vmx.c 189 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include "trace.h"
  40. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  41. #define __ex_clear(x, reg) \
  42. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  43. MODULE_AUTHOR("Qumranet");
  44. MODULE_LICENSE("GPL");
  45. static int __read_mostly bypass_guest_pf = 1;
  46. module_param(bypass_guest_pf, bool, S_IRUGO);
  47. static int __read_mostly enable_vpid = 1;
  48. module_param_named(vpid, enable_vpid, bool, 0444);
  49. static int __read_mostly flexpriority_enabled = 1;
  50. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  51. static int __read_mostly enable_ept = 1;
  52. module_param_named(ept, enable_ept, bool, S_IRUGO);
  53. static int __read_mostly enable_unrestricted_guest = 1;
  54. module_param_named(unrestricted_guest,
  55. enable_unrestricted_guest, bool, S_IRUGO);
  56. static int __read_mostly emulate_invalid_guest_state = 0;
  57. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  58. static int __read_mostly vmm_exclusive = 1;
  59. module_param(vmm_exclusive, bool, S_IRUGO);
  60. static int __read_mostly yield_on_hlt = 1;
  61. module_param(yield_on_hlt, bool, S_IRUGO);
  62. /*
  63. * If nested=1, nested virtualization is supported, i.e., guests may use
  64. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  65. * use VMX instructions.
  66. */
  67. static int __read_mostly nested = 0;
  68. module_param(nested, bool, S_IRUGO);
  69. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  70. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  71. #define KVM_GUEST_CR0_MASK \
  72. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  73. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  74. (X86_CR0_WP | X86_CR0_NE)
  75. #define KVM_VM_CR0_ALWAYS_ON \
  76. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  77. #define KVM_CR4_GUEST_OWNED_BITS \
  78. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  79. | X86_CR4_OSXMMEXCPT)
  80. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  81. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  82. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  83. /*
  84. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  85. * ple_gap: upper bound on the amount of time between two successive
  86. * executions of PAUSE in a loop. Also indicate if ple enabled.
  87. * According to test, this time is usually smaller than 128 cycles.
  88. * ple_window: upper bound on the amount of time a guest is allowed to execute
  89. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  90. * less than 2^12 cycles
  91. * Time is measured based on a counter that runs at the same rate as the TSC,
  92. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  93. */
  94. #define KVM_VMX_DEFAULT_PLE_GAP 128
  95. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  96. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  97. module_param(ple_gap, int, S_IRUGO);
  98. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  99. module_param(ple_window, int, S_IRUGO);
  100. #define NR_AUTOLOAD_MSRS 1
  101. #define VMCS02_POOL_SIZE 1
  102. struct vmcs {
  103. u32 revision_id;
  104. u32 abort;
  105. char data[0];
  106. };
  107. /*
  108. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  109. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  110. * loaded on this CPU (so we can clear them if the CPU goes down).
  111. */
  112. struct loaded_vmcs {
  113. struct vmcs *vmcs;
  114. int cpu;
  115. int launched;
  116. struct list_head loaded_vmcss_on_cpu_link;
  117. };
  118. struct shared_msr_entry {
  119. unsigned index;
  120. u64 data;
  121. u64 mask;
  122. };
  123. /*
  124. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  125. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  126. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  127. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  128. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  129. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  130. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  131. * underlying hardware which will be used to run L2.
  132. * This structure is packed to ensure that its layout is identical across
  133. * machines (necessary for live migration).
  134. * If there are changes in this struct, VMCS12_REVISION must be changed.
  135. */
  136. typedef u64 natural_width;
  137. struct __packed vmcs12 {
  138. /* According to the Intel spec, a VMCS region must start with the
  139. * following two fields. Then follow implementation-specific data.
  140. */
  141. u32 revision_id;
  142. u32 abort;
  143. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  144. u32 padding[7]; /* room for future expansion */
  145. u64 io_bitmap_a;
  146. u64 io_bitmap_b;
  147. u64 msr_bitmap;
  148. u64 vm_exit_msr_store_addr;
  149. u64 vm_exit_msr_load_addr;
  150. u64 vm_entry_msr_load_addr;
  151. u64 tsc_offset;
  152. u64 virtual_apic_page_addr;
  153. u64 apic_access_addr;
  154. u64 ept_pointer;
  155. u64 guest_physical_address;
  156. u64 vmcs_link_pointer;
  157. u64 guest_ia32_debugctl;
  158. u64 guest_ia32_pat;
  159. u64 guest_ia32_efer;
  160. u64 guest_ia32_perf_global_ctrl;
  161. u64 guest_pdptr0;
  162. u64 guest_pdptr1;
  163. u64 guest_pdptr2;
  164. u64 guest_pdptr3;
  165. u64 host_ia32_pat;
  166. u64 host_ia32_efer;
  167. u64 host_ia32_perf_global_ctrl;
  168. u64 padding64[8]; /* room for future expansion */
  169. /*
  170. * To allow migration of L1 (complete with its L2 guests) between
  171. * machines of different natural widths (32 or 64 bit), we cannot have
  172. * unsigned long fields with no explict size. We use u64 (aliased
  173. * natural_width) instead. Luckily, x86 is little-endian.
  174. */
  175. natural_width cr0_guest_host_mask;
  176. natural_width cr4_guest_host_mask;
  177. natural_width cr0_read_shadow;
  178. natural_width cr4_read_shadow;
  179. natural_width cr3_target_value0;
  180. natural_width cr3_target_value1;
  181. natural_width cr3_target_value2;
  182. natural_width cr3_target_value3;
  183. natural_width exit_qualification;
  184. natural_width guest_linear_address;
  185. natural_width guest_cr0;
  186. natural_width guest_cr3;
  187. natural_width guest_cr4;
  188. natural_width guest_es_base;
  189. natural_width guest_cs_base;
  190. natural_width guest_ss_base;
  191. natural_width guest_ds_base;
  192. natural_width guest_fs_base;
  193. natural_width guest_gs_base;
  194. natural_width guest_ldtr_base;
  195. natural_width guest_tr_base;
  196. natural_width guest_gdtr_base;
  197. natural_width guest_idtr_base;
  198. natural_width guest_dr7;
  199. natural_width guest_rsp;
  200. natural_width guest_rip;
  201. natural_width guest_rflags;
  202. natural_width guest_pending_dbg_exceptions;
  203. natural_width guest_sysenter_esp;
  204. natural_width guest_sysenter_eip;
  205. natural_width host_cr0;
  206. natural_width host_cr3;
  207. natural_width host_cr4;
  208. natural_width host_fs_base;
  209. natural_width host_gs_base;
  210. natural_width host_tr_base;
  211. natural_width host_gdtr_base;
  212. natural_width host_idtr_base;
  213. natural_width host_ia32_sysenter_esp;
  214. natural_width host_ia32_sysenter_eip;
  215. natural_width host_rsp;
  216. natural_width host_rip;
  217. natural_width paddingl[8]; /* room for future expansion */
  218. u32 pin_based_vm_exec_control;
  219. u32 cpu_based_vm_exec_control;
  220. u32 exception_bitmap;
  221. u32 page_fault_error_code_mask;
  222. u32 page_fault_error_code_match;
  223. u32 cr3_target_count;
  224. u32 vm_exit_controls;
  225. u32 vm_exit_msr_store_count;
  226. u32 vm_exit_msr_load_count;
  227. u32 vm_entry_controls;
  228. u32 vm_entry_msr_load_count;
  229. u32 vm_entry_intr_info_field;
  230. u32 vm_entry_exception_error_code;
  231. u32 vm_entry_instruction_len;
  232. u32 tpr_threshold;
  233. u32 secondary_vm_exec_control;
  234. u32 vm_instruction_error;
  235. u32 vm_exit_reason;
  236. u32 vm_exit_intr_info;
  237. u32 vm_exit_intr_error_code;
  238. u32 idt_vectoring_info_field;
  239. u32 idt_vectoring_error_code;
  240. u32 vm_exit_instruction_len;
  241. u32 vmx_instruction_info;
  242. u32 guest_es_limit;
  243. u32 guest_cs_limit;
  244. u32 guest_ss_limit;
  245. u32 guest_ds_limit;
  246. u32 guest_fs_limit;
  247. u32 guest_gs_limit;
  248. u32 guest_ldtr_limit;
  249. u32 guest_tr_limit;
  250. u32 guest_gdtr_limit;
  251. u32 guest_idtr_limit;
  252. u32 guest_es_ar_bytes;
  253. u32 guest_cs_ar_bytes;
  254. u32 guest_ss_ar_bytes;
  255. u32 guest_ds_ar_bytes;
  256. u32 guest_fs_ar_bytes;
  257. u32 guest_gs_ar_bytes;
  258. u32 guest_ldtr_ar_bytes;
  259. u32 guest_tr_ar_bytes;
  260. u32 guest_interruptibility_info;
  261. u32 guest_activity_state;
  262. u32 guest_sysenter_cs;
  263. u32 host_ia32_sysenter_cs;
  264. u32 padding32[8]; /* room for future expansion */
  265. u16 virtual_processor_id;
  266. u16 guest_es_selector;
  267. u16 guest_cs_selector;
  268. u16 guest_ss_selector;
  269. u16 guest_ds_selector;
  270. u16 guest_fs_selector;
  271. u16 guest_gs_selector;
  272. u16 guest_ldtr_selector;
  273. u16 guest_tr_selector;
  274. u16 host_es_selector;
  275. u16 host_cs_selector;
  276. u16 host_ss_selector;
  277. u16 host_ds_selector;
  278. u16 host_fs_selector;
  279. u16 host_gs_selector;
  280. u16 host_tr_selector;
  281. };
  282. /*
  283. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  284. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  285. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  286. */
  287. #define VMCS12_REVISION 0x11e57ed0
  288. /*
  289. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  290. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  291. * current implementation, 4K are reserved to avoid future complications.
  292. */
  293. #define VMCS12_SIZE 0x1000
  294. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  295. struct vmcs02_list {
  296. struct list_head list;
  297. gpa_t vmptr;
  298. struct loaded_vmcs vmcs02;
  299. };
  300. /*
  301. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  302. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  303. */
  304. struct nested_vmx {
  305. /* Has the level1 guest done vmxon? */
  306. bool vmxon;
  307. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  308. gpa_t current_vmptr;
  309. /* The host-usable pointer to the above */
  310. struct page *current_vmcs12_page;
  311. struct vmcs12 *current_vmcs12;
  312. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  313. struct list_head vmcs02_pool;
  314. int vmcs02_num;
  315. u64 vmcs01_tsc_offset;
  316. /*
  317. * Guest pages referred to in vmcs02 with host-physical pointers, so
  318. * we must keep them pinned while L2 runs.
  319. */
  320. struct page *apic_access_page;
  321. };
  322. struct vcpu_vmx {
  323. struct kvm_vcpu vcpu;
  324. unsigned long host_rsp;
  325. u8 fail;
  326. u8 cpl;
  327. bool nmi_known_unmasked;
  328. u32 exit_intr_info;
  329. u32 idt_vectoring_info;
  330. ulong rflags;
  331. struct shared_msr_entry *guest_msrs;
  332. int nmsrs;
  333. int save_nmsrs;
  334. #ifdef CONFIG_X86_64
  335. u64 msr_host_kernel_gs_base;
  336. u64 msr_guest_kernel_gs_base;
  337. #endif
  338. /*
  339. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  340. * non-nested (L1) guest, it always points to vmcs01. For a nested
  341. * guest (L2), it points to a different VMCS.
  342. */
  343. struct loaded_vmcs vmcs01;
  344. struct loaded_vmcs *loaded_vmcs;
  345. bool __launched; /* temporary, used in vmx_vcpu_run */
  346. struct msr_autoload {
  347. unsigned nr;
  348. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  349. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  350. } msr_autoload;
  351. struct {
  352. int loaded;
  353. u16 fs_sel, gs_sel, ldt_sel;
  354. int gs_ldt_reload_needed;
  355. int fs_reload_needed;
  356. } host_state;
  357. struct {
  358. int vm86_active;
  359. ulong save_rflags;
  360. struct kvm_save_segment {
  361. u16 selector;
  362. unsigned long base;
  363. u32 limit;
  364. u32 ar;
  365. } tr, es, ds, fs, gs;
  366. } rmode;
  367. struct {
  368. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  369. struct kvm_save_segment seg[8];
  370. } segment_cache;
  371. int vpid;
  372. bool emulation_required;
  373. /* Support for vnmi-less CPUs */
  374. int soft_vnmi_blocked;
  375. ktime_t entry_time;
  376. s64 vnmi_blocked_time;
  377. u32 exit_reason;
  378. bool rdtscp_enabled;
  379. /* Support for a guest hypervisor (nested VMX) */
  380. struct nested_vmx nested;
  381. };
  382. enum segment_cache_field {
  383. SEG_FIELD_SEL = 0,
  384. SEG_FIELD_BASE = 1,
  385. SEG_FIELD_LIMIT = 2,
  386. SEG_FIELD_AR = 3,
  387. SEG_FIELD_NR = 4
  388. };
  389. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  390. {
  391. return container_of(vcpu, struct vcpu_vmx, vcpu);
  392. }
  393. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  394. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  395. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  396. [number##_HIGH] = VMCS12_OFFSET(name)+4
  397. static unsigned short vmcs_field_to_offset_table[] = {
  398. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  399. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  400. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  401. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  402. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  403. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  404. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  405. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  406. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  407. FIELD(HOST_ES_SELECTOR, host_es_selector),
  408. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  409. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  410. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  411. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  412. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  413. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  414. FIELD64(IO_BITMAP_A, io_bitmap_a),
  415. FIELD64(IO_BITMAP_B, io_bitmap_b),
  416. FIELD64(MSR_BITMAP, msr_bitmap),
  417. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  418. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  419. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  420. FIELD64(TSC_OFFSET, tsc_offset),
  421. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  422. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  423. FIELD64(EPT_POINTER, ept_pointer),
  424. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  425. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  426. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  427. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  428. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  429. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  430. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  431. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  432. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  433. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  434. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  435. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  436. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  437. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  438. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  439. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  440. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  441. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  442. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  443. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  444. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  445. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  446. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  447. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  448. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  449. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  450. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  451. FIELD(TPR_THRESHOLD, tpr_threshold),
  452. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  453. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  454. FIELD(VM_EXIT_REASON, vm_exit_reason),
  455. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  456. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  457. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  458. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  459. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  460. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  461. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  462. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  463. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  464. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  465. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  466. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  467. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  468. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  469. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  470. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  471. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  472. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  473. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  474. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  475. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  476. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  477. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  478. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  479. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  480. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  481. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  482. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  483. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  484. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  485. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  486. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  487. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  488. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  489. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  490. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  491. FIELD(EXIT_QUALIFICATION, exit_qualification),
  492. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  493. FIELD(GUEST_CR0, guest_cr0),
  494. FIELD(GUEST_CR3, guest_cr3),
  495. FIELD(GUEST_CR4, guest_cr4),
  496. FIELD(GUEST_ES_BASE, guest_es_base),
  497. FIELD(GUEST_CS_BASE, guest_cs_base),
  498. FIELD(GUEST_SS_BASE, guest_ss_base),
  499. FIELD(GUEST_DS_BASE, guest_ds_base),
  500. FIELD(GUEST_FS_BASE, guest_fs_base),
  501. FIELD(GUEST_GS_BASE, guest_gs_base),
  502. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  503. FIELD(GUEST_TR_BASE, guest_tr_base),
  504. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  505. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  506. FIELD(GUEST_DR7, guest_dr7),
  507. FIELD(GUEST_RSP, guest_rsp),
  508. FIELD(GUEST_RIP, guest_rip),
  509. FIELD(GUEST_RFLAGS, guest_rflags),
  510. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  511. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  512. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  513. FIELD(HOST_CR0, host_cr0),
  514. FIELD(HOST_CR3, host_cr3),
  515. FIELD(HOST_CR4, host_cr4),
  516. FIELD(HOST_FS_BASE, host_fs_base),
  517. FIELD(HOST_GS_BASE, host_gs_base),
  518. FIELD(HOST_TR_BASE, host_tr_base),
  519. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  520. FIELD(HOST_IDTR_BASE, host_idtr_base),
  521. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  522. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  523. FIELD(HOST_RSP, host_rsp),
  524. FIELD(HOST_RIP, host_rip),
  525. };
  526. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  527. static inline short vmcs_field_to_offset(unsigned long field)
  528. {
  529. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  530. return -1;
  531. return vmcs_field_to_offset_table[field];
  532. }
  533. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  534. {
  535. return to_vmx(vcpu)->nested.current_vmcs12;
  536. }
  537. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  538. {
  539. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  540. if (is_error_page(page)) {
  541. kvm_release_page_clean(page);
  542. return NULL;
  543. }
  544. return page;
  545. }
  546. static void nested_release_page(struct page *page)
  547. {
  548. kvm_release_page_dirty(page);
  549. }
  550. static void nested_release_page_clean(struct page *page)
  551. {
  552. kvm_release_page_clean(page);
  553. }
  554. static u64 construct_eptp(unsigned long root_hpa);
  555. static void kvm_cpu_vmxon(u64 addr);
  556. static void kvm_cpu_vmxoff(void);
  557. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  558. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  559. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  560. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  561. /*
  562. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  563. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  564. */
  565. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  566. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  567. static unsigned long *vmx_io_bitmap_a;
  568. static unsigned long *vmx_io_bitmap_b;
  569. static unsigned long *vmx_msr_bitmap_legacy;
  570. static unsigned long *vmx_msr_bitmap_longmode;
  571. static bool cpu_has_load_ia32_efer;
  572. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  573. static DEFINE_SPINLOCK(vmx_vpid_lock);
  574. static struct vmcs_config {
  575. int size;
  576. int order;
  577. u32 revision_id;
  578. u32 pin_based_exec_ctrl;
  579. u32 cpu_based_exec_ctrl;
  580. u32 cpu_based_2nd_exec_ctrl;
  581. u32 vmexit_ctrl;
  582. u32 vmentry_ctrl;
  583. } vmcs_config;
  584. static struct vmx_capability {
  585. u32 ept;
  586. u32 vpid;
  587. } vmx_capability;
  588. #define VMX_SEGMENT_FIELD(seg) \
  589. [VCPU_SREG_##seg] = { \
  590. .selector = GUEST_##seg##_SELECTOR, \
  591. .base = GUEST_##seg##_BASE, \
  592. .limit = GUEST_##seg##_LIMIT, \
  593. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  594. }
  595. static struct kvm_vmx_segment_field {
  596. unsigned selector;
  597. unsigned base;
  598. unsigned limit;
  599. unsigned ar_bytes;
  600. } kvm_vmx_segment_fields[] = {
  601. VMX_SEGMENT_FIELD(CS),
  602. VMX_SEGMENT_FIELD(DS),
  603. VMX_SEGMENT_FIELD(ES),
  604. VMX_SEGMENT_FIELD(FS),
  605. VMX_SEGMENT_FIELD(GS),
  606. VMX_SEGMENT_FIELD(SS),
  607. VMX_SEGMENT_FIELD(TR),
  608. VMX_SEGMENT_FIELD(LDTR),
  609. };
  610. static u64 host_efer;
  611. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  612. /*
  613. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  614. * away by decrementing the array size.
