vmalloc.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <asm/atomic.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/shmparam.h>
  32. /*** Page table manipulation functions ***/
  33. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  34. {
  35. pte_t *pte;
  36. pte = pte_offset_kernel(pmd, addr);
  37. do {
  38. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  39. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  40. } while (pte++, addr += PAGE_SIZE, addr != end);
  41. }
  42. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  43. {
  44. pmd_t *pmd;
  45. unsigned long next;
  46. pmd = pmd_offset(pud, addr);
  47. do {
  48. next = pmd_addr_end(addr, end);
  49. if (pmd_none_or_clear_bad(pmd))
  50. continue;
  51. vunmap_pte_range(pmd, addr, next);
  52. } while (pmd++, addr = next, addr != end);
  53. }
  54. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  55. {
  56. pud_t *pud;
  57. unsigned long next;
  58. pud = pud_offset(pgd, addr);
  59. do {
  60. next = pud_addr_end(addr, end);
  61. if (pud_none_or_clear_bad(pud))
  62. continue;
  63. vunmap_pmd_range(pud, addr, next);
  64. } while (pud++, addr = next, addr != end);
  65. }
  66. static void vunmap_page_range(unsigned long addr, unsigned long end)
  67. {
  68. pgd_t *pgd;
  69. unsigned long next;
  70. BUG_ON(addr >= end);
  71. pgd = pgd_offset_k(addr);
  72. do {
  73. next = pgd_addr_end(addr, end);
  74. if (pgd_none_or_clear_bad(pgd))
  75. continue;
  76. vunmap_pud_range(pgd, addr, next);
  77. } while (pgd++, addr = next, addr != end);
  78. }
  79. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  80. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  81. {
  82. pte_t *pte;
  83. /*
  84. * nr is a running index into the array which helps higher level
  85. * callers keep track of where we're up to.
  86. */
  87. pte = pte_alloc_kernel(pmd, addr);
  88. if (!pte)
  89. return -ENOMEM;
  90. do {
  91. struct page *page = pages[*nr];
  92. if (WARN_ON(!pte_none(*pte)))
  93. return -EBUSY;
  94. if (WARN_ON(!page))
  95. return -ENOMEM;
  96. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  97. (*nr)++;
  98. } while (pte++, addr += PAGE_SIZE, addr != end);
  99. return 0;
  100. }
  101. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  102. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  103. {
  104. pmd_t *pmd;
  105. unsigned long next;
  106. pmd = pmd_alloc(&init_mm, pud, addr);
  107. if (!pmd)
  108. return -ENOMEM;
  109. do {
  110. next = pmd_addr_end(addr, end);
  111. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  112. return -ENOMEM;
  113. } while (pmd++, addr = next, addr != end);
  114. return 0;
  115. }
  116. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  117. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  118. {
  119. pud_t *pud;
  120. unsigned long next;
  121. pud = pud_alloc(&init_mm, pgd, addr);
  122. if (!pud)
  123. return -ENOMEM;
  124. do {
  125. next = pud_addr_end(addr, end);
  126. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  127. return -ENOMEM;
  128. } while (pud++, addr = next, addr != end);
  129. return 0;
  130. }
  131. /*
  132. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  133. * will have pfns corresponding to the "pages" array.
  134. *
  135. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  136. */
  137. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  138. pgprot_t prot, struct page **pages)
  139. {
  140. pgd_t *pgd;
  141. unsigned long next;
  142. unsigned long addr = start;
  143. int err = 0;
  144. int nr = 0;
  145. BUG_ON(addr >= end);
  146. pgd = pgd_offset_k(addr);
  147. do {
  148. next = pgd_addr_end(addr, end);
  149. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  150. if (err)
  151. return err;
  152. } while (pgd++, addr = next, addr != end);
  153. return nr;
  154. }
  155. static int vmap_page_range(unsigned long start, unsigned long end,
  156. pgprot_t prot, struct page **pages)
  157. {
  158. int ret;
  159. ret = vmap_page_range_noflush(start, end, prot, pages);
  160. flush_cache_vmap(start, end);
  161. return ret;
  162. }
  163. int is_vmalloc_or_module_addr(const void *x)
  164. {
  165. /*
  166. * ARM, x86-64 and sparc64 put modules in a special place,
  167. * and fall back on vmalloc() if that fails. Others
  168. * just put it in the vmalloc space.
  169. */
  170. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  171. unsigned long addr = (unsigned long)x;
  172. if (addr >= MODULES_VADDR && addr < MODULES_END)
  173. return 1;
  174. #endif
  175. return is_vmalloc_addr(x);
  176. }
  177. /*
  178. * Walk a vmap address to the struct page it maps.
  179. */
  180. struct page *vmalloc_to_page(const void *vmalloc_addr)
  181. {
  182. unsigned long addr = (unsigned long) vmalloc_addr;
  183. struct page *page = NULL;
  184. pgd_t *pgd = pgd_offset_k(addr);
  185. /*
  186. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  187. * architectures that do not vmalloc module space
  188. */
  189. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  190. if (!pgd_none(*pgd)) {
  191. pud_t *pud = pud_offset(pgd, addr);
  192. if (!pud_none(*pud)) {
  193. pmd_t *pmd = pmd_offset(pud, addr);
  194. if (!pmd_none(*pmd)) {
  195. pte_t *ptep, pte;
  196. ptep = pte_offset_map(pmd, addr);
  197. pte = *ptep;
  198. if (pte_present(pte))
  199. page = pte_page(pte);
  200. pte_unmap(ptep);
  201. }
  202. }
  203. }
  204. return page;
  205. }
  206. EXPORT_SYMBOL(vmalloc_to_page);
  207. /*
  208. * Map a vmalloc()-space virtual address to the physical page frame number.
  209. */
  210. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  211. {
  212. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  213. }
  214. EXPORT_SYMBOL(vmalloc_to_pfn);
  215. /*** Global kva allocator ***/
  216. #define VM_LAZY_FREE 0x01
  217. #define VM_LAZY_FREEING 0x02
  218. #define VM_VM_AREA 0x04
  219. struct vmap_area {
  220. unsigned long va_start;
  221. unsigned long va_end;
  222. unsigned long flags;
  223. struct rb_node rb_node; /* address sorted rbtree */
  224. struct list_head list; /* address sorted list */
  225. struct list_head purge_list; /* "lazy purge" list */
  226. void *private;
  227. struct rcu_head rcu_head;
  228. };
  229. static DEFINE_SPINLOCK(vmap_area_lock);
  230. static struct rb_root vmap_area_root = RB_ROOT;
  231. static LIST_HEAD(vmap_area_list);
  232. static unsigned long vmap_area_pcpu_hole;
  233. static struct vmap_area *__find_vmap_area(unsigned long addr)
  234. {
  235. struct rb_node *n = vmap_area_root.rb_node;
  236. while (n) {
  237. struct vmap_area *va;
  238. va = rb_entry(n, struct vmap_area, rb_node);
  239. if (addr < va->va_start)
  240. n = n->rb_left;
  241. else if (addr > va->va_start)
  242. n = n->rb_right;
  243. else
  244. return va;
  245. }
  246. return NULL;
  247. }
  248. static void __insert_vmap_area(struct vmap_area *va)
  249. {
  250. struct rb_node **p = &vmap_area_root.rb_node;
  251. struct rb_node *parent = NULL;
  252. struct rb_node *tmp;
  253. while (*p) {
  254. struct vmap_area *tmp;
  255. parent = *p;
  256. tmp = rb_entry(parent, struct vmap_area, rb_node);
  257. if (va->va_start < tmp->va_end)
  258. p = &(*p)->rb_left;
  259. else if (va->va_end > tmp->va_start)
  260. p = &(*p)->rb_right;
  261. else
  262. BUG();
  263. }
  264. rb_link_node(&va->rb_node, parent, p);
  265. rb_insert_color(&va->rb_node, &vmap_area_root);
  266. /* address-sort this list so it is usable like the vmlist */
  267. tmp = rb_prev(&va->rb_node);
  268. if (tmp) {
  269. struct vmap_area *prev;
  270. prev = rb_entry(tmp, struct vmap_area, rb_node);
  271. list_add_rcu(&va->list, &prev->list);
  272. } else
  273. list_add_rcu(&va->list, &vmap_area_list);
  274. }
  275. static void purge_vmap_area_lazy(void);
  276. /*
  277. * Allocate a region of KVA of the specified size and alignment, within the
  278. * vstart and vend.
