xfs_inode.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_btree_trace.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_filestream.h"
  51. #include "xfs_vnodeops.h"
  52. #include "xfs_trace.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. xfs_exntfmt_t fmt)
  74. {
  75. xfs_bmbt_irec_t irec;
  76. xfs_bmbt_rec_host_t rec;
  77. int i;
  78. for (i = 0; i < nrecs; i++) {
  79. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  80. rec.l0 = get_unaligned(&ep->l0);
  81. rec.l1 = get_unaligned(&ep->l1);
  82. xfs_bmbt_get_all(&rec, &irec);
  83. if (fmt == XFS_EXTFMT_NOSTATE)
  84. ASSERT(irec.br_state == XFS_EXT_NORM);
  85. }
  86. }
  87. #else /* DEBUG */
  88. #define xfs_validate_extents(ifp, nrecs, fmt)
  89. #endif /* DEBUG */
  90. /*
  91. * Check that none of the inode's in the buffer have a next
  92. * unlinked field of 0.
  93. */
  94. #if defined(DEBUG)
  95. void
  96. xfs_inobp_check(
  97. xfs_mount_t *mp,
  98. xfs_buf_t *bp)
  99. {
  100. int i;
  101. int j;
  102. xfs_dinode_t *dip;
  103. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  104. for (i = 0; i < j; i++) {
  105. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  106. i * mp->m_sb.sb_inodesize);
  107. if (!dip->di_next_unlinked) {
  108. xfs_fs_cmn_err(CE_ALERT, mp,
  109. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  110. bp);
  111. ASSERT(dip->di_next_unlinked);
  112. }
  113. }
  114. }
  115. #endif
  116. /*
  117. * Find the buffer associated with the given inode map
  118. * We do basic validation checks on the buffer once it has been
  119. * retrieved from disk.
  120. */
  121. STATIC int
  122. xfs_imap_to_bp(
  123. xfs_mount_t *mp,
  124. xfs_trans_t *tp,
  125. struct xfs_imap *imap,
  126. xfs_buf_t **bpp,
  127. uint buf_flags,
  128. uint iget_flags)
  129. {
  130. int error;
  131. int i;
  132. int ni;
  133. xfs_buf_t *bp;
  134. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  135. (int)imap->im_len, buf_flags, &bp);
  136. if (error) {
  137. if (error != EAGAIN) {
  138. cmn_err(CE_WARN,
  139. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  140. "an error %d on %s. Returning error.",
  141. error, mp->m_fsname);
  142. } else {
  143. ASSERT(buf_flags & XBF_TRYLOCK);
  144. }
  145. return error;
  146. }
  147. /*
  148. * Validate the magic number and version of every inode in the buffer
  149. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  150. */
  151. #ifdef DEBUG
  152. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  153. #else /* usual case */
  154. ni = 1;
  155. #endif
  156. for (i = 0; i < ni; i++) {
  157. int di_ok;
  158. xfs_dinode_t *dip;
  159. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  160. (i << mp->m_sb.sb_inodelog));
  161. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  162. XFS_DINODE_GOOD_VERSION(dip->di_version);
  163. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  164. XFS_ERRTAG_ITOBP_INOTOBP,
  165. XFS_RANDOM_ITOBP_INOTOBP))) {
  166. if (iget_flags & XFS_IGET_UNTRUSTED) {
  167. xfs_trans_brelse(tp, bp);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  171. XFS_ERRLEVEL_HIGH, mp, dip);
  172. #ifdef DEBUG
  173. cmn_err(CE_PANIC,
  174. "Device %s - bad inode magic/vsn "
  175. "daddr %lld #%d (magic=%x)",
  176. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  177. (unsigned long long)imap->im_blkno, i,
  178. be16_to_cpu(dip->di_magic));
  179. #endif
  180. xfs_trans_brelse(tp, bp);
  181. return XFS_ERROR(EFSCORRUPTED);
  182. }
  183. }
  184. xfs_inobp_check(mp, bp);
  185. /*
  186. * Mark the buffer as an inode buffer now that it looks good
  187. */
  188. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  189. *bpp = bp;
  190. return 0;
  191. }
  192. /*
  193. * This routine is called to map an inode number within a file
  194. * system to the buffer containing the on-disk version of the
  195. * inode. It returns a pointer to the buffer containing the
  196. * on-disk inode in the bpp parameter, and in the dip parameter
  197. * it returns a pointer to the on-disk inode within that buffer.
  198. *
  199. * If a non-zero error is returned, then the contents of bpp and
  200. * dipp are undefined.
  201. *
  202. * Use xfs_imap() to determine the size and location of the
  203. * buffer to read from disk.
  204. */
  205. int
  206. xfs_inotobp(
  207. xfs_mount_t *mp,
  208. xfs_trans_t *tp,
  209. xfs_ino_t ino,
  210. xfs_dinode_t **dipp,
  211. xfs_buf_t **bpp,
  212. int *offset,
  213. uint imap_flags)
  214. {
  215. struct xfs_imap imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * The inode is expected to already been mapped to its buffer and read
  241. * in once, thus we can use the mapping information stored in the inode
  242. * rather than calling xfs_imap(). This allows us to avoid the overhead
  243. * of looking at the inode btree for small block file systems
  244. * (see xfs_imap()).
  245. */
  246. int
  247. xfs_itobp(
  248. xfs_mount_t *mp,
  249. xfs_trans_t *tp,
  250. xfs_inode_t *ip,
  251. xfs_dinode_t **dipp,
  252. xfs_buf_t **bpp,
  253. uint buf_flags)
  254. {
  255. xfs_buf_t *bp;
  256. int error;
  257. ASSERT(ip->i_imap.im_blkno != 0);
  258. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  259. if (error)
  260. return error;
  261. if (!bp) {
  262. ASSERT(buf_flags & XBF_TRYLOCK);
  263. ASSERT(tp == NULL);
  264. *bpp = NULL;
  265. return EAGAIN;
  266. }
  267. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  268. *bpp = bp;
  269. return 0;
  270. }
  271. /*
  272. * Move inode type and inode format specific information from the
  273. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  274. * this means set if_rdev to the proper value. For files, directories,
  275. * and symlinks this means to bring in the in-line data or extent
  276. * pointers. For a file in B-tree format, only the root is immediately
  277. * brought in-core. The rest will be in-lined in if_extents when it
  278. * is first referenced (see xfs_iread_extents()).
  279. */
  280. STATIC int
  281. xfs_iformat(
  282. xfs_inode_t *ip,
  283. xfs_dinode_t *dip)
  284. {
  285. xfs_attr_shortform_t *atp;
  286. int size;
  287. int error;
  288. xfs_fsize_t di_size;
  289. ip->i_df.if_ext_max =
  290. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  291. error = 0;
  292. if (unlikely(be32_to_cpu(dip->di_nextents) +
  293. be16_to_cpu(dip->di_anextents) >
  294. be64_to_cpu(dip->di_nblocks))) {
  295. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  296. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  297. (unsigned long long)ip->i_ino,
  298. (int)(be32_to_cpu(dip->di_nextents) +
  299. be16_to_cpu(dip->di_anextents)),
  300. (unsigned long long)
  301. be64_to_cpu(dip->di_nblocks));
  302. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  303. ip->i_mount, dip);
  304. return XFS_ERROR(EFSCORRUPTED);
  305. }
  306. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  307. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  308. "corrupt dinode %Lu, forkoff = 0x%x.",
  309. (unsigned long long)ip->i_ino,
  310. dip->di_forkoff);
  311. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  312. ip->i_mount, dip);
  313. return XFS_ERROR(EFSCORRUPTED);
  314. }
  315. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  316. !ip->i_mount->m_rtdev_targp)) {
  317. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  318. "corrupt dinode %Lu, has realtime flag set.",
  319. ip->i_ino);
  320. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  321. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  322. return XFS_ERROR(EFSCORRUPTED);
  323. }
  324. switch (ip->i_d.di_mode & S_IFMT) {
  325. case S_IFIFO:
  326. case S_IFCHR:
  327. case S_IFBLK:
  328. case S_IFSOCK:
  329. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  330. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  331. ip->i_mount, dip);
  332. return XFS_ERROR(EFSCORRUPTED);
  333. }
  334. ip->i_d.di_size = 0;
  335. ip->i_size = 0;
  336. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  337. break;
  338. case S_IFREG:
  339. case S_IFLNK:
  340. case S_IFDIR:
  341. switch (dip->di_format) {
  342. case XFS_DINODE_FMT_LOCAL:
  343. /*
  344. * no local regular files yet
  345. */
  346. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  347. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  348. "corrupt inode %Lu "
  349. "(local format for regular file).",
  350. (unsigned long long) ip->i_ino);
  351. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  352. XFS_ERRLEVEL_LOW,
  353. ip->i_mount, dip);
  354. return XFS_ERROR(EFSCORRUPTED);
  355. }
  356. di_size = be64_to_cpu(dip->di_size);
  357. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  358. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  359. "corrupt inode %Lu "
  360. "(bad size %Ld for local inode).",
  361. (unsigned long long) ip->i_ino,
  362. (long long) di_size);
  363. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  364. XFS_ERRLEVEL_LOW,
  365. ip->i_mount, dip);
  366. return XFS_ERROR(EFSCORRUPTED);
  367. }
  368. size = (int)di_size;
  369. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  370. break;
  371. case XFS_DINODE_FMT_EXTENTS:
  372. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  373. break;
  374. case XFS_DINODE_FMT_BTREE:
  375. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  376. break;
  377. default:
  378. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  379. ip->i_mount);
  380. return XFS_ERROR(EFSCORRUPTED);
  381. }
  382. break;
  383. default:
  384. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  385. return XFS_ERROR(EFSCORRUPTED);
  386. }
  387. if (error) {
  388. return error;
  389. }
  390. if (!XFS_DFORK_Q(dip))
  391. return 0;
  392. ASSERT(ip->i_afp == NULL);
  393. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  394. ip->i_afp->if_ext_max =
  395. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  396. switch (dip->di_aformat) {
  397. case XFS_DINODE_FMT_LOCAL:
  398. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  399. size = be16_to_cpu(atp->hdr.totsize);
  400. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  401. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  402. "corrupt inode %Lu "
  403. "(bad attr fork size %Ld).",
  404. (unsigned long long) ip->i_ino,
  405. (long long) size);
  406. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  407. XFS_ERRLEVEL_LOW,
  408. ip->i_mount, dip);
  409. return XFS_ERROR(EFSCORRUPTED);
  410. }
  411. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  412. break;
  413. case XFS_DINODE_FMT_EXTENTS:
  414. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  415. break;
  416. case XFS_DINODE_FMT_BTREE:
  417. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  418. break;
  419. default:
  420. error = XFS_ERROR(EFSCORRUPTED);
  421. break;
  422. }
  423. if (error) {
  424. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  425. ip->i_afp = NULL;
  426. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  427. }
  428. return error;
  429. }
  430. /*
  431. * The file is in-lined in the on-disk inode.
  432. * If it fits into if_inline_data, then copy
  433. * it there, otherwise allocate a buffer for it
  434. * and copy the data there. Either way, set
  435. * if_data to point at the data.
  436. * If we allocate a buffer for the data, make
  437. * sure that its size is a multiple of 4 and
  438. * record the real size in i_real_bytes.
  439. */
  440. STATIC int
  441. xfs_iformat_local(
  442. xfs_inode_t *ip,
  443. xfs_dinode_t *dip,
  444. int whichfork,
  445. int size)
  446. {
  447. xfs_ifork_t *ifp;
  448. int real_size;
  449. /*
  450. * If the size is unreasonable, then something
  451. * is wrong and we just bail out rather than crash in
  452. * kmem_alloc() or memcpy() below.
  453. */
  454. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  455. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  456. "corrupt inode %Lu "
  457. "(bad size %d for local fork, size = %d).",
  458. (unsigned long long) ip->i_ino, size,
  459. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  460. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  461. ip->i_mount, dip);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. ifp = XFS_IFORK_PTR(ip, whichfork);
  465. real_size = 0;
  466. if (size == 0)
  467. ifp->if_u1.if_data = NULL;
  468. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  469. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  470. else {
  471. real_size = roundup(size, 4);
  472. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  473. }
  474. ifp->if_bytes = size;
  475. ifp->if_real_bytes = real_size;
  476. if (size)
  477. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  478. ifp->if_flags &= ~XFS_IFEXTENTS;
  479. ifp->if_flags |= XFS_IFINLINE;
  480. return 0;
  481. }
  482. /*
  483. * The file consists of a set of extents all
  484. * of which fit into the on-disk inode.
  485. * If there are few enough extents to fit into
  486. * the if_inline_ext, then copy them there.
  487. * Otherwise allocate a buffer for them and copy
  488. * them into it. Either way, set if_extents
  489. * to point at the extents.
  490. */
  491. STATIC int
  492. xfs_iformat_extents(
  493. xfs_inode_t *ip,
  494. xfs_dinode_t *dip,
  495. int whichfork)
  496. {
  497. xfs_bmbt_rec_t *dp;
  498. xfs_ifork_t *ifp;
  499. int nex;
  500. int size;
  501. int i;
  502. ifp = XFS_IFORK_PTR(ip, whichfork);
  503. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  504. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  505. /*
  506. * If the number of extents is unreasonable, then something
  507. * is wrong and we just bail out rather than crash in
  508. * kmem_alloc() or memcpy() below.
  509. */
  510. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  511. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  512. "corrupt inode %Lu ((a)extents = %d).",
  513. (unsigned long long) ip->i_ino, nex);
  514. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  515. ip->i_mount, dip);
  516. return XFS_ERROR(EFSCORRUPTED);
  517. }
  518. ifp->if_real_bytes = 0;
  519. if (nex == 0)
  520. ifp->if_u1.if_extents = NULL;
  521. else if (nex <= XFS_INLINE_EXTS)
  522. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  523. else
  524. xfs_iext_add(ifp, 0, nex);
  525. ifp->if_bytes = size;
  526. if (size) {
  527. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  528. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  529. for (i = 0; i < nex; i++, dp++) {
  530. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  531. ep->l0 = get_unaligned_be64(&dp->l0);
  532. ep->l1 = get_unaligned_be64(&dp->l1);
  533. }
  534. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  535. if (whichfork != XFS_DATA_FORK ||
  536. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  537. if (unlikely(xfs_check_nostate_extents(
  538. ifp, 0, nex))) {
  539. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  540. XFS_ERRLEVEL_LOW,
  541. ip->i_mount);
  542. return XFS_ERROR(EFSCORRUPTED);
  543. }
  544. }
  545. ifp->if_flags |= XFS_IFEXTENTS;
  546. return 0;
  547. }
  548. /*
  549. * The file has too many extents to fit into
  550. * the inode, so they are in B-tree format.
  551. * Allocate a buffer for the root of the B-tree
  552. * and copy the root into it. The i_extents
  553. * field will remain NULL until all of the
  554. * extents are read in (when they are needed).
  555. */
  556. STATIC int
  557. xfs_iformat_btree(
  558. xfs_inode_t *ip,
  559. xfs_dinode_t *dip,
  560. int whichfork)
  561. {
  562. xfs_bmdr_block_t *dfp;
  563. xfs_ifork_t *ifp;
  564. /* REFERENCED */
  565. int nrecs;
  566. int size;
  567. ifp = XFS_IFORK_PTR(ip, whichfork);
  568. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  569. size = XFS_BMAP_BROOT_SPACE(dfp);
  570. nrecs = be16_to_cpu(dfp->bb_numrecs);
  571. /*
  572. * blow out if -- fork has less extents than can fit in
  573. * fork (fork shouldn't be a btree format), root btree
  574. * block has more records than can fit into the fork,
  575. * or the number of extents is greater than the number of
  576. * blocks.
  577. */
  578. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  579. || XFS_BMDR_SPACE_CALC(nrecs) >
  580. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  581. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  582. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  583. "corrupt inode %Lu (btree).",
  584. (unsigned long long) ip->i_ino);
  585. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  586. ip->i_mount);
  587. return XFS_ERROR(EFSCORRUPTED);
  588. }
  589. ifp->if_broot_bytes = size;
  590. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  591. ASSERT(ifp->if_broot != NULL);
  592. /*
  593. * Copy and convert from the on-disk structure
  594. * to the in-memory structure.
