oom_kill.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/gfp.h>
  21. #include <linux/sched.h>
  22. #include <linux/swap.h>
  23. #include <linux/timex.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/cpuset.h>
  26. #include <linux/module.h>
  27. #include <linux/notifier.h>
  28. #include <linux/memcontrol.h>
  29. #include <linux/security.h>
  30. int sysctl_panic_on_oom;
  31. int sysctl_oom_kill_allocating_task;
  32. int sysctl_oom_dump_tasks;
  33. static DEFINE_SPINLOCK(zone_scan_lock);
  34. /* #define DEBUG */
  35. /*
  36. * Is all threads of the target process nodes overlap ours?
  37. */
  38. static int has_intersects_mems_allowed(struct task_struct *tsk)
  39. {
  40. struct task_struct *t;
  41. t = tsk;
  42. do {
  43. if (cpuset_mems_allowed_intersects(current, t))
  44. return 1;
  45. t = next_thread(t);
  46. } while (t != tsk);
  47. return 0;
  48. }
  49. static struct task_struct *find_lock_task_mm(struct task_struct *p)
  50. {
  51. struct task_struct *t = p;
  52. do {
  53. task_lock(t);
  54. if (likely(t->mm))
  55. return t;
  56. task_unlock(t);
  57. } while_each_thread(p, t);
  58. return NULL;
  59. }
  60. /**
  61. * badness - calculate a numeric value for how bad this task has been
  62. * @p: task struct of which task we should calculate
  63. * @uptime: current uptime in seconds
  64. *
  65. * The formula used is relatively simple and documented inline in the
  66. * function. The main rationale is that we want to select a good task
  67. * to kill when we run out of memory.
  68. *
  69. * Good in this context means that:
  70. * 1) we lose the minimum amount of work done
  71. * 2) we recover a large amount of memory
  72. * 3) we don't kill anything innocent of eating tons of memory
  73. * 4) we want to kill the minimum amount of processes (one)
  74. * 5) we try to kill the process the user expects us to kill, this
  75. * algorithm has been meticulously tuned to meet the principle
  76. * of least surprise ... (be careful when you change it)
  77. */
  78. unsigned long badness(struct task_struct *p, unsigned long uptime)
  79. {
  80. unsigned long points, cpu_time, run_time;
  81. struct task_struct *child;
  82. struct task_struct *c, *t;
  83. int oom_adj = p->signal->oom_adj;
  84. struct task_cputime task_time;
  85. unsigned long utime;
  86. unsigned long stime;
  87. if (oom_adj == OOM_DISABLE)
  88. return 0;
  89. p = find_lock_task_mm(p);
  90. if (!p)
  91. return 0;
  92. /*
  93. * The memory size of the process is the basis for the badness.
  94. */
  95. points = p->mm->total_vm;
  96. /*
  97. * After this unlock we can no longer dereference local variable `mm'
  98. */
  99. task_unlock(p);
  100. /*
  101. * swapoff can easily use up all memory, so kill those first.
  102. */
  103. if (p->flags & PF_OOM_ORIGIN)
  104. return ULONG_MAX;
  105. /*
  106. * Processes which fork a lot of child processes are likely
  107. * a good choice. We add half the vmsize of the children if they
  108. * have an own mm. This prevents forking servers to flood the
  109. * machine with an endless amount of children. In case a single
  110. * child is eating the vast majority of memory, adding only half
  111. * to the parents will make the child our kill candidate of choice.
  112. */
  113. t = p;
  114. do {
  115. list_for_each_entry(c, &t->children, sibling) {
  116. child = find_lock_task_mm(c);
  117. if (child) {
  118. if (child->mm != p->mm)
  119. points += child->mm->total_vm/2 + 1;
  120. task_unlock(child);
  121. }
  122. }
  123. } while_each_thread(p, t);
  124. /*
  125. * CPU time is in tens of seconds and run time is in thousands
  126. * of seconds. There is no particular reason for this other than
  127. * that it turned out to work very well in practice.
