bitfield.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2008 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #ifndef EFX_BITFIELD_H
  11. #define EFX_BITFIELD_H
  12. /*
  13. * Efx bitfield access
  14. *
  15. * Efx NICs make extensive use of bitfields up to 128 bits
  16. * wide. Since there is no native 128-bit datatype on most systems,
  17. * and since 64-bit datatypes are inefficient on 32-bit systems and
  18. * vice versa, we wrap accesses in a way that uses the most efficient
  19. * datatype.
  20. *
  21. * The NICs are PCI devices and therefore little-endian. Since most
  22. * of the quantities that we deal with are DMAed to/from host memory,
  23. * we define our datatypes (efx_oword_t, efx_qword_t and
  24. * efx_dword_t) to be little-endian.
  25. */
  26. /* Lowest bit numbers and widths */
  27. #define EFX_DUMMY_FIELD_LBN 0
  28. #define EFX_DUMMY_FIELD_WIDTH 0
  29. #define EFX_DWORD_0_LBN 0
  30. #define EFX_DWORD_0_WIDTH 32
  31. #define EFX_DWORD_1_LBN 32
  32. #define EFX_DWORD_1_WIDTH 32
  33. #define EFX_DWORD_2_LBN 64
  34. #define EFX_DWORD_2_WIDTH 32
  35. #define EFX_DWORD_3_LBN 96
  36. #define EFX_DWORD_3_WIDTH 32
  37. /* Specified attribute (e.g. LBN) of the specified field */
  38. #define EFX_VAL(field, attribute) field ## _ ## attribute
  39. /* Low bit number of the specified field */
  40. #define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
  41. /* Bit width of the specified field */
  42. #define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
  43. /* High bit number of the specified field */
  44. #define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
  45. /* Mask equal in width to the specified field.
  46. *
  47. * For example, a field with width 5 would have a mask of 0x1f.
  48. *
  49. * The maximum width mask that can be generated is 64 bits.
  50. */
  51. #define EFX_MASK64(field) \
  52. (EFX_WIDTH(field) == 64 ? ~((u64) 0) : \
  53. (((((u64) 1) << EFX_WIDTH(field))) - 1))
  54. /* Mask equal in width to the specified field.
  55. *
  56. * For example, a field with width 5 would have a mask of 0x1f.
  57. *
  58. * The maximum width mask that can be generated is 32 bits. Use
  59. * EFX_MASK64 for higher width fields.
  60. */
  61. #define EFX_MASK32(field) \
  62. (EFX_WIDTH(field) == 32 ? ~((u32) 0) : \
  63. (((((u32) 1) << EFX_WIDTH(field))) - 1))
  64. /* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
  65. typedef union efx_dword {
  66. __le32 u32[1];
  67. } efx_dword_t;
  68. /* A quadword (i.e. 8 byte) datatype - little-endian in HW */
  69. typedef union efx_qword {
  70. __le64 u64[1];
  71. __le32 u32[2];
  72. efx_dword_t dword[2];
  73. } efx_qword_t;
  74. /* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
  75. typedef union efx_oword {
  76. __le64 u64[2];
  77. efx_qword_t qword[2];
  78. __le32 u32[4];
  79. efx_dword_t dword[4];
  80. } efx_oword_t;
  81. /* Format string and value expanders for printk */
  82. #define EFX_DWORD_FMT "%08x"
  83. #define EFX_QWORD_FMT "%08x:%08x"
  84. #define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
  85. #define EFX_DWORD_VAL(dword) \
  86. ((unsigned int) le32_to_cpu((dword).u32[0]))
  87. #define EFX_QWORD_VAL(qword) \
  88. ((unsigned int) le32_to_cpu((qword).u32[1])), \
  89. ((unsigned int) le32_to_cpu((qword).u32[0]))
  90. #define EFX_OWORD_VAL(oword) \
  91. ((unsigned int) le32_to_cpu((oword).u32[3])), \
  92. ((unsigned int) le32_to_cpu((oword).u32[2])), \
  93. ((unsigned int) le32_to_cpu((oword).u32[1])), \
  94. ((unsigned int) le32_to_cpu((oword).u32[0]))
  95. /*
  96. * Extract bit field portion [low,high) from the native-endian element
  97. * which contains bits [min,max).