  279. */
  280. static struct vmap_area *alloc_vmap_area(unsigned long size,
  281. unsigned long align,
  282. unsigned long vstart, unsigned long vend,
  283. int node, gfp_t gfp_mask)
  284. {
  285. struct vmap_area *va;
  286. struct rb_node *n;
  287. unsigned long addr;
  288. int purged = 0;
  289. BUG_ON(!size);
  290. BUG_ON(size & ~PAGE_MASK);
  291. va = kmalloc_node(sizeof(struct vmap_area),
  292. gfp_mask & GFP_RECLAIM_MASK, node);
  293. if (unlikely(!va))
  294. return ERR_PTR(-ENOMEM);
  295. retry:
  296. addr = ALIGN(vstart, align);
  297. spin_lock(&vmap_area_lock);
  298. if (addr + size - 1 < addr)
  299. goto overflow;
  300. /* XXX: could have a last_hole cache */
  301. n = vmap_area_root.rb_node;
  302. if (n) {
  303. struct vmap_area *first = NULL;
  304. do {
  305. struct vmap_area *tmp;
  306. tmp = rb_entry(n, struct vmap_area, rb_node);
  307. if (tmp->va_end >= addr) {
  308. if (!first && tmp->va_start < addr + size)
  309. first = tmp;
  310. n = n->rb_left;
  311. } else {
  312. first = tmp;
  313. n = n->rb_right;
  314. }
  315. } while (n);
  316. if (!first)
  317. goto found;
  318. if (first->va_end < addr) {
  319. n = rb_next(&first->rb_node);
  320. if (n)
  321. first = rb_entry(n, struct vmap_area, rb_node);
  322. else
  323. goto found;
  324. }
  325. while (addr + size > first->va_start && addr + size <= vend) {
  326. addr = ALIGN(first->va_end + PAGE_SIZE, align);
  327. if (addr + size - 1 < addr)
  328. goto overflow;
  329. n = rb_next(&first->rb_node);
  330. if (n)
  331. first = rb_entry(n, struct vmap_area, rb_node);
  332. else
  333. goto found;
  334. }
  335. }
  336. found:
  337. if (addr + size > vend) {
  338. overflow:
  339. spin_unlock(&vmap_area_lock);
  340. if (!purged) {
  341. purge_vmap_area_lazy();
  342. purged = 1;
  343. goto retry;
  344. }
  345. if (printk_ratelimit())
  346. printk(KERN_WARNING
  347. "vmap allocation for size %lu failed: "
  348. "use vmalloc=<size> to increase size.\n", size);
  349. kfree(va);
  350. return ERR_PTR(-EBUSY);
  351. }
  352. BUG_ON(addr & (align-1));
  353. va->va_start = addr;
  354. va->va_end = addr + size;
  355. va->flags = 0;
  356. __insert_vmap_area(va);
  357. spin_unlock(&vmap_area_lock);
  358. return va;
  359. }
  360. static void rcu_free_va(struct rcu_head *head)
  361. {
  362. struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
  363. kfree(va);
  364. }
  365. static void __free_vmap_area(struct vmap_area *va)
  366. {
  367. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  368. rb_erase(&va->rb_node, &vmap_area_root);
  369. RB_CLEAR_NODE(&va->rb_node);
  370. list_del_rcu(&va->list);
  371. /*
  372. * Track the highest possible candidate for pcpu area
  373. * allocation. Areas outside of vmalloc area can be returned
  374. * here too, consider only end addresses which fall inside
  375. * vmalloc area proper.
  376. */
  377. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  378. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  379. call_rcu(&va->rcu_head, rcu_free_va);
  380. }
  381. /*
  382. * Free a region of KVA allocated by alloc_vmap_area
  383. */
  384. static void free_vmap_area(struct vmap_area *va)
  385. {
  386. spin_lock(&vmap_area_lock);
  387. __free_vmap_area(va);
  388. spin_unlock(&vmap_area_lock);
  389. }
  390. /*
  391. * Clear the pagetable entries of a given vmap_area
  392. */
  393. static void unmap_vmap_area(struct vmap_area *va)
  394. {
  395. vunmap_page_range(va->va_start, va->va_end);
  396. }
  397. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  398. {
  399. /*
  400. * Unmap page tables and force a TLB flush immediately if
  401. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  402. * bugs similarly to those in linear kernel virtual address
  403. * space after a page has been freed.
  404. *
  405. * All the lazy freeing logic is still retained, in order to
  406. * minimise intrusiveness of this debugging feature.
  407. *
  408. * This is going to be *slow* (linear kernel virtual address
  409. * debugging doesn't do a broadcast TLB flush so it is a lot
  410. * faster).
  411. */
  412. #ifdef CONFIG_DEBUG_PAGEALLOC
  413. vunmap_page_range(start, end);
  414. flush_tlb_kernel_range(start, end);
  415. #endif
  416. }
  417. /*
  418. * lazy_max_pages is the maximum amount of virtual address space we gather up
  419. * before attempting to purge with a TLB flush.
  420. *
  421. * There is a tradeoff here: a larger number will cover more kernel page tables
  422. * and take slightly longer to purge, but it will linearly reduce the number of
  423. * global TLB flushes that must be performed. It would seem natural to scale
  424. * this number up linearly with the number of CPUs (because vmapping activity
  425. * could also scale linearly with the number of CPUs), however it is likely
  426. * that in practice, workloads might be constrained in other ways that mean
  427. * vmap activity will not scale linearly with CPUs. Also, I want to be
  428. * conservative and not introduce a big latency on huge systems, so go with
  429. * a less aggressive log scale. It will still be an improvement over the old
  430. * code, and it will be simple to change the scale factor if we find that it
  431. * becomes a problem on bigger systems.
  432. */
  433. static unsigned long lazy_max_pages(void)
  434. {
  435. unsigned int log;
  436. log = fls(num_online_cpus());
  437. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  438. }
  439. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  440. /*
  441. * Purges all lazily-freed vmap areas.
  442. *
  443. * If sync is 0 then don't purge if there is already a purge in progress.
  444. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  445. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  446. * their own TLB flushing).
  447. * Returns with *start = min(*start, lowest purged address)
  448. * *end = max(*end, highest purged address)
  449. */
  450. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  451. int sync, int force_flush)
  452. {
  453. static DEFINE_SPINLOCK(purge_lock);
  454. LIST_HEAD(valist);
  455. struct vmap_area *va;
  456. struct vmap_area *n_va;
  457. int nr = 0;
  458. /*
  459. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  460. * should not expect such behaviour. This just simplifies locking for
  461. * the case that isn't actually used at the moment anyway.
  462. */
  463. if (!sync && !force_flush) {
  464. if (!spin_trylock(&purge_lock))
  465. return;
  466. } else
  467. spin_lock(&purge_lock);
  468. rcu_read_lock();
  469. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  470. if (va->flags & VM_LAZY_FREE) {
  471. if (va->va_start < *start)
  472. *start = va->va_start;
  473. if (va->va_end > *end)
  474. *end = va->va_end;
  475. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  476. unmap_vmap_area(va);
  477. list_add_tail(&va->purge_list, &valist);
  478. va->flags |= VM_LAZY_FREEING;
  479. va->flags &= ~VM_LAZY_FREE;
  480. }
  481. }
  482. rcu_read_unlock();
  483. if (nr)
  484. atomic_sub(nr, &vmap_lazy_nr);
  485. if (nr || force_flush)
  486. flush_tlb_kernel_range(*start, *end);
  487. if (nr) {
  488. spin_lock(&vmap_area_lock);
  489. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  490. __free_vmap_area(va);
  491. spin_unlock(&vmap_area_lock);
  492. }
  493. spin_unlock(&purge_lock);
  494. }
  495. /*
  496. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  497. * is already purging.
  498. */
  499. static void try_purge_vmap_area_lazy(void)
  500. {
  501. unsigned long start = ULONG_MAX, end = 0;
  502. __purge_vmap_area_lazy(&start, &end, 0, 0);
  503. }
  504. /*
  505. * Kick off a purge of the outstanding lazy areas.
  506. */
  507. static void purge_vmap_area_lazy(void)
  508. {
  509. unsigned long start = ULONG_MAX, end = 0;
  510. __purge_vmap_area_lazy(&start, &end, 1, 0);
  511. }
  512. /*
  513. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  514. * called for the correct range previously.
  515. */
  516. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  517. {
  518. va->flags |= VM_LAZY_FREE;
  519. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  520. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  521. try_purge_vmap_area_lazy();
  522. }
  523. /*
  524. * Free and unmap a vmap area
  525. */
  526. static void free_unmap_vmap_area(struct vmap_area *va)
  527. {
  528. flush_cache_vunmap(va->va_start, va->va_end);
  529. free_unmap_vmap_area_noflush(va);
  530. }
  531. static struct vmap_area *find_vmap_area(unsigned long addr)
  532. {
  533. struct vmap_area *va;
  534. spin_lock(&vmap_area_lock);
  535. va = __find_vmap_area(addr);
  536. spin_unlock(&vmap_area_lock);
  537. return va;
  538. }
  539. static void free_unmap_vmap_area_addr(unsigned long addr)
  540. {
  541. struct vmap_area *va;
  542. va = find_vmap_area(addr);
  543. BUG_ON(!va);
  544. free_unmap_vmap_area(va);
  545. }
  546. /*** Per cpu kva allocator ***/
  547. /*
  548. * vmap space is limited especially on 32 bit architectures. Ensure there is
  549. * room for at least 16 percpu vmap blocks per CPU.
