xhci-mem.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/usb.h>
  23. #include <linux/pci.h>
  24. #include <linux/dmapool.h>
  25. #include "xhci.h"
  26. /*
  27. * Allocates a generic ring segment from the ring pool, sets the dma address,
  28. * initializes the segment to zero, and sets the private next pointer to NULL.
  29. *
  30. * Section 4.11.1.1:
  31. * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  32. */
  33. static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
  34. {
  35. struct xhci_segment *seg;
  36. dma_addr_t dma;
  37. seg = kzalloc(sizeof *seg, flags);
  38. if (!seg)
  39. return 0;
  40. xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
  41. seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  42. if (!seg->trbs) {
  43. kfree(seg);
  44. return 0;
  45. }
  46. xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
  47. seg->trbs, (unsigned long long)dma);
  48. memset(seg->trbs, 0, SEGMENT_SIZE);
  49. seg->dma = dma;
  50. seg->next = NULL;
  51. return seg;
  52. }
  53. static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  54. {
  55. if (!seg)
  56. return;
  57. if (seg->trbs) {
  58. xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
  59. seg->trbs, (unsigned long long)seg->dma);
  60. dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  61. seg->trbs = NULL;
  62. }
  63. xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
  64. kfree(seg);
  65. }
  66. /*
  67. * Make the prev segment point to the next segment.
  68. *
  69. * Change the last TRB in the prev segment to be a Link TRB which points to the
  70. * DMA address of the next segment. The caller needs to set any Link TRB
  71. * related flags, such as End TRB, Toggle Cycle, and no snoop.
  72. */
  73. static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  74. struct xhci_segment *next, bool link_trbs)
  75. {
  76. u32 val;
  77. if (!prev || !next)
  78. return;
  79. prev->next = next;
  80. if (link_trbs) {
  81. prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
  82. /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  83. val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
  84. val &= ~TRB_TYPE_BITMASK;
  85. val |= TRB_TYPE(TRB_LINK);
  86. /* Always set the chain bit with 0.95 hardware */
  87. if (xhci_link_trb_quirk(xhci))
  88. val |= TRB_CHAIN;
  89. prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
  90. }
  91. xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
  92. (unsigned long long)prev->dma,
  93. (unsigned long long)next->dma);
  94. }
  95. /* XXX: Do we need the hcd structure in all these functions? */
  96. void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
  97. {
  98. struct xhci_segment *seg;
  99. struct xhci_segment *first_seg;
  100. if (!ring || !ring->first_seg)
  101. return;
  102. first_seg = ring->first_seg;
  103. seg = first_seg->next;
  104. xhci_dbg(xhci, "Freeing ring at %p\n", ring);
  105. while (seg != first_seg) {
  106. struct xhci_segment *next = seg->next;
  107. xhci_segment_free(xhci, seg);
  108. seg = next;
  109. }
  110. xhci_segment_free(xhci, first_seg);
  111. ring->first_seg = NULL;
  112. kfree(ring);
  113. }
  114. static void xhci_initialize_ring_info(struct xhci_ring *ring)
  115. {
  116. /* The ring is empty, so the enqueue pointer == dequeue pointer */
  117. ring->enqueue = ring->first_seg->trbs;
  118. ring->enq_seg = ring->first_seg;
  119. ring->dequeue = ring->enqueue;
  120. ring->deq_seg = ring->first_seg;
  121. /* The ring is initialized to 0. The producer must write 1 to the cycle
  122. * bit to handover ownership of the TRB, so PCS = 1. The consumer must
  123. * compare CCS to the cycle bit to check ownership, so CCS = 1.
  124. */
  125. ring->cycle_state = 1;
  126. /* Not necessary for new rings, but needed for re-initialized rings */
  127. ring->enq_updates = 0;
  128. ring->deq_updates = 0;
  129. }
  130. /**
  131. * Create a new ring with zero or more segments.
  132. *
  133. * Link each segment together into a ring.
  134. * Set the end flag and the cycle toggle bit on the last segment.
  135. * See section 4.9.1 and figures 15 and 16.
