page_alloc.c 125 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/div64.h>
  49. #include "internal.h"
  50. /*
  51. * Array of node states.
  52. */
  53. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  54. [N_POSSIBLE] = NODE_MASK_ALL,
  55. [N_ONLINE] = { { [0] = 1UL } },
  56. #ifndef CONFIG_NUMA
  57. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  58. #ifdef CONFIG_HIGHMEM
  59. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  60. #endif
  61. [N_CPU] = { { [0] = 1UL } },
  62. #endif /* NUMA */
  63. };
  64. EXPORT_SYMBOL(node_states);
  65. unsigned long totalram_pages __read_mostly;
  66. unsigned long totalreserve_pages __read_mostly;
  67. long nr_swap_pages;
  68. int percpu_pagelist_fraction;
  69. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  70. int pageblock_order __read_mostly;
  71. #endif
  72. static void __free_pages_ok(struct page *page, unsigned int order);
  73. /*
  74. * results with 256, 32 in the lowmem_reserve sysctl:
  75. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  76. * 1G machine -> (16M dma, 784M normal, 224M high)
  77. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  78. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  79. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  80. *
  81. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  82. * don't need any ZONE_NORMAL reservation
  83. */
  84. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  85. #ifdef CONFIG_ZONE_DMA
  86. 256,
  87. #endif
  88. #ifdef CONFIG_ZONE_DMA32
  89. 256,
  90. #endif
  91. #ifdef CONFIG_HIGHMEM
  92. 32,
  93. #endif
  94. 32,
  95. };
  96. EXPORT_SYMBOL(totalram_pages);
  97. static char * const zone_names[MAX_NR_ZONES] = {
  98. #ifdef CONFIG_ZONE_DMA
  99. "DMA",
  100. #endif
  101. #ifdef CONFIG_ZONE_DMA32
  102. "DMA32",
  103. #endif
  104. "Normal",
  105. #ifdef CONFIG_HIGHMEM
  106. "HighMem",
  107. #endif
  108. "Movable",
  109. };
  110. int min_free_kbytes = 1024;
  111. unsigned long __meminitdata nr_kernel_pages;
  112. unsigned long __meminitdata nr_all_pages;
  113. static unsigned long __meminitdata dma_reserve;
  114. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  115. /*
  116. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  117. * ranges of memory (RAM) that may be registered with add_active_range().
  118. * Ranges passed to add_active_range() will be merged if possible
  119. * so the number of times add_active_range() can be called is
  120. * related to the number of nodes and the number of holes
  121. */
  122. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  123. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  124. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  125. #else
  126. #if MAX_NUMNODES >= 32
  127. /* If there can be many nodes, allow up to 50 holes per node */
  128. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  129. #else
  130. /* By default, allow up to 256 distinct regions */
  131. #define MAX_ACTIVE_REGIONS 256
  132. #endif
  133. #endif
  134. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  135. static int __meminitdata nr_nodemap_entries;
  136. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  137. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  138. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  139. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  140. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  141. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  142. unsigned long __initdata required_kernelcore;
  143. static unsigned long __initdata required_movablecore;
  144. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  145. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  146. int movable_zone;
  147. EXPORT_SYMBOL(movable_zone);
  148. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  149. #if MAX_NUMNODES > 1
  150. int nr_node_ids __read_mostly = MAX_NUMNODES;
  151. EXPORT_SYMBOL(nr_node_ids);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. void *pc = page_get_page_cgroup(page);
  202. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  203. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  204. current->comm, page, (int)(2*sizeof(unsigned long)),
  205. (unsigned long)page->flags, page->mapping,
  206. page_mapcount(page), page_count(page));
  207. if (pc) {
  208. printk(KERN_EMERG "cgroup:%p\n", pc);
  209. page_reset_bad_cgroup(page);
  210. }
  211. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  212. KERN_EMERG "Backtrace:\n");
  213. dump_stack();
  214. page->flags &= ~(1 << PG_lru |
  215. 1 << PG_private |
  216. 1 << PG_locked |
  217. 1 << PG_active |
  218. 1 << PG_dirty |
  219. 1 << PG_reclaim |
  220. 1 << PG_slab |
  221. 1 << PG_swapcache |
  222. 1 << PG_writeback |
  223. 1 << PG_buddy );
  224. set_page_count(page, 0);
  225. reset_page_mapcount(page);
  226. page->mapping = NULL;
  227. add_taint(TAINT_BAD_PAGE);
  228. }
  229. /*
  230. * Higher-order pages are called "compound pages". They are structured thusly:
  231. *
  232. * The first PAGE_SIZE page is called the "head page".
  233. *
  234. * The remaining PAGE_SIZE pages are called "tail pages".
  235. *
  236. * All pages have PG_compound set. All pages have their ->private pointing at
  237. * the head page (even the head page has this).
  238. *
  239. * The first tail page's ->lru.next holds the address of the compound page's
  240. * put_page() function. Its ->lru.prev holds the order of allocation.
  241. * This usage means that zero-order pages may not be compound.
  242. */
  243. static void free_compound_page(struct page *page)
  244. {
  245. __free_pages_ok(page, compound_order(page));
  246. }
  247. static void prep_compound_page(struct page *page, unsigned long order)
  248. {
  249. int i;
  250. int nr_pages = 1 << order;
  251. set_compound_page_dtor(page, free_compound_page);
  252. set_compound_order(page, order);
  253. __SetPageHead(page);
  254. for (i = 1; i < nr_pages; i++) {
  255. struct page *p = page + i;
  256. __SetPageTail(p);
  257. p->first_page = page;
  258. }
  259. }
  260. static void destroy_compound_page(struct page *page, unsigned long order)
  261. {
  262. int i;
  263. int nr_pages = 1 << order;
  264. if (unlikely(compound_order(page) != order))
  265. bad_page(page);
  266. if (unlikely(!PageHead(page)))
  267. bad_page(page);
  268. __ClearPageHead(page);
  269. for (i = 1; i < nr_pages; i++) {
  270. struct page *p = page + i;
  271. if (unlikely(!PageTail(p) |
  272. (p->first_page != page)))
  273. bad_page(page);
  274. __ClearPageTail(p);
  275. }
  276. }
  277. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  278. {
  279. int i;
  280. /*
  281. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  282. * and __GFP_HIGHMEM from hard or soft interrupt context.
  283. */
  284. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  285. for (i = 0; i < (1 << order); i++)
  286. clear_highpage(page + i);
  287. }
  288. static inline void set_page_order(struct page *page, int order)
  289. {
  290. set_page_private(page, order);
  291. __SetPageBuddy(page);
  292. }
  293. static inline void rmv_page_order(struct page *page)
  294. {
  295. __ClearPageBuddy(page);
  296. set_page_private(page, 0);
  297. }
  298. /*
  299. * Locate the struct page for both the matching buddy in our
  300. * pair (buddy1) and the combined O(n+1) page they form (page).
  301. *
  302. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  303. * the following equation:
  304. * B2 = B1 ^ (1 << O)
  305. * For example, if the starting buddy (buddy2) is #8 its order
  306. * 1 buddy is #10:
  307. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  308. *
  309. * 2) Any buddy B will have an order O+1 parent P which
  310. * satisfies the following equation:
  311. * P = B & ~(1 << O)
  312. *
  313. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  314. */
  315. static inline struct page *
  316. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  317. {
  318. unsigned long buddy_idx = page_idx ^ (1 << order);
  319. return page + (buddy_idx - page_idx);
  320. }
  321. static inline unsigned long
  322. __find_combined_index(unsigned long page_idx, unsigned int order)
  323. {
  324. return (page_idx & ~(1 << order));
  325. }
  326. /*
  327. * This function checks whether a page is free && is the buddy
  328. * we can do coalesce a page and its buddy if
  329. * (a) the buddy is not in a hole &&
  330. * (b) the buddy is in the buddy system &&
  331. * (c) a page and its buddy have the same order &&
  332. * (d) a page and its buddy are in the same zone.
  333. *
  334. * For recording whether a page is in the buddy system, we use PG_buddy.
  335. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  336. *
  337. * For recording page's order, we use page_private(page).
  338. */
  339. static inline int page_is_buddy(struct page *page, struct page *buddy,
  340. int order)
  341. {
  342. if (!pfn_valid_within(page_to_pfn(buddy)))
  343. return 0;
  344. if (page_zone_id(page) != page_zone_id(buddy))
  345. return 0;
  346. if (PageBuddy(buddy) && page_order(buddy) == order) {
  347. BUG_ON(page_count(buddy) != 0);
  348. return 1;
  349. }
  350. return 0;
  351. }
  352. /*
  353. * Freeing function for a buddy system allocator.
  354. *
  355. * The concept of a buddy system is to maintain direct-mapped table
  356. * (containing bit values) for memory blocks of various "orders".
  357. * The bottom level table contains the map for the smallest allocatable
  358. * units of memory (here, pages), and each level above it describes
  359. * pairs of units from the levels below, hence, "buddies".
  360. * At a high level, all that happens here is marking the table entry
  361. * at the bottom level available, and propagating the changes upward
  362. * as necessary, plus some accounting needed to play nicely with other
  363. * parts of the VM system.
  364. * At each level, we keep a list of pages, which are heads of continuous
  365. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  366. * order is recorded in page_private(page) field.
  367. * So when we are allocating or freeing one, we can derive the state of the
  368. * other. That is, if we allocate a small block, and both were
  369. * free, the remainder of the region must be split into blocks.
  370. * If a block is freed, and its buddy is also free, then this
  371. * triggers coalescing into a block of larger size.
  372. *
  373. * -- wli
  374. */
  375. static inline void __free_one_page(struct page *page,
  376. struct zone *zone, unsigned int order)
  377. {
  378. unsigned long page_idx;
  379. int order_size = 1 << order;
  380. int migratetype = get_pageblock_migratetype(page);
  381. if (unlikely(PageCompound(page)))
  382. destroy_compound_page(page, order);
  383. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  384. VM_BUG_ON(page_idx & (order_size - 1));
  385. VM_BUG_ON(bad_range(zone, page));
  386. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  387. while (order < MAX_ORDER-1) {
  388. unsigned long combined_idx;
  389. struct page *buddy;
  390. buddy = __page_find_buddy(page, page_idx, order);
  391. if (!page_is_buddy(page, buddy, order))
  392. break; /* Move the buddy up one level. */
  393. list_del(&buddy->lru);
  394. zone->free_area[order].nr_free--;
  395. rmv_page_order(buddy);
  396. combined_idx = __find_combined_index(page_idx, order);
  397. page = page + (combined_idx - page_idx);
  398. page_idx = combined_idx;
  399. order++;
  400. }
  401. set_page_order(page, order);
  402. list_add(&page->lru,
  403. &zone->free_area[order].free_list[migratetype]);
  404. zone->free_area[order].nr_free++;
  405. }
  406. static inline int free_pages_check(struct page *page)
  407. {
  408. if (unlikely(page_mapcount(page) |
  409. (page->mapping != NULL) |
  410. (page_get_page_cgroup(page) != NULL) |
  411. (page_count(page) != 0) |
  412. (page->flags & (
  413. 1 << PG_lru |
  414. 1 << PG_private |
  415. 1 << PG_locked |
  416. 1 << PG_active |
  417. 1 << PG_slab |
  418. 1 << PG_swapcache |
  419. 1 << PG_writeback |
  420. 1 << PG_reserved |
  421. 1 << PG_buddy ))))
  422. bad_page(page);
  423. if (PageDirty(page))
  424. __ClearPageDirty(page);
  425. /*
  426. * For now, we report if PG_reserved was found set, but do not
  427. * clear it, and do not free the page. But we shall soon need
  428. * to do more, for when the ZERO_PAGE count wraps negative.
  429. */
  430. return PageReserved(page);
  431. }
  432. /*
  433. * Frees a list of pages.
  434. * Assumes all pages on list are in same zone, and of same order.
  435. * count is the number of pages to free.
  436. *
  437. * If the zone was previously in an "all pages pinned" state then look to
  438. * see if this freeing clears that state.
  439. *
  440. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  441. * pinned" detection logic.
  442. */
  443. static void free_pages_bulk(struct zone *zone, int count,
  444. struct list_head *list, int order)
  445. {
  446. spin_lock(&zone->lock);
  447. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  448. zone->pages_scanned = 0;
  449. while (count--) {
  450. struct page *page;
  451. VM_BUG_ON(list_empty(list));
  452. page = list_entry(list->prev, struct page, lru);
  453. /* have to delete it as __free_one_page list manipulates */
  454. list_del(&page->lru);
  455. __free_one_page(page, zone, order);
  456. }
  457. spin_unlock(&zone->lock);
  458. }
  459. static void free_one_page(struct zone *zone, struct page *page, int order)
  460. {
  461. spin_lock(&zone->lock);
  462. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  463. zone->pages_scanned = 0;
  464. __free_one_page(page, zone, order);
  465. spin_unlock(&zone->lock);
  466. }
  467. static void __free_pages_ok(struct page *page, unsigned int order)
  468. {
  469. unsigned long flags;
  470. int i;
  471. int reserved = 0;
  472. for (i = 0 ; i < (1 << order) ; ++i)
  473. reserved += free_pages_check(page + i);
  474. if (reserved)
  475. return;
  476. if (!PageHighMem(page))
  477. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  478. arch_free_page(page, order);
  479. kernel_map_pages(page, 1 << order, 0);
  480. local_irq_save(flags);
  481. __count_vm_events(PGFREE, 1 << order);
  482. free_one_page(page_zone(page), page, order);
  483. local_irq_restore(flags);
  484. }
  485. /*
  486. * permit the bootmem allocator to evade page validation on high-order frees
  487. */
  488. void __free_pages_bootmem(struct page *page, unsigned int order)
  489. {
  490. if (order == 0) {
  491. __ClearPageReserved(page);
  492. set_page_count(page, 0);
  493. set_page_refcounted(page);
  494. __free_page(page);
  495. } else {
  496. int loop;
  497. prefetchw(page);
  498. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  499. struct page *p = &page[loop];
  500. if (loop + 1 < BITS_PER_LONG)
  501. prefetchw(p + 1);
  502. __ClearPageReserved(p);
  503. set_page_count(p, 0);
  504. }
  505. set_page_refcounted(page);
  506. __free_pages(page, order);
  507. }
  508. }
  509. /*
  510. * The order of subdivision here is critical for the IO subsystem.
  511. * Please do not alter this order without good reasons and regression
  512. * testing. Specifically, as large blocks of memory are subdivided,
  513. * the order in which smaller blocks are delivered depends on the order
  514. * they're subdivided in this function. This is the primary factor
  515. * influencing the order in which pages are delivered to the IO
  516. * subsystem according to empirical testing, and this is also justified
  517. * by considering the behavior of a buddy system containing a single
  518. * large block of memory acted on by a series of small allocations.
  519. * This behavior is a critical factor in sglist merging's success.
  520. *
  521. * -- wli
  522. */
  523. static inline void expand(struct zone *zone, struct page *page,
  524. int low, int high, struct free_area *area,
  525. int migratetype)
  526. {
  527. unsigned long size = 1 << high;
  528. while (high > low) {
  529. area--;
  530. high--;
  531. size >>= 1;
  532. VM_BUG_ON(bad_range(zone, &page[size]));
  533. list_add(&page[size].lru, &area->free_list[migratetype]);
  534. area->nr_free++;
  535. set_page_order(&page[size], high);
  536. }
  537. }
  538. /*
  539. * This page is about to be returned from the page allocator
  540. */
  541. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  542. {
  543. if (unlikely(page_mapcount(page) |
  544. (page->mapping != NULL) |
  545. (page_get_page_cgroup(page) != NULL) |
  546. (page_count(page) != 0) |
  547. (page->flags & (
  548. 1 << PG_lru |
  549. 1 << PG_private |
  550. 1 << PG_locked |
  551. 1 << PG_active |
  552. 1 << PG_dirty |
  553. 1 << PG_slab |
  554. 1 << PG_swapcache |
  555. 1 << PG_writeback |
  556. 1 << PG_reserved |
  557. 1 << PG_buddy ))))
  558. bad_page(page);
  559. /*
  560. * For now, we report if PG_reserved was found set, but do not
  561. * clear it, and do not allocate the page: as a safety net.
