base.c 76 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215
  1. /*
  2. * linux/fs/proc/base.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * proc base directory handling functions
  7. *
  8. * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  9. * Instead of using magical inumbers to determine the kind of object
  10. * we allocate and fill in-core inodes upon lookup. They don't even
  11. * go into icache. We cache the reference to task_struct upon lookup too.
  12. * Eventually it should become a filesystem in its own. We don't use the
  13. * rest of procfs anymore.
  14. *
  15. *
  16. * Changelog:
  17. * 17-Jan-2005
  18. * Allan Bezerra
  19. * Bruna Moreira <bruna.moreira@indt.org.br>
  20. * Edjard Mota <edjard.mota@indt.org.br>
  21. * Ilias Biris <ilias.biris@indt.org.br>
  22. * Mauricio Lin <mauricio.lin@indt.org.br>
  23. *
  24. * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25. *
  26. * A new process specific entry (smaps) included in /proc. It shows the
  27. * size of rss for each memory area. The maps entry lacks information
  28. * about physical memory size (rss) for each mapped file, i.e.,
  29. * rss information for executables and library files.
  30. * This additional information is useful for any tools that need to know
  31. * about physical memory consumption for a process specific library.
  32. *
  33. * Changelog:
  34. * 21-Feb-2005
  35. * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36. * Pud inclusion in the page table walking.
  37. *
  38. * ChangeLog:
  39. * 10-Mar-2005
  40. * 10LE Instituto Nokia de Tecnologia - INdT:
  41. * A better way to walks through the page table as suggested by Hugh Dickins.
  42. *
  43. * Simo Piiroinen <simo.piiroinen@nokia.com>:
  44. * Smaps information related to shared, private, clean and dirty pages.
  45. *
  46. * Paul Mundt <paul.mundt@nokia.com>:
  47. * Overall revision about smaps.
  48. */
  49. #include <asm/uaccess.h>
  50. #include <linux/errno.h>
  51. #include <linux/time.h>
  52. #include <linux/proc_fs.h>
  53. #include <linux/stat.h>
  54. #include <linux/task_io_accounting_ops.h>
  55. #include <linux/init.h>
  56. #include <linux/capability.h>
  57. #include <linux/file.h>
  58. #include <linux/fdtable.h>
  59. #include <linux/string.h>
  60. #include <linux/seq_file.h>
  61. #include <linux/namei.h>
  62. #include <linux/mnt_namespace.h>
  63. #include <linux/mm.h>
  64. #include <linux/rcupdate.h>
  65. #include <linux/kallsyms.h>
  66. #include <linux/stacktrace.h>
  67. #include <linux/resource.h>
  68. #include <linux/module.h>
  69. #include <linux/mount.h>
  70. #include <linux/security.h>
  71. #include <linux/ptrace.h>
  72. #include <linux/tracehook.h>
  73. #include <linux/cgroup.h>
  74. #include <linux/cpuset.h>
  75. #include <linux/audit.h>
  76. #include <linux/poll.h>
  77. #include <linux/nsproxy.h>
  78. #include <linux/oom.h>
  79. #include <linux/elf.h>
  80. #include <linux/pid_namespace.h>
  81. #include <linux/fs_struct.h>
  82. #include "internal.h"
  83. /* NOTE:
  84. * Implementing inode permission operations in /proc is almost
  85. * certainly an error. Permission checks need to happen during
  86. * each system call not at open time. The reason is that most of
  87. * what we wish to check for permissions in /proc varies at runtime.
  88. *
  89. * The classic example of a problem is opening file descriptors
  90. * in /proc for a task before it execs a suid executable.
  91. */
  92. struct pid_entry {
  93. char *name;
  94. int len;
  95. mode_t mode;
  96. const struct inode_operations *iop;
  97. const struct file_operations *fop;
  98. union proc_op op;
  99. };
  100. #define NOD(NAME, MODE, IOP, FOP, OP) { \
  101. .name = (NAME), \
  102. .len = sizeof(NAME) - 1, \
  103. .mode = MODE, \
  104. .iop = IOP, \
  105. .fop = FOP, \
  106. .op = OP, \
  107. }
  108. #define DIR(NAME, MODE, iops, fops) \
  109. NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
  110. #define LNK(NAME, get_link) \
  111. NOD(NAME, (S_IFLNK|S_IRWXUGO), \
  112. &proc_pid_link_inode_operations, NULL, \
  113. { .proc_get_link = get_link } )
  114. #define REG(NAME, MODE, fops) \
  115. NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
  116. #define INF(NAME, MODE, read) \
  117. NOD(NAME, (S_IFREG|(MODE)), \
  118. NULL, &proc_info_file_operations, \
  119. { .proc_read = read } )
  120. #define ONE(NAME, MODE, show) \
  121. NOD(NAME, (S_IFREG|(MODE)), \
  122. NULL, &proc_single_file_operations, \
  123. { .proc_show = show } )
  124. /*
  125. * Count the number of hardlinks for the pid_entry table, excluding the .
  126. * and .. links.
  127. */
  128. static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
  129. unsigned int n)
  130. {
  131. unsigned int i;
  132. unsigned int count;
  133. count = 0;
  134. for (i = 0; i < n; ++i) {
  135. if (S_ISDIR(entries[i].mode))
  136. ++count;
  137. }
  138. return count;
  139. }
  140. static int get_fs_path(struct task_struct *task, struct path *path, bool root)
  141. {
  142. struct fs_struct *fs;
  143. int result = -ENOENT;
  144. task_lock(task);
  145. fs = task->fs;
  146. if (fs) {
  147. read_lock(&fs->lock);
  148. *path = root ? fs->root : fs->pwd;
  149. path_get(path);
  150. read_unlock(&fs->lock);
  151. result = 0;
  152. }
  153. task_unlock(task);
  154. return result;
  155. }
  156. static int get_nr_threads(struct task_struct *tsk)
  157. {
  158. unsigned long flags;
  159. int count = 0;
  160. if (lock_task_sighand(tsk, &flags)) {
  161. count = atomic_read(&tsk->signal->count);
  162. unlock_task_sighand(tsk, &flags);
  163. }
  164. return count;
  165. }
  166. static int proc_cwd_link(struct inode *inode, struct path *path)
  167. {
  168. struct task_struct *task = get_proc_task(inode);
  169. int result = -ENOENT;
  170. if (task) {
  171. result = get_fs_path(task, path, 0);
  172. put_task_struct(task);
  173. }
  174. return result;
  175. }
  176. static int proc_root_link(struct inode *inode, struct path *path)
  177. {
  178. struct task_struct *task = get_proc_task(inode);
  179. int result = -ENOENT;
  180. if (task) {
  181. result = get_fs_path(task, path, 1);
  182. put_task_struct(task);
  183. }
  184. return result;
  185. }
  186. /*
  187. * Return zero if current may access user memory in @task, -error if not.
  188. */
  189. static int check_mem_permission(struct task_struct *task)
  190. {
  191. /*
  192. * A task can always look at itself, in case it chooses
  193. * to use system calls instead of load instructions.
  194. */
  195. if (task == current)
  196. return 0;
  197. /*
  198. * If current is actively ptrace'ing, and would also be
  199. * permitted to freshly attach with ptrace now, permit it.
  200. */
  201. if (task_is_stopped_or_traced(task)) {
  202. int match;
  203. rcu_read_lock();
  204. match = (tracehook_tracer_task(task) == current);
  205. rcu_read_unlock();
  206. if (match && ptrace_may_access(task, PTRACE_MODE_ATTACH))
  207. return 0;
  208. }
  209. /*
  210. * Noone else is allowed.
  211. */
  212. return -EPERM;
  213. }
  214. struct mm_struct *mm_for_maps(struct task_struct *task)
  215. {
  216. struct mm_struct *mm;
  217. if (mutex_lock_killable(&task->cred_guard_mutex))
  218. return NULL;
  219. mm = get_task_mm(task);
  220. if (mm && mm != current->mm &&
  221. !ptrace_may_access(task, PTRACE_MODE_READ)) {
  222. mmput(mm);
  223. mm = NULL;
  224. }
  225. mutex_unlock(&task->cred_guard_mutex);
  226. return mm;
  227. }
  228. static int proc_pid_cmdline(struct task_struct *task, char * buffer)
  229. {
  230. int res = 0;
  231. unsigned int len;
  232. struct mm_struct *mm = get_task_mm(task);
  233. if (!mm)
  234. goto out;
  235. if (!mm->arg_end)
  236. goto out_mm; /* Shh! No looking before we're done */
  237. len = mm->arg_end - mm->arg_start;
  238. if (len > PAGE_SIZE)
  239. len = PAGE_SIZE;
  240. res = access_process_vm(task, mm->arg_start, buffer, len, 0);
  241. // If the nul at the end of args has been overwritten, then
  242. // assume application is using setproctitle(3).
  243. if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
  244. len = strnlen(buffer, res);
  245. if (len < res) {
  246. res = len;
  247. } else {
  248. len = mm->env_end - mm->env_start;
  249. if (len > PAGE_SIZE - res)
  250. len = PAGE_SIZE - res;
  251. res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
  252. res = strnlen(buffer, res);
  253. }
  254. }
  255. out_mm:
  256. mmput(mm);
  257. out:
  258. return res;
  259. }
  260. static int proc_pid_auxv(struct task_struct *task, char *buffer)
  261. {
  262. int res = 0;
  263. struct mm_struct *mm = get_task_mm(task);
  264. if (mm) {
  265. unsigned int nwords = 0;
  266. do {
  267. nwords += 2;
  268. } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
  269. res = nwords * sizeof(mm->saved_auxv[0]);
  270. if (res > PAGE_SIZE)
  271. res = PAGE_SIZE;
  272. memcpy(buffer, mm->saved_auxv, res);
  273. mmput(mm);
  274. }
  275. return res;
  276. }
  277. #ifdef CONFIG_KALLSYMS
  278. /*
  279. * Provides a wchan file via kallsyms in a proper one-value-per-file format.
  280. * Returns the resolved symbol. If that fails, simply return the address.