  136. */
  137. static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
  138. unsigned int num_segs, bool link_trbs, gfp_t flags)
  139. {
  140. struct xhci_ring *ring;
  141. struct xhci_segment *prev;
  142. ring = kzalloc(sizeof *(ring), flags);
  143. xhci_dbg(xhci, "Allocating ring at %p\n", ring);
  144. if (!ring)
  145. return 0;
  146. INIT_LIST_HEAD(&ring->td_list);
  147. if (num_segs == 0)
  148. return ring;
  149. ring->first_seg = xhci_segment_alloc(xhci, flags);
  150. if (!ring->first_seg)
  151. goto fail;
  152. num_segs--;
  153. prev = ring->first_seg;
  154. while (num_segs > 0) {
  155. struct xhci_segment *next;
  156. next = xhci_segment_alloc(xhci, flags);
  157. if (!next)
  158. goto fail;
  159. xhci_link_segments(xhci, prev, next, link_trbs);
  160. prev = next;
  161. num_segs--;
  162. }
  163. xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
  164. if (link_trbs) {
  165. /* See section 4.9.2.1 and 6.4.4.1 */
  166. prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
  167. xhci_dbg(xhci, "Wrote link toggle flag to"
  168. " segment %p (virtual), 0x%llx (DMA)\n",
  169. prev, (unsigned long long)prev->dma);
  170. }
  171. xhci_initialize_ring_info(ring);
  172. return ring;
  173. fail:
  174. xhci_ring_free(xhci, ring);
  175. return 0;
  176. }
  177. void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
  178. struct xhci_virt_device *virt_dev,
  179. unsigned int ep_index)
  180. {
  181. int rings_cached;
  182. rings_cached = virt_dev->num_rings_cached;
  183. if (rings_cached < XHCI_MAX_RINGS_CACHED) {
  184. virt_dev->num_rings_cached++;
  185. rings_cached = virt_dev->num_rings_cached;
  186. virt_dev->ring_cache[rings_cached] =
  187. virt_dev->eps[ep_index].ring;
  188. xhci_dbg(xhci, "Cached old ring, "
  189. "%d ring%s cached\n",
  190. rings_cached,
  191. (rings_cached > 1) ? "s" : "");
  192. } else {
  193. xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
  194. xhci_dbg(xhci, "Ring cache full (%d rings), "
  195. "freeing ring\n",
  196. virt_dev->num_rings_cached);
  197. }
  198. virt_dev->eps[ep_index].ring = NULL;
  199. }
  200. /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
  201. * pointers to the beginning of the ring.
  202. */
  203. static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
  204. struct xhci_ring *ring)
  205. {
  206. struct xhci_segment *seg = ring->first_seg;
  207. do {
  208. memset(seg->trbs, 0,
  209. sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
  210. /* All endpoint rings have link TRBs */
  211. xhci_link_segments(xhci, seg, seg->next, 1);
  212. seg = seg->next;
  213. } while (seg != ring->first_seg);
  214. xhci_initialize_ring_info(ring);
  215. /* td list should be empty since all URBs have been cancelled,
  216. * but just in case...
  217. */
  218. INIT_LIST_HEAD(&ring->td_list);
  219. }
  220. #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
  221. struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
  222. int type, gfp_t flags)
  223. {
  224. struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
  225. if (!ctx)
  226. return NULL;
  227. BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
  228. ctx->type = type;
  229. ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
  230. if (type == XHCI_CTX_TYPE_INPUT)
  231. ctx->size += CTX_SIZE(xhci->hcc_params);
  232. ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
  233. memset(ctx->bytes, 0, ctx->size);
  234. return ctx;
  235. }
  236. void xhci_free_container_ctx(struct xhci_hcd *xhci,
  237. struct xhci_container_ctx *ctx)
  238. {
  239. if (!ctx)
  240. return;
  241. dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
  242. kfree(ctx);
  243. }
  244. struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
  245. struct xhci_container_ctx *ctx)
  246. {
  247. BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
  248. return (struct xhci_input_control_ctx *)ctx->bytes;
  249. }
  250. struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
  251. struct xhci_container_ctx *ctx)
  252. {
  253. if (ctx->type == XHCI_CTX_TYPE_DEVICE)
  254. return (struct xhci_slot_ctx *)ctx->bytes;
  255. return (struct xhci_slot_ctx *)
  256. (ctx->bytes + CTX_SIZE(xhci->hcc_params));
  257. }
  258. struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
  259. struct xhci_container_ctx *ctx,
  260. unsigned int ep_index)
  261. {
  262. /* increment ep index by offset of start of ep ctx array */
  263. ep_index++;
  264. if (ctx->type == XHCI_CTX_TYPE_INPUT)
  265. ep_index++;
  266. return (struct xhci_ep_ctx *)
  267. (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
  268. }
  269. static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
  270. struct xhci_virt_ep *ep)
  271. {
  272. init_timer(&ep->stop_cmd_timer);
  273. ep->stop_cmd_timer.data = (unsigned long) ep;
  274. ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
  275. ep->xhci = xhci;
  276. }
  277. /* All the xhci_tds in the ring's TD list should be freed at this point */
  278. void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
  279. {
  280. struct xhci_virt_device *dev;
  281. int i;
  282. /* Slot ID 0 is reserved */
  283. if (slot_id == 0 || !xhci->devs[slot_id])
  284. return;
  285. dev = xhci->devs[slot_id];
  286. xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
  287. if (!dev)
  288. return;
  289. for (i = 0; i < 31; ++i)
  290. if (dev->eps[i].ring)
  291. xhci_ring_free(xhci, dev->eps[i].ring);
  292. if (dev->ring_cache) {
  293. for (i = 0; i < dev->num_rings_cached; i++)
  294. xhci_ring_free(xhci, dev->ring_cache[i]);
  295. kfree(dev->ring_cache);
  296. }
  297. if (dev->in_ctx)
  298. xhci_free_container_ctx(xhci, dev->in_ctx);
  299. if (dev->out_ctx)
  300. xhci_free_container_ctx(xhci, dev->out_ctx);
  301. kfree(xhci->devs[slot_id]);
  302. xhci->devs[slot_id] = 0;
  303. }
  304. int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
