edma.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554
  1. /*
  2. * EDMA3 support for DaVinci
  3. *
  4. * Copyright (C) 2006-2009 Texas Instruments.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/init.h>
  22. #include <linux/module.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/io.h>
  26. #include <linux/slab.h>
  27. #include <linux/platform_data/edma.h>
  28. /* Offsets matching "struct edmacc_param" */
  29. #define PARM_OPT 0x00
  30. #define PARM_SRC 0x04
  31. #define PARM_A_B_CNT 0x08
  32. #define PARM_DST 0x0c
  33. #define PARM_SRC_DST_BIDX 0x10
  34. #define PARM_LINK_BCNTRLD 0x14
  35. #define PARM_SRC_DST_CIDX 0x18
  36. #define PARM_CCNT 0x1c
  37. #define PARM_SIZE 0x20
  38. /* Offsets for EDMA CC global channel registers and their shadows */
  39. #define SH_ER 0x00 /* 64 bits */
  40. #define SH_ECR 0x08 /* 64 bits */
  41. #define SH_ESR 0x10 /* 64 bits */
  42. #define SH_CER 0x18 /* 64 bits */
  43. #define SH_EER 0x20 /* 64 bits */
  44. #define SH_EECR 0x28 /* 64 bits */
  45. #define SH_EESR 0x30 /* 64 bits */
  46. #define SH_SER 0x38 /* 64 bits */
  47. #define SH_SECR 0x40 /* 64 bits */
  48. #define SH_IER 0x50 /* 64 bits */
  49. #define SH_IECR 0x58 /* 64 bits */
  50. #define SH_IESR 0x60 /* 64 bits */
  51. #define SH_IPR 0x68 /* 64 bits */
  52. #define SH_ICR 0x70 /* 64 bits */
  53. #define SH_IEVAL 0x78
  54. #define SH_QER 0x80
  55. #define SH_QEER 0x84
  56. #define SH_QEECR 0x88
  57. #define SH_QEESR 0x8c
  58. #define SH_QSER 0x90
  59. #define SH_QSECR 0x94
  60. #define SH_SIZE 0x200
  61. /* Offsets for EDMA CC global registers */
  62. #define EDMA_REV 0x0000
  63. #define EDMA_CCCFG 0x0004
  64. #define EDMA_QCHMAP 0x0200 /* 8 registers */
  65. #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
  66. #define EDMA_QDMAQNUM 0x0260
  67. #define EDMA_QUETCMAP 0x0280
  68. #define EDMA_QUEPRI 0x0284
  69. #define EDMA_EMR 0x0300 /* 64 bits */
  70. #define EDMA_EMCR 0x0308 /* 64 bits */
  71. #define EDMA_QEMR 0x0310
  72. #define EDMA_QEMCR 0x0314
  73. #define EDMA_CCERR 0x0318
  74. #define EDMA_CCERRCLR 0x031c
  75. #define EDMA_EEVAL 0x0320
  76. #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
  77. #define EDMA_QRAE 0x0380 /* 4 registers */
  78. #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
  79. #define EDMA_QSTAT 0x0600 /* 2 registers */
  80. #define EDMA_QWMTHRA 0x0620
  81. #define EDMA_QWMTHRB 0x0624
  82. #define EDMA_CCSTAT 0x0640
  83. #define EDMA_M 0x1000 /* global channel registers */
  84. #define EDMA_ECR 0x1008
  85. #define EDMA_ECRH 0x100C
  86. #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
  87. #define EDMA_PARM 0x4000 /* 128 param entries */
  88. #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
  89. #define EDMA_DCHMAP 0x0100 /* 64 registers */
  90. #define CHMAP_EXIST BIT(24)
  91. #define EDMA_MAX_DMACH 64
  92. #define EDMA_MAX_PARAMENTRY 512
  93. /*****************************************************************************/
  94. static void __iomem *edmacc_regs_base[EDMA_MAX_CC];
  95. static inline unsigned int edma_read(unsigned ctlr, int offset)
  96. {
  97. return (unsigned int)__raw_readl(edmacc_regs_base[ctlr] + offset);
  98. }
  99. static inline void edma_write(unsigned ctlr, int offset, int val)
  100. {
  101. __raw_writel(val, edmacc_regs_base[ctlr] + offset);
  102. }
  103. static inline void edma_modify(unsigned ctlr, int offset, unsigned and,
  104. unsigned or)
  105. {
  106. unsigned val = edma_read(ctlr, offset);
  107. val &= and;
  108. val |= or;
  109. edma_write(ctlr, offset, val);
  110. }
  111. static inline void edma_and(unsigned ctlr, int offset, unsigned and)
  112. {
  113. unsigned val = edma_read(ctlr, offset);
  114. val &= and;
  115. edma_write(ctlr, offset, val);
  116. }
  117. static inline void edma_or(unsigned ctlr, int offset, unsigned or)
  118. {
  119. unsigned val = edma_read(ctlr, offset);
  120. val |= or;
  121. edma_write(ctlr, offset, val);
  122. }
  123. static inline unsigned int edma_read_array(unsigned ctlr, int offset, int i)
  124. {
  125. return edma_read(ctlr, offset + (i << 2));
  126. }
  127. static inline void edma_write_array(unsigned ctlr, int offset, int i,
  128. unsigned val)
  129. {
  130. edma_write(ctlr, offset + (i << 2), val);
  131. }
  132. static inline void edma_modify_array(unsigned ctlr, int offset, int i,
  133. unsigned and, unsigned or)
  134. {
  135. edma_modify(ctlr, offset + (i << 2), and, or);
  136. }
  137. static inline void edma_or_array(unsigned ctlr, int offset, int i, unsigned or)
  138. {
  139. edma_or(ctlr, offset + (i << 2), or);
  140. }
  141. static inline void edma_or_array2(unsigned ctlr, int offset, int i, int j,
  142. unsigned or)
  143. {
  144. edma_or(ctlr, offset + ((i*2 + j) << 2), or);
  145. }
  146. static inline void edma_write_array2(unsigned ctlr, int offset, int i, int j,
  147. unsigned val)
  148. {
  149. edma_write(ctlr, offset + ((i*2 + j) << 2), val);
  150. }
  151. static inline unsigned int edma_shadow0_read(unsigned ctlr, int offset)
  152. {
  153. return edma_read(ctlr, EDMA_SHADOW0 + offset);
  154. }
  155. static inline unsigned int edma_shadow0_read_array(unsigned ctlr, int offset,
  156. int i)
  157. {
  158. return edma_read(ctlr, EDMA_SHADOW0 + offset + (i << 2));
  159. }
  160. static inline void edma_shadow0_write(unsigned ctlr, int offset, unsigned val)
  161. {
  162. edma_write(ctlr, EDMA_SHADOW0 + offset, val);
  163. }
  164. static inline void edma_shadow0_write_array(unsigned ctlr, int offset, int i,
  165. unsigned val)
  166. {
  167. edma_write(ctlr, EDMA_SHADOW0 + offset + (i << 2), val);
  168. }
  169. static inline unsigned int edma_parm_read(unsigned ctlr, int offset,
  170. int param_no)
  171. {
  172. return edma_read(ctlr, EDMA_PARM + offset + (param_no << 5));
  173. }
  174. static inline void edma_parm_write(unsigned ctlr, int offset, int param_no,
  175. unsigned val)
  176. {
  177. edma_write(ctlr, EDMA_PARM + offset + (param_no << 5), val);
  178. }
  179. static inline void edma_parm_modify(unsigned ctlr, int offset, int param_no,
  180. unsigned and, unsigned or)
  181. {
  182. edma_modify(ctlr, EDMA_PARM + offset + (param_no << 5), and, or);
  183. }
  184. static inline void edma_parm_and(unsigned ctlr, int offset, int param_no,
  185. unsigned and)
  186. {
  187. edma_and(ctlr, EDMA_PARM + offset + (param_no << 5), and);
  188. }
  189. static inline void edma_parm_or(unsigned ctlr, int offset, int param_no,
  190. unsigned or)
  191. {
  192. edma_or(ctlr, EDMA_PARM + offset + (param_no << 5), or);
  193. }
  194. static inline void set_bits(int offset, int len, unsigned long *p)
  195. {
  196. for (; len > 0; len--)
  197. set_bit(offset + (len - 1), p);
  198. }
  199. static inline void clear_bits(int offset, int len, unsigned long *p)
  200. {
  201. for (; len > 0; len--)
  202. clear_bit(offset + (len - 1), p);
  203. }
  204. /*****************************************************************************/
  205. /* actual number of DMA channels and slots on this silicon */
  206. struct edma {
  207. /* how many dma resources of each type */
  208. unsigned num_channels;
  209. unsigned num_region;
  210. unsigned num_slots;
  211. unsigned num_tc;
  212. unsigned num_cc;
  213. enum dma_event_q default_queue;
  214. /* list of channels with no even trigger; terminated by "-1" */
  215. const s8 *noevent;
  216. /* The edma_inuse bit for each PaRAM slot is clear unless the
  217. * channel is in use ... by ARM or DSP, for QDMA, or whatever.
