mm.h 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/mmzone.h>
  8. #include <linux/rbtree.h>
  9. #include <linux/prio_tree.h>
  10. #include <linux/debug_locks.h>
  11. #include <linux/mm_types.h>
  12. #include <linux/range.h>
  13. #include <linux/pfn.h>
  14. #include <linux/bit_spinlock.h>
  15. struct mempolicy;
  16. struct anon_vma;
  17. struct file_ra_state;
  18. struct user_struct;
  19. struct writeback_control;
  20. #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
  21. extern unsigned long max_mapnr;
  22. #endif
  23. extern unsigned long num_physpages;
  24. extern unsigned long totalram_pages;
  25. extern void * high_memory;
  26. extern int page_cluster;
  27. #ifdef CONFIG_SYSCTL
  28. extern int sysctl_legacy_va_layout;
  29. #else
  30. #define sysctl_legacy_va_layout 0
  31. #endif
  32. #include <asm/page.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  36. /* to align the pointer to the (next) page boundary */
  37. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  38. /*
  39. * Linux kernel virtual memory manager primitives.
  40. * The idea being to have a "virtual" mm in the same way
  41. * we have a virtual fs - giving a cleaner interface to the
  42. * mm details, and allowing different kinds of memory mappings
  43. * (from shared memory to executable loading to arbitrary
  44. * mmap() functions).
  45. */
  46. extern struct kmem_cache *vm_area_cachep;
  47. #ifndef CONFIG_MMU
  48. extern struct rb_root nommu_region_tree;
  49. extern struct rw_semaphore nommu_region_sem;
  50. extern unsigned int kobjsize(const void *objp);
  51. #endif
  52. /*
  53. * vm_flags in vm_area_struct, see mm_types.h.
  54. */
  55. #define VM_READ 0x00000001 /* currently active flags */
  56. #define VM_WRITE 0x00000002
  57. #define VM_EXEC 0x00000004
  58. #define VM_SHARED 0x00000008
  59. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  60. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  61. #define VM_MAYWRITE 0x00000020
  62. #define VM_MAYEXEC 0x00000040
  63. #define VM_MAYSHARE 0x00000080
  64. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  65. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  66. #define VM_GROWSUP 0x00000200
  67. #else
  68. #define VM_GROWSUP 0x00000000
  69. #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
  70. #endif
  71. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  72. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  73. #define VM_EXECUTABLE 0x00001000
  74. #define VM_LOCKED 0x00002000
  75. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  76. /* Used by sys_madvise() */
  77. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  78. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  79. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  80. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  81. #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
  82. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  83. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  84. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  85. #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
  86. #ifndef CONFIG_TRANSPARENT_HUGEPAGE
  87. #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
  88. #else
  89. #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
  90. #endif
  91. #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
  92. #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
  93. #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
  94. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  95. #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
  96. #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
  97. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  98. /* Bits set in the VMA until the stack is in its final location */
  99. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  100. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  101. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  102. #endif
  103. #ifdef CONFIG_STACK_GROWSUP
  104. #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  105. #else
  106. #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  107. #endif
  108. #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
  109. #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
  110. #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
  111. #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
  112. #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
  113. /*
  114. * Special vmas that are non-mergable, non-mlock()able.
  115. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  116. */
  117. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
  118. /*
  119. * mapping from the currently active vm_flags protection bits (the
  120. * low four bits) to a page protection mask..
  121. */
  122. extern pgprot_t protection_map[16];
  123. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  124. #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
  125. #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
  126. #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
  127. #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
  128. #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
  129. /*
  130. * This interface is used by x86 PAT code to identify a pfn mapping that is
  131. * linear over entire vma. This is to optimize PAT code that deals with
  132. * marking the physical region with a particular prot. This is not for generic
  133. * mm use. Note also that this check will not work if the pfn mapping is
  134. * linear for a vma starting at physical address 0. In which case PAT code
  135. * falls back to slow path of reserving physical range page by page.
  136. */
  137. static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
  138. {
  139. return !!(vma->vm_flags & VM_PFN_AT_MMAP);
  140. }
  141. static inline int is_pfn_mapping(struct vm_area_struct *vma)
  142. {
  143. return !!(vma->vm_flags & VM_PFNMAP);
  144. }
  145. /*
  146. * vm_fault is filled by the the pagefault handler and passed to the vma's
  147. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  148. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  149. *
  150. * pgoff should be used in favour of virtual_address, if possible. If pgoff
  151. * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
  152. * mapping support.
  153. */
  154. struct vm_fault {
  155. unsigned int flags; /* FAULT_FLAG_xxx flags */
  156. pgoff_t pgoff; /* Logical page offset based on vma */
  157. void __user *virtual_address; /* Faulting virtual address */
  158. struct page *page; /* ->fault handlers should return a
  159. * page here, unless VM_FAULT_NOPAGE
  160. * is set (which is also implied by
  161. * VM_FAULT_ERROR).
  162. */
  163. };
  164. /*
  165. * These are the virtual MM functions - opening of an area, closing and
  166. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  167. * to the functions called when a no-page or a wp-page exception occurs.
  168. */
  169. struct vm_operations_struct {
  170. void (*open)(struct vm_area_struct * area);
  171. void (*close)(struct vm_area_struct * area);
  172. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  173. /* notification that a previously read-only page is about to become
  174. * writable, if an error is returned it will cause a SIGBUS */
  175. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  176. /* called by access_process_vm when get_user_pages() fails, typically
  177. * for use by special VMAs that can switch between memory and hardware
  178. */
  179. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  180. void *buf, int len, int write);
  181. #ifdef CONFIG_NUMA
  182. /*
  183. * set_policy() op must add a reference to any non-NULL @new mempolicy
  184. * to hold the policy upon return. Caller should pass NULL @new to
  185. * remove a policy and fall back to surrounding context--i.e. do not
  186. * install a MPOL_DEFAULT policy, nor the task or system default
  187. * mempolicy.
  188. */
  189. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  190. /*
  191. * get_policy() op must add reference [mpol_get()] to any policy at
  192. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  193. * in mm/mempolicy.c will do this automatically.
  194. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  195. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  196. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  197. * must return NULL--i.e., do not "fallback" to task or system default
  198. * policy.