  98. *
  99. * For example, suppose "element" represents the high 32 bits of a
  100. * 64-bit value, and we wish to extract the bits belonging to the bit
  101. * field occupying bits 28-45 of this 64-bit value.
  102. *
  103. * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
  104. *
  105. * ( element ) << 4
  106. *
  107. * The result will contain the relevant bits filled in in the range
  108. * [0,high-low), with garbage in bits [high-low+1,...).
  109. */
  110. #define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
  111. (((low > max) || (high < min)) ? 0 : \
  112. ((low > min) ? \
  113. ((native_element) >> (low - min)) : \
  114. ((native_element) << (min - low))))
  115. /*
  116. * Extract bit field portion [low,high) from the 64-bit little-endian
  117. * element which contains bits [min,max)
  118. */
  119. #define EFX_EXTRACT64(element, min, max, low, high) \
  120. EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
  121. /*
  122. * Extract bit field portion [low,high) from the 32-bit little-endian
  123. * element which contains bits [min,max)
  124. */
  125. #define EFX_EXTRACT32(element, min, max, low, high) \
  126. EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
  127. #define EFX_EXTRACT_OWORD64(oword, low, high) \
  128. (EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
  129. EFX_EXTRACT64((oword).u64[1], 64, 127, low, high))
  130. #define EFX_EXTRACT_QWORD64(qword, low, high) \
  131. EFX_EXTRACT64((qword).u64[0], 0, 63, low, high)
  132. #define EFX_EXTRACT_OWORD32(oword, low, high) \
  133. (EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
  134. EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
  135. EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
  136. EFX_EXTRACT32((oword).u32[3], 96, 127, low, high))
  137. #define EFX_EXTRACT_QWORD32(qword, low, high) \
  138. (EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
  139. EFX_EXTRACT32((qword).u32[1], 32, 63, low, high))
  140. #define EFX_EXTRACT_DWORD(dword, low, high) \
  141. EFX_EXTRACT32((dword).u32[0], 0, 31, low, high)
  142. #define EFX_OWORD_FIELD64(oword, field) \
  143. (EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
  144. & EFX_MASK64(field))
  145. #define EFX_QWORD_FIELD64(qword, field) \
  146. (EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
  147. & EFX_MASK64(field))
  148. #define EFX_OWORD_FIELD32(oword, field) \
  149. (EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
  150. & EFX_MASK32(field))
  151. #define EFX_QWORD_FIELD32(qword, field) \
  152. (EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
  153. & EFX_MASK32(field))
  154. #define EFX_DWORD_FIELD(dword, field) \
  155. (EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
  156. & EFX_MASK32(field))
  157. #define EFX_OWORD_IS_ZERO64(oword) \
  158. (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
  159. #define EFX_QWORD_IS_ZERO64(qword) \
  160. (((qword).u64[0]) == (__force __le64) 0)
  161. #define EFX_OWORD_IS_ZERO32(oword) \
  162. (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
  163. == (__force __le32) 0)
  164. #define EFX_QWORD_IS_ZERO32(qword) \
  165. (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
  166. #define EFX_DWORD_IS_ZERO(dword) \
  167. (((dword).u32[0]) == (__force __le32) 0)
  168. #define EFX_OWORD_IS_ALL_ONES64(oword) \
  169. (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
  170. #define EFX_QWORD_IS_ALL_ONES64(qword) \
  171. ((qword).u64[0] == ~((__force __le64) 0))
  172. #define EFX_OWORD_IS_ALL_ONES32(oword) \
  173. (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
  174. == ~((__force __le32) 0))
  175. #define EFX_QWORD_IS_ALL_ONES32(qword) \
  176. (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
  177. #define EFX_DWORD_IS_ALL_ONES(dword) \
  178. ((dword).u32[0] == ~((__force __le32) 0))
  179. #if BITS_PER_LONG == 64
  180. #define EFX_OWORD_FIELD EFX_OWORD_FIELD64
  181. #define EFX_QWORD_FIELD EFX_QWORD_FIELD64
  182. #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
  183. #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
  184. #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
  185. #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
  186. #else
  187. #define EFX_OWORD_FIELD EFX_OWORD_FIELD32
  188. #define EFX_QWORD_FIELD EFX_QWORD_FIELD32
  189. #define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
  190. #define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
  191. #define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
  192. #define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
  193. #endif
  194. /*
  195. * Construct bit field portion
  196. *
  197. * Creates the portion of the bit field [low,high) that lies within
  198. * the range [min,max).