  128. */
  129. thread_group_cputime(p, &task_time);
  130. utime = cputime_to_jiffies(task_time.utime);
  131. stime = cputime_to_jiffies(task_time.stime);
  132. cpu_time = (utime + stime) >> (SHIFT_HZ + 3);
  133. if (uptime >= p->start_time.tv_sec)
  134. run_time = (uptime - p->start_time.tv_sec) >> 10;
  135. else
  136. run_time = 0;
  137. if (cpu_time)
  138. points /= int_sqrt(cpu_time);
  139. if (run_time)
  140. points /= int_sqrt(int_sqrt(run_time));
  141. /*
  142. * Niced processes are most likely less important, so double
  143. * their badness points.
  144. */
  145. if (task_nice(p) > 0)
  146. points *= 2;
  147. /*
  148. * Superuser processes are usually more important, so we make it
  149. * less likely that we kill those.
  150. */
  151. if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
  152. has_capability_noaudit(p, CAP_SYS_RESOURCE))
  153. points /= 4;
  154. /*
  155. * We don't want to kill a process with direct hardware access.
  156. * Not only could that mess up the hardware, but usually users
  157. * tend to only have this flag set on applications they think
  158. * of as important.
  159. */
  160. if (has_capability_noaudit(p, CAP_SYS_RAWIO))
  161. points /= 4;
  162. /*
  163. * If p's nodes don't overlap ours, it may still help to kill p
  164. * because p may have allocated or otherwise mapped memory on
  165. * this node before. However it will be less likely.
  166. */
  167. if (!has_intersects_mems_allowed(p))
  168. points /= 8;
  169. /*
  170. * Adjust the score by oom_adj.
  171. */
  172. if (oom_adj) {
  173. if (oom_adj > 0) {
  174. if (!points)
  175. points = 1;
  176. points <<= oom_adj;
  177. } else
  178. points >>= -(oom_adj);
  179. }
  180. #ifdef DEBUG
  181. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  182. p->pid, p->comm, points);
  183. #endif
  184. return points;
  185. }
  186. /*
  187. * Determine the type of allocation constraint.
  188. */
  189. #ifdef CONFIG_NUMA
  190. static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  191. gfp_t gfp_mask, nodemask_t *nodemask)
  192. {
  193. struct zone *zone;
  194. struct zoneref *z;
  195. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  196. /*
  197. * Reach here only when __GFP_NOFAIL is used. So, we should avoid
  198. * to kill current.We have to random task kill in this case.
  199. * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
  200. */
  201. if (gfp_mask & __GFP_THISNODE)
  202. return CONSTRAINT_NONE;
  203. /*
  204. * The nodemask here is a nodemask passed to alloc_pages(). Now,
  205. * cpuset doesn't use this nodemask for its hardwall/softwall/hierarchy
  206. * feature. mempolicy is an only user of nodemask here.
  207. * check mempolicy's nodemask contains all N_HIGH_MEMORY
  208. */
  209. if (nodemask && !nodes_subset(node_states[N_HIGH_MEMORY], *nodemask))
  210. return CONSTRAINT_MEMORY_POLICY;
  211. /* Check this allocation failure is caused by cpuset's wall function */
  212. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  213. high_zoneidx, nodemask)
  214. if (!cpuset_zone_allowed_softwall(zone, gfp_mask))
  215. return CONSTRAINT_CPUSET;
  216. return CONSTRAINT_NONE;
  217. }
  218. #else
  219. static enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  220. gfp_t gfp_mask, nodemask_t *nodemask)
  221. {
  222. return CONSTRAINT_NONE;
  223. }
  224. #endif
  225. /*
  226. * Simple selection loop. We chose the process with the highest
  227. * number of 'points'. We expect the caller will lock the tasklist.
  228. *
  229. * (not docbooked, we don't want this one cluttering up the manual)
  230. */
  231. static struct task_struct *select_bad_process(unsigned long *ppoints,
  232. struct mem_cgroup *mem)
  233. {
  234. struct task_struct *p;
  235. struct task_struct *chosen = NULL;
  236. struct timespec uptime;
  237. *ppoints = 0;
  238. do_posix_clock_monotonic_gettime(&uptime);
  239. for_each_process(p) {
  240. unsigned long points;
  241. /* skip the init task and kthreads */
  242. if (is_global_init(p) || (p->flags & PF_KTHREAD))
  243. continue;
  244. if (mem && !task_in_mem_cgroup(p, mem))
  245. continue;
  246. /*
  247. * This task already has access to memory reserves and is
  248. * being killed. Don't allow any other task access to the
  249. * memory reserve.
