channel
  90. * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
  91. * band_2
  92. *
  93. * A value of 0xff stored in the channel_map indicates that the channel
  94. * is not supported by the hardware at all.
  95. *
  96. * A value of 0xfe in the channel_map indicates that the channel is not
  97. * valid for Tx with the current hardware. This means that
  98. * while the system can tune and receive on a given channel, it may not
  99. * be able to associate or transmit any frames on that
  100. * channel. There is no corresponding channel information for that
  101. * entry.
  102. *
  103. *********************************************************************/
  104. /* 2.4 GHz */
  105. const u8 iwl_eeprom_band_1[14] = {
  106. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
  107. };
  108. /* 5.2 GHz bands */
  109. static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */
  110. 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
  111. };
  112. static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */
  113. 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
  114. };
  115. static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */
  116. 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
  117. };
  118. static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */
  119. 145, 149, 153, 157, 161, 165
  120. };
  121. static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */
  122. 1, 2, 3, 4, 5, 6, 7
  123. };
  124. static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */
  125. 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
  126. };
  127. /******************************************************************************
  128. *
  129. * generic NVM functions
  130. *
  131. ******************************************************************************/
  132. /*
  133. * The device's EEPROM semaphore prevents conflicts between driver and uCode
  134. * when accessing the EEPROM; each access is a series of pulses to/from the
  135. * EEPROM chip, not a single event, so even reads could conflict if they
  136. * weren't arbitrated by the semaphore.
  137. */
  138. #define EEPROM_SEM_TIMEOUT 10 /* milliseconds */
  139. #define EEPROM_SEM_RETRY_LIMIT 1000 /* number of attempts (not time) */
  140. static int iwl_eeprom_acquire_semaphore(struct iwl_trans *trans)
  141. {
  142. u16 count;
  143. int ret;
  144. for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
  145. /* Request semaphore */
  146. iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
  147. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  148. /* See if we got it */
  149. ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG,
  150. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  151. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
  152. EEPROM_SEM_TIMEOUT);
  153. if (ret >= 0) {
  154. IWL_DEBUG_EEPROM(trans,
  155. "Acquired semaphore after %d tries.\n",
  156. count+1);
  157. return ret;
  158. }
  159. }
  160. return ret;
  161. }
  162. static void iwl_eeprom_release_semaphore(struct iwl_trans *trans)
  163. {
  164. iwl_clear_bit(trans, CSR_HW_IF_CONFIG_REG,
  165. CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
  166. }
  167. static int iwl_eeprom_verify_signature(struct iwl_trans *trans)
  168. {
  169. u32 gp = iwl_read32(trans, CSR_EEPROM_GP) &
  170. CSR_EEPROM_GP_VALID_MSK;
  171. int ret = 0;
  172. IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp);
  173. switch (gp) {
  174. case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP:
  175. if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) {
  176. IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n",
  177. gp);
  178. ret = -ENOENT;
  179. }
  180. break;
  181. case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
  182. case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
  183. if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) {
  184. IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp);
  185. ret = -ENOENT;
  186. }
  187. break;
  188. case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP:
  189. default:
  190. IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, "
  191. "EEPROM_GP=0x%08x\n",
  192. (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  193. ? "OTP" : "EEPROM", gp);
  194. ret = -ENOENT;
  195. break;
  196. }
  197. return ret;
  198. }
  199. u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset)
  200. {
  201. if (!shrd->eeprom)
  202. return 0;
  203. return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8);
  204. }
  205. int iwl_eeprom_check_version(struct iwl_priv *priv)