  305. struct usb_device *udev, gfp_t flags)
  306. {
  307. struct xhci_virt_device *dev;
  308. int i;
  309. /* Slot ID 0 is reserved */
  310. if (slot_id == 0 || xhci->devs[slot_id]) {
  311. xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
  312. return 0;
  313. }
  314. xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
  315. if (!xhci->devs[slot_id])
  316. return 0;
  317. dev = xhci->devs[slot_id];
  318. /* Allocate the (output) device context that will be used in the HC. */
  319. dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
  320. if (!dev->out_ctx)
  321. goto fail;
  322. xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
  323. (unsigned long long)dev->out_ctx->dma);
  324. /* Allocate the (input) device context for address device command */
  325. dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
  326. if (!dev->in_ctx)
  327. goto fail;
  328. xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
  329. (unsigned long long)dev->in_ctx->dma);
  330. /* Initialize the cancellation list and watchdog timers for each ep */
  331. for (i = 0; i < 31; i++) {
  332. xhci_init_endpoint_timer(xhci, &dev->eps[i]);
  333. INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
  334. }
  335. /* Allocate endpoint 0 ring */
  336. dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
  337. if (!dev->eps[0].ring)
  338. goto fail;
  339. /* Allocate pointers to the ring cache */
  340. dev->ring_cache = kzalloc(
  341. sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
  342. flags);
  343. if (!dev->ring_cache)
  344. goto fail;
  345. dev->num_rings_cached = 0;
  346. init_completion(&dev->cmd_completion);
  347. INIT_LIST_HEAD(&dev->cmd_list);
  348. /* Point to output device context in dcbaa. */
  349. xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
  350. xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
  351. slot_id,
  352. &xhci->dcbaa->dev_context_ptrs[slot_id],
  353. (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
  354. return 1;
  355. fail:
  356. xhci_free_virt_device(xhci, slot_id);
  357. return 0;
  358. }
  359. /* Setup an xHCI virtual device for a Set Address command */
  360. int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
  361. {
  362. struct xhci_virt_device *dev;
  363. struct xhci_ep_ctx *ep0_ctx;
  364. struct usb_device *top_dev;
  365. struct xhci_slot_ctx *slot_ctx;
  366. struct xhci_input_control_ctx *ctrl_ctx;
  367. dev = xhci->devs[udev->slot_id];
  368. /* Slot ID 0 is reserved */
  369. if (udev->slot_id == 0 || !dev) {
  370. xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
  371. udev->slot_id);
  372. return -EINVAL;
  373. }
  374. ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
  375. ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
  376. slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
  377. /* 2) New slot context and endpoint 0 context are valid*/
  378. ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
  379. /* 3) Only the control endpoint is valid - one endpoint context */
  380. slot_ctx->dev_info |= LAST_CTX(1);
  381. slot_ctx->dev_info |= (u32) udev->route;
  382. switch (udev->speed) {
  383. case USB_SPEED_SUPER:
  384. slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
  385. break;
  386. case USB_SPEED_HIGH:
  387. slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
  388. break;
  389. case USB_SPEED_FULL:
  390. slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
  391. break;
  392. case USB_SPEED_LOW:
  393. slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
  394. break;
  395. case USB_SPEED_WIRELESS:
  396. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  397. return -EINVAL;
  398. break;
  399. default:
  400. /* Speed was set earlier, this shouldn't happen. */
  401. BUG();
  402. }
  403. /* Find the root hub port this device is under */
  404. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  405. top_dev = top_dev->parent)
  406. /* Found device below root hub */;
  407. slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
  408. xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
  409. /* Is this a LS/FS device under a HS hub? */
  410. if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
  411. udev->tt) {
  412. slot_ctx->tt_info = udev->tt->hub->slot_id;
  413. slot_ctx->tt_info |= udev->ttport << 8;
  414. if (udev->tt->multi)
  415. slot_ctx->dev_info |= DEV_MTT;
  416. }
  417. xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
  418. xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
  419. /* Step 4 - ring already allocated */
  420. /* Step 5 */
  421. ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
  422. /*
  423. * XXX: Not sure about wireless USB devices.
  424. */
  425. switch (udev->speed) {
  426. case USB_SPEED_SUPER:
  427. ep0_ctx->ep_info2 |= MAX_PACKET(512);
  428. break;
  429. case USB_SPEED_HIGH:
  430. /* USB core guesses at a 64-byte max packet first for FS devices */
  431. case USB_SPEED_FULL:
  432. ep0_ctx->ep_info2 |= MAX_PACKET(64);
  433. break;
  434. case USB_SPEED_LOW:
  435. ep0_ctx->ep_info2 |= MAX_PACKET(8);
  436. break;
  437. case USB_SPEED_WIRELESS:
  438. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  439. return -EINVAL;
  440. break;
  441. default:
  442. /* New speed? */
  443. BUG();
  444. }
  445. /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
  446. ep0_ctx->ep_info2 |= MAX_BURST(0);
  447. ep0_ctx->ep_info2 |= ERROR_COUNT(3);
  448. ep0_ctx->deq =
  449. dev->eps[0].ring->first_seg->dma;
  450. ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
  451. /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
  452. return 0;
  453. }
  454. /* Return the polling or NAK interval.
  455. *
  456. * The polling interval is expressed in "microframes". If xHCI's Interval field
  457. * is set to N, it will service the endpoint every 2^(Interval)*125us.
  458. *
  459. * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
  460. * is set to 0.