  595. */
  596. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  597. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  598. ifp->if_broot, size);
  599. ifp->if_flags &= ~XFS_IFEXTENTS;
  600. ifp->if_flags |= XFS_IFBROOT;
  601. return 0;
  602. }
  603. STATIC void
  604. xfs_dinode_from_disk(
  605. xfs_icdinode_t *to,
  606. xfs_dinode_t *from)
  607. {
  608. to->di_magic = be16_to_cpu(from->di_magic);
  609. to->di_mode = be16_to_cpu(from->di_mode);
  610. to->di_version = from ->di_version;
  611. to->di_format = from->di_format;
  612. to->di_onlink = be16_to_cpu(from->di_onlink);
  613. to->di_uid = be32_to_cpu(from->di_uid);
  614. to->di_gid = be32_to_cpu(from->di_gid);
  615. to->di_nlink = be32_to_cpu(from->di_nlink);
  616. to->di_projid = be16_to_cpu(from->di_projid);
  617. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  618. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  619. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  620. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  621. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  622. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  623. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  624. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  625. to->di_size = be64_to_cpu(from->di_size);
  626. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  627. to->di_extsize = be32_to_cpu(from->di_extsize);
  628. to->di_nextents = be32_to_cpu(from->di_nextents);
  629. to->di_anextents = be16_to_cpu(from->di_anextents);
  630. to->di_forkoff = from->di_forkoff;
  631. to->di_aformat = from->di_aformat;
  632. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  633. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  634. to->di_flags = be16_to_cpu(from->di_flags);
  635. to->di_gen = be32_to_cpu(from->di_gen);
  636. }
  637. void
  638. xfs_dinode_to_disk(
  639. xfs_dinode_t *to,
  640. xfs_icdinode_t *from)
  641. {
  642. to->di_magic = cpu_to_be16(from->di_magic);
  643. to->di_mode = cpu_to_be16(from->di_mode);
  644. to->di_version = from ->di_version;
  645. to->di_format = from->di_format;
  646. to->di_onlink = cpu_to_be16(from->di_onlink);
  647. to->di_uid = cpu_to_be32(from->di_uid);
  648. to->di_gid = cpu_to_be32(from->di_gid);
  649. to->di_nlink = cpu_to_be32(from->di_nlink);
  650. to->di_projid = cpu_to_be16(from->di_projid);
  651. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  652. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  653. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  654. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  655. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  656. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  657. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  658. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  659. to->di_size = cpu_to_be64(from->di_size);
  660. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  661. to->di_extsize = cpu_to_be32(from->di_extsize);
  662. to->di_nextents = cpu_to_be32(from->di_nextents);
  663. to->di_anextents = cpu_to_be16(from->di_anextents);
  664. to->di_forkoff = from->di_forkoff;
  665. to->di_aformat = from->di_aformat;
  666. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  667. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  668. to->di_flags = cpu_to_be16(from->di_flags);
  669. to->di_gen = cpu_to_be32(from->di_gen);
  670. }
  671. STATIC uint
  672. _xfs_dic2xflags(
  673. __uint16_t di_flags)
  674. {
  675. uint flags = 0;
  676. if (di_flags & XFS_DIFLAG_ANY) {
  677. if (di_flags & XFS_DIFLAG_REALTIME)
  678. flags |= XFS_XFLAG_REALTIME;
  679. if (di_flags & XFS_DIFLAG_PREALLOC)
  680. flags |= XFS_XFLAG_PREALLOC;
  681. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  682. flags |= XFS_XFLAG_IMMUTABLE;
  683. if (di_flags & XFS_DIFLAG_APPEND)
  684. flags |= XFS_XFLAG_APPEND;
  685. if (di_flags & XFS_DIFLAG_SYNC)
  686. flags |= XFS_XFLAG_SYNC;
  687. if (di_flags & XFS_DIFLAG_NOATIME)
  688. flags |= XFS_XFLAG_NOATIME;
  689. if (di_flags & XFS_DIFLAG_NODUMP)
  690. flags |= XFS_XFLAG_NODUMP;
  691. if (di_flags & XFS_DIFLAG_RTINHERIT)
  692. flags |= XFS_XFLAG_RTINHERIT;
  693. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  694. flags |= XFS_XFLAG_PROJINHERIT;
  695. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  696. flags |= XFS_XFLAG_NOSYMLINKS;
  697. if (di_flags & XFS_DIFLAG_EXTSIZE)
  698. flags |= XFS_XFLAG_EXTSIZE;
  699. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  700. flags |= XFS_XFLAG_EXTSZINHERIT;
  701. if (di_flags & XFS_DIFLAG_NODEFRAG)
  702. flags |= XFS_XFLAG_NODEFRAG;
  703. if (di_flags & XFS_DIFLAG_FILESTREAM)
  704. flags |= XFS_XFLAG_FILESTREAM;
  705. }
  706. return flags;
  707. }
  708. uint
  709. xfs_ip2xflags(
  710. xfs_inode_t *ip)
  711. {
  712. xfs_icdinode_t *dic = &ip->i_d;
  713. return _xfs_dic2xflags(dic->di_flags) |
  714. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  715. }
  716. uint
  717. xfs_dic2xflags(
  718. xfs_dinode_t *dip)
  719. {
  720. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  721. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  722. }
  723. /*
  724. * Read the disk inode attributes into the in-core inode structure.
  725. */
  726. int
  727. xfs_iread(
  728. xfs_mount_t *mp,
  729. xfs_trans_t *tp,
  730. xfs_inode_t *ip,
  731. uint iget_flags)
  732. {
  733. xfs_buf_t *bp;
  734. xfs_dinode_t *dip;
  735. int error;
  736. /*
  737. * Fill in the location information in the in-core inode.
  738. */
  739. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  740. if (error)
  741. return error;
  742. /*
  743. * Get pointers to the on-disk inode and the buffer containing it.
  744. */
  745. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  746. XBF_LOCK, iget_flags);
  747. if (error)
  748. return error;
  749. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  750. /*
  751. * If we got something that isn't an inode it means someone
  752. * (nfs or dmi) has a stale handle.
  753. */
  754. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  755. #ifdef DEBUG
  756. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  757. "dip->di_magic (0x%x) != "
  758. "XFS_DINODE_MAGIC (0x%x)",
  759. be16_to_cpu(dip->di_magic),
  760. XFS_DINODE_MAGIC);
  761. #endif /* DEBUG */
  762. error = XFS_ERROR(EINVAL);
  763. goto out_brelse;
  764. }
  765. /*
  766. * If the on-disk inode is already linked to a directory
  767. * entry, copy all of the inode into the in-core inode.
  768. * xfs_iformat() handles copying in the inode format
  769. * specific information.
  770. * Otherwise, just get the truly permanent information.
  771. */
  772. if (dip->di_mode) {
  773. xfs_dinode_from_disk(&ip->i_d, dip);
  774. error = xfs_iformat(ip, dip);
  775. if (error) {
  776. #ifdef DEBUG
  777. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  778. "xfs_iformat() returned error %d",
  779. error);
  780. #endif /* DEBUG */
  781. goto out_brelse;
  782. }
  783. } else {
  784. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  785. ip->i_d.di_version = dip->di_version;
  786. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  787. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  788. /*
  789. * Make sure to pull in the mode here as well in
  790. * case the inode is released without being used.
  791. * This ensures that xfs_inactive() will see that
  792. * the inode is already free and not try to mess
  793. * with the uninitialized part of it.
  794. */
  795. ip->i_d.di_mode = 0;
  796. /*
  797. * Initialize the per-fork minima and maxima for a new
  798. * inode here. xfs_iformat will do it for old inodes.
  799. */
  800. ip->i_df.if_ext_max =
  801. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  802. }
  803. /*
  804. * The inode format changed when we moved the link count and
  805. * made it 32 bits long. If this is an old format inode,
  806. * convert it in memory to look like a new one. If it gets
  807. * flushed to disk we will convert back before flushing or
  808. * logging it. We zero out the new projid field and the old link
  809. * count field. We'll handle clearing the pad field (the remains
  810. * of the old uuid field) when we actually convert the inode to
  811. * the new format. We don't change the version number so that we
  812. * can distinguish this from a real new format inode.
  813. */
  814. if (ip->i_d.di_version == 1) {
  815. ip->i_d.di_nlink = ip->i_d.di_onlink;
  816. ip->i_d.di_onlink = 0;
  817. ip->i_d.di_projid = 0;
  818. }
  819. ip->i_delayed_blks = 0;
  820. ip->i_size = ip->i_d.di_size;
  821. /*
  822. * Mark the buffer containing the inode as something to keep
  823. * around for a while. This helps to keep recently accessed
  824. * meta-data in-core longer.
  825. */
  826. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  827. /*
  828. * Use xfs_trans_brelse() to release the buffer containing the
  829. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  830. * in xfs_itobp() above. If tp is NULL, this is just a normal
  831. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  832. * will only release the buffer if it is not dirty within the
  833. * transaction. It will be OK to release the buffer in this case,
  834. * because inodes on disk are never destroyed and we will be
  835. * locking the new in-core inode before putting it in the hash
  836. * table where other processes can find it. Thus we don't have
  837. * to worry about the inode being changed just because we released
  838. * the buffer.
  839. */
  840. out_brelse:
  841. xfs_trans_brelse(tp, bp);
  842. return error;
  843. }
  844. /*
  845. * Read in extents from a btree-format inode.
  846. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  847. */
  848. int
  849. xfs_iread_extents(
  850. xfs_trans_t *tp,
  851. xfs_inode_t *ip,
  852. int whichfork)
  853. {
  854. int error;
  855. xfs_ifork_t *ifp;
  856. xfs_extnum_t nextents;
  857. size_t size;
  858. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  859. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  860. ip->i_mount);
  861. return XFS_ERROR(EFSCORRUPTED);
  862. }
  863. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  864. size = nextents * sizeof(xfs_bmbt_rec_t);
  865. ifp = XFS_IFORK_PTR(ip, whichfork);
  866. /*
  867. * We know that the size is valid (it's checked in iformat_btree)
  868. */
  869. ifp->if_lastex = NULLEXTNUM;
  870. ifp->if_bytes = ifp->if_real_bytes = 0;
  871. ifp->if_flags |= XFS_IFEXTENTS;
  872. xfs_iext_add(ifp, 0, nextents);
  873. error = xfs_bmap_read_extents(tp, ip, whichfork);
  874. if (error) {
  875. xfs_iext_destroy(ifp);
  876. ifp->if_flags &= ~XFS_IFEXTENTS;
  877. return error;
  878. }
  879. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  880. return 0;
  881. }
  882. /*
  883. * Allocate an inode on disk and return a copy of its in-core version.
  884. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  885. * appropriately within the inode. The uid and gid for the inode are
  886. * set according to the contents of the given cred structure.
  887. *
  888. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  889. * has a free inode available, call xfs_iget()
  890. * to obtain the in-core version of the allocated inode. Finally,
  891. * fill in the inode and log its initial contents. In this case,
  892. * ialloc_context would be set to NULL and call_again set to false.
  893. *
  894. * If xfs_dialloc() does not have an available inode,
  895. * it will replenish its supply by doing an allocation. Since we can
  896. * only do one allocation within a transaction without deadlocks, we
  897. * must commit the current transaction before returning the inode itself.
  898. * In this case, therefore, we will set call_again to true and return.
  899. * The caller should then commit the current transaction, start a new
  900. * transaction, and call xfs_ialloc() again to actually get the inode.
  901. *
  902. * To ensure that some other process does not grab the inode that
  903. * was allocated during the first call to xfs_ialloc(), this routine
  904. * also returns the [locked] bp pointing to the head of the freelist
  905. * as ialloc_context. The caller should hold this buffer across
  906. * the commit and pass it back into this routine on the second call.
  907. *
  908. * If we are allocating quota inodes, we do not have a parent inode
  909. * to attach to or associate with (i.e. pip == NULL) because they
  910. * are not linked into the directory structure - they are attached
  911. * directly to the superblock - and so have no parent.
  912. */
  913. int
  914. xfs_ialloc(
  915. xfs_trans_t *tp,
  916. xfs_inode_t *pip,
  917. mode_t mode,
  918. xfs_nlink_t nlink,
  919. xfs_dev_t rdev,
  920. cred_t *cr,
  921. xfs_prid_t prid,
  922. int okalloc,
  923. xfs_buf_t **ialloc_context,
  924. boolean_t *call_again,
  925. xfs_inode_t **ipp)
  926. {
  927. xfs_ino_t ino;
  928. xfs_inode_t *ip;
  929. uint flags;
  930. int error;
  931. timespec_t tv;
  932. int filestreams = 0;
  933. /*
  934. * Call the space management code to pick
  935. * the on-disk inode to be allocated.
  936. */
  937. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  938. ialloc_context, call_again, &ino);
  939. if (error)
  940. return error;
  941. if (*call_again || ino == NULLFSINO) {
  942. *ipp = NULL;
  943. return 0;
  944. }
  945. ASSERT(*ialloc_context == NULL);
  946. /*
  947. * Get the in-core inode with the lock held exclusively.
  948. * This is because we're setting fields here we need
  949. * to prevent others from looking at until we're done.
  950. */
  951. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  952. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  953. if (error)
  954. return error;
  955. ASSERT(ip != NULL);
  956. ip->i_d.di_mode = (__uint16_t)mode;
  957. ip->i_d.di_onlink = 0;
  958. ip->i_d.di_nlink = nlink;
  959. ASSERT(ip->i_d.di_nlink == nlink);
  960. ip->i_d.di_uid = current_fsuid();
  961. ip->i_d.di_gid = current_fsgid();
  962. ip->i_d.di_projid = prid;
  963. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  964. /*
  965. * If the superblock version is up to where we support new format
  966. * inodes and this is currently an old format inode, then change
  967. * the inode version number now. This way we only do the conversion
  968. * here rather than here and in the flush/logging code.
  969. */
  970. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  971. ip->i_d.di_version == 1) {
  972. ip->i_d.di_version = 2;
  973. /*
  974. * We've already zeroed the old link count, the projid field,
  975. * and the pad field.
  976. */
  977. }
  978. /*
  979. * Project ids won't be stored on disk if we are using a version 1 inode.
  980. */
  981. if ((prid != 0) && (ip->i_d.di_version == 1))
  982. xfs_bump_ino_vers2(tp, ip);
  983. if (pip && XFS_INHERIT_GID(pip)) {
  984. ip->i_d.di_gid = pip->i_d.di_gid;
  985. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  986. ip->i_d.di_mode |= S_ISGID;
  987. }
  988. }
  989. /*
  990. * If the group ID of the new file does not match the effective group
  991. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  992. * (and only if the irix_sgid_inherit compatibility variable is set).
  993. */
  994. if ((irix_sgid_inherit) &&
  995. (ip->i_d.di_mode & S_ISGID) &&
  996. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  997. ip->i_d.di_mode &= ~S_ISGID;
  998. }
  999. ip->i_d.di_size = 0;
  1000. ip->i_size = 0;
  1001. ip->i_d.di_nextents = 0;
  1002. ASSERT(ip->i_d.di_nblocks == 0);
  1003. nanotime(&tv);
  1004. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1005. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1006. ip->i_d.di_atime = ip->i_d.di_mtime;
  1007. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1008. /*
  1009. * di_gen will have been taken care of in xfs_iread.
  1010. */
  1011. ip->i_d.di_extsize = 0;
  1012. ip->i_d.di_dmevmask = 0;
  1013. ip->i_d.di_dmstate = 0;
  1014. ip->i_d.di_flags = 0;
  1015. flags = XFS_ILOG_CORE;
  1016. switch (mode & S_IFMT) {
  1017. case S_IFIFO:
  1018. case S_IFCHR:
  1019. case S_IFBLK:
  1020. case S_IFSOCK:
  1021. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1022. ip->i_df.if_u2.if_rdev = rdev;
  1023. ip->i_df.if_flags = 0;
  1024. flags |= XFS_ILOG_DEV;
  1025. break;
  1026. case S_IFREG:
  1027. /*
  1028. * we can't set up filestreams until after the VFS inode
  1029. * is set up properly.