  281. */
  282. static int proc_pid_wchan(struct task_struct *task, char *buffer)
  283. {
  284. unsigned long wchan;
  285. char symname[KSYM_NAME_LEN];
  286. wchan = get_wchan(task);
  287. if (lookup_symbol_name(wchan, symname) < 0)
  288. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  289. return 0;
  290. else
  291. return sprintf(buffer, "%lu", wchan);
  292. else
  293. return sprintf(buffer, "%s", symname);
  294. }
  295. #endif /* CONFIG_KALLSYMS */
  296. #ifdef CONFIG_STACKTRACE
  297. #define MAX_STACK_TRACE_DEPTH 64
  298. static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
  299. struct pid *pid, struct task_struct *task)
  300. {
  301. struct stack_trace trace;
  302. unsigned long *entries;
  303. int i;
  304. entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
  305. if (!entries)
  306. return -ENOMEM;
  307. trace.nr_entries = 0;
  308. trace.max_entries = MAX_STACK_TRACE_DEPTH;
  309. trace.entries = entries;
  310. trace.skip = 0;
  311. save_stack_trace_tsk(task, &trace);
  312. for (i = 0; i < trace.nr_entries; i++) {
  313. seq_printf(m, "[<%p>] %pS\n",
  314. (void *)entries[i], (void *)entries[i]);
  315. }
  316. kfree(entries);
  317. return 0;
  318. }
  319. #endif
  320. #ifdef CONFIG_SCHEDSTATS
  321. /*
  322. * Provides /proc/PID/schedstat
  323. */
  324. static int proc_pid_schedstat(struct task_struct *task, char *buffer)
  325. {
  326. return sprintf(buffer, "%llu %llu %lu\n",
  327. (unsigned long long)task->se.sum_exec_runtime,
  328. (unsigned long long)task->sched_info.run_delay,
  329. task->sched_info.pcount);
  330. }
  331. #endif
  332. #ifdef CONFIG_LATENCYTOP
  333. static int lstats_show_proc(struct seq_file *m, void *v)
  334. {
  335. int i;
  336. struct inode *inode = m->private;
  337. struct task_struct *task = get_proc_task(inode);
  338. if (!task)
  339. return -ESRCH;
  340. seq_puts(m, "Latency Top version : v0.1\n");
  341. for (i = 0; i < 32; i++) {
  342. if (task->latency_record[i].backtrace[0]) {
  343. int q;
  344. seq_printf(m, "%i %li %li ",
  345. task->latency_record[i].count,
  346. task->latency_record[i].time,
  347. task->latency_record[i].max);
  348. for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
  349. char sym[KSYM_SYMBOL_LEN];
  350. char *c;
  351. if (!task->latency_record[i].backtrace[q])
  352. break;
  353. if (task->latency_record[i].backtrace[q] == ULONG_MAX)
  354. break;
  355. sprint_symbol(sym, task->latency_record[i].backtrace[q]);
  356. c = strchr(sym, '+');
  357. if (c)
  358. *c = 0;
  359. seq_printf(m, "%s ", sym);
  360. }
  361. seq_printf(m, "\n");
  362. }
  363. }
  364. put_task_struct(task);
  365. return 0;
  366. }
  367. static int lstats_open(struct inode *inode, struct file *file)
  368. {
  369. return single_open(file, lstats_show_proc, inode);
  370. }
  371. static ssize_t lstats_write(struct file *file, const char __user *buf,
  372. size_t count, loff_t *offs)
  373. {
  374. struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
  375. if (!task)
  376. return -ESRCH;
  377. clear_all_latency_tracing(task);
  378. put_task_struct(task);
  379. return count;
  380. }
  381. static const struct file_operations proc_lstats_operations = {
  382. .open = lstats_open,
  383. .read = seq_read,
  384. .write = lstats_write,
  385. .llseek = seq_lseek,
  386. .release = single_release,
  387. };
  388. #endif
  389. /* The badness from the OOM killer */
  390. unsigned long badness(struct task_struct *p, unsigned long uptime);
  391. static int proc_oom_score(struct task_struct *task, char *buffer)
  392. {
  393. unsigned long points;
  394. struct timespec uptime;
  395. do_posix_clock_monotonic_gettime(&uptime);
  396. read_lock(&tasklist_lock);
  397. points = badness(task->group_leader, uptime.tv_sec);
  398. read_unlock(&tasklist_lock);
  399. return sprintf(buffer, "%lu\n", points);
  400. }
  401. struct limit_names {
  402. char *name;
  403. char *unit;
  404. };
  405. static const struct limit_names lnames[RLIM_NLIMITS] = {
  406. [RLIMIT_CPU] = {"Max cpu time", "seconds"},
  407. [RLIMIT_FSIZE] = {"Max file size", "bytes"},
  408. [RLIMIT_DATA] = {"Max data size", "bytes"},
  409. [RLIMIT_STACK] = {"Max stack size", "bytes"},
  410. [RLIMIT_CORE] = {"Max core file size", "bytes"},
  411. [RLIMIT_RSS] = {"Max resident set", "bytes"},
  412. [RLIMIT_NPROC] = {"Max processes", "processes"},
  413. [RLIMIT_NOFILE] = {"Max open files", "files"},
  414. [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
  415. [RLIMIT_AS] = {"Max address space", "bytes"},
  416. [RLIMIT_LOCKS] = {"Max file locks", "locks"},
  417. [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
  418. [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
  419. [RLIMIT_NICE] = {"Max nice priority", NULL},
  420. [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
  421. [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
  422. };
  423. /* Display limits for a process */
  424. static int proc_pid_limits(struct task_struct *task, char *buffer)
  425. {
  426. unsigned int i;
  427. int count = 0;
  428. unsigned long flags;
  429. char *bufptr = buffer;
  430. struct rlimit rlim[RLIM_NLIMITS];
  431. if (!lock_task_sighand(task, &flags))
  432. return 0;
  433. memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
  434. unlock_task_sighand(task, &flags);
  435. /*
  436. * print the file header
  437. */
  438. count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
  439. "Limit", "Soft Limit", "Hard Limit", "Units");
  440. for (i = 0; i < RLIM_NLIMITS; i++) {
  441. if (rlim[i].rlim_cur == RLIM_INFINITY)
  442. count += sprintf(&bufptr[count], "%-25s %-20s ",
  443. lnames[i].name, "unlimited");
  444. else
  445. count += sprintf(&bufptr[count], "%-25s %-20lu ",
  446. lnames[i].name, rlim[i].rlim_cur);
  447. if (rlim[i].rlim_max == RLIM_INFINITY)
  448. count += sprintf(&bufptr[count], "%-20s ", "unlimited");
  449. else
  450. count += sprintf(&bufptr[count], "%-20lu ",
  451. rlim[i].rlim_max);
  452. if (lnames[i].unit)
  453. count += sprintf(&bufptr[count], "%-10s\n",
  454. lnames[i].unit);
  455. else
  456. count += sprintf(&bufptr[count], "\n");
  457. }
  458. return count;
  459. }
  460. #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
  461. static int proc_pid_syscall(struct task_struct *task, char *buffer)
  462. {
  463. long nr;
  464. unsigned long args[6], sp, pc;
  465. if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
  466. return sprintf(buffer, "running\n");
  467. if (nr < 0)
  468. return sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
  469. return sprintf(buffer,
  470. "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
  471. nr,
  472. args[0], args[1], args[2], args[3], args[4], args[5],
  473. sp, pc);
  474. }
  475. #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
  476. /************************************************************************/
  477. /* Here the fs part begins */
  478. /************************************************************************/
  479. /* permission checks */
  480. static int proc_fd_access_allowed(struct inode *inode)
  481. {
  482. struct task_struct *task;
  483. int allowed = 0;
  484. /* Allow access to a task's file descriptors if it is us or we
  485. * may use ptrace attach to the process and find out that
  486. * information.
  487. */
  488. task = get_proc_task(inode);
  489. if (task) {
  490. allowed = ptrace_may_access(task, PTRACE_MODE_READ);
  491. put_task_struct(task);
  492. }
  493. return allowed;
  494. }
  495. static int proc_setattr(struct dentry *dentry, struct iattr *attr)
  496. {
  497. int error;
  498. struct inode *inode = dentry->d_inode;
  499. if (attr->ia_valid & ATTR_MODE)
  500. return -EPERM;
  501. error = inode_change_ok(inode, attr);
  502. if (!error)
  503. error = inode_setattr(inode, attr);
  504. return error;
  505. }
  506. static const struct inode_operations proc_def_inode_operations = {
  507. .setattr = proc_setattr,
  508. };
  509. static int mounts_open_common(struct inode *inode, struct file *file,
  510. const struct seq_operations *op)
  511. {
  512. struct task_struct *task = get_proc_task(inode);
  513. struct nsproxy *nsp;
  514. struct mnt_namespace *ns = NULL;
  515. struct path root;
  516. struct proc_mounts *p;
  517. int ret = -EINVAL;
  518. if (task) {
  519. rcu_read_lock();
  520. nsp = task_nsproxy(task);
  521. if (nsp) {
  522. ns = nsp->mnt_ns;
  523. if (ns)
  524. get_mnt_ns(ns);
  525. }
  526. rcu_read_unlock();
  527. if (ns && get_fs_path(task, &root, 1) == 0)
  528. ret = 0;
  529. put_task_struct(task);
  530. }
  531. if (!ns)
  532. goto err;
  533. if (ret)
  534. goto err_put_ns;
  535. ret = -ENOMEM;
  536. p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
  537. if (!p)
  538. goto err_put_path;
  539. file->private_data = &p->m;
  540. ret = seq_open(file, op);
  541. if (ret)
  542. goto err_free;
  543. p->m.private = p;
  544. p->ns = ns;
  545. p->root = root;
  546. p->event = ns->event;
  547. return 0;
  548. err_free:
  549. kfree(p);
  550. err_put_path:
  551. path_put(&root);
  552. err_put_ns:
  553. put_mnt_ns(ns);
  554. err:
  555. return ret;
  556. }
  557. static int mounts_release(struct inode *inode, struct file *file)
  558. {
  559. struct proc_mounts *p = file->private_data;
  560. path_put(&p->root);
  561. put_mnt_ns(p->ns);
  562. return seq_release(inode, file);
  563. }
  564. static unsigned mounts_poll(struct file *file, poll_table *wait)
  565. {
  566. struct proc_mounts *p = file->private_data;
  567. struct mnt_namespace *ns = p->ns;
  568. unsigned res = POLLIN | POLLRDNORM;
  569. poll_wait(file, &ns->poll, wait);
  570. spin_lock(&vfsmount_lock);
  571. if (p->event != ns->event) {
  572. p->event = ns->event;
  573. res |= POLLERR | POLLPRI;
  574. }
  575. spin_unlock(&vfsmount_lock);
  576. return res;
  577. }
  578. static int mounts_open(struct inode *inode, struct file *file)
  579. {
  580. return mounts_open_common(inode, file, &mounts_op);
  581. }
  582. static const struct file_operations proc_mounts_operations = {
  583. .open = mounts_open,
  584. .read = seq_read,
  585. .llseek = seq_lseek,
  586. .release = mounts_release,
  587. .poll = mounts_poll,
  588. };
  589. static int mountinfo_open(struct inode *inode, struct file *file)
  590. {
  591. return mounts_open_common(inode, file, &mountinfo_op);
  592. }
  593. static const struct file_operations proc_mountinfo_operations = {
  594. .open = mountinfo_open,
  595. .read = seq_read,
  596. .llseek = seq_lseek,
  597. .release = mounts_release,
  598. .poll = mounts_poll,
  599. };
  600. static int mountstats_open(struct inode *inode, struct file *file)
  601. {
  602. return mounts_open_common(inode, file, &mountstats_op);
  603. }
  604. static const struct file_operations proc_mountstats_operations = {
  605. .open = mountstats_open,
  606. .read = seq_read,
  607. .llseek = seq_lseek,
  608. .release = mounts_release,
  609. };
  610. #define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
  611. static ssize_t proc_info_read(struct file * file, char __user * buf,
  612. size_t count, loff_t *ppos)
  613. {
  614. struct inode * inode = file->f_path.dentry->d_inode;
  615. unsigned long page;
  616. ssize_t length;
  617. struct task_struct *task = get_proc_task(inode);
  618. length = -ESRCH;
  619. if (!task)
  620. goto out_no_task;
  621. if (count > PROC_BLOCK_SIZE)
  622. count = PROC_BLOCK_SIZE;
  623. length = -ENOMEM;
  624. if (!(page = __get_free_page(GFP_TEMPORARY)))
  625. goto out;
  626. length = PROC_I(inode)->op.proc_read(task, (char*)page);
  627. if (length >= 0)
  628. length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
  629. free_page(page);
  630. out:
  631. put_task_struct(task);
  632. out_no_task:
  633. return length;
  634. }
  635. static const struct file_operations proc_info_file_operations = {
  636. .read = proc_info_read,
  637. };
  638. static int proc_single_show(struct seq_file *m, void *v)
  639. {
  640. struct inode *inode = m->private;
  641. struct pid_namespace *ns;
  642. struct pid *pid;
  643. struct task_struct *task;
  644. int ret;
  645. ns = inode->i_sb->s_fs_info;
  646. pid = proc_pid(inode);
  647. task = get_pid_task(pid, PIDTYPE_PID);
  648. if (!task)
  649. return -ESRCH;
  650. ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
  651. put_task_struct(task);
  652. return ret;
  653. }
  654. static int proc_single_open(struct inode *inode, struct file *filp)
  655. {
  656. int ret;
  657. ret = single_open(filp, proc_single_show, NULL);
  658. if (!ret) {
  659. struct seq_file *m = filp->private_data;
  660. m->private = inode;
  661. }
  662. return ret;
  663. }
  664. static const struct file_operations proc_single_file_operations = {
  665. .open = proc_single_open,
  666. .read = seq_read,
  667. .llseek = seq_lseek,
  668. .release = single_release,
  669. };
  670. static int mem_open(struct inode* inode, struct file* file)
  671. {
  672. file->private_data = (void*)((long)current->self_exec_id);
  673. return 0;
  674. }
  675. static ssize_t mem_read(struct file * file, char __user * buf,
  676. size_t count, loff_t *ppos)
  677. {
  678. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  679. char *page;
  680. unsigned long src = *ppos;
  681. int ret = -ESRCH;
  682. struct mm_struct *mm;