  250. *
  251. * Note: this may have a chance of deadlock if it gets
  252. * blocked waiting for another task which itself is waiting
  253. * for memory. Is there a better alternative?
  254. */
  255. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  256. return ERR_PTR(-1UL);
  257. /*
  258. * This is in the process of releasing memory so wait for it
  259. * to finish before killing some other task by mistake.
  260. *
  261. * However, if p is the current task, we allow the 'kill' to
  262. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  263. * which will allow it to gain access to memory reserves in
  264. * the process of exiting and releasing its resources.
  265. * Otherwise we could get an easy OOM deadlock.
  266. */
  267. if ((p->flags & PF_EXITING) && p->mm) {
  268. if (p != current)
  269. return ERR_PTR(-1UL);
  270. chosen = p;
  271. *ppoints = ULONG_MAX;
  272. }
  273. if (p->signal->oom_adj == OOM_DISABLE)
  274. continue;
  275. points = badness(p, uptime.tv_sec);
  276. if (points > *ppoints || !chosen) {
  277. chosen = p;
  278. *ppoints = points;
  279. }
  280. }
  281. return chosen;
  282. }
  283. /**
  284. * dump_tasks - dump current memory state of all system tasks
  285. * @mem: current's memory controller, if constrained
  286. *
  287. * Dumps the current memory state of all system tasks, excluding kernel threads.
  288. * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
  289. * score, and name.
  290. *
  291. * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
  292. * shown.
  293. *
  294. * Call with tasklist_lock read-locked.
  295. */
  296. static void dump_tasks(const struct mem_cgroup *mem)
  297. {
  298. struct task_struct *p;
  299. struct task_struct *task;
  300. printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
  301. "name\n");
  302. for_each_process(p) {
  303. if (p->flags & PF_KTHREAD)
  304. continue;
  305. if (mem && !task_in_mem_cgroup(p, mem))
  306. continue;
  307. task = find_lock_task_mm(p);
  308. if (!task) {
  309. /*
  310. * This is a kthread or all of p's threads have already
  311. * detached their mm's. There's no need to report
  312. * them; they can't be oom killed anyway.
  313. */
  314. continue;
  315. }
  316. printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3u %3d %s\n",
  317. task->pid, __task_cred(task)->uid, task->tgid,
  318. task->mm->total_vm, get_mm_rss(task->mm),
  319. task_cpu(task), task->signal->oom_adj, task->comm);
  320. task_unlock(task);
  321. }
  322. }
  323. static void dump_header(struct task_struct *p, gfp_t gfp_mask, int order,
  324. struct mem_cgroup *mem)
  325. {
  326. pr_warning("%s invoked oom-killer: gfp_mask=0x%x, order=%d, "
  327. "oom_adj=%d\n",
  328. current->comm, gfp_mask, order, current->signal->oom_adj);
  329. task_lock(current);
  330. cpuset_print_task_mems_allowed(current);
  331. task_unlock(current);
  332. dump_stack();
  333. mem_cgroup_print_oom_info(mem, p);
  334. show_mem();
  335. if (sysctl_oom_dump_tasks)
  336. dump_tasks(mem);
  337. }
  338. #define K(x) ((x) << (PAGE_SHIFT-10))
  339. /*
  340. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  341. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  342. * set.
  343. */
  344. static void __oom_kill_task(struct task_struct *p, int verbose)
  345. {
  346. if (is_global_init(p)) {
  347. WARN_ON(1);
  348. printk(KERN_WARNING "tried to kill init!\n");
  349. return;
  350. }
  351. p = find_lock_task_mm(p);
  352. if (!p)
  353. return;
  354. if (verbose)
  355. printk(KERN_ERR "Killed process %d (%s) "
  356. "vsz:%lukB, anon-rss:%lukB, file-rss:%lukB\n",
  357. task_pid_nr(p), p->comm,
  358. K(p->mm->total_vm),
  359. K(get_mm_counter(p->mm, MM_ANONPAGES)),
  360. K(get_mm_counter(p->mm, MM_FILEPAGES)));
  361. task_unlock(p);
  362. /*
  363. * We give our sacrificial lamb high priority and access to
  364. * all the memory it needs. That way it should be able to
  365. * exit() and clear out its resources quickly...