  1030. */
  1031. if (pip && xfs_inode_is_filestream(pip))
  1032. filestreams = 1;
  1033. /* fall through */
  1034. case S_IFDIR:
  1035. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1036. uint di_flags = 0;
  1037. if ((mode & S_IFMT) == S_IFDIR) {
  1038. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1039. di_flags |= XFS_DIFLAG_RTINHERIT;
  1040. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1041. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1042. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1043. }
  1044. } else if ((mode & S_IFMT) == S_IFREG) {
  1045. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1046. di_flags |= XFS_DIFLAG_REALTIME;
  1047. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1048. di_flags |= XFS_DIFLAG_EXTSIZE;
  1049. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1050. }
  1051. }
  1052. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1053. xfs_inherit_noatime)
  1054. di_flags |= XFS_DIFLAG_NOATIME;
  1055. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1056. xfs_inherit_nodump)
  1057. di_flags |= XFS_DIFLAG_NODUMP;
  1058. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1059. xfs_inherit_sync)
  1060. di_flags |= XFS_DIFLAG_SYNC;
  1061. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1062. xfs_inherit_nosymlinks)
  1063. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1064. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1065. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1066. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1067. xfs_inherit_nodefrag)
  1068. di_flags |= XFS_DIFLAG_NODEFRAG;
  1069. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1070. di_flags |= XFS_DIFLAG_FILESTREAM;
  1071. ip->i_d.di_flags |= di_flags;
  1072. }
  1073. /* FALLTHROUGH */
  1074. case S_IFLNK:
  1075. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1076. ip->i_df.if_flags = XFS_IFEXTENTS;
  1077. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1078. ip->i_df.if_u1.if_extents = NULL;
  1079. break;
  1080. default:
  1081. ASSERT(0);
  1082. }
  1083. /*
  1084. * Attribute fork settings for new inode.
  1085. */
  1086. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1087. ip->i_d.di_anextents = 0;
  1088. /*
  1089. * Log the new values stuffed into the inode.
  1090. */
  1091. xfs_trans_log_inode(tp, ip, flags);
  1092. /* now that we have an i_mode we can setup inode ops and unlock */
  1093. xfs_setup_inode(ip);
  1094. /* now we have set up the vfs inode we can associate the filestream */
  1095. if (filestreams) {
  1096. error = xfs_filestream_associate(pip, ip);
  1097. if (error < 0)
  1098. return -error;
  1099. if (!error)
  1100. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1101. }
  1102. *ipp = ip;
  1103. return 0;
  1104. }
  1105. /*
  1106. * Check to make sure that there are no blocks allocated to the
  1107. * file beyond the size of the file. We don't check this for
  1108. * files with fixed size extents or real time extents, but we
  1109. * at least do it for regular files.
  1110. */
  1111. #ifdef DEBUG
  1112. void
  1113. xfs_isize_check(
  1114. xfs_mount_t *mp,
  1115. xfs_inode_t *ip,
  1116. xfs_fsize_t isize)
  1117. {
  1118. xfs_fileoff_t map_first;
  1119. int nimaps;
  1120. xfs_bmbt_irec_t imaps[2];
  1121. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1122. return;
  1123. if (XFS_IS_REALTIME_INODE(ip))
  1124. return;
  1125. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1126. return;
  1127. nimaps = 2;
  1128. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1129. /*
  1130. * The filesystem could be shutting down, so bmapi may return
  1131. * an error.
  1132. */
  1133. if (xfs_bmapi(NULL, ip, map_first,
  1134. (XFS_B_TO_FSB(mp,
  1135. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1136. map_first),
  1137. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1138. NULL, NULL))
  1139. return;
  1140. ASSERT(nimaps == 1);
  1141. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1142. }
  1143. #endif /* DEBUG */
  1144. /*
  1145. * Calculate the last possible buffered byte in a file. This must
  1146. * include data that was buffered beyond the EOF by the write code.
  1147. * This also needs to deal with overflowing the xfs_fsize_t type
  1148. * which can happen for sizes near the limit.
  1149. *
  1150. * We also need to take into account any blocks beyond the EOF. It
  1151. * may be the case that they were buffered by a write which failed.
  1152. * In that case the pages will still be in memory, but the inode size
  1153. * will never have been updated.
  1154. */
  1155. STATIC xfs_fsize_t
  1156. xfs_file_last_byte(
  1157. xfs_inode_t *ip)
  1158. {
  1159. xfs_mount_t *mp;
  1160. xfs_fsize_t last_byte;
  1161. xfs_fileoff_t last_block;
  1162. xfs_fileoff_t size_last_block;
  1163. int error;
  1164. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1165. mp = ip->i_mount;
  1166. /*
  1167. * Only check for blocks beyond the EOF if the extents have
  1168. * been read in. This eliminates the need for the inode lock,
  1169. * and it also saves us from looking when it really isn't
  1170. * necessary.
  1171. */
  1172. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1173. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1174. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1175. XFS_DATA_FORK);
  1176. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1177. if (error) {
  1178. last_block = 0;
  1179. }
  1180. } else {
  1181. last_block = 0;
  1182. }
  1183. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1184. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1185. last_byte = XFS_FSB_TO_B(mp, last_block);
  1186. if (last_byte < 0) {
  1187. return XFS_MAXIOFFSET(mp);
  1188. }
  1189. last_byte += (1 << mp->m_writeio_log);
  1190. if (last_byte < 0) {
  1191. return XFS_MAXIOFFSET(mp);
  1192. }
  1193. return last_byte;
  1194. }
  1195. /*
  1196. * Start the truncation of the file to new_size. The new size
  1197. * must be smaller than the current size. This routine will
  1198. * clear the buffer and page caches of file data in the removed
  1199. * range, and xfs_itruncate_finish() will remove the underlying
  1200. * disk blocks.
  1201. *
  1202. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1203. * must NOT have the inode lock held at all. This is because we're
  1204. * calling into the buffer/page cache code and we can't hold the
  1205. * inode lock when we do so.
  1206. *
  1207. * We need to wait for any direct I/Os in flight to complete before we
  1208. * proceed with the truncate. This is needed to prevent the extents
  1209. * being read or written by the direct I/Os from being removed while the
  1210. * I/O is in flight as there is no other method of synchronising
  1211. * direct I/O with the truncate operation. Also, because we hold
  1212. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1213. * started until the truncate completes and drops the lock. Essentially,
  1214. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1215. * ordering between direct I/Os and the truncate operation.
  1216. *
  1217. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1218. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1219. * in the case that the caller is locking things out of order and
  1220. * may not be able to call xfs_itruncate_finish() with the inode lock
  1221. * held without dropping the I/O lock. If the caller must drop the
  1222. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1223. * must be called again with all the same restrictions as the initial
  1224. * call.
  1225. */
  1226. int
  1227. xfs_itruncate_start(
  1228. xfs_inode_t *ip,
  1229. uint flags,
  1230. xfs_fsize_t new_size)
  1231. {
  1232. xfs_fsize_t last_byte;
  1233. xfs_off_t toss_start;
  1234. xfs_mount_t *mp;
  1235. int error = 0;
  1236. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1237. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1238. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1239. (flags == XFS_ITRUNC_MAYBE));
  1240. mp = ip->i_mount;
  1241. /* wait for the completion of any pending DIOs */
  1242. if (new_size == 0 || new_size < ip->i_size)
  1243. xfs_ioend_wait(ip);
  1244. /*
  1245. * Call toss_pages or flushinval_pages to get rid of pages
  1246. * overlapping the region being removed. We have to use
  1247. * the less efficient flushinval_pages in the case that the
  1248. * caller may not be able to finish the truncate without
  1249. * dropping the inode's I/O lock. Make sure
  1250. * to catch any pages brought in by buffers overlapping
  1251. * the EOF by searching out beyond the isize by our
  1252. * block size. We round new_size up to a block boundary
  1253. * so that we don't toss things on the same block as
  1254. * new_size but before it.
  1255. *
  1256. * Before calling toss_page or flushinval_pages, make sure to
  1257. * call remapf() over the same region if the file is mapped.
  1258. * This frees up mapped file references to the pages in the
  1259. * given range and for the flushinval_pages case it ensures
  1260. * that we get the latest mapped changes flushed out.
  1261. */
  1262. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1263. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1264. if (toss_start < 0) {
  1265. /*
  1266. * The place to start tossing is beyond our maximum
  1267. * file size, so there is no way that the data extended
  1268. * out there.
  1269. */
  1270. return 0;
  1271. }
  1272. last_byte = xfs_file_last_byte(ip);
  1273. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1274. if (last_byte > toss_start) {
  1275. if (flags & XFS_ITRUNC_DEFINITE) {
  1276. xfs_tosspages(ip, toss_start,
  1277. -1, FI_REMAPF_LOCKED);
  1278. } else {
  1279. error = xfs_flushinval_pages(ip, toss_start,
  1280. -1, FI_REMAPF_LOCKED);
  1281. }
  1282. }
  1283. #ifdef DEBUG
  1284. if (new_size == 0) {
  1285. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1286. }
  1287. #endif
  1288. return error;
  1289. }
  1290. /*
  1291. * Shrink the file to the given new_size. The new size must be smaller than
  1292. * the current size. This will free up the underlying blocks in the removed
  1293. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1294. *
  1295. * The transaction passed to this routine must have made a permanent log
  1296. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1297. * given transaction and start new ones, so make sure everything involved in
  1298. * the transaction is tidy before calling here. Some transaction will be
  1299. * returned to the caller to be committed. The incoming transaction must
  1300. * already include the inode, and both inode locks must be held exclusively.
  1301. * The inode must also be "held" within the transaction. On return the inode
  1302. * will be "held" within the returned transaction. This routine does NOT
  1303. * require any disk space to be reserved for it within the transaction.
  1304. *
  1305. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1306. * indicates the fork which is to be truncated. For the attribute fork we only
  1307. * support truncation to size 0.
  1308. *
  1309. * We use the sync parameter to indicate whether or not the first transaction
  1310. * we perform might have to be synchronous. For the attr fork, it needs to be
  1311. * so if the unlink of the inode is not yet known to be permanent in the log.
  1312. * This keeps us from freeing and reusing the blocks of the attribute fork
  1313. * before the unlink of the inode becomes permanent.
  1314. *
  1315. * For the data fork, we normally have to run synchronously if we're being
  1316. * called out of the inactive path or we're being called out of the create path
  1317. * where we're truncating an existing file. Either way, the truncate needs to
  1318. * be sync so blocks don't reappear in the file with altered data in case of a
  1319. * crash. wsync filesystems can run the first case async because anything that
  1320. * shrinks the inode has to run sync so by the time we're called here from
  1321. * inactive, the inode size is permanently set to 0.
  1322. *
  1323. * Calls from the truncate path always need to be sync unless we're in a wsync
  1324. * filesystem and the file has already been unlinked.
  1325. *
  1326. * The caller is responsible for correctly setting the sync parameter. It gets
  1327. * too hard for us to guess here which path we're being called out of just
  1328. * based on inode state.
  1329. *
  1330. * If we get an error, we must return with the inode locked and linked into the
  1331. * current transaction. This keeps things simple for the higher level code,
  1332. * because it always knows that the inode is locked and held in the transaction
  1333. * that returns to it whether errors occur or not. We don't mark the inode
  1334. * dirty on error so that transactions can be easily aborted if possible.
  1335. */
  1336. int
  1337. xfs_itruncate_finish(
  1338. xfs_trans_t **tp,
  1339. xfs_inode_t *ip,
  1340. xfs_fsize_t new_size,
  1341. int fork,
  1342. int sync)
  1343. {
  1344. xfs_fsblock_t first_block;
  1345. xfs_fileoff_t first_unmap_block;
  1346. xfs_fileoff_t last_block;
  1347. xfs_filblks_t unmap_len=0;
  1348. xfs_mount_t *mp;
  1349. xfs_trans_t *ntp;
  1350. int done;
  1351. int committed;
  1352. xfs_bmap_free_t free_list;
  1353. int error;
  1354. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1355. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1356. ASSERT(*tp != NULL);
  1357. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1358. ASSERT(ip->i_transp == *tp);
  1359. ASSERT(ip->i_itemp != NULL);
  1360. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1361. ntp = *tp;
  1362. mp = (ntp)->t_mountp;
  1363. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1364. /*
  1365. * We only support truncating the entire attribute fork.
  1366. */
  1367. if (fork == XFS_ATTR_FORK) {
  1368. new_size = 0LL;
  1369. }
  1370. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1371. trace_xfs_itruncate_finish_start(ip, new_size);
  1372. /*
  1373. * The first thing we do is set the size to new_size permanently
  1374. * on disk. This way we don't have to worry about anyone ever
  1375. * being able to look at the data being freed even in the face
  1376. * of a crash. What we're getting around here is the case where
  1377. * we free a block, it is allocated to another file, it is written
  1378. * to, and then we crash. If the new data gets written to the
  1379. * file but the log buffers containing the free and reallocation
  1380. * don't, then we'd end up with garbage in the blocks being freed.
  1381. * As long as we make the new_size permanent before actually
  1382. * freeing any blocks it doesn't matter if they get writtten to.
  1383. *
  1384. * The callers must signal into us whether or not the size
  1385. * setting here must be synchronous. There are a few cases
  1386. * where it doesn't have to be synchronous. Those cases
  1387. * occur if the file is unlinked and we know the unlink is
  1388. * permanent or if the blocks being truncated are guaranteed
  1389. * to be beyond the inode eof (regardless of the link count)
  1390. * and the eof value is permanent. Both of these cases occur
  1391. * only on wsync-mounted filesystems. In those cases, we're
  1392. * guaranteed that no user will ever see the data in the blocks
  1393. * that are being truncated so the truncate can run async.
  1394. * In the free beyond eof case, the file may wind up with
  1395. * more blocks allocated to it than it needs if we crash
  1396. * and that won't get fixed until the next time the file
  1397. * is re-opened and closed but that's ok as that shouldn't
  1398. * be too many blocks.
  1399. *
  1400. * However, we can't just make all wsync xactions run async
  1401. * because there's one call out of the create path that needs
  1402. * to run sync where it's truncating an existing file to size
  1403. * 0 whose size is > 0.
  1404. *
  1405. * It's probably possible to come up with a test in this
  1406. * routine that would correctly distinguish all the above
  1407. * cases from the values of the function parameters and the
  1408. * inode state but for sanity's sake, I've decided to let the
  1409. * layers above just tell us. It's simpler to correctly figure
  1410. * out in the layer above exactly under what conditions we
  1411. * can run async and I think it's easier for others read and
  1412. * follow the logic in case something has to be changed.
  1413. * cscope is your friend -- rcc.
  1414. *
  1415. * The attribute fork is much simpler.
  1416. *
  1417. * For the attribute fork we allow the caller to tell us whether
  1418. * the unlink of the inode that led to this call is yet permanent
  1419. * in the on disk log. If it is not and we will be freeing extents
  1420. * in this inode then we make the first transaction synchronous
  1421. * to make sure that the unlink is permanent by the time we free
  1422. * the blocks.
  1423. */
  1424. if (fork == XFS_DATA_FORK) {
  1425. if (ip->i_d.di_nextents > 0) {
  1426. /*
  1427. * If we are not changing the file size then do
  1428. * not update the on-disk file size - we may be
  1429. * called from xfs_inactive_free_eofblocks(). If we
  1430. * update the on-disk file size and then the system
  1431. * crashes before the contents of the file are
  1432. * flushed to disk then the files may be full of
  1433. * holes (ie NULL files bug).
  1434. */
  1435. if (ip->i_size != new_size) {
  1436. ip->i_d.di_size = new_size;
  1437. ip->i_size = new_size;
  1438. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1439. }
  1440. }
  1441. } else if (sync) {
  1442. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1443. if (ip->i_d.di_anextents > 0)
  1444. xfs_trans_set_sync(ntp);
  1445. }
  1446. ASSERT(fork == XFS_DATA_FORK ||
  1447. (fork == XFS_ATTR_FORK &&
  1448. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1449. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1450. /*
  1451. * Since it is possible for space to become allocated beyond
  1452. * the end of the file (in a crash where the space is allocated
  1453. * but the inode size is not yet updated), simply remove any
  1454. * blocks which show up between the new EOF and the maximum
  1455. * possible file size. If the first block to be removed is
  1456. * beyond the maximum file size (ie it is the same as last_block),
  1457. * then there is nothing to do.
  1458. */
  1459. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1460. ASSERT(first_unmap_block <= last_block);
  1461. done = 0;
  1462. if (last_block == first_unmap_block) {
  1463. done = 1;
  1464. } else {
  1465. unmap_len = last_block - first_unmap_block + 1;
  1466. }
  1467. while (!done) {
  1468. /*
  1469. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1470. * will tell us whether it freed the entire range or
  1471. * not. If this is a synchronous mount (wsync),
  1472. * then we can tell bunmapi to keep all the
  1473. * transactions asynchronous since the unlink
  1474. * transaction that made this inode inactive has
  1475. * already hit the disk. There's no danger of
  1476. * the freed blocks being reused, there being a
  1477. * crash, and the reused blocks suddenly reappearing
  1478. * in this file with garbage in them once recovery
  1479. * runs.
