slub.c 106 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/cpu.h>
  19. #include <linux/cpuset.h>
  20. #include <linux/mempolicy.h>
  21. #include <linux/ctype.h>
  22. #include <linux/debugobjects.h>
  23. #include <linux/kallsyms.h>
  24. #include <linux/memory.h>
  25. #include <linux/math64.h>
  26. /*
  27. * Lock order:
  28. * 1. slab_lock(page)
  29. * 2. slab->list_lock
  30. *
  31. * The slab_lock protects operations on the object of a particular
  32. * slab and its metadata in the page struct. If the slab lock
  33. * has been taken then no allocations nor frees can be performed
  34. * on the objects in the slab nor can the slab be added or removed
  35. * from the partial or full lists since this would mean modifying
  36. * the page_struct of the slab.
  37. *
  38. * The list_lock protects the partial and full list on each node and
  39. * the partial slab counter. If taken then no new slabs may be added or
  40. * removed from the lists nor make the number of partial slabs be modified.
  41. * (Note that the total number of slabs is an atomic value that may be
  42. * modified without taking the list lock).
  43. *
  44. * The list_lock is a centralized lock and thus we avoid taking it as
  45. * much as possible. As long as SLUB does not have to handle partial
  46. * slabs, operations can continue without any centralized lock. F.e.
  47. * allocating a long series of objects that fill up slabs does not require
  48. * the list lock.
  49. *
  50. * The lock order is sometimes inverted when we are trying to get a slab
  51. * off a list. We take the list_lock and then look for a page on the list
  52. * to use. While we do that objects in the slabs may be freed. We can
  53. * only operate on the slab if we have also taken the slab_lock. So we use
  54. * a slab_trylock() on the slab. If trylock was successful then no frees
  55. * can occur anymore and we can use the slab for allocations etc. If the
  56. * slab_trylock() does not succeed then frees are in progress in the slab and
  57. * we must stay away from it for a while since we may cause a bouncing
  58. * cacheline if we try to acquire the lock. So go onto the next slab.
  59. * If all pages are busy then we may allocate a new slab instead of reusing
  60. * a partial slab. A new slab has noone operating on it and thus there is
  61. * no danger of cacheline contention.
  62. *
  63. * Interrupts are disabled during allocation and deallocation in order to
  64. * make the slab allocator safe to use in the context of an irq. In addition
  65. * interrupts are disabled to ensure that the processor does not change
  66. * while handling per_cpu slabs, due to kernel preemption.
  67. *
  68. * SLUB assigns one slab for allocation to each processor.
  69. * Allocations only occur from these slabs called cpu slabs.
  70. *
  71. * Slabs with free elements are kept on a partial list and during regular
  72. * operations no list for full slabs is used. If an object in a full slab is
  73. * freed then the slab will show up again on the partial lists.
  74. * We track full slabs for debugging purposes though because otherwise we
  75. * cannot scan all objects.
  76. *
  77. * Slabs are freed when they become empty. Teardown and setup is
  78. * minimal so we rely on the page allocators per cpu caches for
  79. * fast frees and allocs.
  80. *
  81. * Overloading of page flags that are otherwise used for LRU management.
  82. *
  83. * PageActive The slab is frozen and exempt from list processing.
  84. * This means that the slab is dedicated to a purpose
  85. * such as satisfying allocations for a specific
  86. * processor. Objects may be freed in the slab while
  87. * it is frozen but slab_free will then skip the usual
  88. * list operations. It is up to the processor holding
  89. * the slab to integrate the slab into the slab lists
  90. * when the slab is no longer needed.
  91. *
  92. * One use of this flag is to mark slabs that are
  93. * used for allocations. Then such a slab becomes a cpu
  94. * slab. The cpu slab may be equipped with an additional
  95. * freelist that allows lockless access to
  96. * free objects in addition to the regular freelist
  97. * that requires the slab lock.
  98. *
  99. * PageError Slab requires special handling due to debug
  100. * options set. This moves slab handling out of
  101. * the fast path and disables lockless freelists.
  102. */
  103. #ifdef CONFIG_SLUB_DEBUG
  104. #define SLABDEBUG 1
  105. #else
  106. #define SLABDEBUG 0
  107. #endif
  108. /*
  109. * Issues still to be resolved:
  110. *
  111. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  112. *
  113. * - Variable sizing of the per node arrays
  114. */
  115. /* Enable to test recovery from slab corruption on boot */
  116. #undef SLUB_RESILIENCY_TEST
  117. /*
  118. * Mininum number of partial slabs. These will be left on the partial
  119. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  120. */
  121. #define MIN_PARTIAL 5
  122. /*
  123. * Maximum number of desirable partial slabs.
  124. * The existence of more partial slabs makes kmem_cache_shrink
  125. * sort the partial list by the number of objects in the.
  126. */
  127. #define MAX_PARTIAL 10
  128. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  129. SLAB_POISON | SLAB_STORE_USER)
  130. /*
  131. * Set of flags that will prevent slab merging
  132. */
  133. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  134. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  135. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  136. SLAB_CACHE_DMA)
  137. #ifndef ARCH_KMALLOC_MINALIGN
  138. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  139. #endif
  140. #ifndef ARCH_SLAB_MINALIGN
  141. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  142. #endif
  143. /* Internal SLUB flags */
  144. #define __OBJECT_POISON 0x80000000 /* Poison object */
  145. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  146. static int kmem_size = sizeof(struct kmem_cache);
  147. #ifdef CONFIG_SMP
  148. static struct notifier_block slab_notifier;
  149. #endif
  150. static enum {
  151. DOWN, /* No slab functionality available */
  152. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  153. UP, /* Everything works but does not show up in sysfs */
  154. SYSFS /* Sysfs up */
  155. } slab_state = DOWN;
  156. /* A list of all slab caches on the system */
  157. static DECLARE_RWSEM(slub_lock);
  158. static LIST_HEAD(slab_caches);
  159. /*
  160. * Tracking user of a slab.
  161. */
  162. struct track {
  163. void *addr; /* Called from address */
  164. int cpu; /* Was running on cpu */
  165. int pid; /* Pid context */
  166. unsigned long when; /* When did the operation occur */
  167. };
  168. enum track_item { TRACK_ALLOC, TRACK_FREE };
  169. #ifdef CONFIG_SLUB_DEBUG
  170. static int sysfs_slab_add(struct kmem_cache *);
  171. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  172. static void sysfs_slab_remove(struct kmem_cache *);
  173. #else
  174. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  175. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  176. { return 0; }
  177. static inline void sysfs_slab_remove(struct kmem_cache *s)
  178. {
  179. kfree(s);
  180. }
  181. #endif
  182. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  183. {
  184. #ifdef CONFIG_SLUB_STATS
  185. c->stat[si]++;
  186. #endif
  187. }
  188. /********************************************************************
  189. * Core slab cache functions
  190. *******************************************************************/
  191. int slab_is_available(void)
  192. {
  193. return slab_state >= UP;
  194. }
  195. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  196. {
  197. #ifdef CONFIG_NUMA
  198. return s->node[node];
  199. #else
  200. return &s->local_node;
  201. #endif
  202. }
  203. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  204. {
  205. #ifdef CONFIG_SMP
  206. return s->cpu_slab[cpu];
  207. #else
  208. return &s->cpu_slab;
  209. #endif
  210. }
  211. /* Verify that a pointer has an address that is valid within a slab page */
  212. static inline int check_valid_pointer(struct kmem_cache *s,
  213. struct page *page, const void *object)
  214. {
  215. void *base;
  216. if (!object)
  217. return 1;
  218. base = page_address(page);
  219. if (object < base || object >= base + page->objects * s->size ||
  220. (object - base) % s->size) {
  221. return 0;
  222. }
  223. return 1;
  224. }
  225. /*
  226. * Slow version of get and set free pointer.
  227. *
  228. * This version requires touching the cache lines of kmem_cache which
  229. * we avoid to do in the fast alloc free paths. There we obtain the offset
  230. * from the page struct.
  231. */
  232. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  233. {
  234. return *(void **)(object + s->offset);
  235. }
  236. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  237. {
  238. *(void **)(object + s->offset) = fp;
  239. }
  240. /* Loop over all objects in a slab */
  241. #define for_each_object(__p, __s, __addr, __objects) \
  242. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  243. __p += (__s)->size)
  244. /* Scan freelist */
  245. #define for_each_free_object(__p, __s, __free) \
  246. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  247. /* Determine object index from a given position */
  248. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  249. {
  250. return (p - addr) / s->size;
  251. }
  252. static inline struct kmem_cache_order_objects oo_make(int order,
  253. unsigned long size)
  254. {
  255. struct kmem_cache_order_objects x = {
  256. (order << 16) + (PAGE_SIZE << order) / size
  257. };
  258. return x;
  259. }
  260. static inline int oo_order(struct kmem_cache_order_objects x)
  261. {
  262. return x.x >> 16;
  263. }
  264. static inline int oo_objects(struct kmem_cache_order_objects x)
  265. {
  266. return x.x & ((1 << 16) - 1);
  267. }
  268. #ifdef CONFIG_SLUB_DEBUG
  269. /*
  270. * Debug settings:
  271. */
  272. #ifdef CONFIG_SLUB_DEBUG_ON
  273. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  274. #else
  275. static int slub_debug;
  276. #endif
  277. static char *slub_debug_slabs;
  278. /*
  279. * Object debugging
  280. */
  281. static void print_section(char *text, u8 *addr, unsigned int length)
  282. {
  283. int i, offset;
  284. int newline = 1;
  285. char ascii[17];
  286. ascii[16] = 0;
  287. for (i = 0; i < length; i++) {
  288. if (newline) {
  289. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  290. newline = 0;
  291. }
  292. printk(KERN_CONT " %02x", addr[i]);
  293. offset = i % 16;
  294. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  295. if (offset == 15) {
  296. printk(KERN_CONT " %s\n", ascii);
  297. newline = 1;
  298. }
  299. }
  300. if (!newline) {
  301. i %= 16;
  302. while (i < 16) {
  303. printk(KERN_CONT " ");
  304. ascii[i] = ' ';
  305. i++;
  306. }
  307. printk(KERN_CONT " %s\n", ascii);
  308. }
  309. }
  310. static struct track *get_track(struct kmem_cache *s, void *object,
  311. enum track_item alloc)
  312. {
  313. struct track *p;
  314. if (s->offset)
  315. p = object + s->offset + sizeof(void *);
  316. else
  317. p = object + s->inuse;
  318. return p + alloc;
  319. }
  320. static void set_track(struct kmem_cache *s, void *object,
  321. enum track_item alloc, void *addr)
  322. {
  323. struct track *p;
  324. if (s->offset)
  325. p = object + s->offset + sizeof(void *);
  326. else
  327. p = object + s->inuse;
  328. p += alloc;
  329. if (addr) {
  330. p->addr = addr;
  331. p->cpu = smp_processor_id();
  332. p->pid = current->pid;
  333. p->when = jiffies;
  334. } else
  335. memset(p, 0, sizeof(struct track));
  336. }
  337. static void init_tracking(struct kmem_cache *s, void *object)
  338. {
  339. if (!(s->flags & SLAB_STORE_USER))
  340. return;
  341. set_track(s, object, TRACK_FREE, NULL);
  342. set_track(s, object, TRACK_ALLOC, NULL);
  343. }
  344. static void print_track(const char *s, struct track *t)
  345. {
  346. if (!t->addr)
  347. return;
  348. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  349. s, t->addr, jiffies - t->when, t->cpu, t->pid);
  350. }
  351. static void print_tracking(struct kmem_cache *s, void *object)
  352. {
  353. if (!(s->flags & SLAB_STORE_USER))
  354. return;
  355. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  356. print_track("Freed", get_track(s, object, TRACK_FREE));
  357. }
  358. static void print_page_info(struct page *page)
  359. {
  360. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  361. page, page->objects, page->inuse, page->freelist, page->flags);
  362. }
  363. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  364. {
  365. va_list args;
  366. char buf[100];
  367. va_start(args, fmt);
  368. vsnprintf(buf, sizeof(buf), fmt, args);
  369. va_end(args);
  370. printk(KERN_ERR "========================================"
  371. "=====================================\n");
  372. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  373. printk(KERN_ERR "----------------------------------------"
  374. "-------------------------------------\n\n");
  375. }
  376. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  377. {
  378. va_list args;
  379. char buf[100];
  380. va_start(args, fmt);
  381. vsnprintf(buf, sizeof(buf), fmt, args);
  382. va_end(args);
  383. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  384. }
  385. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  386. {
  387. unsigned int off; /* Offset of last byte */
  388. u8 *addr = page_address(page);
  389. print_tracking(s, p);
  390. print_page_info(page);
  391. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  392. p, p - addr, get_freepointer(s, p));
  393. if (p > addr + 16)
  394. print_section("Bytes b4", p - 16, 16);
  395. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  396. if (s->flags & SLAB_RED_ZONE)
  397. print_section("Redzone", p + s->objsize,
  398. s->inuse - s->objsize);
  399. if (s->offset)
  400. off = s->offset + sizeof(void *);
  401. else
  402. off = s->inuse;
  403. if (s->flags & SLAB_STORE_USER)
  404. off += 2 * sizeof(struct track);
  405. if (off != s->size)
  406. /* Beginning of the filler is the free pointer */
  407. print_section("Padding", p + off, s->size - off);
  408. dump_stack();
  409. }
  410. static void object_err(struct kmem_cache *s, struct page *page,
  411. u8 *object, char *reason)
  412. {
  413. slab_bug(s, "%s", reason);
  414. print_trailer(s, page, object);
  415. }
  416. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  417. {
  418. va_list args;
  419. char buf[100];
  420. va_start(args, fmt);
  421. vsnprintf(buf, sizeof(buf), fmt, args);
  422. va_end(args);
  423. slab_bug(s, "%s", buf);
  424. print_page_info(page);
  425. dump_stack();
  426. }
  427. static void init_object(struct kmem_cache *s, void *object, int active)
  428. {
  429. u8 *p = object;
  430. if (s->flags & __OBJECT_POISON) {
  431. memset(p, POISON_FREE, s->objsize - 1);
  432. p[s->objsize - 1] = POISON_END;
  433. }
  434. if (s->flags & SLAB_RED_ZONE)
  435. memset(p + s->objsize,
  436. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  437. s->inuse - s->objsize);
  438. }
  439. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  440. {
  441. while (bytes) {
  442. if (*start != (u8)value)
  443. return start;
  444. start++;
  445. bytes--;
  446. }
  447. return NULL;
  448. }
  449. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  450. void *from, void *to)
  451. {
  452. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  453. memset(from, data, to - from);
  454. }
  455. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  456. u8 *object, char *what,
  457. u8 *start, unsigned int value, unsigned int bytes)
  458. {
  459. u8 *fault;
  460. u8 *end;
  461. fault = check_bytes(start, value, bytes);
  462. if (!fault)
  463. return 1;
  464. end = start + bytes;
  465. while (end > fault && end[-1] == value)
  466. end--;
  467. slab_bug(s, "%s overwritten", what);
  468. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  469. fault, end - 1, fault[0], value);
  470. print_trailer(s, page, object);
  471. restore_bytes(s, what, value, fault, end);
  472. return 0;
  473. }
  474. /*
  475. * Object layout:
  476. *
  477. * object address
  478. * Bytes of the object to be managed.
  479. * If the freepointer may overlay the object then the free
  480. * pointer is the first word of the object.
  481. *
  482. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  483. * 0xa5 (POISON_END)
  484. *
  485. * object + s->objsize
  486. * Padding to reach word boundary. This is also used for Redzoning.
  487. * Padding is extended by another word if Redzoning is enabled and
  488. * objsize == inuse.
  489. *
  490. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  491. * 0xcc (RED_ACTIVE) for objects in use.
  492. *
  493. * object + s->inuse
  494. * Meta data starts here.
  495. *
  496. * A. Free pointer (if we cannot overwrite object on free)
  497. * B. Tracking data for SLAB_STORE_USER
  498. * C. Padding to reach required alignment boundary or at mininum
  499. * one word if debugging is on to be able to detect writes
  500. * before the word boundary.