  199. */
  200. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  201. unsigned long addr);
  202. int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
  203. const nodemask_t *to, unsigned long flags);
  204. #endif
  205. };
  206. struct mmu_gather;
  207. struct inode;
  208. #define page_private(page) ((page)->private)
  209. #define set_page_private(page, v) ((page)->private = (v))
  210. /*
  211. * FIXME: take this include out, include page-flags.h in
  212. * files which need it (119 of them)
  213. */
  214. #include <linux/page-flags.h>
  215. #include <linux/huge_mm.h>
  216. /*
  217. * Methods to modify the page usage count.
  218. *
  219. * What counts for a page usage:
  220. * - cache mapping (page->mapping)
  221. * - private data (page->private)
  222. * - page mapped in a task's page tables, each mapping
  223. * is counted separately
  224. *
  225. * Also, many kernel routines increase the page count before a critical
  226. * routine so they can be sure the page doesn't go away from under them.
  227. */
  228. /*
  229. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  230. */
  231. static inline int put_page_testzero(struct page *page)
  232. {
  233. VM_BUG_ON(atomic_read(&page->_count) == 0);
  234. return atomic_dec_and_test(&page->_count);
  235. }
  236. /*
  237. * Try to grab a ref unless the page has a refcount of zero, return false if
  238. * that is the case.
  239. */
  240. static inline int get_page_unless_zero(struct page *page)
  241. {
  242. return atomic_inc_not_zero(&page->_count);
  243. }
  244. extern int page_is_ram(unsigned long pfn);
  245. /* Support for virtually mapped pages */
  246. struct page *vmalloc_to_page(const void *addr);
  247. unsigned long vmalloc_to_pfn(const void *addr);
  248. /*
  249. * Determine if an address is within the vmalloc range
  250. *
  251. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  252. * is no special casing required.
  253. */
  254. static inline int is_vmalloc_addr(const void *x)
  255. {
  256. #ifdef CONFIG_MMU
  257. unsigned long addr = (unsigned long)x;
  258. return addr >= VMALLOC_START && addr < VMALLOC_END;
  259. #else
  260. return 0;
  261. #endif
  262. }
  263. #ifdef CONFIG_MMU
  264. extern int is_vmalloc_or_module_addr(const void *x);
  265. #else
  266. static inline int is_vmalloc_or_module_addr(const void *x)
  267. {
  268. return 0;
  269. }
  270. #endif
  271. static inline void compound_lock(struct page *page)
  272. {
  273. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  274. bit_spin_lock(PG_compound_lock, &page->flags);
  275. #endif
  276. }
  277. static inline void compound_unlock(struct page *page)
  278. {
  279. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  280. bit_spin_unlock(PG_compound_lock, &page->flags);
  281. #endif
  282. }
  283. static inline unsigned long compound_lock_irqsave(struct page *page)
  284. {
  285. unsigned long uninitialized_var(flags);
  286. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  287. local_irq_save(flags);
  288. compound_lock(page);
  289. #endif
  290. return flags;
  291. }
  292. static inline void compound_unlock_irqrestore(struct page *page,
  293. unsigned long flags)
  294. {
  295. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  296. compound_unlock(page);
  297. local_irq_restore(flags);
  298. #endif
  299. }
  300. static inline struct page *compound_head(struct page *page)
  301. {
  302. if (unlikely(PageTail(page)))
  303. return page->first_page;
  304. return page;
  305. }
  306. static inline int page_count(struct page *page)
  307. {
  308. return atomic_read(&compound_head(page)->_count);
  309. }
  310. static inline void get_page(struct page *page)
  311. {
  312. /*
  313. * Getting a normal page or the head of a compound page
  314. * requires to already have an elevated page->_count. Only if
  315. * we're getting a tail page, the elevated page->_count is
  316. * required only in the head page, so for tail pages the
  317. * bugcheck only verifies that the page->_count isn't
  318. * negative.
  319. */
  320. VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
  321. atomic_inc(&page->_count);
  322. /*
  323. * Getting a tail page will elevate both the head and tail
  324. * page->_count(s).
  325. */
  326. if (unlikely(PageTail(page))) {
  327. /*
  328. * This is safe only because
  329. * __split_huge_page_refcount can't run under
  330. * get_page().
  331. */
  332. VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
  333. atomic_inc(&page->first_page->_count);
  334. }
  335. }
  336. static inline struct page *virt_to_head_page(const void *x)
  337. {
  338. struct page *page = virt_to_page(x);
  339. return compound_head(page);
  340. }
  341. /*
  342. * Setup the page count before being freed into the page allocator for
  343. * the first time (boot or memory hotplug)
  344. */
  345. static inline void init_page_count(struct page *page)
  346. {
  347. atomic_set(&page->_count, 1);
  348. }
  349. /*
  350. * PageBuddy() indicate that the page is free and in the buddy system
  351. * (see mm/page_alloc.c).
  352. *
  353. * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
  354. * -2 so that an underflow of the page_mapcount() won't be mistaken
  355. * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
  356. * efficiently by most CPU architectures.
  357. */
  358. #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
  359. static inline int PageBuddy(struct page *page)
  360. {
  361. return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
  362. }
  363. static inline void __SetPageBuddy(struct page *page)
  364. {
  365. VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
  366. atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
  367. }
  368. static inline void __ClearPageBuddy(struct page *page)
  369. {
  370. VM_BUG_ON(!PageBuddy(page));
  371. atomic_set(&page->_mapcount, -1);
  372. }
  373. void put_page(struct page *page);
  374. void put_pages_list(struct list_head *pages);
  375. void split_page(struct page *page, unsigned int order);
  376. int split_free_page(struct page *page);
  377. /*
  378. * Compound pages have a destructor function. Provide a
  379. * prototype for that function and accessor functions.
  380. * These are _only_ valid on the head of a PG_compound page.