  1480. */
  1481. xfs_bmap_init(&free_list, &first_block);
  1482. error = xfs_bunmapi(ntp, ip,
  1483. first_unmap_block, unmap_len,
  1484. xfs_bmapi_aflag(fork) |
  1485. (sync ? 0 : XFS_BMAPI_ASYNC),
  1486. XFS_ITRUNC_MAX_EXTENTS,
  1487. &first_block, &free_list,
  1488. NULL, &done);
  1489. if (error) {
  1490. /*
  1491. * If the bunmapi call encounters an error,
  1492. * return to the caller where the transaction
  1493. * can be properly aborted. We just need to
  1494. * make sure we're not holding any resources
  1495. * that we were not when we came in.
  1496. */
  1497. xfs_bmap_cancel(&free_list);
  1498. return error;
  1499. }
  1500. /*
  1501. * Duplicate the transaction that has the permanent
  1502. * reservation and commit the old transaction.
  1503. */
  1504. error = xfs_bmap_finish(tp, &free_list, &committed);
  1505. ntp = *tp;
  1506. if (committed) {
  1507. /* link the inode into the next xact in the chain */
  1508. xfs_trans_ijoin(ntp, ip,
  1509. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1510. xfs_trans_ihold(ntp, ip);
  1511. }
  1512. if (error) {
  1513. /*
  1514. * If the bmap finish call encounters an error, return
  1515. * to the caller where the transaction can be properly
  1516. * aborted. We just need to make sure we're not
  1517. * holding any resources that we were not when we came
  1518. * in.
  1519. *
  1520. * Aborting from this point might lose some blocks in
  1521. * the file system, but oh well.
  1522. */
  1523. xfs_bmap_cancel(&free_list);
  1524. return error;
  1525. }
  1526. if (committed) {
  1527. /*
  1528. * Mark the inode dirty so it will be logged and
  1529. * moved forward in the log as part of every commit.
  1530. */
  1531. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1532. }
  1533. ntp = xfs_trans_dup(ntp);
  1534. error = xfs_trans_commit(*tp, 0);
  1535. *tp = ntp;
  1536. /* link the inode into the next transaction in the chain */
  1537. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1538. xfs_trans_ihold(ntp, ip);
  1539. if (error)
  1540. return error;
  1541. /*
  1542. * transaction commit worked ok so we can drop the extra ticket
  1543. * reference that we gained in xfs_trans_dup()
  1544. */
  1545. xfs_log_ticket_put(ntp->t_ticket);
  1546. error = xfs_trans_reserve(ntp, 0,
  1547. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1548. XFS_TRANS_PERM_LOG_RES,
  1549. XFS_ITRUNCATE_LOG_COUNT);
  1550. if (error)
  1551. return error;
  1552. }
  1553. /*
  1554. * Only update the size in the case of the data fork, but
  1555. * always re-log the inode so that our permanent transaction
  1556. * can keep on rolling it forward in the log.
  1557. */
  1558. if (fork == XFS_DATA_FORK) {
  1559. xfs_isize_check(mp, ip, new_size);
  1560. /*
  1561. * If we are not changing the file size then do
  1562. * not update the on-disk file size - we may be
  1563. * called from xfs_inactive_free_eofblocks(). If we
  1564. * update the on-disk file size and then the system
  1565. * crashes before the contents of the file are
  1566. * flushed to disk then the files may be full of
  1567. * holes (ie NULL files bug).
  1568. */
  1569. if (ip->i_size != new_size) {
  1570. ip->i_d.di_size = new_size;
  1571. ip->i_size = new_size;
  1572. }
  1573. }
  1574. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1575. ASSERT((new_size != 0) ||
  1576. (fork == XFS_ATTR_FORK) ||
  1577. (ip->i_delayed_blks == 0));
  1578. ASSERT((new_size != 0) ||
  1579. (fork == XFS_ATTR_FORK) ||
  1580. (ip->i_d.di_nextents == 0));
  1581. trace_xfs_itruncate_finish_end(ip, new_size);
  1582. return 0;
  1583. }
  1584. /*
  1585. * This is called when the inode's link count goes to 0.
  1586. * We place the on-disk inode on a list in the AGI. It
  1587. * will be pulled from this list when the inode is freed.
  1588. */
  1589. int
  1590. xfs_iunlink(
  1591. xfs_trans_t *tp,
  1592. xfs_inode_t *ip)
  1593. {
  1594. xfs_mount_t *mp;
  1595. xfs_agi_t *agi;
  1596. xfs_dinode_t *dip;
  1597. xfs_buf_t *agibp;
  1598. xfs_buf_t *ibp;
  1599. xfs_agino_t agino;
  1600. short bucket_index;
  1601. int offset;
  1602. int error;
  1603. ASSERT(ip->i_d.di_nlink == 0);
  1604. ASSERT(ip->i_d.di_mode != 0);
  1605. ASSERT(ip->i_transp == tp);
  1606. mp = tp->t_mountp;
  1607. /*
  1608. * Get the agi buffer first. It ensures lock ordering
  1609. * on the list.
  1610. */
  1611. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1612. if (error)
  1613. return error;
  1614. agi = XFS_BUF_TO_AGI(agibp);
  1615. /*
  1616. * Get the index into the agi hash table for the
  1617. * list this inode will go on.
  1618. */
  1619. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1620. ASSERT(agino != 0);
  1621. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1622. ASSERT(agi->agi_unlinked[bucket_index]);
  1623. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1624. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1625. /*
  1626. * There is already another inode in the bucket we need
  1627. * to add ourselves to. Add us at the front of the list.
  1628. * Here we put the head pointer into our next pointer,
  1629. * and then we fall through to point the head at us.
  1630. */
  1631. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1632. if (error)
  1633. return error;
  1634. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1635. /* both on-disk, don't endian flip twice */
  1636. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1637. offset = ip->i_imap.im_boffset +
  1638. offsetof(xfs_dinode_t, di_next_unlinked);
  1639. xfs_trans_inode_buf(tp, ibp);
  1640. xfs_trans_log_buf(tp, ibp, offset,
  1641. (offset + sizeof(xfs_agino_t) - 1));
  1642. xfs_inobp_check(mp, ibp);
  1643. }
  1644. /*
  1645. * Point the bucket head pointer at the inode being inserted.
  1646. */
  1647. ASSERT(agino != 0);
  1648. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1649. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1650. (sizeof(xfs_agino_t) * bucket_index);
  1651. xfs_trans_log_buf(tp, agibp, offset,
  1652. (offset + sizeof(xfs_agino_t) - 1));
  1653. return 0;
  1654. }
  1655. /*
  1656. * Pull the on-disk inode from the AGI unlinked list.
  1657. */
  1658. STATIC int
  1659. xfs_iunlink_remove(
  1660. xfs_trans_t *tp,
  1661. xfs_inode_t *ip)
  1662. {
  1663. xfs_ino_t next_ino;
  1664. xfs_mount_t *mp;
  1665. xfs_agi_t *agi;
  1666. xfs_dinode_t *dip;
  1667. xfs_buf_t *agibp;
  1668. xfs_buf_t *ibp;
  1669. xfs_agnumber_t agno;
  1670. xfs_agino_t agino;
  1671. xfs_agino_t next_agino;
  1672. xfs_buf_t *last_ibp;
  1673. xfs_dinode_t *last_dip = NULL;
  1674. short bucket_index;
  1675. int offset, last_offset = 0;
  1676. int error;
  1677. mp = tp->t_mountp;
  1678. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1679. /*
  1680. * Get the agi buffer first. It ensures lock ordering
  1681. * on the list.
  1682. */
  1683. error = xfs_read_agi(mp, tp, agno, &agibp);
  1684. if (error)
  1685. return error;
  1686. agi = XFS_BUF_TO_AGI(agibp);
  1687. /*
  1688. * Get the index into the agi hash table for the
  1689. * list this inode will go on.
  1690. */
  1691. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1692. ASSERT(agino != 0);
  1693. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1694. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1695. ASSERT(agi->agi_unlinked[bucket_index]);
  1696. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1697. /*
  1698. * We're at the head of the list. Get the inode's
  1699. * on-disk buffer to see if there is anyone after us
  1700. * on the list. Only modify our next pointer if it
  1701. * is not already NULLAGINO. This saves us the overhead
  1702. * of dealing with the buffer when there is no need to
  1703. * change it.
  1704. */
  1705. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1706. if (error) {
  1707. cmn_err(CE_WARN,
  1708. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1709. error, mp->m_fsname);
  1710. return error;
  1711. }
  1712. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1713. ASSERT(next_agino != 0);
  1714. if (next_agino != NULLAGINO) {
  1715. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1716. offset = ip->i_imap.im_boffset +
  1717. offsetof(xfs_dinode_t, di_next_unlinked);
  1718. xfs_trans_inode_buf(tp, ibp);
  1719. xfs_trans_log_buf(tp, ibp, offset,
  1720. (offset + sizeof(xfs_agino_t) - 1));
  1721. xfs_inobp_check(mp, ibp);
  1722. } else {
  1723. xfs_trans_brelse(tp, ibp);
  1724. }
  1725. /*
  1726. * Point the bucket head pointer at the next inode.
  1727. */
  1728. ASSERT(next_agino != 0);
  1729. ASSERT(next_agino != agino);
  1730. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1731. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1732. (sizeof(xfs_agino_t) * bucket_index);
  1733. xfs_trans_log_buf(tp, agibp, offset,
  1734. (offset + sizeof(xfs_agino_t) - 1));
  1735. } else {
  1736. /*
  1737. * We need to search the list for the inode being freed.
  1738. */
  1739. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1740. last_ibp = NULL;
  1741. while (next_agino != agino) {
  1742. /*
  1743. * If the last inode wasn't the one pointing to
  1744. * us, then release its buffer since we're not
  1745. * going to do anything with it.
  1746. */
  1747. if (last_ibp != NULL) {
  1748. xfs_trans_brelse(tp, last_ibp);
  1749. }
  1750. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1751. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1752. &last_ibp, &last_offset, 0);
  1753. if (error) {
  1754. cmn_err(CE_WARN,
  1755. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1756. error, mp->m_fsname);
  1757. return error;
  1758. }
  1759. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1760. ASSERT(next_agino != NULLAGINO);
  1761. ASSERT(next_agino != 0);
  1762. }
  1763. /*
  1764. * Now last_ibp points to the buffer previous to us on
  1765. * the unlinked list. Pull us from the list.
  1766. */
  1767. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1768. if (error) {
  1769. cmn_err(CE_WARN,
  1770. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1771. error, mp->m_fsname);
  1772. return error;
  1773. }
  1774. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1775. ASSERT(next_agino != 0);
  1776. ASSERT(next_agino != agino);
  1777. if (next_agino != NULLAGINO) {
  1778. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1779. offset = ip->i_imap.im_boffset +
  1780. offsetof(xfs_dinode_t, di_next_unlinked);
  1781. xfs_trans_inode_buf(tp, ibp);
  1782. xfs_trans_log_buf(tp, ibp, offset,
  1783. (offset + sizeof(xfs_agino_t) - 1));
  1784. xfs_inobp_check(mp, ibp);
  1785. } else {
  1786. xfs_trans_brelse(tp, ibp);
  1787. }
  1788. /*
  1789. * Point the previous inode on the list to the next inode.
  1790. */
  1791. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1792. ASSERT(next_agino != 0);
  1793. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1794. xfs_trans_inode_buf(tp, last_ibp);
  1795. xfs_trans_log_buf(tp, last_ibp, offset,
  1796. (offset + sizeof(xfs_agino_t) - 1));
  1797. xfs_inobp_check(mp, last_ibp);
  1798. }
  1799. return 0;
  1800. }
  1801. STATIC void
  1802. xfs_ifree_cluster(
  1803. xfs_inode_t *free_ip,
  1804. xfs_trans_t *tp,
  1805. xfs_ino_t inum)
  1806. {
  1807. xfs_mount_t *mp = free_ip->i_mount;
  1808. int blks_per_cluster;
  1809. int nbufs;
  1810. int ninodes;
  1811. int i, j;
  1812. xfs_daddr_t blkno;
  1813. xfs_buf_t *bp;
  1814. xfs_inode_t *ip;
  1815. xfs_inode_log_item_t *iip;
  1816. xfs_log_item_t *lip;
  1817. struct xfs_perag *pag;
  1818. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1819. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1820. blks_per_cluster = 1;
  1821. ninodes = mp->m_sb.sb_inopblock;
  1822. nbufs = XFS_IALLOC_BLOCKS(mp);
  1823. } else {
  1824. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1825. mp->m_sb.sb_blocksize;
  1826. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1827. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1828. }
  1829. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1830. int found = 0;
  1831. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1832. XFS_INO_TO_AGBNO(mp, inum));
  1833. /*
  1834. * We obtain and lock the backing buffer first in the process
  1835. * here, as we have to ensure that any dirty inode that we
  1836. * can't get the flush lock on is attached to the buffer.
  1837. * If we scan the in-memory inodes first, then buffer IO can
  1838. * complete before we get a lock on it, and hence we may fail
  1839. * to mark all the active inodes on the buffer stale.
  1840. */
  1841. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1842. mp->m_bsize * blks_per_cluster,
  1843. XBF_LOCK);
  1844. /*
  1845. * Walk the inodes already attached to the buffer and mark them
  1846. * stale. These will all have the flush locks held, so an
  1847. * in-memory inode walk can't lock them.
  1848. */
  1849. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1850. while (lip) {
  1851. if (lip->li_type == XFS_LI_INODE) {
  1852. iip = (xfs_inode_log_item_t *)lip;
  1853. ASSERT(iip->ili_logged == 1);
  1854. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  1855. xfs_trans_ail_copy_lsn(mp->m_ail,
  1856. &iip->ili_flush_lsn,
  1857. &iip->ili_item.li_lsn);
  1858. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1859. found++;
  1860. }
  1861. lip = lip->li_bio_list;
  1862. }
  1863. /*
  1864. * For each inode in memory attempt to add it to the inode
  1865. * buffer and set it up for being staled on buffer IO
  1866. * completion. This is safe as we've locked out tail pushing
  1867. * and flushing by locking the buffer.
  1868. *
  1869. * We have already marked every inode that was part of a
  1870. * transaction stale above, which means there is no point in
  1871. * even trying to lock them.
  1872. */
  1873. for (i = 0; i < ninodes; i++) {
  1874. read_lock(&pag->pag_ici_lock);
  1875. ip = radix_tree_lookup(&pag->pag_ici_root,
  1876. XFS_INO_TO_AGINO(mp, (inum + i)));
  1877. /* Inode not in memory or stale, nothing to do */
  1878. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1879. read_unlock(&pag->pag_ici_lock);
  1880. continue;
  1881. }
  1882. /* don't try to lock/unlock the current inode */
  1883. if (ip != free_ip &&
  1884. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1885. read_unlock(&pag->pag_ici_lock);
  1886. continue;
  1887. }
  1888. read_unlock(&pag->pag_ici_lock);
  1889. if (!xfs_iflock_nowait(ip)) {
  1890. if (ip != free_ip)
  1891. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1892. continue;
  1893. }
  1894. xfs_iflags_set(ip, XFS_ISTALE);
  1895. if (xfs_inode_clean(ip)) {
  1896. ASSERT(ip != free_ip);
  1897. xfs_ifunlock(ip);
  1898. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1899. continue;
  1900. }
  1901. iip = ip->i_itemp;
  1902. if (!iip) {
  1903. /* inode with unlogged changes only */
  1904. ASSERT(ip != free_ip);
  1905. ip->i_update_core = 0;
  1906. xfs_ifunlock(ip);
  1907. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1908. continue;
  1909. }
  1910. found++;
  1911. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1912. iip->ili_format.ilf_fields = 0;
  1913. iip->ili_logged = 1;
  1914. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1915. &iip->ili_item.li_lsn);
  1916. xfs_buf_attach_iodone(bp,
  1917. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  1918. xfs_istale_done, (xfs_log_item_t *)iip);
  1919. if (ip != free_ip)
  1920. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1921. }
  1922. if (found)
  1923. xfs_trans_stale_inode_buf(tp, bp);
  1924. xfs_trans_binval(tp, bp);
  1925. }
  1926. xfs_perag_put(pag);
  1927. }
  1928. /*
  1929. * This is called to return an inode to the inode free list.
  1930. * The inode should already be truncated to 0 length and have
  1931. * no pages associated with it. This routine also assumes that
  1932. * the inode is already a part of the transaction.