  501. *
  502. * Padding is done using 0x5a (POISON_INUSE)
  503. *
  504. * object + s->size
  505. * Nothing is used beyond s->size.
  506. *
  507. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  508. * ignored. And therefore no slab options that rely on these boundaries
  509. * may be used with merged slabcaches.
  510. */
  511. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  512. {
  513. unsigned long off = s->inuse; /* The end of info */
  514. if (s->offset)
  515. /* Freepointer is placed after the object. */
  516. off += sizeof(void *);
  517. if (s->flags & SLAB_STORE_USER)
  518. /* We also have user information there */
  519. off += 2 * sizeof(struct track);
  520. if (s->size == off)
  521. return 1;
  522. return check_bytes_and_report(s, page, p, "Object padding",
  523. p + off, POISON_INUSE, s->size - off);
  524. }
  525. /* Check the pad bytes at the end of a slab page */
  526. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  527. {
  528. u8 *start;
  529. u8 *fault;
  530. u8 *end;
  531. int length;
  532. int remainder;
  533. if (!(s->flags & SLAB_POISON))
  534. return 1;
  535. start = page_address(page);
  536. length = (PAGE_SIZE << compound_order(page));
  537. end = start + length;
  538. remainder = length % s->size;
  539. if (!remainder)
  540. return 1;
  541. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  542. if (!fault)
  543. return 1;
  544. while (end > fault && end[-1] == POISON_INUSE)
  545. end--;
  546. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  547. print_section("Padding", end - remainder, remainder);
  548. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  549. return 0;
  550. }
  551. static int check_object(struct kmem_cache *s, struct page *page,
  552. void *object, int active)
  553. {
  554. u8 *p = object;
  555. u8 *endobject = object + s->objsize;
  556. if (s->flags & SLAB_RED_ZONE) {
  557. unsigned int red =
  558. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  559. if (!check_bytes_and_report(s, page, object, "Redzone",
  560. endobject, red, s->inuse - s->objsize))
  561. return 0;
  562. } else {
  563. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  564. check_bytes_and_report(s, page, p, "Alignment padding",
  565. endobject, POISON_INUSE, s->inuse - s->objsize);
  566. }
  567. }
  568. if (s->flags & SLAB_POISON) {
  569. if (!active && (s->flags & __OBJECT_POISON) &&
  570. (!check_bytes_and_report(s, page, p, "Poison", p,
  571. POISON_FREE, s->objsize - 1) ||
  572. !check_bytes_and_report(s, page, p, "Poison",
  573. p + s->objsize - 1, POISON_END, 1)))
  574. return 0;
  575. /*
  576. * check_pad_bytes cleans up on its own.
  577. */
  578. check_pad_bytes(s, page, p);
  579. }
  580. if (!s->offset && active)
  581. /*
  582. * Object and freepointer overlap. Cannot check
  583. * freepointer while object is allocated.
  584. */
  585. return 1;
  586. /* Check free pointer validity */
  587. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  588. object_err(s, page, p, "Freepointer corrupt");
  589. /*
  590. * No choice but to zap it and thus loose the remainder
  591. * of the free objects in this slab. May cause
  592. * another error because the object count is now wrong.
  593. */
  594. set_freepointer(s, p, NULL);
  595. return 0;
  596. }
  597. return 1;
  598. }
  599. static int check_slab(struct kmem_cache *s, struct page *page)
  600. {
  601. int maxobj;
  602. VM_BUG_ON(!irqs_disabled());
  603. if (!PageSlab(page)) {
  604. slab_err(s, page, "Not a valid slab page");
  605. return 0;
  606. }
  607. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  608. if (page->objects > maxobj) {
  609. slab_err(s, page, "objects %u > max %u",
  610. s->name, page->objects, maxobj);
  611. return 0;
  612. }
  613. if (page->inuse > page->objects) {
  614. slab_err(s, page, "inuse %u > max %u",
  615. s->name, page->inuse, page->objects);
  616. return 0;
  617. }
  618. /* Slab_pad_check fixes things up after itself */
  619. slab_pad_check(s, page);
  620. return 1;
  621. }
  622. /*
  623. * Determine if a certain object on a page is on the freelist. Must hold the
  624. * slab lock to guarantee that the chains are in a consistent state.
  625. */
  626. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  627. {
  628. int nr = 0;
  629. void *fp = page->freelist;
  630. void *object = NULL;
  631. unsigned long max_objects;
  632. while (fp && nr <= page->objects) {
  633. if (fp == search)
  634. return 1;
  635. if (!check_valid_pointer(s, page, fp)) {
  636. if (object) {
  637. object_err(s, page, object,
  638. "Freechain corrupt");
  639. set_freepointer(s, object, NULL);
  640. break;
  641. } else {
  642. slab_err(s, page, "Freepointer corrupt");
  643. page->freelist = NULL;
  644. page->inuse = page->objects;
  645. slab_fix(s, "Freelist cleared");
  646. return 0;
  647. }
  648. break;
  649. }
  650. object = fp;
  651. fp = get_freepointer(s, object);
  652. nr++;
  653. }
  654. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  655. if (max_objects > 65535)
  656. max_objects = 65535;
  657. if (page->objects != max_objects) {
  658. slab_err(s, page, "Wrong number of objects. Found %d but "
  659. "should be %d", page->objects, max_objects);
  660. page->objects = max_objects;
  661. slab_fix(s, "Number of objects adjusted.");
  662. }
  663. if (page->inuse != page->objects - nr) {
  664. slab_err(s, page, "Wrong object count. Counter is %d but "
  665. "counted were %d", page->inuse, page->objects - nr);
  666. page->inuse = page->objects - nr;
  667. slab_fix(s, "Object count adjusted.");
  668. }
  669. return search == NULL;
  670. }
  671. static void trace(struct kmem_cache *s, struct page *page, void *object,
  672. int alloc)
  673. {
  674. if (s->flags & SLAB_TRACE) {
  675. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  676. s->name,
  677. alloc ? "alloc" : "free",
  678. object, page->inuse,
  679. page->freelist);
  680. if (!alloc)
  681. print_section("Object", (void *)object, s->objsize);
  682. dump_stack();
  683. }
  684. }
  685. /*
  686. * Tracking of fully allocated slabs for debugging purposes.
  687. */
  688. static void add_full(struct kmem_cache_node *n, struct page *page)
  689. {
  690. spin_lock(&n->list_lock);
  691. list_add(&page->lru, &n->full);
  692. spin_unlock(&n->list_lock);
  693. }
  694. static void remove_full(struct kmem_cache *s, struct page *page)
  695. {
  696. struct kmem_cache_node *n;
  697. if (!(s->flags & SLAB_STORE_USER))
  698. return;
  699. n = get_node(s, page_to_nid(page));
  700. spin_lock(&n->list_lock);
  701. list_del(&page->lru);
  702. spin_unlock(&n->list_lock);
  703. }
  704. /* Tracking of the number of slabs for debugging purposes */
  705. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  706. {
  707. struct kmem_cache_node *n = get_node(s, node);
  708. return atomic_long_read(&n->nr_slabs);
  709. }
  710. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  711. {
  712. struct kmem_cache_node *n = get_node(s, node);
  713. /*
  714. * May be called early in order to allocate a slab for the
  715. * kmem_cache_node structure. Solve the chicken-egg
  716. * dilemma by deferring the increment of the count during
  717. * bootstrap (see early_kmem_cache_node_alloc).
  718. */
  719. if (!NUMA_BUILD || n) {
  720. atomic_long_inc(&n->nr_slabs);
  721. atomic_long_add(objects, &n->total_objects);
  722. }
  723. }
  724. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  725. {
  726. struct kmem_cache_node *n = get_node(s, node);
  727. atomic_long_dec(&n->nr_slabs);
  728. atomic_long_sub(objects, &n->total_objects);
  729. }
  730. /* Object debug checks for alloc/free paths */
  731. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  732. void *object)
  733. {
  734. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  735. return;
  736. init_object(s, object, 0);
  737. init_tracking(s, object);
  738. }
  739. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  740. void *object, void *addr)
  741. {
  742. if (!check_slab(s, page))
  743. goto bad;
  744. if (!on_freelist(s, page, object)) {
  745. object_err(s, page, object, "Object already allocated");
  746. goto bad;
  747. }
  748. if (!check_valid_pointer(s, page, object)) {
  749. object_err(s, page, object, "Freelist Pointer check fails");
  750. goto bad;
  751. }
  752. if (!check_object(s, page, object, 0))
  753. goto bad;
  754. /* Success perform special debug activities for allocs */
  755. if (s->flags & SLAB_STORE_USER)
  756. set_track(s, object, TRACK_ALLOC, addr);
  757. trace(s, page, object, 1);
  758. init_object(s, object, 1);
  759. return 1;
  760. bad:
  761. if (PageSlab(page)) {
  762. /*
  763. * If this is a slab page then lets do the best we can
  764. * to avoid issues in the future. Marking all objects
  765. * as used avoids touching the remaining objects.
  766. */
  767. slab_fix(s, "Marking all objects used");
  768. page->inuse = page->objects;
  769. page->freelist = NULL;
  770. }
  771. return 0;
  772. }
  773. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  774. void *object, void *addr)
  775. {
  776. if (!check_slab(s, page))
  777. goto fail;
  778. if (!check_valid_pointer(s, page, object)) {
  779. slab_err(s, page, "Invalid object pointer 0x%p", object);
  780. goto fail;
  781. }
  782. if (on_freelist(s, page, object)) {
  783. object_err(s, page, object, "Object already free");
  784. goto fail;
  785. }
  786. if (!check_object(s, page, object, 1))
  787. return 0;
  788. if (unlikely(s != page->slab)) {
  789. if (!PageSlab(page)) {
  790. slab_err(s, page, "Attempt to free object(0x%p) "
  791. "outside of slab", object);
  792. } else if (!page->slab) {
  793. printk(KERN_ERR
  794. "SLUB <none>: no slab for object 0x%p.\n",
  795. object);
  796. dump_stack();
  797. } else
  798. object_err(s, page, object,
  799. "page slab pointer corrupt.");
  800. goto fail;
  801. }
  802. /* Special debug activities for freeing objects */
  803. if (!PageSlubFrozen(page) && !page->freelist)
  804. remove_full(s, page);
  805. if (s->flags & SLAB_STORE_USER)
  806. set_track(s, object, TRACK_FREE, addr);
  807. trace(s, page, object, 0);
  808. init_object(s, object, 0);
  809. return 1;
  810. fail:
  811. slab_fix(s, "Object at 0x%p not freed", object);
  812. return 0;
  813. }
  814. static int __init setup_slub_debug(char *str)
  815. {
  816. slub_debug = DEBUG_DEFAULT_FLAGS;
  817. if (*str++ != '=' || !*str)
  818. /*
  819. * No options specified. Switch on full debugging.
  820. */
  821. goto out;
  822. if (*str == ',')
  823. /*
  824. * No options but restriction on slabs. This means full
  825. * debugging for slabs matching a pattern.
  826. */
  827. goto check_slabs;
  828. slub_debug = 0;
  829. if (*str == '-')
  830. /*
  831. * Switch off all debugging measures.
  832. */
  833. goto out;
  834. /*
  835. * Determine which debug features should be switched on
  836. */
  837. for (; *str && *str != ','; str++) {
  838. switch (tolower(*str)) {
  839. case 'f':
  840. slub_debug |= SLAB_DEBUG_FREE;
  841. break;
  842. case 'z':
  843. slub_debug |= SLAB_RED_ZONE;
  844. break;
  845. case 'p':
  846. slub_debug |= SLAB_POISON;
  847. break;
  848. case 'u':
  849. slub_debug |= SLAB_STORE_USER;
  850. break;
  851. case 't':
  852. slub_debug |= SLAB_TRACE;
  853. break;
  854. default:
  855. printk(KERN_ERR "slub_debug option '%c' "
  856. "unknown. skipped\n", *str);
  857. }
  858. }
  859. check_slabs:
  860. if (*str == ',')
  861. slub_debug_slabs = str + 1;
  862. out:
  863. return 1;
  864. }
  865. __setup("slub_debug", setup_slub_debug);
  866. static unsigned long kmem_cache_flags(unsigned long objsize,
  867. unsigned long flags, const char *name,
  868. void (*ctor)(void *))
  869. {
  870. /*
  871. * Enable debugging if selected on the kernel commandline.
  872. */
  873. if (slub_debug && (!slub_debug_slabs ||
  874. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  875. flags |= slub_debug;
  876. return flags;
  877. }
  878. #else
  879. static inline void setup_object_debug(struct kmem_cache *s,
  880. struct page *page, void *object) {}
  881. static inline int alloc_debug_processing(struct kmem_cache *s,
  882. struct page *page, void *object, void *addr) { return 0; }
  883. static inline int free_debug_processing(struct kmem_cache *s,
  884. struct page *page, void *object, void *addr) { return 0; }
  885. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  886. { return 1; }
  887. static inline int check_object(struct kmem_cache *s, struct page *page,
  888. void *object, int active) { return 1; }
  889. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  890. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  891. unsigned long flags, const char *name,
  892. void (*ctor)(void *))
  893. {
  894. return flags;
  895. }
  896. #define slub_debug 0
  897. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  898. { return 0; }
  899. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  900. int objects) {}
  901. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  902. int objects) {}
  903. #endif
  904. /*
  905. * Slab allocation and freeing
  906. */
  907. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  908. struct kmem_cache_order_objects oo)
  909. {
  910. int order = oo_order(oo);
  911. if (node == -1)
  912. return alloc_pages(flags, order);
  913. else
  914. return alloc_pages_node(node, flags, order);
  915. }
  916. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  917. {
  918. struct page *page;
  919. struct kmem_cache_order_objects oo = s->oo;
  920. flags |= s->allocflags;
  921. page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
  922. oo);
  923. if (unlikely(!page)) {
  924. oo = s->min;
  925. /*
  926. * Allocation may have failed due to fragmentation.
  927. * Try a lower order alloc if possible
  928. */
  929. page = alloc_slab_page(flags, node, oo);
  930. if (!page)
  931. return NULL;
  932. stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
  933. }
  934. page->objects = oo_objects(oo);
  935. mod_zone_page_state(page_zone(page),
  936. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  937. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  938. 1 << oo_order(oo));
  939. return page;
  940. }
  941. static void setup_object(struct kmem_cache *s, struct page *page,
  942. void *object)
  943. {
  944. setup_object_debug(s, page, object);
  945. if (unlikely(s->ctor))
  946. s->ctor(object);
  947. }
  948. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  949. {
  950. struct page *page;
  951. void *start;
  952. void *last;
  953. void *p;
  954. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  955. page = allocate_slab(s,
  956. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  957. if (!page)
  958. goto out;
  959. inc_slabs_node(s, page_to_nid(page), page->objects);
  960. page->slab = s;
  961. page->flags |= 1 << PG_slab;
  962. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  963. SLAB_STORE_USER | SLAB_TRACE))
  964. __SetPageSlubDebug(page);
  965. start = page_address(page);
  966. if (unlikely(s->flags & SLAB_POISON))
  967. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  968. last = start;
  969. for_each_object(p, s, start, page->objects) {
  970. setup_object(s, page, last);
  971. set_freepointer(s, last, p);
  972. last = p;
  973. }
  974. setup_object(s, page, last);
  975. set_freepointer(s, last, NULL);
  976. page->freelist = start;
  977. page->inuse = 0;
  978. out:
  979. return page;
  980. }
  981. static void __free_slab(struct kmem_cache *s, struct page *page)
  982. {
  983. int order = compound_order(page);
  984. int pages = 1 << order;
  985. if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
  986. void *p;
  987. slab_pad_check(s, page);
  988. for_each_object(p, s, page_address(page),
  989. page->objects)
  990. check_object(s, page, p, 0);
  991. __ClearPageSlubDebug(page);
  992. }
  993. mod_zone_page_state(page_zone(page),
  994. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  995. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  996. -pages);
  997. __ClearPageSlab(page);
  998. reset_page_mapcount(page);
  999. __free_pages(page, order);
  1000. }
  1001. static void rcu_free_slab(struct rcu_head *h)
  1002. {
  1003. struct page *page;
  1004. page = container_of((struct list_head *)h, struct page, lru);
  1005. __free_slab(page->slab, page);
  1006. }
  1007. static void free_slab(struct kmem_cache *s, struct page *page)
  1008. {
  1009. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1010. /*
  1011. * RCU free overloads the RCU head over the LRU
  1012. */
  1013. struct rcu_head *head = (void *)&page->lru;
  1014. call_rcu(head, rcu_free_slab);
  1015. } else
  1016. __free_slab(s, page);
  1017. }
  1018. static void discard_slab(struct kmem_cache *s, struct page *page)
  1019. {
  1020. dec_slabs_node(s, page_to_nid(page), page->objects);
  1021. free_slab(s, page);
  1022. }
  1023. /*
  1024. * Per slab locking using the pagelock
  1025. */
  1026. static __always_inline void slab_lock(struct page *page)
  1027. {
  1028. bit_spin_lock(PG_locked, &page->flags);
  1029. }
  1030. static __always_inline void slab_unlock(struct page *page)
  1031. {
  1032. __bit_spin_unlock(PG_locked, &page->flags);
  1033. }
  1034. static __always_inline int slab_trylock(struct page *page)
  1035. {
  1036. int rc = 1;
  1037. rc = bit_spin_trylock(PG_locked, &page->flags);
  1038. return rc;
  1039. }
  1040. /*
  1041. * Management of partially allocated slabs
  1042. */
  1043. static void add_partial(struct kmem_cache_node *n,
  1044. struct page *page, int tail)
  1045. {
  1046. spin_lock(&n->list_lock);
  1047. n->nr_partial++;
  1048. if (tail)
  1049. list_add_tail(&page->lru, &n->partial);
  1050. else
  1051. list_add(&page->lru, &n->partial);
  1052. spin_unlock(&n->list_lock);
  1053. }
  1054. static void remove_partial(struct kmem_cache *s, struct page *page)
  1055. {
  1056. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1057. spin_lock(&n->list_lock);
  1058. list_del(&page->lru);
  1059. n->nr_partial--;
  1060. spin_unlock(&n->list_lock);
  1061. }
  1062. /*
  1063. * Lock slab and remove from the partial list.