  199. */
  200. #define EFX_INSERT_NATIVE64(min, max, low, high, value) \
  201. (((low > max) || (high < min)) ? 0 : \
  202. ((low > min) ? \
  203. (((u64) (value)) << (low - min)) : \
  204. (((u64) (value)) >> (min - low))))
  205. #define EFX_INSERT_NATIVE32(min, max, low, high, value) \
  206. (((low > max) || (high < min)) ? 0 : \
  207. ((low > min) ? \
  208. (((u32) (value)) << (low - min)) : \
  209. (((u32) (value)) >> (min - low))))
  210. #define EFX_INSERT_NATIVE(min, max, low, high, value) \
  211. ((((max - min) >= 32) || ((high - low) >= 32)) ? \
  212. EFX_INSERT_NATIVE64(min, max, low, high, value) : \
  213. EFX_INSERT_NATIVE32(min, max, low, high, value))
  214. /*
  215. * Construct bit field portion
  216. *
  217. * Creates the portion of the named bit field that lies within the
  218. * range [min,max).
  219. */
  220. #define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
  221. EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
  222. EFX_HIGH_BIT(field), value)
  223. /*
  224. * Construct bit field
  225. *
  226. * Creates the portion of the named bit fields that lie within the
  227. * range [min,max).
  228. */
  229. #define EFX_INSERT_FIELDS_NATIVE(min, max, \
  230. field1, value1, \
  231. field2, value2, \
  232. field3, value3, \
  233. field4, value4, \
  234. field5, value5, \
  235. field6, value6, \
  236. field7, value7, \
  237. field8, value8, \
  238. field9, value9, \
  239. field10, value10) \
  240. (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
  241. EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
  242. EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
  243. EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
  244. EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
  245. EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
  246. EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
  247. EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
  248. EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
  249. EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
  250. #define EFX_INSERT_FIELDS64(...) \
  251. cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
  252. #define EFX_INSERT_FIELDS32(...) \
  253. cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
  254. #define EFX_POPULATE_OWORD64(oword, ...) do { \
  255. (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
  256. (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
  257. } while (0)
  258. #define EFX_POPULATE_QWORD64(qword, ...) do { \
  259. (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
  260. } while (0)
  261. #define EFX_POPULATE_OWORD32(oword, ...) do { \
  262. (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
  263. (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
  264. (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
  265. (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
  266. } while (0)
  267. #define EFX_POPULATE_QWORD32(qword, ...) do { \
  268. (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
  269. (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
  270. } while (0)
  271. #define EFX_POPULATE_DWORD(dword, ...) do { \
  272. (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
  273. } while (0)
  274. #if BITS_PER_LONG == 64
  275. #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
  276. #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
  277. #else
  278. #define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
  279. #define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
  280. #endif
  281. /* Populate an octword field with various numbers of arguments */
  282. #define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
  283. #define EFX_POPULATE_OWORD_9(oword, ...) \
  284. EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  285. #define EFX_POPULATE_OWORD_8(oword, ...) \