  562. */
  563. if (PageReserved(page))
  564. return 1;
  565. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  566. 1 << PG_referenced | 1 << PG_arch_1 |
  567. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  568. set_page_private(page, 0);
  569. set_page_refcounted(page);
  570. arch_alloc_page(page, order);
  571. kernel_map_pages(page, 1 << order, 1);
  572. if (gfp_flags & __GFP_ZERO)
  573. prep_zero_page(page, order, gfp_flags);
  574. if (order && (gfp_flags & __GFP_COMP))
  575. prep_compound_page(page, order);
  576. return 0;
  577. }
  578. /*
  579. * Go through the free lists for the given migratetype and remove
  580. * the smallest available page from the freelists
  581. */
  582. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  583. int migratetype)
  584. {
  585. unsigned int current_order;
  586. struct free_area * area;
  587. struct page *page;
  588. /* Find a page of the appropriate size in the preferred list */
  589. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  590. area = &(zone->free_area[current_order]);
  591. if (list_empty(&area->free_list[migratetype]))
  592. continue;
  593. page = list_entry(area->free_list[migratetype].next,
  594. struct page, lru);
  595. list_del(&page->lru);
  596. rmv_page_order(page);
  597. area->nr_free--;
  598. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  599. expand(zone, page, order, current_order, area, migratetype);
  600. return page;
  601. }
  602. return NULL;
  603. }
  604. /*
  605. * This array describes the order lists are fallen back to when
  606. * the free lists for the desirable migrate type are depleted
  607. */
  608. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  609. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  610. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  611. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  612. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  613. };
  614. /*
  615. * Move the free pages in a range to the free lists of the requested type.
  616. * Note that start_page and end_pages are not aligned on a pageblock
  617. * boundary. If alignment is required, use move_freepages_block()
  618. */
  619. int move_freepages(struct zone *zone,
  620. struct page *start_page, struct page *end_page,
  621. int migratetype)
  622. {
  623. struct page *page;
  624. unsigned long order;
  625. int pages_moved = 0;
  626. #ifndef CONFIG_HOLES_IN_ZONE
  627. /*
  628. * page_zone is not safe to call in this context when
  629. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  630. * anyway as we check zone boundaries in move_freepages_block().
  631. * Remove at a later date when no bug reports exist related to
  632. * grouping pages by mobility
  633. */
  634. BUG_ON(page_zone(start_page) != page_zone(end_page));
  635. #endif
  636. for (page = start_page; page <= end_page;) {
  637. if (!pfn_valid_within(page_to_pfn(page))) {
  638. page++;
  639. continue;
  640. }
  641. if (!PageBuddy(page)) {
  642. page++;
  643. continue;
  644. }
  645. order = page_order(page);
  646. list_del(&page->lru);
  647. list_add(&page->lru,
  648. &zone->free_area[order].free_list[migratetype]);
  649. page += 1 << order;
  650. pages_moved += 1 << order;
  651. }
  652. return pages_moved;
  653. }
  654. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  655. {
  656. unsigned long start_pfn, end_pfn;
  657. struct page *start_page, *end_page;
  658. start_pfn = page_to_pfn(page);
  659. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  660. start_page = pfn_to_page(start_pfn);
  661. end_page = start_page + pageblock_nr_pages - 1;
  662. end_pfn = start_pfn + pageblock_nr_pages - 1;
  663. /* Do not cross zone boundaries */
  664. if (start_pfn < zone->zone_start_pfn)
  665. start_page = page;
  666. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  667. return 0;
  668. return move_freepages(zone, start_page, end_page, migratetype);
  669. }
  670. /* Remove an element from the buddy allocator from the fallback list */
  671. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  672. int start_migratetype)
  673. {
  674. struct free_area * area;
  675. int current_order;
  676. struct page *page;
  677. int migratetype, i;
  678. /* Find the largest possible block of pages in the other list */
  679. for (current_order = MAX_ORDER-1; current_order >= order;
  680. --current_order) {
  681. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  682. migratetype = fallbacks[start_migratetype][i];
  683. /* MIGRATE_RESERVE handled later if necessary */
  684. if (migratetype == MIGRATE_RESERVE)
  685. continue;
  686. area = &(zone->free_area[current_order]);
  687. if (list_empty(&area->free_list[migratetype]))
  688. continue;
  689. page = list_entry(area->free_list[migratetype].next,
  690. struct page, lru);
  691. area->nr_free--;
  692. /*
  693. * If breaking a large block of pages, move all free
  694. * pages to the preferred allocation list. If falling
  695. * back for a reclaimable kernel allocation, be more
  696. * agressive about taking ownership of free pages
  697. */
  698. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  699. start_migratetype == MIGRATE_RECLAIMABLE) {
  700. unsigned long pages;
  701. pages = move_freepages_block(zone, page,
  702. start_migratetype);
  703. /* Claim the whole block if over half of it is free */
  704. if (pages >= (1 << (pageblock_order-1)))
  705. set_pageblock_migratetype(page,
  706. start_migratetype);
  707. migratetype = start_migratetype;
  708. }
  709. /* Remove the page from the freelists */
  710. list_del(&page->lru);
  711. rmv_page_order(page);
  712. __mod_zone_page_state(zone, NR_FREE_PAGES,
  713. -(1UL << order));
  714. if (current_order == pageblock_order)
  715. set_pageblock_migratetype(page,
  716. start_migratetype);
  717. expand(zone, page, order, current_order, area, migratetype);
  718. return page;
  719. }
  720. }
  721. /* Use MIGRATE_RESERVE rather than fail an allocation */
  722. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  723. }
  724. /*
  725. * Do the hard work of removing an element from the buddy allocator.
  726. * Call me with the zone->lock already held.
  727. */
  728. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  729. int migratetype)
  730. {
  731. struct page *page;
  732. page = __rmqueue_smallest(zone, order, migratetype);
  733. if (unlikely(!page))
  734. page = __rmqueue_fallback(zone, order, migratetype);
  735. return page;
  736. }
  737. /*
  738. * Obtain a specified number of elements from the buddy allocator, all under
  739. * a single hold of the lock, for efficiency. Add them to the supplied list.
  740. * Returns the number of new pages which were placed at *list.
  741. */
  742. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  743. unsigned long count, struct list_head *list,
  744. int migratetype)
  745. {
  746. int i;
  747. spin_lock(&zone->lock);
  748. for (i = 0; i < count; ++i) {
  749. struct page *page = __rmqueue(zone, order, migratetype);
  750. if (unlikely(page == NULL))
  751. break;
  752. /*
  753. * Split buddy pages returned by expand() are received here
  754. * in physical page order. The page is added to the callers and
  755. * list and the list head then moves forward. From the callers
  756. * perspective, the linked list is ordered by page number in
  757. * some conditions. This is useful for IO devices that can
  758. * merge IO requests if the physical pages are ordered
  759. * properly.
  760. */
  761. list_add(&page->lru, list);
  762. set_page_private(page, migratetype);
  763. list = &page->lru;
  764. }
  765. spin_unlock(&zone->lock);
  766. return i;
  767. }
  768. #ifdef CONFIG_NUMA
  769. /*
  770. * Called from the vmstat counter updater to drain pagesets of this
  771. * currently executing processor on remote nodes after they have
  772. * expired.
  773. *
  774. * Note that this function must be called with the thread pinned to
  775. * a single processor.
  776. */
  777. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  778. {
  779. unsigned long flags;
  780. int to_drain;
  781. local_irq_save(flags);
  782. if (pcp->count >= pcp->batch)
  783. to_drain = pcp->batch;
  784. else
  785. to_drain = pcp->count;
  786. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  787. pcp->count -= to_drain;
  788. local_irq_restore(flags);
  789. }
  790. #endif
  791. /*
  792. * Drain pages of the indicated processor.
  793. *
  794. * The processor must either be the current processor and the
  795. * thread pinned to the current processor or a processor that
  796. * is not online.
  797. */
  798. static void drain_pages(unsigned int cpu)
  799. {
  800. unsigned long flags;
  801. struct zone *zone;
  802. for_each_zone(zone) {
  803. struct per_cpu_pageset *pset;
  804. struct per_cpu_pages *pcp;
  805. if (!populated_zone(zone))
  806. continue;
  807. pset = zone_pcp(zone, cpu);
  808. pcp = &pset->pcp;
  809. local_irq_save(flags);
  810. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  811. pcp->count = 0;
  812. local_irq_restore(flags);
  813. }
  814. }
  815. /*
  816. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  817. */
  818. void drain_local_pages(void *arg)
  819. {
  820. drain_pages(smp_processor_id());
  821. }
  822. /*
  823. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  824. */
  825. void drain_all_pages(void)
  826. {
  827. on_each_cpu(drain_local_pages, NULL, 0, 1);
  828. }
  829. #ifdef CONFIG_HIBERNATION
  830. void mark_free_pages(struct zone *zone)
  831. {
  832. unsigned long pfn, max_zone_pfn;
  833. unsigned long flags;
  834. int order, t;
  835. struct list_head *curr;
  836. if (!zone->spanned_pages)
  837. return;
  838. spin_lock_irqsave(&zone->lock, flags);
  839. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  840. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  841. if (pfn_valid(pfn)) {
  842. struct page *page = pfn_to_page(pfn);
  843. if (!swsusp_page_is_forbidden(page))
  844. swsusp_unset_page_free(page);
  845. }
  846. for_each_migratetype_order(order, t) {
  847. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  848. unsigned long i;
  849. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  850. for (i = 0; i < (1UL << order); i++)
  851. swsusp_set_page_free(pfn_to_page(pfn + i));
  852. }
  853. }
  854. spin_unlock_irqrestore(&zone->lock, flags);
  855. }
  856. #endif /* CONFIG_PM */
  857. /*
  858. * Free a 0-order page
  859. */
  860. static void free_hot_cold_page(struct page *page, int cold)
  861. {
  862. struct zone *zone = page_zone(page);
  863. struct per_cpu_pages *pcp;
  864. unsigned long flags;
  865. if (PageAnon(page))
  866. page->mapping = NULL;
  867. if (free_pages_check(page))
  868. return;
  869. if (!PageHighMem(page))
  870. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  871. arch_free_page(page, 0);
  872. kernel_map_pages(page, 1, 0);
  873. pcp = &zone_pcp(zone, get_cpu())->pcp;
  874. local_irq_save(flags);
  875. __count_vm_event(PGFREE);
  876. if (cold)
  877. list_add_tail(&page->lru, &pcp->list);
  878. else
  879. list_add(&page->lru, &pcp->list);
  880. set_page_private(page, get_pageblock_migratetype(page));
  881. pcp->count++;
  882. if (pcp->count >= pcp->high) {
  883. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  884. pcp->count -= pcp->batch;
  885. }
  886. local_irq_restore(flags);
  887. put_cpu();
  888. }
  889. void free_hot_page(struct page *page)
  890. {
  891. free_hot_cold_page(page, 0);
  892. }
  893. void free_cold_page(struct page *page)
  894. {
  895. free_hot_cold_page(page, 1);
  896. }
  897. /*
  898. * split_page takes a non-compound higher-order page, and splits it into
  899. * n (1<<order) sub-pages: page[0..n]
  900. * Each sub-page must be freed individually.
  901. *
  902. * Note: this is probably too low level an operation for use in drivers.
  903. * Please consult with lkml before using this in your driver.
  904. */
  905. void split_page(struct page *page, unsigned int order)
  906. {
  907. int i;
  908. VM_BUG_ON(PageCompound(page));
  909. VM_BUG_ON(!page_count(page));
  910. for (i = 1; i < (1 << order); i++)
  911. set_page_refcounted(page + i);
  912. }
  913. /*
  914. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  915. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  916. * or two.
  917. */
  918. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  919. struct zone *zone, int order, gfp_t gfp_flags)
  920. {
  921. unsigned long flags;
  922. struct page *page;
  923. int cold = !!(gfp_flags & __GFP_COLD);
  924. int cpu;
  925. int migratetype = allocflags_to_migratetype(gfp_flags);
  926. again:
  927. cpu = get_cpu();
  928. if (likely(order == 0)) {
  929. struct per_cpu_pages *pcp;
  930. pcp = &zone_pcp(zone, cpu)->pcp;
  931. local_irq_save(flags);
  932. if (!pcp->count) {
  933. pcp->count = rmqueue_bulk(zone, 0,
  934. pcp->batch, &pcp->list, migratetype);
  935. if (unlikely(!pcp->count))
  936. goto failed;
  937. }
  938. /* Find a page of the appropriate migrate type */
  939. if (cold) {
  940. list_for_each_entry_reverse(page, &pcp->list, lru)
  941. if (page_private(page) == migratetype)
  942. break;
  943. } else {
  944. list_for_each_entry(page, &pcp->list, lru)
  945. if (page_private(page) == migratetype)
  946. break;
  947. }
  948. /* Allocate more to the pcp list if necessary */
  949. if (unlikely(&page->lru == &pcp->list)) {
  950. pcp->count += rmqueue_bulk(zone, 0,
  951. pcp->batch, &pcp->list, migratetype);
  952. page = list_entry(pcp->list.next, struct page, lru);
  953. }
  954. list_del(&page->lru);
  955. pcp->count--;
  956. } else {
  957. spin_lock_irqsave(&zone->lock, flags);
  958. page = __rmqueue(zone, order, migratetype);
  959. spin_unlock(&zone->lock);
  960. if (!page)
  961. goto failed;
  962. }
  963. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  964. zone_statistics(preferred_zone, zone);
  965. local_irq_restore(flags);
  966. put_cpu();
  967. VM_BUG_ON(bad_range(zone, page));
  968. if (prep_new_page(page, order, gfp_flags))
  969. goto again;
  970. return page;
  971. failed:
  972. local_irq_restore(flags);
  973. put_cpu();
  974. return NULL;
  975. }
  976. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  977. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  978. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  979. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  980. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  981. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  982. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  983. #ifdef CONFIG_FAIL_PAGE_ALLOC
  984. static struct fail_page_alloc_attr {
  985. struct fault_attr attr;
  986. u32 ignore_gfp_highmem;
  987. u32 ignore_gfp_wait;
  988. u32 min_order;
  989. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  990. struct dentry *ignore_gfp_highmem_file;
  991. struct dentry *ignore_gfp_wait_file;
  992. struct dentry *min_order_file;
  993. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  994. } fail_page_alloc = {
  995. .attr = FAULT_ATTR_INITIALIZER,
  996. .ignore_gfp_wait = 1,
  997. .ignore_gfp_highmem = 1,
  998. .min_order = 1,
  999. };
  1000. static int __init setup_fail_page_alloc(char *str)
  1001. {
  1002. return setup_fault_attr(&fail_page_alloc.attr, str);
  1003. }
  1004. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1005. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1006. {
  1007. if (order < fail_page_alloc.min_order)
  1008. return 0;
  1009. if (gfp_mask & __GFP_NOFAIL)
  1010. return 0;
  1011. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1012. return 0;
  1013. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1014. return 0;
  1015. return should_fail(&fail_page_alloc.attr, 1 << order);
  1016. }
  1017. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1018. static int __init fail_page_alloc_debugfs(void)
  1019. {
  1020. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1021. struct dentry *dir;
  1022. int err;
  1023. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1024. "fail_page_alloc");
  1025. if (err)
  1026. return err;
  1027. dir = fail_page_alloc.attr.dentries.dir;
  1028. fail_page_alloc.ignore_gfp_wait_file =
  1029. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1030. &fail_page_alloc.ignore_gfp_wait);
  1031. fail_page_alloc.ignore_gfp_highmem_file =
  1032. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1033. &fail_page_alloc.ignore_gfp_highmem);
  1034. fail_page_alloc.min_order_file =
  1035. debugfs_create_u32("min-order", mode, dir,
  1036. &fail_page_alloc.min_order);
  1037. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1038. !fail_page_alloc.ignore_gfp_highmem_file ||
  1039. !fail_page_alloc.min_order_file) {
  1040. err = -ENOMEM;
  1041. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1042. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1043. debugfs_remove(fail_page_alloc.min_order_file);
  1044. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1045. }
  1046. return err;
  1047. }
  1048. late_initcall(fail_page_alloc_debugfs);
  1049. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1050. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1051. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1052. {
  1053. return 0;
  1054. }
  1055. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1056. /*
  1057. * Return 1 if free pages are above 'mark'. This takes into account the order
  1058. * of the allocation.
  1059. */
  1060. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1061. int classzone_idx, int alloc_flags)
  1062. {
  1063. /* free_pages my go negative - that's OK */
  1064. long min = mark;
  1065. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1066. int o;
  1067. if (alloc_flags & ALLOC_HIGH)
  1068. min -= min / 2;
  1069. if (alloc_flags & ALLOC_HARDER)
  1070. min -= min / 4;
  1071. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1072. return 0;
  1073. for (o = 0; o < order; o++) {
  1074. /* At the next order, this order's pages become unavailable */
  1075. free_pages -= z->free_area[o].nr_free << o;
  1076. /* Require fewer higher order pages to be free */
  1077. min >>= 1;
  1078. if (free_pages <= min)
  1079. return 0;
  1080. }
  1081. return 1;
  1082. }
  1083. #ifdef CONFIG_NUMA
  1084. /*
  1085. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1086. * skip over zones that are not allowed by the cpuset, or that have
  1087. * been recently (in last second) found to be nearly full. See further
  1088. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1089. * that have to skip over a lot of full or unallowed zones.
  1090. *
  1091. * If the zonelist cache is present in the passed in zonelist, then
  1092. * returns a pointer to the allowed node mask (either the current
  1093. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1094. *
  1095. * If the zonelist cache is not available for this zonelist, does
  1096. * nothing and returns NULL.