  218. */
  219. DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY);
  220. /* The edma_unused bit for each channel is clear unless
  221. * it is not being used on this platform. It uses a bit
  222. * of SOC-specific initialization code.
  223. */
  224. DECLARE_BITMAP(edma_unused, EDMA_MAX_DMACH);
  225. unsigned irq_res_start;
  226. unsigned irq_res_end;
  227. struct dma_interrupt_data {
  228. void (*callback)(unsigned channel, unsigned short ch_status,
  229. void *data);
  230. void *data;
  231. } intr_data[EDMA_MAX_DMACH];
  232. };
  233. static struct edma *edma_cc[EDMA_MAX_CC];
  234. static int arch_num_cc;
  235. /* dummy param set used to (re)initialize parameter RAM slots */
  236. static const struct edmacc_param dummy_paramset = {
  237. .link_bcntrld = 0xffff,
  238. .ccnt = 1,
  239. };
  240. /*****************************************************************************/
  241. static void map_dmach_queue(unsigned ctlr, unsigned ch_no,
  242. enum dma_event_q queue_no)
  243. {
  244. int bit = (ch_no & 0x7) * 4;
  245. /* default to low priority queue */
  246. if (queue_no == EVENTQ_DEFAULT)
  247. queue_no = edma_cc[ctlr]->default_queue;
  248. queue_no &= 7;
  249. edma_modify_array(ctlr, EDMA_DMAQNUM, (ch_no >> 3),
  250. ~(0x7 << bit), queue_no << bit);
  251. }
  252. static void __init map_queue_tc(unsigned ctlr, int queue_no, int tc_no)
  253. {
  254. int bit = queue_no * 4;
  255. edma_modify(ctlr, EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit));
  256. }
  257. static void __init assign_priority_to_queue(unsigned ctlr, int queue_no,
  258. int priority)
  259. {
  260. int bit = queue_no * 4;
  261. edma_modify(ctlr, EDMA_QUEPRI, ~(0x7 << bit),
  262. ((priority & 0x7) << bit));
  263. }
  264. /**
  265. * map_dmach_param - Maps channel number to param entry number
  266. *
  267. * This maps the dma channel number to param entry numberter. In
  268. * other words using the DMA channel mapping registers a param entry
  269. * can be mapped to any channel
  270. *
  271. * Callers are responsible for ensuring the channel mapping logic is
  272. * included in that particular EDMA variant (Eg : dm646x)
  273. *
  274. */
  275. static void __init map_dmach_param(unsigned ctlr)
  276. {
  277. int i;
  278. for (i = 0; i < EDMA_MAX_DMACH; i++)
  279. edma_write_array(ctlr, EDMA_DCHMAP , i , (i << 5));
  280. }
  281. static inline void
  282. setup_dma_interrupt(unsigned lch,
  283. void (*callback)(unsigned channel, u16 ch_status, void *data),
  284. void *data)
  285. {
  286. unsigned ctlr;
  287. ctlr = EDMA_CTLR(lch);
  288. lch = EDMA_CHAN_SLOT(lch);
  289. if (!callback)
  290. edma_shadow0_write_array(ctlr, SH_IECR, lch >> 5,
  291. BIT(lch & 0x1f));
  292. edma_cc[ctlr]->intr_data[lch].callback = callback;
  293. edma_cc[ctlr]->intr_data[lch].data = data;
  294. if (callback) {
  295. edma_shadow0_write_array(ctlr, SH_ICR, lch >> 5,
  296. BIT(lch & 0x1f));
  297. edma_shadow0_write_array(ctlr, SH_IESR, lch >> 5,
  298. BIT(lch & 0x1f));
  299. }
  300. }
  301. static int irq2ctlr(int irq)
  302. {
  303. if (irq >= edma_cc[0]->irq_res_start && irq <= edma_cc[0]->irq_res_end)
  304. return 0;
  305. else if (irq >= edma_cc[1]->irq_res_start &&
  306. irq <= edma_cc[1]->irq_res_end)
  307. return 1;
  308. return -1;
  309. }
  310. /******************************************************************************
  311. *
  312. * DMA interrupt handler
  313. *
  314. *****************************************************************************/
  315. static irqreturn_t dma_irq_handler(int irq, void *data)
  316. {
  317. int ctlr;
  318. u32 sh_ier;
  319. u32 sh_ipr;
  320. u32 bank;
  321. ctlr = irq2ctlr(irq);
  322. if (ctlr < 0)
  323. return IRQ_NONE;
  324. dev_dbg(data, "dma_irq_handler\n");
  325. sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 0);
  326. if (!sh_ipr) {
  327. sh_ipr = edma_shadow0_read_array(ctlr, SH_IPR, 1);
  328. if (!sh_ipr)
  329. return IRQ_NONE;
  330. sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 1);
  331. bank = 1;
  332. } else {
  333. sh_ier = edma_shadow0_read_array(ctlr, SH_IER, 0);
  334. bank = 0;
  335. }
  336. do {
  337. u32 slot;
  338. u32 channel;
  339. dev_dbg(data, "IPR%d %08x\n", bank, sh_ipr);
  340. slot = __ffs(sh_ipr);
  341. sh_ipr &= ~(BIT(slot));
  342. if (sh_ier & BIT(slot)) {
  343. channel = (bank << 5) | slot;
  344. /* Clear the corresponding IPR bits */
  345. edma_shadow0_write_array(ctlr, SH_ICR, bank,
  346. BIT(slot));
  347. if (edma_cc[ctlr]->intr_data[channel].callback)
  348. edma_cc[ctlr]->intr_data[channel].callback(
  349. channel, DMA_COMPLETE,
  350. edma_cc[ctlr]->intr_data[channel].data);
  351. }
  352. } while (sh_ipr);
  353. edma_shadow0_write(ctlr, SH_IEVAL, 1);
  354. return IRQ_HANDLED;
  355. }
  356. /******************************************************************************
  357. *
  358. * DMA error interrupt handler
  359. *
  360. *****************************************************************************/
  361. static irqreturn_t dma_ccerr_handler(int irq, void *data)
  362. {
  363. int i;
  364. int ctlr;
  365. unsigned int cnt = 0;
  366. ctlr = irq2ctlr(irq);
  367. if (ctlr < 0)
  368. return IRQ_NONE;
  369. dev_dbg(data, "dma_ccerr_handler\n");
  370. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  371. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  372. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  373. (edma_read(ctlr, EDMA_CCERR) == 0))
  374. return IRQ_NONE;
  375. while (1) {
  376. int j = -1;
  377. if (edma_read_array(ctlr, EDMA_EMR, 0))
  378. j = 0;
  379. else if (edma_read_array(ctlr, EDMA_EMR, 1))
  380. j = 1;
  381. if (j >= 0) {
  382. dev_dbg(data, "EMR%d %08x\n", j,
  383. edma_read_array(ctlr, EDMA_EMR, j));
  384. for (i = 0; i < 32; i++) {
  385. int k = (j << 5) + i;
  386. if (edma_read_array(ctlr, EDMA_EMR, j) &
  387. BIT(i)) {
  388. /* Clear the corresponding EMR bits */
  389. edma_write_array(ctlr, EDMA_EMCR, j,
  390. BIT(i));
  391. /* Clear any SER */
  392. edma_shadow0_write_array(ctlr, SH_SECR,
  393. j, BIT(i));
  394. if (edma_cc[ctlr]->intr_data[k].