  550. */
  551. /*
  552. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  553. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  554. * instead (we just need a rough idea)
  555. */
  556. #if BITS_PER_LONG == 32
  557. #define VMALLOC_SPACE (128UL*1024*1024)
  558. #else
  559. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  560. #endif
  561. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  562. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  563. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  564. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  565. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  566. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  567. #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  568. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  569. VMALLOC_PAGES / NR_CPUS / 16))
  570. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  571. static bool vmap_initialized __read_mostly = false;
  572. struct vmap_block_queue {
  573. spinlock_t lock;
  574. struct list_head free;
  575. struct list_head dirty;
  576. unsigned int nr_dirty;
  577. };
  578. struct vmap_block {
  579. spinlock_t lock;
  580. struct vmap_area *va;
  581. struct vmap_block_queue *vbq;
  582. unsigned long free, dirty;
  583. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  584. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  585. union {
  586. struct list_head free_list;
  587. struct rcu_head rcu_head;
  588. };
  589. };
  590. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  591. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  592. /*
  593. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  594. * in the free path. Could get rid of this if we change the API to return a
  595. * "cookie" from alloc, to be passed to free. But no big deal yet.
  596. */
  597. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  598. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  599. /*
  600. * We should probably have a fallback mechanism to allocate virtual memory
  601. * out of partially filled vmap blocks. However vmap block sizing should be
  602. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  603. * big problem.
  604. */
  605. static unsigned long addr_to_vb_idx(unsigned long addr)
  606. {
  607. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  608. addr /= VMAP_BLOCK_SIZE;
  609. return addr;
  610. }
  611. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  612. {
  613. struct vmap_block_queue *vbq;
  614. struct vmap_block *vb;
  615. struct vmap_area *va;
  616. unsigned long vb_idx;
  617. int node, err;
  618. node = numa_node_id();
  619. vb = kmalloc_node(sizeof(struct vmap_block),
  620. gfp_mask & GFP_RECLAIM_MASK, node);
  621. if (unlikely(!vb))
  622. return ERR_PTR(-ENOMEM);
  623. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  624. VMALLOC_START, VMALLOC_END,
  625. node, gfp_mask);
  626. if (unlikely(IS_ERR(va))) {
  627. kfree(vb);
  628. return ERR_PTR(PTR_ERR(va));
  629. }
  630. err = radix_tree_preload(gfp_mask);
  631. if (unlikely(err)) {
  632. kfree(vb);
  633. free_vmap_area(va);
  634. return ERR_PTR(err);
  635. }
  636. spin_lock_init(&vb->lock);
  637. vb->va = va;
  638. vb->free = VMAP_BBMAP_BITS;
  639. vb->dirty = 0;
  640. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  641. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  642. INIT_LIST_HEAD(&vb->free_list);
  643. vb_idx = addr_to_vb_idx(va->va_start);
  644. spin_lock(&vmap_block_tree_lock);
  645. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  646. spin_unlock(&vmap_block_tree_lock);
  647. BUG_ON(err);
  648. radix_tree_preload_end();
  649. vbq = &get_cpu_var(vmap_block_queue);
  650. vb->vbq = vbq;
  651. spin_lock(&vbq->lock);
  652. list_add(&vb->free_list, &vbq->free);
  653. spin_unlock(&vbq->lock);
  654. put_cpu_var(vmap_block_queue);
  655. return vb;
  656. }
  657. static void rcu_free_vb(struct rcu_head *head)
  658. {
  659. struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
  660. kfree(vb);
  661. }
  662. static void free_vmap_block(struct vmap_block *vb)
  663. {
  664. struct vmap_block *tmp;
  665. unsigned long vb_idx;
  666. BUG_ON(!list_empty(&vb->free_list));
  667. vb_idx = addr_to_vb_idx(vb->va->va_start);
  668. spin_lock(&vmap_block_tree_lock);
  669. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  670. spin_unlock(&vmap_block_tree_lock);
  671. BUG_ON(tmp != vb);
  672. free_unmap_vmap_area_noflush(vb->va);
  673. call_rcu(&vb->rcu_head, rcu_free_vb);
  674. }
  675. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  676. {
  677. struct vmap_block_queue *vbq;
  678. struct vmap_block *vb;
  679. unsigned long addr = 0;
  680. unsigned int order;
  681. BUG_ON(size & ~PAGE_MASK);
  682. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  683. order = get_order(size);
  684. again:
  685. rcu_read_lock();
  686. vbq = &get_cpu_var(vmap_block_queue);
  687. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  688. int i;
  689. spin_lock(&vb->lock);
  690. i = bitmap_find_free_region(vb->alloc_map,
  691. VMAP_BBMAP_BITS, order);
  692. if (i >= 0) {
  693. addr = vb->va->va_start + (i << PAGE_SHIFT);
  694. BUG_ON(addr_to_vb_idx(addr) !=
  695. addr_to_vb_idx(vb->va->va_start));
  696. vb->free -= 1UL << order;
  697. if (vb->free == 0) {
  698. spin_lock(&vbq->lock);
  699. list_del_init(&vb->free_list);
  700. spin_unlock(&vbq->lock);
  701. }
  702. spin_unlock(&vb->lock);
  703. break;
  704. }
  705. spin_unlock(&vb->lock);
  706. }
  707. put_cpu_var(vmap_block_queue);
  708. rcu_read_unlock();
  709. if (!addr) {
  710. vb = new_vmap_block(gfp_mask);
  711. if (IS_ERR(vb))
  712. return vb;
  713. goto again;
  714. }
  715. return (void *)addr;
  716. }
  717. static void vb_free(const void *addr, unsigned long size)
  718. {
  719. unsigned long offset;
  720. unsigned long vb_idx;
  721. unsigned int order;
  722. struct vmap_block *vb;
  723. BUG_ON(size & ~PAGE_MASK);
  724. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  725. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  726. order = get_order(size);
  727. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  728. vb_idx = addr_to_vb_idx((unsigned long)addr);
  729. rcu_read_lock();
  730. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  731. rcu_read_unlock();
  732. BUG_ON(!vb);
  733. spin_lock(&vb->lock);
  734. bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
  735. vb->dirty += 1UL << order;
  736. if (vb->dirty == VMAP_BBMAP_BITS) {
  737. BUG_ON(vb->free || !list_empty(&vb->free_list));
  738. spin_unlock(&vb->lock);
  739. free_vmap_block(vb);
  740. } else
  741. spin_unlock(&vb->lock);
  742. }
  743. /**
  744. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  745. *
  746. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  747. * to amortize TLB flushing overheads. What this means is that any page you
  748. * have now, may, in a former life, have been mapped into kernel virtual
  749. * address by the vmap layer and so there might be some CPUs with TLB entries
  750. * still referencing that page (additional to the regular 1:1 kernel mapping).
  751. *
  752. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  753. * be sure that none of the pages we have control over will have any aliases
  754. * from the vmap layer.