  206. {
  207. u16 eeprom_ver;
  208. u16 calib_ver;
  209. eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION);
  210. calib_ver = iwl_eeprom_calib_version(priv->shrd);
  211. if (eeprom_ver < cfg(priv)->eeprom_ver ||
  212. calib_ver < cfg(priv)->eeprom_calib_ver)
  213. goto err;
  214. IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n",
  215. eeprom_ver, calib_ver);
  216. return 0;
  217. err:
  218. IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x "
  219. "CALIB=0x%x < 0x%x\n",
  220. eeprom_ver, cfg(priv)->eeprom_ver,
  221. calib_ver, cfg(priv)->eeprom_calib_ver);
  222. return -EINVAL;
  223. }
  224. int iwl_eeprom_check_sku(struct iwl_priv *priv)
  225. {
  226. struct iwl_shared *shrd = priv->shrd;
  227. u16 radio_cfg;
  228. if (!cfg(priv)->sku) {
  229. /* not using sku overwrite */
  230. cfg(priv)->sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP);
  231. if (cfg(priv)->sku & EEPROM_SKU_CAP_11N_ENABLE &&
  232. !cfg(priv)->ht_params) {
  233. IWL_ERR(priv, "Invalid 11n configuration\n");
  234. return -EINVAL;
  235. }
  236. }
  237. if (!cfg(priv)->sku) {
  238. IWL_ERR(priv, "Invalid device sku\n");
  239. return -EINVAL;
  240. }
  241. IWL_INFO(priv, "Device SKU: 0x%X\n", cfg(priv)->sku);
  242. if (!cfg(priv)->valid_tx_ant && !cfg(priv)->valid_rx_ant) {
  243. /* not using .cfg overwrite */
  244. radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG);
  245. cfg(priv)->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg);
  246. cfg(priv)->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg);
  247. if (!cfg(priv)->valid_tx_ant || !cfg(priv)->valid_rx_ant) {
  248. IWL_ERR(priv, "Invalid chain (0x%X, 0x%X)\n",
  249. cfg(priv)->valid_tx_ant,
  250. cfg(priv)->valid_rx_ant);
  251. return -EINVAL;
  252. }
  253. IWL_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
  254. cfg(priv)->valid_tx_ant, cfg(priv)->valid_rx_ant);
  255. }
  256. /*
  257. * for some special cases,
  258. * EEPROM did not reflect the correct antenna setting
  259. * so overwrite the valid tx/rx antenna from .cfg
  260. */
  261. return 0;
  262. }
  263. void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac)
  264. {
  265. const u8 *addr = iwl_eeprom_query_addr(shrd,
  266. EEPROM_MAC_ADDRESS);
  267. memcpy(mac, addr, ETH_ALEN);
  268. }
  269. /******************************************************************************
  270. *
  271. * OTP related functions
  272. *
  273. ******************************************************************************/
  274. static void iwl_set_otp_access(struct iwl_trans *trans,
  275. enum iwl_access_mode mode)
  276. {
  277. iwl_read32(trans, CSR_OTP_GP_REG);
  278. if (mode == IWL_OTP_ACCESS_ABSOLUTE)
  279. iwl_clear_bit(trans, CSR_OTP_GP_REG,
  280. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  281. else
  282. iwl_set_bit(trans, CSR_OTP_GP_REG,
  283. CSR_OTP_GP_REG_OTP_ACCESS_MODE);
  284. }
  285. static int iwl_get_nvm_type(struct iwl_trans *trans, u32 hw_rev)
  286. {
  287. u32 otpgp;
  288. int nvm_type;
  289. /* OTP only valid for CP/PP and after */
  290. switch (hw_rev & CSR_HW_REV_TYPE_MSK) {
  291. case CSR_HW_REV_TYPE_NONE:
  292. IWL_ERR(trans, "Unknown hardware type\n");
  293. return -ENOENT;
  294. case CSR_HW_REV_TYPE_5300:
  295. case CSR_HW_REV_TYPE_5350:
  296. case CSR_HW_REV_TYPE_5100:
  297. case CSR_HW_REV_TYPE_5150:
  298. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  299. break;
  300. default:
  301. otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
  302. if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT)
  303. nvm_type = NVM_DEVICE_TYPE_OTP;
  304. else
  305. nvm_type = NVM_DEVICE_TYPE_EEPROM;
  306. break;
  307. }
  308. return nvm_type;
  309. }
  310. static int iwl_init_otp_access(struct iwl_trans *trans)
  311. {
  312. int ret;
  313. /* Enable 40MHz radio clock */
  314. iwl_write32(trans, CSR_GP_CNTRL,
  315. iwl_read32(trans, CSR_GP_CNTRL) |
  316. CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
  317. /* wait for clock to be ready */
  318. ret = iwl_poll_bit(trans, CSR_GP_CNTRL,
  319. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  320. CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
  321. 25000);
  322. if (ret < 0)
  323. IWL_ERR(trans, "Time out access OTP\n");
  324. else {
  325. iwl_set_bits_prph(trans, APMG_PS_CTRL_REG,
  326. APMG_PS_CTRL_VAL_RESET_REQ);
  327. udelay(5);
  328. iwl_clear_bits_prph(trans, APMG_PS_CTRL_REG,
  329. APMG_PS_CTRL_VAL_RESET_REQ);
  330. /*
  331. * CSR auto clock gate disable bit -
  332. * this is only applicable for HW with OTP shadow RAM