  683. if (!task)
  684. goto out_no_task;
  685. if (check_mem_permission(task))
  686. goto out;
  687. ret = -ENOMEM;
  688. page = (char *)__get_free_page(GFP_TEMPORARY);
  689. if (!page)
  690. goto out;
  691. ret = 0;
  692. mm = get_task_mm(task);
  693. if (!mm)
  694. goto out_free;
  695. ret = -EIO;
  696. if (file->private_data != (void*)((long)current->self_exec_id))
  697. goto out_put;
  698. ret = 0;
  699. while (count > 0) {
  700. int this_len, retval;
  701. this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
  702. retval = access_process_vm(task, src, page, this_len, 0);
  703. if (!retval || check_mem_permission(task)) {
  704. if (!ret)
  705. ret = -EIO;
  706. break;
  707. }
  708. if (copy_to_user(buf, page, retval)) {
  709. ret = -EFAULT;
  710. break;
  711. }
  712. ret += retval;
  713. src += retval;
  714. buf += retval;
  715. count -= retval;
  716. }
  717. *ppos = src;
  718. out_put:
  719. mmput(mm);
  720. out_free:
  721. free_page((unsigned long) page);
  722. out:
  723. put_task_struct(task);
  724. out_no_task:
  725. return ret;
  726. }
  727. #define mem_write NULL
  728. #ifndef mem_write
  729. /* This is a security hazard */
  730. static ssize_t mem_write(struct file * file, const char __user *buf,
  731. size_t count, loff_t *ppos)
  732. {
  733. int copied;
  734. char *page;
  735. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  736. unsigned long dst = *ppos;
  737. copied = -ESRCH;
  738. if (!task)
  739. goto out_no_task;
  740. if (check_mem_permission(task))
  741. goto out;
  742. copied = -ENOMEM;
  743. page = (char *)__get_free_page(GFP_TEMPORARY);
  744. if (!page)
  745. goto out;
  746. copied = 0;
  747. while (count > 0) {
  748. int this_len, retval;
  749. this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
  750. if (copy_from_user(page, buf, this_len)) {
  751. copied = -EFAULT;
  752. break;
  753. }
  754. retval = access_process_vm(task, dst, page, this_len, 1);
  755. if (!retval) {
  756. if (!copied)
  757. copied = -EIO;
  758. break;
  759. }
  760. copied += retval;
  761. buf += retval;
  762. dst += retval;
  763. count -= retval;
  764. }
  765. *ppos = dst;
  766. free_page((unsigned long) page);
  767. out:
  768. put_task_struct(task);
  769. out_no_task:
  770. return copied;
  771. }
  772. #endif
  773. loff_t mem_lseek(struct file *file, loff_t offset, int orig)
  774. {
  775. switch (orig) {
  776. case 0:
  777. file->f_pos = offset;
  778. break;
  779. case 1:
  780. file->f_pos += offset;
  781. break;
  782. default:
  783. return -EINVAL;
  784. }
  785. force_successful_syscall_return();
  786. return file->f_pos;
  787. }
  788. static const struct file_operations proc_mem_operations = {
  789. .llseek = mem_lseek,
  790. .read = mem_read,
  791. .write = mem_write,
  792. .open = mem_open,
  793. };
  794. static ssize_t environ_read(struct file *file, char __user *buf,
  795. size_t count, loff_t *ppos)
  796. {
  797. struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
  798. char *page;
  799. unsigned long src = *ppos;
  800. int ret = -ESRCH;
  801. struct mm_struct *mm;
  802. if (!task)
  803. goto out_no_task;
  804. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  805. goto out;
  806. ret = -ENOMEM;
  807. page = (char *)__get_free_page(GFP_TEMPORARY);
  808. if (!page)
  809. goto out;
  810. ret = 0;
  811. mm = get_task_mm(task);
  812. if (!mm)
  813. goto out_free;
  814. while (count > 0) {
  815. int this_len, retval, max_len;
  816. this_len = mm->env_end - (mm->env_start + src);
  817. if (this_len <= 0)
  818. break;
  819. max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
  820. this_len = (this_len > max_len) ? max_len : this_len;
  821. retval = access_process_vm(task, (mm->env_start + src),
  822. page, this_len, 0);
  823. if (retval <= 0) {
  824. ret = retval;
  825. break;
  826. }
  827. if (copy_to_user(buf, page, retval)) {
  828. ret = -EFAULT;
  829. break;
  830. }
  831. ret += retval;
  832. src += retval;
  833. buf += retval;
  834. count -= retval;
  835. }
  836. *ppos = src;
  837. mmput(mm);
  838. out_free:
  839. free_page((unsigned long) page);
  840. out:
  841. put_task_struct(task);
  842. out_no_task:
  843. return ret;
  844. }
  845. static const struct file_operations proc_environ_operations = {
  846. .read = environ_read,
  847. };
  848. static ssize_t oom_adjust_read(struct file *file, char __user *buf,
  849. size_t count, loff_t *ppos)
  850. {
  851. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  852. char buffer[PROC_NUMBUF];
  853. size_t len;
  854. int oom_adjust = OOM_DISABLE;
  855. unsigned long flags;
  856. if (!task)
  857. return -ESRCH;
  858. if (lock_task_sighand(task, &flags)) {
  859. oom_adjust = task->signal->oom_adj;
  860. unlock_task_sighand(task, &flags);
  861. }
  862. put_task_struct(task);
  863. len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
  864. return simple_read_from_buffer(buf, count, ppos, buffer, len);
  865. }
  866. static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
  867. size_t count, loff_t *ppos)
  868. {
  869. struct task_struct *task;
  870. char buffer[PROC_NUMBUF];
  871. long oom_adjust;
  872. unsigned long flags;
  873. int err;
  874. memset(buffer, 0, sizeof(buffer));
  875. if (count > sizeof(buffer) - 1)
  876. count = sizeof(buffer) - 1;
  877. if (copy_from_user(buffer, buf, count))
  878. return -EFAULT;
  879. err = strict_strtol(strstrip(buffer), 0, &oom_adjust);
  880. if (err)
  881. return -EINVAL;
  882. if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
  883. oom_adjust != OOM_DISABLE)
  884. return -EINVAL;
  885. task = get_proc_task(file->f_path.dentry->d_inode);
  886. if (!task)
  887. return -ESRCH;
  888. if (!lock_task_sighand(task, &flags)) {
  889. put_task_struct(task);
  890. return -ESRCH;
  891. }
  892. if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
  893. unlock_task_sighand(task, &flags);
  894. put_task_struct(task);
  895. return -EACCES;
  896. }
  897. task->signal->oom_adj = oom_adjust;
  898. unlock_task_sighand(task, &flags);
  899. put_task_struct(task);
  900. return count;
  901. }
  902. static const struct file_operations proc_oom_adjust_operations = {
  903. .read = oom_adjust_read,
  904. .write = oom_adjust_write,
  905. };
  906. #ifdef CONFIG_AUDITSYSCALL
  907. #define TMPBUFLEN 21
  908. static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
  909. size_t count, loff_t *ppos)
  910. {
  911. struct inode * inode = file->f_path.dentry->d_inode;
  912. struct task_struct *task = get_proc_task(inode);
  913. ssize_t length;
  914. char tmpbuf[TMPBUFLEN];
  915. if (!task)
  916. return -ESRCH;
  917. length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
  918. audit_get_loginuid(task));
  919. put_task_struct(task);
  920. return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
  921. }
  922. static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
  923. size_t count, loff_t *ppos)
  924. {
  925. struct inode * inode = file->f_path.dentry->d_inode;
  926. char *page, *tmp;
  927. ssize_t length;
  928. uid_t loginuid;
  929. if (!capable(CAP_AUDIT_CONTROL))
  930. return -EPERM;
  931. if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
  932. return -EPERM;
  933. if (count >= PAGE_SIZE)
  934. count = PAGE_SIZE - 1;
  935. if (*ppos != 0) {
  936. /* No partial writes. */
  937. return -EINVAL;
  938. }
  939. page = (char*)__get_free_page(GFP_TEMPORARY);
  940. if (!page)
  941. return -ENOMEM;
  942. length = -EFAULT;
  943. if (copy_from_user(page, buf, count))
  944. goto out_free_page;
  945. page[count] = '\0';
  946. loginuid = simple_strtoul(page, &tmp, 10);
  947. if (tmp == page) {
  948. length = -EINVAL;
  949. goto out_free_page;
  950. }
  951. length = audit_set_loginuid(current, loginuid);
  952. if (likely(length == 0))
  953. length = count;
  954. out_free_page:
  955. free_page((unsigned long) page);
  956. return length;
  957. }
  958. static const struct file_operations proc_loginuid_operations = {
  959. .read = proc_loginuid_read,
  960. .write = proc_loginuid_write,
  961. };
  962. static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
  963. size_t count, loff_t *ppos)
  964. {
  965. struct inode * inode = file->f_path.dentry->d_inode;
  966. struct task_struct *task = get_proc_task(inode);
  967. ssize_t length;
  968. char tmpbuf[TMPBUFLEN];
  969. if (!task)
  970. return -ESRCH;
  971. length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
  972. audit_get_sessionid(task));
  973. put_task_struct(task);
  974. return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
  975. }
  976. static const struct file_operations proc_sessionid_operations = {
  977. .read = proc_sessionid_read,
  978. };
  979. #endif
  980. #ifdef CONFIG_FAULT_INJECTION
  981. static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
  982. size_t count, loff_t *ppos)
  983. {
  984. struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
  985. char buffer[PROC_NUMBUF];
  986. size_t len;
  987. int make_it_fail;
  988. if (!task)
  989. return -ESRCH;
  990. make_it_fail = task->make_it_fail;
  991. put_task_struct(task);
  992. len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
  993. return simple_read_from_buffer(buf, count, ppos, buffer, len);
  994. }
  995. static ssize_t proc_fault_inject_write(struct file * file,
  996. const char __user * buf, size_t count, loff_t *ppos)
  997. {
  998. struct task_struct *task;
  999. char buffer[PROC_NUMBUF], *end;
  1000. int make_it_fail;
  1001. if (!capable(CAP_SYS_RESOURCE))
  1002. return -EPERM;
  1003. memset(buffer, 0, sizeof(buffer));
  1004. if (count > sizeof(buffer) - 1)
  1005. count = sizeof(buffer) - 1;
  1006. if (copy_from_user(buffer, buf, count))
  1007. return -EFAULT;
  1008. make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
  1009. if (*end)
  1010. return -EINVAL;
  1011. task = get_proc_task(file->f_dentry->d_inode);
  1012. if (!task)
  1013. return -ESRCH;
  1014. task->make_it_fail = make_it_fail;
  1015. put_task_struct(task);
  1016. return count;
  1017. }
  1018. static const struct file_operations proc_fault_inject_operations = {
  1019. .read = proc_fault_inject_read,
  1020. .write = proc_fault_inject_write,
  1021. };
  1022. #endif
  1023. #ifdef CONFIG_SCHED_DEBUG
  1024. /*
  1025. * Print out various scheduling related per-task fields:
  1026. */
  1027. static int sched_show(struct seq_file *m, void *v)
  1028. {
  1029. struct inode *inode = m->private;
  1030. struct task_struct *p;
  1031. p = get_proc_task(inode);
  1032. if (!p)
  1033. return -ESRCH;
  1034. proc_sched_show_task(p, m);
  1035. put_task_struct(p);
  1036. return 0;
  1037. }
  1038. static ssize_t
  1039. sched_write(struct file *file, const char __user *buf,
  1040. size_t count, loff_t *offset)
  1041. {
  1042. struct inode *inode = file->f_path.dentry->d_inode;
  1043. struct task_struct *p;
  1044. p = get_proc_task(inode);
  1045. if (!p)
  1046. return -ESRCH;
  1047. proc_sched_set_task(p);
  1048. put_task_struct(p);
  1049. return count;
  1050. }
  1051. static int sched_open(struct inode *inode, struct file *filp)
  1052. {
  1053. int ret;
  1054. ret = single_open(filp, sched_show, NULL);
  1055. if (!ret) {
  1056. struct seq_file *m = filp->private_data;
  1057. m->private = inode;
  1058. }
  1059. return ret;
  1060. }
  1061. static const struct file_operations proc_pid_sched_operations = {
  1062. .open = sched_open,
  1063. .read = seq_read,
  1064. .write = sched_write,
  1065. .llseek = seq_lseek,
  1066. .release = single_release,
  1067. };
  1068. #endif
  1069. static ssize_t comm_write(struct file *file, const char __user *buf,
  1070. size_t count, loff_t *offset)
  1071. {
  1072. struct inode *inode = file->f_path.dentry->d_inode;
  1073. struct task_struct *p;
  1074. char buffer[TASK_COMM_LEN];
  1075. memset(buffer, 0, sizeof(buffer));
  1076. if (count > sizeof(buffer) - 1)
  1077. count = sizeof(buffer) - 1;
  1078. if (copy_from_user(buffer, buf, count))
  1079. return -EFAULT;
  1080. p = get_proc_task(inode);
  1081. if (!p)
  1082. return -ESRCH;
  1083. if (same_thread_group(current, p))
  1084. set_task_comm(p, buffer);
  1085. else
  1086. count = -EINVAL;
  1087. put_task_struct(p);
  1088. return count;
  1089. }
  1090. static int comm_show(struct seq_file *m, void *v)
  1091. {
  1092. struct inode *inode = m->private;
  1093. struct task_struct *p;
  1094. p = get_proc_task(inode);
  1095. if (!p)
  1096. return -ESRCH;
  1097. task_lock(p);
  1098. seq_printf(m, "%s\n", p->comm);
  1099. task_unlock(p);
  1100. put_task_struct(p);
  1101. return 0;
  1102. }
  1103. static int comm_open(struct inode *inode, struct file *filp)
  1104. {
  1105. int ret;
  1106. ret = single_open(filp, comm_show, NULL);
  1107. if (!ret) {
  1108. struct seq_file *m = filp->private_data;
  1109. m->private = inode;
  1110. }
  1111. return ret;
  1112. }
  1113. static const struct file_operations proc_pid_set_comm_operations = {
  1114. .open = comm_open,
  1115. .read = seq_read,
  1116. .write = comm_write,
  1117. .llseek = seq_lseek,
  1118. .release = single_release,
  1119. };
  1120. /*
  1121. * We added or removed a vma mapping the executable. The vmas are only mapped
  1122. * during exec and are not mapped with the mmap system call.