  755. */
  756. void vm_unmap_aliases(void)
  757. {
  758. unsigned long start = ULONG_MAX, end = 0;
  759. int cpu;
  760. int flush = 0;
  761. if (unlikely(!vmap_initialized))
  762. return;
  763. for_each_possible_cpu(cpu) {
  764. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  765. struct vmap_block *vb;
  766. rcu_read_lock();
  767. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  768. int i;
  769. spin_lock(&vb->lock);
  770. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  771. while (i < VMAP_BBMAP_BITS) {
  772. unsigned long s, e;
  773. int j;
  774. j = find_next_zero_bit(vb->dirty_map,
  775. VMAP_BBMAP_BITS, i);
  776. s = vb->va->va_start + (i << PAGE_SHIFT);
  777. e = vb->va->va_start + (j << PAGE_SHIFT);
  778. vunmap_page_range(s, e);
  779. flush = 1;
  780. if (s < start)
  781. start = s;
  782. if (e > end)
  783. end = e;
  784. i = j;
  785. i = find_next_bit(vb->dirty_map,
  786. VMAP_BBMAP_BITS, i);
  787. }
  788. spin_unlock(&vb->lock);
  789. }
  790. rcu_read_unlock();
  791. }
  792. __purge_vmap_area_lazy(&start, &end, 1, flush);
  793. }
  794. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  795. /**
  796. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  797. * @mem: the pointer returned by vm_map_ram
  798. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  799. */
  800. void vm_unmap_ram(const void *mem, unsigned int count)
  801. {
  802. unsigned long size = count << PAGE_SHIFT;
  803. unsigned long addr = (unsigned long)mem;
  804. BUG_ON(!addr);
  805. BUG_ON(addr < VMALLOC_START);
  806. BUG_ON(addr > VMALLOC_END);
  807. BUG_ON(addr & (PAGE_SIZE-1));
  808. debug_check_no_locks_freed(mem, size);
  809. vmap_debug_free_range(addr, addr+size);
  810. if (likely(count <= VMAP_MAX_ALLOC))
  811. vb_free(mem, size);
  812. else
  813. free_unmap_vmap_area_addr(addr);
  814. }
  815. EXPORT_SYMBOL(vm_unmap_ram);
  816. /**
  817. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  818. * @pages: an array of pointers to the pages to be mapped
  819. * @count: number of pages
  820. * @node: prefer to allocate data structures on this node
  821. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  822. *
  823. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  824. */
  825. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  826. {
  827. unsigned long size = count << PAGE_SHIFT;
  828. unsigned long addr;
  829. void *mem;
  830. if (likely(count <= VMAP_MAX_ALLOC)) {
  831. mem = vb_alloc(size, GFP_KERNEL);
  832. if (IS_ERR(mem))
  833. return NULL;
  834. addr = (unsigned long)mem;
  835. } else {
  836. struct vmap_area *va;
  837. va = alloc_vmap_area(size, PAGE_SIZE,
  838. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  839. if (IS_ERR(va))
  840. return NULL;
  841. addr = va->va_start;
  842. mem = (void *)addr;
  843. }
  844. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  845. vm_unmap_ram(mem, count);
  846. return NULL;
  847. }
  848. return mem;
  849. }
  850. EXPORT_SYMBOL(vm_map_ram);
  851. /**
  852. * vm_area_register_early - register vmap area early during boot
  853. * @vm: vm_struct to register
  854. * @align: requested alignment
  855. *
  856. * This function is used to register kernel vm area before
  857. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  858. * proper values on entry and other fields should be zero. On return,
  859. * vm->addr contains the allocated address.
  860. *
  861. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  862. */
  863. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  864. {
  865. static size_t vm_init_off __initdata;
  866. unsigned long addr;
  867. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  868. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  869. vm->addr = (void *)addr;
  870. vm->next = vmlist;
  871. vmlist = vm;
  872. }
  873. void __init vmalloc_init(void)
  874. {
  875. struct vmap_area *va;
  876. struct vm_struct *tmp;
  877. int i;
  878. for_each_possible_cpu(i) {
  879. struct vmap_block_queue *vbq;
  880. vbq = &per_cpu(vmap_block_queue, i);
  881. spin_lock_init(&vbq->lock);
  882. INIT_LIST_HEAD(&vbq->free);
  883. INIT_LIST_HEAD(&vbq->dirty);
  884. vbq->nr_dirty = 0;
  885. }
  886. /* Import existing vmlist entries. */
  887. for (tmp = vmlist; tmp; tmp = tmp->next) {
  888. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  889. va->flags = tmp->flags | VM_VM_AREA;
  890. va->va_start = (unsigned long)tmp->addr;
  891. va->va_end = va->va_start + tmp->size;
  892. __insert_vmap_area(va);
  893. }
  894. vmap_area_pcpu_hole = VMALLOC_END;
  895. vmap_initialized = true;
  896. }
  897. /**
  898. * map_kernel_range_noflush - map kernel VM area with the specified pages
  899. * @addr: start of the VM area to map
  900. * @size: size of the VM area to map
  901. * @prot: page protection flags to use
  902. * @pages: pages to map
  903. *
  904. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  905. * specify should have been allocated using get_vm_area() and its
  906. * friends.
  907. *
  908. * NOTE:
  909. * This function does NOT do any cache flushing. The caller is
  910. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  911. * before calling this function.
  912. *
  913. * RETURNS:
  914. * The number of pages mapped on success, -errno on failure.
  915. */
  916. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  917. pgprot_t prot, struct page **pages)
  918. {
  919. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  920. }
  921. /**
  922. * unmap_kernel_range_noflush - unmap kernel VM area
  923. * @addr: start of the VM area to unmap
  924. * @size: size of the VM area to unmap
  925. *
  926. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  927. * specify should have been allocated using get_vm_area() and its
  928. * friends.
  929. *
  930. * NOTE:
  931. * This function does NOT do any cache flushing. The caller is
  932. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  933. * before calling this function and flush_tlb_kernel_range() after.
  934. */
  935. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  936. {
  937. vunmap_page_range(addr, addr + size);
  938. }
  939. /**
  940. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  941. * @addr: start of the VM area to unmap
  942. * @size: size of the VM area to unmap
  943. *
  944. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  945. * the unmapping and tlb after.
  946. */
  947. void unmap_kernel_range(unsigned long addr, unsigned long size)
  948. {
  949. unsigned long end = addr + size;
  950. flush_cache_vunmap(addr, end);
  951. vunmap_page_range(addr, end);
  952. flush_tlb_kernel_range(addr, end);
  953. }
  954. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  955. {
  956. unsigned long addr = (unsigned long)area->addr;
  957. unsigned long end = addr + area->size - PAGE_SIZE;
  958. int err;
  959. err = vmap_page_range(addr, end, prot, *pages);
  960. if (err > 0) {
  961. *pages += err;
  962. err = 0;
  963. }
  964. return err;
  965. }
  966. EXPORT_SYMBOL_GPL(map_vm_area);
  967. /*** Old vmalloc interfaces ***/
  968. DEFINE_RWLOCK(vmlist_lock);
  969. struct vm_struct *vmlist;
  970. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  971. unsigned long flags, void *caller)
  972. {
  973. struct vm_struct *tmp, **p;
  974. vm->flags = flags;
  975. vm->addr = (void *)va->va_start;
  976. vm->size = va->va_end - va->va_start;
  977. vm->caller = caller;
  978. va->private = vm;
  979. va->flags |= VM_VM_AREA;
  980. write_lock(&vmlist_lock);
  981. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  982. if (tmp->addr >= vm->addr)
  983. break;
  984. }
  985. vm->next = *p;
  986. *p = vm;
  987. write_unlock(&vmlist_lock);
  988. }
  989. static struct vm_struct *__get_vm_area_node(unsigned long size,
  990. unsigned long align, unsigned long flags, unsigned long start,
  991. unsigned long end, int node, gfp_t gfp_mask, void *caller)
  992. {
  993. static struct vmap_area *va;
  994. struct vm_struct *area;
  995. BUG_ON(in_interrupt());
  996. if (flags & VM_IOREMAP) {
  997. int bit = fls(size);
  998. if (bit > IOREMAP_MAX_ORDER)
  999. bit = IOREMAP_MAX_ORDER;
  1000. else if (bit < PAGE_SHIFT)
  1001. bit = PAGE_SHIFT;
  1002. align = 1ul << bit;
  1003. }
  1004. size = PAGE_ALIGN(size);
  1005. if (unlikely(!size))
  1006. return NULL;
  1007. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1008. if (unlikely(!area))
  1009. return NULL;
  1010. /*
  1011. * We always allocate a guard page.
  1012. */
  1013. size += PAGE_SIZE;
  1014. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1015. if (IS_ERR(va)) {
  1016. kfree(area);
  1017. return NULL;
  1018. }
  1019. insert_vmalloc_vm(area, va, flags, caller);
  1020. return area;
  1021. }
  1022. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1023. unsigned long start, unsigned long end)
  1024. {
  1025. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1026. __builtin_return_address(0));
  1027. }
  1028. EXPORT_SYMBOL_GPL(__get_vm_area);
  1029. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1030. unsigned long start, unsigned long end,
  1031. void *caller)
  1032. {
  1033. return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
  1034. caller);
  1035. }
  1036. /**
  1037. * get_vm_area - reserve a contiguous kernel virtual area
  1038. * @size: size of the area
  1039. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1040. *
  1041. * Search an area of @size in the kernel virtual mapping area,
  1042. * and reserved it for out purposes. Returns the area descriptor
  1043. * on success or %NULL on failure.
  1044. */
  1045. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1046. {
  1047. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1048. -1, GFP_KERNEL, __builtin_return_address(0));
  1049. }
  1050. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1051. void *caller)
  1052. {
  1053. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1054. -1, GFP_KERNEL, caller);
  1055. }
  1056. struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
  1057. int node, gfp_t gfp_mask)
  1058. {
  1059. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1060. node, gfp_mask, __builtin_return_address(0));
  1061. }
  1062. static struct vm_struct *find_vm_area(const void *addr)
  1063. {
  1064. struct vmap_area *va;
  1065. va = find_vmap_area((unsigned long)addr);
  1066. if (va && va->flags & VM_VM_AREA)
  1067. return va->private;
  1068. return NULL;
  1069. }
  1070. /**
  1071. * remove_vm_area - find and remove a continuous kernel virtual area
  1072. * @addr: base address
  1073. *
  1074. * Search for the kernel VM area starting at @addr, and remove it.