  461. */
  462. static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
  463. struct usb_host_endpoint *ep)
  464. {
  465. unsigned int interval = 0;
  466. switch (udev->speed) {
  467. case USB_SPEED_HIGH:
  468. /* Max NAK rate */
  469. if (usb_endpoint_xfer_control(&ep->desc) ||
  470. usb_endpoint_xfer_bulk(&ep->desc))
  471. interval = ep->desc.bInterval;
  472. /* Fall through - SS and HS isoc/int have same decoding */
  473. case USB_SPEED_SUPER:
  474. if (usb_endpoint_xfer_int(&ep->desc) ||
  475. usb_endpoint_xfer_isoc(&ep->desc)) {
  476. if (ep->desc.bInterval == 0)
  477. interval = 0;
  478. else
  479. interval = ep->desc.bInterval - 1;
  480. if (interval > 15)
  481. interval = 15;
  482. if (interval != ep->desc.bInterval + 1)
  483. dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
  484. ep->desc.bEndpointAddress, 1 << interval);
  485. }
  486. break;
  487. /* Convert bInterval (in 1-255 frames) to microframes and round down to
  488. * nearest power of 2.
  489. */
  490. case USB_SPEED_FULL:
  491. case USB_SPEED_LOW:
  492. if (usb_endpoint_xfer_int(&ep->desc) ||
  493. usb_endpoint_xfer_isoc(&ep->desc)) {
  494. interval = fls(8*ep->desc.bInterval) - 1;
  495. if (interval > 10)
  496. interval = 10;
  497. if (interval < 3)
  498. interval = 3;
  499. if ((1 << interval) != 8*ep->desc.bInterval)
  500. dev_warn(&udev->dev,
  501. "ep %#x - rounding interval"
  502. " to %d microframes, "
  503. "ep desc says %d microframes\n",
  504. ep->desc.bEndpointAddress,
  505. 1 << interval,
  506. 8*ep->desc.bInterval);
  507. }
  508. break;
  509. default:
  510. BUG();
  511. }
  512. return EP_INTERVAL(interval);
  513. }
  514. static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
  515. struct usb_host_endpoint *ep)
  516. {
  517. int in;
  518. u32 type;
  519. in = usb_endpoint_dir_in(&ep->desc);
  520. if (usb_endpoint_xfer_control(&ep->desc)) {
  521. type = EP_TYPE(CTRL_EP);
  522. } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
  523. if (in)
  524. type = EP_TYPE(BULK_IN_EP);
  525. else
  526. type = EP_TYPE(BULK_OUT_EP);
  527. } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
  528. if (in)
  529. type = EP_TYPE(ISOC_IN_EP);
  530. else
  531. type = EP_TYPE(ISOC_OUT_EP);
  532. } else if (usb_endpoint_xfer_int(&ep->desc)) {
  533. if (in)
  534. type = EP_TYPE(INT_IN_EP);
  535. else
  536. type = EP_TYPE(INT_OUT_EP);
  537. } else {
  538. BUG();
  539. }
  540. return type;
  541. }
  542. int xhci_endpoint_init(struct xhci_hcd *xhci,
  543. struct xhci_virt_device *virt_dev,
  544. struct usb_device *udev,
  545. struct usb_host_endpoint *ep,
  546. gfp_t mem_flags)
  547. {
  548. unsigned int ep_index;
  549. struct xhci_ep_ctx *ep_ctx;
  550. struct xhci_ring *ep_ring;
  551. unsigned int max_packet;
  552. unsigned int max_burst;
  553. ep_index = xhci_get_endpoint_index(&ep->desc);
  554. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  555. /* Set up the endpoint ring */
  556. virt_dev->eps[ep_index].new_ring =
  557. xhci_ring_alloc(xhci, 1, true, mem_flags);
  558. if (!virt_dev->eps[ep_index].new_ring) {
  559. /* Attempt to use the ring cache */
  560. if (virt_dev->num_rings_cached == 0)
  561. return -ENOMEM;
  562. virt_dev->eps[ep_index].new_ring =
  563. virt_dev->ring_cache[virt_dev->num_rings_cached];
  564. virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
  565. virt_dev->num_rings_cached--;
  566. xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
  567. }
  568. ep_ring = virt_dev->eps[ep_index].new_ring;
  569. ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
  570. ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
  571. /* FIXME dig Mult and streams info out of ep companion desc */
  572. /* Allow 3 retries for everything but isoc;
  573. * error count = 0 means infinite retries.