  615. */
  616. static const u32 vmx_msr_index[] = {
  617. #ifdef CONFIG_X86_64
  618. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  619. #endif
  620. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  621. };
  622. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  623. static inline bool is_page_fault(u32 intr_info)
  624. {
  625. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  626. INTR_INFO_VALID_MASK)) ==
  627. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  628. }
  629. static inline bool is_no_device(u32 intr_info)
  630. {
  631. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  632. INTR_INFO_VALID_MASK)) ==
  633. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  634. }
  635. static inline bool is_invalid_opcode(u32 intr_info)
  636. {
  637. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  638. INTR_INFO_VALID_MASK)) ==
  639. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  640. }
  641. static inline bool is_external_interrupt(u32 intr_info)
  642. {
  643. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  644. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  645. }
  646. static inline bool is_machine_check(u32 intr_info)
  647. {
  648. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  649. INTR_INFO_VALID_MASK)) ==
  650. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  651. }
  652. static inline bool cpu_has_vmx_msr_bitmap(void)
  653. {
  654. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  655. }
  656. static inline bool cpu_has_vmx_tpr_shadow(void)
  657. {
  658. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  659. }
  660. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  661. {
  662. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  663. }
  664. static inline bool cpu_has_secondary_exec_ctrls(void)
  665. {
  666. return vmcs_config.cpu_based_exec_ctrl &
  667. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  668. }
  669. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  670. {
  671. return vmcs_config.cpu_based_2nd_exec_ctrl &
  672. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  673. }
  674. static inline bool cpu_has_vmx_flexpriority(void)
  675. {
  676. return cpu_has_vmx_tpr_shadow() &&
  677. cpu_has_vmx_virtualize_apic_accesses();
  678. }
  679. static inline bool cpu_has_vmx_ept_execute_only(void)
  680. {
  681. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  682. }
  683. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  684. {
  685. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  686. }
  687. static inline bool cpu_has_vmx_eptp_writeback(void)
  688. {
  689. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  690. }
  691. static inline bool cpu_has_vmx_ept_2m_page(void)
  692. {
  693. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  694. }
  695. static inline bool cpu_has_vmx_ept_1g_page(void)
  696. {
  697. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  698. }
  699. static inline bool cpu_has_vmx_ept_4levels(void)
  700. {
  701. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  702. }
  703. static inline bool cpu_has_vmx_invept_individual_addr(void)
  704. {
  705. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  706. }
  707. static inline bool cpu_has_vmx_invept_context(void)
  708. {
  709. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  710. }
  711. static inline bool cpu_has_vmx_invept_global(void)
  712. {
  713. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  714. }
  715. static inline bool cpu_has_vmx_invvpid_single(void)
  716. {
  717. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  718. }
  719. static inline bool cpu_has_vmx_invvpid_global(void)
  720. {
  721. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  722. }
  723. static inline bool cpu_has_vmx_ept(void)
  724. {
  725. return vmcs_config.cpu_based_2nd_exec_ctrl &
  726. SECONDARY_EXEC_ENABLE_EPT;
  727. }
  728. static inline bool cpu_has_vmx_unrestricted_guest(void)
  729. {
  730. return vmcs_config.cpu_based_2nd_exec_ctrl &
  731. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  732. }
  733. static inline bool cpu_has_vmx_ple(void)
  734. {
  735. return vmcs_config.cpu_based_2nd_exec_ctrl &
  736. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  737. }
  738. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  739. {
  740. return flexpriority_enabled && irqchip_in_kernel(kvm);
  741. }
  742. static inline bool cpu_has_vmx_vpid(void)
  743. {
  744. return vmcs_config.cpu_based_2nd_exec_ctrl &
  745. SECONDARY_EXEC_ENABLE_VPID;
  746. }
  747. static inline bool cpu_has_vmx_rdtscp(void)
  748. {
  749. return vmcs_config.cpu_based_2nd_exec_ctrl &
  750. SECONDARY_EXEC_RDTSCP;
  751. }
  752. static inline bool cpu_has_virtual_nmis(void)
  753. {
  754. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  755. }
  756. static inline bool cpu_has_vmx_wbinvd_exit(void)
  757. {
  758. return vmcs_config.cpu_based_2nd_exec_ctrl &
  759. SECONDARY_EXEC_WBINVD_EXITING;
  760. }
  761. static inline bool report_flexpriority(void)
  762. {
  763. return flexpriority_enabled;
  764. }
  765. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  766. {
  767. return vmcs12->cpu_based_vm_exec_control & bit;
  768. }
  769. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  770. {
  771. return (vmcs12->cpu_based_vm_exec_control &
  772. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  773. (vmcs12->secondary_vm_exec_control & bit);
  774. }
  775. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  776. struct vmcs12 *vmcs12,
  777. u32 reason, unsigned long qualification);
  778. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  779. {
  780. int i;
  781. for (i = 0; i < vmx->nmsrs; ++i)
  782. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  783. return i;
  784. return -1;
  785. }
  786. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  787. {
  788. struct {
  789. u64 vpid : 16;
  790. u64 rsvd : 48;
  791. u64 gva;
  792. } operand = { vpid, 0, gva };
  793. asm volatile (__ex(ASM_VMX_INVVPID)
  794. /* CF==1 or ZF==1 --> rc = -1 */
  795. "; ja 1f ; ud2 ; 1:"
  796. : : "a"(&operand), "c"(ext) : "cc", "memory");
  797. }
  798. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  799. {
  800. struct {
  801. u64 eptp, gpa;
  802. } operand = {eptp, gpa};
  803. asm volatile (__ex(ASM_VMX_INVEPT)
  804. /* CF==1 or ZF==1 --> rc = -1 */
  805. "; ja 1f ; ud2 ; 1:\n"
  806. : : "a" (&operand), "c" (ext) : "cc", "memory");
  807. }
  808. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  809. {
  810. int i;
  811. i = __find_msr_index(vmx, msr);
  812. if (i >= 0)
  813. return &vmx->guest_msrs[i];
  814. return NULL;
  815. }
  816. static void vmcs_clear(struct vmcs *vmcs)
  817. {
  818. u64 phys_addr = __pa(vmcs);
  819. u8 error;
  820. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  821. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  822. : "cc", "memory");
  823. if (error)
  824. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  825. vmcs, phys_addr);
  826. }
  827. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  828. {
  829. vmcs_clear(loaded_vmcs->vmcs);
  830. loaded_vmcs->cpu = -1;
  831. loaded_vmcs->launched = 0;
  832. }
  833. static void vmcs_load(struct vmcs *vmcs)
  834. {
  835. u64 phys_addr = __pa(vmcs);
  836. u8 error;
  837. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  838. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  839. : "cc", "memory");
  840. if (error)
  841. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  842. vmcs, phys_addr);
  843. }
  844. static void __loaded_vmcs_clear(void *arg)
  845. {
  846. struct loaded_vmcs *loaded_vmcs = arg;
  847. int cpu = raw_smp_processor_id();
  848. if (loaded_vmcs->cpu != cpu)
  849. return; /* vcpu migration can race with cpu offline */
  850. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  851. per_cpu(current_vmcs, cpu) = NULL;
  852. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  853. loaded_vmcs_init(loaded_vmcs);
  854. }
  855. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  856. {
  857. if (loaded_vmcs->cpu != -1)
  858. smp_call_function_single(
  859. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  860. }
  861. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  862. {
  863. if (vmx->vpid == 0)
  864. return;
  865. if (cpu_has_vmx_invvpid_single())
  866. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  867. }
  868. static inline void vpid_sync_vcpu_global(void)
  869. {
  870. if (cpu_has_vmx_invvpid_global())
  871. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  872. }
  873. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  874. {
  875. if (cpu_has_vmx_invvpid_single())
  876. vpid_sync_vcpu_single(vmx);
  877. else
  878. vpid_sync_vcpu_global();
  879. }
  880. static inline void ept_sync_global(void)
  881. {
  882. if (cpu_has_vmx_invept_global())
  883. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  884. }
  885. static inline void ept_sync_context(u64 eptp)
  886. {
  887. if (enable_ept) {
  888. if (cpu_has_vmx_invept_context())
  889. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  890. else
  891. ept_sync_global();
  892. }
  893. }
  894. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  895. {
  896. if (enable_ept) {
  897. if (cpu_has_vmx_invept_individual_addr())
  898. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  899. eptp, gpa);
  900. else
  901. ept_sync_context(eptp);
  902. }
  903. }
  904. static __always_inline unsigned long vmcs_readl(unsigned long field)
  905. {
  906. unsigned long value;
  907. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  908. : "=a"(value) : "d"(field) : "cc");
  909. return value;
  910. }
  911. static __always_inline u16 vmcs_read16(unsigned long field)
  912. {
  913. return vmcs_readl(field);
  914. }
  915. static __always_inline u32 vmcs_read32(unsigned long field)
  916. {
  917. return vmcs_readl(field);
  918. }
  919. static __always_inline u64 vmcs_read64(unsigned long field)
  920. {
  921. #ifdef CONFIG_X86_64
  922. return vmcs_readl(field);
  923. #else
  924. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  925. #endif
  926. }
  927. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  928. {
  929. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  930. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  931. dump_stack();
  932. }
  933. static void vmcs_writel(unsigned long field, unsigned long value)
  934. {
  935. u8 error;
  936. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  937. : "=q"(error) : "a"(value), "d"(field) : "cc");
  938. if (unlikely(error))
  939. vmwrite_error(field, value);
  940. }
  941. static void vmcs_write16(unsigned long field, u16 value)
  942. {
  943. vmcs_writel(field, value);
  944. }
  945. static void vmcs_write32(unsigned long field, u32 value)
  946. {
  947. vmcs_writel(field, value);
  948. }
  949. static void vmcs_write64(unsigned long field, u64 value)
  950. {
  951. vmcs_writel(field, value);
  952. #ifndef CONFIG_X86_64
  953. asm volatile ("");
  954. vmcs_writel(field+1, value >> 32);
  955. #endif
  956. }
  957. static void vmcs_clear_bits(unsigned long field, u32 mask)
  958. {
  959. vmcs_writel(field, vmcs_readl(field) & ~mask);
  960. }
  961. static void vmcs_set_bits(unsigned long field, u32 mask)
  962. {
  963. vmcs_writel(field, vmcs_readl(field) | mask);
  964. }
  965. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  966. {
  967. vmx->segment_cache.bitmask = 0;
  968. }
  969. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  970. unsigned field)
  971. {
  972. bool ret;
  973. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  974. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  975. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  976. vmx->segment_cache.bitmask = 0;
  977. }
  978. ret = vmx->segment_cache.bitmask & mask;
  979. vmx->segment_cache.bitmask |= mask;
  980. return ret;
  981. }
  982. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  983. {
  984. u16 *p = &vmx->segment_cache.seg[seg].selector;
  985. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  986. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  987. return *p;
  988. }
  989. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  990. {
  991. ulong *p = &vmx->segment_cache.seg[seg].base;
  992. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  993. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  994. return *p;
  995. }
  996. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  997. {
  998. u32 *p = &vmx->segment_cache.seg[seg].limit;
  999. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1000. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1001. return *p;
  1002. }
  1003. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1004. {
  1005. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1006. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1007. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1008. return *p;
  1009. }
  1010. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1011. {
  1012. u32 eb;
  1013. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1014. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1015. if ((vcpu->guest_debug &
  1016. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1017. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1018. eb |= 1u << BP_VECTOR;
  1019. if (to_vmx(vcpu)->rmode.vm86_active)
  1020. eb = ~0;
  1021. if (enable_ept)
  1022. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1023. if (vcpu->fpu_active)
  1024. eb &= ~(1u << NM_VECTOR);
  1025. vmcs_write32(EXCEPTION_BITMAP, eb);
  1026. }
  1027. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1028. {
  1029. unsigned i;
  1030. struct msr_autoload *m = &vmx->msr_autoload;
  1031. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1032. vmcs_clear_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1033. vmcs_clear_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1034. return;
  1035. }
  1036. for (i = 0; i < m->nr; ++i)
  1037. if (m->guest[i].index == msr)
  1038. break;
  1039. if (i == m->nr)
  1040. return;
  1041. --m->nr;
  1042. m->guest[i] = m->guest[m->nr];
  1043. m->host[i] = m->host[m->nr];
  1044. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1045. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1046. }
  1047. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1048. u64 guest_val, u64 host_val)
  1049. {
  1050. unsigned i;
  1051. struct msr_autoload *m = &vmx->msr_autoload;
  1052. if (msr == MSR_EFER && cpu_has_load_ia32_efer) {
  1053. vmcs_write64(GUEST_IA32_EFER, guest_val);
  1054. vmcs_write64(HOST_IA32_EFER, host_val);
  1055. vmcs_set_bits(VM_ENTRY_CONTROLS, VM_ENTRY_LOAD_IA32_EFER);
  1056. vmcs_set_bits(VM_EXIT_CONTROLS, VM_EXIT_LOAD_IA32_EFER);
  1057. return;
  1058. }
  1059. for (i = 0; i < m->nr; ++i)
  1060. if (m->guest[i].index == msr)
  1061. break;
  1062. if (i == m->nr) {
  1063. ++m->nr;
  1064. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1065. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1066. }
  1067. m->guest[i].index = msr;
  1068. m->guest[i].value = guest_val;
  1069. m->host[i].index = msr;
  1070. m->host[i].value = host_val;
  1071. }
  1072. static void reload_tss(void)
  1073. {
  1074. /*
  1075. * VT restores TR but not its size. Useless.
  1076. */
  1077. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1078. struct desc_struct *descs;
  1079. descs = (void *)gdt->address;
  1080. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1081. load_TR_desc();
  1082. }
  1083. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1084. {
  1085. u64 guest_efer;
  1086. u64 ignore_bits;
  1087. guest_efer = vmx->vcpu.arch.efer;
  1088. /*
  1089. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1090. * outside long mode
  1091. */
  1092. ignore_bits = EFER_NX | EFER_SCE;
  1093. #ifdef CONFIG_X86_64
  1094. ignore_bits |= EFER_LMA | EFER_LME;
  1095. /* SCE is meaningful only in long mode on Intel */
  1096. if (guest_efer & EFER_LMA)
  1097. ignore_bits &= ~(u64)EFER_SCE;
  1098. #endif
  1099. guest_efer &= ~ignore_bits;
  1100. guest_efer |= host_efer & ignore_bits;
  1101. vmx->guest_msrs[efer_offset].data = guest_efer;
  1102. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1103. clear_atomic_switch_msr(vmx, MSR_EFER);
  1104. /* On ept, can't emulate nx, and must switch nx atomically */
  1105. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1106. guest_efer = vmx->vcpu.arch.efer;
  1107. if (!(guest_efer & EFER_LMA))
  1108. guest_efer &= ~EFER_LME;
  1109. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1110. return false;
  1111. }
  1112. return true;
  1113. }
  1114. static unsigned long segment_base(u16 selector)
  1115. {
  1116. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1117. struct desc_struct *d;
  1118. unsigned long table_base;
  1119. unsigned long v;
  1120. if (!(selector & ~3))
  1121. return 0;
  1122. table_base = gdt->address;
  1123. if (selector & 4) { /* from ldt */
  1124. u16 ldt_selector = kvm_read_ldt();
  1125. if (!(ldt_selector & ~3))
  1126. return 0;
  1127. table_base = segment_base(ldt_selector);
  1128. }
  1129. d = (struct desc_struct *)(table_base + (selector & ~7));
  1130. v = get_desc_base(d);
  1131. #ifdef CONFIG_X86_64
  1132. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1133. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1134. #endif
  1135. return v;
  1136. }
  1137. static inline unsigned long kvm_read_tr_base(void)
  1138. {
  1139. u16 tr;
  1140. asm("str %0" : "=g"(tr));
  1141. return segment_base(tr);
  1142. }
  1143. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1144. {
  1145. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1146. int i;
  1147. if (vmx->host_state.loaded)
  1148. return;
  1149. vmx->host_state.loaded = 1;
  1150. /*
  1151. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1152. * allow segment selectors with cpl > 0 or ti == 1.
  1153. */
  1154. vmx->host_state.ldt_sel = kvm_read_ldt();
  1155. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1156. savesegment(fs, vmx->host_state.fs_sel);
  1157. if (!(vmx->host_state.fs_sel & 7)) {
  1158. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1159. vmx->host_state.fs_reload_needed = 0;
  1160. } else {
  1161. vmcs_write16(HOST_FS_SELECTOR, 0);
  1162. vmx->host_state.fs_reload_needed = 1;
  1163. }
  1164. savesegment(gs, vmx->host_state.gs_sel);
  1165. if (!(vmx->host_state.gs_sel & 7))
  1166. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1167. else {
  1168. vmcs_write16(HOST_GS_SELECTOR, 0);
  1169. vmx->host_state.gs_ldt_reload_needed = 1;
  1170. }
  1171. #ifdef CONFIG_X86_64
  1172. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1173. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1174. #else
  1175. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1176. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1177. #endif
  1178. #ifdef CONFIG_X86_64
  1179. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1180. if (is_long_mode(&vmx->vcpu))
  1181. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1182. #endif
  1183. for (i = 0; i < vmx->save_nmsrs; ++i)
  1184. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1185. vmx->guest_msrs[i].data,
  1186. vmx->guest_msrs[i].mask);
  1187. }
  1188. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1189. {
  1190. if (!vmx->host_state.loaded)
  1191. return;
  1192. ++vmx->vcpu.stat.host_state_reload;
  1193. vmx->host_state.loaded = 0;
  1194. #ifdef CONFIG_X86_64
  1195. if (is_long_mode(&vmx->vcpu))
  1196. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1197. #endif
  1198. if (vmx->host_state.gs_ldt_reload_needed) {
  1199. kvm_load_ldt(vmx->host_state.ldt_sel);
  1200. #ifdef CONFIG_X86_64
  1201. load_gs_index(vmx->host_state.gs_sel);
  1202. #else
  1203. loadsegment(gs, vmx->host_state.gs_sel);
  1204. #endif
  1205. }
  1206. if (vmx->host_state.fs_reload_needed)
  1207. loadsegment(fs, vmx->host_state.fs_sel);
  1208. reload_tss();
  1209. #ifdef CONFIG_X86_64
  1210. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1211. #endif
  1212. if (current_thread_info()->status & TS_USEDFPU)
  1213. clts();
  1214. load_gdt(&__get_cpu_var(host_gdt));
  1215. }
  1216. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1217. {
  1218. preempt_disable();
  1219. __vmx_load_host_state(vmx);
  1220. preempt_enable();
  1221. }
  1222. /*
  1223. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1224. * vcpu mutex is already taken.
  1225. */
  1226. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1227. {
  1228. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1229. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1230. if (!vmm_exclusive)
  1231. kvm_cpu_vmxon(phys_addr);
  1232. else if (vmx->loaded_vmcs->cpu != cpu)
  1233. loaded_vmcs_clear(vmx->loaded_vmcs);
  1234. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1235. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1236. vmcs_load(vmx->loaded_vmcs->vmcs);
  1237. }
  1238. if (vmx->loaded_vmcs->cpu != cpu) {
  1239. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1240. unsigned long sysenter_esp;
  1241. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1242. local_irq_disable();
  1243. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1244. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1245. local_irq_enable();
  1246. /*
  1247. * Linux uses per-cpu TSS and GDT, so set these when switching
  1248. * processors.
  1249. */
  1250. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1251. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1252. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1253. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1254. vmx->loaded_vmcs->cpu = cpu;
  1255. }
  1256. }
  1257. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1258. {
  1259. __vmx_load_host_state(to_vmx(vcpu));
  1260. if (!vmm_exclusive) {
  1261. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1262. vcpu->cpu = -1;
  1263. kvm_cpu_vmxoff();
  1264. }
  1265. }
  1266. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1267. {
  1268. ulong cr0;
  1269. if (vcpu->fpu_active)
  1270. return;
  1271. vcpu->fpu_active = 1;
  1272. cr0 = vmcs_readl(GUEST_CR0);
  1273. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1274. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1275. vmcs_writel(GUEST_CR0, cr0);
  1276. update_exception_bitmap(vcpu);
  1277. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1278. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1279. }
  1280. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1281. /*
  1282. * Return the cr0 value that a nested guest would read. This is a combination
  1283. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1284. * its hypervisor (cr0_read_shadow).
  1285. */
  1286. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1287. {
  1288. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1289. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1290. }
  1291. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1292. {
  1293. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1294. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1295. }
  1296. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1297. {
  1298. vmx_decache_cr0_guest_bits(vcpu);
  1299. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1300. update_exception_bitmap(vcpu);
  1301. vcpu->arch.cr0_guest_owned_bits = 0;
  1302. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1303. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1304. }
  1305. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1306. {
  1307. unsigned long rflags, save_rflags;
  1308. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1309. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1310. rflags = vmcs_readl(GUEST_RFLAGS);
  1311. if (to_vmx(vcpu)->rmode.vm86_active) {
  1312. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1313. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1314. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1315. }
  1316. to_vmx(vcpu)->rflags = rflags;
  1317. }
  1318. return to_vmx(vcpu)->rflags;
  1319. }
  1320. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1321. {
  1322. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1323. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1324. to_vmx(vcpu)->rflags = rflags;
  1325. if (to_vmx(vcpu)->rmode.vm86_active) {
  1326. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1327. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1328. }
  1329. vmcs_writel(GUEST_RFLAGS, rflags);
  1330. }
  1331. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1332. {
  1333. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1334. int ret = 0;
  1335. if (interruptibility & GUEST_INTR_STATE_STI)
  1336. ret |= KVM_X86_SHADOW_INT_STI;
  1337. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1338. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1339. return ret & mask;
  1340. }
  1341. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1342. {
  1343. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1344. u32 interruptibility = interruptibility_old;
  1345. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1346. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1347. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1348. else if (mask & KVM_X86_SHADOW_INT_STI)
  1349. interruptibility |= GUEST_INTR_STATE_STI;
  1350. if ((interruptibility != interruptibility_old))
  1351. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1352. }
  1353. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1354. {
  1355. unsigned long rip;
  1356. rip = kvm_rip_read(vcpu);
  1357. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1358. kvm_rip_write(vcpu, rip);
  1359. /* skipping an emulated instruction also counts */
  1360. vmx_set_interrupt_shadow(vcpu, 0);
  1361. }
  1362. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1363. {
  1364. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1365. * explicitly skip the instruction because if the HLT state is set, then
  1366. * the instruction is already executing and RIP has already been
  1367. * advanced. */
  1368. if (!yield_on_hlt &&
  1369. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1370. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1371. }
  1372. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1373. bool has_error_code, u32 error_code,
  1374. bool reinject)
  1375. {
  1376. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1377. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1378. if (has_error_code) {
  1379. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1380. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1381. }
  1382. if (vmx->rmode.vm86_active) {
  1383. int inc_eip = 0;
  1384. if (kvm_exception_is_soft(nr))
  1385. inc_eip = vcpu->arch.event_exit_inst_len;
  1386. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1387. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1388. return;
  1389. }
  1390. if (kvm_exception_is_soft(nr)) {
  1391. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1392. vmx->vcpu.arch.event_exit_inst_len);
  1393. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1394. } else
  1395. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1396. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1397. vmx_clear_hlt(vcpu);
  1398. }
  1399. static bool vmx_rdtscp_supported(void)
  1400. {
  1401. return cpu_has_vmx_rdtscp();
  1402. }
  1403. /*
  1404. * Swap MSR entry in host/guest MSR entry array.
  1405. */
  1406. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1407. {
  1408. struct shared_msr_entry tmp;
  1409. tmp = vmx->guest_msrs[to];
  1410. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1411. vmx->guest_msrs[from] = tmp;
  1412. }
  1413. /*
  1414. * Set up the vmcs to automatically save and restore system
  1415. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1416. * mode, as fiddling with msrs is very expensive.
  1417. */
  1418. static void setup_msrs(struct vcpu_vmx *vmx)
  1419. {
  1420. int save_nmsrs, index;
  1421. unsigned long *msr_bitmap;
  1422. vmx_load_host_state(vmx);
  1423. save_nmsrs = 0;
  1424. #ifdef CONFIG_X86_64
  1425. if (is_long_mode(&vmx->vcpu)) {
  1426. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1427. if (index >= 0)
  1428. move_msr_up(vmx, index, save_nmsrs++);
  1429. index = __find_msr_index(vmx, MSR_LSTAR);
  1430. if (index >= 0)
  1431. move_msr_up(vmx, index, save_nmsrs++);
  1432. index = __find_msr_index(vmx, MSR_CSTAR);
  1433. if (index >= 0)
  1434. move_msr_up(vmx, index, save_nmsrs++);
  1435. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1436. if (index >= 0 && vmx->rdtscp_enabled)
  1437. move_msr_up(vmx, index, save_nmsrs++);
  1438. /*
  1439. * MSR_STAR is only needed on long mode guests, and only
  1440. * if efer.sce is enabled.
  1441. */
  1442. index = __find_msr_index(vmx, MSR_STAR);
  1443. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1444. move_msr_up(vmx, index, save_nmsrs++);
  1445. }
  1446. #endif
  1447. index = __find_msr_index(vmx, MSR_EFER);
  1448. if (index >= 0 && update_transition_efer(vmx, index))
  1449. move_msr_up(vmx, index, save_nmsrs++);
  1450. vmx->save_nmsrs = save_nmsrs;
  1451. if (cpu_has_vmx_msr_bitmap()) {
  1452. if (is_long_mode(&vmx->vcpu))
  1453. msr_bitmap = vmx_msr_bitmap_longmode;
  1454. else
  1455. msr_bitmap = vmx_msr_bitmap_legacy;
  1456. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1457. }
  1458. }
  1459. /*
  1460. * reads and returns guest's timestamp counter "register"
  1461. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1462. */
  1463. static u64 guest_read_tsc(void)
  1464. {
  1465. u64 host_tsc, tsc_offset;
  1466. rdtscll(host_tsc);
  1467. tsc_offset = vmcs_read64(TSC_OFFSET);
  1468. return host_tsc + tsc_offset;
  1469. }
  1470. /*
  1471. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1472. * ioctl. In this case the call-back should update internal vmx state to make
  1473. * the changes effective.