  395. callback) {
  396. edma_cc[ctlr]->intr_data[k].
  397. callback(k,
  398. DMA_CC_ERROR,
  399. edma_cc[ctlr]->intr_data
  400. [k].data);
  401. }
  402. }
  403. }
  404. } else if (edma_read(ctlr, EDMA_QEMR)) {
  405. dev_dbg(data, "QEMR %02x\n",
  406. edma_read(ctlr, EDMA_QEMR));
  407. for (i = 0; i < 8; i++) {
  408. if (edma_read(ctlr, EDMA_QEMR) & BIT(i)) {
  409. /* Clear the corresponding IPR bits */
  410. edma_write(ctlr, EDMA_QEMCR, BIT(i));
  411. edma_shadow0_write(ctlr, SH_QSECR,
  412. BIT(i));
  413. /* NOTE: not reported!! */
  414. }
  415. }
  416. } else if (edma_read(ctlr, EDMA_CCERR)) {
  417. dev_dbg(data, "CCERR %08x\n",
  418. edma_read(ctlr, EDMA_CCERR));
  419. /* FIXME: CCERR.BIT(16) ignored! much better
  420. * to just write CCERRCLR with CCERR value...
  421. */
  422. for (i = 0; i < 8; i++) {
  423. if (edma_read(ctlr, EDMA_CCERR) & BIT(i)) {
  424. /* Clear the corresponding IPR bits */
  425. edma_write(ctlr, EDMA_CCERRCLR, BIT(i));
  426. /* NOTE: not reported!! */
  427. }
  428. }
  429. }
  430. if ((edma_read_array(ctlr, EDMA_EMR, 0) == 0) &&
  431. (edma_read_array(ctlr, EDMA_EMR, 1) == 0) &&
  432. (edma_read(ctlr, EDMA_QEMR) == 0) &&
  433. (edma_read(ctlr, EDMA_CCERR) == 0))
  434. break;
  435. cnt++;
  436. if (cnt > 10)
  437. break;
  438. }
  439. edma_write(ctlr, EDMA_EEVAL, 1);
  440. return IRQ_HANDLED;
  441. }
  442. static int reserve_contiguous_slots(int ctlr, unsigned int id,
  443. unsigned int num_slots,
  444. unsigned int start_slot)
  445. {
  446. int i, j;
  447. unsigned int count = num_slots;
  448. int stop_slot = start_slot;
  449. DECLARE_BITMAP(tmp_inuse, EDMA_MAX_PARAMENTRY);
  450. for (i = start_slot; i < edma_cc[ctlr]->num_slots; ++i) {
  451. j = EDMA_CHAN_SLOT(i);
  452. if (!test_and_set_bit(j, edma_cc[ctlr]->edma_inuse)) {
  453. /* Record our current beginning slot */
  454. if (count == num_slots)
  455. stop_slot = i;
  456. count--;
  457. set_bit(j, tmp_inuse);
  458. if (count == 0)
  459. break;
  460. } else {
  461. clear_bit(j, tmp_inuse);
  462. if (id == EDMA_CONT_PARAMS_FIXED_EXACT) {
  463. stop_slot = i;
  464. break;
  465. } else {
  466. count = num_slots;
  467. }
  468. }
  469. }
  470. /*
  471. * We have to clear any bits that we set
  472. * if we run out parameter RAM slots, i.e we do find a set
  473. * of contiguous parameter RAM slots but do not find the exact number
  474. * requested as we may reach the total number of parameter RAM slots
  475. */
  476. if (i == edma_cc[ctlr]->num_slots)
  477. stop_slot = i;
  478. j = start_slot;
  479. for_each_set_bit_from(j, tmp_inuse, stop_slot)
  480. clear_bit(j, edma_cc[ctlr]->edma_inuse);
  481. if (count)
  482. return -EBUSY;
  483. for (j = i - num_slots + 1; j <= i; ++j)
  484. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(j),
  485. &dummy_paramset, PARM_SIZE);
  486. return EDMA_CTLR_CHAN(ctlr, i - num_slots + 1);
  487. }
  488. static int prepare_unused_channel_list(struct device *dev, void *data)
  489. {
  490. struct platform_device *pdev = to_platform_device(dev);
  491. int i, ctlr;
  492. for (i = 0; i < pdev->num_resources; i++) {
  493. if ((pdev->resource[i].flags & IORESOURCE_DMA) &&
  494. (int)pdev->resource[i].start >= 0) {
  495. ctlr = EDMA_CTLR(pdev->resource[i].start);
  496. clear_bit(EDMA_CHAN_SLOT(pdev->resource[i].start),
  497. edma_cc[ctlr]->edma_unused);
  498. }
  499. }
  500. return 0;
  501. }
  502. /*-----------------------------------------------------------------------*/
  503. static bool unused_chan_list_done;
  504. /* Resource alloc/free: dma channels, parameter RAM slots */
  505. /**
  506. * edma_alloc_channel - allocate DMA channel and paired parameter RAM
  507. * @channel: specific channel to allocate; negative for "any unmapped channel"
  508. * @callback: optional; to be issued on DMA completion or errors
  509. * @data: passed to callback
  510. * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
  511. * Controller (TC) executes requests using this channel. Use
  512. * EVENTQ_DEFAULT unless you really need a high priority queue.
  513. *
  514. * This allocates a DMA channel and its associated parameter RAM slot.
  515. * The parameter RAM is initialized to hold a dummy transfer.
  516. *
  517. * Normal use is to pass a specific channel number as @channel, to make
  518. * use of hardware events mapped to that channel. When the channel will
  519. * be used only for software triggering or event chaining, channels not
  520. * mapped to hardware events (or mapped to unused events) are preferable.
