common.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #include <asm/smp.h>
  24. #include <asm/cpu.h>
  25. #include <asm/cpumask.h>
  26. #ifdef CONFIG_X86_LOCAL_APIC
  27. #include <asm/mpspec.h>
  28. #include <asm/apic.h>
  29. #include <asm/apic.h>
  30. #include <asm/apic.h>
  31. #include <asm/uv/uv.h>
  32. #endif
  33. #include <asm/pgtable.h>
  34. #include <asm/processor.h>
  35. #include <asm/desc.h>
  36. #include <asm/atomic.h>
  37. #include <asm/proto.h>
  38. #include <asm/sections.h>
  39. #include <asm/setup.h>
  40. #include <asm/hypervisor.h>
  41. #include <asm/stackprotector.h>
  42. #include "cpu.h"
  43. #ifdef CONFIG_X86_64
  44. /* all of these masks are initialized in setup_cpu_local_masks() */
  45. cpumask_var_t cpu_callin_mask;
  46. cpumask_var_t cpu_callout_mask;
  47. cpumask_var_t cpu_initialized_mask;
  48. /* representing cpus for which sibling maps can be computed */
  49. cpumask_var_t cpu_sibling_setup_mask;
  50. /* correctly size the local cpu masks */
  51. void __init setup_cpu_local_masks(void)
  52. {
  53. alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  54. alloc_bootmem_cpumask_var(&cpu_callin_mask);
  55. alloc_bootmem_cpumask_var(&cpu_callout_mask);
  56. alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  57. }
  58. #else /* CONFIG_X86_32 */
  59. cpumask_t cpu_callin_map;
  60. cpumask_t cpu_callout_map;
  61. cpumask_t cpu_initialized;
  62. cpumask_t cpu_sibling_setup_map;
  63. #endif /* CONFIG_X86_32 */
  64. static struct cpu_dev *this_cpu __cpuinitdata;
  65. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  66. #ifdef CONFIG_X86_64
  67. /*
  68. * We need valid kernel segments for data and code in long mode too
  69. * IRET will check the segment types kkeil 2000/10/28
  70. * Also sysret mandates a special GDT layout
  71. *
  72. * The TLS descriptors are currently at a different place compared to i386.
  73. * Hopefully nobody expects them at a fixed place (Wine?)
  74. */
  75. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  76. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  77. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  78. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  79. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  80. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  81. #else
  82. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  83. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  84. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  85. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  86. /*
  87. * Segments used for calling PnP BIOS have byte granularity.
  88. * They code segments and data segments have fixed 64k limits,
  89. * the transfer segment sizes are set at run time.
  90. */
  91. /* 32-bit code */
  92. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  93. /* 16-bit code */
  94. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  95. /* 16-bit data */
  96. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  97. /* 16-bit data */
  98. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  99. /* 16-bit data */
  100. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  101. /*
  102. * The APM segments have byte granularity and their bases
  103. * are set at run time. All have 64k limits.
  104. */
  105. /* 32-bit code */
  106. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  107. /* 16-bit code */
  108. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  109. /* data */
  110. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  111. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  112. [GDT_ENTRY_PERCPU] = { { { 0x0000ffff, 0x00cf9200 } } },
  113. GDT_STACK_CANARY_INIT
  114. #endif
  115. } };
  116. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  117. #ifdef CONFIG_X86_32
  118. static int cachesize_override __cpuinitdata = -1;
  119. static int disable_x86_serial_nr __cpuinitdata = 1;
  120. static int __init cachesize_setup(char *str)
  121. {
  122. get_option(&str, &cachesize_override);
  123. return 1;
  124. }
  125. __setup("cachesize=", cachesize_setup);
  126. static int __init x86_fxsr_setup(char *s)
  127. {
  128. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  129. setup_clear_cpu_cap(X86_FEATURE_XMM);
  130. return 1;
  131. }
  132. __setup("nofxsr", x86_fxsr_setup);
  133. static int __init x86_sep_setup(char *s)
  134. {
  135. setup_clear_cpu_cap(X86_FEATURE_SEP);
  136. return 1;
  137. }
  138. __setup("nosep", x86_sep_setup);
  139. /* Standard macro to see if a specific flag is changeable */
  140. static inline int flag_is_changeable_p(u32 flag)
  141. {
  142. u32 f1, f2;
  143. /*
  144. * Cyrix and IDT cpus allow disabling of CPUID
  145. * so the code below may return different results
  146. * when it is executed before and after enabling
  147. * the CPUID. Add "volatile" to not allow gcc to
  148. * optimize the subsequent calls to this function.