  333. */
  334. if (cfg(trans)->base_params->shadow_ram_support)
  335. iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG,
  336. CSR_RESET_LINK_PWR_MGMT_DISABLED);
  337. }
  338. return ret;
  339. }
  340. static int iwl_read_otp_word(struct iwl_trans *trans, u16 addr,
  341. __le16 *eeprom_data)
  342. {
  343. int ret = 0;
  344. u32 r;
  345. u32 otpgp;
  346. iwl_write32(trans, CSR_EEPROM_REG,
  347. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  348. ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
  349. CSR_EEPROM_REG_READ_VALID_MSK,
  350. CSR_EEPROM_REG_READ_VALID_MSK,
  351. IWL_EEPROM_ACCESS_TIMEOUT);
  352. if (ret < 0) {
  353. IWL_ERR(trans, "Time out reading OTP[%d]\n", addr);
  354. return ret;
  355. }
  356. r = iwl_read32(trans, CSR_EEPROM_REG);
  357. /* check for ECC errors: */
  358. otpgp = iwl_read32(trans, CSR_OTP_GP_REG);
  359. if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) {
  360. /* stop in this case */
  361. /* set the uncorrectable OTP ECC bit for acknowledgement */
  362. iwl_set_bit(trans, CSR_OTP_GP_REG,
  363. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  364. IWL_ERR(trans, "Uncorrectable OTP ECC error, abort OTP read\n");
  365. return -EINVAL;
  366. }
  367. if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) {
  368. /* continue in this case */
  369. /* set the correctable OTP ECC bit for acknowledgement */
  370. iwl_set_bit(trans, CSR_OTP_GP_REG,
  371. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK);
  372. IWL_ERR(trans, "Correctable OTP ECC error, continue read\n");
  373. }
  374. *eeprom_data = cpu_to_le16(r >> 16);
  375. return 0;
  376. }
  377. /*
  378. * iwl_is_otp_empty: check for empty OTP
  379. */
  380. static bool iwl_is_otp_empty(struct iwl_trans *trans)
  381. {
  382. u16 next_link_addr = 0;
  383. __le16 link_value;
  384. bool is_empty = false;
  385. /* locate the beginning of OTP link list */
  386. if (!iwl_read_otp_word(trans, next_link_addr, &link_value)) {
  387. if (!link_value) {
  388. IWL_ERR(trans, "OTP is empty\n");
  389. is_empty = true;
  390. }
  391. } else {
  392. IWL_ERR(trans, "Unable to read first block of OTP list.\n");
  393. is_empty = true;
  394. }
  395. return is_empty;
  396. }
  397. /*
  398. * iwl_find_otp_image: find EEPROM image in OTP
  399. * finding the OTP block that contains the EEPROM image.
  400. * the last valid block on the link list (the block _before_ the last block)
  401. * is the block we should read and used to configure the device.
  402. * If all the available OTP blocks are full, the last block will be the block
  403. * we should read and used to configure the device.
  404. * only perform this operation if shadow RAM is disabled
  405. */
  406. static int iwl_find_otp_image(struct iwl_trans *trans,
  407. u16 *validblockaddr)
  408. {
  409. u16 next_link_addr = 0, valid_addr;
  410. __le16 link_value = 0;
  411. int usedblocks = 0;
  412. /* set addressing mode to absolute to traverse the link list */
  413. iwl_set_otp_access(trans, IWL_OTP_ACCESS_ABSOLUTE);
  414. /* checking for empty OTP or error */
  415. if (iwl_is_otp_empty(trans))
  416. return -EINVAL;
  417. /*
  418. * start traverse link list
  419. * until reach the max number of OTP blocks
  420. * different devices have different number of OTP blocks
  421. */
  422. do {
  423. /* save current valid block address
  424. * check for more block on the link list
  425. */
  426. valid_addr = next_link_addr;
  427. next_link_addr = le16_to_cpu(link_value) * sizeof(u16);
  428. IWL_DEBUG_EEPROM(trans, "OTP blocks %d addr 0x%x\n",
  429. usedblocks, next_link_addr);
  430. if (iwl_read_otp_word(trans, next_link_addr, &link_value))
  431. return -EINVAL;
  432. if (!link_value) {
  433. /*
  434. * reach the end of link list, return success and
  435. * set address point to the starting address
  436. * of the image
  437. */
  438. *validblockaddr = valid_addr;
  439. /* skip first 2 bytes (link list pointer) */
  440. *validblockaddr += 2;
  441. return 0;
  442. }
  443. /* more in the link list, continue */
  444. usedblocks++;
  445. } while (usedblocks <= cfg(trans)->base_params->max_ll_items);
  446. /* OTP has no valid blocks */
  447. IWL_DEBUG_EEPROM(trans, "OTP has no valid blocks\n");
  448. return -EINVAL;
  449. }
  450. /******************************************************************************
  451. *
  452. * Tx Power related functions
  453. *
  454. ******************************************************************************/
  455. /**
  456. * iwl_get_max_txpower_avg - get the highest tx power from all chains.
