arm.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167
  1. /*
  2. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  3. * Author: Christoffer Dall <c.dall@virtualopensystems.com>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License, version 2, as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/err.h>
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/fs.h>
  24. #include <linux/mman.h>
  25. #include <linux/sched.h>
  26. #include <linux/kvm.h>
  27. #include <trace/events/kvm.h>
  28. #define CREATE_TRACE_POINTS
  29. #include "trace.h"
  30. #include <asm/unified.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/ptrace.h>
  33. #include <asm/mman.h>
  34. #include <asm/cputype.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/cacheflush.h>
  37. #include <asm/virt.h>
  38. #include <asm/kvm_arm.h>
  39. #include <asm/kvm_asm.h>
  40. #include <asm/kvm_mmu.h>
  41. #include <asm/kvm_emulate.h>
  42. #include <asm/kvm_coproc.h>
  43. #include <asm/kvm_psci.h>
  44. #include <asm/opcodes.h>
  45. #ifdef REQUIRES_VIRT
  46. __asm__(".arch_extension virt");
  47. #endif
  48. static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  49. static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
  50. static unsigned long hyp_default_vectors;
  51. /* Per-CPU variable containing the currently running vcpu. */
  52. static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  53. /* The VMID used in the VTTBR */
  54. static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  55. static u8 kvm_next_vmid;
  56. static DEFINE_SPINLOCK(kvm_vmid_lock);
  57. static bool vgic_present;
  58. static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  59. {
  60. BUG_ON(preemptible());
  61. __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
  62. }
  63. /**
  64. * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  65. * Must be called from non-preemptible context
  66. */
  67. struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  68. {
  69. BUG_ON(preemptible());
  70. return __get_cpu_var(kvm_arm_running_vcpu);
  71. }
  72. /**
  73. * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  74. */
  75. struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
  76. {
  77. return &kvm_arm_running_vcpu;
  78. }
  79. int kvm_arch_hardware_enable(void *garbage)
  80. {
  81. return 0;
  82. }
  83. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  84. {
  85. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  86. }
  87. void kvm_arch_hardware_disable(void *garbage)
  88. {
  89. }
  90. int kvm_arch_hardware_setup(void)
  91. {
  92. return 0;
  93. }
  94. void kvm_arch_hardware_unsetup(void)
  95. {
  96. }
  97. void kvm_arch_check_processor_compat(void *rtn)
  98. {
  99. *(int *)rtn = 0;
  100. }
  101. void kvm_arch_sync_events(struct kvm *kvm)
  102. {
  103. }
  104. /**
  105. * kvm_arch_init_vm - initializes a VM data structure
  106. * @kvm: pointer to the KVM struct
  107. */
  108. int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
  109. {
  110. int ret = 0;
  111. if (type)
  112. return -EINVAL;
  113. ret = kvm_alloc_stage2_pgd(kvm);
  114. if (ret)
  115. goto out_fail_alloc;
  116. ret = create_hyp_mappings(kvm, kvm + 1);
  117. if (ret)
  118. goto out_free_stage2_pgd;
  119. /* Mark the initial VMID generation invalid */
  120. kvm->arch.vmid_gen = 0;
  121. return ret;
  122. out_free_stage2_pgd:
  123. kvm_free_stage2_pgd(kvm);
  124. out_fail_alloc:
  125. return ret;
  126. }
  127. int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  128. {
  129. return VM_FAULT_SIGBUS;
  130. }
  131. void kvm_arch_free_memslot(struct kvm_memory_slot *free,
  132. struct kvm_memory_slot *dont)
  133. {
  134. }
  135. int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
  136. {
  137. return 0;
  138. }
  139. /**
  140. * kvm_arch_destroy_vm - destroy the VM data structure
  141. * @kvm: pointer to the KVM struct
  142. */
  143. void kvm_arch_destroy_vm(struct kvm *kvm)
  144. {
  145. int i;
  146. kvm_free_stage2_pgd(kvm);
  147. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  148. if (kvm->vcpus[i]) {
  149. kvm_arch_vcpu_free(kvm->vcpus[i]);
  150. kvm->vcpus[i] = NULL;
  151. }
  152. }
  153. }
  154. int kvm_dev_ioctl_check_extension(long ext)
  155. {
  156. int r;
  157. switch (ext) {
  158. case KVM_CAP_IRQCHIP:
  159. r = vgic_present;
  160. break;
  161. case KVM_CAP_USER_MEMORY:
  162. case KVM_CAP_SYNC_MMU:
  163. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  164. case KVM_CAP_ONE_REG:
  165. case KVM_CAP_ARM_PSCI:
  166. r = 1;