  1075. * This function returns the found VM area, but using it is NOT safe
  1076. * on SMP machines, except for its size or flags.
  1077. */
  1078. struct vm_struct *remove_vm_area(const void *addr)
  1079. {
  1080. struct vmap_area *va;
  1081. va = find_vmap_area((unsigned long)addr);
  1082. if (va && va->flags & VM_VM_AREA) {
  1083. struct vm_struct *vm = va->private;
  1084. struct vm_struct *tmp, **p;
  1085. /*
  1086. * remove from list and disallow access to this vm_struct
  1087. * before unmap. (address range confliction is maintained by
  1088. * vmap.)
  1089. */
  1090. write_lock(&vmlist_lock);
  1091. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1092. ;
  1093. *p = tmp->next;
  1094. write_unlock(&vmlist_lock);
  1095. vmap_debug_free_range(va->va_start, va->va_end);
  1096. free_unmap_vmap_area(va);
  1097. vm->size -= PAGE_SIZE;
  1098. return vm;
  1099. }
  1100. return NULL;
  1101. }
  1102. static void __vunmap(const void *addr, int deallocate_pages)
  1103. {
  1104. struct vm_struct *area;
  1105. if (!addr)
  1106. return;
  1107. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1108. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1109. return;
  1110. }
  1111. area = remove_vm_area(addr);
  1112. if (unlikely(!area)) {
  1113. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1114. addr);
  1115. return;
  1116. }
  1117. debug_check_no_locks_freed(addr, area->size);
  1118. debug_check_no_obj_freed(addr, area->size);
  1119. if (deallocate_pages) {
  1120. int i;
  1121. for (i = 0; i < area->nr_pages; i++) {
  1122. struct page *page = area->pages[i];
  1123. BUG_ON(!page);
  1124. __free_page(page);
  1125. }
  1126. if (area->flags & VM_VPAGES)
  1127. vfree(area->pages);
  1128. else
  1129. kfree(area->pages);
  1130. }
  1131. kfree(area);
  1132. return;
  1133. }
  1134. /**
  1135. * vfree - release memory allocated by vmalloc()
  1136. * @addr: memory base address
  1137. *
  1138. * Free the virtually continuous memory area starting at @addr, as
  1139. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1140. * NULL, no operation is performed.
  1141. *
  1142. * Must not be called in interrupt context.
  1143. */
  1144. void vfree(const void *addr)
  1145. {
  1146. BUG_ON(in_interrupt());
  1147. kmemleak_free(addr);
  1148. __vunmap(addr, 1);
  1149. }
  1150. EXPORT_SYMBOL(vfree);
  1151. /**
  1152. * vunmap - release virtual mapping obtained by vmap()
  1153. * @addr: memory base address
  1154. *
  1155. * Free the virtually contiguous memory area starting at @addr,
  1156. * which was created from the page array passed to vmap().
  1157. *
  1158. * Must not be called in interrupt context.
  1159. */
  1160. void vunmap(const void *addr)
  1161. {
  1162. BUG_ON(in_interrupt());
  1163. might_sleep();
  1164. __vunmap(addr, 0);
  1165. }
  1166. EXPORT_SYMBOL(vunmap);
  1167. /**
  1168. * vmap - map an array of pages into virtually contiguous space
  1169. * @pages: array of page pointers
  1170. * @count: number of pages to map
  1171. * @flags: vm_area->flags
  1172. * @prot: page protection for the mapping
  1173. *
  1174. * Maps @count pages from @pages into contiguous kernel virtual
  1175. * space.
  1176. */
  1177. void *vmap(struct page **pages, unsigned int count,
  1178. unsigned long flags, pgprot_t prot)
  1179. {
  1180. struct vm_struct *area;
  1181. might_sleep();
  1182. if (count > totalram_pages)
  1183. return NULL;
  1184. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1185. __builtin_return_address(0));
  1186. if (!area)
  1187. return NULL;
  1188. if (map_vm_area(area, prot, &pages)) {
  1189. vunmap(area->addr);
  1190. return NULL;
  1191. }
  1192. return area->addr;
  1193. }
  1194. EXPORT_SYMBOL(vmap);
  1195. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1196. gfp_t gfp_mask, pgprot_t prot,
  1197. int node, void *caller);
  1198. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1199. pgprot_t prot, int node, void *caller)
  1200. {
  1201. struct page **pages;
  1202. unsigned int nr_pages, array_size, i;
  1203. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1204. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1205. array_size = (nr_pages * sizeof(struct page *));
  1206. area->nr_pages = nr_pages;
  1207. /* Please note that the recursion is strictly bounded. */
  1208. if (array_size > PAGE_SIZE) {
  1209. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1210. PAGE_KERNEL, node, caller);
  1211. area->flags |= VM_VPAGES;
  1212. } else {
  1213. pages = kmalloc_node(array_size, nested_gfp, node);
  1214. }
  1215. area->pages = pages;
  1216. area->caller = caller;
  1217. if (!area->pages) {
  1218. remove_vm_area(area->addr);
  1219. kfree(area);
  1220. return NULL;
  1221. }
  1222. for (i = 0; i < area->nr_pages; i++) {
  1223. struct page *page;
  1224. if (node < 0)
  1225. page = alloc_page(gfp_mask);
  1226. else
  1227. page = alloc_pages_node(node, gfp_mask, 0);
  1228. if (unlikely(!page)) {
  1229. /* Successfully allocated i pages, free them in __vunmap() */
  1230. area->nr_pages = i;
  1231. goto fail;
  1232. }
  1233. area->pages[i] = page;
  1234. }
  1235. if (map_vm_area(area, prot, &pages))
  1236. goto fail;
  1237. return area->addr;
  1238. fail:
  1239. vfree(area->addr);
  1240. return NULL;
  1241. }
  1242. void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
  1243. {
  1244. void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
  1245. __builtin_return_address(0));
  1246. /*
  1247. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1248. * structures allocated in the __get_vm_area_node() function contain
  1249. * references to the virtual address of the vmalloc'ed block.
  1250. */
  1251. kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
  1252. return addr;
  1253. }
  1254. /**
  1255. * __vmalloc_node - allocate virtually contiguous memory
  1256. * @size: allocation size
  1257. * @align: desired alignment
  1258. * @gfp_mask: flags for the page level allocator
  1259. * @prot: protection mask for the allocated pages
  1260. * @node: node to use for allocation or -1
  1261. * @caller: caller's return address
  1262. *
  1263. * Allocate enough pages to cover @size from the page level
  1264. * allocator with @gfp_mask flags. Map them into contiguous
  1265. * kernel virtual space, using a pagetable protection of @prot.
  1266. */
  1267. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1268. gfp_t gfp_mask, pgprot_t prot,
  1269. int node, void *caller)
  1270. {
  1271. struct vm_struct *area;
  1272. void *addr;
  1273. unsigned long real_size = size;
  1274. size = PAGE_ALIGN(size);
  1275. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1276. return NULL;
  1277. area = __get_vm_area_node(size, align, VM_ALLOC, VMALLOC_START,
  1278. VMALLOC_END, node, gfp_mask, caller);
  1279. if (!area)
  1280. return NULL;
  1281. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1282. /*
  1283. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1284. * structures allocated in the __get_vm_area_node() function contain
  1285. * references to the virtual address of the vmalloc'ed block.
  1286. */
  1287. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1288. return addr;
  1289. }
  1290. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1291. {
  1292. return __vmalloc_node(size, 1, gfp_mask, prot, -1,
  1293. __builtin_return_address(0));
  1294. }
  1295. EXPORT_SYMBOL(__vmalloc);
  1296. /**
  1297. * vmalloc - allocate virtually contiguous memory
  1298. * @size: allocation size
  1299. * Allocate enough pages to cover @size from the page level
  1300. * allocator and map them into contiguous kernel virtual space.
  1301. *
  1302. * For tight control over page level allocator and protection flags
  1303. * use __vmalloc() instead.
  1304. */
  1305. void *vmalloc(unsigned long size)
  1306. {
  1307. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1308. -1, __builtin_return_address(0));
  1309. }
  1310. EXPORT_SYMBOL(vmalloc);
  1311. /**
  1312. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1313. * @size: allocation size
  1314. *
  1315. * The resulting memory area is zeroed so it can be mapped to userspace
  1316. * without leaking data.