  457. * find the highest tx power from all chains for the channel
  458. */
  459. static s8 iwl_get_max_txpower_avg(struct iwl_cfg *cfg,
  460. struct iwl_eeprom_enhanced_txpwr *enhanced_txpower,
  461. int element, s8 *max_txpower_in_half_dbm)
  462. {
  463. s8 max_txpower_avg = 0; /* (dBm) */
  464. /* Take the highest tx power from any valid chains */
  465. if ((cfg->valid_tx_ant & ANT_A) &&
  466. (enhanced_txpower[element].chain_a_max > max_txpower_avg))
  467. max_txpower_avg = enhanced_txpower[element].chain_a_max;
  468. if ((cfg->valid_tx_ant & ANT_B) &&
  469. (enhanced_txpower[element].chain_b_max > max_txpower_avg))
  470. max_txpower_avg = enhanced_txpower[element].chain_b_max;
  471. if ((cfg->valid_tx_ant & ANT_C) &&
  472. (enhanced_txpower[element].chain_c_max > max_txpower_avg))
  473. max_txpower_avg = enhanced_txpower[element].chain_c_max;
  474. if (((cfg->valid_tx_ant == ANT_AB) |
  475. (cfg->valid_tx_ant == ANT_BC) |
  476. (cfg->valid_tx_ant == ANT_AC)) &&
  477. (enhanced_txpower[element].mimo2_max > max_txpower_avg))
  478. max_txpower_avg = enhanced_txpower[element].mimo2_max;
  479. if ((cfg->valid_tx_ant == ANT_ABC) &&
  480. (enhanced_txpower[element].mimo3_max > max_txpower_avg))
  481. max_txpower_avg = enhanced_txpower[element].mimo3_max;
  482. /*
  483. * max. tx power in EEPROM is in 1/2 dBm format
  484. * convert from 1/2 dBm to dBm (round-up convert)
  485. * but we also do not want to loss 1/2 dBm resolution which
  486. * will impact performance
  487. */
  488. *max_txpower_in_half_dbm = max_txpower_avg;
  489. return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1);
  490. }
  491. static void
  492. iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv,
  493. struct iwl_eeprom_enhanced_txpwr *txp,
  494. s8 max_txpower_avg)
  495. {
  496. int ch_idx;
  497. bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ;
  498. enum ieee80211_band band;
  499. band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ?
  500. IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
  501. for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) {
  502. struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx];
  503. /* update matching channel or from common data only */
  504. if (txp->channel != 0 && ch_info->channel != txp->channel)
  505. continue;
  506. /* update matching band only */
  507. if (band != ch_info->band)
  508. continue;
  509. if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) {
  510. ch_info->max_power_avg = max_txpower_avg;
  511. ch_info->curr_txpow = max_txpower_avg;
  512. ch_info->scan_power = max_txpower_avg;
  513. }
  514. if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg)
  515. ch_info->ht40_max_power_avg = max_txpower_avg;
  516. }
  517. }
  518. #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT)
  519. #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr)
  520. #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE)
  521. #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \
  522. ? # x " " : "")
  523. void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv)
  524. {
  525. struct iwl_shared *shrd = priv->shrd;
  526. struct iwl_eeprom_enhanced_txpwr *txp_array, *txp;
  527. int idx, entries;
  528. __le16 *txp_len;
  529. s8 max_txp_avg, max_txp_avg_halfdbm;
  530. BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8);
  531. /* the length is in 16-bit words, but we want entries */
  532. txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS);
  533. entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN;
  534. txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS);
  535. for (idx = 0; idx < entries; idx++) {
  536. txp = &txp_array[idx];
  537. /* skip invalid entries */
  538. if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID))
  539. continue;
  540. IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n",
  541. (txp->channel && (txp->flags &
  542. IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ?
  543. "Common " : (txp->channel) ?