  366. */
  367. p->rt.time_slice = HZ;
  368. set_tsk_thread_flag(p, TIF_MEMDIE);
  369. force_sig(SIGKILL, p);
  370. }
  371. static int oom_kill_task(struct task_struct *p)
  372. {
  373. /* WARNING: mm may not be dereferenced since we did not obtain its
  374. * value from get_task_mm(p). This is OK since all we need to do is
  375. * compare mm to q->mm below.
  376. *
  377. * Furthermore, even if mm contains a non-NULL value, p->mm may
  378. * change to NULL at any time since we do not hold task_lock(p).
  379. * However, this is of no concern to us.
  380. */
  381. if (!p->mm || p->signal->oom_adj == OOM_DISABLE)
  382. return 1;
  383. __oom_kill_task(p, 1);
  384. return 0;
  385. }
  386. static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
  387. unsigned long points, struct mem_cgroup *mem,
  388. const char *message)
  389. {
  390. struct task_struct *c;
  391. struct task_struct *t = p;
  392. if (printk_ratelimit())
  393. dump_header(p, gfp_mask, order, mem);
  394. /*
  395. * If the task is already exiting, don't alarm the sysadmin or kill
  396. * its children or threads, just set TIF_MEMDIE so it can die quickly
  397. */
  398. if (p->flags & PF_EXITING) {
  399. __oom_kill_task(p, 0);
  400. return 0;
  401. }
  402. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  403. message, task_pid_nr(p), p->comm, points);
  404. /* Try to kill a child first */
  405. do {
  406. list_for_each_entry(c, &t->children, sibling) {
  407. if (c->mm == p->mm)
  408. continue;
  409. if (mem && !task_in_mem_cgroup(c, mem))
  410. continue;
  411. if (!oom_kill_task(c))
  412. return 0;
  413. }
  414. } while_each_thread(p, t);
  415. return oom_kill_task(p);
  416. }
  417. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  418. void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
  419. {
  420. unsigned long points = 0;
  421. struct task_struct *p;
  422. if (sysctl_panic_on_oom == 2)
  423. panic("out of memory(memcg). panic_on_oom is selected.\n");
  424. read_lock(&tasklist_lock);
  425. retry:
  426. p = select_bad_process(&points, mem);
  427. if (!p || PTR_ERR(p) == -1UL)
  428. goto out;
  429. if (oom_kill_process(p, gfp_mask, 0, points, mem,
  430. "Memory cgroup out of memory"))
  431. goto retry;
  432. out:
  433. read_unlock(&tasklist_lock);
  434. }
  435. #endif
  436. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  437. int register_oom_notifier(struct notifier_block *nb)
  438. {
  439. return blocking_notifier_chain_register(&oom_notify_list, nb);
  440. }
  441. EXPORT_SYMBOL_GPL(register_oom_notifier);
  442. int unregister_oom_notifier(struct notifier_block *nb)
  443. {
  444. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  445. }
  446. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  447. /*
  448. * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
  449. * if a parallel OOM killing is already taking place that includes a zone in
  450. * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
  451. */
  452. int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  453. {
  454. struct zoneref *z;
  455. struct zone *zone;
  456. int ret = 1;
  457. spin_lock(&zone_scan_lock);
  458. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  459. if (zone_is_oom_locked(zone)) {
  460. ret = 0;
  461. goto out;
  462. }
  463. }
  464. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  465. /*
  466. * Lock each zone in the zonelist under zone_scan_lock so a
  467. * parallel invocation of try_set_zone_oom() doesn't succeed
  468. * when it shouldn't.
  469. */
  470. zone_set_flag(zone, ZONE_OOM_LOCKED);
  471. }
  472. out:
  473. spin_unlock(&zone_scan_lock);
  474. return ret;
  475. }
  476. /*
  477. * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
  478. * allocation attempts with zonelists containing them may now recall the OOM
  479. * killer, if necessary.
  480. */
  481. void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  482. {
  483. struct zoneref *z;
  484. struct zone *zone;
  485. spin_lock(&zone_scan_lock);
  486. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  487. zone_clear_flag(zone, ZONE_OOM_LOCKED);
  488. }
  489. spin_unlock(&zone_scan_lock);
  490. }
  491. /*
  492. * Must be called with tasklist_lock held for read.