  1064. *
  1065. * Must hold list_lock.
  1066. */
  1067. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1068. struct page *page)
  1069. {
  1070. if (slab_trylock(page)) {
  1071. list_del(&page->lru);
  1072. n->nr_partial--;
  1073. __SetPageSlubFrozen(page);
  1074. return 1;
  1075. }
  1076. return 0;
  1077. }
  1078. /*
  1079. * Try to allocate a partial slab from a specific node.
  1080. */
  1081. static struct page *get_partial_node(struct kmem_cache_node *n)
  1082. {
  1083. struct page *page;
  1084. /*
  1085. * Racy check. If we mistakenly see no partial slabs then we
  1086. * just allocate an empty slab. If we mistakenly try to get a
  1087. * partial slab and there is none available then get_partials()
  1088. * will return NULL.
  1089. */
  1090. if (!n || !n->nr_partial)
  1091. return NULL;
  1092. spin_lock(&n->list_lock);
  1093. list_for_each_entry(page, &n->partial, lru)
  1094. if (lock_and_freeze_slab(n, page))
  1095. goto out;
  1096. page = NULL;
  1097. out:
  1098. spin_unlock(&n->list_lock);
  1099. return page;
  1100. }
  1101. /*
  1102. * Get a page from somewhere. Search in increasing NUMA distances.
  1103. */
  1104. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1105. {
  1106. #ifdef CONFIG_NUMA
  1107. struct zonelist *zonelist;
  1108. struct zoneref *z;
  1109. struct zone *zone;
  1110. enum zone_type high_zoneidx = gfp_zone(flags);
  1111. struct page *page;
  1112. /*
  1113. * The defrag ratio allows a configuration of the tradeoffs between
  1114. * inter node defragmentation and node local allocations. A lower
  1115. * defrag_ratio increases the tendency to do local allocations
  1116. * instead of attempting to obtain partial slabs from other nodes.
  1117. *
  1118. * If the defrag_ratio is set to 0 then kmalloc() always
  1119. * returns node local objects. If the ratio is higher then kmalloc()
  1120. * may return off node objects because partial slabs are obtained
  1121. * from other nodes and filled up.
  1122. *
  1123. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1124. * defrag_ratio = 1000) then every (well almost) allocation will
  1125. * first attempt to defrag slab caches on other nodes. This means
  1126. * scanning over all nodes to look for partial slabs which may be
  1127. * expensive if we do it every time we are trying to find a slab
  1128. * with available objects.
  1129. */
  1130. if (!s->remote_node_defrag_ratio ||
  1131. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1132. return NULL;
  1133. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1134. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1135. struct kmem_cache_node *n;
  1136. n = get_node(s, zone_to_nid(zone));
  1137. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1138. n->nr_partial > n->min_partial) {
  1139. page = get_partial_node(n);
  1140. if (page)
  1141. return page;
  1142. }
  1143. }
  1144. #endif
  1145. return NULL;
  1146. }
  1147. /*
  1148. * Get a partial page, lock it and return it.
  1149. */
  1150. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1151. {
  1152. struct page *page;
  1153. int searchnode = (node == -1) ? numa_node_id() : node;
  1154. page = get_partial_node(get_node(s, searchnode));
  1155. if (page || (flags & __GFP_THISNODE))
  1156. return page;
  1157. return get_any_partial(s, flags);
  1158. }
  1159. /*
  1160. * Move a page back to the lists.
  1161. *
  1162. * Must be called with the slab lock held.
  1163. *
  1164. * On exit the slab lock will have been dropped.
  1165. */
  1166. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1167. {
  1168. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1169. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1170. __ClearPageSlubFrozen(page);
  1171. if (page->inuse) {
  1172. if (page->freelist) {
  1173. add_partial(n, page, tail);
  1174. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1175. } else {
  1176. stat(c, DEACTIVATE_FULL);
  1177. if (SLABDEBUG && PageSlubDebug(page) &&
  1178. (s->flags & SLAB_STORE_USER))
  1179. add_full(n, page);
  1180. }
  1181. slab_unlock(page);
  1182. } else {
  1183. stat(c, DEACTIVATE_EMPTY);
  1184. if (n->nr_partial < n->min_partial) {
  1185. /*
  1186. * Adding an empty slab to the partial slabs in order
  1187. * to avoid page allocator overhead. This slab needs
  1188. * to come after the other slabs with objects in
  1189. * so that the others get filled first. That way the
  1190. * size of the partial list stays small.
  1191. *
  1192. * kmem_cache_shrink can reclaim any empty slabs from
  1193. * the partial list.
  1194. */
  1195. add_partial(n, page, 1);
  1196. slab_unlock(page);
  1197. } else {
  1198. slab_unlock(page);
  1199. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1200. discard_slab(s, page);
  1201. }
  1202. }
  1203. }
  1204. /*
  1205. * Remove the cpu slab
  1206. */
  1207. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1208. {
  1209. struct page *page = c->page;
  1210. int tail = 1;
  1211. if (page->freelist)
  1212. stat(c, DEACTIVATE_REMOTE_FREES);
  1213. /*
  1214. * Merge cpu freelist into slab freelist. Typically we get here
  1215. * because both freelists are empty. So this is unlikely
  1216. * to occur.
  1217. */
  1218. while (unlikely(c->freelist)) {
  1219. void **object;
  1220. tail = 0; /* Hot objects. Put the slab first */
  1221. /* Retrieve object from cpu_freelist */
  1222. object = c->freelist;
  1223. c->freelist = c->freelist[c->offset];
  1224. /* And put onto the regular freelist */
  1225. object[c->offset] = page->freelist;
  1226. page->freelist = object;
  1227. page->inuse--;
  1228. }
  1229. c->page = NULL;
  1230. unfreeze_slab(s, page, tail);
  1231. }
  1232. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1233. {
  1234. stat(c, CPUSLAB_FLUSH);
  1235. slab_lock(c->page);
  1236. deactivate_slab(s, c);
  1237. }
  1238. /*
  1239. * Flush cpu slab.
  1240. *
  1241. * Called from IPI handler with interrupts disabled.
  1242. */
  1243. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1244. {
  1245. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1246. if (likely(c && c->page))
  1247. flush_slab(s, c);
  1248. }
  1249. static void flush_cpu_slab(void *d)
  1250. {
  1251. struct kmem_cache *s = d;
  1252. __flush_cpu_slab(s, smp_processor_id());
  1253. }
  1254. static void flush_all(struct kmem_cache *s)
  1255. {
  1256. on_each_cpu(flush_cpu_slab, s, 1);
  1257. }
  1258. /*
  1259. * Check if the objects in a per cpu structure fit numa
  1260. * locality expectations.
  1261. */
  1262. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1263. {
  1264. #ifdef CONFIG_NUMA
  1265. if (node != -1 && c->node != node)
  1266. return 0;
  1267. #endif
  1268. return 1;
  1269. }
  1270. /*
  1271. * Slow path. The lockless freelist is empty or we need to perform
  1272. * debugging duties.
  1273. *
  1274. * Interrupts are disabled.
  1275. *
  1276. * Processing is still very fast if new objects have been freed to the
  1277. * regular freelist. In that case we simply take over the regular freelist
  1278. * as the lockless freelist and zap the regular freelist.
  1279. *
  1280. * If that is not working then we fall back to the partial lists. We take the
  1281. * first element of the freelist as the object to allocate now and move the
  1282. * rest of the freelist to the lockless freelist.
  1283. *
  1284. * And if we were unable to get a new slab from the partial slab lists then
  1285. * we need to allocate a new slab. This is the slowest path since it involves
  1286. * a call to the page allocator and the setup of a new slab.
  1287. */
  1288. static void *__slab_alloc(struct kmem_cache *s,
  1289. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1290. {
  1291. void **object;
  1292. struct page *new;
  1293. /* We handle __GFP_ZERO in the caller */
  1294. gfpflags &= ~__GFP_ZERO;
  1295. if (!c->page)
  1296. goto new_slab;
  1297. slab_lock(c->page);
  1298. if (unlikely(!node_match(c, node)))
  1299. goto another_slab;
  1300. stat(c, ALLOC_REFILL);
  1301. load_freelist:
  1302. object = c->page->freelist;
  1303. if (unlikely(!object))
  1304. goto another_slab;
  1305. if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
  1306. goto debug;
  1307. c->freelist = object[c->offset];
  1308. c->page->inuse = c->page->objects;
  1309. c->page->freelist = NULL;
  1310. c->node = page_to_nid(c->page);
  1311. unlock_out:
  1312. slab_unlock(c->page);
  1313. stat(c, ALLOC_SLOWPATH);
  1314. return object;
  1315. another_slab:
  1316. deactivate_slab(s, c);
  1317. new_slab:
  1318. new = get_partial(s, gfpflags, node);
  1319. if (new) {
  1320. c->page = new;
  1321. stat(c, ALLOC_FROM_PARTIAL);
  1322. goto load_freelist;
  1323. }
  1324. if (gfpflags & __GFP_WAIT)
  1325. local_irq_enable();
  1326. new = new_slab(s, gfpflags, node);
  1327. if (gfpflags & __GFP_WAIT)
  1328. local_irq_disable();
  1329. if (new) {
  1330. c = get_cpu_slab(s, smp_processor_id());
  1331. stat(c, ALLOC_SLAB);
  1332. if (c->page)
  1333. flush_slab(s, c);
  1334. slab_lock(new);
  1335. __SetPageSlubFrozen(new);
  1336. c->page = new;
  1337. goto load_freelist;
  1338. }
  1339. return NULL;
  1340. debug:
  1341. if (!alloc_debug_processing(s, c->page, object, addr))
  1342. goto another_slab;
  1343. c->page->inuse++;
  1344. c->page->freelist = object[c->offset];
  1345. c->node = -1;
  1346. goto unlock_out;
  1347. }
  1348. /*
  1349. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1350. * have the fastpath folded into their functions. So no function call
  1351. * overhead for requests that can be satisfied on the fastpath.
  1352. *
  1353. * The fastpath works by first checking if the lockless freelist can be used.
  1354. * If not then __slab_alloc is called for slow processing.
  1355. *
  1356. * Otherwise we can simply pick the next object from the lockless free list.
  1357. */
  1358. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1359. gfp_t gfpflags, int node, void *addr)
  1360. {
  1361. void **object;
  1362. struct kmem_cache_cpu *c;
  1363. unsigned long flags;
  1364. unsigned int objsize;
  1365. might_sleep_if(gfpflags & __GFP_WAIT);
  1366. local_irq_save(flags);
  1367. c = get_cpu_slab(s, smp_processor_id());
  1368. objsize = c->objsize;
  1369. if (unlikely(!c->freelist || !node_match(c, node)))
  1370. object = __slab_alloc(s, gfpflags, node, addr, c);
  1371. else {
  1372. object = c->freelist;
  1373. c->freelist = object[c->offset];
  1374. stat(c, ALLOC_FASTPATH);
  1375. }
  1376. local_irq_restore(flags);
  1377. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1378. memset(object, 0, objsize);
  1379. return object;
  1380. }
  1381. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1382. {
  1383. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1384. }
  1385. EXPORT_SYMBOL(kmem_cache_alloc);
  1386. #ifdef CONFIG_NUMA
  1387. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1388. {
  1389. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1390. }
  1391. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1392. #endif
  1393. /*
  1394. * Slow patch handling. This may still be called frequently since objects
  1395. * have a longer lifetime than the cpu slabs in most processing loads.
  1396. *
  1397. * So we still attempt to reduce cache line usage. Just take the slab
  1398. * lock and free the item. If there is no additional partial page
  1399. * handling required then we can return immediately.
  1400. */
  1401. static void __slab_free(struct kmem_cache *s, struct page *page,
  1402. void *x, void *addr, unsigned int offset)
  1403. {
  1404. void *prior;
  1405. void **object = (void *)x;
  1406. struct kmem_cache_cpu *c;
  1407. c = get_cpu_slab(s, raw_smp_processor_id());
  1408. stat(c, FREE_SLOWPATH);
  1409. slab_lock(page);
  1410. if (unlikely(SLABDEBUG && PageSlubDebug(page)))
  1411. goto debug;
  1412. checks_ok:
  1413. prior = object[offset] = page->freelist;
  1414. page->freelist = object;
  1415. page->inuse--;
  1416. if (unlikely(PageSlubFrozen(page))) {
  1417. stat(c, FREE_FROZEN);
  1418. goto out_unlock;
  1419. }
  1420. if (unlikely(!page->inuse))
  1421. goto slab_empty;
  1422. /*
  1423. * Objects left in the slab. If it was not on the partial list before
  1424. * then add it.
  1425. */
  1426. if (unlikely(!prior)) {
  1427. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1428. stat(c, FREE_ADD_PARTIAL);
  1429. }
  1430. out_unlock:
  1431. slab_unlock(page);
  1432. return;
  1433. slab_empty:
  1434. if (prior) {
  1435. /*
  1436. * Slab still on the partial list.
  1437. */
  1438. remove_partial(s, page);
  1439. stat(c, FREE_REMOVE_PARTIAL);
  1440. }
  1441. slab_unlock(page);
  1442. stat(c, FREE_SLAB);
  1443. discard_slab(s, page);
  1444. return;
  1445. debug:
  1446. if (!free_debug_processing(s, page, x, addr))
  1447. goto out_unlock;
  1448. goto checks_ok;
  1449. }
  1450. /*
  1451. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1452. * can perform fastpath freeing without additional function calls.
  1453. *
  1454. * The fastpath is only possible if we are freeing to the current cpu slab
  1455. * of this processor. This typically the case if we have just allocated
  1456. * the item before.
  1457. *
  1458. * If fastpath is not possible then fall back to __slab_free where we deal
  1459. * with all sorts of special processing.