  286. EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  287. #define EFX_POPULATE_OWORD_7(oword, ...) \
  288. EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  289. #define EFX_POPULATE_OWORD_6(oword, ...) \
  290. EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  291. #define EFX_POPULATE_OWORD_5(oword, ...) \
  292. EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  293. #define EFX_POPULATE_OWORD_4(oword, ...) \
  294. EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  295. #define EFX_POPULATE_OWORD_3(oword, ...) \
  296. EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  297. #define EFX_POPULATE_OWORD_2(oword, ...) \
  298. EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  299. #define EFX_POPULATE_OWORD_1(oword, ...) \
  300. EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  301. #define EFX_ZERO_OWORD(oword) \
  302. EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
  303. #define EFX_SET_OWORD(oword) \
  304. EFX_POPULATE_OWORD_4(oword, \
  305. EFX_DWORD_0, 0xffffffff, \
  306. EFX_DWORD_1, 0xffffffff, \
  307. EFX_DWORD_2, 0xffffffff, \
  308. EFX_DWORD_3, 0xffffffff)
  309. /* Populate a quadword field with various numbers of arguments */
  310. #define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
  311. #define EFX_POPULATE_QWORD_9(qword, ...) \
  312. EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  313. #define EFX_POPULATE_QWORD_8(qword, ...) \
  314. EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  315. #define EFX_POPULATE_QWORD_7(qword, ...) \
  316. EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  317. #define EFX_POPULATE_QWORD_6(qword, ...) \
  318. EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  319. #define EFX_POPULATE_QWORD_5(qword, ...) \
  320. EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  321. #define EFX_POPULATE_QWORD_4(qword, ...) \
  322. EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  323. #define EFX_POPULATE_QWORD_3(qword, ...) \
  324. EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  325. #define EFX_POPULATE_QWORD_2(qword, ...) \
  326. EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  327. #define EFX_POPULATE_QWORD_1(qword, ...) \
  328. EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  329. #define EFX_ZERO_QWORD(qword) \
  330. EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
  331. #define EFX_SET_QWORD(qword) \
  332. EFX_POPULATE_QWORD_2(qword, \
  333. EFX_DWORD_0, 0xffffffff, \
  334. EFX_DWORD_1, 0xffffffff)
  335. /* Populate a dword field with various numbers of arguments */
  336. #define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
  337. #define EFX_POPULATE_DWORD_9(dword, ...) \
  338. EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  339. #define EFX_POPULATE_DWORD_8(dword, ...) \
  340. EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  341. #define EFX_POPULATE_DWORD_7(dword, ...) \
  342. EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  343. #define EFX_POPULATE_DWORD_6(dword, ...) \
  344. EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  345. #define EFX_POPULATE_DWORD_5(dword, ...) \
  346. EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  347. #define EFX_POPULATE_DWORD_4(dword, ...) \
  348. EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  349. #define EFX_POPULATE_DWORD_3(dword, ...) \
  350. EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  351. #define EFX_POPULATE_DWORD_2(dword, ...) \
  352. EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  353. #define EFX_POPULATE_DWORD_1(dword, ...) \
  354. EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
  355. #define EFX_ZERO_DWORD(dword) \
  356. EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
  357. #define EFX_SET_DWORD(dword) \
  358. EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
  359. /*
  360. * Modify a named field within an already-populated structure. Used
  361. * for read-modify-write operations.