  1474. */
  1475. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1476. {
  1477. /* Nothing to do here */
  1478. }
  1479. /*
  1480. * writes 'offset' into guest's timestamp counter offset register
  1481. */
  1482. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1483. {
  1484. vmcs_write64(TSC_OFFSET, offset);
  1485. }
  1486. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1487. {
  1488. u64 offset = vmcs_read64(TSC_OFFSET);
  1489. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1490. }
  1491. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1492. {
  1493. return target_tsc - native_read_tsc();
  1494. }
  1495. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1496. {
  1497. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1498. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1499. }
  1500. /*
  1501. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1502. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1503. * all guests if the "nested" module option is off, and can also be disabled
  1504. * for a single guest by disabling its VMX cpuid bit.
  1505. */
  1506. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1507. {
  1508. return nested && guest_cpuid_has_vmx(vcpu);
  1509. }
  1510. /*
  1511. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1512. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1513. * The same values should also be used to verify that vmcs12 control fields are
  1514. * valid during nested entry from L1 to L2.
  1515. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1516. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1517. * bit in the high half is on if the corresponding bit in the control field
  1518. * may be on. See also vmx_control_verify().
  1519. * TODO: allow these variables to be modified (downgraded) by module options
  1520. * or other means.
  1521. */
  1522. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1523. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1524. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1525. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1526. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1527. static __init void nested_vmx_setup_ctls_msrs(void)
  1528. {
  1529. /*
  1530. * Note that as a general rule, the high half of the MSRs (bits in
  1531. * the control fields which may be 1) should be initialized by the
  1532. * intersection of the underlying hardware's MSR (i.e., features which
  1533. * can be supported) and the list of features we want to expose -
  1534. * because they are known to be properly supported in our code.
  1535. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1536. * be set to 0, meaning that L1 may turn off any of these bits. The
  1537. * reason is that if one of these bits is necessary, it will appear
  1538. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1539. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1540. * nested_vmx_exit_handled() will not pass related exits to L1.
  1541. * These rules have exceptions below.
  1542. */
  1543. /* pin-based controls */
  1544. /*
  1545. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1546. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1547. */
  1548. nested_vmx_pinbased_ctls_low = 0x16 ;
  1549. nested_vmx_pinbased_ctls_high = 0x16 |
  1550. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1551. PIN_BASED_VIRTUAL_NMIS;
  1552. /* exit controls */
  1553. nested_vmx_exit_ctls_low = 0;
  1554. #ifdef CONFIG_X86_64
  1555. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1556. #else
  1557. nested_vmx_exit_ctls_high = 0;
  1558. #endif
  1559. /* entry controls */
  1560. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1561. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1562. nested_vmx_entry_ctls_low = 0;
  1563. nested_vmx_entry_ctls_high &=
  1564. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1565. /* cpu-based controls */
  1566. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1567. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1568. nested_vmx_procbased_ctls_low = 0;
  1569. nested_vmx_procbased_ctls_high &=
  1570. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1571. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1572. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1573. CPU_BASED_CR3_STORE_EXITING |
  1574. #ifdef CONFIG_X86_64
  1575. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1576. #endif
  1577. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1578. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1579. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1580. /*
  1581. * We can allow some features even when not supported by the
  1582. * hardware. For example, L1 can specify an MSR bitmap - and we
  1583. * can use it to avoid exits to L1 - even when L0 runs L2
  1584. * without MSR bitmaps.
  1585. */
  1586. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1587. /* secondary cpu-based controls */
  1588. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1589. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1590. nested_vmx_secondary_ctls_low = 0;
  1591. nested_vmx_secondary_ctls_high &=
  1592. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1593. }
  1594. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1595. {
  1596. /*
  1597. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1598. */
  1599. return ((control & high) | low) == control;
  1600. }
  1601. static inline u64 vmx_control_msr(u32 low, u32 high)
  1602. {
  1603. return low | ((u64)high << 32);
  1604. }
  1605. /*
  1606. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1607. * also let it use VMX-specific MSRs.
  1608. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1609. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1610. * like all other MSRs).
  1611. */
  1612. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1613. {
  1614. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1615. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1616. /*
  1617. * According to the spec, processors which do not support VMX
  1618. * should throw a #GP(0) when VMX capability MSRs are read.
  1619. */
  1620. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1621. return 1;
  1622. }
  1623. switch (msr_index) {
  1624. case MSR_IA32_FEATURE_CONTROL:
  1625. *pdata = 0;
  1626. break;
  1627. case MSR_IA32_VMX_BASIC:
  1628. /*
  1629. * This MSR reports some information about VMX support. We
  1630. * should return information about the VMX we emulate for the
  1631. * guest, and the VMCS structure we give it - not about the
  1632. * VMX support of the underlying hardware.
  1633. */
  1634. *pdata = VMCS12_REVISION |
  1635. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1636. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1637. break;
  1638. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1639. case MSR_IA32_VMX_PINBASED_CTLS:
  1640. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1641. nested_vmx_pinbased_ctls_high);
  1642. break;
  1643. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1644. case MSR_IA32_VMX_PROCBASED_CTLS:
  1645. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1646. nested_vmx_procbased_ctls_high);
  1647. break;
  1648. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1649. case MSR_IA32_VMX_EXIT_CTLS:
  1650. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1651. nested_vmx_exit_ctls_high);
  1652. break;
  1653. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1654. case MSR_IA32_VMX_ENTRY_CTLS:
  1655. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1656. nested_vmx_entry_ctls_high);
  1657. break;
  1658. case MSR_IA32_VMX_MISC:
  1659. *pdata = 0;
  1660. break;
  1661. /*
  1662. * These MSRs specify bits which the guest must keep fixed (on or off)
  1663. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1664. * We picked the standard core2 setting.
  1665. */
  1666. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1667. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1668. case MSR_IA32_VMX_CR0_FIXED0:
  1669. *pdata = VMXON_CR0_ALWAYSON;
  1670. break;
  1671. case MSR_IA32_VMX_CR0_FIXED1:
  1672. *pdata = -1ULL;
  1673. break;
  1674. case MSR_IA32_VMX_CR4_FIXED0:
  1675. *pdata = VMXON_CR4_ALWAYSON;
  1676. break;
  1677. case MSR_IA32_VMX_CR4_FIXED1:
  1678. *pdata = -1ULL;
  1679. break;
  1680. case MSR_IA32_VMX_VMCS_ENUM:
  1681. *pdata = 0x1f;
  1682. break;
  1683. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1684. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1685. nested_vmx_secondary_ctls_high);
  1686. break;
  1687. case MSR_IA32_VMX_EPT_VPID_CAP:
  1688. /* Currently, no nested ept or nested vpid */
  1689. *pdata = 0;
  1690. break;
  1691. default:
  1692. return 0;
  1693. }
  1694. return 1;
  1695. }
  1696. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1697. {
  1698. if (!nested_vmx_allowed(vcpu))
  1699. return 0;
  1700. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1701. /* TODO: the right thing. */
  1702. return 1;
  1703. /*
  1704. * No need to treat VMX capability MSRs specially: If we don't handle
  1705. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1706. */
  1707. return 0;
  1708. }
  1709. /*
  1710. * Reads an msr value (of 'msr_index') into 'pdata'.
  1711. * Returns 0 on success, non-0 otherwise.
  1712. * Assumes vcpu_load() was already called.
  1713. */
  1714. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1715. {
  1716. u64 data;
  1717. struct shared_msr_entry *msr;
  1718. if (!pdata) {
  1719. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1720. return -EINVAL;
  1721. }
  1722. switch (msr_index) {
  1723. #ifdef CONFIG_X86_64
  1724. case MSR_FS_BASE:
  1725. data = vmcs_readl(GUEST_FS_BASE);
  1726. break;
  1727. case MSR_GS_BASE:
  1728. data = vmcs_readl(GUEST_GS_BASE);
  1729. break;
  1730. case MSR_KERNEL_GS_BASE:
  1731. vmx_load_host_state(to_vmx(vcpu));
  1732. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1733. break;
  1734. #endif
  1735. case MSR_EFER:
  1736. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1737. case MSR_IA32_TSC:
  1738. data = guest_read_tsc();
  1739. break;
  1740. case MSR_IA32_SYSENTER_CS:
  1741. data = vmcs_read32(GUEST_SYSENTER_CS);
  1742. break;
  1743. case MSR_IA32_SYSENTER_EIP:
  1744. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1745. break;
  1746. case MSR_IA32_SYSENTER_ESP:
  1747. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1748. break;
  1749. case MSR_TSC_AUX:
  1750. if (!to_vmx(vcpu)->rdtscp_enabled)
  1751. return 1;
  1752. /* Otherwise falls through */
  1753. default:
  1754. vmx_load_host_state(to_vmx(vcpu));
  1755. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1756. return 0;
  1757. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1758. if (msr) {
  1759. vmx_load_host_state(to_vmx(vcpu));
  1760. data = msr->data;
  1761. break;
  1762. }
  1763. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1764. }
  1765. *pdata = data;
  1766. return 0;
  1767. }
  1768. /*
  1769. * Writes msr value into into the appropriate "register".
  1770. * Returns 0 on success, non-0 otherwise.
  1771. * Assumes vcpu_load() was already called.
  1772. */
  1773. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1774. {
  1775. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1776. struct shared_msr_entry *msr;
  1777. int ret = 0;
  1778. switch (msr_index) {
  1779. case MSR_EFER:
  1780. vmx_load_host_state(vmx);
  1781. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1782. break;
  1783. #ifdef CONFIG_X86_64
  1784. case MSR_FS_BASE:
  1785. vmx_segment_cache_clear(vmx);
  1786. vmcs_writel(GUEST_FS_BASE, data);
  1787. break;
  1788. case MSR_GS_BASE:
  1789. vmx_segment_cache_clear(vmx);
  1790. vmcs_writel(GUEST_GS_BASE, data);
  1791. break;
  1792. case MSR_KERNEL_GS_BASE:
  1793. vmx_load_host_state(vmx);
  1794. vmx->msr_guest_kernel_gs_base = data;
  1795. break;
  1796. #endif
  1797. case MSR_IA32_SYSENTER_CS:
  1798. vmcs_write32(GUEST_SYSENTER_CS, data);
  1799. break;
  1800. case MSR_IA32_SYSENTER_EIP:
  1801. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1802. break;
  1803. case MSR_IA32_SYSENTER_ESP:
  1804. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1805. break;
  1806. case MSR_IA32_TSC:
  1807. kvm_write_tsc(vcpu, data);
  1808. break;
  1809. case MSR_IA32_CR_PAT:
  1810. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1811. vmcs_write64(GUEST_IA32_PAT, data);
  1812. vcpu->arch.pat = data;
  1813. break;
  1814. }
  1815. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1816. break;
  1817. case MSR_TSC_AUX:
  1818. if (!vmx->rdtscp_enabled)
  1819. return 1;
  1820. /* Check reserved bit, higher 32 bits should be zero */
  1821. if ((data >> 32) != 0)
  1822. return 1;
  1823. /* Otherwise falls through */
  1824. default:
  1825. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1826. break;
  1827. msr = find_msr_entry(vmx, msr_index);
  1828. if (msr) {
  1829. vmx_load_host_state(vmx);
  1830. msr->data = data;
  1831. break;
  1832. }
  1833. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1834. }
  1835. return ret;
  1836. }
  1837. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1838. {
  1839. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1840. switch (reg) {
  1841. case VCPU_REGS_RSP:
  1842. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1843. break;
  1844. case VCPU_REGS_RIP:
  1845. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1846. break;
  1847. case VCPU_EXREG_PDPTR:
  1848. if (enable_ept)
  1849. ept_save_pdptrs(vcpu);
  1850. break;
  1851. default:
  1852. break;
  1853. }
  1854. }
  1855. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1856. {
  1857. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  1858. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  1859. else
  1860. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  1861. update_exception_bitmap(vcpu);
  1862. }
  1863. static __init int cpu_has_kvm_support(void)
  1864. {
  1865. return cpu_has_vmx();
  1866. }
  1867. static __init int vmx_disabled_by_bios(void)
  1868. {
  1869. u64 msr;
  1870. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  1871. if (msr & FEATURE_CONTROL_LOCKED) {
  1872. /* launched w/ TXT and VMX disabled */
  1873. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1874. && tboot_enabled())
  1875. return 1;
  1876. /* launched w/o TXT and VMX only enabled w/ TXT */
  1877. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1878. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  1879. && !tboot_enabled()) {
  1880. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  1881. "activate TXT before enabling KVM\n");
  1882. return 1;
  1883. }
  1884. /* launched w/o TXT and VMX disabled */
  1885. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  1886. && !tboot_enabled())
  1887. return 1;
  1888. }
  1889. return 0;
  1890. }
  1891. static void kvm_cpu_vmxon(u64 addr)
  1892. {
  1893. asm volatile (ASM_VMX_VMXON_RAX
  1894. : : "a"(&addr), "m"(addr)
  1895. : "memory", "cc");
  1896. }
  1897. static int hardware_enable(void *garbage)
  1898. {
  1899. int cpu = raw_smp_processor_id();
  1900. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1901. u64 old, test_bits;
  1902. if (read_cr4() & X86_CR4_VMXE)
  1903. return -EBUSY;
  1904. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  1905. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  1906. test_bits = FEATURE_CONTROL_LOCKED;
  1907. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  1908. if (tboot_enabled())
  1909. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  1910. if ((old & test_bits) != test_bits) {
  1911. /* enable and lock */
  1912. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  1913. }
  1914. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  1915. if (vmm_exclusive) {
  1916. kvm_cpu_vmxon(phys_addr);
  1917. ept_sync_global();
  1918. }
  1919. store_gdt(&__get_cpu_var(host_gdt));
  1920. return 0;
  1921. }
  1922. static void vmclear_local_loaded_vmcss(void)
  1923. {
  1924. int cpu = raw_smp_processor_id();
  1925. struct loaded_vmcs *v, *n;
  1926. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  1927. loaded_vmcss_on_cpu_link)
  1928. __loaded_vmcs_clear(v);
  1929. }
  1930. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1931. * tricks.
  1932. */
  1933. static void kvm_cpu_vmxoff(void)
  1934. {
  1935. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1936. }
  1937. static void hardware_disable(void *garbage)
  1938. {
  1939. if (vmm_exclusive) {
  1940. vmclear_local_loaded_vmcss();
  1941. kvm_cpu_vmxoff();
  1942. }
  1943. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1944. }
  1945. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1946. u32 msr, u32 *result)
  1947. {
  1948. u32 vmx_msr_low, vmx_msr_high;
  1949. u32 ctl = ctl_min | ctl_opt;
  1950. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1951. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1952. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1953. /* Ensure minimum (required) set of control bits are supported. */
  1954. if (ctl_min & ~ctl)
  1955. return -EIO;
  1956. *result = ctl;
  1957. return 0;
  1958. }
  1959. static __init bool allow_1_setting(u32 msr, u32 ctl)
  1960. {
  1961. u32 vmx_msr_low, vmx_msr_high;
  1962. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1963. return vmx_msr_high & ctl;
  1964. }
  1965. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1966. {
  1967. u32 vmx_msr_low, vmx_msr_high;
  1968. u32 min, opt, min2, opt2;
  1969. u32 _pin_based_exec_control = 0;
  1970. u32 _cpu_based_exec_control = 0;
  1971. u32 _cpu_based_2nd_exec_control = 0;
  1972. u32 _vmexit_control = 0;
  1973. u32 _vmentry_control = 0;
  1974. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1975. opt = PIN_BASED_VIRTUAL_NMIS;
  1976. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1977. &_pin_based_exec_control) < 0)
  1978. return -EIO;
  1979. min =
  1980. #ifdef CONFIG_X86_64
  1981. CPU_BASED_CR8_LOAD_EXITING |
  1982. CPU_BASED_CR8_STORE_EXITING |
  1983. #endif
  1984. CPU_BASED_CR3_LOAD_EXITING |
  1985. CPU_BASED_CR3_STORE_EXITING |
  1986. CPU_BASED_USE_IO_BITMAPS |
  1987. CPU_BASED_MOV_DR_EXITING |
  1988. CPU_BASED_USE_TSC_OFFSETING |
  1989. CPU_BASED_MWAIT_EXITING |
  1990. CPU_BASED_MONITOR_EXITING |
  1991. CPU_BASED_INVLPG_EXITING;
  1992. if (yield_on_hlt)
  1993. min |= CPU_BASED_HLT_EXITING;
  1994. opt = CPU_BASED_TPR_SHADOW |
  1995. CPU_BASED_USE_MSR_BITMAPS |
  1996. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1997. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1998. &_cpu_based_exec_control) < 0)
  1999. return -EIO;
  2000. #ifdef CONFIG_X86_64
  2001. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2002. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2003. ~CPU_BASED_CR8_STORE_EXITING;
  2004. #endif
  2005. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2006. min2 = 0;
  2007. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2008. SECONDARY_EXEC_WBINVD_EXITING |
  2009. SECONDARY_EXEC_ENABLE_VPID |
  2010. SECONDARY_EXEC_ENABLE_EPT |
  2011. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2012. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2013. SECONDARY_EXEC_RDTSCP;
  2014. if (adjust_vmx_controls(min2, opt2,
  2015. MSR_IA32_VMX_PROCBASED_CTLS2,
  2016. &_cpu_based_2nd_exec_control) < 0)
  2017. return -EIO;
  2018. }
  2019. #ifndef CONFIG_X86_64
  2020. if (!(_cpu_based_2nd_exec_control &
  2021. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2022. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2023. #endif
  2024. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2025. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2026. enabled */
  2027. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2028. CPU_BASED_CR3_STORE_EXITING |
  2029. CPU_BASED_INVLPG_EXITING);
  2030. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2031. vmx_capability.ept, vmx_capability.vpid);
  2032. }
  2033. min = 0;
  2034. #ifdef CONFIG_X86_64
  2035. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2036. #endif
  2037. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2038. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2039. &_vmexit_control) < 0)
  2040. return -EIO;
  2041. min = 0;
  2042. opt = VM_ENTRY_LOAD_IA32_PAT;
  2043. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2044. &_vmentry_control) < 0)
  2045. return -EIO;
  2046. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2047. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2048. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2049. return -EIO;
  2050. #ifdef CONFIG_X86_64
  2051. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2052. if (vmx_msr_high & (1u<<16))
  2053. return -EIO;
  2054. #endif
  2055. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2056. if (((vmx_msr_high >> 18) & 15) != 6)
  2057. return -EIO;
  2058. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2059. vmcs_conf->order = get_order(vmcs_config.size);
  2060. vmcs_conf->revision_id = vmx_msr_low;
  2061. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2062. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2063. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2064. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2065. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2066. cpu_has_load_ia32_efer =
  2067. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2068. VM_ENTRY_LOAD_IA32_EFER)
  2069. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2070. VM_EXIT_LOAD_IA32_EFER);
  2071. return 0;
  2072. }
  2073. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2074. {
  2075. int node = cpu_to_node(cpu);
  2076. struct page *pages;
  2077. struct vmcs *vmcs;
  2078. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2079. if (!pages)
  2080. return NULL;
  2081. vmcs = page_address(pages);
  2082. memset(vmcs, 0, vmcs_config.size);
  2083. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2084. return vmcs;
  2085. }
  2086. static struct vmcs *alloc_vmcs(void)
  2087. {
  2088. return alloc_vmcs_cpu(raw_smp_processor_id());
  2089. }
  2090. static void free_vmcs(struct vmcs *vmcs)
  2091. {
  2092. free_pages((unsigned long)vmcs, vmcs_config.order);
  2093. }
  2094. /*
  2095. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2096. */
  2097. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2098. {
  2099. if (!loaded_vmcs->vmcs)
  2100. return;
  2101. loaded_vmcs_clear(loaded_vmcs);
  2102. free_vmcs(loaded_vmcs->vmcs);
  2103. loaded_vmcs->vmcs = NULL;
  2104. }
  2105. static void free_kvm_area(void)
  2106. {
  2107. int cpu;
  2108. for_each_possible_cpu(cpu) {
  2109. free_vmcs(per_cpu(vmxarea, cpu));
  2110. per_cpu(vmxarea, cpu) = NULL;
  2111. }
  2112. }
  2113. static __init int alloc_kvm_area(void)
  2114. {
  2115. int cpu;
  2116. for_each_possible_cpu(cpu) {
  2117. struct vmcs *vmcs;
  2118. vmcs = alloc_vmcs_cpu(cpu);
  2119. if (!vmcs) {
  2120. free_kvm_area();
  2121. return -ENOMEM;
  2122. }
  2123. per_cpu(vmxarea, cpu) = vmcs;
  2124. }
  2125. return 0;
  2126. }
  2127. static __init int hardware_setup(void)
  2128. {
  2129. if (setup_vmcs_config(&vmcs_config) < 0)
  2130. return -EIO;
  2131. if (boot_cpu_has(X86_FEATURE_NX))
  2132. kvm_enable_efer_bits(EFER_NX);
  2133. if (!cpu_has_vmx_vpid())
  2134. enable_vpid = 0;
  2135. if (!cpu_has_vmx_ept() ||
  2136. !cpu_has_vmx_ept_4levels()) {
  2137. enable_ept = 0;
  2138. enable_unrestricted_guest = 0;
  2139. }
  2140. if (!cpu_has_vmx_unrestricted_guest())
  2141. enable_unrestricted_guest = 0;
  2142. if (!cpu_has_vmx_flexpriority())
  2143. flexpriority_enabled = 0;
  2144. if (!cpu_has_vmx_tpr_shadow())
  2145. kvm_x86_ops->update_cr8_intercept = NULL;
  2146. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2147. kvm_disable_largepages();
  2148. if (!cpu_has_vmx_ple())
  2149. ple_gap = 0;
  2150. if (nested)
  2151. nested_vmx_setup_ctls_msrs();
  2152. return alloc_kvm_area();
  2153. }
  2154. static __exit void hardware_unsetup(void)
  2155. {
  2156. free_kvm_area();
  2157. }
  2158. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2159. {
  2160. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2161. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2162. vmcs_write16(sf->selector, save->selector);
  2163. vmcs_writel(sf->base, save->base);
  2164. vmcs_write32(sf->limit, save->limit);
  2165. vmcs_write32(sf->ar_bytes, save->ar);
  2166. } else {
  2167. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2168. << AR_DPL_SHIFT;
  2169. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2170. }
  2171. }
  2172. static void enter_pmode(struct kvm_vcpu *vcpu)
  2173. {
  2174. unsigned long flags;
  2175. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2176. vmx->emulation_required = 1;
  2177. vmx->rmode.vm86_active = 0;
  2178. vmx_segment_cache_clear(vmx);
  2179. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2180. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2181. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2182. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2183. flags = vmcs_readl(GUEST_RFLAGS);
  2184. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2185. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2186. vmcs_writel(GUEST_RFLAGS, flags);
  2187. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2188. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2189. update_exception_bitmap(vcpu);
  2190. if (emulate_invalid_guest_state)
  2191. return;
  2192. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2193. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2194. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2195. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2196. vmx_segment_cache_clear(vmx);
  2197. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2198. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2199. vmcs_write16(GUEST_CS_SELECTOR,
  2200. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2201. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2202. }
  2203. static gva_t rmode_tss_base(struct kvm *kvm)
  2204. {
  2205. if (!kvm->arch.tss_addr) {
  2206. struct kvm_memslots *slots;
  2207. gfn_t base_gfn;
  2208. slots = kvm_memslots(kvm);
  2209. base_gfn = slots->memslots[0].base_gfn +
  2210. kvm->memslots->memslots[0].npages - 3;
  2211. return base_gfn << PAGE_SHIFT;
  2212. }
  2213. return kvm->arch.tss_addr;
  2214. }
  2215. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2216. {
  2217. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2218. save->selector = vmcs_read16(sf->selector);
  2219. save->base = vmcs_readl(sf->base);
  2220. save->limit = vmcs_read32(sf->limit);
  2221. save->ar = vmcs_read32(sf->ar_bytes);
  2222. vmcs_write16(sf->selector, save->base >> 4);
  2223. vmcs_write32(sf->base, save->base & 0xffff0);
  2224. vmcs_write32(sf->limit, 0xffff);
  2225. vmcs_write32(sf->ar_bytes, 0xf3);
  2226. if (save->base & 0xf)
  2227. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2228. " aligned when entering protected mode (seg=%d)",
  2229. seg);
  2230. }
  2231. static void enter_rmode(struct kvm_vcpu *vcpu)
  2232. {
  2233. unsigned long flags;
  2234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2235. if (enable_unrestricted_guest)
  2236. return;
  2237. vmx->emulation_required = 1;
  2238. vmx->rmode.vm86_active = 1;
  2239. /*
  2240. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2241. * vcpu. Call it here with phys address pointing 16M below 4G.