  1097. *
  1098. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1099. * a second since last zap'd) then we zap it out (clear its bits.)
  1100. *
  1101. * We hold off even calling zlc_setup, until after we've checked the
  1102. * first zone in the zonelist, on the theory that most allocations will
  1103. * be satisfied from that first zone, so best to examine that zone as
  1104. * quickly as we can.
  1105. */
  1106. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1107. {
  1108. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1109. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1110. zlc = zonelist->zlcache_ptr;
  1111. if (!zlc)
  1112. return NULL;
  1113. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1114. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1115. zlc->last_full_zap = jiffies;
  1116. }
  1117. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1118. &cpuset_current_mems_allowed :
  1119. &node_states[N_HIGH_MEMORY];
  1120. return allowednodes;
  1121. }
  1122. /*
  1123. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1124. * if it is worth looking at further for free memory:
  1125. * 1) Check that the zone isn't thought to be full (doesn't have its
  1126. * bit set in the zonelist_cache fullzones BITMAP).
  1127. * 2) Check that the zones node (obtained from the zonelist_cache
  1128. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1129. * Return true (non-zero) if zone is worth looking at further, or
  1130. * else return false (zero) if it is not.
  1131. *
  1132. * This check -ignores- the distinction between various watermarks,
  1133. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1134. * found to be full for any variation of these watermarks, it will
  1135. * be considered full for up to one second by all requests, unless
  1136. * we are so low on memory on all allowed nodes that we are forced
  1137. * into the second scan of the zonelist.
  1138. *
  1139. * In the second scan we ignore this zonelist cache and exactly
  1140. * apply the watermarks to all zones, even it is slower to do so.
  1141. * We are low on memory in the second scan, and should leave no stone
  1142. * unturned looking for a free page.
  1143. */
  1144. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1145. nodemask_t *allowednodes)
  1146. {
  1147. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1148. int i; /* index of *z in zonelist zones */
  1149. int n; /* node that zone *z is on */
  1150. zlc = zonelist->zlcache_ptr;
  1151. if (!zlc)
  1152. return 1;
  1153. i = z - zonelist->_zonerefs;
  1154. n = zlc->z_to_n[i];
  1155. /* This zone is worth trying if it is allowed but not full */
  1156. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1157. }
  1158. /*
  1159. * Given 'z' scanning a zonelist, set the corresponding bit in
  1160. * zlc->fullzones, so that subsequent attempts to allocate a page
  1161. * from that zone don't waste time re-examining it.
  1162. */
  1163. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1164. {
  1165. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1166. int i; /* index of *z in zonelist zones */
  1167. zlc = zonelist->zlcache_ptr;
  1168. if (!zlc)
  1169. return;
  1170. i = z - zonelist->_zonerefs;
  1171. set_bit(i, zlc->fullzones);
  1172. }
  1173. #else /* CONFIG_NUMA */
  1174. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1175. {
  1176. return NULL;
  1177. }
  1178. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1179. nodemask_t *allowednodes)
  1180. {
  1181. return 1;
  1182. }
  1183. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1184. {
  1185. }
  1186. #endif /* CONFIG_NUMA */
  1187. /*
  1188. * get_page_from_freelist goes through the zonelist trying to allocate
  1189. * a page.
  1190. */
  1191. static struct page *
  1192. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1193. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1194. {
  1195. struct zoneref *z;
  1196. struct page *page = NULL;
  1197. int classzone_idx;
  1198. struct zone *zone, *preferred_zone;
  1199. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1200. int zlc_active = 0; /* set if using zonelist_cache */
  1201. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1202. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1203. &preferred_zone);
  1204. classzone_idx = zone_idx(preferred_zone);
  1205. zonelist_scan:
  1206. /*
  1207. * Scan zonelist, looking for a zone with enough free.
  1208. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1209. */
  1210. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1211. high_zoneidx, nodemask) {
  1212. if (NUMA_BUILD && zlc_active &&
  1213. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1214. continue;
  1215. if ((alloc_flags & ALLOC_CPUSET) &&
  1216. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1217. goto try_next_zone;
  1218. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1219. unsigned long mark;
  1220. if (alloc_flags & ALLOC_WMARK_MIN)
  1221. mark = zone->pages_min;
  1222. else if (alloc_flags & ALLOC_WMARK_LOW)
  1223. mark = zone->pages_low;
  1224. else
  1225. mark = zone->pages_high;
  1226. if (!zone_watermark_ok(zone, order, mark,
  1227. classzone_idx, alloc_flags)) {
  1228. if (!zone_reclaim_mode ||
  1229. !zone_reclaim(zone, gfp_mask, order))
  1230. goto this_zone_full;
  1231. }
  1232. }
  1233. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1234. if (page)
  1235. break;
  1236. this_zone_full:
  1237. if (NUMA_BUILD)
  1238. zlc_mark_zone_full(zonelist, z);
  1239. try_next_zone:
  1240. if (NUMA_BUILD && !did_zlc_setup) {
  1241. /* we do zlc_setup after the first zone is tried */
  1242. allowednodes = zlc_setup(zonelist, alloc_flags);
  1243. zlc_active = 1;
  1244. did_zlc_setup = 1;
  1245. }
  1246. }
  1247. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1248. /* Disable zlc cache for second zonelist scan */
  1249. zlc_active = 0;
  1250. goto zonelist_scan;
  1251. }
  1252. return page;
  1253. }
  1254. /*
  1255. * This is the 'heart' of the zoned buddy allocator.
  1256. */
  1257. static struct page *
  1258. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1259. struct zonelist *zonelist, nodemask_t *nodemask)
  1260. {
  1261. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1262. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1263. struct zoneref *z;
  1264. struct zone *zone;
  1265. struct page *page;
  1266. struct reclaim_state reclaim_state;
  1267. struct task_struct *p = current;
  1268. int do_retry;
  1269. int alloc_flags;
  1270. int did_some_progress;
  1271. might_sleep_if(wait);
  1272. if (should_fail_alloc_page(gfp_mask, order))
  1273. return NULL;
  1274. restart:
  1275. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1276. if (unlikely(!z->zone)) {
  1277. /*
  1278. * Happens if we have an empty zonelist as a result of
  1279. * GFP_THISNODE being used on a memoryless node
  1280. */
  1281. return NULL;
  1282. }
  1283. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1284. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1285. if (page)
  1286. goto got_pg;
  1287. /*
  1288. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1289. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1290. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1291. * using a larger set of nodes after it has established that the
  1292. * allowed per node queues are empty and that nodes are
  1293. * over allocated.
  1294. */
  1295. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1296. goto nopage;
  1297. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1298. wakeup_kswapd(zone, order);
  1299. /*
  1300. * OK, we're below the kswapd watermark and have kicked background
  1301. * reclaim. Now things get more complex, so set up alloc_flags according
  1302. * to how we want to proceed.
  1303. *
  1304. * The caller may dip into page reserves a bit more if the caller
  1305. * cannot run direct reclaim, or if the caller has realtime scheduling
  1306. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1307. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1308. */
  1309. alloc_flags = ALLOC_WMARK_MIN;
  1310. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1311. alloc_flags |= ALLOC_HARDER;
  1312. if (gfp_mask & __GFP_HIGH)
  1313. alloc_flags |= ALLOC_HIGH;
  1314. if (wait)
  1315. alloc_flags |= ALLOC_CPUSET;
  1316. /*
  1317. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1318. * coming from realtime tasks go deeper into reserves.
  1319. *
  1320. * This is the last chance, in general, before the goto nopage.
  1321. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1322. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1323. */
  1324. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1325. high_zoneidx, alloc_flags);
  1326. if (page)
  1327. goto got_pg;
  1328. /* This allocation should allow future memory freeing. */
  1329. rebalance:
  1330. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1331. && !in_interrupt()) {
  1332. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1333. nofail_alloc:
  1334. /* go through the zonelist yet again, ignoring mins */
  1335. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1336. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1337. if (page)
  1338. goto got_pg;
  1339. if (gfp_mask & __GFP_NOFAIL) {
  1340. congestion_wait(WRITE, HZ/50);
  1341. goto nofail_alloc;
  1342. }
  1343. }
  1344. goto nopage;
  1345. }
  1346. /* Atomic allocations - we can't balance anything */
  1347. if (!wait)
  1348. goto nopage;
  1349. cond_resched();
  1350. /* We now go into synchronous reclaim */
  1351. cpuset_memory_pressure_bump();
  1352. p->flags |= PF_MEMALLOC;
  1353. reclaim_state.reclaimed_slab = 0;
  1354. p->reclaim_state = &reclaim_state;
  1355. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1356. p->reclaim_state = NULL;
  1357. p->flags &= ~PF_MEMALLOC;
  1358. cond_resched();
  1359. if (order != 0)
  1360. drain_all_pages();
  1361. if (likely(did_some_progress)) {
  1362. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1363. zonelist, high_zoneidx, alloc_flags);
  1364. if (page)
  1365. goto got_pg;
  1366. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1367. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1368. schedule_timeout_uninterruptible(1);
  1369. goto restart;
  1370. }
  1371. /*
  1372. * Go through the zonelist yet one more time, keep
  1373. * very high watermark here, this is only to catch
  1374. * a parallel oom killing, we must fail if we're still
  1375. * under heavy pressure.
  1376. */
  1377. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1378. order, zonelist, high_zoneidx,
  1379. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1380. if (page) {
  1381. clear_zonelist_oom(zonelist, gfp_mask);
  1382. goto got_pg;
  1383. }
  1384. /* The OOM killer will not help higher order allocs so fail */
  1385. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1386. clear_zonelist_oom(zonelist, gfp_mask);
  1387. goto nopage;
  1388. }
  1389. out_of_memory(zonelist, gfp_mask, order);
  1390. clear_zonelist_oom(zonelist, gfp_mask);
  1391. goto restart;
  1392. }
  1393. /*
  1394. * Don't let big-order allocations loop unless the caller explicitly
  1395. * requests that. Wait for some write requests to complete then retry.
  1396. *
  1397. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1398. * <= 3, but that may not be true in other implementations.
  1399. */
  1400. do_retry = 0;
  1401. if (!(gfp_mask & __GFP_NORETRY)) {
  1402. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1403. (gfp_mask & __GFP_REPEAT))
  1404. do_retry = 1;
  1405. if (gfp_mask & __GFP_NOFAIL)
  1406. do_retry = 1;
  1407. }
  1408. if (do_retry) {
  1409. congestion_wait(WRITE, HZ/50);
  1410. goto rebalance;
  1411. }
  1412. nopage:
  1413. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1414. printk(KERN_WARNING "%s: page allocation failure."
  1415. " order:%d, mode:0x%x\n",
  1416. p->comm, order, gfp_mask);
  1417. dump_stack();
  1418. show_mem();
  1419. }
  1420. got_pg:
  1421. return page;
  1422. }
  1423. struct page *
  1424. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1425. struct zonelist *zonelist)
  1426. {
  1427. return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
  1428. }
  1429. struct page *
  1430. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1431. struct zonelist *zonelist, nodemask_t *nodemask)
  1432. {
  1433. return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
  1434. }
  1435. EXPORT_SYMBOL(__alloc_pages);
  1436. /*
  1437. * Common helper functions.
  1438. */
  1439. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1440. {
  1441. struct page * page;
  1442. page = alloc_pages(gfp_mask, order);
  1443. if (!page)
  1444. return 0;
  1445. return (unsigned long) page_address(page);
  1446. }
  1447. EXPORT_SYMBOL(__get_free_pages);
  1448. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1449. {
  1450. struct page * page;
  1451. /*
  1452. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1453. * a highmem page
  1454. */
  1455. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1456. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1457. if (page)
  1458. return (unsigned long) page_address(page);
  1459. return 0;
  1460. }
  1461. EXPORT_SYMBOL(get_zeroed_page);
  1462. void __pagevec_free(struct pagevec *pvec)
  1463. {
  1464. int i = pagevec_count(pvec);
  1465. while (--i >= 0)
  1466. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1467. }
  1468. void __free_pages(struct page *page, unsigned int order)
  1469. {
  1470. if (put_page_testzero(page)) {
  1471. if (order == 0)
  1472. free_hot_page(page);
  1473. else
  1474. __free_pages_ok(page, order);
  1475. }
  1476. }
  1477. EXPORT_SYMBOL(__free_pages);
  1478. void free_pages(unsigned long addr, unsigned int order)
  1479. {
  1480. if (addr != 0) {
  1481. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1482. __free_pages(virt_to_page((void *)addr), order);
  1483. }
  1484. }
  1485. EXPORT_SYMBOL(free_pages);
  1486. static unsigned int nr_free_zone_pages(int offset)
  1487. {
  1488. struct zoneref *z;
  1489. struct zone *zone;
  1490. /* Just pick one node, since fallback list is circular */
  1491. unsigned int sum = 0;
  1492. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1493. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1494. unsigned long size = zone->present_pages;
  1495. unsigned long high = zone->pages_high;
  1496. if (size > high)
  1497. sum += size - high;
  1498. }
  1499. return sum;
  1500. }
  1501. /*
  1502. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1503. */
  1504. unsigned int nr_free_buffer_pages(void)
  1505. {
  1506. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1507. }
  1508. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1509. /*
  1510. * Amount of free RAM allocatable within all zones
  1511. */
  1512. unsigned int nr_free_pagecache_pages(void)
  1513. {
  1514. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1515. }
  1516. static inline void show_node(struct zone *zone)
  1517. {
  1518. if (NUMA_BUILD)
  1519. printk("Node %d ", zone_to_nid(zone));
  1520. }
  1521. void si_meminfo(struct sysinfo *val)
  1522. {
  1523. val->totalram = totalram_pages;
  1524. val->sharedram = 0;
  1525. val->freeram = global_page_state(NR_FREE_PAGES);
  1526. val->bufferram = nr_blockdev_pages();
  1527. val->totalhigh = totalhigh_pages;
  1528. val->freehigh = nr_free_highpages();
  1529. val->mem_unit = PAGE_SIZE;
  1530. }
  1531. EXPORT_SYMBOL(si_meminfo);
  1532. #ifdef CONFIG_NUMA
  1533. void si_meminfo_node(struct sysinfo *val, int nid)
  1534. {
  1535. pg_data_t *pgdat = NODE_DATA(nid);
  1536. val->totalram = pgdat->node_present_pages;
  1537. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1538. #ifdef CONFIG_HIGHMEM
  1539. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1540. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1541. NR_FREE_PAGES);
  1542. #else
  1543. val->totalhigh = 0;
  1544. val->freehigh = 0;
  1545. #endif
  1546. val->mem_unit = PAGE_SIZE;
  1547. }
  1548. #endif
  1549. #define K(x) ((x) << (PAGE_SHIFT-10))
  1550. /*
  1551. * Show free area list (used inside shift_scroll-lock stuff)
  1552. * We also calculate the percentage fragmentation. We do this by counting the
  1553. * memory on each free list with the exception of the first item on the list.
  1554. */
  1555. void show_free_areas(void)
  1556. {
  1557. int cpu;
  1558. struct zone *zone;
  1559. for_each_zone(zone) {
  1560. if (!populated_zone(zone))
  1561. continue;
  1562. show_node(zone);
  1563. printk("%s per-cpu:\n", zone->name);
  1564. for_each_online_cpu(cpu) {
  1565. struct per_cpu_pageset *pageset;
  1566. pageset = zone_pcp(zone, cpu);
  1567. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1568. cpu, pageset->pcp.high,
  1569. pageset->pcp.batch, pageset->pcp.count);
  1570. }
  1571. }
  1572. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1573. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1574. global_page_state(NR_ACTIVE),
  1575. global_page_state(NR_INACTIVE),
  1576. global_page_state(NR_FILE_DIRTY),
  1577. global_page_state(NR_WRITEBACK),
  1578. global_page_state(NR_UNSTABLE_NFS),
  1579. global_page_state(NR_FREE_PAGES),
  1580. global_page_state(NR_SLAB_RECLAIMABLE) +
  1581. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1582. global_page_state(NR_FILE_MAPPED),
  1583. global_page_state(NR_PAGETABLE),
  1584. global_page_state(NR_BOUNCE));
  1585. for_each_zone(zone) {
  1586. int i;
  1587. if (!populated_zone(zone))
  1588. continue;
  1589. show_node(zone);
  1590. printk("%s"
  1591. " free:%lukB"
  1592. " min:%lukB"
  1593. " low:%lukB"
  1594. " high:%lukB"
  1595. " active:%lukB"
  1596. " inactive:%lukB"
  1597. " present:%lukB"
  1598. " pages_scanned:%lu"
  1599. " all_unreclaimable? %s"
  1600. "\n",
  1601. zone->name,
  1602. K(zone_page_state(zone, NR_FREE_PAGES)),
  1603. K(zone->pages_min),
  1604. K(zone->pages_low),
  1605. K(zone->pages_high),
  1606. K(zone_page_state(zone, NR_ACTIVE)),
  1607. K(zone_page_state(zone, NR_INACTIVE)),
  1608. K(zone->present_pages),
  1609. zone->pages_scanned,
  1610. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1611. );
  1612. printk("lowmem_reserve[]:");
  1613. for (i = 0; i < MAX_NR_ZONES; i++)
  1614. printk(" %lu", zone->lowmem_reserve[i]);
  1615. printk("\n");
  1616. }
  1617. for_each_zone(zone) {
  1618. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1619. if (!populated_zone(zone))
  1620. continue;
  1621. show_node(zone);
  1622. printk("%s: ", zone->name);
  1623. spin_lock_irqsave(&zone->lock, flags);
  1624. for (order = 0; order < MAX_ORDER; order++) {
  1625. nr[order] = zone->free_area[order].nr_free;
  1626. total += nr[order] << order;
  1627. }
  1628. spin_unlock_irqrestore(&zone->lock, flags);
  1629. for (order = 0; order < MAX_ORDER; order++)
  1630. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1631. printk("= %lukB\n", K(total));
  1632. }
  1633. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1634. show_swap_cache_info();
  1635. }
  1636. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1637. {
  1638. zoneref->zone = zone;
  1639. zoneref->zone_idx = zone_idx(zone);
  1640. }
  1641. /*
  1642. * Builds allocation fallback zone lists.