  574. */
  575. if (!usb_endpoint_xfer_isoc(&ep->desc))
  576. ep_ctx->ep_info2 = ERROR_COUNT(3);
  577. else
  578. ep_ctx->ep_info2 = ERROR_COUNT(1);
  579. ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
  580. /* Set the max packet size and max burst */
  581. switch (udev->speed) {
  582. case USB_SPEED_SUPER:
  583. max_packet = ep->desc.wMaxPacketSize;
  584. ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
  585. /* dig out max burst from ep companion desc */
  586. if (!ep->ss_ep_comp) {
  587. xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
  588. max_packet = 0;
  589. } else {
  590. max_packet = ep->ss_ep_comp->desc.bMaxBurst;
  591. }
  592. ep_ctx->ep_info2 |= MAX_BURST(max_packet);
  593. break;
  594. case USB_SPEED_HIGH:
  595. /* bits 11:12 specify the number of additional transaction
  596. * opportunities per microframe (USB 2.0, section 9.6.6)
  597. */
  598. if (usb_endpoint_xfer_isoc(&ep->desc) ||
  599. usb_endpoint_xfer_int(&ep->desc)) {
  600. max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
  601. ep_ctx->ep_info2 |= MAX_BURST(max_burst);
  602. }
  603. /* Fall through */
  604. case USB_SPEED_FULL:
  605. case USB_SPEED_LOW:
  606. max_packet = ep->desc.wMaxPacketSize & 0x3ff;
  607. ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
  608. break;
  609. default:
  610. BUG();
  611. }
  612. /* FIXME Debug endpoint context */
  613. return 0;
  614. }
  615. void xhci_endpoint_zero(struct xhci_hcd *xhci,
  616. struct xhci_virt_device *virt_dev,
  617. struct usb_host_endpoint *ep)
  618. {
  619. unsigned int ep_index;
  620. struct xhci_ep_ctx *ep_ctx;
  621. ep_index = xhci_get_endpoint_index(&ep->desc);
  622. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  623. ep_ctx->ep_info = 0;
  624. ep_ctx->ep_info2 = 0;
  625. ep_ctx->deq = 0;
  626. ep_ctx->tx_info = 0;
  627. /* Don't free the endpoint ring until the set interface or configuration
  628. * request succeeds.
  629. */
  630. }
  631. /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
  632. * Useful when you want to change one particular aspect of the endpoint and then
  633. * issue a configure endpoint command.
  634. */
  635. void xhci_endpoint_copy(struct xhci_hcd *xhci,
  636. struct xhci_container_ctx *in_ctx,
  637. struct xhci_container_ctx *out_ctx,
  638. unsigned int ep_index)
  639. {
  640. struct xhci_ep_ctx *out_ep_ctx;
  641. struct xhci_ep_ctx *in_ep_ctx;
  642. out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  643. in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  644. in_ep_ctx->ep_info = out_ep_ctx->ep_info;
  645. in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
  646. in_ep_ctx->deq = out_ep_ctx->deq;
  647. in_ep_ctx->tx_info = out_ep_ctx->tx_info;
  648. }
  649. /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
  650. * Useful when you want to change one particular aspect of the endpoint and then
  651. * issue a configure endpoint command. Only the context entries field matters,
  652. * but we'll copy the whole thing anyway.
  653. */
  654. void xhci_slot_copy(struct xhci_hcd *xhci,
  655. struct xhci_container_ctx *in_ctx,
  656. struct xhci_container_ctx *out_ctx)
  657. {
  658. struct xhci_slot_ctx *in_slot_ctx;
  659. struct xhci_slot_ctx *out_slot_ctx;
  660. in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  661. out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
  662. in_slot_ctx->dev_info = out_slot_ctx->dev_info;
  663. in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
  664. in_slot_ctx->tt_info = out_slot_ctx->tt_info;
  665. in_slot_ctx->dev_state = out_slot_ctx->dev_state;
  666. }
  667. /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
  668. static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
  669. {
  670. int i;
  671. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  672. int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  673. xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
  674. if (!num_sp)
  675. return 0;
  676. xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
  677. if (!xhci->scratchpad)
  678. goto fail_sp;
  679. xhci->scratchpad->sp_array =
  680. pci_alloc_consistent(to_pci_dev(dev),
  681. num_sp * sizeof(u64),
  682. &xhci->scratchpad->sp_dma);
  683. if (!xhci->scratchpad->sp_array)
  684. goto fail_sp2;
  685. xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
  686. if (!xhci->scratchpad->sp_buffers)
  687. goto fail_sp3;
  688. xhci->scratchpad->sp_dma_buffers =
  689. kzalloc(sizeof(dma_addr_t) * num_sp, flags);
  690. if (!xhci->scratchpad->sp_dma_buffers)
  691. goto fail_sp4;
  692. xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
  693. for (i = 0; i < num_sp; i++) {
  694. dma_addr_t dma;
  695. void *buf = pci_alloc_consistent(to_pci_dev(dev),
  696. xhci->page_size, &dma);
  697. if (!buf)
  698. goto fail_sp5;
  699. xhci->scratchpad->sp_array[i] = dma;
  700. xhci->scratchpad->sp_buffers[i] = buf;
  701. xhci->scratchpad->sp_dma_buffers[i] = dma;
  702. }
  703. return 0;
  704. fail_sp5:
  705. for (i = i - 1; i >= 0; i--) {
  706. pci_free_consistent(to_pci_dev(dev), xhci->page_size,
  707. xhci->scratchpad->sp_buffers[i],
  708. xhci->scratchpad->sp_dma_buffers[i]);
  709. }
  710. kfree(xhci->scratchpad->sp_dma_buffers);
  711. fail_sp4:
  712. kfree(xhci->scratchpad->sp_buffers);
  713. fail_sp3:
  714. pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