  1123. * Callers must hold down_write() on the mm's mmap_sem for these
  1124. */
  1125. void added_exe_file_vma(struct mm_struct *mm)
  1126. {
  1127. mm->num_exe_file_vmas++;
  1128. }
  1129. void removed_exe_file_vma(struct mm_struct *mm)
  1130. {
  1131. mm->num_exe_file_vmas--;
  1132. if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
  1133. fput(mm->exe_file);
  1134. mm->exe_file = NULL;
  1135. }
  1136. }
  1137. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  1138. {
  1139. if (new_exe_file)
  1140. get_file(new_exe_file);
  1141. if (mm->exe_file)
  1142. fput(mm->exe_file);
  1143. mm->exe_file = new_exe_file;
  1144. mm->num_exe_file_vmas = 0;
  1145. }
  1146. struct file *get_mm_exe_file(struct mm_struct *mm)
  1147. {
  1148. struct file *exe_file;
  1149. /* We need mmap_sem to protect against races with removal of
  1150. * VM_EXECUTABLE vmas */
  1151. down_read(&mm->mmap_sem);
  1152. exe_file = mm->exe_file;
  1153. if (exe_file)
  1154. get_file(exe_file);
  1155. up_read(&mm->mmap_sem);
  1156. return exe_file;
  1157. }
  1158. void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  1159. {
  1160. /* It's safe to write the exe_file pointer without exe_file_lock because
  1161. * this is called during fork when the task is not yet in /proc */
  1162. newmm->exe_file = get_mm_exe_file(oldmm);
  1163. }
  1164. static int proc_exe_link(struct inode *inode, struct path *exe_path)
  1165. {
  1166. struct task_struct *task;
  1167. struct mm_struct *mm;
  1168. struct file *exe_file;
  1169. task = get_proc_task(inode);
  1170. if (!task)
  1171. return -ENOENT;
  1172. mm = get_task_mm(task);
  1173. put_task_struct(task);
  1174. if (!mm)
  1175. return -ENOENT;
  1176. exe_file = get_mm_exe_file(mm);
  1177. mmput(mm);
  1178. if (exe_file) {
  1179. *exe_path = exe_file->f_path;
  1180. path_get(&exe_file->f_path);
  1181. fput(exe_file);
  1182. return 0;
  1183. } else
  1184. return -ENOENT;
  1185. }
  1186. static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
  1187. {
  1188. struct inode *inode = dentry->d_inode;
  1189. int error = -EACCES;
  1190. /* We don't need a base pointer in the /proc filesystem */
  1191. path_put(&nd->path);
  1192. /* Are we allowed to snoop on the tasks file descriptors? */
  1193. if (!proc_fd_access_allowed(inode))
  1194. goto out;
  1195. error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
  1196. out:
  1197. return ERR_PTR(error);
  1198. }
  1199. static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
  1200. {
  1201. char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
  1202. char *pathname;
  1203. int len;
  1204. if (!tmp)
  1205. return -ENOMEM;
  1206. pathname = d_path(path, tmp, PAGE_SIZE);
  1207. len = PTR_ERR(pathname);
  1208. if (IS_ERR(pathname))
  1209. goto out;
  1210. len = tmp + PAGE_SIZE - 1 - pathname;
  1211. if (len > buflen)
  1212. len = buflen;
  1213. if (copy_to_user(buffer, pathname, len))
  1214. len = -EFAULT;
  1215. out:
  1216. free_page((unsigned long)tmp);
  1217. return len;
  1218. }
  1219. static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
  1220. {
  1221. int error = -EACCES;
  1222. struct inode *inode = dentry->d_inode;
  1223. struct path path;
  1224. /* Are we allowed to snoop on the tasks file descriptors? */
  1225. if (!proc_fd_access_allowed(inode))
  1226. goto out;
  1227. error = PROC_I(inode)->op.proc_get_link(inode, &path);
  1228. if (error)
  1229. goto out;
  1230. error = do_proc_readlink(&path, buffer, buflen);
  1231. path_put(&path);
  1232. out:
  1233. return error;
  1234. }
  1235. static const struct inode_operations proc_pid_link_inode_operations = {
  1236. .readlink = proc_pid_readlink,
  1237. .follow_link = proc_pid_follow_link,
  1238. .setattr = proc_setattr,
  1239. };
  1240. /* building an inode */
  1241. static int task_dumpable(struct task_struct *task)
  1242. {
  1243. int dumpable = 0;
  1244. struct mm_struct *mm;
  1245. task_lock(task);
  1246. mm = task->mm;
  1247. if (mm)
  1248. dumpable = get_dumpable(mm);
  1249. task_unlock(task);
  1250. if(dumpable == 1)
  1251. return 1;
  1252. return 0;
  1253. }
  1254. static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
  1255. {
  1256. struct inode * inode;
  1257. struct proc_inode *ei;
  1258. const struct cred *cred;
  1259. /* We need a new inode */
  1260. inode = new_inode(sb);
  1261. if (!inode)
  1262. goto out;
  1263. /* Common stuff */
  1264. ei = PROC_I(inode);
  1265. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  1266. inode->i_op = &proc_def_inode_operations;
  1267. /*
  1268. * grab the reference to task.
  1269. */
  1270. ei->pid = get_task_pid(task, PIDTYPE_PID);
  1271. if (!ei->pid)
  1272. goto out_unlock;
  1273. if (task_dumpable(task)) {
  1274. rcu_read_lock();
  1275. cred = __task_cred(task);
  1276. inode->i_uid = cred->euid;
  1277. inode->i_gid = cred->egid;
  1278. rcu_read_unlock();
  1279. }
  1280. security_task_to_inode(task, inode);
  1281. out:
  1282. return inode;
  1283. out_unlock:
  1284. iput(inode);
  1285. return NULL;
  1286. }
  1287. static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
  1288. {
  1289. struct inode *inode = dentry->d_inode;
  1290. struct task_struct *task;
  1291. const struct cred *cred;
  1292. generic_fillattr(inode, stat);
  1293. rcu_read_lock();
  1294. stat->uid = 0;
  1295. stat->gid = 0;
  1296. task = pid_task(proc_pid(inode), PIDTYPE_PID);
  1297. if (task) {
  1298. if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
  1299. task_dumpable(task)) {
  1300. cred = __task_cred(task);
  1301. stat->uid = cred->euid;
  1302. stat->gid = cred->egid;
  1303. }
  1304. }
  1305. rcu_read_unlock();
  1306. return 0;
  1307. }
  1308. /* dentry stuff */
  1309. /*
  1310. * Exceptional case: normally we are not allowed to unhash a busy
  1311. * directory. In this case, however, we can do it - no aliasing problems
  1312. * due to the way we treat inodes.
  1313. *
  1314. * Rewrite the inode's ownerships here because the owning task may have
  1315. * performed a setuid(), etc.
  1316. *
  1317. * Before the /proc/pid/status file was created the only way to read
  1318. * the effective uid of a /process was to stat /proc/pid. Reading
  1319. * /proc/pid/status is slow enough that procps and other packages
  1320. * kept stating /proc/pid. To keep the rules in /proc simple I have
  1321. * made this apply to all per process world readable and executable
  1322. * directories.
  1323. */
  1324. static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
  1325. {
  1326. struct inode *inode = dentry->d_inode;
  1327. struct task_struct *task = get_proc_task(inode);
  1328. const struct cred *cred;
  1329. if (task) {
  1330. if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
  1331. task_dumpable(task)) {
  1332. rcu_read_lock();
  1333. cred = __task_cred(task);
  1334. inode->i_uid = cred->euid;
  1335. inode->i_gid = cred->egid;
  1336. rcu_read_unlock();
  1337. } else {
  1338. inode->i_uid = 0;
  1339. inode->i_gid = 0;
  1340. }
  1341. inode->i_mode &= ~(S_ISUID | S_ISGID);
  1342. security_task_to_inode(task, inode);
  1343. put_task_struct(task);
  1344. return 1;
  1345. }
  1346. d_drop(dentry);
  1347. return 0;
  1348. }
  1349. static int pid_delete_dentry(struct dentry * dentry)
  1350. {
  1351. /* Is the task we represent dead?
  1352. * If so, then don't put the dentry on the lru list,
  1353. * kill it immediately.
  1354. */
  1355. return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
  1356. }
  1357. static const struct dentry_operations pid_dentry_operations =
  1358. {
  1359. .d_revalidate = pid_revalidate,
  1360. .d_delete = pid_delete_dentry,
  1361. };
  1362. /* Lookups */
  1363. typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
  1364. struct task_struct *, const void *);
  1365. /*
  1366. * Fill a directory entry.
  1367. *
  1368. * If possible create the dcache entry and derive our inode number and
  1369. * file type from dcache entry.
  1370. *
  1371. * Since all of the proc inode numbers are dynamically generated, the inode
  1372. * numbers do not exist until the inode is cache. This means creating the
  1373. * the dcache entry in readdir is necessary to keep the inode numbers
  1374. * reported by readdir in sync with the inode numbers reported
  1375. * by stat.
  1376. */
  1377. static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
  1378. char *name, int len,
  1379. instantiate_t instantiate, struct task_struct *task, const void *ptr)
  1380. {
  1381. struct dentry *child, *dir = filp->f_path.dentry;
  1382. struct inode *inode;
  1383. struct qstr qname;
  1384. ino_t ino = 0;
  1385. unsigned type = DT_UNKNOWN;
  1386. qname.name = name;
  1387. qname.len = len;
  1388. qname.hash = full_name_hash(name, len);
  1389. child = d_lookup(dir, &qname);
  1390. if (!child) {
  1391. struct dentry *new;
  1392. new = d_alloc(dir, &qname);
  1393. if (new) {
  1394. child = instantiate(dir->d_inode, new, task, ptr);
  1395. if (child)
  1396. dput(new);
  1397. else
  1398. child = new;
  1399. }
  1400. }
  1401. if (!child || IS_ERR(child) || !child->d_inode)
  1402. goto end_instantiate;
  1403. inode = child->d_inode;
  1404. if (inode) {
  1405. ino = inode->i_ino;
  1406. type = inode->i_mode >> 12;
  1407. }
  1408. dput(child);
  1409. end_instantiate:
  1410. if (!ino)
  1411. ino = find_inode_number(dir, &qname);
  1412. if (!ino)
  1413. ino = 1;
  1414. return filldir(dirent, name, len, filp->f_pos, ino, type);
  1415. }
  1416. static unsigned name_to_int(struct dentry *dentry)
  1417. {
  1418. const char *name = dentry->d_name.name;
  1419. int len = dentry->d_name.len;
  1420. unsigned n = 0;
  1421. if (len > 1 && *name == '0')
  1422. goto out;
  1423. while (len-- > 0) {
  1424. unsigned c = *name++ - '0';
  1425. if (c > 9)
  1426. goto out;
  1427. if (n >= (~0U-9)/10)
  1428. goto out;
  1429. n *= 10;
  1430. n += c;
  1431. }
  1432. return n;
  1433. out:
  1434. return ~0U;
  1435. }
  1436. #define PROC_FDINFO_MAX 64
  1437. static int proc_fd_info(struct inode *inode, struct path *path, char *info)
  1438. {
  1439. struct task_struct *task = get_proc_task(inode);
  1440. struct files_struct *files = NULL;
  1441. struct file *file;
  1442. int fd = proc_fd(inode);
  1443. if (task) {
  1444. files = get_files_struct(task);
  1445. put_task_struct(task);
  1446. }
  1447. if (files) {
  1448. /*
  1449. * We are not taking a ref to the file structure, so we must
  1450. * hold ->file_lock.