  1317. */
  1318. void *vmalloc_user(unsigned long size)
  1319. {
  1320. struct vm_struct *area;
  1321. void *ret;
  1322. ret = __vmalloc_node(size, SHMLBA,
  1323. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1324. PAGE_KERNEL, -1, __builtin_return_address(0));
  1325. if (ret) {
  1326. area = find_vm_area(ret);
  1327. area->flags |= VM_USERMAP;
  1328. }
  1329. return ret;
  1330. }
  1331. EXPORT_SYMBOL(vmalloc_user);
  1332. /**
  1333. * vmalloc_node - allocate memory on a specific node
  1334. * @size: allocation size
  1335. * @node: numa node
  1336. *
  1337. * Allocate enough pages to cover @size from the page level
  1338. * allocator and map them into contiguous kernel virtual space.
  1339. *
  1340. * For tight control over page level allocator and protection flags
  1341. * use __vmalloc() instead.
  1342. */
  1343. void *vmalloc_node(unsigned long size, int node)
  1344. {
  1345. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1346. node, __builtin_return_address(0));
  1347. }
  1348. EXPORT_SYMBOL(vmalloc_node);
  1349. #ifndef PAGE_KERNEL_EXEC
  1350. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1351. #endif
  1352. /**
  1353. * vmalloc_exec - allocate virtually contiguous, executable memory
  1354. * @size: allocation size
  1355. *
  1356. * Kernel-internal function to allocate enough pages to cover @size
  1357. * the page level allocator and map them into contiguous and
  1358. * executable kernel virtual space.
  1359. *
  1360. * For tight control over page level allocator and protection flags
  1361. * use __vmalloc() instead.
  1362. */
  1363. void *vmalloc_exec(unsigned long size)
  1364. {
  1365. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1366. -1, __builtin_return_address(0));
  1367. }
  1368. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1369. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1370. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1371. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1372. #else
  1373. #define GFP_VMALLOC32 GFP_KERNEL
  1374. #endif
  1375. /**
  1376. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1377. * @size: allocation size
  1378. *
  1379. * Allocate enough 32bit PA addressable pages to cover @size from the
  1380. * page level allocator and map them into contiguous kernel virtual space.
  1381. */
  1382. void *vmalloc_32(unsigned long size)
  1383. {
  1384. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1385. -1, __builtin_return_address(0));
  1386. }
  1387. EXPORT_SYMBOL(vmalloc_32);
  1388. /**
  1389. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1390. * @size: allocation size
  1391. *
  1392. * The resulting memory area is 32bit addressable and zeroed so it can be
  1393. * mapped to userspace without leaking data.
  1394. */
  1395. void *vmalloc_32_user(unsigned long size)
  1396. {
  1397. struct vm_struct *area;
  1398. void *ret;
  1399. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1400. -1, __builtin_return_address(0));
  1401. if (ret) {
  1402. area = find_vm_area(ret);
  1403. area->flags |= VM_USERMAP;
  1404. }
  1405. return ret;
  1406. }
  1407. EXPORT_SYMBOL(vmalloc_32_user);
  1408. /*
  1409. * small helper routine , copy contents to buf from addr.
  1410. * If the page is not present, fill zero.
  1411. */
  1412. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1413. {
  1414. struct page *p;
  1415. int copied = 0;
  1416. while (count) {
  1417. unsigned long offset, length;
  1418. offset = (unsigned long)addr & ~PAGE_MASK;
  1419. length = PAGE_SIZE - offset;
  1420. if (length > count)
  1421. length = count;
  1422. p = vmalloc_to_page(addr);
  1423. /*
  1424. * To do safe access to this _mapped_ area, we need
  1425. * lock. But adding lock here means that we need to add
  1426. * overhead of vmalloc()/vfree() calles for this _debug_
  1427. * interface, rarely used. Instead of that, we'll use
  1428. * kmap() and get small overhead in this access function.
  1429. */
  1430. if (p) {
  1431. /*
  1432. * we can expect USER0 is not used (see vread/vwrite's
  1433. * function description)
  1434. */
  1435. void *map = kmap_atomic(p, KM_USER0);
  1436. memcpy(buf, map + offset, length);
  1437. kunmap_atomic(map, KM_USER0);
  1438. } else
  1439. memset(buf, 0, length);
  1440. addr += length;
  1441. buf += length;
  1442. copied += length;
  1443. count -= length;
  1444. }
  1445. return copied;
  1446. }
  1447. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1448. {
  1449. struct page *p;
  1450. int copied = 0;
  1451. while (count) {
  1452. unsigned long offset, length;
  1453. offset = (unsigned long)addr & ~PAGE_MASK;
  1454. length = PAGE_SIZE - offset;
  1455. if (length > count)
  1456. length = count;
  1457. p = vmalloc_to_page(addr);
  1458. /*
  1459. * To do safe access to this _mapped_ area, we need
  1460. * lock. But adding lock here means that we need to add
  1461. * overhead of vmalloc()/vfree() calles for this _debug_
  1462. * interface, rarely used. Instead of that, we'll use
  1463. * kmap() and get small overhead in this access function.
  1464. */
  1465. if (p) {
  1466. /*
  1467. * we can expect USER0 is not used (see vread/vwrite's
  1468. * function description)
  1469. */
  1470. void *map = kmap_atomic(p, KM_USER0);
  1471. memcpy(map + offset, buf, length);
  1472. kunmap_atomic(map, KM_USER0);
  1473. }
  1474. addr += length;
  1475. buf += length;
  1476. copied += length;
  1477. count -= length;
  1478. }
  1479. return copied;
  1480. }
  1481. /**
  1482. * vread() - read vmalloc area in a safe way.
  1483. * @buf: buffer for reading data
  1484. * @addr: vm address.
  1485. * @count: number of bytes to be read.
  1486. *
  1487. * Returns # of bytes which addr and buf should be increased.
  1488. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1489. * includes any intersect with alive vmalloc area.
  1490. *
  1491. * This function checks that addr is a valid vmalloc'ed area, and
  1492. * copy data from that area to a given buffer. If the given memory range
  1493. * of [addr...addr+count) includes some valid address, data is copied to
  1494. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1495. * IOREMAP area is treated as memory hole and no copy is done.
  1496. *
  1497. * If [addr...addr+count) doesn't includes any intersects with alive
  1498. * vm_struct area, returns 0.
  1499. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1500. * the caller should guarantee KM_USER0 is not used.
  1501. *
  1502. * Note: In usual ops, vread() is never necessary because the caller
  1503. * should know vmalloc() area is valid and can use memcpy().
  1504. * This is for routines which have to access vmalloc area without
  1505. * any informaion, as /dev/kmem.
  1506. *
  1507. */
  1508. long vread(char *buf, char *addr, unsigned long count)
  1509. {
  1510. struct vm_struct *tmp;
  1511. char *vaddr, *buf_start = buf;
  1512. unsigned long buflen = count;
  1513. unsigned long n;
  1514. /* Don't allow overflow */
  1515. if ((unsigned long) addr + count < count)
  1516. count = -(unsigned long) addr;
  1517. read_lock(&vmlist_lock);
  1518. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1519. vaddr = (char *) tmp->addr;
  1520. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1521. continue;
  1522. while (addr < vaddr) {
  1523. if (count == 0)
  1524. goto finished;
  1525. *buf = '\0';
  1526. buf++;
  1527. addr++;
  1528. count--;
  1529. }
  1530. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1531. if (n > count)
  1532. n = count;
  1533. if (!(tmp->flags & VM_IOREMAP))
  1534. aligned_vread(buf, addr, n);
  1535. else /* IOREMAP area is treated as memory hole */
  1536. memset(buf, 0, n);
  1537. buf += n;
  1538. addr += n;
  1539. count -= n;
  1540. }
  1541. finished:
  1542. read_unlock(&vmlist_lock);
  1543. if (buf == buf_start)
  1544. return 0;
  1545. /* zero-fill memory holes */
  1546. if (buf != buf_start + buflen)
  1547. memset(buf, 0, buflen - (buf - buf_start));
  1548. return buflen;
  1549. }
  1550. /**
  1551. * vwrite() - write vmalloc area in a safe way.
  1552. * @buf: buffer for source data
  1553. * @addr: vm address.
  1554. * @count: number of bytes to be read.
  1555. *
  1556. * Returns # of bytes which addr and buf should be incresed.
  1557. * (same number to @count).
  1558. * If [addr...addr+count) doesn't includes any intersect with valid
  1559. * vmalloc area, returns 0.
  1560. *
  1561. * This function checks that addr is a valid vmalloc'ed area, and
  1562. * copy data from a buffer to the given addr. If specified range of
  1563. * [addr...addr+count) includes some valid address, data is copied from
  1564. * proper area of @buf. If there are memory holes, no copy to hole.
  1565. * IOREMAP area is treated as memory hole and no copy is done.
  1566. *
  1567. * If [addr...addr+count) doesn't includes any intersects with alive
  1568. * vm_struct area, returns 0.
  1569. * @buf should be kernel's buffer. Because this function uses KM_USER0,
  1570. * the caller should guarantee KM_USER0 is not used.