  149. */
  150. asm volatile ("pushfl\n\t"
  151. "pushfl\n\t"
  152. "popl %0\n\t"
  153. "movl %0,%1\n\t"
  154. "xorl %2,%0\n\t"
  155. "pushl %0\n\t"
  156. "popfl\n\t"
  157. "pushfl\n\t"
  158. "popl %0\n\t"
  159. "popfl\n\t"
  160. : "=&r" (f1), "=&r" (f2)
  161. : "ir" (flag));
  162. return ((f1^f2) & flag) != 0;
  163. }
  164. /* Probe for the CPUID instruction */
  165. static int __cpuinit have_cpuid_p(void)
  166. {
  167. return flag_is_changeable_p(X86_EFLAGS_ID);
  168. }
  169. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  170. {
  171. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  172. /* Disable processor serial number */
  173. unsigned long lo, hi;
  174. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  175. lo |= 0x200000;
  176. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  177. printk(KERN_NOTICE "CPU serial number disabled.\n");
  178. clear_cpu_cap(c, X86_FEATURE_PN);
  179. /* Disabling the serial number may affect the cpuid level */
  180. c->cpuid_level = cpuid_eax(0);
  181. }
  182. }
  183. static int __init x86_serial_nr_setup(char *s)
  184. {
  185. disable_x86_serial_nr = 0;
  186. return 1;
  187. }
  188. __setup("serialnumber", x86_serial_nr_setup);
  189. #else
  190. static inline int flag_is_changeable_p(u32 flag)
  191. {
  192. return 1;
  193. }
  194. /* Probe for the CPUID instruction */
  195. static inline int have_cpuid_p(void)
  196. {
  197. return 1;
  198. }
  199. static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  200. {
  201. }
  202. #endif
  203. /*
  204. * Some CPU features depend on higher CPUID levels, which may not always
  205. * be available due to CPUID level capping or broken virtualization
  206. * software. Add those features to this table to auto-disable them.
  207. */
  208. struct cpuid_dependent_feature {
  209. u32 feature;
  210. u32 level;
  211. };
  212. static const struct cpuid_dependent_feature __cpuinitconst
  213. cpuid_dependent_features[] = {
  214. { X86_FEATURE_MWAIT, 0x00000005 },
  215. { X86_FEATURE_DCA, 0x00000009 },
  216. { X86_FEATURE_XSAVE, 0x0000000d },
  217. { 0, 0 }
  218. };
  219. static void __cpuinit filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
  220. {
  221. const struct cpuid_dependent_feature *df;
  222. for (df = cpuid_dependent_features; df->feature; df++) {
  223. /*
  224. * Note: cpuid_level is set to -1 if unavailable, but
  225. * extended_extended_level is set to 0 if unavailable
  226. * and the legitimate extended levels are all negative
  227. * when signed; hence the weird messing around with
  228. * signs here...
  229. */
  230. if (cpu_has(c, df->feature) &&
  231. ((s32)df->level < 0 ?