  381. */
  382. typedef void compound_page_dtor(struct page *);
  383. static inline void set_compound_page_dtor(struct page *page,
  384. compound_page_dtor *dtor)
  385. {
  386. page[1].lru.next = (void *)dtor;
  387. }
  388. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  389. {
  390. return (compound_page_dtor *)page[1].lru.next;
  391. }
  392. static inline int compound_order(struct page *page)
  393. {
  394. if (!PageHead(page))
  395. return 0;
  396. return (unsigned long)page[1].lru.prev;
  397. }
  398. static inline int compound_trans_order(struct page *page)
  399. {
  400. int order;
  401. unsigned long flags;
  402. if (!PageHead(page))
  403. return 0;
  404. flags = compound_lock_irqsave(page);
  405. order = compound_order(page);
  406. compound_unlock_irqrestore(page, flags);
  407. return order;
  408. }
  409. static inline void set_compound_order(struct page *page, unsigned long order)
  410. {
  411. page[1].lru.prev = (void *)order;
  412. }
  413. #ifdef CONFIG_MMU
  414. /*
  415. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  416. * servicing faults for write access. In the normal case, do always want
  417. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  418. * that do not have writing enabled, when used by access_process_vm.
  419. */
  420. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  421. {
  422. if (likely(vma->vm_flags & VM_WRITE))
  423. pte = pte_mkwrite(pte);
  424. return pte;
  425. }
  426. #endif
  427. /*
  428. * Multiple processes may "see" the same page. E.g. for untouched
  429. * mappings of /dev/null, all processes see the same page full of
  430. * zeroes, and text pages of executables and shared libraries have
  431. * only one copy in memory, at most, normally.
  432. *
  433. * For the non-reserved pages, page_count(page) denotes a reference count.
  434. * page_count() == 0 means the page is free. page->lru is then used for
  435. * freelist management in the buddy allocator.
  436. * page_count() > 0 means the page has been allocated.
  437. *
  438. * Pages are allocated by the slab allocator in order to provide memory
  439. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  440. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  441. * unless a particular usage is carefully commented. (the responsibility of
  442. * freeing the kmalloc memory is the caller's, of course).
  443. *
  444. * A page may be used by anyone else who does a __get_free_page().
  445. * In this case, page_count still tracks the references, and should only
  446. * be used through the normal accessor functions. The top bits of page->flags
  447. * and page->virtual store page management information, but all other fields
  448. * are unused and could be used privately, carefully. The management of this
  449. * page is the responsibility of the one who allocated it, and those who have
  450. * subsequently been given references to it.
  451. *
  452. * The other pages (we may call them "pagecache pages") are completely
  453. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  454. * The following discussion applies only to them.
  455. *
  456. * A pagecache page contains an opaque `private' member, which belongs to the
  457. * page's address_space. Usually, this is the address of a circular list of
  458. * the page's disk buffers. PG_private must be set to tell the VM to call
  459. * into the filesystem to release these pages.
  460. *
  461. * A page may belong to an inode's memory mapping. In this case, page->mapping
  462. * is the pointer to the inode, and page->index is the file offset of the page,
  463. * in units of PAGE_CACHE_SIZE.
  464. *
  465. * If pagecache pages are not associated with an inode, they are said to be
  466. * anonymous pages. These may become associated with the swapcache, and in that
  467. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  468. *
  469. * In either case (swapcache or inode backed), the pagecache itself holds one
  470. * reference to the page. Setting PG_private should also increment the
  471. * refcount. The each user mapping also has a reference to the page.
  472. *
  473. * The pagecache pages are stored in a per-mapping radix tree, which is
  474. * rooted at mapping->page_tree, and indexed by offset.
  475. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  476. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  477. *
  478. * All pagecache pages may be subject to I/O:
  479. * - inode pages may need to be read from disk,
  480. * - inode pages which have been modified and are MAP_SHARED may need
  481. * to be written back to the inode on disk,
  482. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  483. * modified may need to be swapped out to swap space and (later) to be read
  484. * back into memory.
  485. */
  486. /*
  487. * The zone field is never updated after free_area_init_core()
  488. * sets it, so none of the operations on it need to be atomic.
  489. */
  490. /*
  491. * page->flags layout:
  492. *
  493. * There are three possibilities for how page->flags get
  494. * laid out. The first is for the normal case, without
  495. * sparsemem. The second is for sparsemem when there is
  496. * plenty of space for node and section. The last is when
  497. * we have run out of space and have to fall back to an
  498. * alternate (slower) way of determining the node.
  499. *
  500. * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
  501. * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
  502. * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
  503. */
  504. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  505. #define SECTIONS_WIDTH SECTIONS_SHIFT
  506. #else
  507. #define SECTIONS_WIDTH 0
  508. #endif
  509. #define ZONES_WIDTH ZONES_SHIFT
  510. #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
  511. #define NODES_WIDTH NODES_SHIFT
  512. #else
  513. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  514. #error "Vmemmap: No space for nodes field in page flags"
  515. #endif
  516. #define NODES_WIDTH 0
  517. #endif
  518. /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
  519. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  520. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  521. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  522. /*
  523. * We are going to use the flags for the page to node mapping if its in
  524. * there. This includes the case where there is no node, so it is implicit.
  525. */
  526. #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
  527. #define NODE_NOT_IN_PAGE_FLAGS
  528. #endif
  529. /*
  530. * Define the bit shifts to access each section. For non-existent
  531. * sections we define the shift as 0; that plus a 0 mask ensures
  532. * the compiler will optimise away reference to them.
  533. */
  534. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  535. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  536. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  537. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  538. #ifdef NODE_NOT_IN_PAGE_FLAGS
  539. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  540. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  541. SECTIONS_PGOFF : ZONES_PGOFF)
  542. #else
  543. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  544. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  545. NODES_PGOFF : ZONES_PGOFF)
  546. #endif
  547. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  548. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  549. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  550. #endif
  551. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  552. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  553. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  554. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  555. static inline enum zone_type page_zonenum(struct page *page)
  556. {
  557. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  558. }
  559. /*
  560. * The identification function is only used by the buddy allocator for
  561. * determining if two pages could be buddies. We are not really
  562. * identifying a zone since we could be using a the section number
  563. * id if we have not node id available in page flags.
  564. * We guarantee only that it will return the same value for two
  565. * combinable pages in a zone.