  1451. */
  1452. spin_lock(&files->file_lock);
  1453. file = fcheck_files(files, fd);
  1454. if (file) {
  1455. if (path) {
  1456. *path = file->f_path;
  1457. path_get(&file->f_path);
  1458. }
  1459. if (info)
  1460. snprintf(info, PROC_FDINFO_MAX,
  1461. "pos:\t%lli\n"
  1462. "flags:\t0%o\n",
  1463. (long long) file->f_pos,
  1464. file->f_flags);
  1465. spin_unlock(&files->file_lock);
  1466. put_files_struct(files);
  1467. return 0;
  1468. }
  1469. spin_unlock(&files->file_lock);
  1470. put_files_struct(files);
  1471. }
  1472. return -ENOENT;
  1473. }
  1474. static int proc_fd_link(struct inode *inode, struct path *path)
  1475. {
  1476. return proc_fd_info(inode, path, NULL);
  1477. }
  1478. static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
  1479. {
  1480. struct inode *inode = dentry->d_inode;
  1481. struct task_struct *task = get_proc_task(inode);
  1482. int fd = proc_fd(inode);
  1483. struct files_struct *files;
  1484. const struct cred *cred;
  1485. if (task) {
  1486. files = get_files_struct(task);
  1487. if (files) {
  1488. rcu_read_lock();
  1489. if (fcheck_files(files, fd)) {
  1490. rcu_read_unlock();
  1491. put_files_struct(files);
  1492. if (task_dumpable(task)) {
  1493. rcu_read_lock();
  1494. cred = __task_cred(task);
  1495. inode->i_uid = cred->euid;
  1496. inode->i_gid = cred->egid;
  1497. rcu_read_unlock();
  1498. } else {
  1499. inode->i_uid = 0;
  1500. inode->i_gid = 0;
  1501. }
  1502. inode->i_mode &= ~(S_ISUID | S_ISGID);
  1503. security_task_to_inode(task, inode);
  1504. put_task_struct(task);
  1505. return 1;
  1506. }
  1507. rcu_read_unlock();
  1508. put_files_struct(files);
  1509. }
  1510. put_task_struct(task);
  1511. }
  1512. d_drop(dentry);
  1513. return 0;
  1514. }
  1515. static const struct dentry_operations tid_fd_dentry_operations =
  1516. {
  1517. .d_revalidate = tid_fd_revalidate,
  1518. .d_delete = pid_delete_dentry,
  1519. };
  1520. static struct dentry *proc_fd_instantiate(struct inode *dir,
  1521. struct dentry *dentry, struct task_struct *task, const void *ptr)
  1522. {
  1523. unsigned fd = *(const unsigned *)ptr;
  1524. struct file *file;
  1525. struct files_struct *files;
  1526. struct inode *inode;
  1527. struct proc_inode *ei;
  1528. struct dentry *error = ERR_PTR(-ENOENT);
  1529. inode = proc_pid_make_inode(dir->i_sb, task);
  1530. if (!inode)
  1531. goto out;
  1532. ei = PROC_I(inode);
  1533. ei->fd = fd;
  1534. files = get_files_struct(task);
  1535. if (!files)
  1536. goto out_iput;
  1537. inode->i_mode = S_IFLNK;
  1538. /*
  1539. * We are not taking a ref to the file structure, so we must
  1540. * hold ->file_lock.
  1541. */
  1542. spin_lock(&files->file_lock);
  1543. file = fcheck_files(files, fd);
  1544. if (!file)
  1545. goto out_unlock;
  1546. if (file->f_mode & FMODE_READ)
  1547. inode->i_mode |= S_IRUSR | S_IXUSR;
  1548. if (file->f_mode & FMODE_WRITE)
  1549. inode->i_mode |= S_IWUSR | S_IXUSR;
  1550. spin_unlock(&files->file_lock);
  1551. put_files_struct(files);
  1552. inode->i_op = &proc_pid_link_inode_operations;
  1553. inode->i_size = 64;
  1554. ei->op.proc_get_link = proc_fd_link;
  1555. dentry->d_op = &tid_fd_dentry_operations;
  1556. d_add(dentry, inode);
  1557. /* Close the race of the process dying before we return the dentry */
  1558. if (tid_fd_revalidate(dentry, NULL))
  1559. error = NULL;
  1560. out:
  1561. return error;
  1562. out_unlock:
  1563. spin_unlock(&files->file_lock);
  1564. put_files_struct(files);
  1565. out_iput:
  1566. iput(inode);
  1567. goto out;
  1568. }
  1569. static struct dentry *proc_lookupfd_common(struct inode *dir,
  1570. struct dentry *dentry,
  1571. instantiate_t instantiate)
  1572. {
  1573. struct task_struct *task = get_proc_task(dir);
  1574. unsigned fd = name_to_int(dentry);
  1575. struct dentry *result = ERR_PTR(-ENOENT);
  1576. if (!task)
  1577. goto out_no_task;
  1578. if (fd == ~0U)
  1579. goto out;
  1580. result = instantiate(dir, dentry, task, &fd);
  1581. out:
  1582. put_task_struct(task);
  1583. out_no_task:
  1584. return result;
  1585. }
  1586. static int proc_readfd_common(struct file * filp, void * dirent,
  1587. filldir_t filldir, instantiate_t instantiate)
  1588. {
  1589. struct dentry *dentry = filp->f_path.dentry;
  1590. struct inode *inode = dentry->d_inode;
  1591. struct task_struct *p = get_proc_task(inode);
  1592. unsigned int fd, ino;
  1593. int retval;
  1594. struct files_struct * files;
  1595. retval = -ENOENT;
  1596. if (!p)
  1597. goto out_no_task;
  1598. retval = 0;
  1599. fd = filp->f_pos;
  1600. switch (fd) {
  1601. case 0:
  1602. if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
  1603. goto out;
  1604. filp->f_pos++;
  1605. case 1:
  1606. ino = parent_ino(dentry);
  1607. if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
  1608. goto out;
  1609. filp->f_pos++;
  1610. default:
  1611. files = get_files_struct(p);
  1612. if (!files)
  1613. goto out;
  1614. rcu_read_lock();
  1615. for (fd = filp->f_pos-2;
  1616. fd < files_fdtable(files)->max_fds;
  1617. fd++, filp->f_pos++) {
  1618. char name[PROC_NUMBUF];
  1619. int len;
  1620. if (!fcheck_files(files, fd))
  1621. continue;
  1622. rcu_read_unlock();
  1623. len = snprintf(name, sizeof(name), "%d", fd);
  1624. if (proc_fill_cache(filp, dirent, filldir,
  1625. name, len, instantiate,
  1626. p, &fd) < 0) {
  1627. rcu_read_lock();
  1628. break;
  1629. }
  1630. rcu_read_lock();
  1631. }
  1632. rcu_read_unlock();
  1633. put_files_struct(files);
  1634. }
  1635. out:
  1636. put_task_struct(p);
  1637. out_no_task:
  1638. return retval;
  1639. }
  1640. static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
  1641. struct nameidata *nd)
  1642. {
  1643. return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
  1644. }
  1645. static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
  1646. {
  1647. return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
  1648. }
  1649. static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
  1650. size_t len, loff_t *ppos)
  1651. {
  1652. char tmp[PROC_FDINFO_MAX];
  1653. int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
  1654. if (!err)
  1655. err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
  1656. return err;
  1657. }
  1658. static const struct file_operations proc_fdinfo_file_operations = {
  1659. .open = nonseekable_open,
  1660. .read = proc_fdinfo_read,
  1661. };
  1662. static const struct file_operations proc_fd_operations = {
  1663. .read = generic_read_dir,
  1664. .readdir = proc_readfd,
  1665. };
  1666. /*
  1667. * /proc/pid/fd needs a special permission handler so that a process can still
  1668. * access /proc/self/fd after it has executed a setuid().
  1669. */
  1670. static int proc_fd_permission(struct inode *inode, int mask)
  1671. {
  1672. int rv;
  1673. rv = generic_permission(inode, mask, NULL);
  1674. if (rv == 0)
  1675. return 0;
  1676. if (task_pid(current) == proc_pid(inode))
  1677. rv = 0;
  1678. return rv;
  1679. }
  1680. /*
  1681. * proc directories can do almost nothing..
  1682. */
  1683. static const struct inode_operations proc_fd_inode_operations = {
  1684. .lookup = proc_lookupfd,
  1685. .permission = proc_fd_permission,
  1686. .setattr = proc_setattr,
  1687. };
  1688. static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
  1689. struct dentry *dentry, struct task_struct *task, const void *ptr)
  1690. {
  1691. unsigned fd = *(unsigned *)ptr;
  1692. struct inode *inode;
  1693. struct proc_inode *ei;
  1694. struct dentry *error = ERR_PTR(-ENOENT);
  1695. inode = proc_pid_make_inode(dir->i_sb, task);
  1696. if (!inode)
  1697. goto out;
  1698. ei = PROC_I(inode);
  1699. ei->fd = fd;
  1700. inode->i_mode = S_IFREG | S_IRUSR;
  1701. inode->i_fop = &proc_fdinfo_file_operations;
  1702. dentry->d_op = &tid_fd_dentry_operations;
  1703. d_add(dentry, inode);
  1704. /* Close the race of the process dying before we return the dentry */
  1705. if (tid_fd_revalidate(dentry, NULL))
  1706. error = NULL;
  1707. out:
  1708. return error;
  1709. }
  1710. static struct dentry *proc_lookupfdinfo(struct inode *dir,
  1711. struct dentry *dentry,
  1712. struct nameidata *nd)
  1713. {
  1714. return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
  1715. }
  1716. static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
  1717. {
  1718. return proc_readfd_common(filp, dirent, filldir,
  1719. proc_fdinfo_instantiate);
  1720. }
  1721. static const struct file_operations proc_fdinfo_operations = {
  1722. .read = generic_read_dir,
  1723. .readdir = proc_readfdinfo,
  1724. };
  1725. /*
  1726. * proc directories can do almost nothing..
  1727. */
  1728. static const struct inode_operations proc_fdinfo_inode_operations = {
  1729. .lookup = proc_lookupfdinfo,
  1730. .setattr = proc_setattr,
  1731. };
  1732. static struct dentry *proc_pident_instantiate(struct inode *dir,
  1733. struct dentry *dentry, struct task_struct *task, const void *ptr)
  1734. {
  1735. const struct pid_entry *p = ptr;
  1736. struct inode *inode;
  1737. struct proc_inode *ei;
  1738. struct dentry *error = ERR_PTR(-ENOENT);
  1739. inode = proc_pid_make_inode(dir->i_sb, task);
  1740. if (!inode)
  1741. goto out;
  1742. ei = PROC_I(inode);
  1743. inode->i_mode = p->mode;
  1744. if (S_ISDIR(inode->i_mode))
  1745. inode->i_nlink = 2; /* Use getattr to fix if necessary */
  1746. if (p->iop)
  1747. inode->i_op = p->iop;
  1748. if (p->fop)
  1749. inode->i_fop = p->fop;
  1750. ei->op = p->op;
  1751. dentry->d_op = &pid_dentry_operations;
  1752. d_add(dentry, inode);
  1753. /* Close the race of the process dying before we return the dentry */
  1754. if (pid_revalidate(dentry, NULL))
  1755. error = NULL;
  1756. out:
  1757. return error;
  1758. }
  1759. static struct dentry *proc_pident_lookup(struct inode *dir,
  1760. struct dentry *dentry,
  1761. const struct pid_entry *ents,
  1762. unsigned int nents)
  1763. {
  1764. struct dentry *error;
  1765. struct task_struct *task = get_proc_task(dir);
  1766. const struct pid_entry *p, *last;
  1767. error = ERR_PTR(-ENOENT);
  1768. if (!task)
  1769. goto out_no_task;
  1770. /*
  1771. * Yes, it does not scale. And it should not. Don't add
  1772. * new entries into /proc/<tgid>/ without very good reasons.