  167. break;
  168. case KVM_CAP_COALESCED_MMIO:
  169. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  170. break;
  171. case KVM_CAP_ARM_SET_DEVICE_ADDR:
  172. r = 1;
  173. case KVM_CAP_NR_VCPUS:
  174. r = num_online_cpus();
  175. break;
  176. case KVM_CAP_MAX_VCPUS:
  177. r = KVM_MAX_VCPUS;
  178. break;
  179. default:
  180. r = 0;
  181. break;
  182. }
  183. return r;
  184. }
  185. long kvm_arch_dev_ioctl(struct file *filp,
  186. unsigned int ioctl, unsigned long arg)
  187. {
  188. return -EINVAL;
  189. }
  190. int kvm_arch_set_memory_region(struct kvm *kvm,
  191. struct kvm_userspace_memory_region *mem,
  192. struct kvm_memory_slot old,
  193. int user_alloc)
  194. {
  195. return 0;
  196. }
  197. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  198. struct kvm_memory_slot *memslot,
  199. struct kvm_userspace_memory_region *mem,
  200. enum kvm_mr_change change)
  201. {
  202. return 0;
  203. }
  204. void kvm_arch_commit_memory_region(struct kvm *kvm,
  205. struct kvm_userspace_memory_region *mem,
  206. struct kvm_memory_slot old)
  207. {
  208. }
  209. void kvm_arch_flush_shadow_all(struct kvm *kvm)
  210. {
  211. }
  212. void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
  213. struct kvm_memory_slot *slot)
  214. {
  215. }
  216. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
  217. {
  218. int err;
  219. struct kvm_vcpu *vcpu;
  220. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  221. if (!vcpu) {
  222. err = -ENOMEM;
  223. goto out;
  224. }
  225. err = kvm_vcpu_init(vcpu, kvm, id);
  226. if (err)
  227. goto free_vcpu;
  228. err = create_hyp_mappings(vcpu, vcpu + 1);
  229. if (err)
  230. goto vcpu_uninit;
  231. return vcpu;
  232. vcpu_uninit:
  233. kvm_vcpu_uninit(vcpu);
  234. free_vcpu:
  235. kmem_cache_free(kvm_vcpu_cache, vcpu);
  236. out:
  237. return ERR_PTR(err);
  238. }
  239. int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  240. {
  241. return 0;
  242. }
  243. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  244. {
  245. kvm_mmu_free_memory_caches(vcpu);
  246. kvm_timer_vcpu_terminate(vcpu);
  247. kmem_cache_free(kvm_vcpu_cache, vcpu);
  248. }
  249. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  250. {
  251. kvm_arch_vcpu_free(vcpu);
  252. }
  253. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  254. {
  255. return 0;
  256. }
  257. int __attribute_const__ kvm_target_cpu(void)
  258. {
  259. unsigned long implementor = read_cpuid_implementor();
  260. unsigned long part_number = read_cpuid_part_number();
  261. if (implementor != ARM_CPU_IMP_ARM)
  262. return -EINVAL;
  263. switch (part_number) {
  264. case ARM_CPU_PART_CORTEX_A15:
  265. return KVM_ARM_TARGET_CORTEX_A15;
  266. default:
  267. return -EINVAL;
  268. }
  269. }
  270. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  271. {
  272. int ret;
  273. /* Force users to call KVM_ARM_VCPU_INIT */
  274. vcpu->arch.target = -1;
  275. /* Set up VGIC */
  276. ret = kvm_vgic_vcpu_init(vcpu);
  277. if (ret)
  278. return ret;
  279. /* Set up the timer */
  280. kvm_timer_vcpu_init(vcpu);
  281. return 0;
  282. }
  283. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  284. {
  285. }
  286. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  287. {
  288. vcpu->cpu = cpu;
  289. vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
  290. /*
  291. * Check whether this vcpu requires the cache to be flushed on
  292. * this physical CPU. This is a consequence of doing dcache
  293. * operations by set/way on this vcpu. We do it here to be in
  294. * a non-preemptible section.
  295. */
  296. if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
  297. flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
  298. kvm_arm_set_running_vcpu(vcpu);
  299. }
  300. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  301. {
  302. kvm_arm_set_running_vcpu(NULL);
  303. }
  304. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  305. struct kvm_guest_debug *dbg)
  306. {
  307. return -EINVAL;
  308. }
  309. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  310. struct kvm_mp_state *mp_state)
  311. {
  312. return -EINVAL;
  313. }
  314. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  315. struct kvm_mp_state *mp_state)
  316. {
  317. return -EINVAL;
  318. }
  319. /**
  320. * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
  321. * @v: The VCPU pointer
  322. *
  323. * If the guest CPU is not waiting for interrupts or an interrupt line is
  324. * asserted, the CPU is by definition runnable.