  232. (u32)df->level > (u32)c->extended_cpuid_level :
  233. (s32)df->level > (s32)c->cpuid_level)) {
  234. clear_cpu_cap(c, df->feature);
  235. if (warn)
  236. printk(KERN_WARNING
  237. "CPU: CPU feature %s disabled "
  238. "due to lack of CPUID level 0x%x\n",
  239. x86_cap_flags[df->feature],
  240. df->level);
  241. }
  242. }
  243. }
  244. /*
  245. * Naming convention should be: <Name> [(<Codename>)]
  246. * This table only is used unless init_<vendor>() below doesn't set it;
  247. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  248. *
  249. */
  250. /* Look up CPU names by table lookup. */
  251. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  252. {
  253. struct cpu_model_info *info;
  254. if (c->x86_model >= 16)
  255. return NULL; /* Range check */
  256. if (!this_cpu)
  257. return NULL;
  258. info = this_cpu->c_models;
  259. while (info && info->family) {
  260. if (info->family == c->x86)
  261. return info->model_names[c->x86_model];
  262. info++;
  263. }
  264. return NULL; /* Not found */
  265. }
  266. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  267. void load_percpu_segment(int cpu)
  268. {
  269. #ifdef CONFIG_X86_32
  270. loadsegment(fs, __KERNEL_PERCPU);
  271. #else
  272. loadsegment(gs, 0);
  273. wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
  274. #endif
  275. load_stack_canary_segment();
  276. }
  277. /* Current gdt points %fs at the "master" per-cpu area: after this,
  278. * it's on the real one. */
  279. void switch_to_new_gdt(int cpu)
  280. {
  281. struct desc_ptr gdt_descr;
  282. gdt_descr.address = (long)get_cpu_gdt_table(cpu);
  283. gdt_descr.size = GDT_SIZE - 1;
  284. load_gdt(&gdt_descr);
  285. /* Reload the per-cpu base */
  286. load_percpu_segment(cpu);
  287. }
  288. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  289. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  290. {
  291. #ifdef CONFIG_X86_64
  292. display_cacheinfo(c);
  293. #else
  294. /* Not much we can do here... */
  295. /* Check if at least it has cpuid */
  296. if (c->cpuid_level == -1) {
  297. /* No cpuid. It must be an ancient CPU */
  298. if (c->x86 == 4)
  299. strcpy(c->x86_model_id, "486");
  300. else if (c->x86 == 3)
  301. strcpy(c->x86_model_id, "386");
  302. }
  303. #endif
  304. }
  305. static struct cpu_dev __cpuinitdata default_cpu = {
  306. .c_init = default_init,
  307. .c_vendor = "Unknown",
  308. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  309. };
  310. static void __cpuinit get_model_name(struct cpuinfo_x86 *c)
  311. {
  312. unsigned int *v;
  313. char *p, *q;
  314. if (c->extended_cpuid_level < 0x80000004)
  315. return;
  316. v = (unsigned int *) c->x86_model_id;
  317. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  318. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  319. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  320. c->x86_model_id[48] = 0;
  321. /* Intel chips right-justify this string for some dumb reason;
  322. undo that brain damage */
  323. p = q = &c->x86_model_id[0];
  324. while (*p == ' ')
  325. p++;
  326. if (p != q) {
  327. while (*p)
  328. *q++ = *p++;
  329. while (q <= &c->x86_model_id[48])
  330. *q++ = '\0'; /* Zero-pad the rest */
  331. }
  332. }
  333. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  334. {
  335. unsigned int n, dummy, ebx, ecx, edx, l2size;
  336. n = c->extended_cpuid_level;
  337. if (n >= 0x80000005) {
  338. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  339. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  340. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  341. c->x86_cache_size = (ecx>>24) + (edx>>24);
  342. #ifdef CONFIG_X86_64
  343. /* On K8 L1 TLB is inclusive, so don't count it */
  344. c->x86_tlbsize = 0;
  345. #endif
  346. }
  347. if (n < 0x80000006) /* Some chips just has a large L1. */
  348. return;
  349. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  350. l2size = ecx >> 16;
  351. #ifdef CONFIG_X86_64
  352. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  353. #else
  354. /* do processor-specific cache resizing */
  355. if (this_cpu->c_size_cache)
  356. l2size = this_cpu->c_size_cache(c, l2size);
  357. /* Allow user to override all this if necessary. */
  358. if (cachesize_override != -1)
  359. l2size = cachesize_override;
  360. if (l2size == 0)
  361. return; /* Again, no L2 cache is possible */
  362. #endif
  363. c->x86_cache_size = l2size;
  364. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  365. l2size, ecx & 0xFF);
  366. }
  367. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  368. {
  369. #ifdef CONFIG_X86_HT
  370. u32 eax, ebx, ecx, edx;
  371. int index_msb, core_bits;
  372. if (!cpu_has(c, X86_FEATURE_HT))
  373. return;
  374. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  375. goto out;