  715. xhci->scratchpad->sp_array,
  716. xhci->scratchpad->sp_dma);
  717. fail_sp2:
  718. kfree(xhci->scratchpad);
  719. xhci->scratchpad = NULL;
  720. fail_sp:
  721. return -ENOMEM;
  722. }
  723. static void scratchpad_free(struct xhci_hcd *xhci)
  724. {
  725. int num_sp;
  726. int i;
  727. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  728. if (!xhci->scratchpad)
  729. return;
  730. num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  731. for (i = 0; i < num_sp; i++) {
  732. pci_free_consistent(pdev, xhci->page_size,
  733. xhci->scratchpad->sp_buffers[i],
  734. xhci->scratchpad->sp_dma_buffers[i]);
  735. }
  736. kfree(xhci->scratchpad->sp_dma_buffers);
  737. kfree(xhci->scratchpad->sp_buffers);
  738. pci_free_consistent(pdev, num_sp * sizeof(u64),
  739. xhci->scratchpad->sp_array,
  740. xhci->scratchpad->sp_dma);
  741. kfree(xhci->scratchpad);
  742. xhci->scratchpad = NULL;
  743. }
  744. struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
  745. bool allocate_in_ctx, bool allocate_completion,
  746. gfp_t mem_flags)
  747. {
  748. struct xhci_command *command;
  749. command = kzalloc(sizeof(*command), mem_flags);
  750. if (!command)
  751. return NULL;
  752. if (allocate_in_ctx) {
  753. command->in_ctx =
  754. xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
  755. mem_flags);
  756. if (!command->in_ctx) {
  757. kfree(command);
  758. return NULL;
  759. }
  760. }
  761. if (allocate_completion) {
  762. command->completion =
  763. kzalloc(sizeof(struct completion), mem_flags);
  764. if (!command->completion) {
  765. xhci_free_container_ctx(xhci, command->in_ctx);
  766. kfree(command);
  767. return NULL;
  768. }
  769. init_completion(command->completion);
  770. }
  771. command->status = 0;
  772. INIT_LIST_HEAD(&command->cmd_list);
  773. return command;
  774. }
  775. void xhci_free_command(struct xhci_hcd *xhci,
  776. struct xhci_command *command)
  777. {
  778. xhci_free_container_ctx(xhci,
  779. command->in_ctx);
  780. kfree(command->completion);
  781. kfree(command);
  782. }
  783. void xhci_mem_cleanup(struct xhci_hcd *xhci)
  784. {
  785. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  786. int size;
  787. int i;
  788. /* Free the Event Ring Segment Table and the actual Event Ring */
  789. if (xhci->ir_set) {
  790. xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
  791. xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
  792. xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
  793. }
  794. size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
  795. if (xhci->erst.entries)
  796. pci_free_consistent(pdev, size,
  797. xhci->erst.entries, xhci->erst.erst_dma_addr);
  798. xhci->erst.entries = NULL;
  799. xhci_dbg(xhci, "Freed ERST\n");
  800. if (xhci->event_ring)
  801. xhci_ring_free(xhci, xhci->event_ring);
  802. xhci->event_ring = NULL;
  803. xhci_dbg(xhci, "Freed event ring\n");
  804. xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
  805. if (xhci->cmd_ring)
  806. xhci_ring_free(xhci, xhci->cmd_ring);
  807. xhci->cmd_ring = NULL;
  808. xhci_dbg(xhci, "Freed command ring\n");
  809. for (i = 1; i < MAX_HC_SLOTS; ++i)
  810. xhci_free_virt_device(xhci, i);
  811. if (xhci->segment_pool)
  812. dma_pool_destroy(xhci->segment_pool);
  813. xhci->segment_pool = NULL;
  814. xhci_dbg(xhci, "Freed segment pool\n");
  815. if (xhci->device_pool)
  816. dma_pool_destroy(xhci->device_pool);
  817. xhci->device_pool = NULL;
  818. xhci_dbg(xhci, "Freed device context pool\n");
  819. xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
  820. if (xhci->dcbaa)
  821. pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
  822. xhci->dcbaa, xhci->dcbaa->dma);
  823. xhci->dcbaa = NULL;
  824. scratchpad_free(xhci);
  825. xhci->page_size = 0;
  826. xhci->page_shift = 0;
  827. }
  828. static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
  829. struct xhci_segment *input_seg,
  830. union xhci_trb *start_trb,
  831. union xhci_trb *end_trb,
  832. dma_addr_t input_dma,
  833. struct xhci_segment *result_seg,
  834. char *test_name, int test_number)
  835. {
  836. unsigned long long start_dma;
  837. unsigned long long end_dma;
  838. struct xhci_segment *seg;
  839. start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
  840. end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
  841. seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
  842. if (seg != result_seg) {
  843. xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
  844. test_name, test_number);
  845. xhci_warn(xhci, "Tested TRB math w/ seg %p and "
  846. "input DMA 0x%llx\n",
  847. input_seg,
  848. (unsigned long long) input_dma);
  849. xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
  850. "ending TRB %p (0x%llx DMA)\n",
  851. start_trb, start_dma,
  852. end_trb, end_dma);
  853. xhci_warn(xhci, "Expected seg %p, got seg %p\n",
  854. result_seg, seg);
  855. return -1;
  856. }
  857. return 0;
  858. }
  859. /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
  860. static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
  861. {
  862. struct {
  863. dma_addr_t input_dma;
  864. struct xhci_segment *result_seg;
  865. } simple_test_vector [] = {
  866. /* A zeroed DMA field should fail */
  867. { 0, NULL },
  868. /* One TRB before the ring start should fail */
  869. { xhci->event_ring->first_seg->dma - 16, NULL },
  870. /* One byte before the ring start should fail */