  2242. */
  2243. if (!vcpu->kvm->arch.tss_addr) {
  2244. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2245. "called before entering vcpu\n");
  2246. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2247. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2248. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2249. }
  2250. vmx_segment_cache_clear(vmx);
  2251. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2252. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2253. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2254. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2255. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2256. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2257. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2258. flags = vmcs_readl(GUEST_RFLAGS);
  2259. vmx->rmode.save_rflags = flags;
  2260. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2261. vmcs_writel(GUEST_RFLAGS, flags);
  2262. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2263. update_exception_bitmap(vcpu);
  2264. if (emulate_invalid_guest_state)
  2265. goto continue_rmode;
  2266. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2267. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2268. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2269. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2270. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2271. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2272. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2273. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2274. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2275. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2276. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2277. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2278. continue_rmode:
  2279. kvm_mmu_reset_context(vcpu);
  2280. }
  2281. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2282. {
  2283. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2284. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2285. if (!msr)
  2286. return;
  2287. /*
  2288. * Force kernel_gs_base reloading before EFER changes, as control
  2289. * of this msr depends on is_long_mode().
  2290. */
  2291. vmx_load_host_state(to_vmx(vcpu));
  2292. vcpu->arch.efer = efer;
  2293. if (efer & EFER_LMA) {
  2294. vmcs_write32(VM_ENTRY_CONTROLS,
  2295. vmcs_read32(VM_ENTRY_CONTROLS) |
  2296. VM_ENTRY_IA32E_MODE);
  2297. msr->data = efer;
  2298. } else {
  2299. vmcs_write32(VM_ENTRY_CONTROLS,
  2300. vmcs_read32(VM_ENTRY_CONTROLS) &
  2301. ~VM_ENTRY_IA32E_MODE);
  2302. msr->data = efer & ~EFER_LME;
  2303. }
  2304. setup_msrs(vmx);
  2305. }
  2306. #ifdef CONFIG_X86_64
  2307. static void enter_lmode(struct kvm_vcpu *vcpu)
  2308. {
  2309. u32 guest_tr_ar;
  2310. vmx_segment_cache_clear(to_vmx(vcpu));
  2311. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2312. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2313. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  2314. __func__);
  2315. vmcs_write32(GUEST_TR_AR_BYTES,
  2316. (guest_tr_ar & ~AR_TYPE_MASK)
  2317. | AR_TYPE_BUSY_64_TSS);
  2318. }
  2319. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2320. }
  2321. static void exit_lmode(struct kvm_vcpu *vcpu)
  2322. {
  2323. vmcs_write32(VM_ENTRY_CONTROLS,
  2324. vmcs_read32(VM_ENTRY_CONTROLS)
  2325. & ~VM_ENTRY_IA32E_MODE);
  2326. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2327. }
  2328. #endif
  2329. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2330. {
  2331. vpid_sync_context(to_vmx(vcpu));
  2332. if (enable_ept) {
  2333. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2334. return;
  2335. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2336. }
  2337. }
  2338. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2339. {
  2340. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2341. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2342. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2343. }
  2344. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2345. {
  2346. if (enable_ept && is_paging(vcpu))
  2347. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2348. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2349. }
  2350. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2351. {
  2352. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2353. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2354. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2355. }
  2356. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2357. {
  2358. if (!test_bit(VCPU_EXREG_PDPTR,
  2359. (unsigned long *)&vcpu->arch.regs_dirty))
  2360. return;
  2361. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2362. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2363. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2364. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2365. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2366. }
  2367. }
  2368. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2369. {
  2370. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2371. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2372. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2373. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2374. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2375. }
  2376. __set_bit(VCPU_EXREG_PDPTR,
  2377. (unsigned long *)&vcpu->arch.regs_avail);
  2378. __set_bit(VCPU_EXREG_PDPTR,
  2379. (unsigned long *)&vcpu->arch.regs_dirty);
  2380. }
  2381. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2382. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2383. unsigned long cr0,
  2384. struct kvm_vcpu *vcpu)
  2385. {
  2386. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2387. vmx_decache_cr3(vcpu);
  2388. if (!(cr0 & X86_CR0_PG)) {
  2389. /* From paging/starting to nonpaging */
  2390. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2391. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2392. (CPU_BASED_CR3_LOAD_EXITING |
  2393. CPU_BASED_CR3_STORE_EXITING));
  2394. vcpu->arch.cr0 = cr0;
  2395. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2396. } else if (!is_paging(vcpu)) {
  2397. /* From nonpaging to paging */
  2398. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2399. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2400. ~(CPU_BASED_CR3_LOAD_EXITING |
  2401. CPU_BASED_CR3_STORE_EXITING));
  2402. vcpu->arch.cr0 = cr0;
  2403. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2404. }
  2405. if (!(cr0 & X86_CR0_WP))
  2406. *hw_cr0 &= ~X86_CR0_WP;
  2407. }
  2408. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2409. {
  2410. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2411. unsigned long hw_cr0;
  2412. if (enable_unrestricted_guest)
  2413. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2414. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2415. else
  2416. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2417. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2418. enter_pmode(vcpu);
  2419. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2420. enter_rmode(vcpu);
  2421. #ifdef CONFIG_X86_64
  2422. if (vcpu->arch.efer & EFER_LME) {
  2423. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2424. enter_lmode(vcpu);
  2425. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2426. exit_lmode(vcpu);
  2427. }
  2428. #endif
  2429. if (enable_ept)
  2430. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2431. if (!vcpu->fpu_active)
  2432. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2433. vmcs_writel(CR0_READ_SHADOW, cr0);
  2434. vmcs_writel(GUEST_CR0, hw_cr0);
  2435. vcpu->arch.cr0 = cr0;
  2436. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2437. }
  2438. static u64 construct_eptp(unsigned long root_hpa)
  2439. {
  2440. u64 eptp;
  2441. /* TODO write the value reading from MSR */
  2442. eptp = VMX_EPT_DEFAULT_MT |
  2443. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2444. eptp |= (root_hpa & PAGE_MASK);
  2445. return eptp;
  2446. }
  2447. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2448. {
  2449. unsigned long guest_cr3;
  2450. u64 eptp;
  2451. guest_cr3 = cr3;
  2452. if (enable_ept) {
  2453. eptp = construct_eptp(cr3);
  2454. vmcs_write64(EPT_POINTER, eptp);
  2455. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2456. vcpu->kvm->arch.ept_identity_map_addr;
  2457. ept_load_pdptrs(vcpu);
  2458. }
  2459. vmx_flush_tlb(vcpu);
  2460. vmcs_writel(GUEST_CR3, guest_cr3);
  2461. }
  2462. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2463. {
  2464. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2465. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2466. if (cr4 & X86_CR4_VMXE) {
  2467. /*
  2468. * To use VMXON (and later other VMX instructions), a guest
  2469. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2470. * So basically the check on whether to allow nested VMX
  2471. * is here.
  2472. */
  2473. if (!nested_vmx_allowed(vcpu))
  2474. return 1;
  2475. } else if (to_vmx(vcpu)->nested.vmxon)
  2476. return 1;
  2477. vcpu->arch.cr4 = cr4;
  2478. if (enable_ept) {
  2479. if (!is_paging(vcpu)) {
  2480. hw_cr4 &= ~X86_CR4_PAE;
  2481. hw_cr4 |= X86_CR4_PSE;
  2482. } else if (!(cr4 & X86_CR4_PAE)) {
  2483. hw_cr4 &= ~X86_CR4_PAE;
  2484. }
  2485. }
  2486. vmcs_writel(CR4_READ_SHADOW, cr4);
  2487. vmcs_writel(GUEST_CR4, hw_cr4);
  2488. return 0;
  2489. }
  2490. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2491. struct kvm_segment *var, int seg)
  2492. {
  2493. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2494. struct kvm_save_segment *save;
  2495. u32 ar;
  2496. if (vmx->rmode.vm86_active
  2497. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2498. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2499. || seg == VCPU_SREG_GS)
  2500. && !emulate_invalid_guest_state) {
  2501. switch (seg) {
  2502. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2503. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2504. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2505. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2506. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2507. default: BUG();
  2508. }
  2509. var->selector = save->selector;
  2510. var->base = save->base;
  2511. var->limit = save->limit;
  2512. ar = save->ar;
  2513. if (seg == VCPU_SREG_TR
  2514. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2515. goto use_saved_rmode_seg;
  2516. }
  2517. var->base = vmx_read_guest_seg_base(vmx, seg);
  2518. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2519. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2520. ar = vmx_read_guest_seg_ar(vmx, seg);
  2521. use_saved_rmode_seg:
  2522. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2523. ar = 0;
  2524. var->type = ar & 15;
  2525. var->s = (ar >> 4) & 1;
  2526. var->dpl = (ar >> 5) & 3;
  2527. var->present = (ar >> 7) & 1;
  2528. var->avl = (ar >> 12) & 1;
  2529. var->l = (ar >> 13) & 1;
  2530. var->db = (ar >> 14) & 1;
  2531. var->g = (ar >> 15) & 1;
  2532. var->unusable = (ar >> 16) & 1;
  2533. }
  2534. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2535. {
  2536. struct kvm_segment s;
  2537. if (to_vmx(vcpu)->rmode.vm86_active) {
  2538. vmx_get_segment(vcpu, &s, seg);
  2539. return s.base;
  2540. }
  2541. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2542. }
  2543. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2544. {
  2545. if (!is_protmode(vcpu))
  2546. return 0;
  2547. if (!is_long_mode(vcpu)
  2548. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2549. return 3;
  2550. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2551. }
  2552. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2553. {
  2554. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2555. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2556. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2557. }
  2558. return to_vmx(vcpu)->cpl;
  2559. }
  2560. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2561. {
  2562. u32 ar;
  2563. if (var->unusable)
  2564. ar = 1 << 16;
  2565. else {
  2566. ar = var->type & 15;
  2567. ar |= (var->s & 1) << 4;
  2568. ar |= (var->dpl & 3) << 5;
  2569. ar |= (var->present & 1) << 7;
  2570. ar |= (var->avl & 1) << 12;
  2571. ar |= (var->l & 1) << 13;
  2572. ar |= (var->db & 1) << 14;
  2573. ar |= (var->g & 1) << 15;
  2574. }
  2575. if (ar == 0) /* a 0 value means unusable */
  2576. ar = AR_UNUSABLE_MASK;
  2577. return ar;
  2578. }
  2579. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2580. struct kvm_segment *var, int seg)
  2581. {
  2582. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2583. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2584. u32 ar;
  2585. vmx_segment_cache_clear(vmx);
  2586. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2587. vmcs_write16(sf->selector, var->selector);
  2588. vmx->rmode.tr.selector = var->selector;
  2589. vmx->rmode.tr.base = var->base;
  2590. vmx->rmode.tr.limit = var->limit;
  2591. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2592. return;
  2593. }
  2594. vmcs_writel(sf->base, var->base);
  2595. vmcs_write32(sf->limit, var->limit);
  2596. vmcs_write16(sf->selector, var->selector);
  2597. if (vmx->rmode.vm86_active && var->s) {
  2598. /*
  2599. * Hack real-mode segments into vm86 compatibility.
  2600. */
  2601. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2602. vmcs_writel(sf->base, 0xf0000);
  2603. ar = 0xf3;
  2604. } else
  2605. ar = vmx_segment_access_rights(var);
  2606. /*
  2607. * Fix the "Accessed" bit in AR field of segment registers for older
  2608. * qemu binaries.
  2609. * IA32 arch specifies that at the time of processor reset the
  2610. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2611. * is setting it to 0 in the usedland code. This causes invalid guest
  2612. * state vmexit when "unrestricted guest" mode is turned on.
  2613. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2614. * tree. Newer qemu binaries with that qemu fix would not need this
  2615. * kvm hack.
  2616. */
  2617. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2618. ar |= 0x1; /* Accessed */
  2619. vmcs_write32(sf->ar_bytes, ar);
  2620. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2621. }
  2622. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2623. {
  2624. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2625. *db = (ar >> 14) & 1;
  2626. *l = (ar >> 13) & 1;
  2627. }
  2628. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2629. {
  2630. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2631. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2632. }
  2633. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2634. {
  2635. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2636. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2637. }
  2638. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2639. {
  2640. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2641. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2642. }
  2643. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2644. {
  2645. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2646. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2647. }
  2648. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2649. {
  2650. struct kvm_segment var;
  2651. u32 ar;
  2652. vmx_get_segment(vcpu, &var, seg);
  2653. ar = vmx_segment_access_rights(&var);
  2654. if (var.base != (var.selector << 4))
  2655. return false;
  2656. if (var.limit != 0xffff)
  2657. return false;
  2658. if (ar != 0xf3)
  2659. return false;
  2660. return true;
  2661. }
  2662. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2663. {
  2664. struct kvm_segment cs;
  2665. unsigned int cs_rpl;
  2666. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2667. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2668. if (cs.unusable)
  2669. return false;
  2670. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2671. return false;
  2672. if (!cs.s)
  2673. return false;
  2674. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2675. if (cs.dpl > cs_rpl)
  2676. return false;
  2677. } else {
  2678. if (cs.dpl != cs_rpl)
  2679. return false;
  2680. }
  2681. if (!cs.present)
  2682. return false;
  2683. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2684. return true;
  2685. }
  2686. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2687. {
  2688. struct kvm_segment ss;
  2689. unsigned int ss_rpl;
  2690. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2691. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2692. if (ss.unusable)
  2693. return true;
  2694. if (ss.type != 3 && ss.type != 7)
  2695. return false;
  2696. if (!ss.s)
  2697. return false;
  2698. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2699. return false;
  2700. if (!ss.present)
  2701. return false;
  2702. return true;
  2703. }
  2704. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2705. {
  2706. struct kvm_segment var;
  2707. unsigned int rpl;
  2708. vmx_get_segment(vcpu, &var, seg);
  2709. rpl = var.selector & SELECTOR_RPL_MASK;
  2710. if (var.unusable)
  2711. return true;
  2712. if (!var.s)
  2713. return false;
  2714. if (!var.present)
  2715. return false;
  2716. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2717. if (var.dpl < rpl) /* DPL < RPL */
  2718. return false;
  2719. }
  2720. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2721. * rights flags
  2722. */
  2723. return true;
  2724. }
  2725. static bool tr_valid(struct kvm_vcpu *vcpu)
  2726. {
  2727. struct kvm_segment tr;
  2728. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2729. if (tr.unusable)
  2730. return false;
  2731. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2732. return false;
  2733. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2734. return false;
  2735. if (!tr.present)
  2736. return false;
  2737. return true;
  2738. }
  2739. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2740. {
  2741. struct kvm_segment ldtr;
  2742. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2743. if (ldtr.unusable)
  2744. return true;
  2745. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2746. return false;
  2747. if (ldtr.type != 2)
  2748. return false;
  2749. if (!ldtr.present)
  2750. return false;
  2751. return true;
  2752. }
  2753. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2754. {
  2755. struct kvm_segment cs, ss;
  2756. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2757. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2758. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2759. (ss.selector & SELECTOR_RPL_MASK));
  2760. }
  2761. /*
  2762. * Check if guest state is valid. Returns true if valid, false if
  2763. * not.
  2764. * We assume that registers are always usable
  2765. */
  2766. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2767. {
  2768. /* real mode guest state checks */
  2769. if (!is_protmode(vcpu)) {
  2770. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2771. return false;
  2772. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2773. return false;
  2774. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2775. return false;
  2776. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2777. return false;
  2778. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2779. return false;
  2780. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2781. return false;
  2782. } else {
  2783. /* protected mode guest state checks */
  2784. if (!cs_ss_rpl_check(vcpu))
  2785. return false;
  2786. if (!code_segment_valid(vcpu))
  2787. return false;
  2788. if (!stack_segment_valid(vcpu))
  2789. return false;
  2790. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2791. return false;
  2792. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2793. return false;
  2794. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2795. return false;
  2796. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2797. return false;
  2798. if (!tr_valid(vcpu))
  2799. return false;
  2800. if (!ldtr_valid(vcpu))
  2801. return false;
  2802. }
  2803. /* TODO:
  2804. * - Add checks on RIP
  2805. * - Add checks on RFLAGS
  2806. */
  2807. return true;
  2808. }
  2809. static int init_rmode_tss(struct kvm *kvm)
  2810. {
  2811. gfn_t fn;
  2812. u16 data = 0;
  2813. int r, idx, ret = 0;
  2814. idx = srcu_read_lock(&kvm->srcu);
  2815. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2816. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2817. if (r < 0)
  2818. goto out;
  2819. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2820. r = kvm_write_guest_page(kvm, fn++, &data,
  2821. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2822. if (r < 0)
  2823. goto out;
  2824. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  2825. if (r < 0)
  2826. goto out;
  2827. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2828. if (r < 0)
  2829. goto out;
  2830. data = ~0;
  2831. r = kvm_write_guest_page(kvm, fn, &data,
  2832. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  2833. sizeof(u8));
  2834. if (r < 0)
  2835. goto out;
  2836. ret = 1;
  2837. out:
  2838. srcu_read_unlock(&kvm->srcu, idx);
  2839. return ret;
  2840. }
  2841. static int init_rmode_identity_map(struct kvm *kvm)
  2842. {
  2843. int i, idx, r, ret;
  2844. pfn_t identity_map_pfn;
  2845. u32 tmp;
  2846. if (!enable_ept)
  2847. return 1;
  2848. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  2849. printk(KERN_ERR "EPT: identity-mapping pagetable "
  2850. "haven't been allocated!\n");
  2851. return 0;
  2852. }
  2853. if (likely(kvm->arch.ept_identity_pagetable_done))
  2854. return 1;
  2855. ret = 0;
  2856. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  2857. idx = srcu_read_lock(&kvm->srcu);
  2858. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  2859. if (r < 0)
  2860. goto out;
  2861. /* Set up identity-mapping pagetable for EPT in real mode */
  2862. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  2863. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  2864. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  2865. r = kvm_write_guest_page(kvm, identity_map_pfn,
  2866. &tmp, i * sizeof(tmp), sizeof(tmp));
  2867. if (r < 0)
  2868. goto out;
  2869. }
  2870. kvm->arch.ept_identity_pagetable_done = true;
  2871. ret = 1;
  2872. out:
  2873. srcu_read_unlock(&kvm->srcu, idx);
  2874. return ret;
  2875. }
  2876. static void seg_setup(int seg)
  2877. {
  2878. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2879. unsigned int ar;
  2880. vmcs_write16(sf->selector, 0);
  2881. vmcs_writel(sf->base, 0);
  2882. vmcs_write32(sf->limit, 0xffff);
  2883. if (enable_unrestricted_guest) {
  2884. ar = 0x93;
  2885. if (seg == VCPU_SREG_CS)
  2886. ar |= 0x08; /* code segment */
  2887. } else
  2888. ar = 0xf3;
  2889. vmcs_write32(sf->ar_bytes, ar);
  2890. }
  2891. static int alloc_apic_access_page(struct kvm *kvm)
  2892. {
  2893. struct kvm_userspace_memory_region kvm_userspace_mem;
  2894. int r = 0;
  2895. mutex_lock(&kvm->slots_lock);
  2896. if (kvm->arch.apic_access_page)
  2897. goto out;
  2898. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  2899. kvm_userspace_mem.flags = 0;
  2900. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  2901. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2902. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2903. if (r)
  2904. goto out;
  2905. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  2906. out:
  2907. mutex_unlock(&kvm->slots_lock);
  2908. return r;
  2909. }
  2910. static int alloc_identity_pagetable(struct kvm *kvm)
  2911. {
  2912. struct kvm_userspace_memory_region kvm_userspace_mem;
  2913. int r = 0;
  2914. mutex_lock(&kvm->slots_lock);
  2915. if (kvm->arch.ept_identity_pagetable)
  2916. goto out;
  2917. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  2918. kvm_userspace_mem.flags = 0;
  2919. kvm_userspace_mem.guest_phys_addr =
  2920. kvm->arch.ept_identity_map_addr;
  2921. kvm_userspace_mem.memory_size = PAGE_SIZE;
  2922. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2923. if (r)
  2924. goto out;
  2925. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  2926. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  2927. out:
  2928. mutex_unlock(&kvm->slots_lock);
  2929. return r;
  2930. }
  2931. static void allocate_vpid(struct vcpu_vmx *vmx)
  2932. {
  2933. int vpid;
  2934. vmx->vpid = 0;
  2935. if (!enable_vpid)
  2936. return;
  2937. spin_lock(&vmx_vpid_lock);
  2938. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  2939. if (vpid < VMX_NR_VPIDS) {
  2940. vmx->vpid = vpid;
  2941. __set_bit(vpid, vmx_vpid_bitmap);
  2942. }
  2943. spin_unlock(&vmx_vpid_lock);
  2944. }
  2945. static void free_vpid(struct vcpu_vmx *vmx)
  2946. {
  2947. if (!enable_vpid)
  2948. return;
  2949. spin_lock(&vmx_vpid_lock);
  2950. if (vmx->vpid != 0)
  2951. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2952. spin_unlock(&vmx_vpid_lock);
  2953. }
  2954. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  2955. {
  2956. int f = sizeof(unsigned long);
  2957. if (!cpu_has_vmx_msr_bitmap())
  2958. return;
  2959. /*
  2960. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  2961. * have the write-low and read-high bitmap offsets the wrong way round.