  544. "Channel" : "Common",
  545. (txp->channel),
  546. TXP_CHECK_AND_PRINT(VALID),
  547. TXP_CHECK_AND_PRINT(BAND_52G),
  548. TXP_CHECK_AND_PRINT(OFDM),
  549. TXP_CHECK_AND_PRINT(40MHZ),
  550. TXP_CHECK_AND_PRINT(HT_AP),
  551. TXP_CHECK_AND_PRINT(RES1),
  552. TXP_CHECK_AND_PRINT(RES2),
  553. TXP_CHECK_AND_PRINT(COMMON_TYPE),
  554. txp->flags);
  555. IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x "
  556. "chain_B: 0X%02x chain_C: 0X%02x\n",
  557. txp->chain_a_max, txp->chain_b_max,
  558. txp->chain_c_max);
  559. IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x "
  560. "MIMO3: 0x%02x High 20_on_40: 0x%02x "
  561. "Low 20_on_40: 0x%02x\n",
  562. txp->mimo2_max, txp->mimo3_max,
  563. ((txp->delta_20_in_40 & 0xf0) >> 4),
  564. (txp->delta_20_in_40 & 0x0f));
  565. max_txp_avg = iwl_get_max_txpower_avg(cfg(priv), txp_array, idx,
  566. &max_txp_avg_halfdbm);
  567. /*
  568. * Update the user limit values values to the highest
  569. * power supported by any channel
  570. */
  571. if (max_txp_avg > priv->tx_power_user_lmt)
  572. priv->tx_power_user_lmt = max_txp_avg;
  573. if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm)
  574. priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm;
  575. iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg);
  576. }
  577. }
  578. /**
  579. * iwl_eeprom_init - read EEPROM contents
  580. *
  581. * Load the EEPROM contents from adapter into shrd->eeprom
  582. *
  583. * NOTE: This routine uses the non-debug IO access functions.
  584. */
  585. int iwl_eeprom_init(struct iwl_trans *trans, u32 hw_rev)
  586. {
  587. __le16 *e;
  588. u32 gp = iwl_read32(trans, CSR_EEPROM_GP);
  589. int sz;
  590. int ret;
  591. u16 addr;
  592. u16 validblockaddr = 0;
  593. u16 cache_addr = 0;
  594. trans->nvm_device_type = iwl_get_nvm_type(trans, hw_rev);
  595. if (trans->nvm_device_type == -ENOENT)
  596. return -ENOENT;
  597. /* allocate eeprom */
  598. sz = cfg(trans)->base_params->eeprom_size;
  599. IWL_DEBUG_EEPROM(trans, "NVM size = %d\n", sz);
  600. trans->shrd->eeprom = kzalloc(sz, GFP_KERNEL);
  601. if (!trans->shrd->eeprom) {
  602. ret = -ENOMEM;
  603. goto alloc_err;
  604. }
  605. e = (__le16 *)trans->shrd->eeprom;
  606. ret = iwl_eeprom_verify_signature(trans);
  607. if (ret < 0) {
  608. IWL_ERR(trans, "EEPROM not found, EEPROM_GP=0x%08x\n", gp);
  609. ret = -ENOENT;
  610. goto err;
  611. }
  612. /* Make sure driver (instead of uCode) is allowed to read EEPROM */
  613. ret = iwl_eeprom_acquire_semaphore(trans);
  614. if (ret < 0) {
  615. IWL_ERR(trans, "Failed to acquire EEPROM semaphore.\n");
  616. ret = -ENOENT;
  617. goto err;
  618. }
  619. if (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP) {
  620. ret = iwl_init_otp_access(trans);
  621. if (ret) {
  622. IWL_ERR(trans, "Failed to initialize OTP access.\n");
  623. ret = -ENOENT;
  624. goto done;
  625. }
  626. iwl_write32(trans, CSR_EEPROM_GP,
  627. iwl_read32(trans, CSR_EEPROM_GP) &
  628. ~CSR_EEPROM_GP_IF_OWNER_MSK);
  629. iwl_set_bit(trans, CSR_OTP_GP_REG,
  630. CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK |
  631. CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK);
  632. /* traversing the linked list if no shadow ram supported */
  633. if (!cfg(trans)->base_params->shadow_ram_support) {
  634. if (iwl_find_otp_image(trans, &validblockaddr)) {
  635. ret = -ENOENT;
  636. goto done;
  637. }
  638. }
  639. for (addr = validblockaddr; addr < validblockaddr + sz;
  640. addr += sizeof(u16)) {
  641. __le16 eeprom_data;
  642. ret = iwl_read_otp_word(trans, addr, &eeprom_data);
  643. if (ret)
  644. goto done;
  645. e[cache_addr / 2] = eeprom_data;
  646. cache_addr += sizeof(u16);
  647. }
  648. } else {
  649. /* eeprom is an array of 16bit values */
  650. for (addr = 0; addr < sz; addr += sizeof(u16)) {
  651. u32 r;
  652. iwl_write32(trans, CSR_EEPROM_REG,
  653. CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