  376. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  377. return;
  378. cpuid(1, &eax, &ebx, &ecx, &edx);
  379. smp_num_siblings = (ebx & 0xff0000) >> 16;
  380. if (smp_num_siblings == 1) {
  381. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  382. } else if (smp_num_siblings > 1) {
  383. if (smp_num_siblings > nr_cpu_ids) {
  384. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  385. smp_num_siblings);
  386. smp_num_siblings = 1;
  387. return;
  388. }
  389. index_msb = get_count_order(smp_num_siblings);
  390. c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
  391. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  392. index_msb = get_count_order(smp_num_siblings);
  393. core_bits = get_count_order(c->x86_max_cores);
  394. c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
  395. ((1 << core_bits) - 1);
  396. }
  397. out:
  398. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  399. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  400. c->phys_proc_id);
  401. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  402. c->cpu_core_id);
  403. }
  404. #endif
  405. }
  406. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  407. {
  408. char *v = c->x86_vendor_id;
  409. int i;
  410. static int printed;
  411. for (i = 0; i < X86_VENDOR_NUM; i++) {
  412. if (!cpu_devs[i])
  413. break;
  414. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  415. (cpu_devs[i]->c_ident[1] &&
  416. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  417. this_cpu = cpu_devs[i];
  418. c->x86_vendor = this_cpu->c_x86_vendor;
  419. return;
  420. }
  421. }
  422. if (!printed) {
  423. printed++;
  424. printk(KERN_ERR "CPU: vendor_id '%s' unknown, using generic init.\n", v);
  425. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  426. }
  427. c->x86_vendor = X86_VENDOR_UNKNOWN;
  428. this_cpu = &default_cpu;
  429. }
  430. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  431. {
  432. /* Get vendor name */
  433. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  434. (unsigned int *)&c->x86_vendor_id[0],
  435. (unsigned int *)&c->x86_vendor_id[8],
  436. (unsigned int *)&c->x86_vendor_id[4]);
  437. c->x86 = 4;
  438. /* Intel-defined flags: level 0x00000001 */
  439. if (c->cpuid_level >= 0x00000001) {
  440. u32 junk, tfms, cap0, misc;
  441. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  442. c->x86 = (tfms >> 8) & 0xf;
  443. c->x86_model = (tfms >> 4) & 0xf;
  444. c->x86_mask = tfms & 0xf;
  445. if (c->x86 == 0xf)
  446. c->x86 += (tfms >> 20) & 0xff;
  447. if (c->x86 >= 0x6)
  448. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  449. if (cap0 & (1<<19)) {
  450. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  451. c->x86_cache_alignment = c->x86_clflush_size;
  452. }
  453. }
  454. }
  455. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  456. {
  457. u32 tfms, xlvl;
  458. u32 ebx;
  459. /* Intel-defined flags: level 0x00000001 */
  460. if (c->cpuid_level >= 0x00000001) {
  461. u32 capability, excap;
  462. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  463. c->x86_capability[0] = capability;
  464. c->x86_capability[4] = excap;
  465. }
  466. /* AMD-defined flags: level 0x80000001 */
  467. xlvl = cpuid_eax(0x80000000);
  468. c->extended_cpuid_level = xlvl;
  469. if ((xlvl & 0xffff0000) == 0x80000000) {
  470. if (xlvl >= 0x80000001) {
  471. c->x86_capability[1] = cpuid_edx(0x80000001);
  472. c->x86_capability[6] = cpuid_ecx(0x80000001);
  473. }
  474. }
  475. #ifdef CONFIG_X86_64
  476. if (c->extended_cpuid_level >= 0x80000008) {
  477. u32 eax = cpuid_eax(0x80000008);
  478. c->x86_virt_bits = (eax >> 8) & 0xff;
  479. c->x86_phys_bits = eax & 0xff;
  480. }
  481. #endif
  482. if (c->extended_cpuid_level >= 0x80000007)
  483. c->x86_power = cpuid_edx(0x80000007);
  484. }
  485. static void __cpuinit identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
  486. {
  487. #ifdef CONFIG_X86_32
  488. int i;
  489. /*
  490. * First of all, decide if this is a 486 or higher
  491. * It's a 486 if we can modify the AC flag
  492. */
  493. if (flag_is_changeable_p(X86_EFLAGS_AC))
  494. c->x86 = 4;
  495. else
  496. c->x86 = 3;
  497. for (i = 0; i < X86_VENDOR_NUM; i++)
  498. if (cpu_devs[i] && cpu_devs[i]->c_identify) {
  499. c->x86_vendor_id[0] = 0;
  500. cpu_devs[i]->c_identify(c);
  501. if (c->x86_vendor_id[0]) {
  502. get_cpu_vendor(c);
  503. break;
  504. }
  505. }
  506. #endif
  507. }
  508. /*
  509. * Do minimum CPU detection early.
  510. * Fields really needed: vendor, cpuid_level, family, model, mask,
  511. * cache alignment.
  512. * The others are not touched to avoid unwanted side effects.
  513. *
  514. * WARNING: this function is only called on the BP. Don't add code here
  515. * that is supposed to run on all CPUs.