  2962. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  2963. */
  2964. if (msr <= 0x1fff) {
  2965. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  2966. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  2967. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  2968. msr &= 0x1fff;
  2969. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  2970. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  2971. }
  2972. }
  2973. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  2974. {
  2975. if (!longmode_only)
  2976. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  2977. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  2978. }
  2979. /*
  2980. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  2981. * will not change in the lifetime of the guest.
  2982. * Note that host-state that does change is set elsewhere. E.g., host-state
  2983. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  2984. */
  2985. static void vmx_set_constant_host_state(void)
  2986. {
  2987. u32 low32, high32;
  2988. unsigned long tmpl;
  2989. struct desc_ptr dt;
  2990. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  2991. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  2992. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  2993. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  2994. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2995. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2996. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  2997. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  2998. native_store_idt(&dt);
  2999. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3000. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3001. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3002. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3003. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3004. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3005. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3006. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3007. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3008. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3009. }
  3010. }
  3011. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3012. {
  3013. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3014. if (enable_ept)
  3015. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3016. if (is_guest_mode(&vmx->vcpu))
  3017. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3018. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3019. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3020. }
  3021. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3022. {
  3023. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3024. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3025. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3026. #ifdef CONFIG_X86_64
  3027. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3028. CPU_BASED_CR8_LOAD_EXITING;
  3029. #endif
  3030. }
  3031. if (!enable_ept)
  3032. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3033. CPU_BASED_CR3_LOAD_EXITING |
  3034. CPU_BASED_INVLPG_EXITING;
  3035. return exec_control;
  3036. }
  3037. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3038. {
  3039. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3040. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3041. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3042. if (vmx->vpid == 0)
  3043. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3044. if (!enable_ept) {
  3045. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3046. enable_unrestricted_guest = 0;
  3047. }
  3048. if (!enable_unrestricted_guest)
  3049. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3050. if (!ple_gap)
  3051. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3052. return exec_control;
  3053. }
  3054. /*
  3055. * Sets up the vmcs for emulated real mode.
  3056. */
  3057. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3058. {
  3059. unsigned long a;
  3060. int i;
  3061. /* I/O */
  3062. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3063. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3064. if (cpu_has_vmx_msr_bitmap())
  3065. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3066. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3067. /* Control */
  3068. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3069. vmcs_config.pin_based_exec_ctrl);
  3070. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3071. if (cpu_has_secondary_exec_ctrls()) {
  3072. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3073. vmx_secondary_exec_control(vmx));
  3074. }
  3075. if (ple_gap) {
  3076. vmcs_write32(PLE_GAP, ple_gap);
  3077. vmcs_write32(PLE_WINDOW, ple_window);
  3078. }
  3079. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  3080. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  3081. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3082. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3083. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3084. vmx_set_constant_host_state();
  3085. #ifdef CONFIG_X86_64
  3086. rdmsrl(MSR_FS_BASE, a);
  3087. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3088. rdmsrl(MSR_GS_BASE, a);
  3089. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3090. #else
  3091. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3092. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3093. #endif
  3094. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3095. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3096. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3097. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3098. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3099. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3100. u32 msr_low, msr_high;
  3101. u64 host_pat;
  3102. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3103. host_pat = msr_low | ((u64) msr_high << 32);
  3104. /* Write the default value follow host pat */
  3105. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3106. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3107. vmx->vcpu.arch.pat = host_pat;
  3108. }
  3109. for (i = 0; i < NR_VMX_MSR; ++i) {
  3110. u32 index = vmx_msr_index[i];
  3111. u32 data_low, data_high;
  3112. int j = vmx->nmsrs;
  3113. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3114. continue;
  3115. if (wrmsr_safe(index, data_low, data_high) < 0)
  3116. continue;
  3117. vmx->guest_msrs[j].index = i;
  3118. vmx->guest_msrs[j].data = 0;
  3119. vmx->guest_msrs[j].mask = -1ull;
  3120. ++vmx->nmsrs;
  3121. }
  3122. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3123. /* 22.2.1, 20.8.1 */
  3124. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3125. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3126. set_cr4_guest_host_mask(vmx);
  3127. kvm_write_tsc(&vmx->vcpu, 0);
  3128. return 0;
  3129. }
  3130. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3131. {
  3132. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3133. u64 msr;
  3134. int ret;
  3135. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3136. vmx->rmode.vm86_active = 0;
  3137. vmx->soft_vnmi_blocked = 0;
  3138. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3139. kvm_set_cr8(&vmx->vcpu, 0);
  3140. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3141. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3142. msr |= MSR_IA32_APICBASE_BSP;
  3143. kvm_set_apic_base(&vmx->vcpu, msr);
  3144. ret = fx_init(&vmx->vcpu);
  3145. if (ret != 0)
  3146. goto out;
  3147. vmx_segment_cache_clear(vmx);
  3148. seg_setup(VCPU_SREG_CS);
  3149. /*
  3150. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3151. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3152. */
  3153. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3154. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3155. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3156. } else {
  3157. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3158. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3159. }
  3160. seg_setup(VCPU_SREG_DS);
  3161. seg_setup(VCPU_SREG_ES);
  3162. seg_setup(VCPU_SREG_FS);
  3163. seg_setup(VCPU_SREG_GS);
  3164. seg_setup(VCPU_SREG_SS);
  3165. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3166. vmcs_writel(GUEST_TR_BASE, 0);
  3167. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3168. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3169. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3170. vmcs_writel(GUEST_LDTR_BASE, 0);
  3171. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3172. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3173. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3174. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3175. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3176. vmcs_writel(GUEST_RFLAGS, 0x02);
  3177. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3178. kvm_rip_write(vcpu, 0xfff0);
  3179. else
  3180. kvm_rip_write(vcpu, 0);
  3181. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3182. vmcs_writel(GUEST_DR7, 0x400);
  3183. vmcs_writel(GUEST_GDTR_BASE, 0);
  3184. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3185. vmcs_writel(GUEST_IDTR_BASE, 0);
  3186. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3187. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3188. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3189. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3190. /* Special registers */
  3191. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3192. setup_msrs(vmx);
  3193. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3194. if (cpu_has_vmx_tpr_shadow()) {
  3195. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3196. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3197. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3198. __pa(vmx->vcpu.arch.apic->regs));
  3199. vmcs_write32(TPR_THRESHOLD, 0);
  3200. }
  3201. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3202. vmcs_write64(APIC_ACCESS_ADDR,
  3203. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3204. if (vmx->vpid != 0)
  3205. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3206. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3207. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3208. vmx_set_cr4(&vmx->vcpu, 0);
  3209. vmx_set_efer(&vmx->vcpu, 0);
  3210. vmx_fpu_activate(&vmx->vcpu);
  3211. update_exception_bitmap(&vmx->vcpu);
  3212. vpid_sync_context(vmx);
  3213. ret = 0;
  3214. /* HACK: Don't enable emulation on guest boot/reset */
  3215. vmx->emulation_required = 0;
  3216. out:
  3217. return ret;
  3218. }
  3219. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3220. {
  3221. u32 cpu_based_vm_exec_control;
  3222. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3223. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3224. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3225. }
  3226. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3227. {
  3228. u32 cpu_based_vm_exec_control;
  3229. if (!cpu_has_virtual_nmis()) {
  3230. enable_irq_window(vcpu);
  3231. return;
  3232. }
  3233. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3234. enable_irq_window(vcpu);
  3235. return;
  3236. }
  3237. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3238. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3239. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3240. }
  3241. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3242. {
  3243. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3244. uint32_t intr;
  3245. int irq = vcpu->arch.interrupt.nr;
  3246. trace_kvm_inj_virq(irq);
  3247. ++vcpu->stat.irq_injections;
  3248. if (vmx->rmode.vm86_active) {
  3249. int inc_eip = 0;
  3250. if (vcpu->arch.interrupt.soft)
  3251. inc_eip = vcpu->arch.event_exit_inst_len;
  3252. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3253. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3254. return;
  3255. }
  3256. intr = irq | INTR_INFO_VALID_MASK;
  3257. if (vcpu->arch.interrupt.soft) {
  3258. intr |= INTR_TYPE_SOFT_INTR;
  3259. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3260. vmx->vcpu.arch.event_exit_inst_len);
  3261. } else
  3262. intr |= INTR_TYPE_EXT_INTR;
  3263. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3264. vmx_clear_hlt(vcpu);
  3265. }
  3266. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3267. {
  3268. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3269. if (!cpu_has_virtual_nmis()) {
  3270. /*
  3271. * Tracking the NMI-blocked state in software is built upon
  3272. * finding the next open IRQ window. This, in turn, depends on
  3273. * well-behaving guests: They have to keep IRQs disabled at
  3274. * least as long as the NMI handler runs. Otherwise we may
  3275. * cause NMI nesting, maybe breaking the guest. But as this is
  3276. * highly unlikely, we can live with the residual risk.
  3277. */
  3278. vmx->soft_vnmi_blocked = 1;
  3279. vmx->vnmi_blocked_time = 0;
  3280. }
  3281. ++vcpu->stat.nmi_injections;
  3282. vmx->nmi_known_unmasked = false;
  3283. if (vmx->rmode.vm86_active) {
  3284. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3285. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3286. return;
  3287. }
  3288. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3289. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3290. vmx_clear_hlt(vcpu);
  3291. }
  3292. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3293. {
  3294. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3295. return 0;
  3296. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3297. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3298. | GUEST_INTR_STATE_NMI));
  3299. }
  3300. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3301. {
  3302. if (!cpu_has_virtual_nmis())
  3303. return to_vmx(vcpu)->soft_vnmi_blocked;
  3304. if (to_vmx(vcpu)->nmi_known_unmasked)
  3305. return false;
  3306. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3307. }
  3308. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3309. {
  3310. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3311. if (!cpu_has_virtual_nmis()) {
  3312. if (vmx->soft_vnmi_blocked != masked) {
  3313. vmx->soft_vnmi_blocked = masked;
  3314. vmx->vnmi_blocked_time = 0;
  3315. }
  3316. } else {
  3317. vmx->nmi_known_unmasked = !masked;
  3318. if (masked)
  3319. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3320. GUEST_INTR_STATE_NMI);
  3321. else
  3322. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3323. GUEST_INTR_STATE_NMI);
  3324. }
  3325. }
  3326. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3327. {
  3328. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3329. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3330. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3331. }
  3332. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3333. {
  3334. int ret;
  3335. struct kvm_userspace_memory_region tss_mem = {
  3336. .slot = TSS_PRIVATE_MEMSLOT,
  3337. .guest_phys_addr = addr,
  3338. .memory_size = PAGE_SIZE * 3,
  3339. .flags = 0,
  3340. };
  3341. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3342. if (ret)
  3343. return ret;
  3344. kvm->arch.tss_addr = addr;
  3345. if (!init_rmode_tss(kvm))
  3346. return -ENOMEM;
  3347. return 0;
  3348. }
  3349. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3350. int vec, u32 err_code)
  3351. {
  3352. /*
  3353. * Instruction with address size override prefix opcode 0x67
  3354. * Cause the #SS fault with 0 error code in VM86 mode.
  3355. */
  3356. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3357. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3358. return 1;
  3359. /*
  3360. * Forward all other exceptions that are valid in real mode.
  3361. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3362. * the required debugging infrastructure rework.
  3363. */
  3364. switch (vec) {
  3365. case DB_VECTOR:
  3366. if (vcpu->guest_debug &
  3367. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3368. return 0;
  3369. kvm_queue_exception(vcpu, vec);
  3370. return 1;
  3371. case BP_VECTOR:
  3372. /*
  3373. * Update instruction length as we may reinject the exception
  3374. * from user space while in guest debugging mode.
  3375. */
  3376. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3377. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3378. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3379. return 0;
  3380. /* fall through */
  3381. case DE_VECTOR:
  3382. case OF_VECTOR:
  3383. case BR_VECTOR:
  3384. case UD_VECTOR:
  3385. case DF_VECTOR:
  3386. case SS_VECTOR:
  3387. case GP_VECTOR:
  3388. case MF_VECTOR:
  3389. kvm_queue_exception(vcpu, vec);
  3390. return 1;
  3391. }
  3392. return 0;
  3393. }
  3394. /*
  3395. * Trigger machine check on the host. We assume all the MSRs are already set up
  3396. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3397. * We pass a fake environment to the machine check handler because we want
  3398. * the guest to be always treated like user space, no matter what context
  3399. * it used internally.
  3400. */
  3401. static void kvm_machine_check(void)
  3402. {
  3403. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3404. struct pt_regs regs = {
  3405. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3406. .flags = X86_EFLAGS_IF,
  3407. };
  3408. do_machine_check(&regs, 0);
  3409. #endif
  3410. }
  3411. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3412. {
  3413. /* already handled by vcpu_run */
  3414. return 1;
  3415. }
  3416. static int handle_exception(struct kvm_vcpu *vcpu)
  3417. {
  3418. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3419. struct kvm_run *kvm_run = vcpu->run;
  3420. u32 intr_info, ex_no, error_code;
  3421. unsigned long cr2, rip, dr6;
  3422. u32 vect_info;
  3423. enum emulation_result er;
  3424. vect_info = vmx->idt_vectoring_info;
  3425. intr_info = vmx->exit_intr_info;
  3426. if (is_machine_check(intr_info))
  3427. return handle_machine_check(vcpu);
  3428. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3429. !is_page_fault(intr_info)) {
  3430. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3431. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3432. vcpu->run->internal.ndata = 2;
  3433. vcpu->run->internal.data[0] = vect_info;
  3434. vcpu->run->internal.data[1] = intr_info;
  3435. return 0;
  3436. }
  3437. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3438. return 1; /* already handled by vmx_vcpu_run() */
  3439. if (is_no_device(intr_info)) {
  3440. vmx_fpu_activate(vcpu);
  3441. return 1;
  3442. }
  3443. if (is_invalid_opcode(intr_info)) {
  3444. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3445. if (er != EMULATE_DONE)
  3446. kvm_queue_exception(vcpu, UD_VECTOR);
  3447. return 1;
  3448. }
  3449. error_code = 0;
  3450. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3451. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3452. if (is_page_fault(intr_info)) {
  3453. /* EPT won't cause page fault directly */
  3454. if (enable_ept)
  3455. BUG();
  3456. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3457. trace_kvm_page_fault(cr2, error_code);
  3458. if (kvm_event_needs_reinjection(vcpu))
  3459. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3460. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3461. }
  3462. if (vmx->rmode.vm86_active &&
  3463. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3464. error_code)) {
  3465. if (vcpu->arch.halt_request) {
  3466. vcpu->arch.halt_request = 0;
  3467. return kvm_emulate_halt(vcpu);
  3468. }
  3469. return 1;
  3470. }
  3471. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3472. switch (ex_no) {
  3473. case DB_VECTOR:
  3474. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3475. if (!(vcpu->guest_debug &
  3476. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3477. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3478. kvm_queue_exception(vcpu, DB_VECTOR);
  3479. return 1;
  3480. }
  3481. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3482. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3483. /* fall through */
  3484. case BP_VECTOR:
  3485. /*
  3486. * Update instruction length as we may reinject #BP from
  3487. * user space while in guest debugging mode. Reading it for
  3488. * #DB as well causes no harm, it is not used in that case.
  3489. */
  3490. vmx->vcpu.arch.event_exit_inst_len =
  3491. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3492. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3493. rip = kvm_rip_read(vcpu);
  3494. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3495. kvm_run->debug.arch.exception = ex_no;
  3496. break;
  3497. default:
  3498. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3499. kvm_run->ex.exception = ex_no;
  3500. kvm_run->ex.error_code = error_code;
  3501. break;
  3502. }
  3503. return 0;
  3504. }
  3505. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3506. {
  3507. ++vcpu->stat.irq_exits;
  3508. return 1;
  3509. }
  3510. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3511. {
  3512. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3513. return 0;
  3514. }
  3515. static int handle_io(struct kvm_vcpu *vcpu)
  3516. {
  3517. unsigned long exit_qualification;
  3518. int size, in, string;
  3519. unsigned port;
  3520. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3521. string = (exit_qualification & 16) != 0;
  3522. in = (exit_qualification & 8) != 0;
  3523. ++vcpu->stat.io_exits;
  3524. if (string || in)
  3525. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3526. port = exit_qualification >> 16;
  3527. size = (exit_qualification & 7) + 1;
  3528. skip_emulated_instruction(vcpu);
  3529. return kvm_fast_pio_out(vcpu, size, port);
  3530. }
  3531. static void
  3532. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3533. {
  3534. /*
  3535. * Patch in the VMCALL instruction:
  3536. */
  3537. hypercall[0] = 0x0f;
  3538. hypercall[1] = 0x01;
  3539. hypercall[2] = 0xc1;
  3540. }
  3541. static int handle_cr(struct kvm_vcpu *vcpu)
  3542. {
  3543. unsigned long exit_qualification, val;
  3544. int cr;
  3545. int reg;
  3546. int err;
  3547. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3548. cr = exit_qualification & 15;
  3549. reg = (exit_qualification >> 8) & 15;
  3550. switch ((exit_qualification >> 4) & 3) {
  3551. case 0: /* mov to cr */
  3552. val = kvm_register_read(vcpu, reg);
  3553. trace_kvm_cr_write(cr, val);
  3554. switch (cr) {
  3555. case 0:
  3556. err = kvm_set_cr0(vcpu, val);
  3557. kvm_complete_insn_gp(vcpu, err);
  3558. return 1;
  3559. case 3:
  3560. err = kvm_set_cr3(vcpu, val);
  3561. kvm_complete_insn_gp(vcpu, err);
  3562. return 1;
  3563. case 4:
  3564. err = kvm_set_cr4(vcpu, val);
  3565. kvm_complete_insn_gp(vcpu, err);
  3566. return 1;
  3567. case 8: {
  3568. u8 cr8_prev = kvm_get_cr8(vcpu);
  3569. u8 cr8 = kvm_register_read(vcpu, reg);
  3570. err = kvm_set_cr8(vcpu, cr8);
  3571. kvm_complete_insn_gp(vcpu, err);
  3572. if (irqchip_in_kernel(vcpu->kvm))
  3573. return 1;
  3574. if (cr8_prev <= cr8)
  3575. return 1;
  3576. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3577. return 0;
  3578. }
  3579. };
  3580. break;
  3581. case 2: /* clts */
  3582. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3583. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3584. skip_emulated_instruction(vcpu);
  3585. vmx_fpu_activate(vcpu);
  3586. return 1;
  3587. case 1: /*mov from cr*/
  3588. switch (cr) {
  3589. case 3:
  3590. val = kvm_read_cr3(vcpu);
  3591. kvm_register_write(vcpu, reg, val);
  3592. trace_kvm_cr_read(cr, val);
  3593. skip_emulated_instruction(vcpu);
  3594. return 1;
  3595. case 8:
  3596. val = kvm_get_cr8(vcpu);
  3597. kvm_register_write(vcpu, reg, val);
  3598. trace_kvm_cr_read(cr, val);
  3599. skip_emulated_instruction(vcpu);
  3600. return 1;
  3601. }
  3602. break;
  3603. case 3: /* lmsw */
  3604. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3605. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3606. kvm_lmsw(vcpu, val);
  3607. skip_emulated_instruction(vcpu);
  3608. return 1;
  3609. default:
  3610. break;
  3611. }
  3612. vcpu->run->exit_reason = 0;
  3613. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3614. (int)(exit_qualification >> 4) & 3, cr);
  3615. return 0;
  3616. }
  3617. static int handle_dr(struct kvm_vcpu *vcpu)
  3618. {
  3619. unsigned long exit_qualification;
  3620. int dr, reg;
  3621. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3622. if (!kvm_require_cpl(vcpu, 0))
  3623. return 1;
  3624. dr = vmcs_readl(GUEST_DR7);
  3625. if (dr & DR7_GD) {
  3626. /*
  3627. * As the vm-exit takes precedence over the debug trap, we
  3628. * need to emulate the latter, either for the host or the
  3629. * guest debugging itself.