  1773. */
  1774. last = &ents[nents - 1];
  1775. for (p = ents; p <= last; p++) {
  1776. if (p->len != dentry->d_name.len)
  1777. continue;
  1778. if (!memcmp(dentry->d_name.name, p->name, p->len))
  1779. break;
  1780. }
  1781. if (p > last)
  1782. goto out;
  1783. error = proc_pident_instantiate(dir, dentry, task, p);
  1784. out:
  1785. put_task_struct(task);
  1786. out_no_task:
  1787. return error;
  1788. }
  1789. static int proc_pident_fill_cache(struct file *filp, void *dirent,
  1790. filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
  1791. {
  1792. return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
  1793. proc_pident_instantiate, task, p);
  1794. }
  1795. static int proc_pident_readdir(struct file *filp,
  1796. void *dirent, filldir_t filldir,
  1797. const struct pid_entry *ents, unsigned int nents)
  1798. {
  1799. int i;
  1800. struct dentry *dentry = filp->f_path.dentry;
  1801. struct inode *inode = dentry->d_inode;
  1802. struct task_struct *task = get_proc_task(inode);
  1803. const struct pid_entry *p, *last;
  1804. ino_t ino;
  1805. int ret;
  1806. ret = -ENOENT;
  1807. if (!task)
  1808. goto out_no_task;
  1809. ret = 0;
  1810. i = filp->f_pos;
  1811. switch (i) {
  1812. case 0:
  1813. ino = inode->i_ino;
  1814. if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
  1815. goto out;
  1816. i++;
  1817. filp->f_pos++;
  1818. /* fall through */
  1819. case 1:
  1820. ino = parent_ino(dentry);
  1821. if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
  1822. goto out;
  1823. i++;
  1824. filp->f_pos++;
  1825. /* fall through */
  1826. default:
  1827. i -= 2;
  1828. if (i >= nents) {
  1829. ret = 1;
  1830. goto out;
  1831. }
  1832. p = ents + i;
  1833. last = &ents[nents - 1];
  1834. while (p <= last) {
  1835. if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
  1836. goto out;
  1837. filp->f_pos++;
  1838. p++;
  1839. }
  1840. }
  1841. ret = 1;
  1842. out:
  1843. put_task_struct(task);
  1844. out_no_task:
  1845. return ret;
  1846. }
  1847. #ifdef CONFIG_SECURITY
  1848. static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
  1849. size_t count, loff_t *ppos)
  1850. {
  1851. struct inode * inode = file->f_path.dentry->d_inode;
  1852. char *p = NULL;
  1853. ssize_t length;
  1854. struct task_struct *task = get_proc_task(inode);
  1855. if (!task)
  1856. return -ESRCH;
  1857. length = security_getprocattr(task,
  1858. (char*)file->f_path.dentry->d_name.name,
  1859. &p);
  1860. put_task_struct(task);
  1861. if (length > 0)
  1862. length = simple_read_from_buffer(buf, count, ppos, p, length);
  1863. kfree(p);
  1864. return length;
  1865. }
  1866. static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
  1867. size_t count, loff_t *ppos)
  1868. {
  1869. struct inode * inode = file->f_path.dentry->d_inode;
  1870. char *page;
  1871. ssize_t length;
  1872. struct task_struct *task = get_proc_task(inode);
  1873. length = -ESRCH;
  1874. if (!task)
  1875. goto out_no_task;
  1876. if (count > PAGE_SIZE)
  1877. count = PAGE_SIZE;
  1878. /* No partial writes. */
  1879. length = -EINVAL;
  1880. if (*ppos != 0)
  1881. goto out;
  1882. length = -ENOMEM;
  1883. page = (char*)__get_free_page(GFP_TEMPORARY);
  1884. if (!page)
  1885. goto out;
  1886. length = -EFAULT;
  1887. if (copy_from_user(page, buf, count))
  1888. goto out_free;
  1889. /* Guard against adverse ptrace interaction */
  1890. length = mutex_lock_interruptible(&task->cred_guard_mutex);
  1891. if (length < 0)
  1892. goto out_free;
  1893. length = security_setprocattr(task,
  1894. (char*)file->f_path.dentry->d_name.name,
  1895. (void*)page, count);
  1896. mutex_unlock(&task->cred_guard_mutex);
  1897. out_free:
  1898. free_page((unsigned long) page);
  1899. out:
  1900. put_task_struct(task);
  1901. out_no_task:
  1902. return length;
  1903. }
  1904. static const struct file_operations proc_pid_attr_operations = {
  1905. .read = proc_pid_attr_read,
  1906. .write = proc_pid_attr_write,
  1907. };
  1908. static const struct pid_entry attr_dir_stuff[] = {
  1909. REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
  1910. REG("prev", S_IRUGO, proc_pid_attr_operations),
  1911. REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
  1912. REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
  1913. REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
  1914. REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
  1915. };
  1916. static int proc_attr_dir_readdir(struct file * filp,
  1917. void * dirent, filldir_t filldir)
  1918. {
  1919. return proc_pident_readdir(filp,dirent,filldir,
  1920. attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
  1921. }
  1922. static const struct file_operations proc_attr_dir_operations = {
  1923. .read = generic_read_dir,
  1924. .readdir = proc_attr_dir_readdir,
  1925. };
  1926. static struct dentry *proc_attr_dir_lookup(struct inode *dir,
  1927. struct dentry *dentry, struct nameidata *nd)
  1928. {
  1929. return proc_pident_lookup(dir, dentry,
  1930. attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
  1931. }
  1932. static const struct inode_operations proc_attr_dir_inode_operations = {
  1933. .lookup = proc_attr_dir_lookup,
  1934. .getattr = pid_getattr,
  1935. .setattr = proc_setattr,
  1936. };
  1937. #endif
  1938. #ifdef CONFIG_ELF_CORE
  1939. static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
  1940. size_t count, loff_t *ppos)
  1941. {
  1942. struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
  1943. struct mm_struct *mm;
  1944. char buffer[PROC_NUMBUF];
  1945. size_t len;
  1946. int ret;
  1947. if (!task)
  1948. return -ESRCH;
  1949. ret = 0;
  1950. mm = get_task_mm(task);
  1951. if (mm) {
  1952. len = snprintf(buffer, sizeof(buffer), "%08lx\n",
  1953. ((mm->flags & MMF_DUMP_FILTER_MASK) >>
  1954. MMF_DUMP_FILTER_SHIFT));
  1955. mmput(mm);
  1956. ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
  1957. }
  1958. put_task_struct(task);
  1959. return ret;
  1960. }
  1961. static ssize_t proc_coredump_filter_write(struct file *file,
  1962. const char __user *buf,
  1963. size_t count,
  1964. loff_t *ppos)
  1965. {
  1966. struct task_struct *task;
  1967. struct mm_struct *mm;
  1968. char buffer[PROC_NUMBUF], *end;
  1969. unsigned int val;
  1970. int ret;
  1971. int i;
  1972. unsigned long mask;
  1973. ret = -EFAULT;
  1974. memset(buffer, 0, sizeof(buffer));
  1975. if (count > sizeof(buffer) - 1)
  1976. count = sizeof(buffer) - 1;
  1977. if (copy_from_user(buffer, buf, count))
  1978. goto out_no_task;
  1979. ret = -EINVAL;
  1980. val = (unsigned int)simple_strtoul(buffer, &end, 0);
  1981. if (*end == '\n')
  1982. end++;
  1983. if (end - buffer == 0)
  1984. goto out_no_task;
  1985. ret = -ESRCH;
  1986. task = get_proc_task(file->f_dentry->d_inode);
  1987. if (!task)
  1988. goto out_no_task;
  1989. ret = end - buffer;
  1990. mm = get_task_mm(task);
  1991. if (!mm)
  1992. goto out_no_mm;
  1993. for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
  1994. if (val & mask)
  1995. set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
  1996. else
  1997. clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
  1998. }
  1999. mmput(mm);
  2000. out_no_mm:
  2001. put_task_struct(task);
  2002. out_no_task:
  2003. return ret;
  2004. }
  2005. static const struct file_operations proc_coredump_filter_operations = {
  2006. .read = proc_coredump_filter_read,
  2007. .write = proc_coredump_filter_write,
  2008. };
  2009. #endif
  2010. /*
  2011. * /proc/self:
  2012. */
  2013. static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
  2014. int buflen)
  2015. {
  2016. struct pid_namespace *ns = dentry->d_sb->s_fs_info;
  2017. pid_t tgid = task_tgid_nr_ns(current, ns);
  2018. char tmp[PROC_NUMBUF];
  2019. if (!tgid)
  2020. return -ENOENT;
  2021. sprintf(tmp, "%d", tgid);
  2022. return vfs_readlink(dentry,buffer,buflen,tmp);
  2023. }
  2024. static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
  2025. {
  2026. struct pid_namespace *ns = dentry->d_sb->s_fs_info;
  2027. pid_t tgid = task_tgid_nr_ns(current, ns);
  2028. char tmp[PROC_NUMBUF];
  2029. if (!tgid)
  2030. return ERR_PTR(-ENOENT);
  2031. sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
  2032. return ERR_PTR(vfs_follow_link(nd,tmp));
  2033. }
  2034. static const struct inode_operations proc_self_inode_operations = {
  2035. .readlink = proc_self_readlink,
  2036. .follow_link = proc_self_follow_link,
  2037. };
  2038. /*
  2039. * proc base
  2040. *
  2041. * These are the directory entries in the root directory of /proc
  2042. * that properly belong to the /proc filesystem, as they describe
  2043. * describe something that is process related.
  2044. */
  2045. static const struct pid_entry proc_base_stuff[] = {
  2046. NOD("self", S_IFLNK|S_IRWXUGO,
  2047. &proc_self_inode_operations, NULL, {}),
  2048. };
  2049. /*
  2050. * Exceptional case: normally we are not allowed to unhash a busy
  2051. * directory. In this case, however, we can do it - no aliasing problems
  2052. * due to the way we treat inodes.
  2053. */
  2054. static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
  2055. {
  2056. struct inode *inode = dentry->d_inode;
  2057. struct task_struct *task = get_proc_task(inode);
  2058. if (task) {
  2059. put_task_struct(task);
  2060. return 1;
  2061. }
  2062. d_drop(dentry);
  2063. return 0;
  2064. }
  2065. static const struct dentry_operations proc_base_dentry_operations =
  2066. {
  2067. .d_revalidate = proc_base_revalidate,
  2068. .d_delete = pid_delete_dentry,
  2069. };
  2070. static struct dentry *proc_base_instantiate(struct inode *dir,
  2071. struct dentry *dentry, struct task_struct *task, const void *ptr)
  2072. {
  2073. const struct pid_entry *p = ptr;
  2074. struct inode *inode;
  2075. struct proc_inode *ei;
  2076. struct dentry *error = ERR_PTR(-EINVAL);
  2077. /* Allocate the inode */
  2078. error = ERR_PTR(-ENOMEM);
  2079. inode = new_inode(dir->i_sb);
  2080. if (!inode)
  2081. goto out;
  2082. /* Initialize the inode */
  2083. ei = PROC_I(inode);
  2084. inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
  2085. /*
  2086. * grab the reference to the task.