  521. *
  522. * DMA transfers start from a channel using edma_start(), or by
  523. * chaining. When the transfer described in that channel's parameter RAM
  524. * slot completes, that slot's data may be reloaded through a link.
  525. *
  526. * DMA errors are only reported to the @callback associated with the
  527. * channel driving that transfer, but transfer completion callbacks can
  528. * be sent to another channel under control of the TCC field in
  529. * the option word of the transfer's parameter RAM set. Drivers must not
  530. * use DMA transfer completion callbacks for channels they did not allocate.
  531. * (The same applies to TCC codes used in transfer chaining.)
  532. *
  533. * Returns the number of the channel, else negative errno.
  534. */
  535. int edma_alloc_channel(int channel,
  536. void (*callback)(unsigned channel, u16 ch_status, void *data),
  537. void *data,
  538. enum dma_event_q eventq_no)
  539. {
  540. unsigned i, done = 0, ctlr = 0;
  541. int ret = 0;
  542. if (!unused_chan_list_done) {
  543. /*
  544. * Scan all the platform devices to find out the EDMA channels
  545. * used and clear them in the unused list, making the rest
  546. * available for ARM usage.
  547. */
  548. ret = bus_for_each_dev(&platform_bus_type, NULL, NULL,
  549. prepare_unused_channel_list);
  550. if (ret < 0)
  551. return ret;
  552. unused_chan_list_done = true;
  553. }
  554. if (channel >= 0) {
  555. ctlr = EDMA_CTLR(channel);
  556. channel = EDMA_CHAN_SLOT(channel);
  557. }
  558. if (channel < 0) {
  559. for (i = 0; i < arch_num_cc; i++) {
  560. channel = 0;
  561. for (;;) {
  562. channel = find_next_bit(edma_cc[i]->edma_unused,
  563. edma_cc[i]->num_channels,
  564. channel);
  565. if (channel == edma_cc[i]->num_channels)
  566. break;
  567. if (!test_and_set_bit(channel,
  568. edma_cc[i]->edma_inuse)) {
  569. done = 1;
  570. ctlr = i;
  571. break;
  572. }
  573. channel++;
  574. }
  575. if (done)
  576. break;
  577. }
  578. if (!done)
  579. return -ENOMEM;
  580. } else if (channel >= edma_cc[ctlr]->num_channels) {
  581. return -EINVAL;
  582. } else if (test_and_set_bit(channel, edma_cc[ctlr]->edma_inuse)) {
  583. return -EBUSY;
  584. }
  585. /* ensure access through shadow region 0 */
  586. edma_or_array2(ctlr, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
  587. /* ensure no events are pending */
  588. edma_stop(EDMA_CTLR_CHAN(ctlr, channel));
  589. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  590. &dummy_paramset, PARM_SIZE);
  591. if (callback)
  592. setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr, channel),
  593. callback, data);
  594. map_dmach_queue(ctlr, channel, eventq_no);
  595. return EDMA_CTLR_CHAN(ctlr, channel);
  596. }
  597. EXPORT_SYMBOL(edma_alloc_channel);
  598. /**
  599. * edma_free_channel - deallocate DMA channel
  600. * @channel: dma channel returned from edma_alloc_channel()
  601. *
  602. * This deallocates the DMA channel and associated parameter RAM slot
  603. * allocated by edma_alloc_channel().
  604. *
  605. * Callers are responsible for ensuring the channel is inactive, and
  606. * will not be reactivated by linking, chaining, or software calls to
  607. * edma_start().
  608. */
  609. void edma_free_channel(unsigned channel)
  610. {
  611. unsigned ctlr;
  612. ctlr = EDMA_CTLR(channel);
  613. channel = EDMA_CHAN_SLOT(channel);
  614. if (channel >= edma_cc[ctlr]->num_channels)
  615. return;
  616. setup_dma_interrupt(channel, NULL, NULL);
  617. /* REVISIT should probably take out of shadow region 0 */
  618. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(channel),
  619. &dummy_paramset, PARM_SIZE);
  620. clear_bit(channel, edma_cc[ctlr]->edma_inuse);
  621. }
  622. EXPORT_SYMBOL(edma_free_channel);
  623. /**
  624. * edma_alloc_slot - allocate DMA parameter RAM
  625. * @slot: specific slot to allocate; negative for "any unused slot"
  626. *
  627. * This allocates a parameter RAM slot, initializing it to hold a
  628. * dummy transfer. Slots allocated using this routine have not been
  629. * mapped to a hardware DMA channel, and will normally be used by
  630. * linking to them from a slot associated with a DMA channel.
  631. *
  632. * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
  633. * slots may be allocated on behalf of DSP firmware.
  634. *
  635. * Returns the number of the slot, else negative errno.
  636. */
  637. int edma_alloc_slot(unsigned ctlr, int slot)
  638. {
  639. if (!edma_cc[ctlr])
  640. return -EINVAL;
  641. if (slot >= 0)
  642. slot = EDMA_CHAN_SLOT(slot);
  643. if (slot < 0) {
  644. slot = edma_cc[ctlr]->num_channels;
  645. for (;;) {
  646. slot = find_next_zero_bit(edma_cc[ctlr]->edma_inuse,
  647. edma_cc[ctlr]->num_slots, slot);
  648. if (slot == edma_cc[ctlr]->num_slots)
  649. return -ENOMEM;
  650. if (!test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse))
  651. break;
  652. }
  653. } else if (slot < edma_cc[ctlr]->num_channels ||
  654. slot >= edma_cc[ctlr]->num_slots) {
  655. return -EINVAL;
  656. } else if (test_and_set_bit(slot, edma_cc[ctlr]->edma_inuse)) {
  657. return -EBUSY;
  658. }
  659. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  660. &dummy_paramset, PARM_SIZE);
  661. return EDMA_CTLR_CHAN(ctlr, slot);
  662. }
  663. EXPORT_SYMBOL(edma_alloc_slot);
  664. /**
  665. * edma_free_slot - deallocate DMA parameter RAM
  666. * @slot: parameter RAM slot returned from edma_alloc_slot()
  667. *
  668. * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
  669. * Callers are responsible for ensuring the slot is inactive, and will
  670. * not be activated.
  671. */
  672. void edma_free_slot(unsigned slot)
  673. {
  674. unsigned ctlr;
  675. ctlr = EDMA_CTLR(slot);
  676. slot = EDMA_CHAN_SLOT(slot);
  677. if (slot < edma_cc[ctlr]->num_channels ||
  678. slot >= edma_cc[ctlr]->num_slots)
  679. return;
  680. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  681. &dummy_paramset, PARM_SIZE);
  682. clear_bit(slot, edma_cc[ctlr]->edma_inuse);
  683. }
  684. EXPORT_SYMBOL(edma_free_slot);
  685. /**
  686. * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
  687. * The API will return the starting point of a set of
  688. * contiguous parameter RAM slots that have been requested
  689. *
  690. * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
  691. * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  692. * @count: number of contiguous Paramter RAM slots
  693. * @slot - the start value of Parameter RAM slot that should be passed if id
  694. * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
  695. *
  696. * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
  697. * contiguous Parameter RAM slots from parameter RAM 64 in the case of
  698. * DaVinci SOCs and 32 in the case of DA8xx SOCs.