  3630. */
  3631. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3632. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3633. vcpu->run->debug.arch.dr7 = dr;
  3634. vcpu->run->debug.arch.pc =
  3635. vmcs_readl(GUEST_CS_BASE) +
  3636. vmcs_readl(GUEST_RIP);
  3637. vcpu->run->debug.arch.exception = DB_VECTOR;
  3638. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3639. return 0;
  3640. } else {
  3641. vcpu->arch.dr7 &= ~DR7_GD;
  3642. vcpu->arch.dr6 |= DR6_BD;
  3643. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3644. kvm_queue_exception(vcpu, DB_VECTOR);
  3645. return 1;
  3646. }
  3647. }
  3648. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3649. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3650. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3651. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3652. unsigned long val;
  3653. if (!kvm_get_dr(vcpu, dr, &val))
  3654. kvm_register_write(vcpu, reg, val);
  3655. } else
  3656. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3657. skip_emulated_instruction(vcpu);
  3658. return 1;
  3659. }
  3660. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3661. {
  3662. vmcs_writel(GUEST_DR7, val);
  3663. }
  3664. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3665. {
  3666. kvm_emulate_cpuid(vcpu);
  3667. return 1;
  3668. }
  3669. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3670. {
  3671. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3672. u64 data;
  3673. if (vmx_get_msr(vcpu, ecx, &data)) {
  3674. trace_kvm_msr_read_ex(ecx);
  3675. kvm_inject_gp(vcpu, 0);
  3676. return 1;
  3677. }
  3678. trace_kvm_msr_read(ecx, data);
  3679. /* FIXME: handling of bits 32:63 of rax, rdx */
  3680. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3681. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3682. skip_emulated_instruction(vcpu);
  3683. return 1;
  3684. }
  3685. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3686. {
  3687. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3688. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3689. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3690. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3691. trace_kvm_msr_write_ex(ecx, data);
  3692. kvm_inject_gp(vcpu, 0);
  3693. return 1;
  3694. }
  3695. trace_kvm_msr_write(ecx, data);
  3696. skip_emulated_instruction(vcpu);
  3697. return 1;
  3698. }
  3699. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3700. {
  3701. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3702. return 1;
  3703. }
  3704. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3705. {
  3706. u32 cpu_based_vm_exec_control;
  3707. /* clear pending irq */
  3708. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3709. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3710. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3711. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3712. ++vcpu->stat.irq_window_exits;
  3713. /*
  3714. * If the user space waits to inject interrupts, exit as soon as
  3715. * possible
  3716. */
  3717. if (!irqchip_in_kernel(vcpu->kvm) &&
  3718. vcpu->run->request_interrupt_window &&
  3719. !kvm_cpu_has_interrupt(vcpu)) {
  3720. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3721. return 0;
  3722. }
  3723. return 1;
  3724. }
  3725. static int handle_halt(struct kvm_vcpu *vcpu)
  3726. {
  3727. skip_emulated_instruction(vcpu);
  3728. return kvm_emulate_halt(vcpu);
  3729. }
  3730. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3731. {
  3732. skip_emulated_instruction(vcpu);
  3733. kvm_emulate_hypercall(vcpu);
  3734. return 1;
  3735. }
  3736. static int handle_invd(struct kvm_vcpu *vcpu)
  3737. {
  3738. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3739. }
  3740. static int handle_invlpg(struct kvm_vcpu *vcpu)
  3741. {
  3742. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3743. kvm_mmu_invlpg(vcpu, exit_qualification);
  3744. skip_emulated_instruction(vcpu);
  3745. return 1;
  3746. }
  3747. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  3748. {
  3749. skip_emulated_instruction(vcpu);
  3750. kvm_emulate_wbinvd(vcpu);
  3751. return 1;
  3752. }
  3753. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  3754. {
  3755. u64 new_bv = kvm_read_edx_eax(vcpu);
  3756. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3757. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  3758. skip_emulated_instruction(vcpu);
  3759. return 1;
  3760. }
  3761. static int handle_apic_access(struct kvm_vcpu *vcpu)
  3762. {
  3763. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3764. }
  3765. static int handle_task_switch(struct kvm_vcpu *vcpu)
  3766. {
  3767. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3768. unsigned long exit_qualification;
  3769. bool has_error_code = false;
  3770. u32 error_code = 0;
  3771. u16 tss_selector;
  3772. int reason, type, idt_v;
  3773. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  3774. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  3775. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3776. reason = (u32)exit_qualification >> 30;
  3777. if (reason == TASK_SWITCH_GATE && idt_v) {
  3778. switch (type) {
  3779. case INTR_TYPE_NMI_INTR:
  3780. vcpu->arch.nmi_injected = false;
  3781. vmx_set_nmi_mask(vcpu, true);
  3782. break;
  3783. case INTR_TYPE_EXT_INTR:
  3784. case INTR_TYPE_SOFT_INTR:
  3785. kvm_clear_interrupt_queue(vcpu);
  3786. break;
  3787. case INTR_TYPE_HARD_EXCEPTION:
  3788. if (vmx->idt_vectoring_info &
  3789. VECTORING_INFO_DELIVER_CODE_MASK) {
  3790. has_error_code = true;
  3791. error_code =
  3792. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3793. }
  3794. /* fall through */
  3795. case INTR_TYPE_SOFT_EXCEPTION:
  3796. kvm_clear_exception_queue(vcpu);
  3797. break;
  3798. default:
  3799. break;
  3800. }
  3801. }
  3802. tss_selector = exit_qualification;
  3803. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  3804. type != INTR_TYPE_EXT_INTR &&
  3805. type != INTR_TYPE_NMI_INTR))
  3806. skip_emulated_instruction(vcpu);
  3807. if (kvm_task_switch(vcpu, tss_selector, reason,
  3808. has_error_code, error_code) == EMULATE_FAIL) {
  3809. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3810. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3811. vcpu->run->internal.ndata = 0;
  3812. return 0;
  3813. }
  3814. /* clear all local breakpoint enable flags */
  3815. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  3816. /*
  3817. * TODO: What about debug traps on tss switch?
  3818. * Are we supposed to inject them and update dr6?
  3819. */
  3820. return 1;
  3821. }
  3822. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  3823. {
  3824. unsigned long exit_qualification;
  3825. gpa_t gpa;
  3826. int gla_validity;
  3827. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3828. if (exit_qualification & (1 << 6)) {
  3829. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  3830. return -EINVAL;
  3831. }
  3832. gla_validity = (exit_qualification >> 7) & 0x3;
  3833. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  3834. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  3835. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  3836. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  3837. vmcs_readl(GUEST_LINEAR_ADDRESS));
  3838. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  3839. (long unsigned int)exit_qualification);
  3840. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3841. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  3842. return 0;
  3843. }
  3844. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3845. trace_kvm_page_fault(gpa, exit_qualification);
  3846. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  3847. }
  3848. static u64 ept_rsvd_mask(u64 spte, int level)
  3849. {
  3850. int i;
  3851. u64 mask = 0;
  3852. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  3853. mask |= (1ULL << i);
  3854. if (level > 2)
  3855. /* bits 7:3 reserved */
  3856. mask |= 0xf8;
  3857. else if (level == 2) {
  3858. if (spte & (1ULL << 7))
  3859. /* 2MB ref, bits 20:12 reserved */
  3860. mask |= 0x1ff000;
  3861. else
  3862. /* bits 6:3 reserved */
  3863. mask |= 0x78;
  3864. }
  3865. return mask;
  3866. }
  3867. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  3868. int level)
  3869. {
  3870. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  3871. /* 010b (write-only) */
  3872. WARN_ON((spte & 0x7) == 0x2);
  3873. /* 110b (write/execute) */
  3874. WARN_ON((spte & 0x7) == 0x6);
  3875. /* 100b (execute-only) and value not supported by logical processor */
  3876. if (!cpu_has_vmx_ept_execute_only())
  3877. WARN_ON((spte & 0x7) == 0x4);
  3878. /* not 000b */
  3879. if ((spte & 0x7)) {
  3880. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  3881. if (rsvd_bits != 0) {
  3882. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  3883. __func__, rsvd_bits);
  3884. WARN_ON(1);
  3885. }
  3886. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  3887. u64 ept_mem_type = (spte & 0x38) >> 3;
  3888. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  3889. ept_mem_type == 7) {
  3890. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  3891. __func__, ept_mem_type);
  3892. WARN_ON(1);
  3893. }
  3894. }
  3895. }
  3896. }
  3897. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  3898. {
  3899. u64 sptes[4];
  3900. int nr_sptes, i;
  3901. gpa_t gpa;
  3902. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  3903. printk(KERN_ERR "EPT: Misconfiguration.\n");
  3904. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  3905. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  3906. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  3907. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  3908. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  3909. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  3910. return 0;
  3911. }
  3912. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  3913. {
  3914. u32 cpu_based_vm_exec_control;
  3915. /* clear pending NMI */
  3916. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3917. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  3918. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3919. ++vcpu->stat.nmi_window_exits;
  3920. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3921. return 1;
  3922. }
  3923. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  3924. {
  3925. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3926. enum emulation_result err = EMULATE_DONE;
  3927. int ret = 1;
  3928. u32 cpu_exec_ctrl;
  3929. bool intr_window_requested;
  3930. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3931. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  3932. while (!guest_state_valid(vcpu)) {
  3933. if (intr_window_requested
  3934. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  3935. return handle_interrupt_window(&vmx->vcpu);
  3936. err = emulate_instruction(vcpu, 0);
  3937. if (err == EMULATE_DO_MMIO) {
  3938. ret = 0;
  3939. goto out;
  3940. }
  3941. if (err != EMULATE_DONE)
  3942. return 0;
  3943. if (signal_pending(current))
  3944. goto out;
  3945. if (need_resched())
  3946. schedule();
  3947. }
  3948. vmx->emulation_required = 0;
  3949. out:
  3950. return ret;
  3951. }
  3952. /*
  3953. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  3954. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  3955. */
  3956. static int handle_pause(struct kvm_vcpu *vcpu)
  3957. {
  3958. skip_emulated_instruction(vcpu);
  3959. kvm_vcpu_on_spin(vcpu);
  3960. return 1;
  3961. }
  3962. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  3963. {
  3964. kvm_queue_exception(vcpu, UD_VECTOR);
  3965. return 1;
  3966. }
  3967. /*
  3968. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  3969. * We could reuse a single VMCS for all the L2 guests, but we also want the
  3970. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  3971. * allows keeping them loaded on the processor, and in the future will allow
  3972. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  3973. * every entry if they never change.
  3974. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  3975. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  3976. *
  3977. * The following functions allocate and free a vmcs02 in this pool.
  3978. */
  3979. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  3980. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  3981. {
  3982. struct vmcs02_list *item;
  3983. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  3984. if (item->vmptr == vmx->nested.current_vmptr) {
  3985. list_move(&item->list, &vmx->nested.vmcs02_pool);
  3986. return &item->vmcs02;
  3987. }
  3988. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  3989. /* Recycle the least recently used VMCS. */
  3990. item = list_entry(vmx->nested.vmcs02_pool.prev,
  3991. struct vmcs02_list, list);
  3992. item->vmptr = vmx->nested.current_vmptr;
  3993. list_move(&item->list, &vmx->nested.vmcs02_pool);
  3994. return &item->vmcs02;
  3995. }
  3996. /* Create a new VMCS */
  3997. item = (struct vmcs02_list *)
  3998. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  3999. if (!item)
  4000. return NULL;
  4001. item->vmcs02.vmcs = alloc_vmcs();
  4002. if (!item->vmcs02.vmcs) {
  4003. kfree(item);
  4004. return NULL;
  4005. }
  4006. loaded_vmcs_init(&item->vmcs02);
  4007. item->vmptr = vmx->nested.current_vmptr;
  4008. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4009. vmx->nested.vmcs02_num++;
  4010. return &item->vmcs02;
  4011. }
  4012. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4013. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4014. {
  4015. struct vmcs02_list *item;
  4016. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4017. if (item->vmptr == vmptr) {
  4018. free_loaded_vmcs(&item->vmcs02);
  4019. list_del(&item->list);
  4020. kfree(item);
  4021. vmx->nested.vmcs02_num--;
  4022. return;
  4023. }
  4024. }
  4025. /*
  4026. * Free all VMCSs saved for this vcpu, except the one pointed by
  4027. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4028. * currently used, if running L2), and vmcs01 when running L2.
  4029. */
  4030. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4031. {
  4032. struct vmcs02_list *item, *n;
  4033. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4034. if (vmx->loaded_vmcs != &item->vmcs02)
  4035. free_loaded_vmcs(&item->vmcs02);
  4036. list_del(&item->list);
  4037. kfree(item);
  4038. }
  4039. vmx->nested.vmcs02_num = 0;
  4040. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4041. free_loaded_vmcs(&vmx->vmcs01);
  4042. }
  4043. /*
  4044. * Emulate the VMXON instruction.
  4045. * Currently, we just remember that VMX is active, and do not save or even
  4046. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4047. * do not currently need to store anything in that guest-allocated memory
  4048. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4049. * argument is different from the VMXON pointer (which the spec says they do).
  4050. */
  4051. static int handle_vmon(struct kvm_vcpu *vcpu)
  4052. {
  4053. struct kvm_segment cs;
  4054. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4055. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4056. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4057. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4058. * Otherwise, we should fail with #UD. We test these now:
  4059. */
  4060. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4061. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4062. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4063. kvm_queue_exception(vcpu, UD_VECTOR);
  4064. return 1;
  4065. }
  4066. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4067. if (is_long_mode(vcpu) && !cs.l) {
  4068. kvm_queue_exception(vcpu, UD_VECTOR);
  4069. return 1;
  4070. }
  4071. if (vmx_get_cpl(vcpu)) {
  4072. kvm_inject_gp(vcpu, 0);
  4073. return 1;
  4074. }
  4075. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4076. vmx->nested.vmcs02_num = 0;
  4077. vmx->nested.vmxon = true;
  4078. skip_emulated_instruction(vcpu);
  4079. return 1;
  4080. }
  4081. /*
  4082. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4083. * for running VMX instructions (except VMXON, whose prerequisites are
  4084. * slightly different). It also specifies what exception to inject otherwise.
  4085. */
  4086. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4087. {
  4088. struct kvm_segment cs;
  4089. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4090. if (!vmx->nested.vmxon) {
  4091. kvm_queue_exception(vcpu, UD_VECTOR);
  4092. return 0;
  4093. }
  4094. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4095. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4096. (is_long_mode(vcpu) && !cs.l)) {
  4097. kvm_queue_exception(vcpu, UD_VECTOR);
  4098. return 0;
  4099. }
  4100. if (vmx_get_cpl(vcpu)) {
  4101. kvm_inject_gp(vcpu, 0);
  4102. return 0;
  4103. }
  4104. return 1;
  4105. }
  4106. /*
  4107. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4108. * just stops using VMX.
  4109. */
  4110. static void free_nested(struct vcpu_vmx *vmx)
  4111. {
  4112. if (!vmx->nested.vmxon)
  4113. return;
  4114. vmx->nested.vmxon = false;
  4115. if (vmx->nested.current_vmptr != -1ull) {
  4116. kunmap(vmx->nested.current_vmcs12_page);
  4117. nested_release_page(vmx->nested.current_vmcs12_page);
  4118. vmx->nested.current_vmptr = -1ull;
  4119. vmx->nested.current_vmcs12 = NULL;
  4120. }
  4121. /* Unpin physical memory we referred to in current vmcs02 */
  4122. if (vmx->nested.apic_access_page) {
  4123. nested_release_page(vmx->nested.apic_access_page);
  4124. vmx->nested.apic_access_page = 0;
  4125. }
  4126. nested_free_all_saved_vmcss(vmx);
  4127. }
  4128. /* Emulate the VMXOFF instruction */
  4129. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4130. {
  4131. if (!nested_vmx_check_permission(vcpu))
  4132. return 1;
  4133. free_nested(to_vmx(vcpu));
  4134. skip_emulated_instruction(vcpu);
  4135. return 1;
  4136. }
  4137. /*
  4138. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4139. * exit caused by such an instruction (run by a guest hypervisor).
  4140. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4141. * #UD or #GP.
  4142. */
  4143. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4144. unsigned long exit_qualification,
  4145. u32 vmx_instruction_info, gva_t *ret)
  4146. {
  4147. /*
  4148. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4149. * Execution", on an exit, vmx_instruction_info holds most of the
  4150. * addressing components of the operand. Only the displacement part
  4151. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4152. * For how an actual address is calculated from all these components,
  4153. * refer to Vol. 1, "Operand Addressing".
  4154. */
  4155. int scaling = vmx_instruction_info & 3;
  4156. int addr_size = (vmx_instruction_info >> 7) & 7;
  4157. bool is_reg = vmx_instruction_info & (1u << 10);
  4158. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4159. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4160. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4161. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4162. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4163. if (is_reg) {
  4164. kvm_queue_exception(vcpu, UD_VECTOR);
  4165. return 1;
  4166. }
  4167. /* Addr = segment_base + offset */
  4168. /* offset = base + [index * scale] + displacement */
  4169. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4170. if (base_is_valid)
  4171. *ret += kvm_register_read(vcpu, base_reg);
  4172. if (index_is_valid)
  4173. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4174. *ret += exit_qualification; /* holds the displacement */
  4175. if (addr_size == 1) /* 32 bit */
  4176. *ret &= 0xffffffff;
  4177. /*
  4178. * TODO: throw #GP (and return 1) in various cases that the VM*
  4179. * instructions require it - e.g., offset beyond segment limit,
  4180. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4181. * address, and so on. Currently these are not checked.
  4182. */
  4183. return 0;
  4184. }
  4185. /*
  4186. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4187. * set the success or error code of an emulated VMX instruction, as specified
  4188. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4189. */
  4190. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4191. {
  4192. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4193. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4194. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4195. }
  4196. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4197. {
  4198. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4199. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4200. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4201. | X86_EFLAGS_CF);
  4202. }
  4203. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4204. u32 vm_instruction_error)
  4205. {
  4206. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4207. /*
  4208. * failValid writes the error number to the current VMCS, which
  4209. * can't be done there isn't a current VMCS.
  4210. */
  4211. nested_vmx_failInvalid(vcpu);
  4212. return;
  4213. }
  4214. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4215. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4216. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4217. | X86_EFLAGS_ZF);
  4218. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4219. }
  4220. /* Emulate the VMCLEAR instruction */
  4221. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4222. {
  4223. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4224. gva_t gva;
  4225. gpa_t vmptr;
  4226. struct vmcs12 *vmcs12;
  4227. struct page *page;
  4228. struct x86_exception e;
  4229. if (!nested_vmx_check_permission(vcpu))
  4230. return 1;
  4231. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4232. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4233. return 1;
  4234. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4235. sizeof(vmptr), &e)) {
  4236. kvm_inject_page_fault(vcpu, &e);
  4237. return 1;
  4238. }
  4239. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4240. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4241. skip_emulated_instruction(vcpu);
  4242. return 1;
  4243. }
  4244. if (vmptr == vmx->nested.current_vmptr) {
  4245. kunmap(vmx->nested.current_vmcs12_page);
  4246. nested_release_page(vmx->nested.current_vmcs12_page);
  4247. vmx->nested.current_vmptr = -1ull;
  4248. vmx->nested.current_vmcs12 = NULL;
  4249. }
  4250. page = nested_get_page(vcpu, vmptr);
  4251. if (page == NULL) {
  4252. /*
  4253. * For accurate processor emulation, VMCLEAR beyond available
  4254. * physical memory should do nothing at all. However, it is
  4255. * possible that a nested vmx bug, not a guest hypervisor bug,
  4256. * resulted in this case, so let's shut down before doing any
  4257. * more damage:
  4258. */
  4259. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4260. return 1;
  4261. }
  4262. vmcs12 = kmap(page);
  4263. vmcs12->launch_state = 0;
  4264. kunmap(page);
  4265. nested_release_page(page);
  4266. nested_free_vmcs02(vmx, vmptr);
  4267. skip_emulated_instruction(vcpu);
  4268. nested_vmx_succeed(vcpu);
  4269. return 1;
  4270. }
  4271. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4272. /* Emulate the VMLAUNCH instruction */
  4273. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4274. {
  4275. return nested_vmx_run(vcpu, true);
  4276. }
  4277. /* Emulate the VMRESUME instruction */
  4278. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4279. {
  4280. return nested_vmx_run(vcpu, false);
  4281. }
  4282. enum vmcs_field_type {
  4283. VMCS_FIELD_TYPE_U16 = 0,
  4284. VMCS_FIELD_TYPE_U64 = 1,
  4285. VMCS_FIELD_TYPE_U32 = 2,
  4286. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4287. };
  4288. static inline int vmcs_field_type(unsigned long field)
  4289. {
  4290. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4291. return VMCS_FIELD_TYPE_U32;
  4292. return (field >> 13) & 0x3 ;
  4293. }
  4294. static inline int vmcs_field_readonly(unsigned long field)
  4295. {
  4296. return (((field >> 10) & 0x3) == 1);
  4297. }
  4298. /*
  4299. * Read a vmcs12 field. Since these can have varying lengths and we return
  4300. * one type, we chose the biggest type (u64) and zero-extend the return value
  4301. * to that size. Note that the caller, handle_vmread, might need to use only
  4302. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4303. * 64-bit fields are to be returned).
  4304. */
  4305. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4306. unsigned long field, u64 *ret)
  4307. {
  4308. short offset = vmcs_field_to_offset(field);
  4309. char *p;
  4310. if (offset < 0)
  4311. return 0;
  4312. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4313. switch (vmcs_field_type(field)) {
  4314. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4315. *ret = *((natural_width *)p);
  4316. return 1;
  4317. case VMCS_FIELD_TYPE_U16:
  4318. *ret = *((u16 *)p);
  4319. return 1;
  4320. case VMCS_FIELD_TYPE_U32:
  4321. *ret = *((u32 *)p);
  4322. return 1;
  4323. case VMCS_FIELD_TYPE_U64:
  4324. *ret = *((u64 *)p);
  4325. return 1;
  4326. default:
  4327. return 0; /* can never happen. */
  4328. }
  4329. }
  4330. /*
  4331. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4332. * used before) all generate the same failure when it is missing.
  4333. */
  4334. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4335. {
  4336. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4337. if (vmx->nested.current_vmptr == -1ull) {
  4338. nested_vmx_failInvalid(vcpu);
  4339. skip_emulated_instruction(vcpu);
  4340. return 0;
  4341. }
  4342. return 1;
  4343. }
  4344. static int handle_vmread(struct kvm_vcpu *vcpu)
  4345. {
  4346. unsigned long field;
  4347. u64 field_value;
  4348. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4349. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4350. gva_t gva = 0;
  4351. if (!nested_vmx_check_permission(vcpu) ||
  4352. !nested_vmx_check_vmcs12(vcpu))
  4353. return 1;
  4354. /* Decode instruction info and find the field to read */
  4355. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4356. /* Read the field, zero-extended to a u64 field_value */
  4357. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4358. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4359. skip_emulated_instruction(vcpu);
  4360. return 1;
  4361. }
  4362. /*
  4363. * Now copy part of this value to register or memory, as requested.
  4364. * Note that the number of bits actually copied is 32 or 64 depending
  4365. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4366. */
  4367. if (vmx_instruction_info & (1u << 10)) {
  4368. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4369. field_value);
  4370. } else {
  4371. if (get_vmx_mem_address(vcpu, exit_qualification,
  4372. vmx_instruction_info, &gva))
  4373. return 1;
  4374. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4375. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4376. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4377. }
  4378. nested_vmx_succeed(vcpu);
  4379. skip_emulated_instruction(vcpu);
  4380. return 1;
  4381. }
  4382. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4383. {
  4384. unsigned long field;
  4385. gva_t gva;
  4386. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4387. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4388. char *p;
  4389. short offset;
  4390. /* The value to write might be 32 or 64 bits, depending on L1's long
  4391. * mode, and eventually we need to write that into a field of several
  4392. * possible lengths. The code below first zero-extends the value to 64
  4393. * bit (field_value), and then copies only the approriate number of
  4394. * bits into the vmcs12 field.