  362. *
  363. */
  364. #define EFX_INVERT_OWORD(oword) do { \
  365. (oword).u64[0] = ~((oword).u64[0]); \
  366. (oword).u64[1] = ~((oword).u64[1]); \
  367. } while (0)
  368. #define EFX_INSERT_FIELD64(...) \
  369. cpu_to_le64(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
  370. #define EFX_INSERT_FIELD32(...) \
  371. cpu_to_le32(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
  372. #define EFX_INPLACE_MASK64(min, max, field) \
  373. EFX_INSERT_FIELD64(min, max, field, EFX_MASK64(field))
  374. #define EFX_INPLACE_MASK32(min, max, field) \
  375. EFX_INSERT_FIELD32(min, max, field, EFX_MASK32(field))
  376. #define EFX_SET_OWORD_FIELD64(oword, field, value) do { \
  377. (oword).u64[0] = (((oword).u64[0] \
  378. & ~EFX_INPLACE_MASK64(0, 63, field)) \
  379. | EFX_INSERT_FIELD64(0, 63, field, value)); \
  380. (oword).u64[1] = (((oword).u64[1] \
  381. & ~EFX_INPLACE_MASK64(64, 127, field)) \
  382. | EFX_INSERT_FIELD64(64, 127, field, value)); \
  383. } while (0)
  384. #define EFX_SET_QWORD_FIELD64(qword, field, value) do { \
  385. (qword).u64[0] = (((qword).u64[0] \
  386. & ~EFX_INPLACE_MASK64(0, 63, field)) \
  387. | EFX_INSERT_FIELD64(0, 63, field, value)); \
  388. } while (0)
  389. #define EFX_SET_OWORD_FIELD32(oword, field, value) do { \
  390. (oword).u32[0] = (((oword).u32[0] \
  391. & ~EFX_INPLACE_MASK32(0, 31, field)) \
  392. | EFX_INSERT_FIELD32(0, 31, field, value)); \
  393. (oword).u32[1] = (((oword).u32[1] \
  394. & ~EFX_INPLACE_MASK32(32, 63, field)) \
  395. | EFX_INSERT_FIELD32(32, 63, field, value)); \
  396. (oword).u32[2] = (((oword).u32[2] \
  397. & ~EFX_INPLACE_MASK32(64, 95, field)) \
  398. | EFX_INSERT_FIELD32(64, 95, field, value)); \
  399. (oword).u32[3] = (((oword).u32[3] \
  400. & ~EFX_INPLACE_MASK32(96, 127, field)) \
  401. | EFX_INSERT_FIELD32(96, 127, field, value)); \
  402. } while (0)
  403. #define EFX_SET_QWORD_FIELD32(qword, field, value) do { \
  404. (qword).u32[0] = (((qword).u32[0] \
  405. & ~EFX_INPLACE_MASK32(0, 31, field)) \
  406. | EFX_INSERT_FIELD32(0, 31, field, value)); \
  407. (qword).u32[1] = (((qword).u32[1] \
  408. & ~EFX_INPLACE_MASK32(32, 63, field)) \
  409. | EFX_INSERT_FIELD32(32, 63, field, value)); \
  410. } while (0)
  411. #define EFX_SET_DWORD_FIELD(dword, field, value) do { \
  412. (dword).u32[0] = (((dword).u32[0] \
  413. & ~EFX_INPLACE_MASK32(0, 31, field)) \
  414. | EFX_INSERT_FIELD32(0, 31, field, value)); \
  415. } while (0)
  416. #if BITS_PER_LONG == 64
  417. #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
  418. #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
  419. #else
  420. #define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
  421. #define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
  422. #endif
  423. #define EFX_SET_OWORD_FIELD_VER(efx, oword, field, value) do { \
  424. if (falcon_rev(efx) >= FALCON_REV_B0) { \
  425. EFX_SET_OWORD_FIELD((oword), field##_B0, (value)); \
  426. } else { \
  427. EFX_SET_OWORD_FIELD((oword), field##_A1, (value)); \
  428. } \
  429. } while (0)
  430. #define EFX_QWORD_FIELD_VER(efx, qword, field) \
  431. (falcon_rev(efx) >= FALCON_REV_B0 ? \
  432. EFX_QWORD_FIELD((qword), field##_B0) : \
  433. EFX_QWORD_FIELD((qword), field##_A1))
  434. /* Used to avoid compiler warnings about shift range exceeding width
  435. * of the data types when dma_addr_t is only 32 bits wide.
  436. */
  437. #define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
  438. #define EFX_DMA_TYPE_WIDTH(width) \
  439. (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
  440. #endif /* EFX_BITFIELD_H */