  699. *
  700. * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
  701. * set of contiguous parameter RAM slots from the "slot" that is passed as an
  702. * argument to the API.
  703. *
  704. * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
  705. * starts looking for a set of contiguous parameter RAMs from the "slot"
  706. * that is passed as an argument to the API. On failure the API will try to
  707. * find a set of contiguous Parameter RAM slots from the remaining Parameter
  708. * RAM slots
  709. */
  710. int edma_alloc_cont_slots(unsigned ctlr, unsigned int id, int slot, int count)
  711. {
  712. /*
  713. * The start slot requested should be greater than
  714. * the number of channels and lesser than the total number
  715. * of slots
  716. */
  717. if ((id != EDMA_CONT_PARAMS_ANY) &&
  718. (slot < edma_cc[ctlr]->num_channels ||
  719. slot >= edma_cc[ctlr]->num_slots))
  720. return -EINVAL;
  721. /*
  722. * The number of parameter RAM slots requested cannot be less than 1
  723. * and cannot be more than the number of slots minus the number of
  724. * channels
  725. */
  726. if (count < 1 || count >
  727. (edma_cc[ctlr]->num_slots - edma_cc[ctlr]->num_channels))
  728. return -EINVAL;
  729. switch (id) {
  730. case EDMA_CONT_PARAMS_ANY:
  731. return reserve_contiguous_slots(ctlr, id, count,
  732. edma_cc[ctlr]->num_channels);
  733. case EDMA_CONT_PARAMS_FIXED_EXACT:
  734. case EDMA_CONT_PARAMS_FIXED_NOT_EXACT:
  735. return reserve_contiguous_slots(ctlr, id, count, slot);
  736. default:
  737. return -EINVAL;
  738. }
  739. }
  740. EXPORT_SYMBOL(edma_alloc_cont_slots);
  741. /**
  742. * edma_free_cont_slots - deallocate DMA parameter RAM slots
  743. * @slot: first parameter RAM of a set of parameter RAM slots to be freed
  744. * @count: the number of contiguous parameter RAM slots to be freed
  745. *
  746. * This deallocates the parameter RAM slots allocated by
  747. * edma_alloc_cont_slots.
  748. * Callers/applications need to keep track of sets of contiguous
  749. * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
  750. * API.
  751. * Callers are responsible for ensuring the slots are inactive, and will
  752. * not be activated.
  753. */
  754. int edma_free_cont_slots(unsigned slot, int count)
  755. {
  756. unsigned ctlr, slot_to_free;
  757. int i;
  758. ctlr = EDMA_CTLR(slot);
  759. slot = EDMA_CHAN_SLOT(slot);
  760. if (slot < edma_cc[ctlr]->num_channels ||
  761. slot >= edma_cc[ctlr]->num_slots ||
  762. count < 1)
  763. return -EINVAL;
  764. for (i = slot; i < slot + count; ++i) {
  765. ctlr = EDMA_CTLR(i);
  766. slot_to_free = EDMA_CHAN_SLOT(i);
  767. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot_to_free),
  768. &dummy_paramset, PARM_SIZE);
  769. clear_bit(slot_to_free, edma_cc[ctlr]->edma_inuse);
  770. }
  771. return 0;
  772. }
  773. EXPORT_SYMBOL(edma_free_cont_slots);
  774. /*-----------------------------------------------------------------------*/
  775. /* Parameter RAM operations (i) -- read/write partial slots */
  776. /**
  777. * edma_set_src - set initial DMA source address in parameter RAM slot
  778. * @slot: parameter RAM slot being configured
  779. * @src_port: physical address of source (memory, controller FIFO, etc)
  780. * @addressMode: INCR, except in very rare cases
  781. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  782. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  783. *
  784. * Note that the source address is modified during the DMA transfer
  785. * according to edma_set_src_index().
  786. */
  787. void edma_set_src(unsigned slot, dma_addr_t src_port,
  788. enum address_mode mode, enum fifo_width width)
  789. {
  790. unsigned ctlr;
  791. ctlr = EDMA_CTLR(slot);
  792. slot = EDMA_CHAN_SLOT(slot);
  793. if (slot < edma_cc[ctlr]->num_slots) {
  794. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  795. if (mode) {
  796. /* set SAM and program FWID */
  797. i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8));
  798. } else {
  799. /* clear SAM */
  800. i &= ~SAM;
  801. }
  802. edma_parm_write(ctlr, PARM_OPT, slot, i);
  803. /* set the source port address
  804. in source register of param structure */
  805. edma_parm_write(ctlr, PARM_SRC, slot, src_port);
  806. }
  807. }
  808. EXPORT_SYMBOL(edma_set_src);
  809. /**
  810. * edma_set_dest - set initial DMA destination address in parameter RAM slot
  811. * @slot: parameter RAM slot being configured
  812. * @dest_port: physical address of destination (memory, controller FIFO, etc)
  813. * @addressMode: INCR, except in very rare cases
  814. * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
  815. * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
  816. *
  817. * Note that the destination address is modified during the DMA transfer
  818. * according to edma_set_dest_index().
  819. */
  820. void edma_set_dest(unsigned slot, dma_addr_t dest_port,
  821. enum address_mode mode, enum fifo_width width)
  822. {
  823. unsigned ctlr;
  824. ctlr = EDMA_CTLR(slot);
  825. slot = EDMA_CHAN_SLOT(slot);
  826. if (slot < edma_cc[ctlr]->num_slots) {
  827. unsigned int i = edma_parm_read(ctlr, PARM_OPT, slot);
  828. if (mode) {
  829. /* set DAM and program FWID */
  830. i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8));
  831. } else {
  832. /* clear DAM */
  833. i &= ~DAM;
  834. }
  835. edma_parm_write(ctlr, PARM_OPT, slot, i);
  836. /* set the destination port address
  837. in dest register of param structure */
  838. edma_parm_write(ctlr, PARM_DST, slot, dest_port);
  839. }
  840. }
  841. EXPORT_SYMBOL(edma_set_dest);
  842. /**
  843. * edma_get_position - returns the current transfer points
  844. * @slot: parameter RAM slot being examined
  845. * @src: pointer to source port position
  846. * @dst: pointer to destination port position
  847. *
  848. * Returns current source and destination addresses for a particular
  849. * parameter RAM slot. Its channel should not be active when this is called.
  850. */
  851. void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst)
  852. {
  853. struct edmacc_param temp;
  854. unsigned ctlr;
  855. ctlr = EDMA_CTLR(slot);
  856. slot = EDMA_CHAN_SLOT(slot);
  857. edma_read_slot(EDMA_CTLR_CHAN(ctlr, slot), &temp);
  858. if (src != NULL)
  859. *src = temp.src;
  860. if (dst != NULL)
  861. *dst = temp.dst;
  862. }
  863. EXPORT_SYMBOL(edma_get_position);
  864. /**
  865. * edma_set_src_index - configure DMA source address indexing
  866. * @slot: parameter RAM slot being configured
  867. * @src_bidx: byte offset between source arrays in a frame
  868. * @src_cidx: byte offset between source frames in a block
  869. *
  870. * Offsets are specified to support either contiguous or discontiguous
  871. * memory transfers, or repeated access to a hardware register, as needed.
  872. * When accessing hardware registers, both offsets are normally zero.