  2087. */
  2088. ei->pid = get_task_pid(task, PIDTYPE_PID);
  2089. if (!ei->pid)
  2090. goto out_iput;
  2091. inode->i_mode = p->mode;
  2092. if (S_ISDIR(inode->i_mode))
  2093. inode->i_nlink = 2;
  2094. if (S_ISLNK(inode->i_mode))
  2095. inode->i_size = 64;
  2096. if (p->iop)
  2097. inode->i_op = p->iop;
  2098. if (p->fop)
  2099. inode->i_fop = p->fop;
  2100. ei->op = p->op;
  2101. dentry->d_op = &proc_base_dentry_operations;
  2102. d_add(dentry, inode);
  2103. error = NULL;
  2104. out:
  2105. return error;
  2106. out_iput:
  2107. iput(inode);
  2108. goto out;
  2109. }
  2110. static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
  2111. {
  2112. struct dentry *error;
  2113. struct task_struct *task = get_proc_task(dir);
  2114. const struct pid_entry *p, *last;
  2115. error = ERR_PTR(-ENOENT);
  2116. if (!task)
  2117. goto out_no_task;
  2118. /* Lookup the directory entry */
  2119. last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
  2120. for (p = proc_base_stuff; p <= last; p++) {
  2121. if (p->len != dentry->d_name.len)
  2122. continue;
  2123. if (!memcmp(dentry->d_name.name, p->name, p->len))
  2124. break;
  2125. }
  2126. if (p > last)
  2127. goto out;
  2128. error = proc_base_instantiate(dir, dentry, task, p);
  2129. out:
  2130. put_task_struct(task);
  2131. out_no_task:
  2132. return error;
  2133. }
  2134. static int proc_base_fill_cache(struct file *filp, void *dirent,
  2135. filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
  2136. {
  2137. return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
  2138. proc_base_instantiate, task, p);
  2139. }
  2140. #ifdef CONFIG_TASK_IO_ACCOUNTING
  2141. static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
  2142. {
  2143. struct task_io_accounting acct = task->ioac;
  2144. unsigned long flags;
  2145. if (whole && lock_task_sighand(task, &flags)) {
  2146. struct task_struct *t = task;
  2147. task_io_accounting_add(&acct, &task->signal->ioac);
  2148. while_each_thread(task, t)
  2149. task_io_accounting_add(&acct, &t->ioac);
  2150. unlock_task_sighand(task, &flags);
  2151. }
  2152. return sprintf(buffer,
  2153. "rchar: %llu\n"
  2154. "wchar: %llu\n"
  2155. "syscr: %llu\n"
  2156. "syscw: %llu\n"
  2157. "read_bytes: %llu\n"
  2158. "write_bytes: %llu\n"
  2159. "cancelled_write_bytes: %llu\n",
  2160. (unsigned long long)acct.rchar,
  2161. (unsigned long long)acct.wchar,
  2162. (unsigned long long)acct.syscr,
  2163. (unsigned long long)acct.syscw,
  2164. (unsigned long long)acct.read_bytes,
  2165. (unsigned long long)acct.write_bytes,
  2166. (unsigned long long)acct.cancelled_write_bytes);
  2167. }
  2168. static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
  2169. {
  2170. return do_io_accounting(task, buffer, 0);
  2171. }
  2172. static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
  2173. {
  2174. return do_io_accounting(task, buffer, 1);
  2175. }
  2176. #endif /* CONFIG_TASK_IO_ACCOUNTING */
  2177. static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
  2178. struct pid *pid, struct task_struct *task)
  2179. {
  2180. seq_printf(m, "%08x\n", task->personality);
  2181. return 0;
  2182. }
  2183. /*
  2184. * Thread groups
  2185. */
  2186. static const struct file_operations proc_task_operations;
  2187. static const struct inode_operations proc_task_inode_operations;
  2188. static const struct pid_entry tgid_base_stuff[] = {
  2189. DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
  2190. DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
  2191. DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
  2192. #ifdef CONFIG_NET
  2193. DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
  2194. #endif
  2195. REG("environ", S_IRUSR, proc_environ_operations),
  2196. INF("auxv", S_IRUSR, proc_pid_auxv),
  2197. ONE("status", S_IRUGO, proc_pid_status),
  2198. ONE("personality", S_IRUSR, proc_pid_personality),
  2199. INF("limits", S_IRUSR, proc_pid_limits),
  2200. #ifdef CONFIG_SCHED_DEBUG
  2201. REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
  2202. #endif
  2203. REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
  2204. #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
  2205. INF("syscall", S_IRUSR, proc_pid_syscall),
  2206. #endif
  2207. INF("cmdline", S_IRUGO, proc_pid_cmdline),
  2208. ONE("stat", S_IRUGO, proc_tgid_stat),
  2209. ONE("statm", S_IRUGO, proc_pid_statm),
  2210. REG("maps", S_IRUGO, proc_maps_operations),
  2211. #ifdef CONFIG_NUMA
  2212. REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
  2213. #endif
  2214. REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
  2215. LNK("cwd", proc_cwd_link),
  2216. LNK("root", proc_root_link),
  2217. LNK("exe", proc_exe_link),
  2218. REG("mounts", S_IRUGO, proc_mounts_operations),
  2219. REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
  2220. REG("mountstats", S_IRUSR, proc_mountstats_operations),
  2221. #ifdef CONFIG_PROC_PAGE_MONITOR
  2222. REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
  2223. REG("smaps", S_IRUGO, proc_smaps_operations),
  2224. REG("pagemap", S_IRUSR, proc_pagemap_operations),
  2225. #endif
  2226. #ifdef CONFIG_SECURITY
  2227. DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
  2228. #endif
  2229. #ifdef CONFIG_KALLSYMS
  2230. INF("wchan", S_IRUGO, proc_pid_wchan),
  2231. #endif
  2232. #ifdef CONFIG_STACKTRACE
  2233. ONE("stack", S_IRUSR, proc_pid_stack),
  2234. #endif
  2235. #ifdef CONFIG_SCHEDSTATS
  2236. INF("schedstat", S_IRUGO, proc_pid_schedstat),
  2237. #endif
  2238. #ifdef CONFIG_LATENCYTOP
  2239. REG("latency", S_IRUGO, proc_lstats_operations),
  2240. #endif
  2241. #ifdef CONFIG_PROC_PID_CPUSET
  2242. REG("cpuset", S_IRUGO, proc_cpuset_operations),
  2243. #endif
  2244. #ifdef CONFIG_CGROUPS
  2245. REG("cgroup", S_IRUGO, proc_cgroup_operations),
  2246. #endif
  2247. INF("oom_score", S_IRUGO, proc_oom_score),
  2248. REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
  2249. #ifdef CONFIG_AUDITSYSCALL
  2250. REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
  2251. REG("sessionid", S_IRUGO, proc_sessionid_operations),
  2252. #endif
  2253. #ifdef CONFIG_FAULT_INJECTION
  2254. REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
  2255. #endif
  2256. #ifdef CONFIG_ELF_CORE
  2257. REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
  2258. #endif
  2259. #ifdef CONFIG_TASK_IO_ACCOUNTING
  2260. INF("io", S_IRUGO, proc_tgid_io_accounting),
  2261. #endif
  2262. };
  2263. static int proc_tgid_base_readdir(struct file * filp,
  2264. void * dirent, filldir_t filldir)
  2265. {
  2266. return proc_pident_readdir(filp,dirent,filldir,
  2267. tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
  2268. }
  2269. static const struct file_operations proc_tgid_base_operations = {
  2270. .read = generic_read_dir,
  2271. .readdir = proc_tgid_base_readdir,
  2272. };
  2273. static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
  2274. return proc_pident_lookup(dir, dentry,
  2275. tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
  2276. }
  2277. static const struct inode_operations proc_tgid_base_inode_operations = {
  2278. .lookup = proc_tgid_base_lookup,
  2279. .getattr = pid_getattr,
  2280. .setattr = proc_setattr,
  2281. };
  2282. static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
  2283. {
  2284. struct dentry *dentry, *leader, *dir;
  2285. char buf[PROC_NUMBUF];
  2286. struct qstr name;
  2287. name.name = buf;
  2288. name.len = snprintf(buf, sizeof(buf), "%d", pid);
  2289. dentry = d_hash_and_lookup(mnt->mnt_root, &name);
  2290. if (dentry) {
  2291. shrink_dcache_parent(dentry);
  2292. d_drop(dentry);
  2293. dput(dentry);
  2294. }
  2295. name.name = buf;
  2296. name.len = snprintf(buf, sizeof(buf), "%d", tgid);
  2297. leader = d_hash_and_lookup(mnt->mnt_root, &name);
  2298. if (!leader)
  2299. goto out;
  2300. name.name = "task";
  2301. name.len = strlen(name.name);
  2302. dir = d_hash_and_lookup(leader, &name);
  2303. if (!dir)
  2304. goto out_put_leader;
  2305. name.name = buf;
  2306. name.len = snprintf(buf, sizeof(buf), "%d", pid);
  2307. dentry = d_hash_and_lookup(dir, &name);
  2308. if (dentry) {
  2309. shrink_dcache_parent(dentry);
  2310. d_drop(dentry);
  2311. dput(dentry);
  2312. }
  2313. dput(dir);
  2314. out_put_leader:
  2315. dput(leader);
  2316. out:
  2317. return;
  2318. }
  2319. /**
  2320. * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
  2321. * @task: task that should be flushed.
  2322. *
  2323. * When flushing dentries from proc, one needs to flush them from global
  2324. * proc (proc_mnt) and from all the namespaces' procs this task was seen
  2325. * in. This call is supposed to do all of this job.
  2326. *
  2327. * Looks in the dcache for
  2328. * /proc/@pid
  2329. * /proc/@tgid/task/@pid
  2330. * if either directory is present flushes it and all of it'ts children
  2331. * from the dcache.
  2332. *
  2333. * It is safe and reasonable to cache /proc entries for a task until
  2334. * that task exits. After that they just clog up the dcache with
  2335. * useless entries, possibly causing useful dcache entries to be
  2336. * flushed instead. This routine is proved to flush those useless
  2337. * dcache entries at process exit time.
  2338. *
  2339. * NOTE: This routine is just an optimization so it does not guarantee
  2340. * that no dcache entries will exist at process exit time it
  2341. * just makes it very unlikely that any will persist.
  2342. */
  2343. void proc_flush_task(struct task_struct *task)
  2344. {
  2345. int i;
  2346. struct pid *pid, *tgid;
  2347. struct upid *upid;
  2348. pid = task_pid(task);
  2349. tgid = task_tgid(task);
  2350. for (i = 0; i <= pid->level; i++) {
  2351. upid = &pid->numbers[i];
  2352. proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
  2353. tgid->numbers[i].nr);
  2354. }
  2355. upid = &pid->numbers[pid->level];
  2356. if (upid->nr == 1)
  2357. pid_ns_release_proc(upid->ns);
  2358. }
  2359. static struct dentry *proc_pid_instantiate(struct inode *dir,
  2360. struct dentry * dentry,
  2361. struct task_struct *task, const void *ptr)
  2362. {
  2363. struct dentry *error = ERR_PTR(-ENOENT);
  2364. struct inode *inode;
  2365. inode = proc_pid_make_inode(dir->i_sb, task);
  2366. if (!inode)
  2367. goto out;
  2368. inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
  2369. inode->i_op = &proc_tgid_base_inode_operations;
  2370. inode->i_fop = &proc_tgid_base_operations;
  2371. inode->i_flags|=S_IMMUTABLE;
  2372. inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
  2373. ARRAY_SIZE(tgid_base_stuff));
  2374. dentry->d_op = &pid_dentry_operations;
  2375. d_add(dentry, inode);
  2376. /* Close the race of the process dying before we return the dentry */
  2377. if (pid_revalidate(dentry, NULL))
  2378. error = NULL;
  2379. out:
  2380. return error;
  2381. }
  2382. struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
  2383. {
  2384. struct dentry *result = ERR_PTR(-ENOENT);
  2385. struct task_struct *task;
  2386. unsigned tgid;
  2387. struct pid_namespace *ns;
  2388. result = proc_base_lookup(dir, dentry);
  2389. if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
  2390. goto out;
  2391. tgid = name_to_int(dentry);
  2392. if (tgid == ~0U)
  2393. goto out;
  2394. ns = dentry->d_sb->s_fs_info;
  2395. rcu_read_lock();
  2396. task = find_task_by_pid_ns(tgid, ns);
  2397. if (task)
  2398. get_task_struct(task);
  2399. rcu_read_unlock();
  2400. if (!task)
  2401. goto out;
  2402. result = proc_pid_instantiate(dir, dentry, task, NULL);
  2403. put_task_struct(task);
  2404. out:
  2405. return result;
  2406. }
  2407. /*
  2408. * Find the first task with tgid >= tgid
  2409. *
  2410. */
  2411. struct tgid_iter {
  2412. unsigned int tgid;
  2413. struct task_struct *task;
  2414. };
  2415. static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
  2416. {
  2417. struct pid *pid;
  2418. if (iter.task)
  2419. put_task_struct(iter.task);
  2420. rcu_read_lock();
  2421. retry:
  2422. iter.task = NULL;
  2423. pid = find_ge_pid(iter.tgid, ns);
  2424. if (pid) {
  2425. iter.tgid = pid_nr_ns(pid, ns);
  2426. iter.task = pid_task(pid, PIDTYPE_PID);
  2427. /* What we to know is if the pid we have find is the
  2428. * pid of a thread_group_leader. Testing for task
  2429. * being a thread_group_leader is the obvious thing
  2430. * todo but there is a window when it fails, due to
  2431. * the pid transfer logic in de_thread.
  2432. *
  2433. * So we perform the straight forward test of seeing
  2434. * if the pid we have found is the pid of a thread
  2435. * group leader, and don't worry if the task we have
  2436. * found doesn't happen to be a thread group leader.
  2437. * As we don't care in the case of readdir.