  1643. *
  1644. * Add all populated zones of a node to the zonelist.
  1645. */
  1646. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1647. int nr_zones, enum zone_type zone_type)
  1648. {
  1649. struct zone *zone;
  1650. BUG_ON(zone_type >= MAX_NR_ZONES);
  1651. zone_type++;
  1652. do {
  1653. zone_type--;
  1654. zone = pgdat->node_zones + zone_type;
  1655. if (populated_zone(zone)) {
  1656. zoneref_set_zone(zone,
  1657. &zonelist->_zonerefs[nr_zones++]);
  1658. check_highest_zone(zone_type);
  1659. }
  1660. } while (zone_type);
  1661. return nr_zones;
  1662. }
  1663. /*
  1664. * zonelist_order:
  1665. * 0 = automatic detection of better ordering.
  1666. * 1 = order by ([node] distance, -zonetype)
  1667. * 2 = order by (-zonetype, [node] distance)
  1668. *
  1669. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1670. * the same zonelist. So only NUMA can configure this param.
  1671. */
  1672. #define ZONELIST_ORDER_DEFAULT 0
  1673. #define ZONELIST_ORDER_NODE 1
  1674. #define ZONELIST_ORDER_ZONE 2
  1675. /* zonelist order in the kernel.
  1676. * set_zonelist_order() will set this to NODE or ZONE.
  1677. */
  1678. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1679. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1680. #ifdef CONFIG_NUMA
  1681. /* The value user specified ....changed by config */
  1682. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1683. /* string for sysctl */
  1684. #define NUMA_ZONELIST_ORDER_LEN 16
  1685. char numa_zonelist_order[16] = "default";
  1686. /*
  1687. * interface for configure zonelist ordering.
  1688. * command line option "numa_zonelist_order"
  1689. * = "[dD]efault - default, automatic configuration.
  1690. * = "[nN]ode - order by node locality, then by zone within node
  1691. * = "[zZ]one - order by zone, then by locality within zone
  1692. */
  1693. static int __parse_numa_zonelist_order(char *s)
  1694. {
  1695. if (*s == 'd' || *s == 'D') {
  1696. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1697. } else if (*s == 'n' || *s == 'N') {
  1698. user_zonelist_order = ZONELIST_ORDER_NODE;
  1699. } else if (*s == 'z' || *s == 'Z') {
  1700. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1701. } else {
  1702. printk(KERN_WARNING
  1703. "Ignoring invalid numa_zonelist_order value: "
  1704. "%s\n", s);
  1705. return -EINVAL;
  1706. }
  1707. return 0;
  1708. }
  1709. static __init int setup_numa_zonelist_order(char *s)
  1710. {
  1711. if (s)
  1712. return __parse_numa_zonelist_order(s);
  1713. return 0;
  1714. }
  1715. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1716. /*
  1717. * sysctl handler for numa_zonelist_order
  1718. */
  1719. int numa_zonelist_order_handler(ctl_table *table, int write,
  1720. struct file *file, void __user *buffer, size_t *length,
  1721. loff_t *ppos)
  1722. {
  1723. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1724. int ret;
  1725. if (write)
  1726. strncpy(saved_string, (char*)table->data,
  1727. NUMA_ZONELIST_ORDER_LEN);
  1728. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1729. if (ret)
  1730. return ret;
  1731. if (write) {
  1732. int oldval = user_zonelist_order;
  1733. if (__parse_numa_zonelist_order((char*)table->data)) {
  1734. /*
  1735. * bogus value. restore saved string
  1736. */
  1737. strncpy((char*)table->data, saved_string,
  1738. NUMA_ZONELIST_ORDER_LEN);
  1739. user_zonelist_order = oldval;
  1740. } else if (oldval != user_zonelist_order)
  1741. build_all_zonelists();
  1742. }
  1743. return 0;
  1744. }
  1745. #define MAX_NODE_LOAD (num_online_nodes())
  1746. static int node_load[MAX_NUMNODES];
  1747. /**
  1748. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1749. * @node: node whose fallback list we're appending
  1750. * @used_node_mask: nodemask_t of already used nodes
  1751. *
  1752. * We use a number of factors to determine which is the next node that should
  1753. * appear on a given node's fallback list. The node should not have appeared
  1754. * already in @node's fallback list, and it should be the next closest node
  1755. * according to the distance array (which contains arbitrary distance values
  1756. * from each node to each node in the system), and should also prefer nodes
  1757. * with no CPUs, since presumably they'll have very little allocation pressure
  1758. * on them otherwise.
  1759. * It returns -1 if no node is found.
  1760. */
  1761. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1762. {
  1763. int n, val;
  1764. int min_val = INT_MAX;
  1765. int best_node = -1;
  1766. node_to_cpumask_ptr(tmp, 0);
  1767. /* Use the local node if we haven't already */
  1768. if (!node_isset(node, *used_node_mask)) {
  1769. node_set(node, *used_node_mask);
  1770. return node;
  1771. }
  1772. for_each_node_state(n, N_HIGH_MEMORY) {
  1773. /* Don't want a node to appear more than once */
  1774. if (node_isset(n, *used_node_mask))
  1775. continue;
  1776. /* Use the distance array to find the distance */
  1777. val = node_distance(node, n);
  1778. /* Penalize nodes under us ("prefer the next node") */
  1779. val += (n < node);
  1780. /* Give preference to headless and unused nodes */
  1781. node_to_cpumask_ptr_next(tmp, n);
  1782. if (!cpus_empty(*tmp))
  1783. val += PENALTY_FOR_NODE_WITH_CPUS;
  1784. /* Slight preference for less loaded node */
  1785. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1786. val += node_load[n];
  1787. if (val < min_val) {
  1788. min_val = val;
  1789. best_node = n;
  1790. }
  1791. }
  1792. if (best_node >= 0)
  1793. node_set(best_node, *used_node_mask);
  1794. return best_node;
  1795. }
  1796. /*
  1797. * Build zonelists ordered by node and zones within node.
  1798. * This results in maximum locality--normal zone overflows into local
  1799. * DMA zone, if any--but risks exhausting DMA zone.
  1800. */
  1801. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1802. {
  1803. int j;
  1804. struct zonelist *zonelist;
  1805. zonelist = &pgdat->node_zonelists[0];
  1806. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1807. ;
  1808. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1809. MAX_NR_ZONES - 1);
  1810. zonelist->_zonerefs[j].zone = NULL;
  1811. zonelist->_zonerefs[j].zone_idx = 0;
  1812. }
  1813. /*
  1814. * Build gfp_thisnode zonelists
  1815. */
  1816. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1817. {
  1818. int j;
  1819. struct zonelist *zonelist;
  1820. zonelist = &pgdat->node_zonelists[1];
  1821. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1822. zonelist->_zonerefs[j].zone = NULL;
  1823. zonelist->_zonerefs[j].zone_idx = 0;
  1824. }
  1825. /*
  1826. * Build zonelists ordered by zone and nodes within zones.
  1827. * This results in conserving DMA zone[s] until all Normal memory is
  1828. * exhausted, but results in overflowing to remote node while memory
  1829. * may still exist in local DMA zone.
  1830. */
  1831. static int node_order[MAX_NUMNODES];
  1832. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1833. {
  1834. int pos, j, node;
  1835. int zone_type; /* needs to be signed */
  1836. struct zone *z;
  1837. struct zonelist *zonelist;
  1838. zonelist = &pgdat->node_zonelists[0];
  1839. pos = 0;
  1840. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1841. for (j = 0; j < nr_nodes; j++) {
  1842. node = node_order[j];
  1843. z = &NODE_DATA(node)->node_zones[zone_type];
  1844. if (populated_zone(z)) {
  1845. zoneref_set_zone(z,
  1846. &zonelist->_zonerefs[pos++]);
  1847. check_highest_zone(zone_type);
  1848. }
  1849. }
  1850. }
  1851. zonelist->_zonerefs[pos].zone = NULL;
  1852. zonelist->_zonerefs[pos].zone_idx = 0;
  1853. }
  1854. static int default_zonelist_order(void)
  1855. {
  1856. int nid, zone_type;
  1857. unsigned long low_kmem_size,total_size;
  1858. struct zone *z;
  1859. int average_size;
  1860. /*
  1861. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1862. * If they are really small and used heavily, the system can fall
  1863. * into OOM very easily.
  1864. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1865. */
  1866. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1867. low_kmem_size = 0;
  1868. total_size = 0;
  1869. for_each_online_node(nid) {
  1870. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1871. z = &NODE_DATA(nid)->node_zones[zone_type];
  1872. if (populated_zone(z)) {
  1873. if (zone_type < ZONE_NORMAL)
  1874. low_kmem_size += z->present_pages;
  1875. total_size += z->present_pages;
  1876. }
  1877. }
  1878. }
  1879. if (!low_kmem_size || /* there are no DMA area. */
  1880. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1881. return ZONELIST_ORDER_NODE;
  1882. /*
  1883. * look into each node's config.
  1884. * If there is a node whose DMA/DMA32 memory is very big area on
  1885. * local memory, NODE_ORDER may be suitable.
  1886. */
  1887. average_size = total_size /
  1888. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1889. for_each_online_node(nid) {
  1890. low_kmem_size = 0;
  1891. total_size = 0;
  1892. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1893. z = &NODE_DATA(nid)->node_zones[zone_type];
  1894. if (populated_zone(z)) {
  1895. if (zone_type < ZONE_NORMAL)
  1896. low_kmem_size += z->present_pages;
  1897. total_size += z->present_pages;
  1898. }
  1899. }
  1900. if (low_kmem_size &&
  1901. total_size > average_size && /* ignore small node */
  1902. low_kmem_size > total_size * 70/100)
  1903. return ZONELIST_ORDER_NODE;
  1904. }
  1905. return ZONELIST_ORDER_ZONE;
  1906. }
  1907. static void set_zonelist_order(void)
  1908. {
  1909. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1910. current_zonelist_order = default_zonelist_order();
  1911. else
  1912. current_zonelist_order = user_zonelist_order;
  1913. }
  1914. static void build_zonelists(pg_data_t *pgdat)
  1915. {
  1916. int j, node, load;
  1917. enum zone_type i;
  1918. nodemask_t used_mask;
  1919. int local_node, prev_node;
  1920. struct zonelist *zonelist;
  1921. int order = current_zonelist_order;
  1922. /* initialize zonelists */
  1923. for (i = 0; i < MAX_ZONELISTS; i++) {
  1924. zonelist = pgdat->node_zonelists + i;
  1925. zonelist->_zonerefs[0].zone = NULL;
  1926. zonelist->_zonerefs[0].zone_idx = 0;
  1927. }
  1928. /* NUMA-aware ordering of nodes */
  1929. local_node = pgdat->node_id;
  1930. load = num_online_nodes();
  1931. prev_node = local_node;
  1932. nodes_clear(used_mask);
  1933. memset(node_load, 0, sizeof(node_load));
  1934. memset(node_order, 0, sizeof(node_order));
  1935. j = 0;
  1936. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1937. int distance = node_distance(local_node, node);
  1938. /*
  1939. * If another node is sufficiently far away then it is better
  1940. * to reclaim pages in a zone before going off node.
  1941. */
  1942. if (distance > RECLAIM_DISTANCE)
  1943. zone_reclaim_mode = 1;
  1944. /*
  1945. * We don't want to pressure a particular node.
  1946. * So adding penalty to the first node in same
  1947. * distance group to make it round-robin.
  1948. */
  1949. if (distance != node_distance(local_node, prev_node))
  1950. node_load[node] = load;
  1951. prev_node = node;
  1952. load--;
  1953. if (order == ZONELIST_ORDER_NODE)
  1954. build_zonelists_in_node_order(pgdat, node);
  1955. else
  1956. node_order[j++] = node; /* remember order */
  1957. }
  1958. if (order == ZONELIST_ORDER_ZONE) {
  1959. /* calculate node order -- i.e., DMA last! */
  1960. build_zonelists_in_zone_order(pgdat, j);
  1961. }
  1962. build_thisnode_zonelists(pgdat);
  1963. }
  1964. /* Construct the zonelist performance cache - see further mmzone.h */
  1965. static void build_zonelist_cache(pg_data_t *pgdat)
  1966. {
  1967. struct zonelist *zonelist;
  1968. struct zonelist_cache *zlc;
  1969. struct zoneref *z;
  1970. zonelist = &pgdat->node_zonelists[0];
  1971. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1972. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1973. for (z = zonelist->_zonerefs; z->zone; z++)
  1974. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  1975. }
  1976. #else /* CONFIG_NUMA */
  1977. static void set_zonelist_order(void)
  1978. {
  1979. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1980. }
  1981. static void build_zonelists(pg_data_t *pgdat)
  1982. {
  1983. int node, local_node;
  1984. enum zone_type j;
  1985. struct zonelist *zonelist;
  1986. local_node = pgdat->node_id;
  1987. zonelist = &pgdat->node_zonelists[0];
  1988. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1989. /*
  1990. * Now we build the zonelist so that it contains the zones
  1991. * of all the other nodes.
  1992. * We don't want to pressure a particular node, so when
  1993. * building the zones for node N, we make sure that the
  1994. * zones coming right after the local ones are those from
  1995. * node N+1 (modulo N)
  1996. */
  1997. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1998. if (!node_online(node))
  1999. continue;
  2000. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2001. MAX_NR_ZONES - 1);
  2002. }
  2003. for (node = 0; node < local_node; node++) {
  2004. if (!node_online(node))
  2005. continue;
  2006. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2007. MAX_NR_ZONES - 1);
  2008. }
  2009. zonelist->_zonerefs[j].zone = NULL;
  2010. zonelist->_zonerefs[j].zone_idx = 0;
  2011. }
  2012. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2013. static void build_zonelist_cache(pg_data_t *pgdat)
  2014. {
  2015. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2016. pgdat->node_zonelists[1].zlcache_ptr = NULL;
  2017. }
  2018. #endif /* CONFIG_NUMA */
  2019. /* return values int ....just for stop_machine_run() */
  2020. static int __build_all_zonelists(void *dummy)
  2021. {
  2022. int nid;
  2023. for_each_online_node(nid) {
  2024. pg_data_t *pgdat = NODE_DATA(nid);
  2025. build_zonelists(pgdat);
  2026. build_zonelist_cache(pgdat);
  2027. }
  2028. return 0;
  2029. }
  2030. void build_all_zonelists(void)
  2031. {
  2032. set_zonelist_order();
  2033. if (system_state == SYSTEM_BOOTING) {
  2034. __build_all_zonelists(NULL);
  2035. cpuset_init_current_mems_allowed();
  2036. } else {
  2037. /* we have to stop all cpus to guarantee there is no user
  2038. of zonelist */
  2039. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2040. /* cpuset refresh routine should be here */
  2041. }
  2042. vm_total_pages = nr_free_pagecache_pages();
  2043. /*
  2044. * Disable grouping by mobility if the number of pages in the
  2045. * system is too low to allow the mechanism to work. It would be
  2046. * more accurate, but expensive to check per-zone. This check is
  2047. * made on memory-hotadd so a system can start with mobility
  2048. * disabled and enable it later
  2049. */
  2050. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2051. page_group_by_mobility_disabled = 1;
  2052. else
  2053. page_group_by_mobility_disabled = 0;
  2054. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2055. "Total pages: %ld\n",
  2056. num_online_nodes(),
  2057. zonelist_order_name[current_zonelist_order],
  2058. page_group_by_mobility_disabled ? "off" : "on",
  2059. vm_total_pages);
  2060. #ifdef CONFIG_NUMA
  2061. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2062. #endif
  2063. }
  2064. /*
  2065. * Helper functions to size the waitqueue hash table.