  654. ret = iwl_poll_bit(trans, CSR_EEPROM_REG,
  655. CSR_EEPROM_REG_READ_VALID_MSK,
  656. CSR_EEPROM_REG_READ_VALID_MSK,
  657. IWL_EEPROM_ACCESS_TIMEOUT);
  658. if (ret < 0) {
  659. IWL_ERR(trans,
  660. "Time out reading EEPROM[%d]\n", addr);
  661. goto done;
  662. }
  663. r = iwl_read32(trans, CSR_EEPROM_REG);
  664. e[addr / 2] = cpu_to_le16(r >> 16);
  665. }
  666. }
  667. IWL_DEBUG_EEPROM(trans, "NVM Type: %s, version: 0x%x\n",
  668. (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP)
  669. ? "OTP" : "EEPROM",
  670. iwl_eeprom_query16(trans->shrd, EEPROM_VERSION));
  671. ret = 0;
  672. done:
  673. iwl_eeprom_release_semaphore(trans);
  674. err:
  675. if (ret)
  676. iwl_eeprom_free(trans->shrd);
  677. alloc_err:
  678. return ret;
  679. }
  680. void iwl_eeprom_free(struct iwl_shared *shrd)
  681. {
  682. kfree(shrd->eeprom);
  683. shrd->eeprom = NULL;
  684. }
  685. static void iwl_init_band_reference(const struct iwl_priv *priv,
  686. int eep_band, int *eeprom_ch_count,
  687. const struct iwl_eeprom_channel **eeprom_ch_info,
  688. const u8 **eeprom_ch_index)
  689. {
  690. struct iwl_shared *shrd = priv->shrd;
  691. u32 offset = cfg(priv)->lib->
  692. eeprom_ops.regulatory_bands[eep_band - 1];
  693. switch (eep_band) {
  694. case 1: /* 2.4GHz band */
  695. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1);
  696. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  697. iwl_eeprom_query_addr(shrd, offset);
  698. *eeprom_ch_index = iwl_eeprom_band_1;
  699. break;
  700. case 2: /* 4.9GHz band */
  701. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2);
  702. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  703. iwl_eeprom_query_addr(shrd, offset);
  704. *eeprom_ch_index = iwl_eeprom_band_2;
  705. break;
  706. case 3: /* 5.2GHz band */
  707. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3);
  708. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  709. iwl_eeprom_query_addr(shrd, offset);
  710. *eeprom_ch_index = iwl_eeprom_band_3;
  711. break;
  712. case 4: /* 5.5GHz band */
  713. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4);
  714. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  715. iwl_eeprom_query_addr(shrd, offset);
  716. *eeprom_ch_index = iwl_eeprom_band_4;
  717. break;
  718. case 5: /* 5.7GHz band */
  719. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5);
  720. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  721. iwl_eeprom_query_addr(shrd, offset);
  722. *eeprom_ch_index = iwl_eeprom_band_5;
  723. break;
  724. case 6: /* 2.4GHz ht40 channels */
  725. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6);
  726. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  727. iwl_eeprom_query_addr(shrd, offset);
  728. *eeprom_ch_index = iwl_eeprom_band_6;
  729. break;
  730. case 7: /* 5 GHz ht40 channels */
  731. *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7);
  732. *eeprom_ch_info = (struct iwl_eeprom_channel *)
  733. iwl_eeprom_query_addr(shrd, offset);
  734. *eeprom_ch_index = iwl_eeprom_band_7;
  735. break;
  736. default:
  737. BUG();
  738. return;
  739. }
  740. }
  741. #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
  742. ? # x " " : "")
  743. /**
  744. * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv.
  745. *
  746. * Does not set up a command, or touch hardware.
  747. */
  748. static int iwl_mod_ht40_chan_info(struct iwl_priv *priv,
  749. enum ieee80211_band band, u16 channel,
  750. const struct iwl_eeprom_channel *eeprom_ch,
  751. u8 clear_ht40_extension_channel)
  752. {
  753. struct iwl_channel_info *ch_info;
  754. ch_info = (struct iwl_channel_info *)
  755. iwl_get_channel_info(priv, band, channel);
  756. if (!is_channel_valid(ch_info))
  757. return -1;
  758. IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
  759. " Ad-Hoc %ssupported\n",
  760. ch_info->channel,
  761. is_channel_a_band(ch_info) ?