  1460. */
  1461. static __always_inline void slab_free(struct kmem_cache *s,
  1462. struct page *page, void *x, void *addr)
  1463. {
  1464. void **object = (void *)x;
  1465. struct kmem_cache_cpu *c;
  1466. unsigned long flags;
  1467. local_irq_save(flags);
  1468. c = get_cpu_slab(s, smp_processor_id());
  1469. debug_check_no_locks_freed(object, c->objsize);
  1470. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1471. debug_check_no_obj_freed(object, s->objsize);
  1472. if (likely(page == c->page && c->node >= 0)) {
  1473. object[c->offset] = c->freelist;
  1474. c->freelist = object;
  1475. stat(c, FREE_FASTPATH);
  1476. } else
  1477. __slab_free(s, page, x, addr, c->offset);
  1478. local_irq_restore(flags);
  1479. }
  1480. void kmem_cache_free(struct kmem_cache *s, void *x)
  1481. {
  1482. struct page *page;
  1483. page = virt_to_head_page(x);
  1484. slab_free(s, page, x, __builtin_return_address(0));
  1485. }
  1486. EXPORT_SYMBOL(kmem_cache_free);
  1487. /* Figure out on which slab object the object resides */
  1488. static struct page *get_object_page(const void *x)
  1489. {
  1490. struct page *page = virt_to_head_page(x);
  1491. if (!PageSlab(page))
  1492. return NULL;
  1493. return page;
  1494. }
  1495. /*
  1496. * Object placement in a slab is made very easy because we always start at
  1497. * offset 0. If we tune the size of the object to the alignment then we can
  1498. * get the required alignment by putting one properly sized object after
  1499. * another.
  1500. *
  1501. * Notice that the allocation order determines the sizes of the per cpu
  1502. * caches. Each processor has always one slab available for allocations.
  1503. * Increasing the allocation order reduces the number of times that slabs
  1504. * must be moved on and off the partial lists and is therefore a factor in
  1505. * locking overhead.
  1506. */
  1507. /*
  1508. * Mininum / Maximum order of slab pages. This influences locking overhead
  1509. * and slab fragmentation. A higher order reduces the number of partial slabs
  1510. * and increases the number of allocations possible without having to
  1511. * take the list_lock.
  1512. */
  1513. static int slub_min_order;
  1514. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1515. static int slub_min_objects;
  1516. /*
  1517. * Merge control. If this is set then no merging of slab caches will occur.
  1518. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1519. */
  1520. static int slub_nomerge;
  1521. /*
  1522. * Calculate the order of allocation given an slab object size.
  1523. *
  1524. * The order of allocation has significant impact on performance and other
  1525. * system components. Generally order 0 allocations should be preferred since
  1526. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1527. * be problematic to put into order 0 slabs because there may be too much
  1528. * unused space left. We go to a higher order if more than 1/16th of the slab
  1529. * would be wasted.
  1530. *
  1531. * In order to reach satisfactory performance we must ensure that a minimum
  1532. * number of objects is in one slab. Otherwise we may generate too much
  1533. * activity on the partial lists which requires taking the list_lock. This is
  1534. * less a concern for large slabs though which are rarely used.
  1535. *
  1536. * slub_max_order specifies the order where we begin to stop considering the
  1537. * number of objects in a slab as critical. If we reach slub_max_order then
  1538. * we try to keep the page order as low as possible. So we accept more waste
  1539. * of space in favor of a small page order.
  1540. *
  1541. * Higher order allocations also allow the placement of more objects in a
  1542. * slab and thereby reduce object handling overhead. If the user has
  1543. * requested a higher mininum order then we start with that one instead of
  1544. * the smallest order which will fit the object.
  1545. */
  1546. static inline int slab_order(int size, int min_objects,
  1547. int max_order, int fract_leftover)
  1548. {
  1549. int order;
  1550. int rem;
  1551. int min_order = slub_min_order;
  1552. if ((PAGE_SIZE << min_order) / size > 65535)
  1553. return get_order(size * 65535) - 1;
  1554. for (order = max(min_order,
  1555. fls(min_objects * size - 1) - PAGE_SHIFT);
  1556. order <= max_order; order++) {
  1557. unsigned long slab_size = PAGE_SIZE << order;
  1558. if (slab_size < min_objects * size)
  1559. continue;
  1560. rem = slab_size % size;
  1561. if (rem <= slab_size / fract_leftover)
  1562. break;
  1563. }
  1564. return order;
  1565. }
  1566. static inline int calculate_order(int size)
  1567. {
  1568. int order;
  1569. int min_objects;
  1570. int fraction;
  1571. /*
  1572. * Attempt to find best configuration for a slab. This
  1573. * works by first attempting to generate a layout with
  1574. * the best configuration and backing off gradually.
  1575. *
  1576. * First we reduce the acceptable waste in a slab. Then
  1577. * we reduce the minimum objects required in a slab.
  1578. */
  1579. min_objects = slub_min_objects;
  1580. if (!min_objects)
  1581. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1582. while (min_objects > 1) {
  1583. fraction = 16;
  1584. while (fraction >= 4) {
  1585. order = slab_order(size, min_objects,
  1586. slub_max_order, fraction);
  1587. if (order <= slub_max_order)
  1588. return order;
  1589. fraction /= 2;
  1590. }
  1591. min_objects /= 2;
  1592. }
  1593. /*
  1594. * We were unable to place multiple objects in a slab. Now
  1595. * lets see if we can place a single object there.
  1596. */
  1597. order = slab_order(size, 1, slub_max_order, 1);
  1598. if (order <= slub_max_order)
  1599. return order;
  1600. /*
  1601. * Doh this slab cannot be placed using slub_max_order.
  1602. */
  1603. order = slab_order(size, 1, MAX_ORDER, 1);
  1604. if (order <= MAX_ORDER)
  1605. return order;
  1606. return -ENOSYS;
  1607. }
  1608. /*
  1609. * Figure out what the alignment of the objects will be.
  1610. */
  1611. static unsigned long calculate_alignment(unsigned long flags,
  1612. unsigned long align, unsigned long size)
  1613. {
  1614. /*
  1615. * If the user wants hardware cache aligned objects then follow that
  1616. * suggestion if the object is sufficiently large.
  1617. *
  1618. * The hardware cache alignment cannot override the specified
  1619. * alignment though. If that is greater then use it.
  1620. */
  1621. if (flags & SLAB_HWCACHE_ALIGN) {
  1622. unsigned long ralign = cache_line_size();
  1623. while (size <= ralign / 2)
  1624. ralign /= 2;
  1625. align = max(align, ralign);
  1626. }
  1627. if (align < ARCH_SLAB_MINALIGN)
  1628. align = ARCH_SLAB_MINALIGN;
  1629. return ALIGN(align, sizeof(void *));
  1630. }
  1631. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1632. struct kmem_cache_cpu *c)
  1633. {
  1634. c->page = NULL;
  1635. c->freelist = NULL;
  1636. c->node = 0;
  1637. c->offset = s->offset / sizeof(void *);
  1638. c->objsize = s->objsize;
  1639. #ifdef CONFIG_SLUB_STATS
  1640. memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
  1641. #endif
  1642. }
  1643. static void
  1644. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1645. {
  1646. n->nr_partial = 0;
  1647. /*
  1648. * The larger the object size is, the more pages we want on the partial
  1649. * list to avoid pounding the page allocator excessively.
  1650. */
  1651. n->min_partial = ilog2(s->size);
  1652. if (n->min_partial < MIN_PARTIAL)
  1653. n->min_partial = MIN_PARTIAL;
  1654. else if (n->min_partial > MAX_PARTIAL)
  1655. n->min_partial = MAX_PARTIAL;
  1656. spin_lock_init(&n->list_lock);
  1657. INIT_LIST_HEAD(&n->partial);
  1658. #ifdef CONFIG_SLUB_DEBUG
  1659. atomic_long_set(&n->nr_slabs, 0);
  1660. atomic_long_set(&n->total_objects, 0);
  1661. INIT_LIST_HEAD(&n->full);
  1662. #endif
  1663. }
  1664. #ifdef CONFIG_SMP
  1665. /*
  1666. * Per cpu array for per cpu structures.
  1667. *
  1668. * The per cpu array places all kmem_cache_cpu structures from one processor
  1669. * close together meaning that it becomes possible that multiple per cpu
  1670. * structures are contained in one cacheline. This may be particularly
  1671. * beneficial for the kmalloc caches.
  1672. *
  1673. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1674. * likely able to get per cpu structures for all caches from the array defined
  1675. * here. We must be able to cover all kmalloc caches during bootstrap.
  1676. *
  1677. * If the per cpu array is exhausted then fall back to kmalloc
  1678. * of individual cachelines. No sharing is possible then.
  1679. */
  1680. #define NR_KMEM_CACHE_CPU 100
  1681. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1682. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1683. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1684. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1685. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1686. int cpu, gfp_t flags)
  1687. {
  1688. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1689. if (c)
  1690. per_cpu(kmem_cache_cpu_free, cpu) =
  1691. (void *)c->freelist;
  1692. else {
  1693. /* Table overflow: So allocate ourselves */
  1694. c = kmalloc_node(
  1695. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1696. flags, cpu_to_node(cpu));
  1697. if (!c)
  1698. return NULL;
  1699. }
  1700. init_kmem_cache_cpu(s, c);
  1701. return c;
  1702. }
  1703. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1704. {
  1705. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1706. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1707. kfree(c);
  1708. return;
  1709. }
  1710. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1711. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1712. }
  1713. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1714. {
  1715. int cpu;
  1716. for_each_online_cpu(cpu) {
  1717. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1718. if (c) {
  1719. s->cpu_slab[cpu] = NULL;
  1720. free_kmem_cache_cpu(c, cpu);
  1721. }
  1722. }
  1723. }
  1724. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1725. {
  1726. int cpu;
  1727. for_each_online_cpu(cpu) {
  1728. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1729. if (c)
  1730. continue;
  1731. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1732. if (!c) {
  1733. free_kmem_cache_cpus(s);
  1734. return 0;
  1735. }
  1736. s->cpu_slab[cpu] = c;
  1737. }
  1738. return 1;
  1739. }
  1740. /*
  1741. * Initialize the per cpu array.
  1742. */
  1743. static void init_alloc_cpu_cpu(int cpu)
  1744. {
  1745. int i;
  1746. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1747. return;
  1748. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1749. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1750. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1751. }
  1752. static void __init init_alloc_cpu(void)
  1753. {
  1754. int cpu;
  1755. for_each_online_cpu(cpu)
  1756. init_alloc_cpu_cpu(cpu);
  1757. }
  1758. #else
  1759. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1760. static inline void init_alloc_cpu(void) {}
  1761. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1762. {
  1763. init_kmem_cache_cpu(s, &s->cpu_slab);
  1764. return 1;
  1765. }
  1766. #endif
  1767. #ifdef CONFIG_NUMA
  1768. /*
  1769. * No kmalloc_node yet so do it by hand. We know that this is the first
  1770. * slab on the node for this slabcache. There are no concurrent accesses
  1771. * possible.
  1772. *
  1773. * Note that this function only works on the kmalloc_node_cache
  1774. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1775. * memory on a fresh node that has no slab structures yet.
  1776. */
  1777. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1778. int node)
  1779. {
  1780. struct page *page;
  1781. struct kmem_cache_node *n;
  1782. unsigned long flags;
  1783. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1784. page = new_slab(kmalloc_caches, gfpflags, node);
  1785. BUG_ON(!page);
  1786. if (page_to_nid(page) != node) {
  1787. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1788. "node %d\n", node);
  1789. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1790. "in order to be able to continue\n");
  1791. }
  1792. n = page->freelist;
  1793. BUG_ON(!n);
  1794. page->freelist = get_freepointer(kmalloc_caches, n);
  1795. page->inuse++;
  1796. kmalloc_caches->node[node] = n;
  1797. #ifdef CONFIG_SLUB_DEBUG
  1798. init_object(kmalloc_caches, n, 1);
  1799. init_tracking(kmalloc_caches, n);
  1800. #endif
  1801. init_kmem_cache_node(n, kmalloc_caches);
  1802. inc_slabs_node(kmalloc_caches, node, page->objects);
  1803. /*
  1804. * lockdep requires consistent irq usage for each lock
  1805. * so even though there cannot be a race this early in
  1806. * the boot sequence, we still disable irqs.
  1807. */
  1808. local_irq_save(flags);
  1809. add_partial(n, page, 0);
  1810. local_irq_restore(flags);
  1811. return n;
  1812. }
  1813. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1814. {
  1815. int node;
  1816. for_each_node_state(node, N_NORMAL_MEMORY) {
  1817. struct kmem_cache_node *n = s->node[node];
  1818. if (n && n != &s->local_node)
  1819. kmem_cache_free(kmalloc_caches, n);
  1820. s->node[node] = NULL;
  1821. }
  1822. }
  1823. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1824. {
  1825. int node;
  1826. int local_node;
  1827. if (slab_state >= UP)
  1828. local_node = page_to_nid(virt_to_page(s));
  1829. else
  1830. local_node = 0;
  1831. for_each_node_state(node, N_NORMAL_MEMORY) {
  1832. struct kmem_cache_node *n;
  1833. if (local_node == node)
  1834. n = &s->local_node;
  1835. else {
  1836. if (slab_state == DOWN) {
  1837. n = early_kmem_cache_node_alloc(gfpflags,
  1838. node);
  1839. continue;
  1840. }
  1841. n = kmem_cache_alloc_node(kmalloc_caches,
  1842. gfpflags, node);
  1843. if (!n) {
  1844. free_kmem_cache_nodes(s);
  1845. return 0;
  1846. }
  1847. }
  1848. s->node[node] = n;
  1849. init_kmem_cache_node(n, s);
  1850. }
  1851. return 1;
  1852. }
  1853. #else
  1854. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1855. {
  1856. }
  1857. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1858. {
  1859. init_kmem_cache_node(&s->local_node, s);
  1860. return 1;
  1861. }
  1862. #endif
  1863. /*
  1864. * calculate_sizes() determines the order and the distribution of data within
  1865. * a slab object.
  1866. */
  1867. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1868. {
  1869. unsigned long flags = s->flags;
  1870. unsigned long size = s->objsize;
  1871. unsigned long align = s->align;
  1872. int order;
  1873. /*
  1874. * Round up object size to the next word boundary. We can only
  1875. * place the free pointer at word boundaries and this determines
  1876. * the possible location of the free pointer.
  1877. */
  1878. size = ALIGN(size, sizeof(void *));
  1879. #ifdef CONFIG_SLUB_DEBUG
  1880. /*
  1881. * Determine if we can poison the object itself. If the user of
  1882. * the slab may touch the object after free or before allocation
  1883. * then we should never poison the object itself.
  1884. */
  1885. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1886. !s->ctor)
  1887. s->flags |= __OBJECT_POISON;
  1888. else
  1889. s->flags &= ~__OBJECT_POISON;
  1890. /*
  1891. * If we are Redzoning then check if there is some space between the
  1892. * end of the object and the free pointer. If not then add an
  1893. * additional word to have some bytes to store Redzone information.
  1894. */
  1895. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1896. size += sizeof(void *);
  1897. #endif
  1898. /*
  1899. * With that we have determined the number of bytes in actual use
  1900. * by the object. This is the potential offset to the free pointer.
  1901. */
  1902. s->inuse = size;
  1903. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1904. s->ctor)) {
  1905. /*
  1906. * Relocate free pointer after the object if it is not
  1907. * permitted to overwrite the first word of the object on
  1908. * kmem_cache_free.
  1909. *
  1910. * This is the case if we do RCU, have a constructor or
  1911. * destructor or are poisoning the objects.
  1912. */
  1913. s->offset = size;
  1914. size += sizeof(void *);
  1915. }
  1916. #ifdef CONFIG_SLUB_DEBUG
  1917. if (flags & SLAB_STORE_USER)
  1918. /*
  1919. * Need to store information about allocs and frees after
  1920. * the object.
  1921. */
  1922. size += 2 * sizeof(struct track);
  1923. if (flags & SLAB_RED_ZONE)
  1924. /*
  1925. * Add some empty padding so that we can catch
  1926. * overwrites from earlier objects rather than let
  1927. * tracking information or the free pointer be
  1928. * corrupted if an user writes before the start
  1929. * of the object.