  2066. * Essentially these want to choose hash table sizes sufficiently
  2067. * large so that collisions trying to wait on pages are rare.
  2068. * But in fact, the number of active page waitqueues on typical
  2069. * systems is ridiculously low, less than 200. So this is even
  2070. * conservative, even though it seems large.
  2071. *
  2072. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2073. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2074. */
  2075. #define PAGES_PER_WAITQUEUE 256
  2076. #ifndef CONFIG_MEMORY_HOTPLUG
  2077. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2078. {
  2079. unsigned long size = 1;
  2080. pages /= PAGES_PER_WAITQUEUE;
  2081. while (size < pages)
  2082. size <<= 1;
  2083. /*
  2084. * Once we have dozens or even hundreds of threads sleeping
  2085. * on IO we've got bigger problems than wait queue collision.
  2086. * Limit the size of the wait table to a reasonable size.
  2087. */
  2088. size = min(size, 4096UL);
  2089. return max(size, 4UL);
  2090. }
  2091. #else
  2092. /*
  2093. * A zone's size might be changed by hot-add, so it is not possible to determine
  2094. * a suitable size for its wait_table. So we use the maximum size now.
  2095. *
  2096. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2097. *
  2098. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2099. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2100. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2101. *
  2102. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2103. * or more by the traditional way. (See above). It equals:
  2104. *
  2105. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2106. * ia64(16K page size) : = ( 8G + 4M)byte.
  2107. * powerpc (64K page size) : = (32G +16M)byte.
  2108. */
  2109. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2110. {
  2111. return 4096UL;
  2112. }
  2113. #endif
  2114. /*
  2115. * This is an integer logarithm so that shifts can be used later
  2116. * to extract the more random high bits from the multiplicative
  2117. * hash function before the remainder is taken.
  2118. */
  2119. static inline unsigned long wait_table_bits(unsigned long size)
  2120. {
  2121. return ffz(~size);
  2122. }
  2123. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2124. /*
  2125. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2126. * of blocks reserved is based on zone->pages_min. The memory within the
  2127. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2128. * higher will lead to a bigger reserve which will get freed as contiguous
  2129. * blocks as reclaim kicks in
  2130. */
  2131. static void setup_zone_migrate_reserve(struct zone *zone)
  2132. {
  2133. unsigned long start_pfn, pfn, end_pfn;
  2134. struct page *page;
  2135. unsigned long reserve, block_migratetype;
  2136. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2137. start_pfn = zone->zone_start_pfn;
  2138. end_pfn = start_pfn + zone->spanned_pages;
  2139. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2140. pageblock_order;
  2141. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2142. if (!pfn_valid(pfn))
  2143. continue;
  2144. page = pfn_to_page(pfn);
  2145. /* Blocks with reserved pages will never free, skip them. */
  2146. if (PageReserved(page))
  2147. continue;
  2148. block_migratetype = get_pageblock_migratetype(page);
  2149. /* If this block is reserved, account for it */
  2150. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2151. reserve--;
  2152. continue;
  2153. }
  2154. /* Suitable for reserving if this block is movable */
  2155. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2156. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2157. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2158. reserve--;
  2159. continue;
  2160. }
  2161. /*
  2162. * If the reserve is met and this is a previous reserved block,
  2163. * take it back
  2164. */
  2165. if (block_migratetype == MIGRATE_RESERVE) {
  2166. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2167. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2168. }
  2169. }
  2170. }
  2171. /*
  2172. * Initially all pages are reserved - free ones are freed
  2173. * up by free_all_bootmem() once the early boot process is
  2174. * done. Non-atomic initialization, single-pass.
  2175. */
  2176. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2177. unsigned long start_pfn, enum memmap_context context)
  2178. {
  2179. struct page *page;
  2180. unsigned long end_pfn = start_pfn + size;
  2181. unsigned long pfn;
  2182. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2183. /*
  2184. * There can be holes in boot-time mem_map[]s
  2185. * handed to this function. They do not
  2186. * exist on hotplugged memory.
  2187. */
  2188. if (context == MEMMAP_EARLY) {
  2189. if (!early_pfn_valid(pfn))
  2190. continue;
  2191. if (!early_pfn_in_nid(pfn, nid))
  2192. continue;
  2193. }
  2194. page = pfn_to_page(pfn);
  2195. set_page_links(page, zone, nid, pfn);
  2196. init_page_count(page);
  2197. reset_page_mapcount(page);
  2198. SetPageReserved(page);
  2199. /*
  2200. * Mark the block movable so that blocks are reserved for
  2201. * movable at startup. This will force kernel allocations
  2202. * to reserve their blocks rather than leaking throughout
  2203. * the address space during boot when many long-lived
  2204. * kernel allocations are made. Later some blocks near
  2205. * the start are marked MIGRATE_RESERVE by
  2206. * setup_zone_migrate_reserve()
  2207. */
  2208. if ((pfn & (pageblock_nr_pages-1)))
  2209. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2210. INIT_LIST_HEAD(&page->lru);
  2211. #ifdef WANT_PAGE_VIRTUAL
  2212. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2213. if (!is_highmem_idx(zone))
  2214. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2215. #endif
  2216. }
  2217. }
  2218. static void __meminit zone_init_free_lists(struct zone *zone)
  2219. {
  2220. int order, t;
  2221. for_each_migratetype_order(order, t) {
  2222. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2223. zone->free_area[order].nr_free = 0;
  2224. }
  2225. }
  2226. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2227. #define memmap_init(size, nid, zone, start_pfn) \
  2228. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2229. #endif
  2230. static int zone_batchsize(struct zone *zone)
  2231. {
  2232. int batch;
  2233. /*
  2234. * The per-cpu-pages pools are set to around 1000th of the
  2235. * size of the zone. But no more than 1/2 of a meg.
  2236. *
  2237. * OK, so we don't know how big the cache is. So guess.
  2238. */
  2239. batch = zone->present_pages / 1024;
  2240. if (batch * PAGE_SIZE > 512 * 1024)
  2241. batch = (512 * 1024) / PAGE_SIZE;
  2242. batch /= 4; /* We effectively *= 4 below */
  2243. if (batch < 1)
  2244. batch = 1;
  2245. /*
  2246. * Clamp the batch to a 2^n - 1 value. Having a power
  2247. * of 2 value was found to be more likely to have
  2248. * suboptimal cache aliasing properties in some cases.
  2249. *
  2250. * For example if 2 tasks are alternately allocating
  2251. * batches of pages, one task can end up with a lot
  2252. * of pages of one half of the possible page colors
  2253. * and the other with pages of the other colors.
  2254. */
  2255. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2256. return batch;
  2257. }
  2258. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2259. {
  2260. struct per_cpu_pages *pcp;
  2261. memset(p, 0, sizeof(*p));
  2262. pcp = &p->pcp;
  2263. pcp->count = 0;
  2264. pcp->high = 6 * batch;
  2265. pcp->batch = max(1UL, 1 * batch);
  2266. INIT_LIST_HEAD(&pcp->list);
  2267. }
  2268. /*
  2269. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2270. * to the value high for the pageset p.
  2271. */
  2272. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2273. unsigned long high)
  2274. {
  2275. struct per_cpu_pages *pcp;
  2276. pcp = &p->pcp;
  2277. pcp->high = high;
  2278. pcp->batch = max(1UL, high/4);
  2279. if ((high/4) > (PAGE_SHIFT * 8))
  2280. pcp->batch = PAGE_SHIFT * 8;
  2281. }
  2282. #ifdef CONFIG_NUMA
  2283. /*
  2284. * Boot pageset table. One per cpu which is going to be used for all
  2285. * zones and all nodes. The parameters will be set in such a way
  2286. * that an item put on a list will immediately be handed over to
  2287. * the buddy list. This is safe since pageset manipulation is done
  2288. * with interrupts disabled.
  2289. *
  2290. * Some NUMA counter updates may also be caught by the boot pagesets.
  2291. *
  2292. * The boot_pagesets must be kept even after bootup is complete for
  2293. * unused processors and/or zones. They do play a role for bootstrapping
  2294. * hotplugged processors.
  2295. *
  2296. * zoneinfo_show() and maybe other functions do
  2297. * not check if the processor is online before following the pageset pointer.
  2298. * Other parts of the kernel may not check if the zone is available.
  2299. */
  2300. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2301. /*
  2302. * Dynamically allocate memory for the
  2303. * per cpu pageset array in struct zone.
  2304. */
  2305. static int __cpuinit process_zones(int cpu)
  2306. {
  2307. struct zone *zone, *dzone;
  2308. int node = cpu_to_node(cpu);
  2309. node_set_state(node, N_CPU); /* this node has a cpu */
  2310. for_each_zone(zone) {
  2311. if (!populated_zone(zone))
  2312. continue;
  2313. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2314. GFP_KERNEL, node);
  2315. if (!zone_pcp(zone, cpu))
  2316. goto bad;
  2317. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2318. if (percpu_pagelist_fraction)
  2319. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2320. (zone->present_pages / percpu_pagelist_fraction));
  2321. }
  2322. return 0;
  2323. bad:
  2324. for_each_zone(dzone) {
  2325. if (!populated_zone(dzone))
  2326. continue;
  2327. if (dzone == zone)
  2328. break;
  2329. kfree(zone_pcp(dzone, cpu));
  2330. zone_pcp(dzone, cpu) = NULL;
  2331. }
  2332. return -ENOMEM;
  2333. }
  2334. static inline void free_zone_pagesets(int cpu)
  2335. {
  2336. struct zone *zone;
  2337. for_each_zone(zone) {
  2338. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2339. /* Free per_cpu_pageset if it is slab allocated */
  2340. if (pset != &boot_pageset[cpu])
  2341. kfree(pset);
  2342. zone_pcp(zone, cpu) = NULL;
  2343. }
  2344. }
  2345. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2346. unsigned long action,
  2347. void *hcpu)
  2348. {
  2349. int cpu = (long)hcpu;
  2350. int ret = NOTIFY_OK;
  2351. switch (action) {
  2352. case CPU_UP_PREPARE:
  2353. case CPU_UP_PREPARE_FROZEN:
  2354. if (process_zones(cpu))
  2355. ret = NOTIFY_BAD;
  2356. break;
  2357. case CPU_UP_CANCELED:
  2358. case CPU_UP_CANCELED_FROZEN:
  2359. case CPU_DEAD:
  2360. case CPU_DEAD_FROZEN:
  2361. free_zone_pagesets(cpu);
  2362. break;
  2363. default:
  2364. break;
  2365. }
  2366. return ret;
  2367. }
  2368. static struct notifier_block __cpuinitdata pageset_notifier =
  2369. { &pageset_cpuup_callback, NULL, 0 };
  2370. void __init setup_per_cpu_pageset(void)
  2371. {
  2372. int err;
  2373. /* Initialize per_cpu_pageset for cpu 0.
  2374. * A cpuup callback will do this for every cpu
  2375. * as it comes online
  2376. */
  2377. err = process_zones(smp_processor_id());
  2378. BUG_ON(err);
  2379. register_cpu_notifier(&pageset_notifier);
  2380. }
  2381. #endif
  2382. static noinline __init_refok
  2383. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2384. {
  2385. int i;
  2386. struct pglist_data *pgdat = zone->zone_pgdat;
  2387. size_t alloc_size;
  2388. /*
  2389. * The per-page waitqueue mechanism uses hashed waitqueues
  2390. * per zone.
  2391. */
  2392. zone->wait_table_hash_nr_entries =
  2393. wait_table_hash_nr_entries(zone_size_pages);
  2394. zone->wait_table_bits =
  2395. wait_table_bits(zone->wait_table_hash_nr_entries);
  2396. alloc_size = zone->wait_table_hash_nr_entries
  2397. * sizeof(wait_queue_head_t);
  2398. if (system_state == SYSTEM_BOOTING) {
  2399. zone->wait_table = (wait_queue_head_t *)
  2400. alloc_bootmem_node(pgdat, alloc_size);
  2401. } else {
  2402. /*
  2403. * This case means that a zone whose size was 0 gets new memory
  2404. * via memory hot-add.
  2405. * But it may be the case that a new node was hot-added. In
  2406. * this case vmalloc() will not be able to use this new node's
  2407. * memory - this wait_table must be initialized to use this new
  2408. * node itself as well.
  2409. * To use this new node's memory, further consideration will be
  2410. * necessary.
  2411. */
  2412. zone->wait_table = vmalloc(alloc_size);
  2413. }
  2414. if (!zone->wait_table)
  2415. return -ENOMEM;
  2416. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2417. init_waitqueue_head(zone->wait_table + i);
  2418. return 0;
  2419. }
  2420. static __meminit void zone_pcp_init(struct zone *zone)
  2421. {
  2422. int cpu;
  2423. unsigned long batch = zone_batchsize(zone);
  2424. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2425. #ifdef CONFIG_NUMA
  2426. /* Early boot. Slab allocator not functional yet */
  2427. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2428. setup_pageset(&boot_pageset[cpu],0);
  2429. #else
  2430. setup_pageset(zone_pcp(zone,cpu), batch);
  2431. #endif
  2432. }
  2433. if (zone->present_pages)
  2434. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2435. zone->name, zone->present_pages, batch);
  2436. }
  2437. __meminit int init_currently_empty_zone(struct zone *zone,
  2438. unsigned long zone_start_pfn,
  2439. unsigned long size,
  2440. enum memmap_context context)
  2441. {
  2442. struct pglist_data *pgdat = zone->zone_pgdat;
  2443. int ret;
  2444. ret = zone_wait_table_init(zone, size);
  2445. if (ret)
  2446. return ret;
  2447. pgdat->nr_zones = zone_idx(zone) + 1;
  2448. zone->zone_start_pfn = zone_start_pfn;
  2449. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2450. zone_init_free_lists(zone);
  2451. return 0;
  2452. }
  2453. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2454. /*
  2455. * Basic iterator support. Return the first range of PFNs for a node
  2456. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2457. */
  2458. static int __meminit first_active_region_index_in_nid(int nid)
  2459. {
  2460. int i;
  2461. for (i = 0; i < nr_nodemap_entries; i++)
  2462. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2463. return i;
  2464. return -1;
  2465. }
  2466. /*
  2467. * Basic iterator support. Return the next active range of PFNs for a node
  2468. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2469. */
  2470. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2471. {
  2472. for (index = index + 1; index < nr_nodemap_entries; index++)
  2473. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2474. return index;
  2475. return -1;
  2476. }
  2477. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2478. /*
  2479. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2480. * Architectures may implement their own version but if add_active_range()
  2481. * was used and there are no special requirements, this is a convenient
  2482. * alternative
  2483. */
  2484. int __meminit early_pfn_to_nid(unsigned long pfn)
  2485. {
  2486. int i;
  2487. for (i = 0; i < nr_nodemap_entries; i++) {
  2488. unsigned long start_pfn = early_node_map[i].start_pfn;
  2489. unsigned long end_pfn = early_node_map[i].end_pfn;
  2490. if (start_pfn <= pfn && pfn < end_pfn)
  2491. return early_node_map[i].nid;
  2492. }
  2493. return 0;
  2494. }
  2495. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2496. /* Basic iterator support to walk early_node_map[] */
  2497. #define for_each_active_range_index_in_nid(i, nid) \
  2498. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2499. i = next_active_region_index_in_nid(i, nid))
  2500. /**
  2501. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2502. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2503. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2504. *
  2505. * If an architecture guarantees that all ranges registered with
  2506. * add_active_ranges() contain no holes and may be freed, this
  2507. * this function may be used instead of calling free_bootmem() manually.
  2508. */
  2509. void __init free_bootmem_with_active_regions(int nid,
  2510. unsigned long max_low_pfn)
  2511. {
  2512. int i;
  2513. for_each_active_range_index_in_nid(i, nid) {
  2514. unsigned long size_pages = 0;
  2515. unsigned long end_pfn = early_node_map[i].end_pfn;
  2516. if (early_node_map[i].start_pfn >= max_low_pfn)
  2517. continue;
  2518. if (end_pfn > max_low_pfn)
  2519. end_pfn = max_low_pfn;
  2520. size_pages = end_pfn - early_node_map[i].start_pfn;
  2521. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2522. PFN_PHYS(early_node_map[i].start_pfn),
  2523. size_pages << PAGE_SHIFT);
  2524. }
  2525. }
  2526. /**
  2527. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2528. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2529. *
  2530. * If an architecture guarantees that all ranges registered with
  2531. * add_active_ranges() contain no holes and may be freed, this
  2532. * function may be used instead of calling memory_present() manually.