  871. { xhci->event_ring->first_seg->dma - 1, NULL },
  872. /* Starting TRB should succeed */
  873. { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
  874. /* Ending TRB should succeed */
  875. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
  876. xhci->event_ring->first_seg },
  877. /* One byte after the ring end should fail */
  878. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
  879. /* One TRB after the ring end should fail */
  880. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
  881. /* An address of all ones should fail */
  882. { (dma_addr_t) (~0), NULL },
  883. };
  884. struct {
  885. struct xhci_segment *input_seg;
  886. union xhci_trb *start_trb;
  887. union xhci_trb *end_trb;
  888. dma_addr_t input_dma;
  889. struct xhci_segment *result_seg;
  890. } complex_test_vector [] = {
  891. /* Test feeding a valid DMA address from a different ring */
  892. { .input_seg = xhci->event_ring->first_seg,
  893. .start_trb = xhci->event_ring->first_seg->trbs,
  894. .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  895. .input_dma = xhci->cmd_ring->first_seg->dma,
  896. .result_seg = NULL,
  897. },
  898. /* Test feeding a valid end TRB from a different ring */
  899. { .input_seg = xhci->event_ring->first_seg,
  900. .start_trb = xhci->event_ring->first_seg->trbs,
  901. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  902. .input_dma = xhci->cmd_ring->first_seg->dma,
  903. .result_seg = NULL,
  904. },
  905. /* Test feeding a valid start and end TRB from a different ring */
  906. { .input_seg = xhci->event_ring->first_seg,
  907. .start_trb = xhci->cmd_ring->first_seg->trbs,
  908. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  909. .input_dma = xhci->cmd_ring->first_seg->dma,
  910. .result_seg = NULL,
  911. },
  912. /* TRB in this ring, but after this TD */
  913. { .input_seg = xhci->event_ring->first_seg,
  914. .start_trb = &xhci->event_ring->first_seg->trbs[0],
  915. .end_trb = &xhci->event_ring->first_seg->trbs[3],
  916. .input_dma = xhci->event_ring->first_seg->dma + 4*16,
  917. .result_seg = NULL,
  918. },
  919. /* TRB in this ring, but before this TD */
  920. { .input_seg = xhci->event_ring->first_seg,
  921. .start_trb = &xhci->event_ring->first_seg->trbs[3],
  922. .end_trb = &xhci->event_ring->first_seg->trbs[6],
  923. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  924. .result_seg = NULL,
  925. },
  926. /* TRB in this ring, but after this wrapped TD */
  927. { .input_seg = xhci->event_ring->first_seg,
  928. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  929. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  930. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  931. .result_seg = NULL,
  932. },
  933. /* TRB in this ring, but before this wrapped TD */
  934. { .input_seg = xhci->event_ring->first_seg,
  935. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  936. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  937. .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
  938. .result_seg = NULL,
  939. },
  940. /* TRB not in this ring, and we have a wrapped TD */
  941. { .input_seg = xhci->event_ring->first_seg,
  942. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  943. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  944. .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
  945. .result_seg = NULL,
  946. },
  947. };
  948. unsigned int num_tests;
  949. int i, ret;
  950. num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
  951. for (i = 0; i < num_tests; i++) {
  952. ret = xhci_test_trb_in_td(xhci,
  953. xhci->event_ring->first_seg,
  954. xhci->event_ring->first_seg->trbs,
  955. &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  956. simple_test_vector[i].input_dma,
  957. simple_test_vector[i].result_seg,
  958. "Simple", i);
  959. if (ret < 0)
  960. return ret;
  961. }
  962. num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
  963. for (i = 0; i < num_tests; i++) {
  964. ret = xhci_test_trb_in_td(xhci,
  965. complex_test_vector[i].input_seg,
  966. complex_test_vector[i].start_trb,
  967. complex_test_vector[i].end_trb,
  968. complex_test_vector[i].input_dma,
  969. complex_test_vector[i].result_seg,
  970. "Complex", i);
  971. if (ret < 0)
  972. return ret;
  973. }
  974. xhci_dbg(xhci, "TRB math tests passed.\n");
  975. return 0;
  976. }
  977. int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
  978. {
  979. dma_addr_t dma;
  980. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  981. unsigned int val, val2;
  982. u64 val_64;
  983. struct xhci_segment *seg;
  984. u32 page_size;
  985. int i;
  986. page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
  987. xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
  988. for (i = 0; i < 16; i++) {
  989. if ((0x1 & page_size) != 0)
  990. break;
  991. page_size = page_size >> 1;
  992. }
  993. if (i < 16)
  994. xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
  995. else
  996. xhci_warn(xhci, "WARN: no supported page size\n");
  997. /* Use 4K pages, since that's common and the minimum the HC supports */
  998. xhci->page_shift = 12;
  999. xhci->page_size = 1 << xhci->page_shift;
  1000. xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
  1001. /*
  1002. * Program the Number of Device Slots Enabled field in the CONFIG
  1003. * register with the max value of slots the HC can handle.