  2438. */
  2439. if (!iter.task || !has_group_leader_pid(iter.task)) {
  2440. iter.tgid += 1;
  2441. goto retry;
  2442. }
  2443. get_task_struct(iter.task);
  2444. }
  2445. rcu_read_unlock();
  2446. return iter;
  2447. }
  2448. #define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
  2449. static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
  2450. struct tgid_iter iter)
  2451. {
  2452. char name[PROC_NUMBUF];
  2453. int len = snprintf(name, sizeof(name), "%d", iter.tgid);
  2454. return proc_fill_cache(filp, dirent, filldir, name, len,
  2455. proc_pid_instantiate, iter.task, NULL);
  2456. }
  2457. /* for the /proc/ directory itself, after non-process stuff has been done */
  2458. int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
  2459. {
  2460. unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
  2461. struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
  2462. struct tgid_iter iter;
  2463. struct pid_namespace *ns;
  2464. if (!reaper)
  2465. goto out_no_task;
  2466. for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
  2467. const struct pid_entry *p = &proc_base_stuff[nr];
  2468. if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
  2469. goto out;
  2470. }
  2471. ns = filp->f_dentry->d_sb->s_fs_info;
  2472. iter.task = NULL;
  2473. iter.tgid = filp->f_pos - TGID_OFFSET;
  2474. for (iter = next_tgid(ns, iter);
  2475. iter.task;
  2476. iter.tgid += 1, iter = next_tgid(ns, iter)) {
  2477. filp->f_pos = iter.tgid + TGID_OFFSET;
  2478. if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
  2479. put_task_struct(iter.task);
  2480. goto out;
  2481. }
  2482. }
  2483. filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
  2484. out:
  2485. put_task_struct(reaper);
  2486. out_no_task:
  2487. return 0;
  2488. }
  2489. /*
  2490. * Tasks
  2491. */
  2492. static const struct pid_entry tid_base_stuff[] = {
  2493. DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
  2494. DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fd_operations),
  2495. REG("environ", S_IRUSR, proc_environ_operations),
  2496. INF("auxv", S_IRUSR, proc_pid_auxv),
  2497. ONE("status", S_IRUGO, proc_pid_status),
  2498. ONE("personality", S_IRUSR, proc_pid_personality),
  2499. INF("limits", S_IRUSR, proc_pid_limits),
  2500. #ifdef CONFIG_SCHED_DEBUG
  2501. REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
  2502. #endif
  2503. REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
  2504. #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
  2505. INF("syscall", S_IRUSR, proc_pid_syscall),
  2506. #endif
  2507. INF("cmdline", S_IRUGO, proc_pid_cmdline),
  2508. ONE("stat", S_IRUGO, proc_tid_stat),
  2509. ONE("statm", S_IRUGO, proc_pid_statm),
  2510. REG("maps", S_IRUGO, proc_maps_operations),
  2511. #ifdef CONFIG_NUMA
  2512. REG("numa_maps", S_IRUGO, proc_numa_maps_operations),
  2513. #endif
  2514. REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
  2515. LNK("cwd", proc_cwd_link),
  2516. LNK("root", proc_root_link),
  2517. LNK("exe", proc_exe_link),
  2518. REG("mounts", S_IRUGO, proc_mounts_operations),
  2519. REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
  2520. #ifdef CONFIG_PROC_PAGE_MONITOR
  2521. REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
  2522. REG("smaps", S_IRUGO, proc_smaps_operations),
  2523. REG("pagemap", S_IRUSR, proc_pagemap_operations),
  2524. #endif
  2525. #ifdef CONFIG_SECURITY
  2526. DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
  2527. #endif
  2528. #ifdef CONFIG_KALLSYMS
  2529. INF("wchan", S_IRUGO, proc_pid_wchan),
  2530. #endif
  2531. #ifdef CONFIG_STACKTRACE
  2532. ONE("stack", S_IRUSR, proc_pid_stack),
  2533. #endif
  2534. #ifdef CONFIG_SCHEDSTATS
  2535. INF("schedstat", S_IRUGO, proc_pid_schedstat),
  2536. #endif
  2537. #ifdef CONFIG_LATENCYTOP
  2538. REG("latency", S_IRUGO, proc_lstats_operations),
  2539. #endif
  2540. #ifdef CONFIG_PROC_PID_CPUSET
  2541. REG("cpuset", S_IRUGO, proc_cpuset_operations),
  2542. #endif
  2543. #ifdef CONFIG_CGROUPS
  2544. REG("cgroup", S_IRUGO, proc_cgroup_operations),
  2545. #endif
  2546. INF("oom_score", S_IRUGO, proc_oom_score),
  2547. REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
  2548. #ifdef CONFIG_AUDITSYSCALL
  2549. REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
  2550. REG("sessionid", S_IRUSR, proc_sessionid_operations),
  2551. #endif
  2552. #ifdef CONFIG_FAULT_INJECTION
  2553. REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
  2554. #endif
  2555. #ifdef CONFIG_TASK_IO_ACCOUNTING
  2556. INF("io", S_IRUGO, proc_tid_io_accounting),
  2557. #endif
  2558. };
  2559. static int proc_tid_base_readdir(struct file * filp,
  2560. void * dirent, filldir_t filldir)
  2561. {
  2562. return proc_pident_readdir(filp,dirent,filldir,
  2563. tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
  2564. }
  2565. static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
  2566. return proc_pident_lookup(dir, dentry,
  2567. tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
  2568. }
  2569. static const struct file_operations proc_tid_base_operations = {
  2570. .read = generic_read_dir,
  2571. .readdir = proc_tid_base_readdir,
  2572. };
  2573. static const struct inode_operations proc_tid_base_inode_operations = {
  2574. .lookup = proc_tid_base_lookup,
  2575. .getattr = pid_getattr,
  2576. .setattr = proc_setattr,
  2577. };
  2578. static struct dentry *proc_task_instantiate(struct inode *dir,
  2579. struct dentry *dentry, struct task_struct *task, const void *ptr)
  2580. {
  2581. struct dentry *error = ERR_PTR(-ENOENT);
  2582. struct inode *inode;
  2583. inode = proc_pid_make_inode(dir->i_sb, task);
  2584. if (!inode)
  2585. goto out;
  2586. inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
  2587. inode->i_op = &proc_tid_base_inode_operations;
  2588. inode->i_fop = &proc_tid_base_operations;
  2589. inode->i_flags|=S_IMMUTABLE;
  2590. inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
  2591. ARRAY_SIZE(tid_base_stuff));
  2592. dentry->d_op = &pid_dentry_operations;
  2593. d_add(dentry, inode);
  2594. /* Close the race of the process dying before we return the dentry */
  2595. if (pid_revalidate(dentry, NULL))
  2596. error = NULL;
  2597. out:
  2598. return error;
  2599. }
  2600. static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
  2601. {
  2602. struct dentry *result = ERR_PTR(-ENOENT);
  2603. struct task_struct *task;
  2604. struct task_struct *leader = get_proc_task(dir);
  2605. unsigned tid;
  2606. struct pid_namespace *ns;
  2607. if (!leader)
  2608. goto out_no_task;
  2609. tid = name_to_int(dentry);
  2610. if (tid == ~0U)
  2611. goto out;
  2612. ns = dentry->d_sb->s_fs_info;
  2613. rcu_read_lock();
  2614. task = find_task_by_pid_ns(tid, ns);
  2615. if (task)
  2616. get_task_struct(task);
  2617. rcu_read_unlock();
  2618. if (!task)
  2619. goto out;
  2620. if (!same_thread_group(leader, task))
  2621. goto out_drop_task;
  2622. result = proc_task_instantiate(dir, dentry, task, NULL);
  2623. out_drop_task:
  2624. put_task_struct(task);
  2625. out:
  2626. put_task_struct(leader);
  2627. out_no_task:
  2628. return result;
  2629. }
  2630. /*
  2631. * Find the first tid of a thread group to return to user space.
  2632. *
  2633. * Usually this is just the thread group leader, but if the users
  2634. * buffer was too small or there was a seek into the middle of the
  2635. * directory we have more work todo.
  2636. *
  2637. * In the case of a short read we start with find_task_by_pid.
  2638. *
  2639. * In the case of a seek we start with the leader and walk nr
  2640. * threads past it.
  2641. */
  2642. static struct task_struct *first_tid(struct task_struct *leader,
  2643. int tid, int nr, struct pid_namespace *ns)
  2644. {
  2645. struct task_struct *pos;
  2646. rcu_read_lock();
  2647. /* Attempt to start with the pid of a thread */
  2648. if (tid && (nr > 0)) {
  2649. pos = find_task_by_pid_ns(tid, ns);
  2650. if (pos && (pos->group_leader == leader))
  2651. goto found;
  2652. }
  2653. /* If nr exceeds the number of threads there is nothing todo */
  2654. pos = NULL;
  2655. if (nr && nr >= get_nr_threads(leader))
  2656. goto out;
  2657. /* If we haven't found our starting place yet start
  2658. * with the leader and walk nr threads forward.
  2659. */
  2660. for (pos = leader; nr > 0; --nr) {
  2661. pos = next_thread(pos);
  2662. if (pos == leader) {
  2663. pos = NULL;
  2664. goto out;
  2665. }
  2666. }
  2667. found:
  2668. get_task_struct(pos);
  2669. out:
  2670. rcu_read_unlock();
  2671. return pos;
  2672. }
  2673. /*
  2674. * Find the next thread in the thread list.
  2675. * Return NULL if there is an error or no next thread.
  2676. *
  2677. * The reference to the input task_struct is released.
  2678. */
  2679. static struct task_struct *next_tid(struct task_struct *start)
  2680. {
  2681. struct task_struct *pos = NULL;
  2682. rcu_read_lock();
  2683. if (pid_alive(start)) {
  2684. pos = next_thread(start);
  2685. if (thread_group_leader(pos))
  2686. pos = NULL;
  2687. else
  2688. get_task_struct(pos);
  2689. }
  2690. rcu_read_unlock();
  2691. put_task_struct(start);
  2692. return pos;
  2693. }
  2694. static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
  2695. struct task_struct *task, int tid)
  2696. {
  2697. char name[PROC_NUMBUF];
  2698. int len = snprintf(name, sizeof(name), "%d", tid);
  2699. return proc_fill_cache(filp, dirent, filldir, name, len,
  2700. proc_task_instantiate, task, NULL);
  2701. }
  2702. /* for the /proc/TGID/task/ directories */
  2703. static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
  2704. {
  2705. struct dentry *dentry = filp->f_path.dentry;
  2706. struct inode *inode = dentry->d_inode;
  2707. struct task_struct *leader = NULL;
  2708. struct task_struct *task;
  2709. int retval = -ENOENT;
  2710. ino_t ino;
  2711. int tid;
  2712. struct pid_namespace *ns;
  2713. task = get_proc_task(inode);
  2714. if (!task)
  2715. goto out_no_task;
  2716. rcu_read_lock();
  2717. if (pid_alive(task)) {
  2718. leader = task->group_leader;
  2719. get_task_struct(leader);
  2720. }
  2721. rcu_read_unlock();
  2722. put_task_struct(task);
  2723. if (!leader)
  2724. goto out_no_task;
  2725. retval = 0;
  2726. switch ((unsigned long)filp->f_pos) {
  2727. case 0:
  2728. ino = inode->i_ino;
  2729. if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
  2730. goto out;
  2731. filp->f_pos++;
  2732. /* fall through */
  2733. case 1:
  2734. ino = parent_ino(dentry);
  2735. if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
  2736. goto out;
  2737. filp->f_pos++;
  2738. /* fall through */
  2739. }
  2740. /* f_version caches the tgid value that the last readdir call couldn't
  2741. * return. lseek aka telldir automagically resets f_version to 0.
  2742. */
  2743. ns = filp->f_dentry->d_sb->s_fs_info;
  2744. tid = (int)filp->f_version;
  2745. filp->f_version = 0;
  2746. for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
  2747. task;
  2748. task = next_tid(task), filp->f_pos++) {
  2749. tid = task_pid_nr_ns(task, ns);
  2750. if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
  2751. /* returning this tgid failed, save it as the first
  2752. * pid for the next readir call */
  2753. filp->f_version = (u64)tid;
  2754. put_task_struct(task);
  2755. break;
  2756. }
  2757. }
  2758. out:
  2759. put_task_struct(leader);
  2760. out_no_task:
  2761. return retval;
  2762. }
  2763. static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
  2764. {
  2765. struct inode *inode = dentry->d_inode;
  2766. struct task_struct *p = get_proc_task(inode);
  2767. generic_fillattr(inode, stat);
  2768. if (p) {
  2769. stat->nlink += get_nr_threads(p);
  2770. put_task_struct(p);
  2771. }
  2772. return 0;
  2773. }
  2774. static const struct inode_operations proc_task_inode_operations = {
  2775. .lookup = proc_task_lookup,
  2776. .getattr = proc_task_getattr,
  2777. .setattr = proc_setattr,
  2778. };
  2779. static const struct file_operations proc_task_operations = {
  2780. .read = generic_read_dir,
  2781. .readdir = proc_task_readdir,
  2782. };