  2533. */
  2534. void __init sparse_memory_present_with_active_regions(int nid)
  2535. {
  2536. int i;
  2537. for_each_active_range_index_in_nid(i, nid)
  2538. memory_present(early_node_map[i].nid,
  2539. early_node_map[i].start_pfn,
  2540. early_node_map[i].end_pfn);
  2541. }
  2542. /**
  2543. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2544. * @nid: The nid of the node to push the boundary for
  2545. * @start_pfn: The start pfn of the node
  2546. * @end_pfn: The end pfn of the node
  2547. *
  2548. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2549. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2550. * be hotplugged even though no physical memory exists. This function allows
  2551. * an arch to push out the node boundaries so mem_map is allocated that can
  2552. * be used later.
  2553. */
  2554. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2555. void __init push_node_boundaries(unsigned int nid,
  2556. unsigned long start_pfn, unsigned long end_pfn)
  2557. {
  2558. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2559. nid, start_pfn, end_pfn);
  2560. /* Initialise the boundary for this node if necessary */
  2561. if (node_boundary_end_pfn[nid] == 0)
  2562. node_boundary_start_pfn[nid] = -1UL;
  2563. /* Update the boundaries */
  2564. if (node_boundary_start_pfn[nid] > start_pfn)
  2565. node_boundary_start_pfn[nid] = start_pfn;
  2566. if (node_boundary_end_pfn[nid] < end_pfn)
  2567. node_boundary_end_pfn[nid] = end_pfn;
  2568. }
  2569. /* If necessary, push the node boundary out for reserve hotadd */
  2570. static void __meminit account_node_boundary(unsigned int nid,
  2571. unsigned long *start_pfn, unsigned long *end_pfn)
  2572. {
  2573. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2574. nid, *start_pfn, *end_pfn);
  2575. /* Return if boundary information has not been provided */
  2576. if (node_boundary_end_pfn[nid] == 0)
  2577. return;
  2578. /* Check the boundaries and update if necessary */
  2579. if (node_boundary_start_pfn[nid] < *start_pfn)
  2580. *start_pfn = node_boundary_start_pfn[nid];
  2581. if (node_boundary_end_pfn[nid] > *end_pfn)
  2582. *end_pfn = node_boundary_end_pfn[nid];
  2583. }
  2584. #else
  2585. void __init push_node_boundaries(unsigned int nid,
  2586. unsigned long start_pfn, unsigned long end_pfn) {}
  2587. static void __meminit account_node_boundary(unsigned int nid,
  2588. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2589. #endif
  2590. /**
  2591. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2592. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2593. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2594. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2595. *
  2596. * It returns the start and end page frame of a node based on information
  2597. * provided by an arch calling add_active_range(). If called for a node
  2598. * with no available memory, a warning is printed and the start and end
  2599. * PFNs will be 0.
  2600. */
  2601. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2602. unsigned long *start_pfn, unsigned long *end_pfn)
  2603. {
  2604. int i;
  2605. *start_pfn = -1UL;
  2606. *end_pfn = 0;
  2607. for_each_active_range_index_in_nid(i, nid) {
  2608. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2609. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2610. }
  2611. if (*start_pfn == -1UL)
  2612. *start_pfn = 0;
  2613. /* Push the node boundaries out if requested */
  2614. account_node_boundary(nid, start_pfn, end_pfn);
  2615. }
  2616. /*
  2617. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2618. * assumption is made that zones within a node are ordered in monotonic
  2619. * increasing memory addresses so that the "highest" populated zone is used
  2620. */
  2621. void __init find_usable_zone_for_movable(void)
  2622. {
  2623. int zone_index;
  2624. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2625. if (zone_index == ZONE_MOVABLE)
  2626. continue;
  2627. if (arch_zone_highest_possible_pfn[zone_index] >
  2628. arch_zone_lowest_possible_pfn[zone_index])
  2629. break;
  2630. }
  2631. VM_BUG_ON(zone_index == -1);
  2632. movable_zone = zone_index;
  2633. }
  2634. /*
  2635. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2636. * because it is sized independant of architecture. Unlike the other zones,
  2637. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2638. * in each node depending on the size of each node and how evenly kernelcore
  2639. * is distributed. This helper function adjusts the zone ranges
  2640. * provided by the architecture for a given node by using the end of the
  2641. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2642. * zones within a node are in order of monotonic increases memory addresses
  2643. */
  2644. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2645. unsigned long zone_type,
  2646. unsigned long node_start_pfn,
  2647. unsigned long node_end_pfn,
  2648. unsigned long *zone_start_pfn,
  2649. unsigned long *zone_end_pfn)
  2650. {
  2651. /* Only adjust if ZONE_MOVABLE is on this node */
  2652. if (zone_movable_pfn[nid]) {
  2653. /* Size ZONE_MOVABLE */
  2654. if (zone_type == ZONE_MOVABLE) {
  2655. *zone_start_pfn = zone_movable_pfn[nid];
  2656. *zone_end_pfn = min(node_end_pfn,
  2657. arch_zone_highest_possible_pfn[movable_zone]);
  2658. /* Adjust for ZONE_MOVABLE starting within this range */
  2659. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2660. *zone_end_pfn > zone_movable_pfn[nid]) {
  2661. *zone_end_pfn = zone_movable_pfn[nid];
  2662. /* Check if this whole range is within ZONE_MOVABLE */
  2663. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2664. *zone_start_pfn = *zone_end_pfn;
  2665. }
  2666. }
  2667. /*
  2668. * Return the number of pages a zone spans in a node, including holes
  2669. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2670. */
  2671. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2672. unsigned long zone_type,
  2673. unsigned long *ignored)
  2674. {
  2675. unsigned long node_start_pfn, node_end_pfn;
  2676. unsigned long zone_start_pfn, zone_end_pfn;
  2677. /* Get the start and end of the node and zone */
  2678. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2679. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2680. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2681. adjust_zone_range_for_zone_movable(nid, zone_type,
  2682. node_start_pfn, node_end_pfn,
  2683. &zone_start_pfn, &zone_end_pfn);
  2684. /* Check that this node has pages within the zone's required range */
  2685. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2686. return 0;
  2687. /* Move the zone boundaries inside the node if necessary */
  2688. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2689. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2690. /* Return the spanned pages */
  2691. return zone_end_pfn - zone_start_pfn;
  2692. }
  2693. /*
  2694. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2695. * then all holes in the requested range will be accounted for.
  2696. */
  2697. unsigned long __meminit __absent_pages_in_range(int nid,
  2698. unsigned long range_start_pfn,
  2699. unsigned long range_end_pfn)
  2700. {
  2701. int i = 0;
  2702. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2703. unsigned long start_pfn;
  2704. /* Find the end_pfn of the first active range of pfns in the node */
  2705. i = first_active_region_index_in_nid(nid);
  2706. if (i == -1)
  2707. return 0;
  2708. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2709. /* Account for ranges before physical memory on this node */
  2710. if (early_node_map[i].start_pfn > range_start_pfn)
  2711. hole_pages = prev_end_pfn - range_start_pfn;
  2712. /* Find all holes for the zone within the node */
  2713. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2714. /* No need to continue if prev_end_pfn is outside the zone */
  2715. if (prev_end_pfn >= range_end_pfn)
  2716. break;
  2717. /* Make sure the end of the zone is not within the hole */
  2718. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2719. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2720. /* Update the hole size cound and move on */
  2721. if (start_pfn > range_start_pfn) {
  2722. BUG_ON(prev_end_pfn > start_pfn);
  2723. hole_pages += start_pfn - prev_end_pfn;
  2724. }
  2725. prev_end_pfn = early_node_map[i].end_pfn;
  2726. }
  2727. /* Account for ranges past physical memory on this node */
  2728. if (range_end_pfn > prev_end_pfn)
  2729. hole_pages += range_end_pfn -
  2730. max(range_start_pfn, prev_end_pfn);
  2731. return hole_pages;
  2732. }
  2733. /**
  2734. * absent_pages_in_range - Return number of page frames in holes within a range
  2735. * @start_pfn: The start PFN to start searching for holes
  2736. * @end_pfn: The end PFN to stop searching for holes
  2737. *
  2738. * It returns the number of pages frames in memory holes within a range.
  2739. */
  2740. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2741. unsigned long end_pfn)
  2742. {
  2743. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2744. }
  2745. /* Return the number of page frames in holes in a zone on a node */
  2746. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2747. unsigned long zone_type,
  2748. unsigned long *ignored)
  2749. {
  2750. unsigned long node_start_pfn, node_end_pfn;
  2751. unsigned long zone_start_pfn, zone_end_pfn;
  2752. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2753. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2754. node_start_pfn);
  2755. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2756. node_end_pfn);
  2757. adjust_zone_range_for_zone_movable(nid, zone_type,
  2758. node_start_pfn, node_end_pfn,
  2759. &zone_start_pfn, &zone_end_pfn);
  2760. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2761. }
  2762. #else
  2763. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2764. unsigned long zone_type,
  2765. unsigned long *zones_size)
  2766. {
  2767. return zones_size[zone_type];
  2768. }
  2769. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2770. unsigned long zone_type,
  2771. unsigned long *zholes_size)
  2772. {
  2773. if (!zholes_size)
  2774. return 0;
  2775. return zholes_size[zone_type];
  2776. }
  2777. #endif
  2778. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2779. unsigned long *zones_size, unsigned long *zholes_size)
  2780. {
  2781. unsigned long realtotalpages, totalpages = 0;
  2782. enum zone_type i;
  2783. for (i = 0; i < MAX_NR_ZONES; i++)
  2784. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2785. zones_size);
  2786. pgdat->node_spanned_pages = totalpages;
  2787. realtotalpages = totalpages;
  2788. for (i = 0; i < MAX_NR_ZONES; i++)
  2789. realtotalpages -=
  2790. zone_absent_pages_in_node(pgdat->node_id, i,
  2791. zholes_size);
  2792. pgdat->node_present_pages = realtotalpages;
  2793. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2794. realtotalpages);
  2795. }
  2796. #ifndef CONFIG_SPARSEMEM
  2797. /*
  2798. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2799. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2800. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2801. * round what is now in bits to nearest long in bits, then return it in
  2802. * bytes.
  2803. */
  2804. static unsigned long __init usemap_size(unsigned long zonesize)
  2805. {
  2806. unsigned long usemapsize;
  2807. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2808. usemapsize = usemapsize >> pageblock_order;
  2809. usemapsize *= NR_PAGEBLOCK_BITS;
  2810. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2811. return usemapsize / 8;
  2812. }
  2813. static void __init setup_usemap(struct pglist_data *pgdat,
  2814. struct zone *zone, unsigned long zonesize)
  2815. {
  2816. unsigned long usemapsize = usemap_size(zonesize);
  2817. zone->pageblock_flags = NULL;
  2818. if (usemapsize) {
  2819. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2820. memset(zone->pageblock_flags, 0, usemapsize);
  2821. }
  2822. }
  2823. #else
  2824. static void inline setup_usemap(struct pglist_data *pgdat,
  2825. struct zone *zone, unsigned long zonesize) {}
  2826. #endif /* CONFIG_SPARSEMEM */
  2827. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2828. /* Return a sensible default order for the pageblock size. */
  2829. static inline int pageblock_default_order(void)
  2830. {
  2831. if (HPAGE_SHIFT > PAGE_SHIFT)
  2832. return HUGETLB_PAGE_ORDER;
  2833. return MAX_ORDER-1;
  2834. }
  2835. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2836. static inline void __init set_pageblock_order(unsigned int order)
  2837. {
  2838. /* Check that pageblock_nr_pages has not already been setup */
  2839. if (pageblock_order)
  2840. return;
  2841. /*
  2842. * Assume the largest contiguous order of interest is a huge page.
  2843. * This value may be variable depending on boot parameters on IA64
  2844. */
  2845. pageblock_order = order;
  2846. }
  2847. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2848. /*
  2849. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2850. * and pageblock_default_order() are unused as pageblock_order is set
  2851. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2852. * pageblock_order based on the kernel config
  2853. */
  2854. static inline int pageblock_default_order(unsigned int order)
  2855. {
  2856. return MAX_ORDER-1;
  2857. }
  2858. #define set_pageblock_order(x) do {} while (0)
  2859. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2860. /*
  2861. * Set up the zone data structures:
  2862. * - mark all pages reserved
  2863. * - mark all memory queues empty
  2864. * - clear the memory bitmaps
  2865. */
  2866. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2867. unsigned long *zones_size, unsigned long *zholes_size)
  2868. {
  2869. enum zone_type j;
  2870. int nid = pgdat->node_id;
  2871. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2872. int ret;
  2873. pgdat_resize_init(pgdat);
  2874. pgdat->nr_zones = 0;
  2875. init_waitqueue_head(&pgdat->kswapd_wait);
  2876. pgdat->kswapd_max_order = 0;
  2877. for (j = 0; j < MAX_NR_ZONES; j++) {
  2878. struct zone *zone = pgdat->node_zones + j;
  2879. unsigned long size, realsize, memmap_pages;
  2880. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2881. realsize = size - zone_absent_pages_in_node(nid, j,
  2882. zholes_size);
  2883. /*
  2884. * Adjust realsize so that it accounts for how much memory
  2885. * is used by this zone for memmap. This affects the watermark
  2886. * and per-cpu initialisations
  2887. */
  2888. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2889. if (realsize >= memmap_pages) {
  2890. realsize -= memmap_pages;
  2891. printk(KERN_DEBUG
  2892. " %s zone: %lu pages used for memmap\n",
  2893. zone_names[j], memmap_pages);
  2894. } else
  2895. printk(KERN_WARNING
  2896. " %s zone: %lu pages exceeds realsize %lu\n",
  2897. zone_names[j], memmap_pages, realsize);
  2898. /* Account for reserved pages */
  2899. if (j == 0 && realsize > dma_reserve) {
  2900. realsize -= dma_reserve;
  2901. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2902. zone_names[0], dma_reserve);
  2903. }
  2904. if (!is_highmem_idx(j))
  2905. nr_kernel_pages += realsize;
  2906. nr_all_pages += realsize;
  2907. zone->spanned_pages = size;
  2908. zone->present_pages = realsize;
  2909. #ifdef CONFIG_NUMA
  2910. zone->node = nid;
  2911. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2912. / 100;
  2913. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2914. #endif
  2915. zone->name = zone_names[j];
  2916. spin_lock_init(&zone->lock);
  2917. spin_lock_init(&zone->lru_lock);
  2918. zone_seqlock_init(zone);
  2919. zone->zone_pgdat = pgdat;
  2920. zone->prev_priority = DEF_PRIORITY;
  2921. zone_pcp_init(zone);
  2922. INIT_LIST_HEAD(&zone->active_list);
  2923. INIT_LIST_HEAD(&zone->inactive_list);
  2924. zone->nr_scan_active = 0;
  2925. zone->nr_scan_inactive = 0;
  2926. zap_zone_vm_stats(zone);
  2927. zone->flags = 0;
  2928. if (!size)
  2929. continue;
  2930. set_pageblock_order(pageblock_default_order());
  2931. setup_usemap(pgdat, zone, size);
  2932. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2933. size, MEMMAP_EARLY);
  2934. BUG_ON(ret);
  2935. zone_start_pfn += size;
  2936. }
  2937. }
  2938. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2939. {
  2940. /* Skip empty nodes */
  2941. if (!pgdat->node_spanned_pages)
  2942. return;
  2943. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2944. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2945. if (!pgdat->node_mem_map) {
  2946. unsigned long size, start, end;
  2947. struct page *map;
  2948. /*
  2949. * The zone's endpoints aren't required to be MAX_ORDER
  2950. * aligned but the node_mem_map endpoints must be in order
  2951. * for the buddy allocator to function correctly.
  2952. */
  2953. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2954. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2955. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2956. size = (end - start) * sizeof(struct page);
  2957. map = alloc_remap(pgdat->node_id, size);
  2958. if (!map)
  2959. map = alloc_bootmem_node(pgdat, size);
  2960. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2961. }
  2962. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2963. /*
  2964. * With no DISCONTIG, the global mem_map is just set as node 0's
  2965. */
  2966. if (pgdat == NODE_DATA(0)) {
  2967. mem_map = NODE_DATA(0)->node_mem_map;
  2968. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2969. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2970. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2971. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2972. }
  2973. #endif
  2974. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2975. }
  2976. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  2977. unsigned long *zones_size, unsigned long node_start_pfn,
  2978. unsigned long *zholes_size)
  2979. {
  2980. pgdat->node_id = nid;
  2981. pgdat->node_start_pfn = node_start_pfn;
  2982. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2983. alloc_node_mem_map(pgdat);
  2984. free_area_init_core(pgdat, zones_size, zholes_size);
  2985. }
  2986. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2987. #if MAX_NUMNODES > 1
  2988. /*
  2989. * Figure out the number of possible node ids.