  762. "5.2" : "2.4",
  763. CHECK_AND_PRINT(IBSS),
  764. CHECK_AND_PRINT(ACTIVE),
  765. CHECK_AND_PRINT(RADAR),
  766. CHECK_AND_PRINT(WIDE),
  767. CHECK_AND_PRINT(DFS),
  768. eeprom_ch->flags,
  769. eeprom_ch->max_power_avg,
  770. ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
  771. && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
  772. "" : "not ");
  773. ch_info->ht40_eeprom = *eeprom_ch;
  774. ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
  775. ch_info->ht40_flags = eeprom_ch->flags;
  776. if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
  777. ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel;
  778. return 0;
  779. }
  780. #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
  781. ? # x " " : "")
  782. /**
  783. * iwl_init_channel_map - Set up driver's info for all possible channels
  784. */
  785. int iwl_init_channel_map(struct iwl_priv *priv)
  786. {
  787. int eeprom_ch_count = 0;
  788. const u8 *eeprom_ch_index = NULL;
  789. const struct iwl_eeprom_channel *eeprom_ch_info = NULL;
  790. int band, ch;
  791. struct iwl_channel_info *ch_info;
  792. if (priv->channel_count) {
  793. IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n");
  794. return 0;
  795. }
  796. IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n");
  797. priv->channel_count =
  798. ARRAY_SIZE(iwl_eeprom_band_1) +
  799. ARRAY_SIZE(iwl_eeprom_band_2) +
  800. ARRAY_SIZE(iwl_eeprom_band_3) +
  801. ARRAY_SIZE(iwl_eeprom_band_4) +
  802. ARRAY_SIZE(iwl_eeprom_band_5);
  803. IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n",
  804. priv->channel_count);
  805. priv->channel_info = kcalloc(priv->channel_count,
  806. sizeof(struct iwl_channel_info),
  807. GFP_KERNEL);
  808. if (!priv->channel_info) {
  809. IWL_ERR(priv, "Could not allocate channel_info\n");
  810. priv->channel_count = 0;
  811. return -ENOMEM;
  812. }
  813. ch_info = priv->channel_info;
  814. /* Loop through the 5 EEPROM bands adding them in order to the
  815. * channel map we maintain (that contains additional information than
  816. * what just in the EEPROM) */
  817. for (band = 1; band <= 5; band++) {
  818. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  819. &eeprom_ch_info, &eeprom_ch_index);
  820. /* Loop through each band adding each of the channels */
  821. for (ch = 0; ch < eeprom_ch_count; ch++) {
  822. ch_info->channel = eeprom_ch_index[ch];
  823. ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
  824. IEEE80211_BAND_5GHZ;
  825. /* permanently store EEPROM's channel regulatory flags
  826. * and max power in channel info database. */
  827. ch_info->eeprom = eeprom_ch_info[ch];
  828. /* Copy the run-time flags so they are there even on
  829. * invalid channels */
  830. ch_info->flags = eeprom_ch_info[ch].flags;
  831. /* First write that ht40 is not enabled, and then enable
  832. * one by one */
  833. ch_info->ht40_extension_channel =
  834. IEEE80211_CHAN_NO_HT40;
  835. if (!(is_channel_valid(ch_info))) {
  836. IWL_DEBUG_EEPROM(priv,
  837. "Ch. %d Flags %x [%sGHz] - "
  838. "No traffic\n",
  839. ch_info->channel,
  840. ch_info->flags,
  841. is_channel_a_band(ch_info) ?
  842. "5.2" : "2.4");
  843. ch_info++;
  844. continue;
  845. }
  846. /* Initialize regulatory-based run-time data */
  847. ch_info->max_power_avg = ch_info->curr_txpow =
  848. eeprom_ch_info[ch].max_power_avg;
  849. ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
  850. ch_info->min_power = 0;
  851. IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] "
  852. "%s%s%s%s%s%s(0x%02x %ddBm):"
  853. " Ad-Hoc %ssupported\n",
  854. ch_info->channel,
  855. is_channel_a_band(ch_info) ?