  1933. *
  1934. * The on-disk copy of the inode will have been added to the list
  1935. * of unlinked inodes in the AGI. We need to remove the inode from
  1936. * that list atomically with respect to freeing it here.
  1937. */
  1938. int
  1939. xfs_ifree(
  1940. xfs_trans_t *tp,
  1941. xfs_inode_t *ip,
  1942. xfs_bmap_free_t *flist)
  1943. {
  1944. int error;
  1945. int delete;
  1946. xfs_ino_t first_ino;
  1947. xfs_dinode_t *dip;
  1948. xfs_buf_t *ibp;
  1949. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1950. ASSERT(ip->i_transp == tp);
  1951. ASSERT(ip->i_d.di_nlink == 0);
  1952. ASSERT(ip->i_d.di_nextents == 0);
  1953. ASSERT(ip->i_d.di_anextents == 0);
  1954. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1955. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1956. ASSERT(ip->i_d.di_nblocks == 0);
  1957. /*
  1958. * Pull the on-disk inode from the AGI unlinked list.
  1959. */
  1960. error = xfs_iunlink_remove(tp, ip);
  1961. if (error != 0) {
  1962. return error;
  1963. }
  1964. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1965. if (error != 0) {
  1966. return error;
  1967. }
  1968. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1969. ip->i_d.di_flags = 0;
  1970. ip->i_d.di_dmevmask = 0;
  1971. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1972. ip->i_df.if_ext_max =
  1973. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1974. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1975. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1976. /*
  1977. * Bump the generation count so no one will be confused
  1978. * by reincarnations of this inode.
  1979. */
  1980. ip->i_d.di_gen++;
  1981. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1982. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1983. if (error)
  1984. return error;
  1985. /*
  1986. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1987. * from picking up this inode when it is reclaimed (its incore state
  1988. * initialzed but not flushed to disk yet). The in-core di_mode is
  1989. * already cleared and a corresponding transaction logged.
  1990. * The hack here just synchronizes the in-core to on-disk
  1991. * di_mode value in advance before the actual inode sync to disk.
  1992. * This is OK because the inode is already unlinked and would never
  1993. * change its di_mode again for this inode generation.
  1994. * This is a temporary hack that would require a proper fix
  1995. * in the future.
  1996. */
  1997. dip->di_mode = 0;
  1998. if (delete) {
  1999. xfs_ifree_cluster(ip, tp, first_ino);
  2000. }
  2001. return 0;
  2002. }
  2003. /*
  2004. * Reallocate the space for if_broot based on the number of records
  2005. * being added or deleted as indicated in rec_diff. Move the records
  2006. * and pointers in if_broot to fit the new size. When shrinking this
  2007. * will eliminate holes between the records and pointers created by
  2008. * the caller. When growing this will create holes to be filled in
  2009. * by the caller.
  2010. *
  2011. * The caller must not request to add more records than would fit in
  2012. * the on-disk inode root. If the if_broot is currently NULL, then
  2013. * if we adding records one will be allocated. The caller must also
  2014. * not request that the number of records go below zero, although
  2015. * it can go to zero.
  2016. *
  2017. * ip -- the inode whose if_broot area is changing
  2018. * ext_diff -- the change in the number of records, positive or negative,
  2019. * requested for the if_broot array.
  2020. */
  2021. void
  2022. xfs_iroot_realloc(
  2023. xfs_inode_t *ip,
  2024. int rec_diff,
  2025. int whichfork)
  2026. {
  2027. struct xfs_mount *mp = ip->i_mount;
  2028. int cur_max;
  2029. xfs_ifork_t *ifp;
  2030. struct xfs_btree_block *new_broot;
  2031. int new_max;
  2032. size_t new_size;
  2033. char *np;
  2034. char *op;
  2035. /*
  2036. * Handle the degenerate case quietly.
  2037. */
  2038. if (rec_diff == 0) {
  2039. return;
  2040. }
  2041. ifp = XFS_IFORK_PTR(ip, whichfork);
  2042. if (rec_diff > 0) {
  2043. /*
  2044. * If there wasn't any memory allocated before, just
  2045. * allocate it now and get out.
  2046. */
  2047. if (ifp->if_broot_bytes == 0) {
  2048. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2049. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2050. ifp->if_broot_bytes = (int)new_size;
  2051. return;
  2052. }
  2053. /*
  2054. * If there is already an existing if_broot, then we need
  2055. * to realloc() it and shift the pointers to their new
  2056. * location. The records don't change location because
  2057. * they are kept butted up against the btree block header.
  2058. */
  2059. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2060. new_max = cur_max + rec_diff;
  2061. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2062. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2063. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2064. KM_SLEEP);
  2065. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2066. ifp->if_broot_bytes);
  2067. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2068. (int)new_size);
  2069. ifp->if_broot_bytes = (int)new_size;
  2070. ASSERT(ifp->if_broot_bytes <=
  2071. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2072. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2073. return;
  2074. }
  2075. /*
  2076. * rec_diff is less than 0. In this case, we are shrinking the
  2077. * if_broot buffer. It must already exist. If we go to zero
  2078. * records, just get rid of the root and clear the status bit.
  2079. */
  2080. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2081. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2082. new_max = cur_max + rec_diff;
  2083. ASSERT(new_max >= 0);
  2084. if (new_max > 0)
  2085. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2086. else
  2087. new_size = 0;
  2088. if (new_size > 0) {
  2089. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2090. /*
  2091. * First copy over the btree block header.
  2092. */
  2093. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2094. } else {
  2095. new_broot = NULL;
  2096. ifp->if_flags &= ~XFS_IFBROOT;
  2097. }
  2098. /*
  2099. * Only copy the records and pointers if there are any.
  2100. */
  2101. if (new_max > 0) {
  2102. /*
  2103. * First copy the records.
  2104. */
  2105. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2106. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2107. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2108. /*
  2109. * Then copy the pointers.
  2110. */
  2111. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2112. ifp->if_broot_bytes);
  2113. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2114. (int)new_size);
  2115. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2116. }
  2117. kmem_free(ifp->if_broot);
  2118. ifp->if_broot = new_broot;
  2119. ifp->if_broot_bytes = (int)new_size;
  2120. ASSERT(ifp->if_broot_bytes <=
  2121. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2122. return;
  2123. }
  2124. /*
  2125. * This is called when the amount of space needed for if_data
  2126. * is increased or decreased. The change in size is indicated by
  2127. * the number of bytes that need to be added or deleted in the
  2128. * byte_diff parameter.
  2129. *
  2130. * If the amount of space needed has decreased below the size of the
  2131. * inline buffer, then switch to using the inline buffer. Otherwise,
  2132. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2133. * to what is needed.
  2134. *
  2135. * ip -- the inode whose if_data area is changing
  2136. * byte_diff -- the change in the number of bytes, positive or negative,
  2137. * requested for the if_data array.
  2138. */
  2139. void
  2140. xfs_idata_realloc(
  2141. xfs_inode_t *ip,
  2142. int byte_diff,
  2143. int whichfork)
  2144. {
  2145. xfs_ifork_t *ifp;
  2146. int new_size;
  2147. int real_size;
  2148. if (byte_diff == 0) {
  2149. return;
  2150. }
  2151. ifp = XFS_IFORK_PTR(ip, whichfork);
  2152. new_size = (int)ifp->if_bytes + byte_diff;
  2153. ASSERT(new_size >= 0);
  2154. if (new_size == 0) {
  2155. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2156. kmem_free(ifp->if_u1.if_data);
  2157. }
  2158. ifp->if_u1.if_data = NULL;
  2159. real_size = 0;
  2160. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2161. /*
  2162. * If the valid extents/data can fit in if_inline_ext/data,
  2163. * copy them from the malloc'd vector and free it.
  2164. */
  2165. if (ifp->if_u1.if_data == NULL) {
  2166. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2167. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2168. ASSERT(ifp->if_real_bytes != 0);
  2169. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2170. new_size);
  2171. kmem_free(ifp->if_u1.if_data);
  2172. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2173. }
  2174. real_size = 0;
  2175. } else {
  2176. /*
  2177. * Stuck with malloc/realloc.
  2178. * For inline data, the underlying buffer must be
  2179. * a multiple of 4 bytes in size so that it can be
  2180. * logged and stay on word boundaries. We enforce
  2181. * that here.
  2182. */
  2183. real_size = roundup(new_size, 4);
  2184. if (ifp->if_u1.if_data == NULL) {
  2185. ASSERT(ifp->if_real_bytes == 0);
  2186. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2187. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2188. /*
  2189. * Only do the realloc if the underlying size
  2190. * is really changing.
  2191. */
  2192. if (ifp->if_real_bytes != real_size) {
  2193. ifp->if_u1.if_data =
  2194. kmem_realloc(ifp->if_u1.if_data,
  2195. real_size,
  2196. ifp->if_real_bytes,
  2197. KM_SLEEP);
  2198. }
  2199. } else {
  2200. ASSERT(ifp->if_real_bytes == 0);
  2201. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2202. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2203. ifp->if_bytes);
  2204. }
  2205. }
  2206. ifp->if_real_bytes = real_size;
  2207. ifp->if_bytes = new_size;
  2208. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2209. }
  2210. void
  2211. xfs_idestroy_fork(
  2212. xfs_inode_t *ip,
  2213. int whichfork)
  2214. {
  2215. xfs_ifork_t *ifp;
  2216. ifp = XFS_IFORK_PTR(ip, whichfork);
  2217. if (ifp->if_broot != NULL) {
  2218. kmem_free(ifp->if_broot);
  2219. ifp->if_broot = NULL;
  2220. }
  2221. /*
  2222. * If the format is local, then we can't have an extents
  2223. * array so just look for an inline data array. If we're
  2224. * not local then we may or may not have an extents list,
  2225. * so check and free it up if we do.
  2226. */
  2227. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2228. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2229. (ifp->if_u1.if_data != NULL)) {
  2230. ASSERT(ifp->if_real_bytes != 0);
  2231. kmem_free(ifp->if_u1.if_data);
  2232. ifp->if_u1.if_data = NULL;
  2233. ifp->if_real_bytes = 0;
  2234. }
  2235. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2236. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2237. ((ifp->if_u1.if_extents != NULL) &&
  2238. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2239. ASSERT(ifp->if_real_bytes != 0);
  2240. xfs_iext_destroy(ifp);
  2241. }
  2242. ASSERT(ifp->if_u1.if_extents == NULL ||
  2243. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2244. ASSERT(ifp->if_real_bytes == 0);
  2245. if (whichfork == XFS_ATTR_FORK) {
  2246. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2247. ip->i_afp = NULL;
  2248. }
  2249. }
  2250. /*
  2251. * This is called to unpin an inode. The caller must have the inode locked
  2252. * in at least shared mode so that the buffer cannot be subsequently pinned
  2253. * once someone is waiting for it to be unpinned.
  2254. */
  2255. static void
  2256. xfs_iunpin_nowait(
  2257. struct xfs_inode *ip)
  2258. {
  2259. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2260. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2261. /* Give the log a push to start the unpinning I/O */
  2262. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2263. }
  2264. void
  2265. xfs_iunpin_wait(
  2266. struct xfs_inode *ip)
  2267. {
  2268. if (xfs_ipincount(ip)) {
  2269. xfs_iunpin_nowait(ip);
  2270. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2271. }
  2272. }
  2273. /*
  2274. * xfs_iextents_copy()
  2275. *
  2276. * This is called to copy the REAL extents (as opposed to the delayed
  2277. * allocation extents) from the inode into the given buffer. It
  2278. * returns the number of bytes copied into the buffer.
  2279. *
  2280. * If there are no delayed allocation extents, then we can just
  2281. * memcpy() the extents into the buffer. Otherwise, we need to
  2282. * examine each extent in turn and skip those which are delayed.
  2283. */
  2284. int
  2285. xfs_iextents_copy(
  2286. xfs_inode_t *ip,
  2287. xfs_bmbt_rec_t *dp,
  2288. int whichfork)
  2289. {
  2290. int copied;
  2291. int i;
  2292. xfs_ifork_t *ifp;
  2293. int nrecs;
  2294. xfs_fsblock_t start_block;
  2295. ifp = XFS_IFORK_PTR(ip, whichfork);
  2296. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2297. ASSERT(ifp->if_bytes > 0);
  2298. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2299. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2300. ASSERT(nrecs > 0);
  2301. /*
  2302. * There are some delayed allocation extents in the
  2303. * inode, so copy the extents one at a time and skip
  2304. * the delayed ones. There must be at least one
  2305. * non-delayed extent.
  2306. */
  2307. copied = 0;
  2308. for (i = 0; i < nrecs; i++) {
  2309. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2310. start_block = xfs_bmbt_get_startblock(ep);
  2311. if (isnullstartblock(start_block)) {
  2312. /*
  2313. * It's a delayed allocation extent, so skip it.
  2314. */
  2315. continue;
  2316. }
  2317. /* Translate to on disk format */
  2318. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2319. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2320. dp++;
  2321. copied++;
  2322. }
  2323. ASSERT(copied != 0);
  2324. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2325. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2326. }
  2327. /*
  2328. * Each of the following cases stores data into the same region
  2329. * of the on-disk inode, so only one of them can be valid at
  2330. * any given time. While it is possible to have conflicting formats
  2331. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2332. * in EXTENTS format, this can only happen when the fork has
  2333. * changed formats after being modified but before being flushed.
  2334. * In these cases, the format always takes precedence, because the
  2335. * format indicates the current state of the fork.
  2336. */
  2337. /*ARGSUSED*/
  2338. STATIC void
  2339. xfs_iflush_fork(
  2340. xfs_inode_t *ip,
  2341. xfs_dinode_t *dip,
  2342. xfs_inode_log_item_t *iip,
  2343. int whichfork,
  2344. xfs_buf_t *bp)
  2345. {
  2346. char *cp;
  2347. xfs_ifork_t *ifp;
  2348. xfs_mount_t *mp;
  2349. #ifdef XFS_TRANS_DEBUG
  2350. int first;
  2351. #endif
  2352. static const short brootflag[2] =
  2353. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2354. static const short dataflag[2] =
  2355. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2356. static const short extflag[2] =
  2357. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2358. if (!iip)
  2359. return;
  2360. ifp = XFS_IFORK_PTR(ip, whichfork);
  2361. /*
  2362. * This can happen if we gave up in iformat in an error path,
  2363. * for the attribute fork.
  2364. */
  2365. if (!ifp) {
  2366. ASSERT(whichfork == XFS_ATTR_FORK);
  2367. return;
  2368. }
  2369. cp = XFS_DFORK_PTR(dip, whichfork);
  2370. mp = ip->i_mount;
  2371. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2372. case XFS_DINODE_FMT_LOCAL:
  2373. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2374. (ifp->if_bytes > 0)) {
  2375. ASSERT(ifp->if_u1.if_data != NULL);
  2376. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2377. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2378. }
  2379. break;
  2380. case XFS_DINODE_FMT_EXTENTS:
  2381. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2382. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2383. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2384. (ifp->if_bytes == 0));
  2385. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2386. (ifp->if_bytes > 0));
  2387. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2388. (ifp->if_bytes > 0)) {
  2389. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2390. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2391. whichfork);
  2392. }
  2393. break;
  2394. case XFS_DINODE_FMT_BTREE:
  2395. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2396. (ifp->if_broot_bytes > 0)) {
  2397. ASSERT(ifp->if_broot != NULL);
  2398. ASSERT(ifp->if_broot_bytes <=
  2399. (XFS_IFORK_SIZE(ip, whichfork) +
  2400. XFS_BROOT_SIZE_ADJ));
  2401. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2402. (xfs_bmdr_block_t *)cp,
  2403. XFS_DFORK_SIZE(dip, mp, whichfork));
  2404. }
  2405. break;
  2406. case XFS_DINODE_FMT_DEV:
  2407. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2408. ASSERT(whichfork == XFS_DATA_FORK);
  2409. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2410. }
  2411. break;
  2412. case XFS_DINODE_FMT_UUID:
  2413. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2414. ASSERT(whichfork == XFS_DATA_FORK);
  2415. memcpy(XFS_DFORK_DPTR(dip),
  2416. &ip->i_df.if_u2.if_uuid,
  2417. sizeof(uuid_t));
  2418. }
  2419. break;
  2420. default:
  2421. ASSERT(0);
  2422. break;
  2423. }
  2424. }
  2425. STATIC int
  2426. xfs_iflush_cluster(
  2427. xfs_inode_t *ip,
  2428. xfs_buf_t *bp)
  2429. {
  2430. xfs_mount_t *mp = ip->i_mount;
  2431. struct xfs_perag *pag;
  2432. unsigned long first_index, mask;
  2433. unsigned long inodes_per_cluster;
  2434. int ilist_size;
  2435. xfs_inode_t **ilist;
  2436. xfs_inode_t *iq;
  2437. int nr_found;
  2438. int clcount = 0;
  2439. int bufwasdelwri;
  2440. int i;
  2441. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2442. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2443. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2444. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2445. if (!ilist)
  2446. goto out_put;
  2447. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2448. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2449. read_lock(&pag->pag_ici_lock);
  2450. /* really need a gang lookup range call here */
  2451. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2452. first_index, inodes_per_cluster);
  2453. if (nr_found == 0)
  2454. goto out_free;
  2455. for (i = 0; i < nr_found; i++) {
  2456. iq = ilist[i];
  2457. if (iq == ip)
  2458. continue;
  2459. /* if the inode lies outside this cluster, we're done. */
  2460. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2461. break;
  2462. /*
  2463. * Do an un-protected check to see if the inode is dirty and
  2464. * is a candidate for flushing. These checks will be repeated
  2465. * later after the appropriate locks are acquired.