  516. */
  517. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  518. {
  519. #ifdef CONFIG_X86_64
  520. c->x86_clflush_size = 64;
  521. #else
  522. c->x86_clflush_size = 32;
  523. #endif
  524. c->x86_cache_alignment = c->x86_clflush_size;
  525. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  526. c->extended_cpuid_level = 0;
  527. if (!have_cpuid_p())
  528. identify_cpu_without_cpuid(c);
  529. /* cyrix could have cpuid enabled via c_identify()*/
  530. if (!have_cpuid_p())
  531. return;
  532. cpu_detect(c);
  533. get_cpu_vendor(c);
  534. get_cpu_cap(c);
  535. if (this_cpu->c_early_init)
  536. this_cpu->c_early_init(c);
  537. #ifdef CONFIG_SMP
  538. c->cpu_index = boot_cpu_id;
  539. #endif
  540. filter_cpuid_features(c, false);
  541. }
  542. void __init early_cpu_init(void)
  543. {
  544. struct cpu_dev **cdev;
  545. int count = 0;
  546. printk("KERNEL supported cpus:\n");
  547. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  548. struct cpu_dev *cpudev = *cdev;
  549. unsigned int j;
  550. if (count >= X86_VENDOR_NUM)
  551. break;
  552. cpu_devs[count] = cpudev;
  553. count++;
  554. for (j = 0; j < 2; j++) {
  555. if (!cpudev->c_ident[j])
  556. continue;
  557. printk(" %s %s\n", cpudev->c_vendor,
  558. cpudev->c_ident[j]);
  559. }
  560. }
  561. early_identify_cpu(&boot_cpu_data);
  562. }
  563. /*
  564. * The NOPL instruction is supposed to exist on all CPUs with
  565. * family >= 6; unfortunately, that's not true in practice because
  566. * of early VIA chips and (more importantly) broken virtualizers that
  567. * are not easy to detect. In the latter case it doesn't even *fail*
  568. * reliably, so probing for it doesn't even work. Disable it completely
  569. * unless we can find a reliable way to detect all the broken cases.
  570. */
  571. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  572. {
  573. clear_cpu_cap(c, X86_FEATURE_NOPL);
  574. }
  575. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  576. {
  577. c->extended_cpuid_level = 0;
  578. if (!have_cpuid_p())
  579. identify_cpu_without_cpuid(c);
  580. /* cyrix could have cpuid enabled via c_identify()*/
  581. if (!have_cpuid_p())
  582. return;
  583. cpu_detect(c);
  584. get_cpu_vendor(c);
  585. get_cpu_cap(c);
  586. if (c->cpuid_level >= 0x00000001) {
  587. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  588. #ifdef CONFIG_X86_32
  589. # ifdef CONFIG_X86_HT
  590. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  591. # else
  592. c->apicid = c->initial_apicid;
  593. # endif
  594. #endif
  595. #ifdef CONFIG_X86_HT
  596. c->phys_proc_id = c->initial_apicid;
  597. #endif
  598. }
  599. get_model_name(c); /* Default name */
  600. init_scattered_cpuid_features(c);
  601. detect_nopl(c);
  602. }
  603. /*
  604. * This does the hard work of actually picking apart the CPU stuff...
  605. */
  606. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  607. {
  608. int i;
  609. c->loops_per_jiffy = loops_per_jiffy;
  610. c->x86_cache_size = -1;
  611. c->x86_vendor = X86_VENDOR_UNKNOWN;
  612. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  613. c->x86_vendor_id[0] = '\0'; /* Unset */
  614. c->x86_model_id[0] = '\0'; /* Unset */
  615. c->x86_max_cores = 1;
  616. c->x86_coreid_bits = 0;
  617. #ifdef CONFIG_X86_64
  618. c->x86_clflush_size = 64;
  619. #else
  620. c->cpuid_level = -1; /* CPUID not detected */
  621. c->x86_clflush_size = 32;
  622. #endif
  623. c->x86_cache_alignment = c->x86_clflush_size;
  624. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  625. generic_identify(c);
  626. if (this_cpu->c_identify)
  627. this_cpu->c_identify(c);
  628. #ifdef CONFIG_X86_64
  629. c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
  630. #endif
  631. /*
  632. * Vendor-specific initialization. In this section we
  633. * canonicalize the feature flags, meaning if there are
  634. * features a certain CPU supports which CPUID doesn't
  635. * tell us, CPUID claiming incorrect flags, or other bugs,
  636. * we handle them here.