  566. */
  567. static inline int page_zone_id(struct page *page)
  568. {
  569. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  570. }
  571. static inline int zone_to_nid(struct zone *zone)
  572. {
  573. #ifdef CONFIG_NUMA
  574. return zone->node;
  575. #else
  576. return 0;
  577. #endif
  578. }
  579. #ifdef NODE_NOT_IN_PAGE_FLAGS
  580. extern int page_to_nid(struct page *page);
  581. #else
  582. static inline int page_to_nid(struct page *page)
  583. {
  584. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  585. }
  586. #endif
  587. static inline struct zone *page_zone(struct page *page)
  588. {
  589. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  590. }
  591. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  592. static inline void set_page_section(struct page *page, unsigned long section)
  593. {
  594. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  595. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  596. }
  597. static inline unsigned long page_to_section(struct page *page)
  598. {
  599. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  600. }
  601. #endif
  602. static inline void set_page_zone(struct page *page, enum zone_type zone)
  603. {
  604. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  605. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  606. }
  607. static inline void set_page_node(struct page *page, unsigned long node)
  608. {
  609. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  610. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  611. }
  612. static inline void set_page_links(struct page *page, enum zone_type zone,
  613. unsigned long node, unsigned long pfn)
  614. {
  615. set_page_zone(page, zone);
  616. set_page_node(page, node);
  617. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  618. set_page_section(page, pfn_to_section_nr(pfn));
  619. #endif
  620. }
  621. /*
  622. * Some inline functions in vmstat.h depend on page_zone()
  623. */
  624. #include <linux/vmstat.h>
  625. static __always_inline void *lowmem_page_address(struct page *page)
  626. {
  627. return __va(PFN_PHYS(page_to_pfn(page)));
  628. }
  629. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  630. #define HASHED_PAGE_VIRTUAL
  631. #endif
  632. #if defined(WANT_PAGE_VIRTUAL)
  633. #define page_address(page) ((page)->virtual)
  634. #define set_page_address(page, address) \
  635. do { \
  636. (page)->virtual = (address); \
  637. } while(0)
  638. #define page_address_init() do { } while(0)
  639. #endif
  640. #if defined(HASHED_PAGE_VIRTUAL)
  641. void *page_address(struct page *page);
  642. void set_page_address(struct page *page, void *virtual);
  643. void page_address_init(void);
  644. #endif
  645. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  646. #define page_address(page) lowmem_page_address(page)
  647. #define set_page_address(page, address) do { } while(0)
  648. #define page_address_init() do { } while(0)
  649. #endif
  650. /*
  651. * On an anonymous page mapped into a user virtual memory area,
  652. * page->mapping points to its anon_vma, not to a struct address_space;
  653. * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
  654. *
  655. * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
  656. * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
  657. * and then page->mapping points, not to an anon_vma, but to a private
  658. * structure which KSM associates with that merged page. See ksm.h.
  659. *
  660. * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
  661. *
  662. * Please note that, confusingly, "page_mapping" refers to the inode
  663. * address_space which maps the page from disk; whereas "page_mapped"
  664. * refers to user virtual address space into which the page is mapped.
  665. */
  666. #define PAGE_MAPPING_ANON 1
  667. #define PAGE_MAPPING_KSM 2
  668. #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
  669. extern struct address_space swapper_space;
  670. static inline struct address_space *page_mapping(struct page *page)
  671. {
  672. struct address_space *mapping = page->mapping;
  673. VM_BUG_ON(PageSlab(page));
  674. if (unlikely(PageSwapCache(page)))
  675. mapping = &swapper_space;
  676. else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
  677. mapping = NULL;
  678. return mapping;
  679. }
  680. /* Neutral page->mapping pointer to address_space or anon_vma or other */
  681. static inline void *page_rmapping(struct page *page)
  682. {
  683. return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
  684. }
  685. static inline int PageAnon(struct page *page)
  686. {
  687. return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
  688. }
  689. /*
  690. * Return the pagecache index of the passed page. Regular pagecache pages
  691. * use ->index whereas swapcache pages use ->private
  692. */
  693. static inline pgoff_t page_index(struct page *page)
  694. {
  695. if (unlikely(PageSwapCache(page)))
  696. return page_private(page);
  697. return page->index;
  698. }
  699. /*
  700. * The atomic page->_mapcount, like _count, starts from -1:
  701. * so that transitions both from it and to it can be tracked,
  702. * using atomic_inc_and_test and atomic_add_negative(-1).
  703. */
  704. static inline void reset_page_mapcount(struct page *page)
  705. {
  706. atomic_set(&(page)->_mapcount, -1);
  707. }
  708. static inline int page_mapcount(struct page *page)
  709. {
  710. return atomic_read(&(page)->_mapcount) + 1;
  711. }
  712. /*
  713. * Return true if this page is mapped into pagetables.
  714. */
  715. static inline int page_mapped(struct page *page)
  716. {
  717. return atomic_read(&(page)->_mapcount) >= 0;
  718. }
  719. /*
  720. * Different kinds of faults, as returned by handle_mm_fault().
  721. * Used to decide whether a process gets delivered SIGBUS or
  722. * just gets major/minor fault counters bumped up.
  723. */
  724. #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
  725. #define VM_FAULT_OOM 0x0001
  726. #define VM_FAULT_SIGBUS 0x0002
  727. #define VM_FAULT_MAJOR 0x0004
  728. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  729. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  730. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  731. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  732. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  733. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  734. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  735. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
  736. VM_FAULT_HWPOISON_LARGE)
  737. /* Encode hstate index for a hwpoisoned large page */
  738. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  739. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  740. /*
  741. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  742. */
  743. extern void pagefault_out_of_memory(void);
  744. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  745. /*
  746. * Flags passed to show_mem() and show_free_areas() to suppress output in
  747. * various contexts.
  748. */
  749. #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */
  750. extern void show_free_areas(unsigned int flags);
  751. extern bool skip_free_areas_node(unsigned int flags, int nid);
  752. int shmem_lock(struct file *file, int lock, struct user_struct *user);
  753. struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
  754. int shmem_zero_setup(struct vm_area_struct *);
  755. extern int can_do_mlock(void);
  756. extern int user_shm_lock(size_t, struct user_struct *);
  757. extern void user_shm_unlock(size_t, struct user_struct *);
  758. /*
  759. * Parameter block passed down to zap_pte_range in exceptional cases.