  2466. */
  2467. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2468. continue;
  2469. /*
  2470. * Try to get locks. If any are unavailable or it is pinned,
  2471. * then this inode cannot be flushed and is skipped.
  2472. */
  2473. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2474. continue;
  2475. if (!xfs_iflock_nowait(iq)) {
  2476. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2477. continue;
  2478. }
  2479. if (xfs_ipincount(iq)) {
  2480. xfs_ifunlock(iq);
  2481. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2482. continue;
  2483. }
  2484. /*
  2485. * arriving here means that this inode can be flushed. First
  2486. * re-check that it's dirty before flushing.
  2487. */
  2488. if (!xfs_inode_clean(iq)) {
  2489. int error;
  2490. error = xfs_iflush_int(iq, bp);
  2491. if (error) {
  2492. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2493. goto cluster_corrupt_out;
  2494. }
  2495. clcount++;
  2496. } else {
  2497. xfs_ifunlock(iq);
  2498. }
  2499. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2500. }
  2501. if (clcount) {
  2502. XFS_STATS_INC(xs_icluster_flushcnt);
  2503. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2504. }
  2505. out_free:
  2506. read_unlock(&pag->pag_ici_lock);
  2507. kmem_free(ilist);
  2508. out_put:
  2509. xfs_perag_put(pag);
  2510. return 0;
  2511. cluster_corrupt_out:
  2512. /*
  2513. * Corruption detected in the clustering loop. Invalidate the
  2514. * inode buffer and shut down the filesystem.
  2515. */
  2516. read_unlock(&pag->pag_ici_lock);
  2517. /*
  2518. * Clean up the buffer. If it was B_DELWRI, just release it --
  2519. * brelse can handle it with no problems. If not, shut down the
  2520. * filesystem before releasing the buffer.
  2521. */
  2522. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2523. if (bufwasdelwri)
  2524. xfs_buf_relse(bp);
  2525. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2526. if (!bufwasdelwri) {
  2527. /*
  2528. * Just like incore_relse: if we have b_iodone functions,
  2529. * mark the buffer as an error and call them. Otherwise
  2530. * mark it as stale and brelse.
  2531. */
  2532. if (XFS_BUF_IODONE_FUNC(bp)) {
  2533. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2534. XFS_BUF_UNDONE(bp);
  2535. XFS_BUF_STALE(bp);
  2536. XFS_BUF_ERROR(bp,EIO);
  2537. xfs_biodone(bp);
  2538. } else {
  2539. XFS_BUF_STALE(bp);
  2540. xfs_buf_relse(bp);
  2541. }
  2542. }
  2543. /*
  2544. * Unlocks the flush lock
  2545. */
  2546. xfs_iflush_abort(iq);
  2547. kmem_free(ilist);
  2548. xfs_perag_put(pag);
  2549. return XFS_ERROR(EFSCORRUPTED);
  2550. }
  2551. /*
  2552. * xfs_iflush() will write a modified inode's changes out to the
  2553. * inode's on disk home. The caller must have the inode lock held
  2554. * in at least shared mode and the inode flush completion must be
  2555. * active as well. The inode lock will still be held upon return from
  2556. * the call and the caller is free to unlock it.
  2557. * The inode flush will be completed when the inode reaches the disk.
  2558. * The flags indicate how the inode's buffer should be written out.
  2559. */
  2560. int
  2561. xfs_iflush(
  2562. xfs_inode_t *ip,
  2563. uint flags)
  2564. {
  2565. xfs_inode_log_item_t *iip;
  2566. xfs_buf_t *bp;
  2567. xfs_dinode_t *dip;
  2568. xfs_mount_t *mp;
  2569. int error;
  2570. XFS_STATS_INC(xs_iflush_count);
  2571. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2572. ASSERT(!completion_done(&ip->i_flush));
  2573. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2574. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2575. iip = ip->i_itemp;
  2576. mp = ip->i_mount;
  2577. /*
  2578. * We can't flush the inode until it is unpinned, so wait for it if we
  2579. * are allowed to block. We know noone new can pin it, because we are
  2580. * holding the inode lock shared and you need to hold it exclusively to
  2581. * pin the inode.
  2582. *
  2583. * If we are not allowed to block, force the log out asynchronously so
  2584. * that when we come back the inode will be unpinned. If other inodes
  2585. * in the same cluster are dirty, they will probably write the inode
  2586. * out for us if they occur after the log force completes.
  2587. */
  2588. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2589. xfs_iunpin_nowait(ip);
  2590. xfs_ifunlock(ip);
  2591. return EAGAIN;
  2592. }
  2593. xfs_iunpin_wait(ip);
  2594. /*
  2595. * For stale inodes we cannot rely on the backing buffer remaining
  2596. * stale in cache for the remaining life of the stale inode and so
  2597. * xfs_itobp() below may give us a buffer that no longer contains
  2598. * inodes below. We have to check this after ensuring the inode is
  2599. * unpinned so that it is safe to reclaim the stale inode after the
  2600. * flush call.
  2601. */
  2602. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2603. xfs_ifunlock(ip);
  2604. return 0;
  2605. }
  2606. /*
  2607. * This may have been unpinned because the filesystem is shutting
  2608. * down forcibly. If that's the case we must not write this inode
  2609. * to disk, because the log record didn't make it to disk!
  2610. */
  2611. if (XFS_FORCED_SHUTDOWN(mp)) {
  2612. ip->i_update_core = 0;
  2613. if (iip)
  2614. iip->ili_format.ilf_fields = 0;
  2615. xfs_ifunlock(ip);
  2616. return XFS_ERROR(EIO);
  2617. }
  2618. /*
  2619. * Get the buffer containing the on-disk inode.
  2620. */
  2621. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2622. (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
  2623. if (error || !bp) {
  2624. xfs_ifunlock(ip);
  2625. return error;
  2626. }
  2627. /*
  2628. * First flush out the inode that xfs_iflush was called with.
  2629. */
  2630. error = xfs_iflush_int(ip, bp);
  2631. if (error)
  2632. goto corrupt_out;
  2633. /*
  2634. * If the buffer is pinned then push on the log now so we won't
  2635. * get stuck waiting in the write for too long.
  2636. */
  2637. if (XFS_BUF_ISPINNED(bp))
  2638. xfs_log_force(mp, 0);
  2639. /*
  2640. * inode clustering:
  2641. * see if other inodes can be gathered into this write
  2642. */
  2643. error = xfs_iflush_cluster(ip, bp);
  2644. if (error)
  2645. goto cluster_corrupt_out;
  2646. if (flags & SYNC_WAIT)
  2647. error = xfs_bwrite(mp, bp);
  2648. else
  2649. xfs_bdwrite(mp, bp);
  2650. return error;
  2651. corrupt_out:
  2652. xfs_buf_relse(bp);
  2653. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2654. cluster_corrupt_out:
  2655. /*
  2656. * Unlocks the flush lock
  2657. */
  2658. xfs_iflush_abort(ip);
  2659. return XFS_ERROR(EFSCORRUPTED);
  2660. }
  2661. STATIC int
  2662. xfs_iflush_int(
  2663. xfs_inode_t *ip,
  2664. xfs_buf_t *bp)
  2665. {
  2666. xfs_inode_log_item_t *iip;
  2667. xfs_dinode_t *dip;
  2668. xfs_mount_t *mp;
  2669. #ifdef XFS_TRANS_DEBUG
  2670. int first;
  2671. #endif
  2672. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2673. ASSERT(!completion_done(&ip->i_flush));
  2674. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2675. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2676. iip = ip->i_itemp;
  2677. mp = ip->i_mount;
  2678. /* set *dip = inode's place in the buffer */
  2679. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2680. /*
  2681. * Clear i_update_core before copying out the data.
  2682. * This is for coordination with our timestamp updates
  2683. * that don't hold the inode lock. They will always
  2684. * update the timestamps BEFORE setting i_update_core,
  2685. * so if we clear i_update_core after they set it we
  2686. * are guaranteed to see their updates to the timestamps.
  2687. * I believe that this depends on strongly ordered memory
  2688. * semantics, but we have that. We use the SYNCHRONIZE
  2689. * macro to make sure that the compiler does not reorder
  2690. * the i_update_core access below the data copy below.
  2691. */
  2692. ip->i_update_core = 0;
  2693. SYNCHRONIZE();
  2694. /*
  2695. * Make sure to get the latest timestamps from the Linux inode.
  2696. */
  2697. xfs_synchronize_times(ip);
  2698. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2699. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2700. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2701. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2702. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2703. goto corrupt_out;
  2704. }
  2705. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2706. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2707. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2708. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2709. ip->i_ino, ip, ip->i_d.di_magic);
  2710. goto corrupt_out;
  2711. }
  2712. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2713. if (XFS_TEST_ERROR(
  2714. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2715. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2716. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2717. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2718. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2719. ip->i_ino, ip);
  2720. goto corrupt_out;
  2721. }
  2722. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2723. if (XFS_TEST_ERROR(
  2724. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2725. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2726. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2727. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2728. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2729. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2730. ip->i_ino, ip);
  2731. goto corrupt_out;
  2732. }
  2733. }
  2734. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2735. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2736. XFS_RANDOM_IFLUSH_5)) {
  2737. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2738. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2739. ip->i_ino,
  2740. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2741. ip->i_d.di_nblocks,
  2742. ip);
  2743. goto corrupt_out;
  2744. }
  2745. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2746. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2747. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2748. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2749. ip->i_ino, ip->i_d.di_forkoff, ip);
  2750. goto corrupt_out;
  2751. }
  2752. /*
  2753. * bump the flush iteration count, used to detect flushes which
  2754. * postdate a log record during recovery.
  2755. */
  2756. ip->i_d.di_flushiter++;
  2757. /*
  2758. * Copy the dirty parts of the inode into the on-disk
  2759. * inode. We always copy out the core of the inode,
  2760. * because if the inode is dirty at all the core must
  2761. * be.
  2762. */
  2763. xfs_dinode_to_disk(dip, &ip->i_d);
  2764. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2765. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2766. ip->i_d.di_flushiter = 0;
  2767. /*
  2768. * If this is really an old format inode and the superblock version
  2769. * has not been updated to support only new format inodes, then
  2770. * convert back to the old inode format. If the superblock version
  2771. * has been updated, then make the conversion permanent.
  2772. */
  2773. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2774. if (ip->i_d.di_version == 1) {
  2775. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2776. /*
  2777. * Convert it back.
  2778. */
  2779. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2780. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2781. } else {
  2782. /*
  2783. * The superblock version has already been bumped,
  2784. * so just make the conversion to the new inode
  2785. * format permanent.
  2786. */
  2787. ip->i_d.di_version = 2;
  2788. dip->di_version = 2;
  2789. ip->i_d.di_onlink = 0;
  2790. dip->di_onlink = 0;
  2791. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2792. memset(&(dip->di_pad[0]), 0,
  2793. sizeof(dip->di_pad));
  2794. ASSERT(ip->i_d.di_projid == 0);
  2795. }
  2796. }
  2797. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2798. if (XFS_IFORK_Q(ip))
  2799. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2800. xfs_inobp_check(mp, bp);
  2801. /*
  2802. * We've recorded everything logged in the inode, so we'd
  2803. * like to clear the ilf_fields bits so we don't log and
  2804. * flush things unnecessarily. However, we can't stop
  2805. * logging all this information until the data we've copied
  2806. * into the disk buffer is written to disk. If we did we might
  2807. * overwrite the copy of the inode in the log with all the
  2808. * data after re-logging only part of it, and in the face of
  2809. * a crash we wouldn't have all the data we need to recover.
  2810. *
  2811. * What we do is move the bits to the ili_last_fields field.
  2812. * When logging the inode, these bits are moved back to the
  2813. * ilf_fields field. In the xfs_iflush_done() routine we
  2814. * clear ili_last_fields, since we know that the information
  2815. * those bits represent is permanently on disk. As long as
  2816. * the flush completes before the inode is logged again, then
  2817. * both ilf_fields and ili_last_fields will be cleared.
  2818. *
  2819. * We can play with the ilf_fields bits here, because the inode
  2820. * lock must be held exclusively in order to set bits there
  2821. * and the flush lock protects the ili_last_fields bits.
  2822. * Set ili_logged so the flush done
  2823. * routine can tell whether or not to look in the AIL.
  2824. * Also, store the current LSN of the inode so that we can tell
  2825. * whether the item has moved in the AIL from xfs_iflush_done().
  2826. * In order to read the lsn we need the AIL lock, because
  2827. * it is a 64 bit value that cannot be read atomically.
  2828. */
  2829. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2830. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2831. iip->ili_format.ilf_fields = 0;
  2832. iip->ili_logged = 1;
  2833. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2834. &iip->ili_item.li_lsn);
  2835. /*
  2836. * Attach the function xfs_iflush_done to the inode's
  2837. * buffer. This will remove the inode from the AIL
  2838. * and unlock the inode's flush lock when the inode is
  2839. * completely written to disk.
  2840. */
  2841. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2842. xfs_iflush_done, (xfs_log_item_t *)iip);
  2843. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2844. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2845. } else {
  2846. /*
  2847. * We're flushing an inode which is not in the AIL and has
  2848. * not been logged but has i_update_core set. For this
  2849. * case we can use a B_DELWRI flush and immediately drop
  2850. * the inode flush lock because we can avoid the whole
  2851. * AIL state thing. It's OK to drop the flush lock now,
  2852. * because we've already locked the buffer and to do anything
  2853. * you really need both.
  2854. */
  2855. if (iip != NULL) {
  2856. ASSERT(iip->ili_logged == 0);
  2857. ASSERT(iip->ili_last_fields == 0);
  2858. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2859. }
  2860. xfs_ifunlock(ip);
  2861. }
  2862. return 0;
  2863. corrupt_out:
  2864. return XFS_ERROR(EFSCORRUPTED);
  2865. }
  2866. /*
  2867. * Return a pointer to the extent record at file index idx.
  2868. */
  2869. xfs_bmbt_rec_host_t *
  2870. xfs_iext_get_ext(
  2871. xfs_ifork_t *ifp, /* inode fork pointer */
  2872. xfs_extnum_t idx) /* index of target extent */
  2873. {
  2874. ASSERT(idx >= 0);
  2875. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2876. return ifp->if_u1.if_ext_irec->er_extbuf;
  2877. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2878. xfs_ext_irec_t *erp; /* irec pointer */
  2879. int erp_idx = 0; /* irec index */
  2880. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2881. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2882. return &erp->er_extbuf[page_idx];
  2883. } else if (ifp->if_bytes) {
  2884. return &ifp->if_u1.if_extents[idx];
  2885. } else {
  2886. return NULL;
  2887. }
  2888. }
  2889. /*
  2890. * Insert new item(s) into the extent records for incore inode
  2891. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2892. */
  2893. void
  2894. xfs_iext_insert(
  2895. xfs_inode_t *ip, /* incore inode pointer */
  2896. xfs_extnum_t idx, /* starting index of new items */
  2897. xfs_extnum_t count, /* number of inserted items */
  2898. xfs_bmbt_irec_t *new, /* items to insert */
  2899. int state) /* type of extent conversion */
  2900. {
  2901. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2902. xfs_extnum_t i; /* extent record index */
  2903. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2904. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2905. xfs_iext_add(ifp, idx, count);
  2906. for (i = idx; i < idx + count; i++, new++)
  2907. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2908. }
  2909. /*
  2910. * This is called when the amount of space required for incore file
  2911. * extents needs to be increased. The ext_diff parameter stores the
  2912. * number of new extents being added and the idx parameter contains
  2913. * the extent index where the new extents will be added. If the new
  2914. * extents are being appended, then we just need to (re)allocate and
  2915. * initialize the space. Otherwise, if the new extents are being
  2916. * inserted into the middle of the existing entries, a bit more work
  2917. * is required to make room for the new extents to be inserted. The
  2918. * caller is responsible for filling in the new extent entries upon
  2919. * return.