  637. *
  638. * At the end of this section, c->x86_capability better
  639. * indicate the features this CPU genuinely supports!
  640. */
  641. if (this_cpu->c_init)
  642. this_cpu->c_init(c);
  643. /* Disable the PN if appropriate */
  644. squash_the_stupid_serial_number(c);
  645. /*
  646. * The vendor-specific functions might have changed features. Now
  647. * we do "generic changes."
  648. */
  649. /* Filter out anything that depends on CPUID levels we don't have */
  650. filter_cpuid_features(c, true);
  651. /* If the model name is still unset, do table lookup. */
  652. if (!c->x86_model_id[0]) {
  653. char *p;
  654. p = table_lookup_model(c);
  655. if (p)
  656. strcpy(c->x86_model_id, p);
  657. else
  658. /* Last resort... */
  659. sprintf(c->x86_model_id, "%02x/%02x",
  660. c->x86, c->x86_model);
  661. }
  662. #ifdef CONFIG_X86_64
  663. detect_ht(c);
  664. #endif
  665. init_hypervisor(c);
  666. /*
  667. * On SMP, boot_cpu_data holds the common feature set between
  668. * all CPUs; so make sure that we indicate which features are
  669. * common between the CPUs. The first time this routine gets
  670. * executed, c == &boot_cpu_data.
  671. */
  672. if (c != &boot_cpu_data) {
  673. /* AND the already accumulated flags with these */
  674. for (i = 0; i < NCAPINTS; i++)
  675. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  676. }
  677. /* Clear all flags overriden by options */
  678. for (i = 0; i < NCAPINTS; i++)
  679. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  680. #ifdef CONFIG_X86_MCE
  681. /* Init Machine Check Exception if available. */
  682. mcheck_init(c);
  683. #endif
  684. select_idle_routine(c);
  685. #if defined(CONFIG_NUMA) && defined(CONFIG_X86_64)
  686. numa_add_cpu(smp_processor_id());
  687. #endif
  688. }
  689. #ifdef CONFIG_X86_64
  690. static void vgetcpu_set_mode(void)
  691. {
  692. if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
  693. vgetcpu_mode = VGETCPU_RDTSCP;
  694. else
  695. vgetcpu_mode = VGETCPU_LSL;
  696. }
  697. #endif
  698. void __init identify_boot_cpu(void)
  699. {
  700. identify_cpu(&boot_cpu_data);
  701. #ifdef CONFIG_X86_32
  702. sysenter_setup();
  703. enable_sep_cpu();
  704. #else
  705. vgetcpu_set_mode();
  706. #endif
  707. }
  708. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  709. {
  710. BUG_ON(c == &boot_cpu_data);
  711. identify_cpu(c);
  712. #ifdef CONFIG_X86_32
  713. enable_sep_cpu();
  714. #endif
  715. mtrr_ap_init();
  716. }
  717. struct msr_range {
  718. unsigned min;
  719. unsigned max;
  720. };
  721. static struct msr_range msr_range_array[] __cpuinitdata = {
  722. { 0x00000000, 0x00000418},
  723. { 0xc0000000, 0xc000040b},
  724. { 0xc0010000, 0xc0010142},
  725. { 0xc0011000, 0xc001103b},
  726. };
  727. static void __cpuinit print_cpu_msr(void)
  728. {
  729. unsigned index;
  730. u64 val;
  731. int i;
  732. unsigned index_min, index_max;
  733. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  734. index_min = msr_range_array[i].min;
  735. index_max = msr_range_array[i].max;
  736. for (index = index_min; index < index_max; index++) {
  737. if (rdmsrl_amd_safe(index, &val))
  738. continue;
  739. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  740. }
  741. }
  742. }
  743. static int show_msr __cpuinitdata;
  744. static __init int setup_show_msr(char *arg)
  745. {
  746. int num;
  747. get_option(&arg, &num);
  748. if (num > 0)
  749. show_msr = num;
  750. return 1;
  751. }
  752. __setup("show_msr=", setup_show_msr);
  753. static __init int setup_noclflush(char *arg)