  760. */
  761. struct zap_details {
  762. struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
  763. struct address_space *check_mapping; /* Check page->mapping if set */
  764. pgoff_t first_index; /* Lowest page->index to unmap */
  765. pgoff_t last_index; /* Highest page->index to unmap */
  766. };
  767. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  768. pte_t pte);
  769. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  770. unsigned long size);
  771. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  772. unsigned long size, struct zap_details *);
  773. unsigned long unmap_vmas(struct mmu_gather *tlb,
  774. struct vm_area_struct *start_vma, unsigned long start_addr,
  775. unsigned long end_addr, unsigned long *nr_accounted,
  776. struct zap_details *);
  777. /**
  778. * mm_walk - callbacks for walk_page_range
  779. * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
  780. * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
  781. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  782. * this handler is required to be able to handle
  783. * pmd_trans_huge() pmds. They may simply choose to
  784. * split_huge_page() instead of handling it explicitly.
  785. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  786. * @pte_hole: if set, called for each hole at all levels
  787. * @hugetlb_entry: if set, called for each hugetlb entry
  788. *
  789. * (see walk_page_range for more details)
  790. */
  791. struct mm_walk {
  792. int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
  793. int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
  794. int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
  795. int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
  796. int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
  797. int (*hugetlb_entry)(pte_t *, unsigned long,
  798. unsigned long, unsigned long, struct mm_walk *);
  799. struct mm_struct *mm;
  800. void *private;
  801. };
  802. int walk_page_range(unsigned long addr, unsigned long end,
  803. struct mm_walk *walk);
  804. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  805. unsigned long end, unsigned long floor, unsigned long ceiling);
  806. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  807. struct vm_area_struct *vma);
  808. void unmap_mapping_range(struct address_space *mapping,
  809. loff_t const holebegin, loff_t const holelen, int even_cows);
  810. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  811. unsigned long *pfn);
  812. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  813. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  814. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  815. void *buf, int len, int write);
  816. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  817. loff_t const holebegin, loff_t const holelen)
  818. {
  819. unmap_mapping_range(mapping, holebegin, holelen, 0);
  820. }
  821. extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
  822. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  823. extern int vmtruncate(struct inode *inode, loff_t offset);
  824. extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
  825. int truncate_inode_page(struct address_space *mapping, struct page *page);
  826. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  827. int invalidate_inode_page(struct page *page);
  828. #ifdef CONFIG_MMU
  829. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  830. unsigned long address, unsigned int flags);
  831. #else
  832. static inline int handle_mm_fault(struct mm_struct *mm,
  833. struct vm_area_struct *vma, unsigned long address,
  834. unsigned int flags)
  835. {
  836. /* should never happen if there's no MMU */
  837. BUG();
  838. return VM_FAULT_SIGBUS;
  839. }
  840. #endif
  841. extern int make_pages_present(unsigned long addr, unsigned long end);
  842. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  843. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  844. void *buf, int len, int write);
  845. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  846. unsigned long start, int len, unsigned int foll_flags,
  847. struct page **pages, struct vm_area_struct **vmas,
  848. int *nonblocking);
  849. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  850. unsigned long start, int nr_pages, int write, int force,
  851. struct page **pages, struct vm_area_struct **vmas);
  852. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  853. struct page **pages);
  854. struct page *get_dump_page(unsigned long addr);
  855. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  856. extern void do_invalidatepage(struct page *page, unsigned long offset);
  857. int __set_page_dirty_nobuffers(struct page *page);
  858. int __set_page_dirty_no_writeback(struct page *page);
  859. int redirty_page_for_writepage(struct writeback_control *wbc,
  860. struct page *page);
  861. void account_page_dirtied(struct page *page, struct address_space *mapping);
  862. void account_page_writeback(struct page *page);
  863. int set_page_dirty(struct page *page);
  864. int set_page_dirty_lock(struct page *page);
  865. int clear_page_dirty_for_io(struct page *page);
  866. /* Is the vma a continuation of the stack vma above it? */
  867. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  868. {
  869. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  870. }
  871. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  872. unsigned long addr)
  873. {
  874. return (vma->vm_flags & VM_GROWSDOWN) &&
  875. (vma->vm_start == addr) &&
  876. !vma_growsdown(vma->vm_prev, addr);
  877. }
  878. /* Is the vma a continuation of the stack vma below it? */
  879. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  880. {
  881. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  882. }
  883. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  884. unsigned long addr)
  885. {
  886. return (vma->vm_flags & VM_GROWSUP) &&
  887. (vma->vm_end == addr) &&
  888. !vma_growsup(vma->vm_next, addr);
  889. }
  890. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  891. unsigned long old_addr, struct vm_area_struct *new_vma,
  892. unsigned long new_addr, unsigned long len);
  893. extern unsigned long do_mremap(unsigned long addr,
  894. unsigned long old_len, unsigned long new_len,
  895. unsigned long flags, unsigned long new_addr);
  896. extern int mprotect_fixup(struct vm_area_struct *vma,
  897. struct vm_area_struct **pprev, unsigned long start,
  898. unsigned long end, unsigned long newflags);
  899. /*
  900. * doesn't attempt to fault and will return short.
  901. */
  902. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  903. struct page **pages);
  904. /*
  905. * per-process(per-mm_struct) statistics.
  906. */
  907. static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
  908. {
  909. atomic_long_set(&mm->rss_stat.count[member], value);
  910. }
  911. #if defined(SPLIT_RSS_COUNTING)
  912. unsigned long get_mm_counter(struct mm_struct *mm, int member);
  913. #else
  914. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  915. {
  916. return atomic_long_read(&mm->rss_stat.count[member]);
  917. }
  918. #endif
  919. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  920. {
  921. atomic_long_add(value, &mm->rss_stat.count[member]);
  922. }
  923. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  924. {
  925. atomic_long_inc(&mm->rss_stat.count[member]);
  926. }
  927. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  928. {
  929. atomic_long_dec(&mm->rss_stat.count[member]);
  930. }
  931. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  932. {
  933. return get_mm_counter(mm, MM_FILEPAGES) +
  934. get_mm_counter(mm, MM_ANONPAGES);
  935. }
  936. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  937. {
  938. return max(mm->hiwater_rss, get_mm_rss(mm));
  939. }
  940. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  941. {
  942. return max(mm->hiwater_vm, mm->total_vm);
  943. }
  944. static inline void update_hiwater_rss(struct mm_struct *mm)
  945. {
  946. unsigned long _rss = get_mm_rss(mm);
  947. if ((mm)->hiwater_rss < _rss)
  948. (mm)->hiwater_rss = _rss;
  949. }
  950. static inline void update_hiwater_vm(struct mm_struct *mm)
  951. {
  952. if (mm->hiwater_vm < mm->total_vm)
  953. mm->hiwater_vm = mm->total_vm;
  954. }
  955. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  956. struct mm_struct *mm)
  957. {
  958. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  959. if (*maxrss < hiwater_rss)
  960. *maxrss = hiwater_rss;
  961. }
  962. #if defined(SPLIT_RSS_COUNTING)
  963. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
  964. #else
  965. static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  966. {
  967. }
  968. #endif
  969. /*
  970. * This struct is used to pass information from page reclaim to the shrinkers.