  4395. */
  4396. u64 field_value = 0;
  4397. struct x86_exception e;
  4398. if (!nested_vmx_check_permission(vcpu) ||
  4399. !nested_vmx_check_vmcs12(vcpu))
  4400. return 1;
  4401. if (vmx_instruction_info & (1u << 10))
  4402. field_value = kvm_register_read(vcpu,
  4403. (((vmx_instruction_info) >> 3) & 0xf));
  4404. else {
  4405. if (get_vmx_mem_address(vcpu, exit_qualification,
  4406. vmx_instruction_info, &gva))
  4407. return 1;
  4408. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4409. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4410. kvm_inject_page_fault(vcpu, &e);
  4411. return 1;
  4412. }
  4413. }
  4414. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4415. if (vmcs_field_readonly(field)) {
  4416. nested_vmx_failValid(vcpu,
  4417. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4418. skip_emulated_instruction(vcpu);
  4419. return 1;
  4420. }
  4421. offset = vmcs_field_to_offset(field);
  4422. if (offset < 0) {
  4423. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4424. skip_emulated_instruction(vcpu);
  4425. return 1;
  4426. }
  4427. p = ((char *) get_vmcs12(vcpu)) + offset;
  4428. switch (vmcs_field_type(field)) {
  4429. case VMCS_FIELD_TYPE_U16:
  4430. *(u16 *)p = field_value;
  4431. break;
  4432. case VMCS_FIELD_TYPE_U32:
  4433. *(u32 *)p = field_value;
  4434. break;
  4435. case VMCS_FIELD_TYPE_U64:
  4436. *(u64 *)p = field_value;
  4437. break;
  4438. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4439. *(natural_width *)p = field_value;
  4440. break;
  4441. default:
  4442. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4443. skip_emulated_instruction(vcpu);
  4444. return 1;
  4445. }
  4446. nested_vmx_succeed(vcpu);
  4447. skip_emulated_instruction(vcpu);
  4448. return 1;
  4449. }
  4450. /* Emulate the VMPTRLD instruction */
  4451. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4452. {
  4453. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4454. gva_t gva;
  4455. gpa_t vmptr;
  4456. struct x86_exception e;
  4457. if (!nested_vmx_check_permission(vcpu))
  4458. return 1;
  4459. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4460. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4461. return 1;
  4462. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4463. sizeof(vmptr), &e)) {
  4464. kvm_inject_page_fault(vcpu, &e);
  4465. return 1;
  4466. }
  4467. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4468. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4469. skip_emulated_instruction(vcpu);
  4470. return 1;
  4471. }
  4472. if (vmx->nested.current_vmptr != vmptr) {
  4473. struct vmcs12 *new_vmcs12;
  4474. struct page *page;
  4475. page = nested_get_page(vcpu, vmptr);
  4476. if (page == NULL) {
  4477. nested_vmx_failInvalid(vcpu);
  4478. skip_emulated_instruction(vcpu);
  4479. return 1;
  4480. }
  4481. new_vmcs12 = kmap(page);
  4482. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4483. kunmap(page);
  4484. nested_release_page_clean(page);
  4485. nested_vmx_failValid(vcpu,
  4486. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4487. skip_emulated_instruction(vcpu);
  4488. return 1;
  4489. }
  4490. if (vmx->nested.current_vmptr != -1ull) {
  4491. kunmap(vmx->nested.current_vmcs12_page);
  4492. nested_release_page(vmx->nested.current_vmcs12_page);
  4493. }
  4494. vmx->nested.current_vmptr = vmptr;
  4495. vmx->nested.current_vmcs12 = new_vmcs12;
  4496. vmx->nested.current_vmcs12_page = page;
  4497. }
  4498. nested_vmx_succeed(vcpu);
  4499. skip_emulated_instruction(vcpu);
  4500. return 1;
  4501. }
  4502. /* Emulate the VMPTRST instruction */
  4503. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4504. {
  4505. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4506. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4507. gva_t vmcs_gva;
  4508. struct x86_exception e;
  4509. if (!nested_vmx_check_permission(vcpu))
  4510. return 1;
  4511. if (get_vmx_mem_address(vcpu, exit_qualification,
  4512. vmx_instruction_info, &vmcs_gva))
  4513. return 1;
  4514. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4515. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4516. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4517. sizeof(u64), &e)) {
  4518. kvm_inject_page_fault(vcpu, &e);
  4519. return 1;
  4520. }
  4521. nested_vmx_succeed(vcpu);
  4522. skip_emulated_instruction(vcpu);
  4523. return 1;
  4524. }
  4525. /*
  4526. * The exit handlers return 1 if the exit was handled fully and guest execution
  4527. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4528. * to be done to userspace and return 0.
  4529. */
  4530. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4531. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4532. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4533. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4534. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4535. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4536. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4537. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4538. [EXIT_REASON_CPUID] = handle_cpuid,
  4539. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4540. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4541. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4542. [EXIT_REASON_HLT] = handle_halt,
  4543. [EXIT_REASON_INVD] = handle_invd,
  4544. [EXIT_REASON_INVLPG] = handle_invlpg,
  4545. [EXIT_REASON_VMCALL] = handle_vmcall,
  4546. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4547. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4548. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4549. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4550. [EXIT_REASON_VMREAD] = handle_vmread,
  4551. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4552. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4553. [EXIT_REASON_VMOFF] = handle_vmoff,
  4554. [EXIT_REASON_VMON] = handle_vmon,
  4555. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4556. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4557. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4558. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4559. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4560. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4561. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4562. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4563. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4564. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4565. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4566. };
  4567. static const int kvm_vmx_max_exit_handlers =
  4568. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4569. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  4570. {
  4571. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  4572. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  4573. }
  4574. /*
  4575. * The guest has exited. See if we can fix it or if we need userspace
  4576. * assistance.
  4577. */
  4578. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  4579. {
  4580. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4581. u32 exit_reason = vmx->exit_reason;
  4582. u32 vectoring_info = vmx->idt_vectoring_info;
  4583. trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
  4584. /* If guest state is invalid, start emulating */
  4585. if (vmx->emulation_required && emulate_invalid_guest_state)
  4586. return handle_invalid_guest_state(vcpu);
  4587. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  4588. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4589. vcpu->run->fail_entry.hardware_entry_failure_reason
  4590. = exit_reason;
  4591. return 0;
  4592. }
  4593. if (unlikely(vmx->fail)) {
  4594. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  4595. vcpu->run->fail_entry.hardware_entry_failure_reason
  4596. = vmcs_read32(VM_INSTRUCTION_ERROR);
  4597. return 0;
  4598. }
  4599. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  4600. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  4601. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  4602. exit_reason != EXIT_REASON_TASK_SWITCH))
  4603. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  4604. "(0x%x) and exit reason is 0x%x\n",
  4605. __func__, vectoring_info, exit_reason);
  4606. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  4607. if (vmx_interrupt_allowed(vcpu)) {
  4608. vmx->soft_vnmi_blocked = 0;
  4609. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  4610. vcpu->arch.nmi_pending) {
  4611. /*
  4612. * This CPU don't support us in finding the end of an
  4613. * NMI-blocked window if the guest runs with IRQs
  4614. * disabled. So we pull the trigger after 1 s of
  4615. * futile waiting, but inform the user about this.
  4616. */
  4617. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  4618. "state on VCPU %d after 1 s timeout\n",
  4619. __func__, vcpu->vcpu_id);
  4620. vmx->soft_vnmi_blocked = 0;
  4621. }
  4622. }
  4623. if (exit_reason < kvm_vmx_max_exit_handlers
  4624. && kvm_vmx_exit_handlers[exit_reason])
  4625. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  4626. else {
  4627. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4628. vcpu->run->hw.hardware_exit_reason = exit_reason;
  4629. }
  4630. return 0;
  4631. }
  4632. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  4633. {
  4634. if (irr == -1 || tpr < irr) {
  4635. vmcs_write32(TPR_THRESHOLD, 0);
  4636. return;
  4637. }
  4638. vmcs_write32(TPR_THRESHOLD, irr);
  4639. }
  4640. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  4641. {
  4642. u32 exit_intr_info;
  4643. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  4644. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  4645. return;
  4646. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4647. exit_intr_info = vmx->exit_intr_info;
  4648. /* Handle machine checks before interrupts are enabled */
  4649. if (is_machine_check(exit_intr_info))
  4650. kvm_machine_check();
  4651. /* We need to handle NMIs before interrupts are enabled */
  4652. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  4653. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  4654. kvm_before_handle_nmi(&vmx->vcpu);
  4655. asm("int $2");
  4656. kvm_after_handle_nmi(&vmx->vcpu);
  4657. }
  4658. }
  4659. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  4660. {
  4661. u32 exit_intr_info;
  4662. bool unblock_nmi;
  4663. u8 vector;
  4664. bool idtv_info_valid;
  4665. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  4666. if (cpu_has_virtual_nmis()) {
  4667. if (vmx->nmi_known_unmasked)
  4668. return;
  4669. /*
  4670. * Can't use vmx->exit_intr_info since we're not sure what
  4671. * the exit reason is.
  4672. */
  4673. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4674. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  4675. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  4676. /*
  4677. * SDM 3: 27.7.1.2 (September 2008)
  4678. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  4679. * a guest IRET fault.
  4680. * SDM 3: 23.2.2 (September 2008)
  4681. * Bit 12 is undefined in any of the following cases:
  4682. * If the VM exit sets the valid bit in the IDT-vectoring
  4683. * information field.
  4684. * If the VM exit is due to a double fault.
  4685. */
  4686. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  4687. vector != DF_VECTOR && !idtv_info_valid)
  4688. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  4689. GUEST_INTR_STATE_NMI);
  4690. else
  4691. vmx->nmi_known_unmasked =
  4692. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  4693. & GUEST_INTR_STATE_NMI);
  4694. } else if (unlikely(vmx->soft_vnmi_blocked))
  4695. vmx->vnmi_blocked_time +=
  4696. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  4697. }
  4698. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  4699. u32 idt_vectoring_info,
  4700. int instr_len_field,
  4701. int error_code_field)
  4702. {
  4703. u8 vector;
  4704. int type;
  4705. bool idtv_info_valid;
  4706. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  4707. vmx->vcpu.arch.nmi_injected = false;
  4708. kvm_clear_exception_queue(&vmx->vcpu);
  4709. kvm_clear_interrupt_queue(&vmx->vcpu);
  4710. if (!idtv_info_valid)
  4711. return;
  4712. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  4713. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  4714. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  4715. switch (type) {
  4716. case INTR_TYPE_NMI_INTR:
  4717. vmx->vcpu.arch.nmi_injected = true;
  4718. /*
  4719. * SDM 3: 27.7.1.2 (September 2008)
  4720. * Clear bit "block by NMI" before VM entry if a NMI
  4721. * delivery faulted.
  4722. */
  4723. vmx_set_nmi_mask(&vmx->vcpu, false);
  4724. break;
  4725. case INTR_TYPE_SOFT_EXCEPTION:
  4726. vmx->vcpu.arch.event_exit_inst_len =
  4727. vmcs_read32(instr_len_field);
  4728. /* fall through */
  4729. case INTR_TYPE_HARD_EXCEPTION:
  4730. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  4731. u32 err = vmcs_read32(error_code_field);
  4732. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  4733. } else
  4734. kvm_queue_exception(&vmx->vcpu, vector);
  4735. break;
  4736. case INTR_TYPE_SOFT_INTR:
  4737. vmx->vcpu.arch.event_exit_inst_len =
  4738. vmcs_read32(instr_len_field);
  4739. /* fall through */
  4740. case INTR_TYPE_EXT_INTR:
  4741. kvm_queue_interrupt(&vmx->vcpu, vector,
  4742. type == INTR_TYPE_SOFT_INTR);
  4743. break;
  4744. default:
  4745. break;
  4746. }
  4747. }
  4748. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  4749. {
  4750. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  4751. VM_EXIT_INSTRUCTION_LEN,
  4752. IDT_VECTORING_ERROR_CODE);
  4753. }
  4754. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  4755. {
  4756. __vmx_complete_interrupts(to_vmx(vcpu),
  4757. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  4758. VM_ENTRY_INSTRUCTION_LEN,
  4759. VM_ENTRY_EXCEPTION_ERROR_CODE);
  4760. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  4761. }
  4762. #ifdef CONFIG_X86_64
  4763. #define R "r"
  4764. #define Q "q"
  4765. #else
  4766. #define R "e"
  4767. #define Q "l"
  4768. #endif
  4769. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  4770. {
  4771. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4772. /* Record the guest's net vcpu time for enforced NMI injections. */
  4773. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  4774. vmx->entry_time = ktime_get();
  4775. /* Don't enter VMX if guest state is invalid, let the exit handler
  4776. start emulation until we arrive back to a valid state */
  4777. if (vmx->emulation_required && emulate_invalid_guest_state)
  4778. return;
  4779. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  4780. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  4781. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  4782. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  4783. /* When single-stepping over STI and MOV SS, we must clear the
  4784. * corresponding interruptibility bits in the guest state. Otherwise
  4785. * vmentry fails as it then expects bit 14 (BS) in pending debug
  4786. * exceptions being set, but that's not correct for the guest debugging
  4787. * case. */
  4788. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4789. vmx_set_interrupt_shadow(vcpu, 0);
  4790. vmx->__launched = vmx->loaded_vmcs->launched;
  4791. asm(
  4792. /* Store host registers */
  4793. "push %%"R"dx; push %%"R"bp;"
  4794. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  4795. "push %%"R"cx \n\t"
  4796. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  4797. "je 1f \n\t"
  4798. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  4799. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  4800. "1: \n\t"
  4801. /* Reload cr2 if changed */
  4802. "mov %c[cr2](%0), %%"R"ax \n\t"
  4803. "mov %%cr2, %%"R"dx \n\t"
  4804. "cmp %%"R"ax, %%"R"dx \n\t"
  4805. "je 2f \n\t"
  4806. "mov %%"R"ax, %%cr2 \n\t"
  4807. "2: \n\t"
  4808. /* Check if vmlaunch of vmresume is needed */
  4809. "cmpl $0, %c[launched](%0) \n\t"
  4810. /* Load guest registers. Don't clobber flags. */
  4811. "mov %c[rax](%0), %%"R"ax \n\t"
  4812. "mov %c[rbx](%0), %%"R"bx \n\t"
  4813. "mov %c[rdx](%0), %%"R"dx \n\t"
  4814. "mov %c[rsi](%0), %%"R"si \n\t"
  4815. "mov %c[rdi](%0), %%"R"di \n\t"
  4816. "mov %c[rbp](%0), %%"R"bp \n\t"
  4817. #ifdef CONFIG_X86_64
  4818. "mov %c[r8](%0), %%r8 \n\t"
  4819. "mov %c[r9](%0), %%r9 \n\t"
  4820. "mov %c[r10](%0), %%r10 \n\t"
  4821. "mov %c[r11](%0), %%r11 \n\t"
  4822. "mov %c[r12](%0), %%r12 \n\t"
  4823. "mov %c[r13](%0), %%r13 \n\t"
  4824. "mov %c[r14](%0), %%r14 \n\t"
  4825. "mov %c[r15](%0), %%r15 \n\t"
  4826. #endif
  4827. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  4828. /* Enter guest mode */
  4829. "jne .Llaunched \n\t"
  4830. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  4831. "jmp .Lkvm_vmx_return \n\t"
  4832. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  4833. ".Lkvm_vmx_return: "
  4834. /* Save guest registers, load host registers, keep flags */
  4835. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  4836. "pop %0 \n\t"
  4837. "mov %%"R"ax, %c[rax](%0) \n\t"
  4838. "mov %%"R"bx, %c[rbx](%0) \n\t"
  4839. "pop"Q" %c[rcx](%0) \n\t"
  4840. "mov %%"R"dx, %c[rdx](%0) \n\t"
  4841. "mov %%"R"si, %c[rsi](%0) \n\t"
  4842. "mov %%"R"di, %c[rdi](%0) \n\t"
  4843. "mov %%"R"bp, %c[rbp](%0) \n\t"
  4844. #ifdef CONFIG_X86_64
  4845. "mov %%r8, %c[r8](%0) \n\t"
  4846. "mov %%r9, %c[r9](%0) \n\t"
  4847. "mov %%r10, %c[r10](%0) \n\t"
  4848. "mov %%r11, %c[r11](%0) \n\t"
  4849. "mov %%r12, %c[r12](%0) \n\t"
  4850. "mov %%r13, %c[r13](%0) \n\t"
  4851. "mov %%r14, %c[r14](%0) \n\t"
  4852. "mov %%r15, %c[r15](%0) \n\t"
  4853. #endif
  4854. "mov %%cr2, %%"R"ax \n\t"
  4855. "mov %%"R"ax, %c[cr2](%0) \n\t"
  4856. "pop %%"R"bp; pop %%"R"dx \n\t"
  4857. "setbe %c[fail](%0) \n\t"
  4858. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  4859. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  4860. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  4861. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  4862. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  4863. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  4864. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  4865. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  4866. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  4867. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  4868. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  4869. #ifdef CONFIG_X86_64
  4870. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  4871. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  4872. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  4873. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  4874. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  4875. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  4876. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  4877. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  4878. #endif
  4879. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  4880. [wordsize]"i"(sizeof(ulong))
  4881. : "cc", "memory"
  4882. , R"ax", R"bx", R"di", R"si"
  4883. #ifdef CONFIG_X86_64
  4884. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  4885. #endif
  4886. );
  4887. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  4888. | (1 << VCPU_EXREG_RFLAGS)
  4889. | (1 << VCPU_EXREG_CPL)
  4890. | (1 << VCPU_EXREG_PDPTR)
  4891. | (1 << VCPU_EXREG_SEGMENTS)
  4892. | (1 << VCPU_EXREG_CR3));
  4893. vcpu->arch.regs_dirty = 0;
  4894. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  4895. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  4896. vmx->loaded_vmcs->launched = 1;
  4897. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  4898. vmx_complete_atomic_exit(vmx);
  4899. vmx_recover_nmi_blocking(vmx);
  4900. vmx_complete_interrupts(vmx);
  4901. }
  4902. #undef R
  4903. #undef Q
  4904. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  4905. {
  4906. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4907. free_vpid(vmx);
  4908. free_nested(vmx);
  4909. free_loaded_vmcs(vmx->loaded_vmcs);
  4910. kfree(vmx->guest_msrs);
  4911. kvm_vcpu_uninit(vcpu);
  4912. kmem_cache_free(kvm_vcpu_cache, vmx);
  4913. }
  4914. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  4915. {
  4916. int err;
  4917. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  4918. int cpu;
  4919. if (!vmx)
  4920. return ERR_PTR(-ENOMEM);
  4921. allocate_vpid(vmx);
  4922. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  4923. if (err)
  4924. goto free_vcpu;
  4925. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  4926. err = -ENOMEM;
  4927. if (!vmx->guest_msrs) {
  4928. goto uninit_vcpu;
  4929. }
  4930. vmx->loaded_vmcs = &vmx->vmcs01;
  4931. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  4932. if (!vmx->loaded_vmcs->vmcs)
  4933. goto free_msrs;
  4934. if (!vmm_exclusive)
  4935. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  4936. loaded_vmcs_init(vmx->loaded_vmcs);
  4937. if (!vmm_exclusive)
  4938. kvm_cpu_vmxoff();
  4939. cpu = get_cpu();
  4940. vmx_vcpu_load(&vmx->vcpu, cpu);
  4941. vmx->vcpu.cpu = cpu;
  4942. err = vmx_vcpu_setup(vmx);
  4943. vmx_vcpu_put(&vmx->vcpu);
  4944. put_cpu();
  4945. if (err)
  4946. goto free_vmcs;
  4947. if (vm_need_virtualize_apic_accesses(kvm))
  4948. err = alloc_apic_access_page(kvm);
  4949. if (err)
  4950. goto free_vmcs;
  4951. if (enable_ept) {
  4952. if (!kvm->arch.ept_identity_map_addr)
  4953. kvm->arch.ept_identity_map_addr =
  4954. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  4955. err = -ENOMEM;
  4956. if (alloc_identity_pagetable(kvm) != 0)
  4957. goto free_vmcs;
  4958. if (!init_rmode_identity_map(kvm))
  4959. goto free_vmcs;
  4960. }
  4961. vmx->nested.current_vmptr = -1ull;
  4962. vmx->nested.current_vmcs12 = NULL;
  4963. return &vmx->vcpu;
  4964. free_vmcs:
  4965. free_vmcs(vmx->loaded_vmcs->vmcs);
  4966. free_msrs:
  4967. kfree(vmx->guest_msrs);
  4968. uninit_vcpu:
  4969. kvm_vcpu_uninit(&vmx->vcpu);
  4970. free_vcpu:
  4971. free_vpid(vmx);
  4972. kmem_cache_free(kvm_vcpu_cache, vmx);
  4973. return ERR_PTR(err);
  4974. }
  4975. static void __init vmx_check_processor_compat(void *rtn)
  4976. {
  4977. struct vmcs_config vmcs_conf;
  4978. *(int *)rtn = 0;
  4979. if (setup_vmcs_config(&vmcs_conf) < 0)
  4980. *(int *)rtn = -EIO;
  4981. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  4982. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  4983. smp_processor_id());
  4984. *(int *)rtn = -EIO;
  4985. }
  4986. }
  4987. static int get_ept_level(void)
  4988. {
  4989. return VMX_EPT_DEFAULT_GAW + 1;
  4990. }
  4991. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  4992. {
  4993. u64 ret;
  4994. /* For VT-d and EPT combination
  4995. * 1. MMIO: always map as UC
  4996. * 2. EPT with VT-d:
  4997. * a. VT-d without snooping control feature: can't guarantee the
  4998. * result, try to trust guest.
  4999. * b. VT-d with snooping control feature: snooping control feature of
  5000. * VT-d engine can guarantee the cache correctness. Just set it
  5001. * to WB to keep consistent with host. So the same as item 3.
  5002. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5003. * consistent with host MTRR
  5004. */
  5005. if (is_mmio)
  5006. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5007. else if (vcpu->kvm->arch.iommu_domain &&
  5008. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5009. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5010. VMX_EPT_MT_EPTE_SHIFT;
  5011. else
  5012. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5013. | VMX_EPT_IPAT_BIT;
  5014. return ret;
  5015. }
  5016. #define _ER(x) { EXIT_REASON_##x, #x }
  5017. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  5018. _ER(EXCEPTION_NMI),
  5019. _ER(EXTERNAL_INTERRUPT),
  5020. _ER(TRIPLE_FAULT),
  5021. _ER(PENDING_INTERRUPT),
  5022. _ER(NMI_WINDOW),
  5023. _ER(TASK_SWITCH),
  5024. _ER(CPUID),
  5025. _ER(HLT),
  5026. _ER(INVLPG),
  5027. _ER(RDPMC),
  5028. _ER(RDTSC),
  5029. _ER(VMCALL),
  5030. _ER(VMCLEAR),
  5031. _ER(VMLAUNCH),
  5032. _ER(VMPTRLD),
  5033. _ER(VMPTRST),
  5034. _ER(VMREAD),
  5035. _ER(VMRESUME),
  5036. _ER(VMWRITE),
  5037. _ER(VMOFF),
  5038. _ER(VMON),
  5039. _ER(CR_ACCESS),
  5040. _ER(DR_ACCESS),
  5041. _ER(IO_INSTRUCTION),
  5042. _ER(MSR_READ),
  5043. _ER(MSR_WRITE),
  5044. _ER(MWAIT_INSTRUCTION),
  5045. _ER(MONITOR_INSTRUCTION),
  5046. _ER(PAUSE_INSTRUCTION),
  5047. _ER(MCE_DURING_VMENTRY),
  5048. _ER(TPR_BELOW_THRESHOLD),
  5049. _ER(APIC_ACCESS),
  5050. _ER(EPT_VIOLATION),
  5051. _ER(EPT_MISCONFIG),
  5052. _ER(WBINVD),
  5053. { -1, NULL }
  5054. };
  5055. #undef _ER
  5056. static int vmx_get_lpage_level(void)
  5057. {
  5058. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5059. return PT_DIRECTORY_LEVEL;
  5060. else
  5061. /* For shadow and EPT supported 1GB page */
  5062. return PT_PDPE_LEVEL;
  5063. }
  5064. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5065. {
  5066. struct kvm_cpuid_entry2 *best;
  5067. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5068. u32 exec_control;
  5069. vmx->rdtscp_enabled = false;
  5070. if (vmx_rdtscp_supported()) {
  5071. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5072. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5073. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5074. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5075. vmx->rdtscp_enabled = true;
  5076. else {
  5077. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5078. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5079. exec_control);
  5080. }
  5081. }
  5082. }
  5083. }
  5084. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5085. {
  5086. }
  5087. /*
  5088. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5089. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5090. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5091. * guest in a way that will both be appropriate to L1's requests, and our
  5092. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5093. * function also has additional necessary side-effects, like setting various
  5094. * vcpu->arch fields.