  873. */
  874. void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx)
  875. {
  876. unsigned ctlr;
  877. ctlr = EDMA_CTLR(slot);
  878. slot = EDMA_CHAN_SLOT(slot);
  879. if (slot < edma_cc[ctlr]->num_slots) {
  880. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  881. 0xffff0000, src_bidx);
  882. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  883. 0xffff0000, src_cidx);
  884. }
  885. }
  886. EXPORT_SYMBOL(edma_set_src_index);
  887. /**
  888. * edma_set_dest_index - configure DMA destination address indexing
  889. * @slot: parameter RAM slot being configured
  890. * @dest_bidx: byte offset between destination arrays in a frame
  891. * @dest_cidx: byte offset between destination frames in a block
  892. *
  893. * Offsets are specified to support either contiguous or discontiguous
  894. * memory transfers, or repeated access to a hardware register, as needed.
  895. * When accessing hardware registers, both offsets are normally zero.
  896. */
  897. void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx)
  898. {
  899. unsigned ctlr;
  900. ctlr = EDMA_CTLR(slot);
  901. slot = EDMA_CHAN_SLOT(slot);
  902. if (slot < edma_cc[ctlr]->num_slots) {
  903. edma_parm_modify(ctlr, PARM_SRC_DST_BIDX, slot,
  904. 0x0000ffff, dest_bidx << 16);
  905. edma_parm_modify(ctlr, PARM_SRC_DST_CIDX, slot,
  906. 0x0000ffff, dest_cidx << 16);
  907. }
  908. }
  909. EXPORT_SYMBOL(edma_set_dest_index);
  910. /**
  911. * edma_set_transfer_params - configure DMA transfer parameters
  912. * @slot: parameter RAM slot being configured
  913. * @acnt: how many bytes per array (at least one)
  914. * @bcnt: how many arrays per frame (at least one)
  915. * @ccnt: how many frames per block (at least one)
  916. * @bcnt_rld: used only for A-Synchronized transfers; this specifies
  917. * the value to reload into bcnt when it decrements to zero
  918. * @sync_mode: ASYNC or ABSYNC
  919. *
  920. * See the EDMA3 documentation to understand how to configure and link
  921. * transfers using the fields in PaRAM slots. If you are not doing it
  922. * all at once with edma_write_slot(), you will use this routine
  923. * plus two calls each for source and destination, setting the initial
  924. * address and saying how to index that address.
  925. *
  926. * An example of an A-Synchronized transfer is a serial link using a
  927. * single word shift register. In that case, @acnt would be equal to
  928. * that word size; the serial controller issues a DMA synchronization
  929. * event to transfer each word, and memory access by the DMA transfer
  930. * controller will be word-at-a-time.
  931. *
  932. * An example of an AB-Synchronized transfer is a device using a FIFO.
  933. * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
  934. * The controller with the FIFO issues DMA synchronization events when
  935. * the FIFO threshold is reached, and the DMA transfer controller will
  936. * transfer one frame to (or from) the FIFO. It will probably use
  937. * efficient burst modes to access memory.
  938. */
  939. void edma_set_transfer_params(unsigned slot,
  940. u16 acnt, u16 bcnt, u16 ccnt,
  941. u16 bcnt_rld, enum sync_dimension sync_mode)
  942. {
  943. unsigned ctlr;
  944. ctlr = EDMA_CTLR(slot);
  945. slot = EDMA_CHAN_SLOT(slot);
  946. if (slot < edma_cc[ctlr]->num_slots) {
  947. edma_parm_modify(ctlr, PARM_LINK_BCNTRLD, slot,
  948. 0x0000ffff, bcnt_rld << 16);
  949. if (sync_mode == ASYNC)
  950. edma_parm_and(ctlr, PARM_OPT, slot, ~SYNCDIM);
  951. else
  952. edma_parm_or(ctlr, PARM_OPT, slot, SYNCDIM);
  953. /* Set the acount, bcount, ccount registers */
  954. edma_parm_write(ctlr, PARM_A_B_CNT, slot, (bcnt << 16) | acnt);
  955. edma_parm_write(ctlr, PARM_CCNT, slot, ccnt);
  956. }
  957. }
  958. EXPORT_SYMBOL(edma_set_transfer_params);
  959. /**
  960. * edma_link - link one parameter RAM slot to another
  961. * @from: parameter RAM slot originating the link
  962. * @to: parameter RAM slot which is the link target
  963. *
  964. * The originating slot should not be part of any active DMA transfer.
  965. */
  966. void edma_link(unsigned from, unsigned to)
  967. {
  968. unsigned ctlr_from, ctlr_to;
  969. ctlr_from = EDMA_CTLR(from);
  970. from = EDMA_CHAN_SLOT(from);
  971. ctlr_to = EDMA_CTLR(to);
  972. to = EDMA_CHAN_SLOT(to);
  973. if (from >= edma_cc[ctlr_from]->num_slots)
  974. return;
  975. if (to >= edma_cc[ctlr_to]->num_slots)
  976. return;
  977. edma_parm_modify(ctlr_from, PARM_LINK_BCNTRLD, from, 0xffff0000,
  978. PARM_OFFSET(to));
  979. }
  980. EXPORT_SYMBOL(edma_link);
  981. /**
  982. * edma_unlink - cut link from one parameter RAM slot
  983. * @from: parameter RAM slot originating the link
  984. *
  985. * The originating slot should not be part of any active DMA transfer.
  986. * Its link is set to 0xffff.
  987. */
  988. void edma_unlink(unsigned from)
  989. {
  990. unsigned ctlr;
  991. ctlr = EDMA_CTLR(from);
  992. from = EDMA_CHAN_SLOT(from);
  993. if (from >= edma_cc[ctlr]->num_slots)
  994. return;
  995. edma_parm_or(ctlr, PARM_LINK_BCNTRLD, from, 0xffff);
  996. }
  997. EXPORT_SYMBOL(edma_unlink);
  998. /*-----------------------------------------------------------------------*/
  999. /* Parameter RAM operations (ii) -- read/write whole parameter sets */
  1000. /**
  1001. * edma_write_slot - write parameter RAM data for slot
  1002. * @slot: number of parameter RAM slot being modified
  1003. * @param: data to be written into parameter RAM slot
  1004. *
  1005. * Use this to assign all parameters of a transfer at once. This
  1006. * allows more efficient setup of transfers than issuing multiple
  1007. * calls to set up those parameters in small pieces, and provides
  1008. * complete control over all transfer options.
  1009. */
  1010. void edma_write_slot(unsigned slot, const struct edmacc_param *param)
  1011. {
  1012. unsigned ctlr;
  1013. ctlr = EDMA_CTLR(slot);
  1014. slot = EDMA_CHAN_SLOT(slot);
  1015. if (slot >= edma_cc[ctlr]->num_slots)
  1016. return;
  1017. memcpy_toio(edmacc_regs_base[ctlr] + PARM_OFFSET(slot), param,
  1018. PARM_SIZE);
  1019. }
  1020. EXPORT_SYMBOL(edma_write_slot);
  1021. /**
  1022. * edma_read_slot - read parameter RAM data from slot
  1023. * @slot: number of parameter RAM slot being copied
  1024. * @param: where to store copy of parameter RAM data
  1025. *
  1026. * Use this to read data from a parameter RAM slot, perhaps to
  1027. * save them as a template for later reuse.