  1930. */
  1931. size += sizeof(void *);
  1932. #endif
  1933. /*
  1934. * Determine the alignment based on various parameters that the
  1935. * user specified and the dynamic determination of cache line size
  1936. * on bootup.
  1937. */
  1938. align = calculate_alignment(flags, align, s->objsize);
  1939. /*
  1940. * SLUB stores one object immediately after another beginning from
  1941. * offset 0. In order to align the objects we have to simply size
  1942. * each object to conform to the alignment.
  1943. */
  1944. size = ALIGN(size, align);
  1945. s->size = size;
  1946. if (forced_order >= 0)
  1947. order = forced_order;
  1948. else
  1949. order = calculate_order(size);
  1950. if (order < 0)
  1951. return 0;
  1952. s->allocflags = 0;
  1953. if (order)
  1954. s->allocflags |= __GFP_COMP;
  1955. if (s->flags & SLAB_CACHE_DMA)
  1956. s->allocflags |= SLUB_DMA;
  1957. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1958. s->allocflags |= __GFP_RECLAIMABLE;
  1959. /*
  1960. * Determine the number of objects per slab
  1961. */
  1962. s->oo = oo_make(order, size);
  1963. s->min = oo_make(get_order(size), size);
  1964. if (oo_objects(s->oo) > oo_objects(s->max))
  1965. s->max = s->oo;
  1966. return !!oo_objects(s->oo);
  1967. }
  1968. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1969. const char *name, size_t size,
  1970. size_t align, unsigned long flags,
  1971. void (*ctor)(void *))
  1972. {
  1973. memset(s, 0, kmem_size);
  1974. s->name = name;
  1975. s->ctor = ctor;
  1976. s->objsize = size;
  1977. s->align = align;
  1978. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1979. if (!calculate_sizes(s, -1))
  1980. goto error;
  1981. s->refcount = 1;
  1982. #ifdef CONFIG_NUMA
  1983. s->remote_node_defrag_ratio = 1000;
  1984. #endif
  1985. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1986. goto error;
  1987. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1988. return 1;
  1989. free_kmem_cache_nodes(s);
  1990. error:
  1991. if (flags & SLAB_PANIC)
  1992. panic("Cannot create slab %s size=%lu realsize=%u "
  1993. "order=%u offset=%u flags=%lx\n",
  1994. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  1995. s->offset, flags);
  1996. return 0;
  1997. }
  1998. /*
  1999. * Check if a given pointer is valid
  2000. */
  2001. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2002. {
  2003. struct page *page;
  2004. page = get_object_page(object);
  2005. if (!page || s != page->slab)
  2006. /* No slab or wrong slab */
  2007. return 0;
  2008. if (!check_valid_pointer(s, page, object))
  2009. return 0;
  2010. /*
  2011. * We could also check if the object is on the slabs freelist.
  2012. * But this would be too expensive and it seems that the main
  2013. * purpose of kmem_ptr_valid() is to check if the object belongs
  2014. * to a certain slab.
  2015. */
  2016. return 1;
  2017. }
  2018. EXPORT_SYMBOL(kmem_ptr_validate);
  2019. /*
  2020. * Determine the size of a slab object
  2021. */
  2022. unsigned int kmem_cache_size(struct kmem_cache *s)
  2023. {
  2024. return s->objsize;
  2025. }
  2026. EXPORT_SYMBOL(kmem_cache_size);
  2027. const char *kmem_cache_name(struct kmem_cache *s)
  2028. {
  2029. return s->name;
  2030. }
  2031. EXPORT_SYMBOL(kmem_cache_name);
  2032. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2033. const char *text)
  2034. {
  2035. #ifdef CONFIG_SLUB_DEBUG
  2036. void *addr = page_address(page);
  2037. void *p;
  2038. DECLARE_BITMAP(map, page->objects);
  2039. bitmap_zero(map, page->objects);
  2040. slab_err(s, page, "%s", text);
  2041. slab_lock(page);
  2042. for_each_free_object(p, s, page->freelist)
  2043. set_bit(slab_index(p, s, addr), map);
  2044. for_each_object(p, s, addr, page->objects) {
  2045. if (!test_bit(slab_index(p, s, addr), map)) {
  2046. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2047. p, p - addr);
  2048. print_tracking(s, p);
  2049. }
  2050. }
  2051. slab_unlock(page);
  2052. #endif
  2053. }
  2054. /*
  2055. * Attempt to free all partial slabs on a node.
  2056. */
  2057. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2058. {
  2059. unsigned long flags;
  2060. struct page *page, *h;
  2061. spin_lock_irqsave(&n->list_lock, flags);
  2062. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2063. if (!page->inuse) {
  2064. list_del(&page->lru);
  2065. discard_slab(s, page);
  2066. n->nr_partial--;
  2067. } else {
  2068. list_slab_objects(s, page,
  2069. "Objects remaining on kmem_cache_close()");
  2070. }
  2071. }
  2072. spin_unlock_irqrestore(&n->list_lock, flags);
  2073. }
  2074. /*
  2075. * Release all resources used by a slab cache.
  2076. */
  2077. static inline int kmem_cache_close(struct kmem_cache *s)
  2078. {
  2079. int node;
  2080. flush_all(s);
  2081. /* Attempt to free all objects */
  2082. free_kmem_cache_cpus(s);
  2083. for_each_node_state(node, N_NORMAL_MEMORY) {
  2084. struct kmem_cache_node *n = get_node(s, node);
  2085. free_partial(s, n);
  2086. if (n->nr_partial || slabs_node(s, node))
  2087. return 1;
  2088. }
  2089. free_kmem_cache_nodes(s);
  2090. return 0;
  2091. }
  2092. /*
  2093. * Close a cache and release the kmem_cache structure
  2094. * (must be used for caches created using kmem_cache_create)
  2095. */
  2096. void kmem_cache_destroy(struct kmem_cache *s)
  2097. {
  2098. down_write(&slub_lock);
  2099. s->refcount--;
  2100. if (!s->refcount) {
  2101. list_del(&s->list);
  2102. up_write(&slub_lock);
  2103. if (kmem_cache_close(s)) {
  2104. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2105. "still has objects.\n", s->name, __func__);
  2106. dump_stack();
  2107. }
  2108. sysfs_slab_remove(s);
  2109. } else
  2110. up_write(&slub_lock);
  2111. }
  2112. EXPORT_SYMBOL(kmem_cache_destroy);
  2113. /********************************************************************
  2114. * Kmalloc subsystem
  2115. *******************************************************************/
  2116. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2117. EXPORT_SYMBOL(kmalloc_caches);
  2118. static int __init setup_slub_min_order(char *str)
  2119. {
  2120. get_option(&str, &slub_min_order);
  2121. return 1;
  2122. }
  2123. __setup("slub_min_order=", setup_slub_min_order);
  2124. static int __init setup_slub_max_order(char *str)
  2125. {
  2126. get_option(&str, &slub_max_order);
  2127. return 1;
  2128. }
  2129. __setup("slub_max_order=", setup_slub_max_order);
  2130. static int __init setup_slub_min_objects(char *str)
  2131. {
  2132. get_option(&str, &slub_min_objects);
  2133. return 1;
  2134. }
  2135. __setup("slub_min_objects=", setup_slub_min_objects);
  2136. static int __init setup_slub_nomerge(char *str)
  2137. {
  2138. slub_nomerge = 1;
  2139. return 1;
  2140. }
  2141. __setup("slub_nomerge", setup_slub_nomerge);
  2142. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2143. const char *name, int size, gfp_t gfp_flags)
  2144. {
  2145. unsigned int flags = 0;
  2146. if (gfp_flags & SLUB_DMA)
  2147. flags = SLAB_CACHE_DMA;
  2148. down_write(&slub_lock);
  2149. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2150. flags, NULL))
  2151. goto panic;
  2152. list_add(&s->list, &slab_caches);
  2153. up_write(&slub_lock);
  2154. if (sysfs_slab_add(s))
  2155. goto panic;
  2156. return s;
  2157. panic:
  2158. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2159. }
  2160. #ifdef CONFIG_ZONE_DMA
  2161. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2162. static void sysfs_add_func(struct work_struct *w)
  2163. {
  2164. struct kmem_cache *s;
  2165. down_write(&slub_lock);
  2166. list_for_each_entry(s, &slab_caches, list) {
  2167. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2168. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2169. sysfs_slab_add(s);
  2170. }
  2171. }
  2172. up_write(&slub_lock);
  2173. }
  2174. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2175. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2176. {
  2177. struct kmem_cache *s;
  2178. char *text;
  2179. size_t realsize;
  2180. s = kmalloc_caches_dma[index];
  2181. if (s)
  2182. return s;
  2183. /* Dynamically create dma cache */
  2184. if (flags & __GFP_WAIT)
  2185. down_write(&slub_lock);
  2186. else {
  2187. if (!down_write_trylock(&slub_lock))
  2188. goto out;
  2189. }
  2190. if (kmalloc_caches_dma[index])
  2191. goto unlock_out;
  2192. realsize = kmalloc_caches[index].objsize;
  2193. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2194. (unsigned int)realsize);
  2195. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2196. if (!s || !text || !kmem_cache_open(s, flags, text,
  2197. realsize, ARCH_KMALLOC_MINALIGN,
  2198. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2199. kfree(s);
  2200. kfree(text);
  2201. goto unlock_out;
  2202. }
  2203. list_add(&s->list, &slab_caches);
  2204. kmalloc_caches_dma[index] = s;
  2205. schedule_work(&sysfs_add_work);
  2206. unlock_out:
  2207. up_write(&slub_lock);
  2208. out:
  2209. return kmalloc_caches_dma[index];
  2210. }
  2211. #endif
  2212. /*
  2213. * Conversion table for small slabs sizes / 8 to the index in the
  2214. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2215. * of two cache sizes there. The size of larger slabs can be determined using
  2216. * fls.
  2217. */
  2218. static s8 size_index[24] = {
  2219. 3, /* 8 */
  2220. 4, /* 16 */
  2221. 5, /* 24 */
  2222. 5, /* 32 */
  2223. 6, /* 40 */
  2224. 6, /* 48 */
  2225. 6, /* 56 */
  2226. 6, /* 64 */
  2227. 1, /* 72 */
  2228. 1, /* 80 */
  2229. 1, /* 88 */
  2230. 1, /* 96 */
  2231. 7, /* 104 */
  2232. 7, /* 112 */
  2233. 7, /* 120 */
  2234. 7, /* 128 */
  2235. 2, /* 136 */
  2236. 2, /* 144 */
  2237. 2, /* 152 */
  2238. 2, /* 160 */
  2239. 2, /* 168 */
  2240. 2, /* 176 */
  2241. 2, /* 184 */
  2242. 2 /* 192 */
  2243. };
  2244. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2245. {
  2246. int index;
  2247. if (size <= 192) {
  2248. if (!size)
  2249. return ZERO_SIZE_PTR;
  2250. index = size_index[(size - 1) / 8];
  2251. } else
  2252. index = fls(size - 1);
  2253. #ifdef CONFIG_ZONE_DMA
  2254. if (unlikely((flags & SLUB_DMA)))
  2255. return dma_kmalloc_cache(index, flags);
  2256. #endif
  2257. return &kmalloc_caches[index];
  2258. }
  2259. void *__kmalloc(size_t size, gfp_t flags)
  2260. {
  2261. struct kmem_cache *s;
  2262. if (unlikely(size > PAGE_SIZE))
  2263. return kmalloc_large(size, flags);
  2264. s = get_slab(size, flags);
  2265. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2266. return s;
  2267. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2268. }
  2269. EXPORT_SYMBOL(__kmalloc);
  2270. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2271. {
  2272. struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
  2273. get_order(size));
  2274. if (page)
  2275. return page_address(page);
  2276. else
  2277. return NULL;
  2278. }
  2279. #ifdef CONFIG_NUMA
  2280. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2281. {
  2282. struct kmem_cache *s;
  2283. if (unlikely(size > PAGE_SIZE))
  2284. return kmalloc_large_node(size, flags, node);
  2285. s = get_slab(size, flags);
  2286. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2287. return s;
  2288. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2289. }
  2290. EXPORT_SYMBOL(__kmalloc_node);
  2291. #endif
  2292. size_t ksize(const void *object)
  2293. {
  2294. struct page *page;
  2295. struct kmem_cache *s;
  2296. if (unlikely(object == ZERO_SIZE_PTR))
  2297. return 0;
  2298. page = virt_to_head_page(object);
  2299. if (unlikely(!PageSlab(page))) {
  2300. WARN_ON(!PageCompound(page));
  2301. return PAGE_SIZE << compound_order(page);
  2302. }
  2303. s = page->slab;
  2304. #ifdef CONFIG_SLUB_DEBUG
  2305. /*
  2306. * Debugging requires use of the padding between object
  2307. * and whatever may come after it.
  2308. */
  2309. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2310. return s->objsize;
  2311. #endif
  2312. /*
  2313. * If we have the need to store the freelist pointer
  2314. * back there or track user information then we can
  2315. * only use the space before that information.
  2316. */
  2317. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2318. return s->inuse;
  2319. /*
  2320. * Else we can use all the padding etc for the allocation
  2321. */
  2322. return s->size;
  2323. }
  2324. void kfree(const void *x)
  2325. {
  2326. struct page *page;
  2327. void *object = (void *)x;
  2328. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2329. return;
  2330. page = virt_to_head_page(x);
  2331. if (unlikely(!PageSlab(page))) {
  2332. BUG_ON(!PageCompound(page));
  2333. put_page(page);
  2334. return;
  2335. }
  2336. slab_free(page->slab, page, object, __builtin_return_address(0));
  2337. }
  2338. EXPORT_SYMBOL(kfree);
  2339. /*
  2340. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2341. * the remaining slabs by the number of items in use. The slabs with the
  2342. * most items in use come first. New allocations will then fill those up
  2343. * and thus they can be removed from the partial lists.
  2344. *
  2345. * The slabs with the least items are placed last. This results in them
  2346. * being allocated from last increasing the chance that the last objects
  2347. * are freed in them.
  2348. */
  2349. int kmem_cache_shrink(struct kmem_cache *s)
  2350. {
  2351. int node;
  2352. int i;
  2353. struct kmem_cache_node *n;
  2354. struct page *page;
  2355. struct page *t;
  2356. int objects = oo_objects(s->max);
  2357. struct list_head *slabs_by_inuse =
  2358. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2359. unsigned long flags;
  2360. if (!slabs_by_inuse)
  2361. return -ENOMEM;
  2362. flush_all(s);
  2363. for_each_node_state(node, N_NORMAL_MEMORY) {
  2364. n = get_node(s, node);
  2365. if (!n->nr_partial)
  2366. continue;
  2367. for (i = 0; i < objects; i++)
  2368. INIT_LIST_HEAD(slabs_by_inuse + i);
  2369. spin_lock_irqsave(&n->list_lock, flags);
  2370. /*
  2371. * Build lists indexed by the items in use in each slab.
  2372. *
  2373. * Note that concurrent frees may occur while we hold the
  2374. * list_lock. page->inuse here is the upper limit.
  2375. */
  2376. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2377. if (!page->inuse && slab_trylock(page)) {
  2378. /*
  2379. * Must hold slab lock here because slab_free
  2380. * may have freed the last object and be
  2381. * waiting to release the slab.
  2382. */
  2383. list_del(&page->lru);
  2384. n->nr_partial--;
  2385. slab_unlock(page);
  2386. discard_slab(s, page);
  2387. } else {
  2388. list_move(&page->lru,
  2389. slabs_by_inuse + page->inuse);
  2390. }
  2391. }
  2392. /*
  2393. * Rebuild the partial list with the slabs filled up most
  2394. * first and the least used slabs at the end.