  971. * We consolidate the values for easier extention later.
  972. */
  973. struct shrink_control {
  974. gfp_t gfp_mask;
  975. /* How many slab objects shrinker() should scan and try to reclaim */
  976. unsigned long nr_to_scan;
  977. };
  978. /*
  979. * A callback you can register to apply pressure to ageable caches.
  980. *
  981. * 'sc' is passed shrink_control which includes a count 'nr_to_scan'
  982. * and a 'gfpmask'. It should look through the least-recently-used
  983. * 'nr_to_scan' entries and attempt to free them up. It should return
  984. * the number of objects which remain in the cache. If it returns -1, it means
  985. * it cannot do any scanning at this time (eg. there is a risk of deadlock).
  986. *
  987. * The 'gfpmask' refers to the allocation we are currently trying to
  988. * fulfil.
  989. *
  990. * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
  991. * querying the cache size, so a fastpath for that case is appropriate.
  992. */
  993. struct shrinker {
  994. int (*shrink)(struct shrinker *, struct shrink_control *sc);
  995. int seeks; /* seeks to recreate an obj */
  996. /* These are for internal use */
  997. struct list_head list;
  998. long nr; /* objs pending delete */
  999. };
  1000. #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
  1001. extern void register_shrinker(struct shrinker *);
  1002. extern void unregister_shrinker(struct shrinker *);
  1003. int vma_wants_writenotify(struct vm_area_struct *vma);
  1004. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1005. spinlock_t **ptl);
  1006. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1007. spinlock_t **ptl)
  1008. {
  1009. pte_t *ptep;
  1010. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1011. return ptep;
  1012. }
  1013. #ifdef __PAGETABLE_PUD_FOLDED
  1014. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1015. unsigned long address)
  1016. {
  1017. return 0;
  1018. }
  1019. #else
  1020. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1021. #endif
  1022. #ifdef __PAGETABLE_PMD_FOLDED
  1023. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1024. unsigned long address)
  1025. {
  1026. return 0;
  1027. }
  1028. #else
  1029. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1030. #endif
  1031. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  1032. pmd_t *pmd, unsigned long address);
  1033. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1034. /*
  1035. * The following ifdef needed to get the 4level-fixup.h header to work.
  1036. * Remove it when 4level-fixup.h has been removed.
  1037. */
  1038. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1039. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1040. {
  1041. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1042. NULL: pud_offset(pgd, address);
  1043. }
  1044. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1045. {
  1046. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1047. NULL: pmd_offset(pud, address);
  1048. }
  1049. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1050. #if USE_SPLIT_PTLOCKS
  1051. /*
  1052. * We tuck a spinlock to guard each pagetable page into its struct page,
  1053. * at page->private, with BUILD_BUG_ON to make sure that this will not
  1054. * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
  1055. * When freeing, reset page->mapping so free_pages_check won't complain.
  1056. */
  1057. #define __pte_lockptr(page) &((page)->ptl)
  1058. #define pte_lock_init(_page) do { \
  1059. spin_lock_init(__pte_lockptr(_page)); \
  1060. } while (0)
  1061. #define pte_lock_deinit(page) ((page)->mapping = NULL)
  1062. #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
  1063. #else /* !USE_SPLIT_PTLOCKS */
  1064. /*
  1065. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1066. */
  1067. #define pte_lock_init(page) do {} while (0)
  1068. #define pte_lock_deinit(page) do {} while (0)
  1069. #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
  1070. #endif /* USE_SPLIT_PTLOCKS */
  1071. static inline void pgtable_page_ctor(struct page *page)
  1072. {
  1073. pte_lock_init(page);
  1074. inc_zone_page_state(page, NR_PAGETABLE);
  1075. }
  1076. static inline void pgtable_page_dtor(struct page *page)
  1077. {
  1078. pte_lock_deinit(page);
  1079. dec_zone_page_state(page, NR_PAGETABLE);
  1080. }
  1081. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1082. ({ \
  1083. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1084. pte_t *__pte = pte_offset_map(pmd, address); \
  1085. *(ptlp) = __ptl; \
  1086. spin_lock(__ptl); \
  1087. __pte; \
  1088. })
  1089. #define pte_unmap_unlock(pte, ptl) do { \
  1090. spin_unlock(ptl); \
  1091. pte_unmap(pte); \
  1092. } while (0)
  1093. #define pte_alloc_map(mm, vma, pmd, address) \
  1094. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
  1095. pmd, address))? \
  1096. NULL: pte_offset_map(pmd, address))
  1097. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1098. ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
  1099. pmd, address))? \
  1100. NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
  1101. #define pte_alloc_kernel(pmd, address) \
  1102. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1103. NULL: pte_offset_kernel(pmd, address))
  1104. extern void free_area_init(unsigned long * zones_size);
  1105. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1106. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1107. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  1108. /*
  1109. * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
  1110. * zones, allocate the backing mem_map and account for memory holes in a more
  1111. * architecture independent manner. This is a substitute for creating the
  1112. * zone_sizes[] and zholes_size[] arrays and passing them to
  1113. * free_area_init_node()
  1114. *
  1115. * An architecture is expected to register range of page frames backed by
  1116. * physical memory with add_active_range() before calling
  1117. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1118. * usage, an architecture is expected to do something like
  1119. *
  1120. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1121. * max_highmem_pfn};
  1122. * for_each_valid_physical_page_range()
  1123. * add_active_range(node_id, start_pfn, end_pfn)
  1124. * free_area_init_nodes(max_zone_pfns);
  1125. *
  1126. * If the architecture guarantees that there are no holes in the ranges
  1127. * registered with add_active_range(), free_bootmem_active_regions()
  1128. * will call free_bootmem_node() for each registered physical page range.