  1028. */
  1029. void edma_read_slot(unsigned slot, struct edmacc_param *param)
  1030. {
  1031. unsigned ctlr;
  1032. ctlr = EDMA_CTLR(slot);
  1033. slot = EDMA_CHAN_SLOT(slot);
  1034. if (slot >= edma_cc[ctlr]->num_slots)
  1035. return;
  1036. memcpy_fromio(param, edmacc_regs_base[ctlr] + PARM_OFFSET(slot),
  1037. PARM_SIZE);
  1038. }
  1039. EXPORT_SYMBOL(edma_read_slot);
  1040. /*-----------------------------------------------------------------------*/
  1041. /* Various EDMA channel control operations */
  1042. /**
  1043. * edma_pause - pause dma on a channel
  1044. * @channel: on which edma_start() has been called
  1045. *
  1046. * This temporarily disables EDMA hardware events on the specified channel,
  1047. * preventing them from triggering new transfers on its behalf
  1048. */
  1049. void edma_pause(unsigned channel)
  1050. {
  1051. unsigned ctlr;
  1052. ctlr = EDMA_CTLR(channel);
  1053. channel = EDMA_CHAN_SLOT(channel);
  1054. if (channel < edma_cc[ctlr]->num_channels) {
  1055. unsigned int mask = BIT(channel & 0x1f);
  1056. edma_shadow0_write_array(ctlr, SH_EECR, channel >> 5, mask);
  1057. }
  1058. }
  1059. EXPORT_SYMBOL(edma_pause);
  1060. /**
  1061. * edma_resume - resumes dma on a paused channel
  1062. * @channel: on which edma_pause() has been called
  1063. *
  1064. * This re-enables EDMA hardware events on the specified channel.
  1065. */
  1066. void edma_resume(unsigned channel)
  1067. {
  1068. unsigned ctlr;
  1069. ctlr = EDMA_CTLR(channel);
  1070. channel = EDMA_CHAN_SLOT(channel);
  1071. if (channel < edma_cc[ctlr]->num_channels) {
  1072. unsigned int mask = BIT(channel & 0x1f);
  1073. edma_shadow0_write_array(ctlr, SH_EESR, channel >> 5, mask);
  1074. }
  1075. }
  1076. EXPORT_SYMBOL(edma_resume);
  1077. /**
  1078. * edma_start - start dma on a channel
  1079. * @channel: channel being activated
  1080. *
  1081. * Channels with event associations will be triggered by their hardware
  1082. * events, and channels without such associations will be triggered by
  1083. * software. (At this writing there is no interface for using software
  1084. * triggers except with channels that don't support hardware triggers.)
  1085. *
  1086. * Returns zero on success, else negative errno.
  1087. */
  1088. int edma_start(unsigned channel)
  1089. {
  1090. unsigned ctlr;
  1091. ctlr = EDMA_CTLR(channel);
  1092. channel = EDMA_CHAN_SLOT(channel);
  1093. if (channel < edma_cc[ctlr]->num_channels) {
  1094. int j = channel >> 5;
  1095. unsigned int mask = BIT(channel & 0x1f);
  1096. /* EDMA channels without event association */
  1097. if (test_bit(channel, edma_cc[ctlr]->edma_unused)) {
  1098. pr_debug("EDMA: ESR%d %08x\n", j,
  1099. edma_shadow0_read_array(ctlr, SH_ESR, j));
  1100. edma_shadow0_write_array(ctlr, SH_ESR, j, mask);
  1101. return 0;
  1102. }
  1103. /* EDMA channel with event association */
  1104. pr_debug("EDMA: ER%d %08x\n", j,
  1105. edma_shadow0_read_array(ctlr, SH_ER, j));
  1106. /* Clear any pending event or error */
  1107. edma_write_array(ctlr, EDMA_ECR, j, mask);
  1108. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1109. /* Clear any SER */
  1110. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1111. edma_shadow0_write_array(ctlr, SH_EESR, j, mask);
  1112. pr_debug("EDMA: EER%d %08x\n", j,
  1113. edma_shadow0_read_array(ctlr, SH_EER, j));
  1114. return 0;
  1115. }
  1116. return -EINVAL;
  1117. }
  1118. EXPORT_SYMBOL(edma_start);
  1119. /**
  1120. * edma_stop - stops dma on the channel passed
  1121. * @channel: channel being deactivated
  1122. *
  1123. * When @lch is a channel, any active transfer is paused and
  1124. * all pending hardware events are cleared. The current transfer
  1125. * may not be resumed, and the channel's Parameter RAM should be
  1126. * reinitialized before being reused.
  1127. */
  1128. void edma_stop(unsigned channel)
  1129. {
  1130. unsigned ctlr;
  1131. ctlr = EDMA_CTLR(channel);
  1132. channel = EDMA_CHAN_SLOT(channel);
  1133. if (channel < edma_cc[ctlr]->num_channels) {
  1134. int j = channel >> 5;
  1135. unsigned int mask = BIT(channel & 0x1f);
  1136. edma_shadow0_write_array(ctlr, SH_EECR, j, mask);
  1137. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1138. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1139. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1140. pr_debug("EDMA: EER%d %08x\n", j,
  1141. edma_shadow0_read_array(ctlr, SH_EER, j));
  1142. /* REVISIT: consider guarding against inappropriate event
  1143. * chaining by overwriting with dummy_paramset.
  1144. */
  1145. }
  1146. }
  1147. EXPORT_SYMBOL(edma_stop);
  1148. /******************************************************************************
  1149. *
  1150. * It cleans ParamEntry qand bring back EDMA to initial state if media has
  1151. * been removed before EDMA has finished.It is usedful for removable media.
  1152. * Arguments:
  1153. * ch_no - channel no
  1154. *
  1155. * Return: zero on success, or corresponding error no on failure
  1156. *
  1157. * FIXME this should not be needed ... edma_stop() should suffice.