  493. */
  494. static void __out_of_memory(gfp_t gfp_mask, int order)
  495. {
  496. struct task_struct *p;
  497. unsigned long points;
  498. if (sysctl_oom_kill_allocating_task)
  499. if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
  500. "Out of memory (oom_kill_allocating_task)"))
  501. return;
  502. retry:
  503. /*
  504. * Rambo mode: Shoot down a process and hope it solves whatever
  505. * issues we may have.
  506. */
  507. p = select_bad_process(&points, NULL);
  508. if (PTR_ERR(p) == -1UL)
  509. return;
  510. /* Found nothing?!?! Either we hang forever, or we panic. */
  511. if (!p) {
  512. read_unlock(&tasklist_lock);
  513. dump_header(NULL, gfp_mask, order, NULL);
  514. panic("Out of memory and no killable processes...\n");
  515. }
  516. if (oom_kill_process(p, gfp_mask, order, points, NULL,
  517. "Out of memory"))
  518. goto retry;
  519. }
  520. /*
  521. * pagefault handler calls into here because it is out of memory but
  522. * doesn't know exactly how or why.
  523. */
  524. void pagefault_out_of_memory(void)
  525. {
  526. unsigned long freed = 0;
  527. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  528. if (freed > 0)
  529. /* Got some memory back in the last second. */
  530. return;
  531. if (sysctl_panic_on_oom)
  532. panic("out of memory from page fault. panic_on_oom is selected.\n");
  533. read_lock(&tasklist_lock);
  534. __out_of_memory(0, 0); /* unknown gfp_mask and order */
  535. read_unlock(&tasklist_lock);
  536. /*
  537. * Give "p" a good chance of killing itself before we
  538. * retry to allocate memory.
  539. */
  540. if (!test_thread_flag(TIF_MEMDIE))
  541. schedule_timeout_uninterruptible(1);
  542. }
  543. /**
  544. * out_of_memory - kill the "best" process when we run out of memory
  545. * @zonelist: zonelist pointer
  546. * @gfp_mask: memory allocation flags
  547. * @order: amount of memory being requested as a power of 2
  548. *
  549. * If we run out of memory, we have the choice between either
  550. * killing a random task (bad), letting the system crash (worse)
  551. * OR try to be smart about which process to kill. Note that we
  552. * don't have to be perfect here, we just have to be good.
  553. */
  554. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask,
  555. int order, nodemask_t *nodemask)
  556. {
  557. unsigned long freed = 0;
  558. enum oom_constraint constraint;
  559. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  560. if (freed > 0)
  561. /* Got some memory back in the last second. */
  562. return;
  563. /*
  564. * If current has a pending SIGKILL, then automatically select it. The
  565. * goal is to allow it to allocate so that it may quickly exit and free
  566. * its memory.
  567. */
  568. if (fatal_signal_pending(current)) {
  569. set_thread_flag(TIF_MEMDIE);
  570. return;
  571. }
  572. if (sysctl_panic_on_oom == 2) {
  573. dump_header(NULL, gfp_mask, order, NULL);
  574. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  575. }
  576. /*
  577. * Check if there were limitations on the allocation (only relevant for
  578. * NUMA) that may require different handling.
  579. */
  580. constraint = constrained_alloc(zonelist, gfp_mask, nodemask);
  581. read_lock(&tasklist_lock);
  582. switch (constraint) {
  583. case CONSTRAINT_MEMORY_POLICY:
  584. oom_kill_process(current, gfp_mask, order, 0, NULL,
  585. "No available memory (MPOL_BIND)");
  586. break;
  587. case CONSTRAINT_NONE:
  588. if (sysctl_panic_on_oom) {
  589. dump_header(NULL, gfp_mask, order, NULL);
  590. panic("out of memory. panic_on_oom is selected\n");
  591. }
  592. /* Fall-through */
  593. case CONSTRAINT_CPUSET:
  594. __out_of_memory(gfp_mask, order);
  595. break;
  596. }
  597. read_unlock(&tasklist_lock);
  598. /*
  599. * Give "p" a good chance of killing itself before we
  600. * retry to allocate memory unless "p" is current
  601. */
  602. if (!test_thread_flag(TIF_MEMDIE))
  603. schedule_timeout_uninterruptible(1);
  604. }