  1004. */
  1005. val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
  1006. xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
  1007. (unsigned int) val);
  1008. val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
  1009. val |= (val2 & ~HCS_SLOTS_MASK);
  1010. xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
  1011. (unsigned int) val);
  1012. xhci_writel(xhci, val, &xhci->op_regs->config_reg);
  1013. /*
  1014. * Section 5.4.8 - doorbell array must be
  1015. * "physically contiguous and 64-byte (cache line) aligned".
  1016. */
  1017. xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
  1018. sizeof(*xhci->dcbaa), &dma);
  1019. if (!xhci->dcbaa)
  1020. goto fail;
  1021. memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
  1022. xhci->dcbaa->dma = dma;
  1023. xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
  1024. (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
  1025. xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
  1026. /*
  1027. * Initialize the ring segment pool. The ring must be a contiguous
  1028. * structure comprised of TRBs. The TRBs must be 16 byte aligned,
  1029. * however, the command ring segment needs 64-byte aligned segments,
  1030. * so we pick the greater alignment need.
  1031. */
  1032. xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
  1033. SEGMENT_SIZE, 64, xhci->page_size);
  1034. /* See Table 46 and Note on Figure 55 */
  1035. xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
  1036. 2112, 64, xhci->page_size);
  1037. if (!xhci->segment_pool || !xhci->device_pool)
  1038. goto fail;
  1039. /* Set up the command ring to have one segments for now. */
  1040. xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
  1041. if (!xhci->cmd_ring)
  1042. goto fail;
  1043. xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
  1044. xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
  1045. (unsigned long long)xhci->cmd_ring->first_seg->dma);
  1046. /* Set the address in the Command Ring Control register */
  1047. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1048. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  1049. (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
  1050. xhci->cmd_ring->cycle_state;
  1051. xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
  1052. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  1053. xhci_dbg_cmd_ptrs(xhci);
  1054. val = xhci_readl(xhci, &xhci->cap_regs->db_off);
  1055. val &= DBOFF_MASK;
  1056. xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
  1057. " from cap regs base addr\n", val);
  1058. xhci->dba = (void *) xhci->cap_regs + val;
  1059. xhci_dbg_regs(xhci);
  1060. xhci_print_run_regs(xhci);
  1061. /* Set ir_set to interrupt register set 0 */
  1062. xhci->ir_set = (void *) xhci->run_regs->ir_set;
  1063. /*
  1064. * Event ring setup: Allocate a normal ring, but also setup
  1065. * the event ring segment table (ERST). Section 4.9.3.
  1066. */
  1067. xhci_dbg(xhci, "// Allocating event ring\n");
  1068. xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
  1069. if (!xhci->event_ring)
  1070. goto fail;
  1071. if (xhci_check_trb_in_td_math(xhci, flags) < 0)
  1072. goto fail;
  1073. xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
  1074. sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
  1075. if (!xhci->erst.entries)
  1076. goto fail;
  1077. xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
  1078. (unsigned long long)dma);
  1079. memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
  1080. xhci->erst.num_entries = ERST_NUM_SEGS;
  1081. xhci->erst.erst_dma_addr = dma;
  1082. xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
  1083. xhci->erst.num_entries,
  1084. xhci->erst.entries,
  1085. (unsigned long long)xhci->erst.erst_dma_addr);
  1086. /* set ring base address and size for each segment table entry */
  1087. for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
  1088. struct xhci_erst_entry *entry = &xhci->erst.entries[val];
  1089. entry->seg_addr = seg->dma;
  1090. entry->seg_size = TRBS_PER_SEGMENT;
  1091. entry->rsvd = 0;
  1092. seg = seg->next;
  1093. }
  1094. /* set ERST count with the number of entries in the segment table */
  1095. val = xhci_readl(xhci, &xhci->ir_set->erst_size);
  1096. val &= ERST_SIZE_MASK;
  1097. val |= ERST_NUM_SEGS;
  1098. xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
  1099. val);
  1100. xhci_writel(xhci, val, &xhci->ir_set->erst_size);
  1101. xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
  1102. /* set the segment table base address */
  1103. xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
  1104. (unsigned long long)xhci->erst.erst_dma_addr);
  1105. val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  1106. val_64 &= ERST_PTR_MASK;
  1107. val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
  1108. xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
  1109. /* Set the event ring dequeue address */
  1110. xhci_set_hc_event_deq(xhci);
  1111. xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
  1112. xhci_print_ir_set(xhci, xhci->ir_set, 0);
  1113. /*
  1114. * XXX: Might need to set the Interrupter Moderation Register to
  1115. * something other than the default (~1ms minimum between interrupts).
  1116. * See section 5.5.1.2.
  1117. */
  1118. init_completion(&xhci->addr_dev);
  1119. for (i = 0; i < MAX_HC_SLOTS; ++i)
  1120. xhci->devs[i] = 0;
  1121. if (scratchpad_alloc(xhci, flags))
  1122. goto fail;
  1123. return 0;
  1124. fail:
  1125. xhci_warn(xhci, "Couldn't initialize memory\n");
  1126. xhci_mem_cleanup(xhci);
  1127. return -ENOMEM;
  1128. }