  1571. *
  1572. * Note: In usual ops, vwrite() is never necessary because the caller
  1573. * should know vmalloc() area is valid and can use memcpy().
  1574. * This is for routines which have to access vmalloc area without
  1575. * any informaion, as /dev/kmem.
  1576. *
  1577. * The caller should guarantee KM_USER1 is not used.
  1578. */
  1579. long vwrite(char *buf, char *addr, unsigned long count)
  1580. {
  1581. struct vm_struct *tmp;
  1582. char *vaddr;
  1583. unsigned long n, buflen;
  1584. int copied = 0;
  1585. /* Don't allow overflow */
  1586. if ((unsigned long) addr + count < count)
  1587. count = -(unsigned long) addr;
  1588. buflen = count;
  1589. read_lock(&vmlist_lock);
  1590. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1591. vaddr = (char *) tmp->addr;
  1592. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1593. continue;
  1594. while (addr < vaddr) {
  1595. if (count == 0)
  1596. goto finished;
  1597. buf++;
  1598. addr++;
  1599. count--;
  1600. }
  1601. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1602. if (n > count)
  1603. n = count;
  1604. if (!(tmp->flags & VM_IOREMAP)) {
  1605. aligned_vwrite(buf, addr, n);
  1606. copied++;
  1607. }
  1608. buf += n;
  1609. addr += n;
  1610. count -= n;
  1611. }
  1612. finished:
  1613. read_unlock(&vmlist_lock);
  1614. if (!copied)
  1615. return 0;
  1616. return buflen;
  1617. }
  1618. /**
  1619. * remap_vmalloc_range - map vmalloc pages to userspace
  1620. * @vma: vma to cover (map full range of vma)
  1621. * @addr: vmalloc memory
  1622. * @pgoff: number of pages into addr before first page to map
  1623. *
  1624. * Returns: 0 for success, -Exxx on failure
  1625. *
  1626. * This function checks that addr is a valid vmalloc'ed area, and
  1627. * that it is big enough to cover the vma. Will return failure if
  1628. * that criteria isn't met.
  1629. *
  1630. * Similar to remap_pfn_range() (see mm/memory.c)
  1631. */
  1632. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1633. unsigned long pgoff)
  1634. {
  1635. struct vm_struct *area;
  1636. unsigned long uaddr = vma->vm_start;
  1637. unsigned long usize = vma->vm_end - vma->vm_start;
  1638. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1639. return -EINVAL;
  1640. area = find_vm_area(addr);
  1641. if (!area)
  1642. return -EINVAL;
  1643. if (!(area->flags & VM_USERMAP))
  1644. return -EINVAL;
  1645. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1646. return -EINVAL;
  1647. addr += pgoff << PAGE_SHIFT;
  1648. do {
  1649. struct page *page = vmalloc_to_page(addr);
  1650. int ret;
  1651. ret = vm_insert_page(vma, uaddr, page);
  1652. if (ret)
  1653. return ret;
  1654. uaddr += PAGE_SIZE;
  1655. addr += PAGE_SIZE;
  1656. usize -= PAGE_SIZE;
  1657. } while (usize > 0);
  1658. /* Prevent "things" like memory migration? VM_flags need a cleanup... */
  1659. vma->vm_flags |= VM_RESERVED;
  1660. return 0;
  1661. }
  1662. EXPORT_SYMBOL(remap_vmalloc_range);
  1663. /*
  1664. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1665. * have one.
  1666. */
  1667. void __attribute__((weak)) vmalloc_sync_all(void)
  1668. {
  1669. }
  1670. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1671. {
  1672. /* apply_to_page_range() does all the hard work. */
  1673. return 0;
  1674. }
  1675. /**
  1676. * alloc_vm_area - allocate a range of kernel address space
  1677. * @size: size of the area
  1678. *
  1679. * Returns: NULL on failure, vm_struct on success
  1680. *
  1681. * This function reserves a range of kernel address space, and
  1682. * allocates pagetables to map that range. No actual mappings
  1683. * are created. If the kernel address space is not shared
  1684. * between processes, it syncs the pagetable across all
  1685. * processes.
  1686. */
  1687. struct vm_struct *alloc_vm_area(size_t size)
  1688. {
  1689. struct vm_struct *area;
  1690. area = get_vm_area_caller(size, VM_IOREMAP,
  1691. __builtin_return_address(0));
  1692. if (area == NULL)
  1693. return NULL;
  1694. /*
  1695. * This ensures that page tables are constructed for this region
  1696. * of kernel virtual address space and mapped into init_mm.
  1697. */
  1698. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1699. area->size, f, NULL)) {
  1700. free_vm_area(area);
  1701. return NULL;
  1702. }
  1703. /* Make sure the pagetables are constructed in process kernel
  1704. mappings */
  1705. vmalloc_sync_all();
  1706. return area;
  1707. }
  1708. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1709. void free_vm_area(struct vm_struct *area)
  1710. {
  1711. struct vm_struct *ret;
  1712. ret = remove_vm_area(area->addr);
  1713. BUG_ON(ret != area);
  1714. kfree(area);
  1715. }
  1716. EXPORT_SYMBOL_GPL(free_vm_area);
  1717. static struct vmap_area *node_to_va(struct rb_node *n)
  1718. {
  1719. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1720. }
  1721. /**
  1722. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1723. * @end: target address
  1724. * @pnext: out arg for the next vmap_area
  1725. * @pprev: out arg for the previous vmap_area
  1726. *
  1727. * Returns: %true if either or both of next and prev are found,
  1728. * %false if no vmap_area exists
  1729. *
  1730. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1731. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1732. */
  1733. static bool pvm_find_next_prev(unsigned long end,
  1734. struct vmap_area **pnext,
  1735. struct vmap_area **pprev)
  1736. {
  1737. struct rb_node *n = vmap_area_root.rb_node;
  1738. struct vmap_area *va = NULL;
  1739. while (n) {
  1740. va = rb_entry(n, struct vmap_area, rb_node);
  1741. if (end < va->va_end)
  1742. n = n->rb_left;
  1743. else if (end > va->va_end)
  1744. n = n->rb_right;
  1745. else
  1746. break;
  1747. }
  1748. if (!va)
  1749. return false;
  1750. if (va->va_end > end) {
  1751. *pnext = va;
  1752. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1753. } else {
  1754. *pprev = va;
  1755. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  1756. }
  1757. return true;
  1758. }
  1759. /**
  1760. * pvm_determine_end - find the highest aligned address between two vmap_areas
  1761. * @pnext: in/out arg for the next vmap_area
  1762. * @pprev: in/out arg for the previous vmap_area
  1763. * @align: alignment
  1764. *
  1765. * Returns: determined end address
  1766. *
  1767. * Find the highest aligned address between *@pnext and *@pprev below
  1768. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  1769. * down address is between the end addresses of the two vmap_areas.
  1770. *
  1771. * Please note that the address returned by this function may fall
  1772. * inside *@pnext vmap_area. The caller is responsible for checking
  1773. * that.
  1774. */
  1775. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  1776. struct vmap_area **pprev,
  1777. unsigned long align)
  1778. {
  1779. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1780. unsigned long addr;
  1781. if (*pnext)
  1782. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  1783. else
  1784. addr = vmalloc_end;
  1785. while (*pprev && (*pprev)->va_end > addr) {
  1786. *pnext = *pprev;
  1787. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  1788. }
  1789. return addr;
  1790. }
  1791. /**
  1792. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  1793. * @offsets: array containing offset of each area
  1794. * @sizes: array containing size of each area
  1795. * @nr_vms: the number of areas to allocate
  1796. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  1797. * @gfp_mask: allocation mask
  1798. *
  1799. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  1800. * vm_structs on success, %NULL on failure
  1801. *
  1802. * Percpu allocator wants to use congruent vm areas so that it can
  1803. * maintain the offsets among percpu areas. This function allocates
  1804. * congruent vmalloc areas for it. These areas tend to be scattered
  1805. * pretty far, distance between two areas easily going up to
  1806. * gigabytes. To avoid interacting with regular vmallocs, these areas
  1807. * are allocated from top.
  1808. *
  1809. * Despite its complicated look, this allocator is rather simple. It
  1810. * does everything top-down and scans areas from the end looking for
  1811. * matching slot. While scanning, if any of the areas overlaps with
  1812. * existing vmap_area, the base address is pulled down to fit the
  1813. * area. Scanning is repeated till all the areas fit and then all
  1814. * necessary data structres are inserted and the result is returned.