  2990. */
  2991. static void __init setup_nr_node_ids(void)
  2992. {
  2993. unsigned int node;
  2994. unsigned int highest = 0;
  2995. for_each_node_mask(node, node_possible_map)
  2996. highest = node;
  2997. nr_node_ids = highest + 1;
  2998. }
  2999. #else
  3000. static inline void setup_nr_node_ids(void)
  3001. {
  3002. }
  3003. #endif
  3004. /**
  3005. * add_active_range - Register a range of PFNs backed by physical memory
  3006. * @nid: The node ID the range resides on
  3007. * @start_pfn: The start PFN of the available physical memory
  3008. * @end_pfn: The end PFN of the available physical memory
  3009. *
  3010. * These ranges are stored in an early_node_map[] and later used by
  3011. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3012. * range spans a memory hole, it is up to the architecture to ensure
  3013. * the memory is not freed by the bootmem allocator. If possible
  3014. * the range being registered will be merged with existing ranges.
  3015. */
  3016. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3017. unsigned long end_pfn)
  3018. {
  3019. int i;
  3020. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3021. "%d entries of %d used\n",
  3022. nid, start_pfn, end_pfn,
  3023. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3024. /* Merge with existing active regions if possible */
  3025. for (i = 0; i < nr_nodemap_entries; i++) {
  3026. if (early_node_map[i].nid != nid)
  3027. continue;
  3028. /* Skip if an existing region covers this new one */
  3029. if (start_pfn >= early_node_map[i].start_pfn &&
  3030. end_pfn <= early_node_map[i].end_pfn)
  3031. return;
  3032. /* Merge forward if suitable */
  3033. if (start_pfn <= early_node_map[i].end_pfn &&
  3034. end_pfn > early_node_map[i].end_pfn) {
  3035. early_node_map[i].end_pfn = end_pfn;
  3036. return;
  3037. }
  3038. /* Merge backward if suitable */
  3039. if (start_pfn < early_node_map[i].end_pfn &&
  3040. end_pfn >= early_node_map[i].start_pfn) {
  3041. early_node_map[i].start_pfn = start_pfn;
  3042. return;
  3043. }
  3044. }
  3045. /* Check that early_node_map is large enough */
  3046. if (i >= MAX_ACTIVE_REGIONS) {
  3047. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3048. MAX_ACTIVE_REGIONS);
  3049. return;
  3050. }
  3051. early_node_map[i].nid = nid;
  3052. early_node_map[i].start_pfn = start_pfn;
  3053. early_node_map[i].end_pfn = end_pfn;
  3054. nr_nodemap_entries = i + 1;
  3055. }
  3056. /**
  3057. * shrink_active_range - Shrink an existing registered range of PFNs
  3058. * @nid: The node id the range is on that should be shrunk
  3059. * @old_end_pfn: The old end PFN of the range
  3060. * @new_end_pfn: The new PFN of the range
  3061. *
  3062. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3063. * The map is kept at the end physical page range that has already been
  3064. * registered with add_active_range(). This function allows an arch to shrink
  3065. * an existing registered range.
  3066. */
  3067. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3068. unsigned long new_end_pfn)
  3069. {
  3070. int i;
  3071. /* Find the old active region end and shrink */
  3072. for_each_active_range_index_in_nid(i, nid)
  3073. if (early_node_map[i].end_pfn == old_end_pfn) {
  3074. early_node_map[i].end_pfn = new_end_pfn;
  3075. break;
  3076. }
  3077. }
  3078. /**
  3079. * remove_all_active_ranges - Remove all currently registered regions
  3080. *
  3081. * During discovery, it may be found that a table like SRAT is invalid
  3082. * and an alternative discovery method must be used. This function removes
  3083. * all currently registered regions.
  3084. */
  3085. void __init remove_all_active_ranges(void)
  3086. {
  3087. memset(early_node_map, 0, sizeof(early_node_map));
  3088. nr_nodemap_entries = 0;
  3089. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3090. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3091. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3092. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3093. }
  3094. /* Compare two active node_active_regions */
  3095. static int __init cmp_node_active_region(const void *a, const void *b)
  3096. {
  3097. struct node_active_region *arange = (struct node_active_region *)a;
  3098. struct node_active_region *brange = (struct node_active_region *)b;
  3099. /* Done this way to avoid overflows */
  3100. if (arange->start_pfn > brange->start_pfn)
  3101. return 1;
  3102. if (arange->start_pfn < brange->start_pfn)
  3103. return -1;
  3104. return 0;
  3105. }
  3106. /* sort the node_map by start_pfn */
  3107. static void __init sort_node_map(void)
  3108. {
  3109. sort(early_node_map, (size_t)nr_nodemap_entries,
  3110. sizeof(struct node_active_region),
  3111. cmp_node_active_region, NULL);
  3112. }
  3113. /* Find the lowest pfn for a node */
  3114. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3115. {
  3116. int i;
  3117. unsigned long min_pfn = ULONG_MAX;
  3118. /* Assuming a sorted map, the first range found has the starting pfn */
  3119. for_each_active_range_index_in_nid(i, nid)
  3120. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3121. if (min_pfn == ULONG_MAX) {
  3122. printk(KERN_WARNING
  3123. "Could not find start_pfn for node %lu\n", nid);
  3124. return 0;
  3125. }
  3126. return min_pfn;
  3127. }
  3128. /**
  3129. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3130. *
  3131. * It returns the minimum PFN based on information provided via
  3132. * add_active_range().
  3133. */
  3134. unsigned long __init find_min_pfn_with_active_regions(void)
  3135. {
  3136. return find_min_pfn_for_node(MAX_NUMNODES);
  3137. }
  3138. /**
  3139. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3140. *
  3141. * It returns the maximum PFN based on information provided via
  3142. * add_active_range().
  3143. */
  3144. unsigned long __init find_max_pfn_with_active_regions(void)
  3145. {
  3146. int i;
  3147. unsigned long max_pfn = 0;
  3148. for (i = 0; i < nr_nodemap_entries; i++)
  3149. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3150. return max_pfn;
  3151. }
  3152. /*
  3153. * early_calculate_totalpages()
  3154. * Sum pages in active regions for movable zone.
  3155. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3156. */
  3157. static unsigned long __init early_calculate_totalpages(void)
  3158. {
  3159. int i;
  3160. unsigned long totalpages = 0;
  3161. for (i = 0; i < nr_nodemap_entries; i++) {
  3162. unsigned long pages = early_node_map[i].end_pfn -
  3163. early_node_map[i].start_pfn;
  3164. totalpages += pages;
  3165. if (pages)
  3166. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3167. }
  3168. return totalpages;
  3169. }
  3170. /*
  3171. * Find the PFN the Movable zone begins in each node. Kernel memory
  3172. * is spread evenly between nodes as long as the nodes have enough
  3173. * memory. When they don't, some nodes will have more kernelcore than
  3174. * others
  3175. */
  3176. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3177. {
  3178. int i, nid;
  3179. unsigned long usable_startpfn;
  3180. unsigned long kernelcore_node, kernelcore_remaining;
  3181. unsigned long totalpages = early_calculate_totalpages();
  3182. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3183. /*
  3184. * If movablecore was specified, calculate what size of
  3185. * kernelcore that corresponds so that memory usable for
  3186. * any allocation type is evenly spread. If both kernelcore
  3187. * and movablecore are specified, then the value of kernelcore
  3188. * will be used for required_kernelcore if it's greater than
  3189. * what movablecore would have allowed.
  3190. */
  3191. if (required_movablecore) {
  3192. unsigned long corepages;
  3193. /*
  3194. * Round-up so that ZONE_MOVABLE is at least as large as what
  3195. * was requested by the user
  3196. */
  3197. required_movablecore =
  3198. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3199. corepages = totalpages - required_movablecore;
  3200. required_kernelcore = max(required_kernelcore, corepages);
  3201. }
  3202. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3203. if (!required_kernelcore)
  3204. return;
  3205. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3206. find_usable_zone_for_movable();
  3207. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3208. restart:
  3209. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3210. kernelcore_node = required_kernelcore / usable_nodes;
  3211. for_each_node_state(nid, N_HIGH_MEMORY) {
  3212. /*
  3213. * Recalculate kernelcore_node if the division per node
  3214. * now exceeds what is necessary to satisfy the requested
  3215. * amount of memory for the kernel
  3216. */
  3217. if (required_kernelcore < kernelcore_node)
  3218. kernelcore_node = required_kernelcore / usable_nodes;
  3219. /*
  3220. * As the map is walked, we track how much memory is usable
  3221. * by the kernel using kernelcore_remaining. When it is
  3222. * 0, the rest of the node is usable by ZONE_MOVABLE
  3223. */
  3224. kernelcore_remaining = kernelcore_node;
  3225. /* Go through each range of PFNs within this node */
  3226. for_each_active_range_index_in_nid(i, nid) {
  3227. unsigned long start_pfn, end_pfn;
  3228. unsigned long size_pages;
  3229. start_pfn = max(early_node_map[i].start_pfn,
  3230. zone_movable_pfn[nid]);
  3231. end_pfn = early_node_map[i].end_pfn;
  3232. if (start_pfn >= end_pfn)
  3233. continue;
  3234. /* Account for what is only usable for kernelcore */
  3235. if (start_pfn < usable_startpfn) {
  3236. unsigned long kernel_pages;
  3237. kernel_pages = min(end_pfn, usable_startpfn)
  3238. - start_pfn;
  3239. kernelcore_remaining -= min(kernel_pages,
  3240. kernelcore_remaining);
  3241. required_kernelcore -= min(kernel_pages,
  3242. required_kernelcore);
  3243. /* Continue if range is now fully accounted */
  3244. if (end_pfn <= usable_startpfn) {
  3245. /*
  3246. * Push zone_movable_pfn to the end so
  3247. * that if we have to rebalance
  3248. * kernelcore across nodes, we will
  3249. * not double account here
  3250. */
  3251. zone_movable_pfn[nid] = end_pfn;
  3252. continue;
  3253. }
  3254. start_pfn = usable_startpfn;
  3255. }
  3256. /*
  3257. * The usable PFN range for ZONE_MOVABLE is from
  3258. * start_pfn->end_pfn. Calculate size_pages as the
  3259. * number of pages used as kernelcore
  3260. */
  3261. size_pages = end_pfn - start_pfn;
  3262. if (size_pages > kernelcore_remaining)
  3263. size_pages = kernelcore_remaining;
  3264. zone_movable_pfn[nid] = start_pfn + size_pages;
  3265. /*
  3266. * Some kernelcore has been met, update counts and
  3267. * break if the kernelcore for this node has been
  3268. * satisified
  3269. */
  3270. required_kernelcore -= min(required_kernelcore,
  3271. size_pages);
  3272. kernelcore_remaining -= size_pages;
  3273. if (!kernelcore_remaining)
  3274. break;
  3275. }
  3276. }
  3277. /*
  3278. * If there is still required_kernelcore, we do another pass with one
  3279. * less node in the count. This will push zone_movable_pfn[nid] further
  3280. * along on the nodes that still have memory until kernelcore is
  3281. * satisified
  3282. */
  3283. usable_nodes--;
  3284. if (usable_nodes && required_kernelcore > usable_nodes)
  3285. goto restart;
  3286. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3287. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3288. zone_movable_pfn[nid] =
  3289. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3290. }
  3291. /* Any regular memory on that node ? */
  3292. static void check_for_regular_memory(pg_data_t *pgdat)
  3293. {
  3294. #ifdef CONFIG_HIGHMEM
  3295. enum zone_type zone_type;
  3296. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3297. struct zone *zone = &pgdat->node_zones[zone_type];
  3298. if (zone->present_pages)
  3299. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3300. }
  3301. #endif
  3302. }
  3303. /**
  3304. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3305. * @max_zone_pfn: an array of max PFNs for each zone
  3306. *
  3307. * This will call free_area_init_node() for each active node in the system.
  3308. * Using the page ranges provided by add_active_range(), the size of each
  3309. * zone in each node and their holes is calculated. If the maximum PFN
  3310. * between two adjacent zones match, it is assumed that the zone is empty.
  3311. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3312. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3313. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3314. * at arch_max_dma_pfn.
  3315. */
  3316. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3317. {
  3318. unsigned long nid;
  3319. enum zone_type i;
  3320. /* Sort early_node_map as initialisation assumes it is sorted */
  3321. sort_node_map();
  3322. /* Record where the zone boundaries are */
  3323. memset(arch_zone_lowest_possible_pfn, 0,
  3324. sizeof(arch_zone_lowest_possible_pfn));
  3325. memset(arch_zone_highest_possible_pfn, 0,
  3326. sizeof(arch_zone_highest_possible_pfn));
  3327. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3328. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3329. for (i = 1; i < MAX_NR_ZONES; i++) {
  3330. if (i == ZONE_MOVABLE)
  3331. continue;
  3332. arch_zone_lowest_possible_pfn[i] =
  3333. arch_zone_highest_possible_pfn[i-1];
  3334. arch_zone_highest_possible_pfn[i] =
  3335. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3336. }
  3337. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3338. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3339. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3340. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3341. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3342. /* Print out the zone ranges */
  3343. printk("Zone PFN ranges:\n");
  3344. for (i = 0; i < MAX_NR_ZONES; i++) {
  3345. if (i == ZONE_MOVABLE)
  3346. continue;
  3347. printk(" %-8s %8lu -> %8lu\n",
  3348. zone_names[i],
  3349. arch_zone_lowest_possible_pfn[i],
  3350. arch_zone_highest_possible_pfn[i]);
  3351. }
  3352. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3353. printk("Movable zone start PFN for each node\n");
  3354. for (i = 0; i < MAX_NUMNODES; i++) {
  3355. if (zone_movable_pfn[i])
  3356. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3357. }
  3358. /* Print out the early_node_map[] */
  3359. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3360. for (i = 0; i < nr_nodemap_entries; i++)
  3361. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3362. early_node_map[i].start_pfn,
  3363. early_node_map[i].end_pfn);
  3364. /* Initialise every node */
  3365. setup_nr_node_ids();
  3366. for_each_online_node(nid) {
  3367. pg_data_t *pgdat = NODE_DATA(nid);
  3368. free_area_init_node(nid, pgdat, NULL,
  3369. find_min_pfn_for_node(nid), NULL);
  3370. /* Any memory on that node */
  3371. if (pgdat->node_present_pages)
  3372. node_set_state(nid, N_HIGH_MEMORY);
  3373. check_for_regular_memory(pgdat);
  3374. }
  3375. }
  3376. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3377. {
  3378. unsigned long long coremem;
  3379. if (!p)
  3380. return -EINVAL;
  3381. coremem = memparse(p, &p);
  3382. *core = coremem >> PAGE_SHIFT;
  3383. /* Paranoid check that UL is enough for the coremem value */
  3384. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3385. return 0;
  3386. }
  3387. /*
  3388. * kernelcore=size sets the amount of memory for use for allocations that
  3389. * cannot be reclaimed or migrated.
  3390. */
  3391. static int __init cmdline_parse_kernelcore(char *p)
  3392. {
  3393. return cmdline_parse_core(p, &required_kernelcore);
  3394. }
  3395. /*
  3396. * movablecore=size sets the amount of memory for use for allocations that
  3397. * can be reclaimed or migrated.
  3398. */
  3399. static int __init cmdline_parse_movablecore(char *p)
  3400. {
  3401. return cmdline_parse_core(p, &required_movablecore);
  3402. }
  3403. early_param("kernelcore", cmdline_parse_kernelcore);
  3404. early_param("movablecore", cmdline_parse_movablecore);
  3405. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3406. /**
  3407. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3408. * @new_dma_reserve: The number of pages to mark reserved
  3409. *
  3410. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3411. * In the DMA zone, a significant percentage may be consumed by kernel image
  3412. * and other unfreeable allocations which can skew the watermarks badly. This
  3413. * function may optionally be used to account for unfreeable pages in the
  3414. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3415. * smaller per-cpu batchsize.
  3416. */
  3417. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3418. {
  3419. dma_reserve = new_dma_reserve;
  3420. }
  3421. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3422. static bootmem_data_t contig_bootmem_data;
  3423. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3424. EXPORT_SYMBOL(contig_page_data);
  3425. #endif
  3426. void __init free_area_init(unsigned long *zones_size)
  3427. {
  3428. free_area_init_node(0, NODE_DATA(0), zones_size,
  3429. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3430. }
  3431. static int page_alloc_cpu_notify(struct notifier_block *self,
  3432. unsigned long action, void *hcpu)
  3433. {
  3434. int cpu = (unsigned long)hcpu;
  3435. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3436. drain_pages(cpu);
  3437. /*
  3438. * Spill the event counters of the dead processor
  3439. * into the current processors event counters.
  3440. * This artificially elevates the count of the current
  3441. * processor.
  3442. */
  3443. vm_events_fold_cpu(cpu);
  3444. /*
  3445. * Zero the differential counters of the dead processor
  3446. * so that the vm statistics are consistent.
  3447. *
  3448. * This is only okay since the processor is dead and cannot
  3449. * race with what we are doing.