  2395. */
  2396. for (i = objects - 1; i >= 0; i--)
  2397. list_splice(slabs_by_inuse + i, n->partial.prev);
  2398. spin_unlock_irqrestore(&n->list_lock, flags);
  2399. }
  2400. kfree(slabs_by_inuse);
  2401. return 0;
  2402. }
  2403. EXPORT_SYMBOL(kmem_cache_shrink);
  2404. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2405. static int slab_mem_going_offline_callback(void *arg)
  2406. {
  2407. struct kmem_cache *s;
  2408. down_read(&slub_lock);
  2409. list_for_each_entry(s, &slab_caches, list)
  2410. kmem_cache_shrink(s);
  2411. up_read(&slub_lock);
  2412. return 0;
  2413. }
  2414. static void slab_mem_offline_callback(void *arg)
  2415. {
  2416. struct kmem_cache_node *n;
  2417. struct kmem_cache *s;
  2418. struct memory_notify *marg = arg;
  2419. int offline_node;
  2420. offline_node = marg->status_change_nid;
  2421. /*
  2422. * If the node still has available memory. we need kmem_cache_node
  2423. * for it yet.
  2424. */
  2425. if (offline_node < 0)
  2426. return;
  2427. down_read(&slub_lock);
  2428. list_for_each_entry(s, &slab_caches, list) {
  2429. n = get_node(s, offline_node);
  2430. if (n) {
  2431. /*
  2432. * if n->nr_slabs > 0, slabs still exist on the node
  2433. * that is going down. We were unable to free them,
  2434. * and offline_pages() function shoudn't call this
  2435. * callback. So, we must fail.
  2436. */
  2437. BUG_ON(slabs_node(s, offline_node));
  2438. s->node[offline_node] = NULL;
  2439. kmem_cache_free(kmalloc_caches, n);
  2440. }
  2441. }
  2442. up_read(&slub_lock);
  2443. }
  2444. static int slab_mem_going_online_callback(void *arg)
  2445. {
  2446. struct kmem_cache_node *n;
  2447. struct kmem_cache *s;
  2448. struct memory_notify *marg = arg;
  2449. int nid = marg->status_change_nid;
  2450. int ret = 0;
  2451. /*
  2452. * If the node's memory is already available, then kmem_cache_node is
  2453. * already created. Nothing to do.
  2454. */
  2455. if (nid < 0)
  2456. return 0;
  2457. /*
  2458. * We are bringing a node online. No memory is available yet. We must
  2459. * allocate a kmem_cache_node structure in order to bring the node
  2460. * online.
  2461. */
  2462. down_read(&slub_lock);
  2463. list_for_each_entry(s, &slab_caches, list) {
  2464. /*
  2465. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2466. * since memory is not yet available from the node that
  2467. * is brought up.
  2468. */
  2469. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2470. if (!n) {
  2471. ret = -ENOMEM;
  2472. goto out;
  2473. }
  2474. init_kmem_cache_node(n, s);
  2475. s->node[nid] = n;
  2476. }
  2477. out:
  2478. up_read(&slub_lock);
  2479. return ret;
  2480. }
  2481. static int slab_memory_callback(struct notifier_block *self,
  2482. unsigned long action, void *arg)
  2483. {
  2484. int ret = 0;
  2485. switch (action) {
  2486. case MEM_GOING_ONLINE:
  2487. ret = slab_mem_going_online_callback(arg);
  2488. break;
  2489. case MEM_GOING_OFFLINE:
  2490. ret = slab_mem_going_offline_callback(arg);
  2491. break;
  2492. case MEM_OFFLINE:
  2493. case MEM_CANCEL_ONLINE:
  2494. slab_mem_offline_callback(arg);
  2495. break;
  2496. case MEM_ONLINE:
  2497. case MEM_CANCEL_OFFLINE:
  2498. break;
  2499. }
  2500. if (ret)
  2501. ret = notifier_from_errno(ret);
  2502. else
  2503. ret = NOTIFY_OK;
  2504. return ret;
  2505. }
  2506. #endif /* CONFIG_MEMORY_HOTPLUG */
  2507. /********************************************************************
  2508. * Basic setup of slabs
  2509. *******************************************************************/
  2510. void __init kmem_cache_init(void)
  2511. {
  2512. int i;
  2513. int caches = 0;
  2514. init_alloc_cpu();
  2515. #ifdef CONFIG_NUMA
  2516. /*
  2517. * Must first have the slab cache available for the allocations of the
  2518. * struct kmem_cache_node's. There is special bootstrap code in
  2519. * kmem_cache_open for slab_state == DOWN.
  2520. */
  2521. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2522. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2523. kmalloc_caches[0].refcount = -1;
  2524. caches++;
  2525. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2526. #endif
  2527. /* Able to allocate the per node structures */
  2528. slab_state = PARTIAL;
  2529. /* Caches that are not of the two-to-the-power-of size */
  2530. if (KMALLOC_MIN_SIZE <= 64) {
  2531. create_kmalloc_cache(&kmalloc_caches[1],
  2532. "kmalloc-96", 96, GFP_KERNEL);
  2533. caches++;
  2534. create_kmalloc_cache(&kmalloc_caches[2],
  2535. "kmalloc-192", 192, GFP_KERNEL);
  2536. caches++;
  2537. }
  2538. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2539. create_kmalloc_cache(&kmalloc_caches[i],
  2540. "kmalloc", 1 << i, GFP_KERNEL);
  2541. caches++;
  2542. }
  2543. /*
  2544. * Patch up the size_index table if we have strange large alignment
  2545. * requirements for the kmalloc array. This is only the case for
  2546. * MIPS it seems. The standard arches will not generate any code here.
  2547. *
  2548. * Largest permitted alignment is 256 bytes due to the way we
  2549. * handle the index determination for the smaller caches.
  2550. *
  2551. * Make sure that nothing crazy happens if someone starts tinkering
  2552. * around with ARCH_KMALLOC_MINALIGN
  2553. */
  2554. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2555. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2556. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2557. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2558. if (KMALLOC_MIN_SIZE == 128) {
  2559. /*
  2560. * The 192 byte sized cache is not used if the alignment
  2561. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2562. * instead.
  2563. */
  2564. for (i = 128 + 8; i <= 192; i += 8)
  2565. size_index[(i - 1) / 8] = 8;
  2566. }
  2567. slab_state = UP;
  2568. /* Provide the correct kmalloc names now that the caches are up */
  2569. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2570. kmalloc_caches[i]. name =
  2571. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2572. #ifdef CONFIG_SMP
  2573. register_cpu_notifier(&slab_notifier);
  2574. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2575. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2576. #else
  2577. kmem_size = sizeof(struct kmem_cache);
  2578. #endif
  2579. printk(KERN_INFO
  2580. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2581. " CPUs=%d, Nodes=%d\n",
  2582. caches, cache_line_size(),
  2583. slub_min_order, slub_max_order, slub_min_objects,
  2584. nr_cpu_ids, nr_node_ids);
  2585. }
  2586. /*
  2587. * Find a mergeable slab cache
  2588. */
  2589. static int slab_unmergeable(struct kmem_cache *s)
  2590. {
  2591. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2592. return 1;
  2593. if (s->ctor)
  2594. return 1;
  2595. /*
  2596. * We may have set a slab to be unmergeable during bootstrap.
  2597. */
  2598. if (s->refcount < 0)
  2599. return 1;
  2600. return 0;
  2601. }
  2602. static struct kmem_cache *find_mergeable(size_t size,
  2603. size_t align, unsigned long flags, const char *name,
  2604. void (*ctor)(void *))
  2605. {
  2606. struct kmem_cache *s;
  2607. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2608. return NULL;
  2609. if (ctor)
  2610. return NULL;
  2611. size = ALIGN(size, sizeof(void *));
  2612. align = calculate_alignment(flags, align, size);
  2613. size = ALIGN(size, align);
  2614. flags = kmem_cache_flags(size, flags, name, NULL);
  2615. list_for_each_entry(s, &slab_caches, list) {
  2616. if (slab_unmergeable(s))
  2617. continue;
  2618. if (size > s->size)
  2619. continue;
  2620. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2621. continue;
  2622. /*
  2623. * Check if alignment is compatible.
  2624. * Courtesy of Adrian Drzewiecki
  2625. */
  2626. if ((s->size & ~(align - 1)) != s->size)
  2627. continue;
  2628. if (s->size - size >= sizeof(void *))
  2629. continue;
  2630. return s;
  2631. }
  2632. return NULL;
  2633. }
  2634. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2635. size_t align, unsigned long flags, void (*ctor)(void *))
  2636. {
  2637. struct kmem_cache *s;
  2638. down_write(&slub_lock);
  2639. s = find_mergeable(size, align, flags, name, ctor);
  2640. if (s) {
  2641. int cpu;
  2642. s->refcount++;
  2643. /*
  2644. * Adjust the object sizes so that we clear
  2645. * the complete object on kzalloc.
  2646. */
  2647. s->objsize = max(s->objsize, (int)size);
  2648. /*
  2649. * And then we need to update the object size in the
  2650. * per cpu structures
  2651. */
  2652. for_each_online_cpu(cpu)
  2653. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2654. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2655. up_write(&slub_lock);
  2656. if (sysfs_slab_alias(s, name)) {
  2657. down_write(&slub_lock);
  2658. s->refcount--;
  2659. up_write(&slub_lock);
  2660. goto err;
  2661. }
  2662. return s;
  2663. }
  2664. s = kmalloc(kmem_size, GFP_KERNEL);
  2665. if (s) {
  2666. if (kmem_cache_open(s, GFP_KERNEL, name,
  2667. size, align, flags, ctor)) {
  2668. list_add(&s->list, &slab_caches);
  2669. up_write(&slub_lock);
  2670. if (sysfs_slab_add(s)) {
  2671. down_write(&slub_lock);
  2672. list_del(&s->list);
  2673. up_write(&slub_lock);
  2674. kfree(s);
  2675. goto err;
  2676. }
  2677. return s;
  2678. }
  2679. kfree(s);
  2680. }
  2681. up_write(&slub_lock);
  2682. err:
  2683. if (flags & SLAB_PANIC)
  2684. panic("Cannot create slabcache %s\n", name);
  2685. else
  2686. s = NULL;
  2687. return s;
  2688. }
  2689. EXPORT_SYMBOL(kmem_cache_create);
  2690. #ifdef CONFIG_SMP
  2691. /*
  2692. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2693. * necessary.
  2694. */
  2695. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2696. unsigned long action, void *hcpu)
  2697. {
  2698. long cpu = (long)hcpu;
  2699. struct kmem_cache *s;
  2700. unsigned long flags;
  2701. switch (action) {
  2702. case CPU_UP_PREPARE:
  2703. case CPU_UP_PREPARE_FROZEN:
  2704. init_alloc_cpu_cpu(cpu);
  2705. down_read(&slub_lock);
  2706. list_for_each_entry(s, &slab_caches, list)
  2707. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2708. GFP_KERNEL);
  2709. up_read(&slub_lock);
  2710. break;
  2711. case CPU_UP_CANCELED:
  2712. case CPU_UP_CANCELED_FROZEN:
  2713. case CPU_DEAD:
  2714. case CPU_DEAD_FROZEN:
  2715. down_read(&slub_lock);
  2716. list_for_each_entry(s, &slab_caches, list) {
  2717. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2718. local_irq_save(flags);
  2719. __flush_cpu_slab(s, cpu);
  2720. local_irq_restore(flags);
  2721. free_kmem_cache_cpu(c, cpu);
  2722. s->cpu_slab[cpu] = NULL;
  2723. }
  2724. up_read(&slub_lock);
  2725. break;
  2726. default:
  2727. break;
  2728. }
  2729. return NOTIFY_OK;
  2730. }
  2731. static struct notifier_block __cpuinitdata slab_notifier = {
  2732. .notifier_call = slab_cpuup_callback
  2733. };
  2734. #endif
  2735. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2736. {
  2737. struct kmem_cache *s;
  2738. if (unlikely(size > PAGE_SIZE))
  2739. return kmalloc_large(size, gfpflags);
  2740. s = get_slab(size, gfpflags);
  2741. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2742. return s;
  2743. return slab_alloc(s, gfpflags, -1, caller);
  2744. }
  2745. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2746. int node, void *caller)
  2747. {
  2748. struct kmem_cache *s;
  2749. if (unlikely(size > PAGE_SIZE))
  2750. return kmalloc_large_node(size, gfpflags, node);
  2751. s = get_slab(size, gfpflags);
  2752. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2753. return s;
  2754. return slab_alloc(s, gfpflags, node, caller);
  2755. }
  2756. #ifdef CONFIG_SLUB_DEBUG
  2757. static unsigned long count_partial(struct kmem_cache_node *n,
  2758. int (*get_count)(struct page *))
  2759. {
  2760. unsigned long flags;
  2761. unsigned long x = 0;
  2762. struct page *page;
  2763. spin_lock_irqsave(&n->list_lock, flags);
  2764. list_for_each_entry(page, &n->partial, lru)
  2765. x += get_count(page);
  2766. spin_unlock_irqrestore(&n->list_lock, flags);
  2767. return x;
  2768. }
  2769. static int count_inuse(struct page *page)
  2770. {
  2771. return page->inuse;
  2772. }
  2773. static int count_total(struct page *page)
  2774. {
  2775. return page->objects;
  2776. }
  2777. static int count_free(struct page *page)
  2778. {
  2779. return page->objects - page->inuse;
  2780. }
  2781. static int validate_slab(struct kmem_cache *s, struct page *page,
  2782. unsigned long *map)
  2783. {
  2784. void *p;
  2785. void *addr = page_address(page);
  2786. if (!check_slab(s, page) ||
  2787. !on_freelist(s, page, NULL))
  2788. return 0;
  2789. /* Now we know that a valid freelist exists */
  2790. bitmap_zero(map, page->objects);
  2791. for_each_free_object(p, s, page->freelist) {
  2792. set_bit(slab_index(p, s, addr), map);
  2793. if (!check_object(s, page, p, 0))
  2794. return 0;
  2795. }
  2796. for_each_object(p, s, addr, page->objects)
  2797. if (!test_bit(slab_index(p, s, addr), map))
  2798. if (!check_object(s, page, p, 1))
  2799. return 0;
  2800. return 1;
  2801. }
  2802. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2803. unsigned long *map)
  2804. {
  2805. if (slab_trylock(page)) {
  2806. validate_slab(s, page, map);
  2807. slab_unlock(page);
  2808. } else
  2809. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2810. s->name, page);
  2811. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2812. if (!PageSlubDebug(page))
  2813. printk(KERN_ERR "SLUB %s: SlubDebug not set "
  2814. "on slab 0x%p\n", s->name, page);
  2815. } else {
  2816. if (PageSlubDebug(page))
  2817. printk(KERN_ERR "SLUB %s: SlubDebug set on "
  2818. "slab 0x%p\n", s->name, page);
  2819. }
  2820. }
  2821. static int validate_slab_node(struct kmem_cache *s,
  2822. struct kmem_cache_node *n, unsigned long *map)
  2823. {
  2824. unsigned long count = 0;
  2825. struct page *page;
  2826. unsigned long flags;
  2827. spin_lock_irqsave(&n->list_lock, flags);
  2828. list_for_each_entry(page, &n->partial, lru) {
  2829. validate_slab_slab(s, page, map);
  2830. count++;
  2831. }
  2832. if (count != n->nr_partial)
  2833. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2834. "counter=%ld\n", s->name, count, n->nr_partial);
  2835. if (!(s->flags & SLAB_STORE_USER))
  2836. goto out;
  2837. list_for_each_entry(page, &n->full, lru) {
  2838. validate_slab_slab(s, page, map);
  2839. count++;
  2840. }
  2841. if (count != atomic_long_read(&n->nr_slabs))
  2842. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2843. "counter=%ld\n", s->name, count,
  2844. atomic_long_read(&n->nr_slabs));
  2845. out:
  2846. spin_unlock_irqrestore(&n->list_lock, flags);
  2847. return count;
  2848. }
  2849. static long validate_slab_cache(struct kmem_cache *s)
  2850. {
  2851. int node;
  2852. unsigned long count = 0;
  2853. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2854. sizeof(unsigned long), GFP_KERNEL);
  2855. if (!map)
  2856. return -ENOMEM;
  2857. flush_all(s);
  2858. for_each_node_state(node, N_NORMAL_MEMORY) {
  2859. struct kmem_cache_node *n = get_node(s, node);
  2860. count += validate_slab_node(s, n, map);
  2861. }
  2862. kfree(map);
  2863. return count;
  2864. }
  2865. #ifdef SLUB_RESILIENCY_TEST
  2866. static void resiliency_test(void)
  2867. {
  2868. u8 *p;
  2869. printk(KERN_ERR "SLUB resiliency testing\n");
  2870. printk(KERN_ERR "-----------------------\n");
  2871. printk(KERN_ERR "A. Corruption after allocation\n");
  2872. p = kzalloc(16, GFP_KERNEL);
  2873. p[16] = 0x12;
  2874. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2875. " 0x12->0x%p\n\n", p + 16);
  2876. validate_slab_cache(kmalloc_caches + 4);
  2877. /* Hmmm... The next two are dangerous */
  2878. p = kzalloc(32, GFP_KERNEL);
  2879. p[32 + sizeof(void *)] = 0x34;
  2880. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2881. " 0x34 -> -0x%p\n", p);
  2882. printk(KERN_ERR
  2883. "If allocated object is overwritten then not detectable\n\n");
  2884. validate_slab_cache(kmalloc_caches + 5);
  2885. p = kzalloc(64, GFP_KERNEL);
  2886. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2887. *p = 0x56;
  2888. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2889. p);
  2890. printk(KERN_ERR
  2891. "If allocated object is overwritten then not detectable\n\n");
  2892. validate_slab_cache(kmalloc_caches + 6);
  2893. printk(KERN_ERR "\nB. Corruption after free\n");
  2894. p = kzalloc(128, GFP_KERNEL);
  2895. kfree(p);
  2896. *p = 0x78;
  2897. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2898. validate_slab_cache(kmalloc_caches + 7);
  2899. p = kzalloc(256, GFP_KERNEL);
  2900. kfree(p);
  2901. p[50] = 0x9a;
  2902. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2903. p);
  2904. validate_slab_cache(kmalloc_caches + 8);
  2905. p = kzalloc(512, GFP_KERNEL);
  2906. kfree(p);
  2907. p[512] = 0xab;
  2908. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2909. validate_slab_cache(kmalloc_caches + 9);
  2910. }
  2911. #else
  2912. static void resiliency_test(void) {};
  2913. #endif
  2914. /*
  2915. * Generate lists of code addresses where slabcache objects are allocated
  2916. * and freed.