  2920. */
  2921. void
  2922. xfs_iext_add(
  2923. xfs_ifork_t *ifp, /* inode fork pointer */
  2924. xfs_extnum_t idx, /* index to begin adding exts */
  2925. int ext_diff) /* number of extents to add */
  2926. {
  2927. int byte_diff; /* new bytes being added */
  2928. int new_size; /* size of extents after adding */
  2929. xfs_extnum_t nextents; /* number of extents in file */
  2930. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2931. ASSERT((idx >= 0) && (idx <= nextents));
  2932. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2933. new_size = ifp->if_bytes + byte_diff;
  2934. /*
  2935. * If the new number of extents (nextents + ext_diff)
  2936. * fits inside the inode, then continue to use the inline
  2937. * extent buffer.
  2938. */
  2939. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2940. if (idx < nextents) {
  2941. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2942. &ifp->if_u2.if_inline_ext[idx],
  2943. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2944. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2945. }
  2946. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2947. ifp->if_real_bytes = 0;
  2948. ifp->if_lastex = nextents + ext_diff;
  2949. }
  2950. /*
  2951. * Otherwise use a linear (direct) extent list.
  2952. * If the extents are currently inside the inode,
  2953. * xfs_iext_realloc_direct will switch us from
  2954. * inline to direct extent allocation mode.
  2955. */
  2956. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2957. xfs_iext_realloc_direct(ifp, new_size);
  2958. if (idx < nextents) {
  2959. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2960. &ifp->if_u1.if_extents[idx],
  2961. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2962. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2963. }
  2964. }
  2965. /* Indirection array */
  2966. else {
  2967. xfs_ext_irec_t *erp;
  2968. int erp_idx = 0;
  2969. int page_idx = idx;
  2970. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2971. if (ifp->if_flags & XFS_IFEXTIREC) {
  2972. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2973. } else {
  2974. xfs_iext_irec_init(ifp);
  2975. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2976. erp = ifp->if_u1.if_ext_irec;
  2977. }
  2978. /* Extents fit in target extent page */
  2979. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2980. if (page_idx < erp->er_extcount) {
  2981. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2982. &erp->er_extbuf[page_idx],
  2983. (erp->er_extcount - page_idx) *
  2984. sizeof(xfs_bmbt_rec_t));
  2985. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2986. }
  2987. erp->er_extcount += ext_diff;
  2988. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2989. }
  2990. /* Insert a new extent page */
  2991. else if (erp) {
  2992. xfs_iext_add_indirect_multi(ifp,
  2993. erp_idx, page_idx, ext_diff);
  2994. }
  2995. /*
  2996. * If extent(s) are being appended to the last page in
  2997. * the indirection array and the new extent(s) don't fit
  2998. * in the page, then erp is NULL and erp_idx is set to
  2999. * the next index needed in the indirection array.
  3000. */
  3001. else {
  3002. int count = ext_diff;
  3003. while (count) {
  3004. erp = xfs_iext_irec_new(ifp, erp_idx);
  3005. erp->er_extcount = count;
  3006. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3007. if (count) {
  3008. erp_idx++;
  3009. }
  3010. }
  3011. }
  3012. }
  3013. ifp->if_bytes = new_size;
  3014. }
  3015. /*
  3016. * This is called when incore extents are being added to the indirection
  3017. * array and the new extents do not fit in the target extent list. The
  3018. * erp_idx parameter contains the irec index for the target extent list
  3019. * in the indirection array, and the idx parameter contains the extent
  3020. * index within the list. The number of extents being added is stored
  3021. * in the count parameter.
  3022. *
  3023. * |-------| |-------|
  3024. * | | | | idx - number of extents before idx
  3025. * | idx | | count |
  3026. * | | | | count - number of extents being inserted at idx
  3027. * |-------| |-------|
  3028. * | count | | nex2 | nex2 - number of extents after idx + count
  3029. * |-------| |-------|
  3030. */
  3031. void
  3032. xfs_iext_add_indirect_multi(
  3033. xfs_ifork_t *ifp, /* inode fork pointer */
  3034. int erp_idx, /* target extent irec index */
  3035. xfs_extnum_t idx, /* index within target list */
  3036. int count) /* new extents being added */
  3037. {
  3038. int byte_diff; /* new bytes being added */
  3039. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3040. xfs_extnum_t ext_diff; /* number of extents to add */
  3041. xfs_extnum_t ext_cnt; /* new extents still needed */
  3042. xfs_extnum_t nex2; /* extents after idx + count */
  3043. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3044. int nlists; /* number of irec's (lists) */
  3045. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3046. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3047. nex2 = erp->er_extcount - idx;
  3048. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3049. /*
  3050. * Save second part of target extent list
  3051. * (all extents past */
  3052. if (nex2) {
  3053. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3054. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3055. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3056. erp->er_extcount -= nex2;
  3057. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3058. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3059. }
  3060. /*
  3061. * Add the new extents to the end of the target
  3062. * list, then allocate new irec record(s) and
  3063. * extent buffer(s) as needed to store the rest
  3064. * of the new extents.
  3065. */
  3066. ext_cnt = count;
  3067. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3068. if (ext_diff) {
  3069. erp->er_extcount += ext_diff;
  3070. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3071. ext_cnt -= ext_diff;
  3072. }
  3073. while (ext_cnt) {
  3074. erp_idx++;
  3075. erp = xfs_iext_irec_new(ifp, erp_idx);
  3076. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3077. erp->er_extcount = ext_diff;
  3078. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3079. ext_cnt -= ext_diff;
  3080. }
  3081. /* Add nex2 extents back to indirection array */
  3082. if (nex2) {
  3083. xfs_extnum_t ext_avail;
  3084. int i;
  3085. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3086. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3087. i = 0;
  3088. /*
  3089. * If nex2 extents fit in the current page, append
  3090. * nex2_ep after the new extents.
  3091. */
  3092. if (nex2 <= ext_avail) {
  3093. i = erp->er_extcount;
  3094. }
  3095. /*
  3096. * Otherwise, check if space is available in the
  3097. * next page.
  3098. */
  3099. else if ((erp_idx < nlists - 1) &&
  3100. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3101. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3102. erp_idx++;
  3103. erp++;
  3104. /* Create a hole for nex2 extents */
  3105. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3106. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3107. }
  3108. /*
  3109. * Final choice, create a new extent page for
  3110. * nex2 extents.
  3111. */
  3112. else {
  3113. erp_idx++;
  3114. erp = xfs_iext_irec_new(ifp, erp_idx);
  3115. }
  3116. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3117. kmem_free(nex2_ep);
  3118. erp->er_extcount += nex2;
  3119. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3120. }
  3121. }
  3122. /*
  3123. * This is called when the amount of space required for incore file
  3124. * extents needs to be decreased. The ext_diff parameter stores the
  3125. * number of extents to be removed and the idx parameter contains
  3126. * the extent index where the extents will be removed from.
  3127. *
  3128. * If the amount of space needed has decreased below the linear
  3129. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3130. * extent array. Otherwise, use kmem_realloc() to adjust the
  3131. * size to what is needed.
  3132. */
  3133. void
  3134. xfs_iext_remove(
  3135. xfs_inode_t *ip, /* incore inode pointer */
  3136. xfs_extnum_t idx, /* index to begin removing exts */
  3137. int ext_diff, /* number of extents to remove */
  3138. int state) /* type of extent conversion */
  3139. {
  3140. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3141. xfs_extnum_t nextents; /* number of extents in file */
  3142. int new_size; /* size of extents after removal */
  3143. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3144. ASSERT(ext_diff > 0);
  3145. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3146. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3147. if (new_size == 0) {
  3148. xfs_iext_destroy(ifp);
  3149. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3150. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3151. } else if (ifp->if_real_bytes) {
  3152. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3153. } else {
  3154. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3155. }
  3156. ifp->if_bytes = new_size;
  3157. }
  3158. /*
  3159. * This removes ext_diff extents from the inline buffer, beginning
  3160. * at extent index idx.
  3161. */
  3162. void
  3163. xfs_iext_remove_inline(
  3164. xfs_ifork_t *ifp, /* inode fork pointer */
  3165. xfs_extnum_t idx, /* index to begin removing exts */
  3166. int ext_diff) /* number of extents to remove */
  3167. {
  3168. int nextents; /* number of extents in file */
  3169. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3170. ASSERT(idx < XFS_INLINE_EXTS);
  3171. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3172. ASSERT(((nextents - ext_diff) > 0) &&
  3173. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3174. if (idx + ext_diff < nextents) {
  3175. memmove(&ifp->if_u2.if_inline_ext[idx],
  3176. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3177. (nextents - (idx + ext_diff)) *
  3178. sizeof(xfs_bmbt_rec_t));
  3179. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3180. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3181. } else {
  3182. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3183. ext_diff * sizeof(xfs_bmbt_rec_t));
  3184. }
  3185. }
  3186. /*
  3187. * This removes ext_diff extents from a linear (direct) extent list,
  3188. * beginning at extent index idx. If the extents are being removed
  3189. * from the end of the list (ie. truncate) then we just need to re-
  3190. * allocate the list to remove the extra space. Otherwise, if the
  3191. * extents are being removed from the middle of the existing extent
  3192. * entries, then we first need to move the extent records beginning
  3193. * at idx + ext_diff up in the list to overwrite the records being
  3194. * removed, then remove the extra space via kmem_realloc.
  3195. */
  3196. void
  3197. xfs_iext_remove_direct(
  3198. xfs_ifork_t *ifp, /* inode fork pointer */
  3199. xfs_extnum_t idx, /* index to begin removing exts */
  3200. int ext_diff) /* number of extents to remove */
  3201. {
  3202. xfs_extnum_t nextents; /* number of extents in file */
  3203. int new_size; /* size of extents after removal */
  3204. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3205. new_size = ifp->if_bytes -
  3206. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3207. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3208. if (new_size == 0) {
  3209. xfs_iext_destroy(ifp);
  3210. return;
  3211. }
  3212. /* Move extents up in the list (if needed) */
  3213. if (idx + ext_diff < nextents) {
  3214. memmove(&ifp->if_u1.if_extents[idx],
  3215. &ifp->if_u1.if_extents[idx + ext_diff],
  3216. (nextents - (idx + ext_diff)) *
  3217. sizeof(xfs_bmbt_rec_t));
  3218. }
  3219. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3220. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3221. /*
  3222. * Reallocate the direct extent list. If the extents
  3223. * will fit inside the inode then xfs_iext_realloc_direct
  3224. * will switch from direct to inline extent allocation
  3225. * mode for us.
  3226. */
  3227. xfs_iext_realloc_direct(ifp, new_size);
  3228. ifp->if_bytes = new_size;
  3229. }
  3230. /*
  3231. * This is called when incore extents are being removed from the
  3232. * indirection array and the extents being removed span multiple extent
  3233. * buffers. The idx parameter contains the file extent index where we
  3234. * want to begin removing extents, and the count parameter contains
  3235. * how many extents need to be removed.
  3236. *
  3237. * |-------| |-------|
  3238. * | nex1 | | | nex1 - number of extents before idx
  3239. * |-------| | count |
  3240. * | | | | count - number of extents being removed at idx
  3241. * | count | |-------|
  3242. * | | | nex2 | nex2 - number of extents after idx + count
  3243. * |-------| |-------|
  3244. */
  3245. void
  3246. xfs_iext_remove_indirect(
  3247. xfs_ifork_t *ifp, /* inode fork pointer */
  3248. xfs_extnum_t idx, /* index to begin removing extents */
  3249. int count) /* number of extents to remove */
  3250. {
  3251. xfs_ext_irec_t *erp; /* indirection array pointer */
  3252. int erp_idx = 0; /* indirection array index */
  3253. xfs_extnum_t ext_cnt; /* extents left to remove */
  3254. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3255. xfs_extnum_t nex1; /* number of extents before idx */
  3256. xfs_extnum_t nex2; /* extents after idx + count */
  3257. int nlists; /* entries in indirection array */
  3258. int page_idx = idx; /* index in target extent list */
  3259. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3260. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3261. ASSERT(erp != NULL);
  3262. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3263. nex1 = page_idx;
  3264. ext_cnt = count;
  3265. while (ext_cnt) {
  3266. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3267. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3268. /*
  3269. * Check for deletion of entire list;
  3270. * xfs_iext_irec_remove() updates extent offsets.
  3271. */
  3272. if (ext_diff == erp->er_extcount) {
  3273. xfs_iext_irec_remove(ifp, erp_idx);
  3274. ext_cnt -= ext_diff;
  3275. nex1 = 0;
  3276. if (ext_cnt) {
  3277. ASSERT(erp_idx < ifp->if_real_bytes /
  3278. XFS_IEXT_BUFSZ);
  3279. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3280. nex1 = 0;
  3281. continue;
  3282. } else {
  3283. break;
  3284. }
  3285. }
  3286. /* Move extents up (if needed) */
  3287. if (nex2) {
  3288. memmove(&erp->er_extbuf[nex1],
  3289. &erp->er_extbuf[nex1 + ext_diff],
  3290. nex2 * sizeof(xfs_bmbt_rec_t));
  3291. }
  3292. /* Zero out rest of page */
  3293. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3294. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3295. /* Update remaining counters */
  3296. erp->er_extcount -= ext_diff;
  3297. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3298. ext_cnt -= ext_diff;
  3299. nex1 = 0;
  3300. erp_idx++;
  3301. erp++;
  3302. }
  3303. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3304. xfs_iext_irec_compact(ifp);
  3305. }
  3306. /*
  3307. * Create, destroy, or resize a linear (direct) block of extents.
  3308. */
  3309. void
  3310. xfs_iext_realloc_direct(
  3311. xfs_ifork_t *ifp, /* inode fork pointer */
  3312. int new_size) /* new size of extents */
  3313. {
  3314. int rnew_size; /* real new size of extents */
  3315. rnew_size = new_size;
  3316. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3317. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3318. (new_size != ifp->if_real_bytes)));
  3319. /* Free extent records */
  3320. if (new_size == 0) {
  3321. xfs_iext_destroy(ifp);
  3322. }
  3323. /* Resize direct extent list and zero any new bytes */
  3324. else if (ifp->if_real_bytes) {
  3325. /* Check if extents will fit inside the inode */
  3326. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3327. xfs_iext_direct_to_inline(ifp, new_size /
  3328. (uint)sizeof(xfs_bmbt_rec_t));
  3329. ifp->if_bytes = new_size;
  3330. return;
  3331. }
  3332. if (!is_power_of_2(new_size)){
  3333. rnew_size = roundup_pow_of_two(new_size);
  3334. }
  3335. if (rnew_size != ifp->if_real_bytes) {
  3336. ifp->if_u1.if_extents =
  3337. kmem_realloc(ifp->if_u1.if_extents,
  3338. rnew_size,
  3339. ifp->if_real_bytes, KM_NOFS);
  3340. }
  3341. if (rnew_size > ifp->if_real_bytes) {
  3342. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3343. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3344. rnew_size - ifp->if_real_bytes);
  3345. }
  3346. }
  3347. /*
  3348. * Switch from the inline extent buffer to a direct
  3349. * extent list. Be sure to include the inline extent
  3350. * bytes in new_size.
  3351. */
  3352. else {
  3353. new_size += ifp->if_bytes;
  3354. if (!is_power_of_2(new_size)) {
  3355. rnew_size = roundup_pow_of_two(new_size);
  3356. }
  3357. xfs_iext_inline_to_direct(ifp, rnew_size);
  3358. }
  3359. ifp->if_real_bytes = rnew_size;
  3360. ifp->if_bytes = new_size;
  3361. }
  3362. /*
  3363. * Switch from linear (direct) extent records to inline buffer.