  754. {
  755. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  756. return 1;
  757. }
  758. __setup("noclflush", setup_noclflush);
  759. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  760. {
  761. char *vendor = NULL;
  762. if (c->x86_vendor < X86_VENDOR_NUM)
  763. vendor = this_cpu->c_vendor;
  764. else if (c->cpuid_level >= 0)
  765. vendor = c->x86_vendor_id;
  766. if (vendor && !strstr(c->x86_model_id, vendor))
  767. printk(KERN_CONT "%s ", vendor);
  768. if (c->x86_model_id[0])
  769. printk(KERN_CONT "%s", c->x86_model_id);
  770. else
  771. printk(KERN_CONT "%d86", c->x86);
  772. if (c->x86_mask || c->cpuid_level >= 0)
  773. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  774. else
  775. printk(KERN_CONT "\n");
  776. #ifdef CONFIG_SMP
  777. if (c->cpu_index < show_msr)
  778. print_cpu_msr();
  779. #else
  780. if (show_msr)
  781. print_cpu_msr();
  782. #endif
  783. }
  784. static __init int setup_disablecpuid(char *arg)
  785. {
  786. int bit;
  787. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  788. setup_clear_cpu_cap(bit);
  789. else
  790. return 0;
  791. return 1;
  792. }
  793. __setup("clearcpuid=", setup_disablecpuid);
  794. #ifdef CONFIG_X86_64
  795. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  796. DEFINE_PER_CPU_FIRST(union irq_stack_union,
  797. irq_stack_union) __aligned(PAGE_SIZE);
  798. DEFINE_PER_CPU(char *, irq_stack_ptr) =
  799. init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
  800. DEFINE_PER_CPU(unsigned long, kernel_stack) =
  801. (unsigned long)&init_thread_union - KERNEL_STACK_OFFSET + THREAD_SIZE;
  802. EXPORT_PER_CPU_SYMBOL(kernel_stack);
  803. DEFINE_PER_CPU(unsigned int, irq_count) = -1;
  804. static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
  805. [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ])
  806. __aligned(PAGE_SIZE);
  807. extern asmlinkage void ignore_sysret(void);
  808. /* May not be marked __init: used by software suspend */
  809. void syscall_init(void)
  810. {
  811. /*
  812. * LSTAR and STAR live in a bit strange symbiosis.
  813. * They both write to the same internal register. STAR allows to
  814. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  815. */
  816. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  817. wrmsrl(MSR_LSTAR, system_call);
  818. wrmsrl(MSR_CSTAR, ignore_sysret);
  819. #ifdef CONFIG_IA32_EMULATION
  820. syscall32_cpu_init();
  821. #endif
  822. /* Flags to clear on syscall */
  823. wrmsrl(MSR_SYSCALL_MASK,
  824. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  825. }
  826. unsigned long kernel_eflags;
  827. /*
  828. * Copies of the original ist values from the tss are only accessed during
  829. * debugging, no special alignment required.
  830. */
  831. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  832. #else /* x86_64 */
  833. #ifdef CONFIG_CC_STACKPROTECTOR
  834. DEFINE_PER_CPU(unsigned long, stack_canary);
  835. #endif
  836. /* Make sure %fs and %gs are initialized properly in idle threads */
  837. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  838. {
  839. memset(regs, 0, sizeof(struct pt_regs));
  840. regs->fs = __KERNEL_PERCPU;
  841. regs->gs = __KERNEL_STACK_CANARY;
  842. return regs;
  843. }
  844. #endif /* x86_64 */
  845. /*
  846. * cpu_init() initializes state that is per-CPU. Some data is already
  847. * initialized (naturally) in the bootstrap process, such as the GDT
  848. * and IDT. We reload them nevertheless, this function acts as a
  849. * 'CPU state barrier', nothing should get across.