  1158. *
  1159. *****************************************************************************/
  1160. void edma_clean_channel(unsigned channel)
  1161. {
  1162. unsigned ctlr;
  1163. ctlr = EDMA_CTLR(channel);
  1164. channel = EDMA_CHAN_SLOT(channel);
  1165. if (channel < edma_cc[ctlr]->num_channels) {
  1166. int j = (channel >> 5);
  1167. unsigned int mask = BIT(channel & 0x1f);
  1168. pr_debug("EDMA: EMR%d %08x\n", j,
  1169. edma_read_array(ctlr, EDMA_EMR, j));
  1170. edma_shadow0_write_array(ctlr, SH_ECR, j, mask);
  1171. /* Clear the corresponding EMR bits */
  1172. edma_write_array(ctlr, EDMA_EMCR, j, mask);
  1173. /* Clear any SER */
  1174. edma_shadow0_write_array(ctlr, SH_SECR, j, mask);
  1175. edma_write(ctlr, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
  1176. }
  1177. }
  1178. EXPORT_SYMBOL(edma_clean_channel);
  1179. /*
  1180. * edma_clear_event - clear an outstanding event on the DMA channel
  1181. * Arguments:
  1182. * channel - channel number
  1183. */
  1184. void edma_clear_event(unsigned channel)
  1185. {
  1186. unsigned ctlr;
  1187. ctlr = EDMA_CTLR(channel);
  1188. channel = EDMA_CHAN_SLOT(channel);
  1189. if (channel >= edma_cc[ctlr]->num_channels)
  1190. return;
  1191. if (channel < 32)
  1192. edma_write(ctlr, EDMA_ECR, BIT(channel));
  1193. else
  1194. edma_write(ctlr, EDMA_ECRH, BIT(channel - 32));
  1195. }
  1196. EXPORT_SYMBOL(edma_clear_event);
  1197. /*-----------------------------------------------------------------------*/
  1198. static int __init edma_probe(struct platform_device *pdev)
  1199. {
  1200. struct edma_soc_info **info = pdev->dev.platform_data;
  1201. const s8 (*queue_priority_mapping)[2];
  1202. const s8 (*queue_tc_mapping)[2];
  1203. int i, j, off, ln, found = 0;
  1204. int status = -1;
  1205. const s16 (*rsv_chans)[2];
  1206. const s16 (*rsv_slots)[2];
  1207. int irq[EDMA_MAX_CC] = {0, 0};
  1208. int err_irq[EDMA_MAX_CC] = {0, 0};
  1209. struct resource *r[EDMA_MAX_CC] = {NULL};
  1210. resource_size_t len[EDMA_MAX_CC];
  1211. char res_name[10];
  1212. char irq_name[10];
  1213. if (!info)
  1214. return -ENODEV;
  1215. for (j = 0; j < EDMA_MAX_CC; j++) {
  1216. sprintf(res_name, "edma_cc%d", j);
  1217. r[j] = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  1218. res_name);
  1219. if (!r[j] || !info[j]) {
  1220. if (found)
  1221. break;
  1222. else
  1223. return -ENODEV;
  1224. } else {
  1225. found = 1;
  1226. }
  1227. len[j] = resource_size(r[j]);
  1228. r[j] = request_mem_region(r[j]->start, len[j],
  1229. dev_name(&pdev->dev));
  1230. if (!r[j]) {
  1231. status = -EBUSY;
  1232. goto fail1;
  1233. }
  1234. edmacc_regs_base[j] = ioremap(r[j]->start, len[j]);
  1235. if (!edmacc_regs_base[j]) {
  1236. status = -EBUSY;
  1237. goto fail1;
  1238. }
  1239. edma_cc[j] = kzalloc(sizeof(struct edma), GFP_KERNEL);
  1240. if (!edma_cc[j]) {
  1241. status = -ENOMEM;
  1242. goto fail1;
  1243. }
  1244. edma_cc[j]->num_channels = min_t(unsigned, info[j]->n_channel,
  1245. EDMA_MAX_DMACH);
  1246. edma_cc[j]->num_slots = min_t(unsigned, info[j]->n_slot,
  1247. EDMA_MAX_PARAMENTRY);
  1248. edma_cc[j]->num_cc = min_t(unsigned, info[j]->n_cc,
  1249. EDMA_MAX_CC);
  1250. edma_cc[j]->default_queue = info[j]->default_queue;
  1251. dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n",
  1252. edmacc_regs_base[j]);
  1253. for (i = 0; i < edma_cc[j]->num_slots; i++)
  1254. memcpy_toio(edmacc_regs_base[j] + PARM_OFFSET(i),
  1255. &dummy_paramset, PARM_SIZE);
  1256. /* Mark all channels as unused */
  1257. memset(edma_cc[j]->edma_unused, 0xff,
  1258. sizeof(edma_cc[j]->edma_unused));
  1259. if (info[j]->rsv) {
  1260. /* Clear the reserved channels in unused list */
  1261. rsv_chans = info[j]->rsv->rsv_chans;
  1262. if (rsv_chans) {
  1263. for (i = 0; rsv_chans[i][0] != -1; i++) {
  1264. off = rsv_chans[i][0];
  1265. ln = rsv_chans[i][1];
  1266. clear_bits(off, ln,
  1267. edma_cc[j]->edma_unused);
  1268. }
  1269. }
  1270. /* Set the reserved slots in inuse list */
  1271. rsv_slots = info[j]->rsv->rsv_slots;
  1272. if (rsv_slots) {
  1273. for (i = 0; rsv_slots[i][0] != -1; i++) {
  1274. off = rsv_slots[i][0];
  1275. ln = rsv_slots[i][1];
  1276. set_bits(off, ln,
  1277. edma_cc[j]->edma_inuse);
  1278. }
  1279. }
  1280. }
  1281. sprintf(irq_name, "edma%d", j);
  1282. irq[j] = platform_get_irq_byname(pdev, irq_name);
  1283. edma_cc[j]->irq_res_start = irq[j];
  1284. status = request_irq(irq[j], dma_irq_handler, 0, "edma",
  1285. &pdev->dev);
  1286. if (status < 0) {
  1287. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1288. irq[j], status);
  1289. goto fail;
  1290. }
  1291. sprintf(irq_name, "edma%d_err", j);
  1292. err_irq[j] = platform_get_irq_byname(pdev, irq_name);
  1293. edma_cc[j]->irq_res_end = err_irq[j];
  1294. status = request_irq(err_irq[j], dma_ccerr_handler, 0,
  1295. "edma_error", &pdev->dev);
  1296. if (status < 0) {
  1297. dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n",
  1298. err_irq[j], status);
  1299. goto fail;
  1300. }
  1301. for (i = 0; i < edma_cc[j]->num_channels; i++)
  1302. map_dmach_queue(j, i, info[j]->default_queue);
  1303. queue_tc_mapping = info[j]->queue_tc_mapping;
  1304. queue_priority_mapping = info[j]->queue_priority_mapping;
  1305. /* Event queue to TC mapping */
  1306. for (i = 0; queue_tc_mapping[i][0] != -1; i++)
  1307. map_queue_tc(j, queue_tc_mapping[i][0],
  1308. queue_tc_mapping[i][1]);
  1309. /* Event queue priority mapping */
  1310. for (i = 0; queue_priority_mapping[i][0] != -1; i++)
  1311. assign_priority_to_queue(j,
  1312. queue_priority_mapping[i][0],
  1313. queue_priority_mapping[i][1]);
  1314. /* Map the channel to param entry if channel mapping logic
  1315. * exist
  1316. */
  1317. if (edma_read(j, EDMA_CCCFG) & CHMAP_EXIST)
  1318. map_dmach_param(j);
  1319. for (i = 0; i < info[j]->n_region; i++) {
  1320. edma_write_array2(j, EDMA_DRAE, i, 0, 0x0);
  1321. edma_write_array2(j, EDMA_DRAE, i, 1, 0x0);
  1322. edma_write_array(j, EDMA_QRAE, i, 0x0);
  1323. }
  1324. arch_num_cc++;
  1325. }
  1326. return 0;
  1327. fail:
  1328. for (i = 0; i < EDMA_MAX_CC; i++) {
  1329. if (err_irq[i])
  1330. free_irq(err_irq[i], &pdev->dev);
  1331. if (irq[i])
  1332. free_irq(irq[i], &pdev->dev);
  1333. }
  1334. fail1:
  1335. for (i = 0; i < EDMA_MAX_CC; i++) {
  1336. if (r[i])
  1337. release_mem_region(r[i]->start, len[i]);
  1338. if (edmacc_regs_base[i])
  1339. iounmap(edmacc_regs_base[i]);
  1340. kfree(edma_cc[i]);
  1341. }
  1342. return status;
  1343. }
  1344. static struct platform_driver edma_driver = {
  1345. .driver.name = "edma",
  1346. };
  1347. static int __init edma_init(void)
  1348. {
  1349. return platform_driver_probe(&edma_driver, edma_probe);
  1350. }
  1351. arch_initcall(edma_init);