  5095. */
  5096. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5097. {
  5098. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5099. u32 exec_control;
  5100. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5101. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5102. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5103. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5104. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5105. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5106. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5107. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5108. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5109. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5110. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5111. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5112. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5113. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5114. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5115. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5116. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5117. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5118. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5119. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5120. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5121. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5122. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5123. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5124. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5125. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5126. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5127. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5128. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5129. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5130. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5131. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5132. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5133. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5134. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5135. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5136. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5137. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5138. vmcs12->vm_entry_intr_info_field);
  5139. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5140. vmcs12->vm_entry_exception_error_code);
  5141. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5142. vmcs12->vm_entry_instruction_len);
  5143. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5144. vmcs12->guest_interruptibility_info);
  5145. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5146. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5147. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5148. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5149. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5150. vmcs12->guest_pending_dbg_exceptions);
  5151. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5152. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5153. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5154. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5155. (vmcs_config.pin_based_exec_ctrl |
  5156. vmcs12->pin_based_vm_exec_control));
  5157. /*
  5158. * Whether page-faults are trapped is determined by a combination of
  5159. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5160. * If enable_ept, L0 doesn't care about page faults and we should
  5161. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5162. * care about (at least some) page faults, and because it is not easy
  5163. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5164. * to exit on each and every L2 page fault. This is done by setting
  5165. * MASK=MATCH=0 and (see below) EB.PF=1.
  5166. * Note that below we don't need special code to set EB.PF beyond the
  5167. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5168. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5169. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5170. *
  5171. * A problem with this approach (when !enable_ept) is that L1 may be
  5172. * injected with more page faults than it asked for. This could have
  5173. * caused problems, but in practice existing hypervisors don't care.
  5174. * To fix this, we will need to emulate the PFEC checking (on the L1
  5175. * page tables), using walk_addr(), when injecting PFs to L1.
  5176. */
  5177. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5178. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5179. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5180. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5181. if (cpu_has_secondary_exec_ctrls()) {
  5182. u32 exec_control = vmx_secondary_exec_control(vmx);
  5183. if (!vmx->rdtscp_enabled)
  5184. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5185. /* Take the following fields only from vmcs12 */
  5186. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5187. if (nested_cpu_has(vmcs12,
  5188. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5189. exec_control |= vmcs12->secondary_vm_exec_control;
  5190. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5191. /*
  5192. * Translate L1 physical address to host physical
  5193. * address for vmcs02. Keep the page pinned, so this
  5194. * physical address remains valid. We keep a reference
  5195. * to it so we can release it later.
  5196. */
  5197. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5198. nested_release_page(vmx->nested.apic_access_page);
  5199. vmx->nested.apic_access_page =
  5200. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5201. /*
  5202. * If translation failed, no matter: This feature asks
  5203. * to exit when accessing the given address, and if it
  5204. * can never be accessed, this feature won't do
  5205. * anything anyway.
  5206. */
  5207. if (!vmx->nested.apic_access_page)
  5208. exec_control &=
  5209. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5210. else
  5211. vmcs_write64(APIC_ACCESS_ADDR,
  5212. page_to_phys(vmx->nested.apic_access_page));
  5213. }
  5214. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5215. }
  5216. /*
  5217. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5218. * Some constant fields are set here by vmx_set_constant_host_state().
  5219. * Other fields are different per CPU, and will be set later when
  5220. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5221. */
  5222. vmx_set_constant_host_state();
  5223. /*
  5224. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5225. * entry, but only if the current (host) sp changed from the value
  5226. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5227. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5228. * here we just force the write to happen on entry.
  5229. */
  5230. vmx->host_rsp = 0;
  5231. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5232. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5233. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5234. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5235. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5236. /*
  5237. * Merging of IO and MSR bitmaps not currently supported.
  5238. * Rather, exit every time.
  5239. */
  5240. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5241. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5242. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5243. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5244. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5245. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5246. * trap. Note that CR0.TS also needs updating - we do this later.
  5247. */
  5248. update_exception_bitmap(vcpu);
  5249. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5250. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5251. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5252. vmcs_write32(VM_EXIT_CONTROLS,
  5253. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5254. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5255. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5256. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5257. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5258. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5259. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5260. set_cr4_guest_host_mask(vmx);
  5261. vmcs_write64(TSC_OFFSET,
  5262. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5263. if (enable_vpid) {
  5264. /*
  5265. * Trivially support vpid by letting L2s share their parent
  5266. * L1's vpid. TODO: move to a more elaborate solution, giving
  5267. * each L2 its own vpid and exposing the vpid feature to L1.
  5268. */
  5269. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5270. vmx_flush_tlb(vcpu);
  5271. }
  5272. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5273. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5274. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5275. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5276. else
  5277. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5278. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5279. vmx_set_efer(vcpu, vcpu->arch.efer);
  5280. /*
  5281. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5282. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5283. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5284. * the specifications by L1; It's not enough to take
  5285. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5286. * have more bits than L1 expected.
  5287. */
  5288. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5289. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5290. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5291. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5292. /* shadow page tables on either EPT or shadow page tables */
  5293. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5294. kvm_mmu_reset_context(vcpu);
  5295. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5296. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5297. }
  5298. /*
  5299. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5300. * for running an L2 nested guest.
  5301. */
  5302. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5303. {
  5304. struct vmcs12 *vmcs12;
  5305. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5306. int cpu;
  5307. struct loaded_vmcs *vmcs02;
  5308. if (!nested_vmx_check_permission(vcpu) ||
  5309. !nested_vmx_check_vmcs12(vcpu))
  5310. return 1;
  5311. skip_emulated_instruction(vcpu);
  5312. vmcs12 = get_vmcs12(vcpu);
  5313. /*
  5314. * The nested entry process starts with enforcing various prerequisites
  5315. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5316. * they fail: As the SDM explains, some conditions should cause the
  5317. * instruction to fail, while others will cause the instruction to seem
  5318. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5319. * To speed up the normal (success) code path, we should avoid checking
  5320. * for misconfigurations which will anyway be caught by the processor
  5321. * when using the merged vmcs02.
  5322. */
  5323. if (vmcs12->launch_state == launch) {
  5324. nested_vmx_failValid(vcpu,
  5325. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5326. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5327. return 1;
  5328. }
  5329. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5330. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5331. /*TODO: Also verify bits beyond physical address width are 0*/
  5332. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5333. return 1;
  5334. }
  5335. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5336. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5337. /*TODO: Also verify bits beyond physical address width are 0*/
  5338. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5339. return 1;
  5340. }
  5341. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5342. vmcs12->vm_exit_msr_load_count > 0 ||
  5343. vmcs12->vm_exit_msr_store_count > 0) {
  5344. if (printk_ratelimit())
  5345. printk(KERN_WARNING
  5346. "%s: VMCS MSR_{LOAD,STORE} unsupported\n", __func__);
  5347. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5348. return 1;
  5349. }
  5350. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5351. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5352. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5353. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5354. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5355. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5356. !vmx_control_verify(vmcs12->vm_exit_controls,
  5357. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5358. !vmx_control_verify(vmcs12->vm_entry_controls,
  5359. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5360. {
  5361. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5362. return 1;
  5363. }
  5364. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5365. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5366. nested_vmx_failValid(vcpu,
  5367. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5368. return 1;
  5369. }
  5370. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5371. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5372. nested_vmx_entry_failure(vcpu, vmcs12,
  5373. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5374. return 1;
  5375. }
  5376. if (vmcs12->vmcs_link_pointer != -1ull) {
  5377. nested_vmx_entry_failure(vcpu, vmcs12,
  5378. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5379. return 1;
  5380. }
  5381. /*
  5382. * We're finally done with prerequisite checking, and can start with
  5383. * the nested entry.
  5384. */
  5385. vmcs02 = nested_get_current_vmcs02(vmx);
  5386. if (!vmcs02)
  5387. return -ENOMEM;
  5388. enter_guest_mode(vcpu);
  5389. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5390. cpu = get_cpu();
  5391. vmx->loaded_vmcs = vmcs02;
  5392. vmx_vcpu_put(vcpu);
  5393. vmx_vcpu_load(vcpu, cpu);
  5394. vcpu->cpu = cpu;
  5395. put_cpu();
  5396. vmcs12->launch_state = 1;
  5397. prepare_vmcs02(vcpu, vmcs12);
  5398. /*
  5399. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5400. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5401. * returned as far as L1 is concerned. It will only return (and set
  5402. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5403. */
  5404. return 1;
  5405. }
  5406. /*
  5407. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5408. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5409. * This function returns the new value we should put in vmcs12.guest_cr0.
  5410. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5411. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5412. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5413. * didn't trap the bit, because if L1 did, so would L0).
  5414. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5415. * been modified by L2, and L1 knows it. So just leave the old value of
  5416. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5417. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5418. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5419. * changed these bits, and therefore they need to be updated, but L0
  5420. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5421. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5422. */
  5423. static inline unsigned long
  5424. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5425. {
  5426. return
  5427. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5428. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5429. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5430. vcpu->arch.cr0_guest_owned_bits));
  5431. }
  5432. static inline unsigned long
  5433. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5434. {
  5435. return
  5436. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5437. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5438. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5439. vcpu->arch.cr4_guest_owned_bits));
  5440. }
  5441. /*
  5442. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5443. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5444. * and this function updates it to reflect the changes to the guest state while
  5445. * L2 was running (and perhaps made some exits which were handled directly by L0
  5446. * without going back to L1), and to reflect the exit reason.
  5447. * Note that we do not have to copy here all VMCS fields, just those that
  5448. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5449. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5450. * which already writes to vmcs12 directly.
  5451. */
  5452. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5453. {
  5454. /* update guest state fields: */
  5455. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5456. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5457. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5458. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5459. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5460. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5461. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5462. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5463. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  5464. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  5465. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  5466. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  5467. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  5468. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  5469. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  5470. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  5471. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  5472. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  5473. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  5474. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  5475. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  5476. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  5477. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  5478. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  5479. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  5480. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  5481. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  5482. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  5483. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  5484. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  5485. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  5486. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  5487. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  5488. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  5489. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  5490. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  5491. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  5492. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  5493. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  5494. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  5495. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  5496. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  5497. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  5498. vmcs12->guest_interruptibility_info =
  5499. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  5500. vmcs12->guest_pending_dbg_exceptions =
  5501. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  5502. /* TODO: These cannot have changed unless we have MSR bitmaps and
  5503. * the relevant bit asks not to trap the change */
  5504. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  5505. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  5506. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  5507. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  5508. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  5509. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  5510. /* update exit information fields: */
  5511. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  5512. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  5513. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5514. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  5515. vmcs12->idt_vectoring_info_field =
  5516. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5517. vmcs12->idt_vectoring_error_code =
  5518. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5519. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5520. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  5521. /* clear vm-entry fields which are to be cleared on exit */
  5522. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  5523. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  5524. }
  5525. /*
  5526. * A part of what we need to when the nested L2 guest exits and we want to
  5527. * run its L1 parent, is to reset L1's guest state to the host state specified
  5528. * in vmcs12.
  5529. * This function is to be called not only on normal nested exit, but also on
  5530. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  5531. * Failures During or After Loading Guest State").
  5532. * This function should be called when the active VMCS is L1's (vmcs01).
  5533. */
  5534. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5535. {
  5536. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  5537. vcpu->arch.efer = vmcs12->host_ia32_efer;
  5538. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  5539. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5540. else
  5541. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5542. vmx_set_efer(vcpu, vcpu->arch.efer);
  5543. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  5544. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  5545. /*
  5546. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  5547. * actually changed, because it depends on the current state of
  5548. * fpu_active (which may have changed).
  5549. * Note that vmx_set_cr0 refers to efer set above.
  5550. */
  5551. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  5552. /*
  5553. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  5554. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  5555. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  5556. */
  5557. update_exception_bitmap(vcpu);
  5558. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  5559. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5560. /*
  5561. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  5562. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  5563. */
  5564. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  5565. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  5566. /* shadow page tables on either EPT or shadow page tables */
  5567. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  5568. kvm_mmu_reset_context(vcpu);
  5569. if (enable_vpid) {
  5570. /*
  5571. * Trivially support vpid by letting L2s share their parent
  5572. * L1's vpid. TODO: move to a more elaborate solution, giving
  5573. * each L2 its own vpid and exposing the vpid feature to L1.
  5574. */
  5575. vmx_flush_tlb(vcpu);
  5576. }
  5577. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  5578. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  5579. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  5580. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  5581. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  5582. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  5583. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  5584. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  5585. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  5586. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  5587. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  5588. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  5589. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  5590. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  5591. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  5592. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  5593. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  5594. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  5595. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  5596. vmcs12->host_ia32_perf_global_ctrl);
  5597. }
  5598. /*
  5599. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  5600. * and modify vmcs12 to make it see what it would expect to see there if
  5601. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  5602. */
  5603. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  5604. {
  5605. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5606. int cpu;
  5607. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5608. leave_guest_mode(vcpu);
  5609. prepare_vmcs12(vcpu, vmcs12);
  5610. cpu = get_cpu();
  5611. vmx->loaded_vmcs = &vmx->vmcs01;
  5612. vmx_vcpu_put(vcpu);
  5613. vmx_vcpu_load(vcpu, cpu);
  5614. vcpu->cpu = cpu;
  5615. put_cpu();
  5616. /* if no vmcs02 cache requested, remove the one we used */
  5617. if (VMCS02_POOL_SIZE == 0)
  5618. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  5619. load_vmcs12_host_state(vcpu, vmcs12);
  5620. /* Update TSC_OFFSET if vmx_adjust_tsc_offset() was used while L2 ran */
  5621. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5622. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  5623. vmx->host_rsp = 0;
  5624. /* Unpin physical memory we referred to in vmcs02 */
  5625. if (vmx->nested.apic_access_page) {
  5626. nested_release_page(vmx->nested.apic_access_page);
  5627. vmx->nested.apic_access_page = 0;
  5628. }
  5629. /*
  5630. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  5631. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  5632. * success or failure flag accordingly.
  5633. */
  5634. if (unlikely(vmx->fail)) {
  5635. vmx->fail = 0;
  5636. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  5637. } else
  5638. nested_vmx_succeed(vcpu);
  5639. }
  5640. /*
  5641. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  5642. * 23.7 "VM-entry failures during or after loading guest state" (this also
  5643. * lists the acceptable exit-reason and exit-qualification parameters).
  5644. * It should only be called before L2 actually succeeded to run, and when
  5645. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  5646. */
  5647. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  5648. struct vmcs12 *vmcs12,
  5649. u32 reason, unsigned long qualification)
  5650. {
  5651. load_vmcs12_host_state(vcpu, vmcs12);
  5652. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  5653. vmcs12->exit_qualification = qualification;
  5654. nested_vmx_succeed(vcpu);
  5655. }
  5656. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  5657. struct x86_instruction_info *info,
  5658. enum x86_intercept_stage stage)
  5659. {
  5660. return X86EMUL_CONTINUE;
  5661. }
  5662. static struct kvm_x86_ops vmx_x86_ops = {
  5663. .cpu_has_kvm_support = cpu_has_kvm_support,
  5664. .disabled_by_bios = vmx_disabled_by_bios,
  5665. .hardware_setup = hardware_setup,
  5666. .hardware_unsetup = hardware_unsetup,
  5667. .check_processor_compatibility = vmx_check_processor_compat,
  5668. .hardware_enable = hardware_enable,
  5669. .hardware_disable = hardware_disable,
  5670. .cpu_has_accelerated_tpr = report_flexpriority,
  5671. .vcpu_create = vmx_create_vcpu,
  5672. .vcpu_free = vmx_free_vcpu,
  5673. .vcpu_reset = vmx_vcpu_reset,
  5674. .prepare_guest_switch = vmx_save_host_state,
  5675. .vcpu_load = vmx_vcpu_load,
  5676. .vcpu_put = vmx_vcpu_put,
  5677. .set_guest_debug = set_guest_debug,
  5678. .get_msr = vmx_get_msr,
  5679. .set_msr = vmx_set_msr,
  5680. .get_segment_base = vmx_get_segment_base,
  5681. .get_segment = vmx_get_segment,
  5682. .set_segment = vmx_set_segment,
  5683. .get_cpl = vmx_get_cpl,
  5684. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  5685. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  5686. .decache_cr3 = vmx_decache_cr3,
  5687. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  5688. .set_cr0 = vmx_set_cr0,
  5689. .set_cr3 = vmx_set_cr3,
  5690. .set_cr4 = vmx_set_cr4,
  5691. .set_efer = vmx_set_efer,
  5692. .get_idt = vmx_get_idt,
  5693. .set_idt = vmx_set_idt,
  5694. .get_gdt = vmx_get_gdt,
  5695. .set_gdt = vmx_set_gdt,
  5696. .set_dr7 = vmx_set_dr7,
  5697. .cache_reg = vmx_cache_reg,
  5698. .get_rflags = vmx_get_rflags,
  5699. .set_rflags = vmx_set_rflags,
  5700. .fpu_activate = vmx_fpu_activate,
  5701. .fpu_deactivate = vmx_fpu_deactivate,
  5702. .tlb_flush = vmx_flush_tlb,
  5703. .run = vmx_vcpu_run,
  5704. .handle_exit = vmx_handle_exit,
  5705. .skip_emulated_instruction = skip_emulated_instruction,
  5706. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  5707. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  5708. .patch_hypercall = vmx_patch_hypercall,
  5709. .set_irq = vmx_inject_irq,
  5710. .set_nmi = vmx_inject_nmi,
  5711. .queue_exception = vmx_queue_exception,
  5712. .cancel_injection = vmx_cancel_injection,
  5713. .interrupt_allowed = vmx_interrupt_allowed,
  5714. .nmi_allowed = vmx_nmi_allowed,
  5715. .get_nmi_mask = vmx_get_nmi_mask,
  5716. .set_nmi_mask = vmx_set_nmi_mask,
  5717. .enable_nmi_window = enable_nmi_window,
  5718. .enable_irq_window = enable_irq_window,
  5719. .update_cr8_intercept = update_cr8_intercept,
  5720. .set_tss_addr = vmx_set_tss_addr,
  5721. .get_tdp_level = get_ept_level,
  5722. .get_mt_mask = vmx_get_mt_mask,
  5723. .get_exit_info = vmx_get_exit_info,
  5724. .exit_reasons_str = vmx_exit_reasons_str,
  5725. .get_lpage_level = vmx_get_lpage_level,
  5726. .cpuid_update = vmx_cpuid_update,
  5727. .rdtscp_supported = vmx_rdtscp_supported,
  5728. .set_supported_cpuid = vmx_set_supported_cpuid,
  5729. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  5730. .set_tsc_khz = vmx_set_tsc_khz,
  5731. .write_tsc_offset = vmx_write_tsc_offset,
  5732. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  5733. .compute_tsc_offset = vmx_compute_tsc_offset,
  5734. .set_tdp_cr3 = vmx_set_cr3,
  5735. .check_intercept = vmx_check_intercept,
  5736. };
  5737. static int __init vmx_init(void)
  5738. {
  5739. int r, i;
  5740. rdmsrl_safe(MSR_EFER, &host_efer);
  5741. for (i = 0; i < NR_VMX_MSR; ++i)
  5742. kvm_define_shared_msr(i, vmx_msr_index[i]);
  5743. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  5744. if (!vmx_io_bitmap_a)
  5745. return -ENOMEM;
  5746. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  5747. if (!vmx_io_bitmap_b) {
  5748. r = -ENOMEM;
  5749. goto out;
  5750. }
  5751. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  5752. if (!vmx_msr_bitmap_legacy) {
  5753. r = -ENOMEM;
  5754. goto out1;
  5755. }
  5756. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  5757. if (!vmx_msr_bitmap_longmode) {
  5758. r = -ENOMEM;
  5759. goto out2;
  5760. }
  5761. /*
  5762. * Allow direct access to the PC debug port (it is often used for I/O
  5763. * delays, but the vmexits simply slow things down).
  5764. */
  5765. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  5766. clear_bit(0x80, vmx_io_bitmap_a);
  5767. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  5768. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  5769. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  5770. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  5771. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  5772. __alignof__(struct vcpu_vmx), THIS_MODULE);
  5773. if (r)
  5774. goto out3;
  5775. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  5776. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  5777. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  5778. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  5779. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  5780. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  5781. if (enable_ept) {
  5782. bypass_guest_pf = 0;
  5783. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  5784. VMX_EPT_EXECUTABLE_MASK);
  5785. kvm_enable_tdp();
  5786. } else
  5787. kvm_disable_tdp();
  5788. if (bypass_guest_pf)
  5789. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  5790. return 0;
  5791. out3:
  5792. free_page((unsigned long)vmx_msr_bitmap_longmode);
  5793. out2:
  5794. free_page((unsigned long)vmx_msr_bitmap_legacy);
  5795. out1:
  5796. free_page((unsigned long)vmx_io_bitmap_b);
  5797. out:
  5798. free_page((unsigned long)vmx_io_bitmap_a);
  5799. return r;
  5800. }
  5801. static void __exit vmx_exit(void)
  5802. {
  5803. free_page((unsigned long)vmx_msr_bitmap_legacy);
  5804. free_page((unsigned long)vmx_msr_bitmap_longmode);
  5805. free_page((unsigned long)vmx_io_bitmap_b);
  5806. free_page((unsigned long)vmx_io_bitmap_a);
  5807. kvm_exit();
  5808. }
  5809. module_init(vmx_init)
  5810. module_exit(vmx_exit)