  2917. */
  2918. struct location {
  2919. unsigned long count;
  2920. void *addr;
  2921. long long sum_time;
  2922. long min_time;
  2923. long max_time;
  2924. long min_pid;
  2925. long max_pid;
  2926. cpumask_t cpus;
  2927. nodemask_t nodes;
  2928. };
  2929. struct loc_track {
  2930. unsigned long max;
  2931. unsigned long count;
  2932. struct location *loc;
  2933. };
  2934. static void free_loc_track(struct loc_track *t)
  2935. {
  2936. if (t->max)
  2937. free_pages((unsigned long)t->loc,
  2938. get_order(sizeof(struct location) * t->max));
  2939. }
  2940. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2941. {
  2942. struct location *l;
  2943. int order;
  2944. order = get_order(sizeof(struct location) * max);
  2945. l = (void *)__get_free_pages(flags, order);
  2946. if (!l)
  2947. return 0;
  2948. if (t->count) {
  2949. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2950. free_loc_track(t);
  2951. }
  2952. t->max = max;
  2953. t->loc = l;
  2954. return 1;
  2955. }
  2956. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2957. const struct track *track)
  2958. {
  2959. long start, end, pos;
  2960. struct location *l;
  2961. void *caddr;
  2962. unsigned long age = jiffies - track->when;
  2963. start = -1;
  2964. end = t->count;
  2965. for ( ; ; ) {
  2966. pos = start + (end - start + 1) / 2;
  2967. /*
  2968. * There is nothing at "end". If we end up there
  2969. * we need to add something to before end.
  2970. */
  2971. if (pos == end)
  2972. break;
  2973. caddr = t->loc[pos].addr;
  2974. if (track->addr == caddr) {
  2975. l = &t->loc[pos];
  2976. l->count++;
  2977. if (track->when) {
  2978. l->sum_time += age;
  2979. if (age < l->min_time)
  2980. l->min_time = age;
  2981. if (age > l->max_time)
  2982. l->max_time = age;
  2983. if (track->pid < l->min_pid)
  2984. l->min_pid = track->pid;
  2985. if (track->pid > l->max_pid)
  2986. l->max_pid = track->pid;
  2987. cpu_set(track->cpu, l->cpus);
  2988. }
  2989. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2990. return 1;
  2991. }
  2992. if (track->addr < caddr)
  2993. end = pos;
  2994. else
  2995. start = pos;
  2996. }
  2997. /*
  2998. * Not found. Insert new tracking element.
  2999. */
  3000. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3001. return 0;
  3002. l = t->loc + pos;
  3003. if (pos < t->count)
  3004. memmove(l + 1, l,
  3005. (t->count - pos) * sizeof(struct location));
  3006. t->count++;
  3007. l->count = 1;
  3008. l->addr = track->addr;
  3009. l->sum_time = age;
  3010. l->min_time = age;
  3011. l->max_time = age;
  3012. l->min_pid = track->pid;
  3013. l->max_pid = track->pid;
  3014. cpus_clear(l->cpus);
  3015. cpu_set(track->cpu, l->cpus);
  3016. nodes_clear(l->nodes);
  3017. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3018. return 1;
  3019. }
  3020. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3021. struct page *page, enum track_item alloc)
  3022. {
  3023. void *addr = page_address(page);
  3024. DECLARE_BITMAP(map, page->objects);
  3025. void *p;
  3026. bitmap_zero(map, page->objects);
  3027. for_each_free_object(p, s, page->freelist)
  3028. set_bit(slab_index(p, s, addr), map);
  3029. for_each_object(p, s, addr, page->objects)
  3030. if (!test_bit(slab_index(p, s, addr), map))
  3031. add_location(t, s, get_track(s, p, alloc));
  3032. }
  3033. static int list_locations(struct kmem_cache *s, char *buf,
  3034. enum track_item alloc)
  3035. {
  3036. int len = 0;
  3037. unsigned long i;
  3038. struct loc_track t = { 0, 0, NULL };
  3039. int node;
  3040. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3041. GFP_TEMPORARY))
  3042. return sprintf(buf, "Out of memory\n");
  3043. /* Push back cpu slabs */
  3044. flush_all(s);
  3045. for_each_node_state(node, N_NORMAL_MEMORY) {
  3046. struct kmem_cache_node *n = get_node(s, node);
  3047. unsigned long flags;
  3048. struct page *page;
  3049. if (!atomic_long_read(&n->nr_slabs))
  3050. continue;
  3051. spin_lock_irqsave(&n->list_lock, flags);
  3052. list_for_each_entry(page, &n->partial, lru)
  3053. process_slab(&t, s, page, alloc);
  3054. list_for_each_entry(page, &n->full, lru)
  3055. process_slab(&t, s, page, alloc);
  3056. spin_unlock_irqrestore(&n->list_lock, flags);
  3057. }
  3058. for (i = 0; i < t.count; i++) {
  3059. struct location *l = &t.loc[i];
  3060. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3061. break;
  3062. len += sprintf(buf + len, "%7ld ", l->count);
  3063. if (l->addr)
  3064. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3065. else
  3066. len += sprintf(buf + len, "<not-available>");
  3067. if (l->sum_time != l->min_time) {
  3068. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3069. l->min_time,
  3070. (long)div_u64(l->sum_time, l->count),
  3071. l->max_time);
  3072. } else
  3073. len += sprintf(buf + len, " age=%ld",
  3074. l->min_time);
  3075. if (l->min_pid != l->max_pid)
  3076. len += sprintf(buf + len, " pid=%ld-%ld",
  3077. l->min_pid, l->max_pid);
  3078. else
  3079. len += sprintf(buf + len, " pid=%ld",
  3080. l->min_pid);
  3081. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  3082. len < PAGE_SIZE - 60) {
  3083. len += sprintf(buf + len, " cpus=");
  3084. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3085. l->cpus);
  3086. }
  3087. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  3088. len < PAGE_SIZE - 60) {
  3089. len += sprintf(buf + len, " nodes=");
  3090. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3091. l->nodes);
  3092. }
  3093. len += sprintf(buf + len, "\n");
  3094. }
  3095. free_loc_track(&t);
  3096. if (!t.count)
  3097. len += sprintf(buf, "No data\n");
  3098. return len;
  3099. }
  3100. enum slab_stat_type {
  3101. SL_ALL, /* All slabs */
  3102. SL_PARTIAL, /* Only partially allocated slabs */
  3103. SL_CPU, /* Only slabs used for cpu caches */
  3104. SL_OBJECTS, /* Determine allocated objects not slabs */
  3105. SL_TOTAL /* Determine object capacity not slabs */
  3106. };
  3107. #define SO_ALL (1 << SL_ALL)
  3108. #define SO_PARTIAL (1 << SL_PARTIAL)
  3109. #define SO_CPU (1 << SL_CPU)
  3110. #define SO_OBJECTS (1 << SL_OBJECTS)
  3111. #define SO_TOTAL (1 << SL_TOTAL)
  3112. static ssize_t show_slab_objects(struct kmem_cache *s,
  3113. char *buf, unsigned long flags)
  3114. {
  3115. unsigned long total = 0;
  3116. int node;
  3117. int x;
  3118. unsigned long *nodes;
  3119. unsigned long *per_cpu;
  3120. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3121. if (!nodes)
  3122. return -ENOMEM;
  3123. per_cpu = nodes + nr_node_ids;
  3124. if (flags & SO_CPU) {
  3125. int cpu;
  3126. for_each_possible_cpu(cpu) {
  3127. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3128. if (!c || c->node < 0)
  3129. continue;
  3130. if (c->page) {
  3131. if (flags & SO_TOTAL)
  3132. x = c->page->objects;
  3133. else if (flags & SO_OBJECTS)
  3134. x = c->page->inuse;
  3135. else
  3136. x = 1;
  3137. total += x;
  3138. nodes[c->node] += x;
  3139. }
  3140. per_cpu[c->node]++;
  3141. }
  3142. }
  3143. if (flags & SO_ALL) {
  3144. for_each_node_state(node, N_NORMAL_MEMORY) {
  3145. struct kmem_cache_node *n = get_node(s, node);
  3146. if (flags & SO_TOTAL)
  3147. x = atomic_long_read(&n->total_objects);
  3148. else if (flags & SO_OBJECTS)
  3149. x = atomic_long_read(&n->total_objects) -
  3150. count_partial(n, count_free);
  3151. else
  3152. x = atomic_long_read(&n->nr_slabs);
  3153. total += x;
  3154. nodes[node] += x;
  3155. }
  3156. } else if (flags & SO_PARTIAL) {
  3157. for_each_node_state(node, N_NORMAL_MEMORY) {
  3158. struct kmem_cache_node *n = get_node(s, node);
  3159. if (flags & SO_TOTAL)
  3160. x = count_partial(n, count_total);
  3161. else if (flags & SO_OBJECTS)
  3162. x = count_partial(n, count_inuse);
  3163. else
  3164. x = n->nr_partial;
  3165. total += x;
  3166. nodes[node] += x;
  3167. }
  3168. }
  3169. x = sprintf(buf, "%lu", total);
  3170. #ifdef CONFIG_NUMA
  3171. for_each_node_state(node, N_NORMAL_MEMORY)
  3172. if (nodes[node])
  3173. x += sprintf(buf + x, " N%d=%lu",
  3174. node, nodes[node]);
  3175. #endif
  3176. kfree(nodes);
  3177. return x + sprintf(buf + x, "\n");
  3178. }
  3179. static int any_slab_objects(struct kmem_cache *s)
  3180. {
  3181. int node;
  3182. for_each_online_node(node) {
  3183. struct kmem_cache_node *n = get_node(s, node);
  3184. if (!n)
  3185. continue;
  3186. if (atomic_long_read(&n->total_objects))
  3187. return 1;
  3188. }
  3189. return 0;
  3190. }
  3191. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3192. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3193. struct slab_attribute {
  3194. struct attribute attr;
  3195. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3196. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3197. };
  3198. #define SLAB_ATTR_RO(_name) \
  3199. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3200. #define SLAB_ATTR(_name) \
  3201. static struct slab_attribute _name##_attr = \
  3202. __ATTR(_name, 0644, _name##_show, _name##_store)
  3203. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3204. {
  3205. return sprintf(buf, "%d\n", s->size);
  3206. }
  3207. SLAB_ATTR_RO(slab_size);
  3208. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3209. {
  3210. return sprintf(buf, "%d\n", s->align);
  3211. }
  3212. SLAB_ATTR_RO(align);
  3213. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3214. {
  3215. return sprintf(buf, "%d\n", s->objsize);
  3216. }
  3217. SLAB_ATTR_RO(object_size);
  3218. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3219. {
  3220. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3221. }
  3222. SLAB_ATTR_RO(objs_per_slab);
  3223. static ssize_t order_store(struct kmem_cache *s,
  3224. const char *buf, size_t length)
  3225. {
  3226. unsigned long order;
  3227. int err;
  3228. err = strict_strtoul(buf, 10, &order);
  3229. if (err)
  3230. return err;
  3231. if (order > slub_max_order || order < slub_min_order)
  3232. return -EINVAL;
  3233. calculate_sizes(s, order);
  3234. return length;
  3235. }
  3236. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3237. {
  3238. return sprintf(buf, "%d\n", oo_order(s->oo));
  3239. }
  3240. SLAB_ATTR(order);
  3241. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3242. {
  3243. if (s->ctor) {
  3244. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3245. return n + sprintf(buf + n, "\n");
  3246. }
  3247. return 0;
  3248. }
  3249. SLAB_ATTR_RO(ctor);
  3250. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3251. {
  3252. return sprintf(buf, "%d\n", s->refcount - 1);
  3253. }
  3254. SLAB_ATTR_RO(aliases);
  3255. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3256. {
  3257. return show_slab_objects(s, buf, SO_ALL);
  3258. }
  3259. SLAB_ATTR_RO(slabs);
  3260. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3261. {
  3262. return show_slab_objects(s, buf, SO_PARTIAL);
  3263. }
  3264. SLAB_ATTR_RO(partial);
  3265. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3266. {
  3267. return show_slab_objects(s, buf, SO_CPU);
  3268. }
  3269. SLAB_ATTR_RO(cpu_slabs);
  3270. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3271. {
  3272. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3273. }
  3274. SLAB_ATTR_RO(objects);
  3275. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3276. {
  3277. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3278. }
  3279. SLAB_ATTR_RO(objects_partial);
  3280. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3281. {
  3282. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3283. }
  3284. SLAB_ATTR_RO(total_objects);
  3285. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3286. {
  3287. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3288. }
  3289. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3290. const char *buf, size_t length)
  3291. {
  3292. s->flags &= ~SLAB_DEBUG_FREE;
  3293. if (buf[0] == '1')
  3294. s->flags |= SLAB_DEBUG_FREE;
  3295. return length;
  3296. }
  3297. SLAB_ATTR(sanity_checks);
  3298. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3299. {
  3300. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3301. }
  3302. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3303. size_t length)
  3304. {
  3305. s->flags &= ~SLAB_TRACE;
  3306. if (buf[0] == '1')
  3307. s->flags |= SLAB_TRACE;
  3308. return length;
  3309. }
  3310. SLAB_ATTR(trace);
  3311. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3312. {
  3313. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3314. }
  3315. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3316. const char *buf, size_t length)
  3317. {
  3318. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3319. if (buf[0] == '1')
  3320. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3321. return length;
  3322. }
  3323. SLAB_ATTR(reclaim_account);
  3324. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3325. {
  3326. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3327. }
  3328. SLAB_ATTR_RO(hwcache_align);
  3329. #ifdef CONFIG_ZONE_DMA
  3330. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3331. {
  3332. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3333. }
  3334. SLAB_ATTR_RO(cache_dma);
  3335. #endif
  3336. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3337. {
  3338. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3339. }
  3340. SLAB_ATTR_RO(destroy_by_rcu);
  3341. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3342. {
  3343. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3344. }
  3345. static ssize_t red_zone_store(struct kmem_cache *s,
  3346. const char *buf, size_t length)
  3347. {
  3348. if (any_slab_objects(s))
  3349. return -EBUSY;
  3350. s->flags &= ~SLAB_RED_ZONE;
  3351. if (buf[0] == '1')
  3352. s->flags |= SLAB_RED_ZONE;
  3353. calculate_sizes(s, -1);
  3354. return length;
  3355. }
  3356. SLAB_ATTR(red_zone);
  3357. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3358. {
  3359. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3360. }
  3361. static ssize_t poison_store(struct kmem_cache *s,
  3362. const char *buf, size_t length)
  3363. {
  3364. if (any_slab_objects(s))
  3365. return -EBUSY;
  3366. s->flags &= ~SLAB_POISON;
  3367. if (buf[0] == '1')
  3368. s->flags |= SLAB_POISON;
  3369. calculate_sizes(s, -1);
  3370. return length;
  3371. }
  3372. SLAB_ATTR(poison);