  3450. */
  3451. refresh_cpu_vm_stats(cpu);
  3452. }
  3453. return NOTIFY_OK;
  3454. }
  3455. void __init page_alloc_init(void)
  3456. {
  3457. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3458. }
  3459. /*
  3460. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3461. * or min_free_kbytes changes.
  3462. */
  3463. static void calculate_totalreserve_pages(void)
  3464. {
  3465. struct pglist_data *pgdat;
  3466. unsigned long reserve_pages = 0;
  3467. enum zone_type i, j;
  3468. for_each_online_pgdat(pgdat) {
  3469. for (i = 0; i < MAX_NR_ZONES; i++) {
  3470. struct zone *zone = pgdat->node_zones + i;
  3471. unsigned long max = 0;
  3472. /* Find valid and maximum lowmem_reserve in the zone */
  3473. for (j = i; j < MAX_NR_ZONES; j++) {
  3474. if (zone->lowmem_reserve[j] > max)
  3475. max = zone->lowmem_reserve[j];
  3476. }
  3477. /* we treat pages_high as reserved pages. */
  3478. max += zone->pages_high;
  3479. if (max > zone->present_pages)
  3480. max = zone->present_pages;
  3481. reserve_pages += max;
  3482. }
  3483. }
  3484. totalreserve_pages = reserve_pages;
  3485. }
  3486. /*
  3487. * setup_per_zone_lowmem_reserve - called whenever
  3488. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3489. * has a correct pages reserved value, so an adequate number of
  3490. * pages are left in the zone after a successful __alloc_pages().
  3491. */
  3492. static void setup_per_zone_lowmem_reserve(void)
  3493. {
  3494. struct pglist_data *pgdat;
  3495. enum zone_type j, idx;
  3496. for_each_online_pgdat(pgdat) {
  3497. for (j = 0; j < MAX_NR_ZONES; j++) {
  3498. struct zone *zone = pgdat->node_zones + j;
  3499. unsigned long present_pages = zone->present_pages;
  3500. zone->lowmem_reserve[j] = 0;
  3501. idx = j;
  3502. while (idx) {
  3503. struct zone *lower_zone;
  3504. idx--;
  3505. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3506. sysctl_lowmem_reserve_ratio[idx] = 1;
  3507. lower_zone = pgdat->node_zones + idx;
  3508. lower_zone->lowmem_reserve[j] = present_pages /
  3509. sysctl_lowmem_reserve_ratio[idx];
  3510. present_pages += lower_zone->present_pages;
  3511. }
  3512. }
  3513. }
  3514. /* update totalreserve_pages */
  3515. calculate_totalreserve_pages();
  3516. }
  3517. /**
  3518. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3519. *
  3520. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3521. * with respect to min_free_kbytes.
  3522. */
  3523. void setup_per_zone_pages_min(void)
  3524. {
  3525. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3526. unsigned long lowmem_pages = 0;
  3527. struct zone *zone;
  3528. unsigned long flags;
  3529. /* Calculate total number of !ZONE_HIGHMEM pages */
  3530. for_each_zone(zone) {
  3531. if (!is_highmem(zone))
  3532. lowmem_pages += zone->present_pages;
  3533. }
  3534. for_each_zone(zone) {
  3535. u64 tmp;
  3536. spin_lock_irqsave(&zone->lru_lock, flags);
  3537. tmp = (u64)pages_min * zone->present_pages;
  3538. do_div(tmp, lowmem_pages);
  3539. if (is_highmem(zone)) {
  3540. /*
  3541. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3542. * need highmem pages, so cap pages_min to a small
  3543. * value here.
  3544. *
  3545. * The (pages_high-pages_low) and (pages_low-pages_min)
  3546. * deltas controls asynch page reclaim, and so should
  3547. * not be capped for highmem.
  3548. */
  3549. int min_pages;
  3550. min_pages = zone->present_pages / 1024;
  3551. if (min_pages < SWAP_CLUSTER_MAX)
  3552. min_pages = SWAP_CLUSTER_MAX;
  3553. if (min_pages > 128)
  3554. min_pages = 128;
  3555. zone->pages_min = min_pages;
  3556. } else {
  3557. /*
  3558. * If it's a lowmem zone, reserve a number of pages
  3559. * proportionate to the zone's size.
  3560. */
  3561. zone->pages_min = tmp;
  3562. }
  3563. zone->pages_low = zone->pages_min + (tmp >> 2);
  3564. zone->pages_high = zone->pages_min + (tmp >> 1);
  3565. setup_zone_migrate_reserve(zone);
  3566. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3567. }
  3568. /* update totalreserve_pages */
  3569. calculate_totalreserve_pages();
  3570. }
  3571. /*
  3572. * Initialise min_free_kbytes.
  3573. *
  3574. * For small machines we want it small (128k min). For large machines
  3575. * we want it large (64MB max). But it is not linear, because network
  3576. * bandwidth does not increase linearly with machine size. We use
  3577. *
  3578. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3579. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3580. *
  3581. * which yields
  3582. *
  3583. * 16MB: 512k
  3584. * 32MB: 724k
  3585. * 64MB: 1024k
  3586. * 128MB: 1448k
  3587. * 256MB: 2048k
  3588. * 512MB: 2896k
  3589. * 1024MB: 4096k
  3590. * 2048MB: 5792k
  3591. * 4096MB: 8192k
  3592. * 8192MB: 11584k
  3593. * 16384MB: 16384k
  3594. */
  3595. static int __init init_per_zone_pages_min(void)
  3596. {
  3597. unsigned long lowmem_kbytes;
  3598. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3599. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3600. if (min_free_kbytes < 128)
  3601. min_free_kbytes = 128;
  3602. if (min_free_kbytes > 65536)
  3603. min_free_kbytes = 65536;
  3604. setup_per_zone_pages_min();
  3605. setup_per_zone_lowmem_reserve();
  3606. return 0;
  3607. }
  3608. module_init(init_per_zone_pages_min)
  3609. /*
  3610. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3611. * that we can call two helper functions whenever min_free_kbytes
  3612. * changes.
  3613. */
  3614. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3615. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3616. {
  3617. proc_dointvec(table, write, file, buffer, length, ppos);
  3618. if (write)
  3619. setup_per_zone_pages_min();
  3620. return 0;
  3621. }
  3622. #ifdef CONFIG_NUMA
  3623. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3624. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3625. {
  3626. struct zone *zone;
  3627. int rc;
  3628. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3629. if (rc)
  3630. return rc;
  3631. for_each_zone(zone)
  3632. zone->min_unmapped_pages = (zone->present_pages *
  3633. sysctl_min_unmapped_ratio) / 100;
  3634. return 0;
  3635. }
  3636. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3637. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3638. {
  3639. struct zone *zone;
  3640. int rc;
  3641. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3642. if (rc)
  3643. return rc;
  3644. for_each_zone(zone)
  3645. zone->min_slab_pages = (zone->present_pages *
  3646. sysctl_min_slab_ratio) / 100;
  3647. return 0;
  3648. }
  3649. #endif
  3650. /*
  3651. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3652. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3653. * whenever sysctl_lowmem_reserve_ratio changes.
  3654. *
  3655. * The reserve ratio obviously has absolutely no relation with the
  3656. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3657. * if in function of the boot time zone sizes.
  3658. */
  3659. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3660. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3661. {
  3662. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3663. setup_per_zone_lowmem_reserve();
  3664. return 0;
  3665. }
  3666. /*
  3667. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3668. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3669. * can have before it gets flushed back to buddy allocator.
  3670. */
  3671. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3672. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3673. {
  3674. struct zone *zone;
  3675. unsigned int cpu;
  3676. int ret;
  3677. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3678. if (!write || (ret == -EINVAL))
  3679. return ret;
  3680. for_each_zone(zone) {
  3681. for_each_online_cpu(cpu) {
  3682. unsigned long high;
  3683. high = zone->present_pages / percpu_pagelist_fraction;
  3684. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3685. }
  3686. }
  3687. return 0;
  3688. }
  3689. int hashdist = HASHDIST_DEFAULT;
  3690. #ifdef CONFIG_NUMA
  3691. static int __init set_hashdist(char *str)
  3692. {
  3693. if (!str)
  3694. return 0;
  3695. hashdist = simple_strtoul(str, &str, 0);
  3696. return 1;
  3697. }
  3698. __setup("hashdist=", set_hashdist);
  3699. #endif
  3700. /*
  3701. * allocate a large system hash table from bootmem
  3702. * - it is assumed that the hash table must contain an exact power-of-2
  3703. * quantity of entries
  3704. * - limit is the number of hash buckets, not the total allocation size
  3705. */
  3706. void *__init alloc_large_system_hash(const char *tablename,
  3707. unsigned long bucketsize,
  3708. unsigned long numentries,
  3709. int scale,
  3710. int flags,
  3711. unsigned int *_hash_shift,
  3712. unsigned int *_hash_mask,
  3713. unsigned long limit)
  3714. {
  3715. unsigned long long max = limit;
  3716. unsigned long log2qty, size;
  3717. void *table = NULL;
  3718. /* allow the kernel cmdline to have a say */
  3719. if (!numentries) {
  3720. /* round applicable memory size up to nearest megabyte */
  3721. numentries = nr_kernel_pages;
  3722. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3723. numentries >>= 20 - PAGE_SHIFT;
  3724. numentries <<= 20 - PAGE_SHIFT;
  3725. /* limit to 1 bucket per 2^scale bytes of low memory */
  3726. if (scale > PAGE_SHIFT)
  3727. numentries >>= (scale - PAGE_SHIFT);
  3728. else
  3729. numentries <<= (PAGE_SHIFT - scale);
  3730. /* Make sure we've got at least a 0-order allocation.. */
  3731. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3732. numentries = PAGE_SIZE / bucketsize;
  3733. }
  3734. numentries = roundup_pow_of_two(numentries);
  3735. /* limit allocation size to 1/16 total memory by default */
  3736. if (max == 0) {
  3737. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3738. do_div(max, bucketsize);
  3739. }
  3740. if (numentries > max)
  3741. numentries = max;
  3742. log2qty = ilog2(numentries);
  3743. do {
  3744. size = bucketsize << log2qty;
  3745. if (flags & HASH_EARLY)
  3746. table = alloc_bootmem(size);
  3747. else if (hashdist)
  3748. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3749. else {
  3750. unsigned long order = get_order(size);
  3751. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3752. /*
  3753. * If bucketsize is not a power-of-two, we may free
  3754. * some pages at the end of hash table.
  3755. */
  3756. if (table) {
  3757. unsigned long alloc_end = (unsigned long)table +
  3758. (PAGE_SIZE << order);
  3759. unsigned long used = (unsigned long)table +
  3760. PAGE_ALIGN(size);
  3761. split_page(virt_to_page(table), order);
  3762. while (used < alloc_end) {
  3763. free_page(used);
  3764. used += PAGE_SIZE;
  3765. }
  3766. }
  3767. }
  3768. } while (!table && size > PAGE_SIZE && --log2qty);
  3769. if (!table)
  3770. panic("Failed to allocate %s hash table\n", tablename);
  3771. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3772. tablename,
  3773. (1U << log2qty),
  3774. ilog2(size) - PAGE_SHIFT,
  3775. size);
  3776. if (_hash_shift)
  3777. *_hash_shift = log2qty;
  3778. if (_hash_mask)
  3779. *_hash_mask = (1 << log2qty) - 1;
  3780. return table;
  3781. }
  3782. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3783. struct page *pfn_to_page(unsigned long pfn)
  3784. {
  3785. return __pfn_to_page(pfn);
  3786. }
  3787. unsigned long page_to_pfn(struct page *page)
  3788. {
  3789. return __page_to_pfn(page);
  3790. }
  3791. EXPORT_SYMBOL(pfn_to_page);
  3792. EXPORT_SYMBOL(page_to_pfn);
  3793. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3794. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3795. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3796. unsigned long pfn)
  3797. {
  3798. #ifdef CONFIG_SPARSEMEM
  3799. return __pfn_to_section(pfn)->pageblock_flags;
  3800. #else
  3801. return zone->pageblock_flags;
  3802. #endif /* CONFIG_SPARSEMEM */
  3803. }
  3804. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3805. {
  3806. #ifdef CONFIG_SPARSEMEM
  3807. pfn &= (PAGES_PER_SECTION-1);
  3808. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3809. #else
  3810. pfn = pfn - zone->zone_start_pfn;
  3811. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3812. #endif /* CONFIG_SPARSEMEM */
  3813. }
  3814. /**
  3815. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3816. * @page: The page within the block of interest
  3817. * @start_bitidx: The first bit of interest to retrieve
  3818. * @end_bitidx: The last bit of interest
  3819. * returns pageblock_bits flags
  3820. */
  3821. unsigned long get_pageblock_flags_group(struct page *page,
  3822. int start_bitidx, int end_bitidx)
  3823. {
  3824. struct zone *zone;
  3825. unsigned long *bitmap;
  3826. unsigned long pfn, bitidx;
  3827. unsigned long flags = 0;
  3828. unsigned long value = 1;
  3829. zone = page_zone(page);
  3830. pfn = page_to_pfn(page);
  3831. bitmap = get_pageblock_bitmap(zone, pfn);
  3832. bitidx = pfn_to_bitidx(zone, pfn);
  3833. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3834. if (test_bit(bitidx + start_bitidx, bitmap))
  3835. flags |= value;
  3836. return flags;
  3837. }
  3838. /**
  3839. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3840. * @page: The page within the block of interest
  3841. * @start_bitidx: The first bit of interest
  3842. * @end_bitidx: The last bit of interest
  3843. * @flags: The flags to set
  3844. */
  3845. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3846. int start_bitidx, int end_bitidx)
  3847. {
  3848. struct zone *zone;
  3849. unsigned long *bitmap;
  3850. unsigned long pfn, bitidx;
  3851. unsigned long value = 1;
  3852. zone = page_zone(page);
  3853. pfn = page_to_pfn(page);
  3854. bitmap = get_pageblock_bitmap(zone, pfn);
  3855. bitidx = pfn_to_bitidx(zone, pfn);
  3856. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3857. if (flags & value)
  3858. __set_bit(bitidx + start_bitidx, bitmap);
  3859. else
  3860. __clear_bit(bitidx + start_bitidx, bitmap);
  3861. }
  3862. /*
  3863. * This is designed as sub function...plz see page_isolation.c also.
  3864. * set/clear page block's type to be ISOLATE.
  3865. * page allocater never alloc memory from ISOLATE block.
  3866. */
  3867. int set_migratetype_isolate(struct page *page)
  3868. {
  3869. struct zone *zone;
  3870. unsigned long flags;
  3871. int ret = -EBUSY;
  3872. zone = page_zone(page);
  3873. spin_lock_irqsave(&zone->lock, flags);
  3874. /*
  3875. * In future, more migrate types will be able to be isolation target.
  3876. */
  3877. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3878. goto out;
  3879. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3880. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3881. ret = 0;
  3882. out:
  3883. spin_unlock_irqrestore(&zone->lock, flags);
  3884. if (!ret)
  3885. drain_all_pages();
  3886. return ret;
  3887. }
  3888. void unset_migratetype_isolate(struct page *page)
  3889. {
  3890. struct zone *zone;
  3891. unsigned long flags;
  3892. zone = page_zone(page);
  3893. spin_lock_irqsave(&zone->lock, flags);
  3894. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3895. goto out;
  3896. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3897. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3898. out:
  3899. spin_unlock_irqrestore(&zone->lock, flags);
  3900. }
  3901. #ifdef CONFIG_MEMORY_HOTREMOVE
  3902. /*
  3903. * All pages in the range must be isolated before calling this.
  3904. */
  3905. void
  3906. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3907. {
  3908. struct page *page;
  3909. struct zone *zone;
  3910. int order, i;
  3911. unsigned long pfn;
  3912. unsigned long flags;
  3913. /* find the first valid pfn */
  3914. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3915. if (pfn_valid(pfn))
  3916. break;
  3917. if (pfn == end_pfn)
  3918. return;
  3919. zone = page_zone(pfn_to_page(pfn));
  3920. spin_lock_irqsave(&zone->lock, flags);
  3921. pfn = start_pfn;
  3922. while (pfn < end_pfn) {
  3923. if (!pfn_valid(pfn)) {
  3924. pfn++;
  3925. continue;
  3926. }
  3927. page = pfn_to_page(pfn);
  3928. BUG_ON(page_count(page));
  3929. BUG_ON(!PageBuddy(page));
  3930. order = page_order(page);
  3931. #ifdef CONFIG_DEBUG_VM
  3932. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3933. pfn, 1 << order, end_pfn);
  3934. #endif
  3935. list_del(&page->lru);
  3936. rmv_page_order(page);
  3937. zone->free_area[order].nr_free--;
  3938. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3939. - (1UL << order));
  3940. for (i = 0; i < (1 << order); i++)
  3941. SetPageReserved((page+i));
  3942. pfn += (1 << order);
  3943. }
  3944. spin_unlock_irqrestore(&zone->lock, flags);
  3945. }
  3946. #endif