  1129. * Similarly sparse_memory_present_with_active_regions() calls
  1130. * memory_present() for each range when SPARSEMEM is enabled.
  1131. *
  1132. * See mm/page_alloc.c for more information on each function exposed by
  1133. * CONFIG_ARCH_POPULATES_NODE_MAP
  1134. */
  1135. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1136. #ifndef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1137. extern void add_active_range(unsigned int nid, unsigned long start_pfn,
  1138. unsigned long end_pfn);
  1139. extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
  1140. unsigned long end_pfn);
  1141. extern void remove_all_active_ranges(void);
  1142. void sort_node_map(void);
  1143. #endif
  1144. unsigned long node_map_pfn_alignment(void);
  1145. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1146. unsigned long end_pfn);
  1147. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1148. unsigned long end_pfn);
  1149. extern void get_pfn_range_for_nid(unsigned int nid,
  1150. unsigned long *start_pfn, unsigned long *end_pfn);
  1151. extern unsigned long find_min_pfn_with_active_regions(void);
  1152. extern void free_bootmem_with_active_regions(int nid,
  1153. unsigned long max_low_pfn);
  1154. int add_from_early_node_map(struct range *range, int az,
  1155. int nr_range, int nid);
  1156. extern void sparse_memory_present_with_active_regions(int nid);
  1157. extern void __next_mem_pfn_range(int *idx, int nid,
  1158. unsigned long *out_start_pfn,
  1159. unsigned long *out_end_pfn, int *out_nid);
  1160. /**
  1161. * for_each_mem_pfn_range - early memory pfn range iterator
  1162. * @i: an integer used as loop variable
  1163. * @nid: node selector, %MAX_NUMNODES for all nodes
  1164. * @p_start: ptr to ulong for start pfn of the range, can be %NULL
  1165. * @p_end: ptr to ulong for end pfn of the range, can be %NULL
  1166. * @p_nid: ptr to int for nid of the range, can be %NULL
  1167. *
  1168. * Walks over configured memory ranges. Available after early_node_map is
  1169. * populated.
  1170. */
  1171. #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
  1172. for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
  1173. i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
  1174. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  1175. #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
  1176. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1177. static inline int __early_pfn_to_nid(unsigned long pfn)
  1178. {
  1179. return 0;
  1180. }
  1181. #else
  1182. /* please see mm/page_alloc.c */
  1183. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1184. #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  1185. /* there is a per-arch backend function. */
  1186. extern int __meminit __early_pfn_to_nid(unsigned long pfn);
  1187. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  1188. #endif
  1189. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1190. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1191. unsigned long, enum memmap_context);
  1192. extern void setup_per_zone_wmarks(void);
  1193. extern int __meminit init_per_zone_wmark_min(void);
  1194. extern void mem_init(void);
  1195. extern void __init mmap_init(void);
  1196. extern void show_mem(unsigned int flags);
  1197. extern void si_meminfo(struct sysinfo * val);
  1198. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1199. extern int after_bootmem;
  1200. extern void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
  1201. extern void setup_per_cpu_pageset(void);
  1202. extern void zone_pcp_update(struct zone *zone);
  1203. /* nommu.c */
  1204. extern atomic_long_t mmap_pages_allocated;
  1205. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1206. /* prio_tree.c */
  1207. void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
  1208. void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
  1209. void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
  1210. struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
  1211. struct prio_tree_iter *iter);
  1212. #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
  1213. for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
  1214. (vma = vma_prio_tree_next(vma, iter)); )
  1215. static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
  1216. struct list_head *list)
  1217. {
  1218. vma->shared.vm_set.parent = NULL;
  1219. list_add_tail(&vma->shared.vm_set.list, list);
  1220. }
  1221. /* mmap.c */
  1222. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1223. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1224. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1225. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1226. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1227. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1228. struct mempolicy *);
  1229. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1230. extern int split_vma(struct mm_struct *,
  1231. struct vm_area_struct *, unsigned long addr, int new_below);
  1232. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1233. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1234. struct rb_node **, struct rb_node *);
  1235. extern void unlink_file_vma(struct vm_area_struct *);
  1236. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1237. unsigned long addr, unsigned long len, pgoff_t pgoff);
  1238. extern void exit_mmap(struct mm_struct *);
  1239. extern int mm_take_all_locks(struct mm_struct *mm);
  1240. extern void mm_drop_all_locks(struct mm_struct *mm);
  1241. /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
  1242. extern void added_exe_file_vma(struct mm_struct *mm);
  1243. extern void removed_exe_file_vma(struct mm_struct *mm);
  1244. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1245. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1246. extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
  1247. extern int install_special_mapping(struct mm_struct *mm,
  1248. unsigned long addr, unsigned long len,
  1249. unsigned long flags, struct page **pages);
  1250. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1251. extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1252. unsigned long len, unsigned long prot,
  1253. unsigned long flag, unsigned long pgoff);
  1254. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1255. unsigned long len, unsigned long flags,
  1256. vm_flags_t vm_flags, unsigned long pgoff);
  1257. static inline unsigned long do_mmap(struct file *file, unsigned long addr,
  1258. unsigned long len, unsigned long prot,
  1259. unsigned long flag, unsigned long offset)
  1260. {
  1261. unsigned long ret = -EINVAL;
  1262. if ((offset + PAGE_ALIGN(len)) < offset)
  1263. goto out;
  1264. if (!(offset & ~PAGE_MASK))
  1265. ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
  1266. out:
  1267. return ret;
  1268. }
  1269. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1270. extern unsigned long do_brk(unsigned long, unsigned long);
  1271. /* filemap.c */
  1272. extern unsigned long page_unuse(struct page *);
  1273. extern void truncate_inode_pages(struct address_space *, loff_t);
  1274. extern void truncate_inode_pages_range(struct address_space *,
  1275. loff_t lstart, loff_t lend);
  1276. /* generic vm_area_ops exported for stackable file systems */
  1277. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1278. /* mm/page-writeback.c */