  856. "5.2" : "2.4",
  857. CHECK_AND_PRINT_I(VALID),
  858. CHECK_AND_PRINT_I(IBSS),
  859. CHECK_AND_PRINT_I(ACTIVE),
  860. CHECK_AND_PRINT_I(RADAR),
  861. CHECK_AND_PRINT_I(WIDE),
  862. CHECK_AND_PRINT_I(DFS),
  863. eeprom_ch_info[ch].flags,
  864. eeprom_ch_info[ch].max_power_avg,
  865. ((eeprom_ch_info[ch].
  866. flags & EEPROM_CHANNEL_IBSS)
  867. && !(eeprom_ch_info[ch].
  868. flags & EEPROM_CHANNEL_RADAR))
  869. ? "" : "not ");
  870. ch_info++;
  871. }
  872. }
  873. /* Check if we do have HT40 channels */
  874. if (cfg(priv)->lib->eeprom_ops.regulatory_bands[5] ==
  875. EEPROM_REGULATORY_BAND_NO_HT40 &&
  876. cfg(priv)->lib->eeprom_ops.regulatory_bands[6] ==
  877. EEPROM_REGULATORY_BAND_NO_HT40)
  878. return 0;
  879. /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
  880. for (band = 6; band <= 7; band++) {
  881. enum ieee80211_band ieeeband;
  882. iwl_init_band_reference(priv, band, &eeprom_ch_count,
  883. &eeprom_ch_info, &eeprom_ch_index);
  884. /* EEPROM band 6 is 2.4, band 7 is 5 GHz */
  885. ieeeband =
  886. (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
  887. /* Loop through each band adding each of the channels */
  888. for (ch = 0; ch < eeprom_ch_count; ch++) {
  889. /* Set up driver's info for lower half */
  890. iwl_mod_ht40_chan_info(priv, ieeeband,
  891. eeprom_ch_index[ch],
  892. &eeprom_ch_info[ch],
  893. IEEE80211_CHAN_NO_HT40PLUS);
  894. /* Set up driver's info for upper half */
  895. iwl_mod_ht40_chan_info(priv, ieeeband,
  896. eeprom_ch_index[ch] + 4,
  897. &eeprom_ch_info[ch],
  898. IEEE80211_CHAN_NO_HT40MINUS);
  899. }
  900. }
  901. /* for newer device (6000 series and up)
  902. * EEPROM contain enhanced tx power information
  903. * driver need to process addition information
  904. * to determine the max channel tx power limits
  905. */
  906. if (cfg(priv)->lib->eeprom_ops.update_enhanced_txpower)
  907. cfg(priv)->lib->eeprom_ops.update_enhanced_txpower(priv);
  908. return 0;
  909. }
  910. /*
  911. * iwl_free_channel_map - undo allocations in iwl_init_channel_map
  912. */
  913. void iwl_free_channel_map(struct iwl_priv *priv)
  914. {
  915. kfree(priv->channel_info);
  916. priv->channel_count = 0;
  917. }
  918. /**
  919. * iwl_get_channel_info - Find driver's private channel info
  920. *
  921. * Based on band and channel number.
  922. */
  923. const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv,
  924. enum ieee80211_band band, u16 channel)
  925. {
  926. int i;
  927. switch (band) {
  928. case IEEE80211_BAND_5GHZ:
  929. for (i = 14; i < priv->channel_count; i++) {
  930. if (priv->channel_info[i].channel == channel)
  931. return &priv->channel_info[i];
  932. }
  933. break;
  934. case IEEE80211_BAND_2GHZ:
  935. if (channel >= 1 && channel <= 14)
  936. return &priv->channel_info[channel - 1];
  937. break;
  938. default:
  939. BUG();
  940. }
  941. return NULL;
  942. }
  943. void iwl_rf_config(struct iwl_priv *priv)
  944. {
  945. u16 radio_cfg;
  946. radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG);
  947. /* write radio config values to register */
  948. if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) {
  949. iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
  950. EEPROM_RF_CFG_TYPE_MSK(radio_cfg) |
  951. EEPROM_RF_CFG_STEP_MSK(radio_cfg) |
  952. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  953. IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
  954. EEPROM_RF_CFG_TYPE_MSK(radio_cfg),
  955. EEPROM_RF_CFG_STEP_MSK(radio_cfg),
  956. EEPROM_RF_CFG_DASH_MSK(radio_cfg));
  957. } else
  958. WARN_ON(1);
  959. /* set CSR_HW_CONFIG_REG for uCode use */
  960. iwl_set_bit(trans(priv), CSR_HW_IF_CONFIG_REG,
  961. CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
  962. CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
  963. }