  1815. */
  1816. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  1817. const size_t *sizes, int nr_vms,
  1818. size_t align, gfp_t gfp_mask)
  1819. {
  1820. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  1821. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  1822. struct vmap_area **vas, *prev, *next;
  1823. struct vm_struct **vms;
  1824. int area, area2, last_area, term_area;
  1825. unsigned long base, start, end, last_end;
  1826. bool purged = false;
  1827. gfp_mask &= GFP_RECLAIM_MASK;
  1828. /* verify parameters and allocate data structures */
  1829. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  1830. for (last_area = 0, area = 0; area < nr_vms; area++) {
  1831. start = offsets[area];
  1832. end = start + sizes[area];
  1833. /* is everything aligned properly? */
  1834. BUG_ON(!IS_ALIGNED(offsets[area], align));
  1835. BUG_ON(!IS_ALIGNED(sizes[area], align));
  1836. /* detect the area with the highest address */
  1837. if (start > offsets[last_area])
  1838. last_area = area;
  1839. for (area2 = 0; area2 < nr_vms; area2++) {
  1840. unsigned long start2 = offsets[area2];
  1841. unsigned long end2 = start2 + sizes[area2];
  1842. if (area2 == area)
  1843. continue;
  1844. BUG_ON(start2 >= start && start2 < end);
  1845. BUG_ON(end2 <= end && end2 > start);
  1846. }
  1847. }
  1848. last_end = offsets[last_area] + sizes[last_area];
  1849. if (vmalloc_end - vmalloc_start < last_end) {
  1850. WARN_ON(true);
  1851. return NULL;
  1852. }
  1853. vms = kzalloc(sizeof(vms[0]) * nr_vms, gfp_mask);
  1854. vas = kzalloc(sizeof(vas[0]) * nr_vms, gfp_mask);
  1855. if (!vas || !vms)
  1856. goto err_free;
  1857. for (area = 0; area < nr_vms; area++) {
  1858. vas[area] = kzalloc(sizeof(struct vmap_area), gfp_mask);
  1859. vms[area] = kzalloc(sizeof(struct vm_struct), gfp_mask);
  1860. if (!vas[area] || !vms[area])
  1861. goto err_free;
  1862. }
  1863. retry:
  1864. spin_lock(&vmap_area_lock);
  1865. /* start scanning - we scan from the top, begin with the last area */
  1866. area = term_area = last_area;
  1867. start = offsets[area];
  1868. end = start + sizes[area];
  1869. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  1870. base = vmalloc_end - last_end;
  1871. goto found;
  1872. }
  1873. base = pvm_determine_end(&next, &prev, align) - end;
  1874. while (true) {
  1875. BUG_ON(next && next->va_end <= base + end);
  1876. BUG_ON(prev && prev->va_end > base + end);
  1877. /*
  1878. * base might have underflowed, add last_end before
  1879. * comparing.
  1880. */
  1881. if (base + last_end < vmalloc_start + last_end) {
  1882. spin_unlock(&vmap_area_lock);
  1883. if (!purged) {
  1884. purge_vmap_area_lazy();
  1885. purged = true;
  1886. goto retry;
  1887. }
  1888. goto err_free;
  1889. }
  1890. /*
  1891. * If next overlaps, move base downwards so that it's
  1892. * right below next and then recheck.
  1893. */
  1894. if (next && next->va_start < base + end) {
  1895. base = pvm_determine_end(&next, &prev, align) - end;
  1896. term_area = area;
  1897. continue;
  1898. }
  1899. /*
  1900. * If prev overlaps, shift down next and prev and move
  1901. * base so that it's right below new next and then
  1902. * recheck.
  1903. */
  1904. if (prev && prev->va_end > base + start) {
  1905. next = prev;
  1906. prev = node_to_va(rb_prev(&next->rb_node));
  1907. base = pvm_determine_end(&next, &prev, align) - end;
  1908. term_area = area;
  1909. continue;
  1910. }
  1911. /*
  1912. * This area fits, move on to the previous one. If
  1913. * the previous one is the terminal one, we're done.
  1914. */
  1915. area = (area + nr_vms - 1) % nr_vms;
  1916. if (area == term_area)
  1917. break;
  1918. start = offsets[area];
  1919. end = start + sizes[area];
  1920. pvm_find_next_prev(base + end, &next, &prev);
  1921. }
  1922. found:
  1923. /* we've found a fitting base, insert all va's */
  1924. for (area = 0; area < nr_vms; area++) {
  1925. struct vmap_area *va = vas[area];
  1926. va->va_start = base + offsets[area];
  1927. va->va_end = va->va_start + sizes[area];
  1928. __insert_vmap_area(va);
  1929. }
  1930. vmap_area_pcpu_hole = base + offsets[last_area];
  1931. spin_unlock(&vmap_area_lock);
  1932. /* insert all vm's */
  1933. for (area = 0; area < nr_vms; area++)
  1934. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  1935. pcpu_get_vm_areas);
  1936. kfree(vas);
  1937. return vms;
  1938. err_free:
  1939. for (area = 0; area < nr_vms; area++) {
  1940. if (vas)
  1941. kfree(vas[area]);
  1942. if (vms)
  1943. kfree(vms[area]);
  1944. }
  1945. kfree(vas);
  1946. kfree(vms);
  1947. return NULL;
  1948. }
  1949. /**
  1950. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  1951. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  1952. * @nr_vms: the number of allocated areas
  1953. *
  1954. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  1955. */
  1956. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  1957. {
  1958. int i;
  1959. for (i = 0; i < nr_vms; i++)
  1960. free_vm_area(vms[i]);
  1961. kfree(vms);
  1962. }
  1963. #ifdef CONFIG_PROC_FS
  1964. static void *s_start(struct seq_file *m, loff_t *pos)
  1965. {
  1966. loff_t n = *pos;
  1967. struct vm_struct *v;
  1968. read_lock(&vmlist_lock);
  1969. v = vmlist;
  1970. while (n > 0 && v) {
  1971. n--;
  1972. v = v->next;
  1973. }
  1974. if (!n)
  1975. return v;
  1976. return NULL;
  1977. }
  1978. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  1979. {
  1980. struct vm_struct *v = p;
  1981. ++*pos;
  1982. return v->next;
  1983. }
  1984. static void s_stop(struct seq_file *m, void *p)
  1985. {
  1986. read_unlock(&vmlist_lock);
  1987. }
  1988. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  1989. {
  1990. if (NUMA_BUILD) {
  1991. unsigned int nr, *counters = m->private;
  1992. if (!counters)
  1993. return;
  1994. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  1995. for (nr = 0; nr < v->nr_pages; nr++)
  1996. counters[page_to_nid(v->pages[nr])]++;
  1997. for_each_node_state(nr, N_HIGH_MEMORY)
  1998. if (counters[nr])
  1999. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2000. }
  2001. }
  2002. static int s_show(struct seq_file *m, void *p)
  2003. {
  2004. struct vm_struct *v = p;
  2005. seq_printf(m, "0x%p-0x%p %7ld",
  2006. v->addr, v->addr + v->size, v->size);
  2007. if (v->caller) {
  2008. char buff[KSYM_SYMBOL_LEN];
  2009. seq_putc(m, ' ');
  2010. sprint_symbol(buff, (unsigned long)v->caller);
  2011. seq_puts(m, buff);
  2012. }
  2013. if (v->nr_pages)
  2014. seq_printf(m, " pages=%d", v->nr_pages);
  2015. if (v->phys_addr)
  2016. seq_printf(m, " phys=%lx", v->phys_addr);
  2017. if (v->flags & VM_IOREMAP)
  2018. seq_printf(m, " ioremap");
  2019. if (v->flags & VM_ALLOC)
  2020. seq_printf(m, " vmalloc");
  2021. if (v->flags & VM_MAP)
  2022. seq_printf(m, " vmap");
  2023. if (v->flags & VM_USERMAP)
  2024. seq_printf(m, " user");
  2025. if (v->flags & VM_VPAGES)
  2026. seq_printf(m, " vpages");
  2027. show_numa_info(m, v);
  2028. seq_putc(m, '\n');
  2029. return 0;
  2030. }
  2031. static const struct seq_operations vmalloc_op = {
  2032. .start = s_start,
  2033. .next = s_next,
  2034. .stop = s_stop,
  2035. .show = s_show,
  2036. };
  2037. static int vmalloc_open(struct inode *inode, struct file *file)
  2038. {
  2039. unsigned int *ptr = NULL;
  2040. int ret;
  2041. if (NUMA_BUILD)
  2042. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2043. ret = seq_open(file, &vmalloc_op);
  2044. if (!ret) {
  2045. struct seq_file *m = file->private_data;
  2046. m->private = ptr;
  2047. } else
  2048. kfree(ptr);
  2049. return ret;
  2050. }
  2051. static const struct file_operations proc_vmalloc_operations = {
  2052. .open = vmalloc_open,
  2053. .read = seq_read,
  2054. .llseek = seq_lseek,
  2055. .release = seq_release_private,
  2056. };
  2057. static int __init proc_vmalloc_init(void)
  2058. {
  2059. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2060. return 0;
  2061. }
  2062. module_init(proc_vmalloc_init);
  2063. #endif