  850. * A lot of state is already set up in PDA init for 64 bit
  851. */
  852. #ifdef CONFIG_X86_64
  853. void __cpuinit cpu_init(void)
  854. {
  855. int cpu = stack_smp_processor_id();
  856. struct tss_struct *t = &per_cpu(init_tss, cpu);
  857. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  858. unsigned long v;
  859. struct task_struct *me;
  860. int i;
  861. #ifdef CONFIG_NUMA
  862. if (cpu != 0 && percpu_read(node_number) == 0 &&
  863. cpu_to_node(cpu) != NUMA_NO_NODE)
  864. percpu_write(node_number, cpu_to_node(cpu));
  865. #endif
  866. me = current;
  867. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask))
  868. panic("CPU#%d already initialized!\n", cpu);
  869. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  870. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  871. /*
  872. * Initialize the per-CPU GDT with the boot GDT,
  873. * and set up the GDT descriptor:
  874. */
  875. switch_to_new_gdt(cpu);
  876. loadsegment(fs, 0);
  877. load_idt((const struct desc_ptr *)&idt_descr);
  878. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  879. syscall_init();
  880. wrmsrl(MSR_FS_BASE, 0);
  881. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  882. barrier();
  883. check_efer();
  884. if (cpu != 0)
  885. enable_x2apic();
  886. /*
  887. * set up and load the per-CPU TSS
  888. */
  889. if (!orig_ist->ist[0]) {
  890. static const unsigned int sizes[N_EXCEPTION_STACKS] = {
  891. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
  892. [DEBUG_STACK - 1] = DEBUG_STKSZ
  893. };
  894. char *estacks = per_cpu(exception_stacks, cpu);
  895. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  896. estacks += sizes[v];
  897. orig_ist->ist[v] = t->x86_tss.ist[v] =
  898. (unsigned long)estacks;
  899. }
  900. }
  901. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  902. /*
  903. * <= is required because the CPU will access up to
  904. * 8 bits beyond the end of the IO permission bitmap.
  905. */
  906. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  907. t->io_bitmap[i] = ~0UL;
  908. atomic_inc(&init_mm.mm_count);
  909. me->active_mm = &init_mm;
  910. if (me->mm)
  911. BUG();
  912. enter_lazy_tlb(&init_mm, me);
  913. load_sp0(t, &current->thread);
  914. set_tss_desc(cpu, t);
  915. load_TR_desc();
  916. load_LDT(&init_mm.context);
  917. #ifdef CONFIG_KGDB
  918. /*
  919. * If the kgdb is connected no debug regs should be altered. This
  920. * is only applicable when KGDB and a KGDB I/O module are built
  921. * into the kernel and you are using early debugging with
  922. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  923. */
  924. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  925. arch_kgdb_ops.correct_hw_break();
  926. else
  927. #endif
  928. {
  929. /*
  930. * Clear all 6 debug registers:
  931. */
  932. set_debugreg(0UL, 0);
  933. set_debugreg(0UL, 1);
  934. set_debugreg(0UL, 2);
  935. set_debugreg(0UL, 3);
  936. set_debugreg(0UL, 6);
  937. set_debugreg(0UL, 7);
  938. }
  939. fpu_init();
  940. raw_local_save_flags(kernel_eflags);
  941. if (is_uv_system())
  942. uv_cpu_init();
  943. }
  944. #else
  945. void __cpuinit cpu_init(void)
  946. {
  947. int cpu = smp_processor_id();
  948. struct task_struct *curr = current;
  949. struct tss_struct *t = &per_cpu(init_tss, cpu);
  950. struct thread_struct *thread = &curr->thread;
  951. if (cpumask_test_and_set_cpu(cpu, cpu_initialized_mask)) {
  952. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  953. for (;;) local_irq_enable();
  954. }
  955. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  956. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  957. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  958. load_idt(&idt_descr);
  959. switch_to_new_gdt(cpu);
  960. /*
  961. * Set up and load the per-CPU TSS and LDT
  962. */
  963. atomic_inc(&init_mm.mm_count);
  964. curr->active_mm = &init_mm;
  965. if (curr->mm)
  966. BUG();
  967. enter_lazy_tlb(&init_mm, curr);
  968. load_sp0(t, thread);
  969. set_tss_desc(cpu, t);
  970. load_TR_desc();
  971. load_LDT(&init_mm.context);
  972. #ifdef CONFIG_DOUBLEFAULT
  973. /* Set up doublefault TSS pointer in the GDT */
  974. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  975. #endif
  976. /* Clear all 6 debug registers: */
  977. set_debugreg(0, 0);
  978. set_debugreg(0, 1);
  979. set_debugreg(0, 2);
  980. set_debugreg(0, 3);
  981. set_debugreg(0, 6);
  982. set_debugreg(0, 7);
  983. /*
  984. * Force FPU initialization:
  985. */
  986. if (cpu_has_xsave)
  987. current_thread_info()->status = TS_XSAVE;
  988. else
  989. current_thread_info()->status = 0;
  990. clear_used_math();
  991. mxcsr_feature_mask_init();
  992. /*
  993. * Boot processor to setup the FP and extended state context info.
  994. */
  995. if (smp_processor_id() == boot_cpu_id)
  996. init_thread_xstate();
  997. xsave_init();
  998. }
  999. #endif