  3373. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3374. {
  3375. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3376. }
  3377. static ssize_t store_user_store(struct kmem_cache *s,
  3378. const char *buf, size_t length)
  3379. {
  3380. if (any_slab_objects(s))
  3381. return -EBUSY;
  3382. s->flags &= ~SLAB_STORE_USER;
  3383. if (buf[0] == '1')
  3384. s->flags |= SLAB_STORE_USER;
  3385. calculate_sizes(s, -1);
  3386. return length;
  3387. }
  3388. SLAB_ATTR(store_user);
  3389. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3390. {
  3391. return 0;
  3392. }
  3393. static ssize_t validate_store(struct kmem_cache *s,
  3394. const char *buf, size_t length)
  3395. {
  3396. int ret = -EINVAL;
  3397. if (buf[0] == '1') {
  3398. ret = validate_slab_cache(s);
  3399. if (ret >= 0)
  3400. ret = length;
  3401. }
  3402. return ret;
  3403. }
  3404. SLAB_ATTR(validate);
  3405. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3406. {
  3407. return 0;
  3408. }
  3409. static ssize_t shrink_store(struct kmem_cache *s,
  3410. const char *buf, size_t length)
  3411. {
  3412. if (buf[0] == '1') {
  3413. int rc = kmem_cache_shrink(s);
  3414. if (rc)
  3415. return rc;
  3416. } else
  3417. return -EINVAL;
  3418. return length;
  3419. }
  3420. SLAB_ATTR(shrink);
  3421. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3422. {
  3423. if (!(s->flags & SLAB_STORE_USER))
  3424. return -ENOSYS;
  3425. return list_locations(s, buf, TRACK_ALLOC);
  3426. }
  3427. SLAB_ATTR_RO(alloc_calls);
  3428. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3429. {
  3430. if (!(s->flags & SLAB_STORE_USER))
  3431. return -ENOSYS;
  3432. return list_locations(s, buf, TRACK_FREE);
  3433. }
  3434. SLAB_ATTR_RO(free_calls);
  3435. #ifdef CONFIG_NUMA
  3436. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3437. {
  3438. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3439. }
  3440. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3441. const char *buf, size_t length)
  3442. {
  3443. unsigned long ratio;
  3444. int err;
  3445. err = strict_strtoul(buf, 10, &ratio);
  3446. if (err)
  3447. return err;
  3448. if (ratio <= 100)
  3449. s->remote_node_defrag_ratio = ratio * 10;
  3450. return length;
  3451. }
  3452. SLAB_ATTR(remote_node_defrag_ratio);
  3453. #endif
  3454. #ifdef CONFIG_SLUB_STATS
  3455. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3456. {
  3457. unsigned long sum = 0;
  3458. int cpu;
  3459. int len;
  3460. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3461. if (!data)
  3462. return -ENOMEM;
  3463. for_each_online_cpu(cpu) {
  3464. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3465. data[cpu] = x;
  3466. sum += x;
  3467. }
  3468. len = sprintf(buf, "%lu", sum);
  3469. #ifdef CONFIG_SMP
  3470. for_each_online_cpu(cpu) {
  3471. if (data[cpu] && len < PAGE_SIZE - 20)
  3472. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3473. }
  3474. #endif
  3475. kfree(data);
  3476. return len + sprintf(buf + len, "\n");
  3477. }
  3478. #define STAT_ATTR(si, text) \
  3479. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3480. { \
  3481. return show_stat(s, buf, si); \
  3482. } \
  3483. SLAB_ATTR_RO(text); \
  3484. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3485. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3486. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3487. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3488. STAT_ATTR(FREE_FROZEN, free_frozen);
  3489. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3490. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3491. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3492. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3493. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3494. STAT_ATTR(FREE_SLAB, free_slab);
  3495. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3496. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3497. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3498. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3499. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3500. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3501. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3502. #endif
  3503. static struct attribute *slab_attrs[] = {
  3504. &slab_size_attr.attr,
  3505. &object_size_attr.attr,
  3506. &objs_per_slab_attr.attr,
  3507. &order_attr.attr,
  3508. &objects_attr.attr,
  3509. &objects_partial_attr.attr,
  3510. &total_objects_attr.attr,
  3511. &slabs_attr.attr,
  3512. &partial_attr.attr,
  3513. &cpu_slabs_attr.attr,
  3514. &ctor_attr.attr,
  3515. &aliases_attr.attr,
  3516. &align_attr.attr,
  3517. &sanity_checks_attr.attr,
  3518. &trace_attr.attr,
  3519. &hwcache_align_attr.attr,
  3520. &reclaim_account_attr.attr,
  3521. &destroy_by_rcu_attr.attr,
  3522. &red_zone_attr.attr,
  3523. &poison_attr.attr,
  3524. &store_user_attr.attr,
  3525. &validate_attr.attr,
  3526. &shrink_attr.attr,
  3527. &alloc_calls_attr.attr,
  3528. &free_calls_attr.attr,
  3529. #ifdef CONFIG_ZONE_DMA
  3530. &cache_dma_attr.attr,
  3531. #endif
  3532. #ifdef CONFIG_NUMA
  3533. &remote_node_defrag_ratio_attr.attr,
  3534. #endif
  3535. #ifdef CONFIG_SLUB_STATS
  3536. &alloc_fastpath_attr.attr,
  3537. &alloc_slowpath_attr.attr,
  3538. &free_fastpath_attr.attr,
  3539. &free_slowpath_attr.attr,
  3540. &free_frozen_attr.attr,
  3541. &free_add_partial_attr.attr,
  3542. &free_remove_partial_attr.attr,
  3543. &alloc_from_partial_attr.attr,
  3544. &alloc_slab_attr.attr,
  3545. &alloc_refill_attr.attr,
  3546. &free_slab_attr.attr,
  3547. &cpuslab_flush_attr.attr,
  3548. &deactivate_full_attr.attr,
  3549. &deactivate_empty_attr.attr,
  3550. &deactivate_to_head_attr.attr,
  3551. &deactivate_to_tail_attr.attr,
  3552. &deactivate_remote_frees_attr.attr,
  3553. &order_fallback_attr.attr,
  3554. #endif
  3555. NULL
  3556. };
  3557. static struct attribute_group slab_attr_group = {
  3558. .attrs = slab_attrs,
  3559. };
  3560. static ssize_t slab_attr_show(struct kobject *kobj,
  3561. struct attribute *attr,
  3562. char *buf)
  3563. {
  3564. struct slab_attribute *attribute;
  3565. struct kmem_cache *s;
  3566. int err;
  3567. attribute = to_slab_attr(attr);
  3568. s = to_slab(kobj);
  3569. if (!attribute->show)
  3570. return -EIO;
  3571. err = attribute->show(s, buf);
  3572. return err;
  3573. }
  3574. static ssize_t slab_attr_store(struct kobject *kobj,
  3575. struct attribute *attr,
  3576. const char *buf, size_t len)
  3577. {
  3578. struct slab_attribute *attribute;
  3579. struct kmem_cache *s;
  3580. int err;
  3581. attribute = to_slab_attr(attr);
  3582. s = to_slab(kobj);
  3583. if (!attribute->store)
  3584. return -EIO;
  3585. err = attribute->store(s, buf, len);
  3586. return err;
  3587. }
  3588. static void kmem_cache_release(struct kobject *kobj)
  3589. {
  3590. struct kmem_cache *s = to_slab(kobj);
  3591. kfree(s);
  3592. }
  3593. static struct sysfs_ops slab_sysfs_ops = {
  3594. .show = slab_attr_show,
  3595. .store = slab_attr_store,
  3596. };
  3597. static struct kobj_type slab_ktype = {
  3598. .sysfs_ops = &slab_sysfs_ops,
  3599. .release = kmem_cache_release
  3600. };
  3601. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3602. {
  3603. struct kobj_type *ktype = get_ktype(kobj);
  3604. if (ktype == &slab_ktype)
  3605. return 1;
  3606. return 0;
  3607. }
  3608. static struct kset_uevent_ops slab_uevent_ops = {
  3609. .filter = uevent_filter,
  3610. };
  3611. static struct kset *slab_kset;
  3612. #define ID_STR_LENGTH 64
  3613. /* Create a unique string id for a slab cache:
  3614. *
  3615. * Format :[flags-]size
  3616. */
  3617. static char *create_unique_id(struct kmem_cache *s)
  3618. {
  3619. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3620. char *p = name;
  3621. BUG_ON(!name);
  3622. *p++ = ':';
  3623. /*
  3624. * First flags affecting slabcache operations. We will only
  3625. * get here for aliasable slabs so we do not need to support
  3626. * too many flags. The flags here must cover all flags that
  3627. * are matched during merging to guarantee that the id is
  3628. * unique.
  3629. */
  3630. if (s->flags & SLAB_CACHE_DMA)
  3631. *p++ = 'd';
  3632. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3633. *p++ = 'a';
  3634. if (s->flags & SLAB_DEBUG_FREE)
  3635. *p++ = 'F';
  3636. if (p != name + 1)
  3637. *p++ = '-';
  3638. p += sprintf(p, "%07d", s->size);
  3639. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3640. return name;
  3641. }
  3642. static int sysfs_slab_add(struct kmem_cache *s)
  3643. {
  3644. int err;
  3645. const char *name;
  3646. int unmergeable;
  3647. if (slab_state < SYSFS)
  3648. /* Defer until later */
  3649. return 0;
  3650. unmergeable = slab_unmergeable(s);
  3651. if (unmergeable) {
  3652. /*
  3653. * Slabcache can never be merged so we can use the name proper.
  3654. * This is typically the case for debug situations. In that
  3655. * case we can catch duplicate names easily.
  3656. */
  3657. sysfs_remove_link(&slab_kset->kobj, s->name);
  3658. name = s->name;
  3659. } else {
  3660. /*
  3661. * Create a unique name for the slab as a target
  3662. * for the symlinks.
  3663. */
  3664. name = create_unique_id(s);
  3665. }
  3666. s->kobj.kset = slab_kset;
  3667. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3668. if (err) {
  3669. kobject_put(&s->kobj);
  3670. return err;
  3671. }
  3672. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3673. if (err)
  3674. return err;
  3675. kobject_uevent(&s->kobj, KOBJ_ADD);
  3676. if (!unmergeable) {
  3677. /* Setup first alias */
  3678. sysfs_slab_alias(s, s->name);
  3679. kfree(name);
  3680. }
  3681. return 0;
  3682. }
  3683. static void sysfs_slab_remove(struct kmem_cache *s)
  3684. {
  3685. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3686. kobject_del(&s->kobj);
  3687. kobject_put(&s->kobj);
  3688. }
  3689. /*
  3690. * Need to buffer aliases during bootup until sysfs becomes
  3691. * available lest we loose that information.
  3692. */
  3693. struct saved_alias {
  3694. struct kmem_cache *s;
  3695. const char *name;
  3696. struct saved_alias *next;
  3697. };
  3698. static struct saved_alias *alias_list;
  3699. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3700. {
  3701. struct saved_alias *al;
  3702. if (slab_state == SYSFS) {
  3703. /*
  3704. * If we have a leftover link then remove it.
  3705. */
  3706. sysfs_remove_link(&slab_kset->kobj, name);
  3707. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3708. }
  3709. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3710. if (!al)
  3711. return -ENOMEM;
  3712. al->s = s;
  3713. al->name = name;
  3714. al->next = alias_list;
  3715. alias_list = al;
  3716. return 0;
  3717. }
  3718. static int __init slab_sysfs_init(void)
  3719. {
  3720. struct kmem_cache *s;
  3721. int err;
  3722. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3723. if (!slab_kset) {
  3724. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3725. return -ENOSYS;
  3726. }
  3727. slab_state = SYSFS;
  3728. list_for_each_entry(s, &slab_caches, list) {
  3729. err = sysfs_slab_add(s);
  3730. if (err)
  3731. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3732. " to sysfs\n", s->name);
  3733. }
  3734. while (alias_list) {
  3735. struct saved_alias *al = alias_list;
  3736. alias_list = alias_list->next;
  3737. err = sysfs_slab_alias(al->s, al->name);
  3738. if (err)
  3739. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3740. " %s to sysfs\n", s->name);
  3741. kfree(al);
  3742. }
  3743. resiliency_test();
  3744. return 0;
  3745. }
  3746. __initcall(slab_sysfs_init);
  3747. #endif
  3748. /*
  3749. * The /proc/slabinfo ABI
  3750. */
  3751. #ifdef CONFIG_SLABINFO
  3752. static void print_slabinfo_header(struct seq_file *m)
  3753. {
  3754. seq_puts(m, "slabinfo - version: 2.1\n");
  3755. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3756. "<objperslab> <pagesperslab>");
  3757. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3758. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3759. seq_putc(m, '\n');
  3760. }
  3761. static void *s_start(struct seq_file *m, loff_t *pos)
  3762. {
  3763. loff_t n = *pos;
  3764. down_read(&slub_lock);
  3765. if (!n)
  3766. print_slabinfo_header(m);
  3767. return seq_list_start(&slab_caches, *pos);
  3768. }
  3769. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3770. {
  3771. return seq_list_next(p, &slab_caches, pos);
  3772. }
  3773. static void s_stop(struct seq_file *m, void *p)
  3774. {
  3775. up_read(&slub_lock);
  3776. }
  3777. static int s_show(struct seq_file *m, void *p)
  3778. {
  3779. unsigned long nr_partials = 0;
  3780. unsigned long nr_slabs = 0;
  3781. unsigned long nr_inuse = 0;
  3782. unsigned long nr_objs = 0;
  3783. unsigned long nr_free = 0;
  3784. struct kmem_cache *s;
  3785. int node;
  3786. s = list_entry(p, struct kmem_cache, list);
  3787. for_each_online_node(node) {
  3788. struct kmem_cache_node *n = get_node(s, node);
  3789. if (!n)
  3790. continue;
  3791. nr_partials += n->nr_partial;
  3792. nr_slabs += atomic_long_read(&n->nr_slabs);
  3793. nr_objs += atomic_long_read(&n->total_objects);
  3794. nr_free += count_partial(n, count_free);
  3795. }
  3796. nr_inuse = nr_objs - nr_free;
  3797. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3798. nr_objs, s->size, oo_objects(s->oo),
  3799. (1 << oo_order(s->oo)));
  3800. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3801. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3802. 0UL);
  3803. seq_putc(m, '\n');
  3804. return 0;
  3805. }
  3806. static const struct seq_operations slabinfo_op = {
  3807. .start = s_start,
  3808. .next = s_next,
  3809. .stop = s_stop,
  3810. .show = s_show,
  3811. };
  3812. static int slabinfo_open(struct inode *inode, struct file *file)
  3813. {
  3814. return seq_open(file, &slabinfo_op);
  3815. }
  3816. static const struct file_operations proc_slabinfo_operations = {
  3817. .open = slabinfo_open,
  3818. .read = seq_read,
  3819. .llseek = seq_lseek,
  3820. .release = seq_release,
  3821. };
  3822. static int __init slab_proc_init(void)
  3823. {
  3824. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  3825. return 0;
  3826. }
  3827. module_init(slab_proc_init);
  3828. #endif /* CONFIG_SLABINFO */