  1279. int write_one_page(struct page *page, int wait);
  1280. void task_dirty_inc(struct task_struct *tsk);
  1281. /* readahead.c */
  1282. #define VM_MAX_READAHEAD 128 /* kbytes */
  1283. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1284. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1285. pgoff_t offset, unsigned long nr_to_read);
  1286. void page_cache_sync_readahead(struct address_space *mapping,
  1287. struct file_ra_state *ra,
  1288. struct file *filp,
  1289. pgoff_t offset,
  1290. unsigned long size);
  1291. void page_cache_async_readahead(struct address_space *mapping,
  1292. struct file_ra_state *ra,
  1293. struct file *filp,
  1294. struct page *pg,
  1295. pgoff_t offset,
  1296. unsigned long size);
  1297. unsigned long max_sane_readahead(unsigned long nr);
  1298. unsigned long ra_submit(struct file_ra_state *ra,
  1299. struct address_space *mapping,
  1300. struct file *filp);
  1301. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1302. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1303. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1304. extern int expand_downwards(struct vm_area_struct *vma,
  1305. unsigned long address);
  1306. #if VM_GROWSUP
  1307. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1308. #else
  1309. #define expand_upwards(vma, address) do { } while (0)
  1310. #endif
  1311. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1312. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1313. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1314. struct vm_area_struct **pprev);
  1315. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1316. NULL if none. Assume start_addr < end_addr. */
  1317. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1318. {
  1319. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1320. if (vma && end_addr <= vma->vm_start)
  1321. vma = NULL;
  1322. return vma;
  1323. }
  1324. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1325. {
  1326. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1327. }
  1328. #ifdef CONFIG_MMU
  1329. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1330. #else
  1331. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1332. {
  1333. return __pgprot(0);
  1334. }
  1335. #endif
  1336. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1337. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1338. unsigned long pfn, unsigned long size, pgprot_t);
  1339. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1340. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1341. unsigned long pfn);
  1342. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1343. unsigned long pfn);
  1344. struct page *follow_page(struct vm_area_struct *, unsigned long address,
  1345. unsigned int foll_flags);
  1346. #define FOLL_WRITE 0x01 /* check pte is writable */
  1347. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1348. #define FOLL_GET 0x04 /* do get_page on page */
  1349. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1350. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1351. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1352. * and return without waiting upon it */
  1353. #define FOLL_MLOCK 0x40 /* mark page as mlocked */
  1354. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1355. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1356. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1357. void *data);
  1358. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1359. unsigned long size, pte_fn_t fn, void *data);
  1360. #ifdef CONFIG_PROC_FS
  1361. void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
  1362. #else
  1363. static inline void vm_stat_account(struct mm_struct *mm,
  1364. unsigned long flags, struct file *file, long pages)
  1365. {
  1366. }
  1367. #endif /* CONFIG_PROC_FS */
  1368. #ifdef CONFIG_DEBUG_PAGEALLOC
  1369. extern int debug_pagealloc_enabled;
  1370. extern void kernel_map_pages(struct page *page, int numpages, int enable);
  1371. static inline void enable_debug_pagealloc(void)
  1372. {
  1373. debug_pagealloc_enabled = 1;
  1374. }
  1375. #ifdef CONFIG_HIBERNATION
  1376. extern bool kernel_page_present(struct page *page);
  1377. #endif /* CONFIG_HIBERNATION */
  1378. #else
  1379. static inline void
  1380. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1381. static inline void enable_debug_pagealloc(void)
  1382. {
  1383. }
  1384. #ifdef CONFIG_HIBERNATION
  1385. static inline bool kernel_page_present(struct page *page) { return true; }
  1386. #endif /* CONFIG_HIBERNATION */
  1387. #endif
  1388. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1389. #ifdef __HAVE_ARCH_GATE_AREA
  1390. int in_gate_area_no_mm(unsigned long addr);
  1391. int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1392. #else
  1393. int in_gate_area_no_mm(unsigned long addr);
  1394. #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
  1395. #endif /* __HAVE_ARCH_GATE_AREA */
  1396. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1397. void __user *, size_t *, loff_t *);
  1398. unsigned long shrink_slab(struct shrink_control *shrink,
  1399. unsigned long nr_pages_scanned,
  1400. unsigned long lru_pages);
  1401. #ifndef CONFIG_MMU
  1402. #define randomize_va_space 0
  1403. #else
  1404. extern int randomize_va_space;
  1405. #endif
  1406. const char * arch_vma_name(struct vm_area_struct *vma);
  1407. void print_vma_addr(char *prefix, unsigned long rip);
  1408. void sparse_mem_maps_populate_node(struct page **map_map,
  1409. unsigned long pnum_begin,
  1410. unsigned long pnum_end,
  1411. unsigned long map_count,
  1412. int nodeid);
  1413. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  1414. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  1415. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  1416. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  1417. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  1418. void *vmemmap_alloc_block(unsigned long size, int node);
  1419. void *vmemmap_alloc_block_buf(unsigned long size, int node);
  1420. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  1421. int vmemmap_populate_basepages(struct page *start_page,
  1422. unsigned long pages, int node);
  1423. int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
  1424. void vmemmap_populate_print_last(void);
  1425. enum mf_flags {
  1426. MF_COUNT_INCREASED = 1 << 0,
  1427. };
  1428. extern void memory_failure(unsigned long pfn, int trapno);
  1429. extern int __memory_failure(unsigned long pfn, int trapno, int flags);
  1430. extern int unpoison_memory(unsigned long pfn);
  1431. extern int sysctl_memory_failure_early_kill;
  1432. extern int sysctl_memory_failure_recovery;
  1433. extern void shake_page(struct page *p, int access);
  1434. extern atomic_long_t mce_bad_pages;
  1435. extern int soft_offline_page(struct page *page, int flags);
  1436. extern void dump_page(struct page *page);
  1437. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  1438. extern void clear_huge_page(struct page *page,
  1439. unsigned long addr,
  1440. unsigned int pages_per_huge_page);
  1441. extern void copy_user_huge_page(struct page *dst, struct page *src,
  1442. unsigned long addr, struct vm_area_struct *vma,
  1443. unsigned int pages_per_huge_page);
  1444. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  1445. #endif /* __KERNEL__ */
  1446. #endif /* _LINUX_MM_H */