  3364. */
  3365. void
  3366. xfs_iext_direct_to_inline(
  3367. xfs_ifork_t *ifp, /* inode fork pointer */
  3368. xfs_extnum_t nextents) /* number of extents in file */
  3369. {
  3370. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3371. ASSERT(nextents <= XFS_INLINE_EXTS);
  3372. /*
  3373. * The inline buffer was zeroed when we switched
  3374. * from inline to direct extent allocation mode,
  3375. * so we don't need to clear it here.
  3376. */
  3377. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3378. nextents * sizeof(xfs_bmbt_rec_t));
  3379. kmem_free(ifp->if_u1.if_extents);
  3380. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3381. ifp->if_real_bytes = 0;
  3382. }
  3383. /*
  3384. * Switch from inline buffer to linear (direct) extent records.
  3385. * new_size should already be rounded up to the next power of 2
  3386. * by the caller (when appropriate), so use new_size as it is.
  3387. * However, since new_size may be rounded up, we can't update
  3388. * if_bytes here. It is the caller's responsibility to update
  3389. * if_bytes upon return.
  3390. */
  3391. void
  3392. xfs_iext_inline_to_direct(
  3393. xfs_ifork_t *ifp, /* inode fork pointer */
  3394. int new_size) /* number of extents in file */
  3395. {
  3396. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3397. memset(ifp->if_u1.if_extents, 0, new_size);
  3398. if (ifp->if_bytes) {
  3399. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3400. ifp->if_bytes);
  3401. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3402. sizeof(xfs_bmbt_rec_t));
  3403. }
  3404. ifp->if_real_bytes = new_size;
  3405. }
  3406. /*
  3407. * Resize an extent indirection array to new_size bytes.
  3408. */
  3409. STATIC void
  3410. xfs_iext_realloc_indirect(
  3411. xfs_ifork_t *ifp, /* inode fork pointer */
  3412. int new_size) /* new indirection array size */
  3413. {
  3414. int nlists; /* number of irec's (ex lists) */
  3415. int size; /* current indirection array size */
  3416. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3417. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3418. size = nlists * sizeof(xfs_ext_irec_t);
  3419. ASSERT(ifp->if_real_bytes);
  3420. ASSERT((new_size >= 0) && (new_size != size));
  3421. if (new_size == 0) {
  3422. xfs_iext_destroy(ifp);
  3423. } else {
  3424. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3425. kmem_realloc(ifp->if_u1.if_ext_irec,
  3426. new_size, size, KM_NOFS);
  3427. }
  3428. }
  3429. /*
  3430. * Switch from indirection array to linear (direct) extent allocations.
  3431. */
  3432. STATIC void
  3433. xfs_iext_indirect_to_direct(
  3434. xfs_ifork_t *ifp) /* inode fork pointer */
  3435. {
  3436. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3437. xfs_extnum_t nextents; /* number of extents in file */
  3438. int size; /* size of file extents */
  3439. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3440. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3441. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3442. size = nextents * sizeof(xfs_bmbt_rec_t);
  3443. xfs_iext_irec_compact_pages(ifp);
  3444. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3445. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3446. kmem_free(ifp->if_u1.if_ext_irec);
  3447. ifp->if_flags &= ~XFS_IFEXTIREC;
  3448. ifp->if_u1.if_extents = ep;
  3449. ifp->if_bytes = size;
  3450. if (nextents < XFS_LINEAR_EXTS) {
  3451. xfs_iext_realloc_direct(ifp, size);
  3452. }
  3453. }
  3454. /*
  3455. * Free incore file extents.
  3456. */
  3457. void
  3458. xfs_iext_destroy(
  3459. xfs_ifork_t *ifp) /* inode fork pointer */
  3460. {
  3461. if (ifp->if_flags & XFS_IFEXTIREC) {
  3462. int erp_idx;
  3463. int nlists;
  3464. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3465. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3466. xfs_iext_irec_remove(ifp, erp_idx);
  3467. }
  3468. ifp->if_flags &= ~XFS_IFEXTIREC;
  3469. } else if (ifp->if_real_bytes) {
  3470. kmem_free(ifp->if_u1.if_extents);
  3471. } else if (ifp->if_bytes) {
  3472. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3473. sizeof(xfs_bmbt_rec_t));
  3474. }
  3475. ifp->if_u1.if_extents = NULL;
  3476. ifp->if_real_bytes = 0;
  3477. ifp->if_bytes = 0;
  3478. }
  3479. /*
  3480. * Return a pointer to the extent record for file system block bno.
  3481. */
  3482. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3483. xfs_iext_bno_to_ext(
  3484. xfs_ifork_t *ifp, /* inode fork pointer */
  3485. xfs_fileoff_t bno, /* block number to search for */
  3486. xfs_extnum_t *idxp) /* index of target extent */
  3487. {
  3488. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3489. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3490. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3491. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3492. int high; /* upper boundary in search */
  3493. xfs_extnum_t idx = 0; /* index of target extent */
  3494. int low; /* lower boundary in search */
  3495. xfs_extnum_t nextents; /* number of file extents */
  3496. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3497. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3498. if (nextents == 0) {
  3499. *idxp = 0;
  3500. return NULL;
  3501. }
  3502. low = 0;
  3503. if (ifp->if_flags & XFS_IFEXTIREC) {
  3504. /* Find target extent list */
  3505. int erp_idx = 0;
  3506. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3507. base = erp->er_extbuf;
  3508. high = erp->er_extcount - 1;
  3509. } else {
  3510. base = ifp->if_u1.if_extents;
  3511. high = nextents - 1;
  3512. }
  3513. /* Binary search extent records */
  3514. while (low <= high) {
  3515. idx = (low + high) >> 1;
  3516. ep = base + idx;
  3517. startoff = xfs_bmbt_get_startoff(ep);
  3518. blockcount = xfs_bmbt_get_blockcount(ep);
  3519. if (bno < startoff) {
  3520. high = idx - 1;
  3521. } else if (bno >= startoff + blockcount) {
  3522. low = idx + 1;
  3523. } else {
  3524. /* Convert back to file-based extent index */
  3525. if (ifp->if_flags & XFS_IFEXTIREC) {
  3526. idx += erp->er_extoff;
  3527. }
  3528. *idxp = idx;
  3529. return ep;
  3530. }
  3531. }
  3532. /* Convert back to file-based extent index */
  3533. if (ifp->if_flags & XFS_IFEXTIREC) {
  3534. idx += erp->er_extoff;
  3535. }
  3536. if (bno >= startoff + blockcount) {
  3537. if (++idx == nextents) {
  3538. ep = NULL;
  3539. } else {
  3540. ep = xfs_iext_get_ext(ifp, idx);
  3541. }
  3542. }
  3543. *idxp = idx;
  3544. return ep;
  3545. }
  3546. /*
  3547. * Return a pointer to the indirection array entry containing the
  3548. * extent record for filesystem block bno. Store the index of the
  3549. * target irec in *erp_idxp.
  3550. */
  3551. xfs_ext_irec_t * /* pointer to found extent record */
  3552. xfs_iext_bno_to_irec(
  3553. xfs_ifork_t *ifp, /* inode fork pointer */
  3554. xfs_fileoff_t bno, /* block number to search for */
  3555. int *erp_idxp) /* irec index of target ext list */
  3556. {
  3557. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3558. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3559. int erp_idx; /* indirection array index */
  3560. int nlists; /* number of extent irec's (lists) */
  3561. int high; /* binary search upper limit */
  3562. int low; /* binary search lower limit */
  3563. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3564. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3565. erp_idx = 0;
  3566. low = 0;
  3567. high = nlists - 1;
  3568. while (low <= high) {
  3569. erp_idx = (low + high) >> 1;
  3570. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3571. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3572. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3573. high = erp_idx - 1;
  3574. } else if (erp_next && bno >=
  3575. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3576. low = erp_idx + 1;
  3577. } else {
  3578. break;
  3579. }
  3580. }
  3581. *erp_idxp = erp_idx;
  3582. return erp;
  3583. }
  3584. /*
  3585. * Return a pointer to the indirection array entry containing the
  3586. * extent record at file extent index *idxp. Store the index of the
  3587. * target irec in *erp_idxp and store the page index of the target
  3588. * extent record in *idxp.
  3589. */
  3590. xfs_ext_irec_t *
  3591. xfs_iext_idx_to_irec(
  3592. xfs_ifork_t *ifp, /* inode fork pointer */
  3593. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3594. int *erp_idxp, /* pointer to target irec */
  3595. int realloc) /* new bytes were just added */
  3596. {
  3597. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3598. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3599. int erp_idx; /* indirection array index */
  3600. int nlists; /* number of irec's (ex lists) */
  3601. int high; /* binary search upper limit */
  3602. int low; /* binary search lower limit */
  3603. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3604. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3605. ASSERT(page_idx >= 0 && page_idx <=
  3606. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3607. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3608. erp_idx = 0;
  3609. low = 0;
  3610. high = nlists - 1;
  3611. /* Binary search extent irec's */
  3612. while (low <= high) {
  3613. erp_idx = (low + high) >> 1;
  3614. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3615. prev = erp_idx > 0 ? erp - 1 : NULL;
  3616. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3617. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3618. high = erp_idx - 1;
  3619. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3620. (page_idx == erp->er_extoff + erp->er_extcount &&
  3621. !realloc)) {
  3622. low = erp_idx + 1;
  3623. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3624. erp->er_extcount == XFS_LINEAR_EXTS) {
  3625. ASSERT(realloc);
  3626. page_idx = 0;
  3627. erp_idx++;
  3628. erp = erp_idx < nlists ? erp + 1 : NULL;
  3629. break;
  3630. } else {
  3631. page_idx -= erp->er_extoff;
  3632. break;
  3633. }
  3634. }
  3635. *idxp = page_idx;
  3636. *erp_idxp = erp_idx;
  3637. return(erp);
  3638. }
  3639. /*
  3640. * Allocate and initialize an indirection array once the space needed
  3641. * for incore extents increases above XFS_IEXT_BUFSZ.
  3642. */
  3643. void
  3644. xfs_iext_irec_init(
  3645. xfs_ifork_t *ifp) /* inode fork pointer */
  3646. {
  3647. xfs_ext_irec_t *erp; /* indirection array pointer */
  3648. xfs_extnum_t nextents; /* number of extents in file */
  3649. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3650. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3651. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3652. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3653. if (nextents == 0) {
  3654. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3655. } else if (!ifp->if_real_bytes) {
  3656. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3657. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3658. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3659. }
  3660. erp->er_extbuf = ifp->if_u1.if_extents;
  3661. erp->er_extcount = nextents;
  3662. erp->er_extoff = 0;
  3663. ifp->if_flags |= XFS_IFEXTIREC;
  3664. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3665. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3666. ifp->if_u1.if_ext_irec = erp;
  3667. return;
  3668. }
  3669. /*
  3670. * Allocate and initialize a new entry in the indirection array.
  3671. */
  3672. xfs_ext_irec_t *
  3673. xfs_iext_irec_new(
  3674. xfs_ifork_t *ifp, /* inode fork pointer */
  3675. int erp_idx) /* index for new irec */
  3676. {
  3677. xfs_ext_irec_t *erp; /* indirection array pointer */
  3678. int i; /* loop counter */
  3679. int nlists; /* number of irec's (ex lists) */
  3680. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3681. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3682. /* Resize indirection array */
  3683. xfs_iext_realloc_indirect(ifp, ++nlists *
  3684. sizeof(xfs_ext_irec_t));
  3685. /*
  3686. * Move records down in the array so the
  3687. * new page can use erp_idx.
  3688. */
  3689. erp = ifp->if_u1.if_ext_irec;
  3690. for (i = nlists - 1; i > erp_idx; i--) {
  3691. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3692. }
  3693. ASSERT(i == erp_idx);
  3694. /* Initialize new extent record */
  3695. erp = ifp->if_u1.if_ext_irec;
  3696. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3697. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3698. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3699. erp[erp_idx].er_extcount = 0;
  3700. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3701. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3702. return (&erp[erp_idx]);
  3703. }
  3704. /*
  3705. * Remove a record from the indirection array.
  3706. */
  3707. void
  3708. xfs_iext_irec_remove(
  3709. xfs_ifork_t *ifp, /* inode fork pointer */
  3710. int erp_idx) /* irec index to remove */
  3711. {
  3712. xfs_ext_irec_t *erp; /* indirection array pointer */
  3713. int i; /* loop counter */
  3714. int nlists; /* number of irec's (ex lists) */
  3715. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3716. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3717. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3718. if (erp->er_extbuf) {
  3719. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3720. -erp->er_extcount);
  3721. kmem_free(erp->er_extbuf);
  3722. }
  3723. /* Compact extent records */
  3724. erp = ifp->if_u1.if_ext_irec;
  3725. for (i = erp_idx; i < nlists - 1; i++) {
  3726. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3727. }
  3728. /*
  3729. * Manually free the last extent record from the indirection
  3730. * array. A call to xfs_iext_realloc_indirect() with a size
  3731. * of zero would result in a call to xfs_iext_destroy() which
  3732. * would in turn call this function again, creating a nasty
  3733. * infinite loop.
  3734. */
  3735. if (--nlists) {
  3736. xfs_iext_realloc_indirect(ifp,
  3737. nlists * sizeof(xfs_ext_irec_t));
  3738. } else {
  3739. kmem_free(ifp->if_u1.if_ext_irec);
  3740. }
  3741. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3742. }
  3743. /*
  3744. * This is called to clean up large amounts of unused memory allocated
  3745. * by the indirection array. Before compacting anything though, verify
  3746. * that the indirection array is still needed and switch back to the
  3747. * linear extent list (or even the inline buffer) if possible. The
  3748. * compaction policy is as follows:
  3749. *
  3750. * Full Compaction: Extents fit into a single page (or inline buffer)
  3751. * Partial Compaction: Extents occupy less than 50% of allocated space
  3752. * No Compaction: Extents occupy at least 50% of allocated space
  3753. */
  3754. void
  3755. xfs_iext_irec_compact(
  3756. xfs_ifork_t *ifp) /* inode fork pointer */
  3757. {
  3758. xfs_extnum_t nextents; /* number of extents in file */
  3759. int nlists; /* number of irec's (ex lists) */
  3760. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3761. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3762. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3763. if (nextents == 0) {
  3764. xfs_iext_destroy(ifp);
  3765. } else if (nextents <= XFS_INLINE_EXTS) {
  3766. xfs_iext_indirect_to_direct(ifp);
  3767. xfs_iext_direct_to_inline(ifp, nextents);
  3768. } else if (nextents <= XFS_LINEAR_EXTS) {
  3769. xfs_iext_indirect_to_direct(ifp);
  3770. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3771. xfs_iext_irec_compact_pages(ifp);
  3772. }
  3773. }
  3774. /*
  3775. * Combine extents from neighboring extent pages.
  3776. */
  3777. void
  3778. xfs_iext_irec_compact_pages(
  3779. xfs_ifork_t *ifp) /* inode fork pointer */
  3780. {
  3781. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3782. int erp_idx = 0; /* indirection array index */
  3783. int nlists; /* number of irec's (ex lists) */
  3784. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3785. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3786. while (erp_idx < nlists - 1) {
  3787. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3788. erp_next = erp + 1;
  3789. if (erp_next->er_extcount <=
  3790. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3791. memcpy(&erp->er_extbuf[erp->er_extcount],
  3792. erp_next->er_extbuf, erp_next->er_extcount *
  3793. sizeof(xfs_bmbt_rec_t));
  3794. erp->er_extcount += erp_next->er_extcount;
  3795. /*
  3796. * Free page before removing extent record
  3797. * so er_extoffs don't get modified in
  3798. * xfs_iext_irec_remove.
  3799. */
  3800. kmem_free(erp_next->er_extbuf);
  3801. erp_next->er_extbuf = NULL;
  3802. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3803. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3804. } else {
  3805. erp_idx++;
  3806. }
  3807. }
  3808. }
  3809. /*
  3810. * This is called to update the er_extoff field in the indirection
  3811. * array when extents have been added or removed from one of the
  3812. * extent lists. erp_idx contains the irec index to begin updating
  3813. * at and ext_diff contains the number of extents that were added
  3814. * or removed.
  3815. */
  3816. void
  3817. xfs_iext_irec_update_extoffs(
  3818. xfs_ifork_t *ifp, /* inode fork pointer */
  3819. int erp_idx, /* irec index to update */
  3820. int ext_diff) /* number of new extents */
  3821. {
  3822. int i; /* loop counter */
  3823. int nlists; /* number of irec's (ex lists */
  3824. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3825. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3826. for (i = erp_idx; i < nlists; i++) {
  3827. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3828. }
  3829. }