  325. */
  326. int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
  327. {
  328. return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
  329. }
  330. /* Just ensure a guest exit from a particular CPU */
  331. static void exit_vm_noop(void *info)
  332. {
  333. }
  334. void force_vm_exit(const cpumask_t *mask)
  335. {
  336. smp_call_function_many(mask, exit_vm_noop, NULL, true);
  337. }
  338. /**
  339. * need_new_vmid_gen - check that the VMID is still valid
  340. * @kvm: The VM's VMID to checkt
  341. *
  342. * return true if there is a new generation of VMIDs being used
  343. *
  344. * The hardware supports only 256 values with the value zero reserved for the
  345. * host, so we check if an assigned value belongs to a previous generation,
  346. * which which requires us to assign a new value. If we're the first to use a
  347. * VMID for the new generation, we must flush necessary caches and TLBs on all
  348. * CPUs.
  349. */
  350. static bool need_new_vmid_gen(struct kvm *kvm)
  351. {
  352. return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
  353. }
  354. /**
  355. * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
  356. * @kvm The guest that we are about to run
  357. *
  358. * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
  359. * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
  360. * caches and TLBs.
  361. */
  362. static void update_vttbr(struct kvm *kvm)
  363. {
  364. phys_addr_t pgd_phys;
  365. u64 vmid;
  366. if (!need_new_vmid_gen(kvm))
  367. return;
  368. spin_lock(&kvm_vmid_lock);
  369. /*
  370. * We need to re-check the vmid_gen here to ensure that if another vcpu
  371. * already allocated a valid vmid for this vm, then this vcpu should
  372. * use the same vmid.
  373. */
  374. if (!need_new_vmid_gen(kvm)) {
  375. spin_unlock(&kvm_vmid_lock);
  376. return;
  377. }
  378. /* First user of a new VMID generation? */
  379. if (unlikely(kvm_next_vmid == 0)) {
  380. atomic64_inc(&kvm_vmid_gen);
  381. kvm_next_vmid = 1;
  382. /*
  383. * On SMP we know no other CPUs can use this CPU's or each
  384. * other's VMID after force_vm_exit returns since the
  385. * kvm_vmid_lock blocks them from reentry to the guest.
  386. */
  387. force_vm_exit(cpu_all_mask);
  388. /*
  389. * Now broadcast TLB + ICACHE invalidation over the inner
  390. * shareable domain to make sure all data structures are
  391. * clean.
  392. */
  393. kvm_call_hyp(__kvm_flush_vm_context);
  394. }
  395. kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
  396. kvm->arch.vmid = kvm_next_vmid;
  397. kvm_next_vmid++;
  398. /* update vttbr to be used with the new vmid */
  399. pgd_phys = virt_to_phys(kvm->arch.pgd);
  400. vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
  401. kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
  402. kvm->arch.vttbr |= vmid;
  403. spin_unlock(&kvm_vmid_lock);
  404. }
  405. static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
  406. {
  407. /* SVC called from Hyp mode should never get here */
  408. kvm_debug("SVC called from Hyp mode shouldn't go here\n");
  409. BUG();
  410. return -EINVAL; /* Squash warning */
  411. }
  412. static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
  413. {
  414. trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
  415. vcpu->arch.hsr & HSR_HVC_IMM_MASK);
  416. if (kvm_psci_call(vcpu))
  417. return 1;
  418. kvm_inject_undefined(vcpu);
  419. return 1;
  420. }
  421. static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
  422. {
  423. if (kvm_psci_call(vcpu))
  424. return 1;
  425. kvm_inject_undefined(vcpu);
  426. return 1;
  427. }
  428. static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
  429. {
  430. /* The hypervisor should never cause aborts */
  431. kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
  432. vcpu->arch.hxfar, vcpu->arch.hsr);
  433. return -EFAULT;
  434. }
  435. static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
  436. {
  437. /* This is either an error in the ws. code or an external abort */
  438. kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
  439. vcpu->arch.hxfar, vcpu->arch.hsr);
  440. return -EFAULT;
  441. }
  442. typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
  443. static exit_handle_fn arm_exit_handlers[] = {
  444. [HSR_EC_WFI] = kvm_handle_wfi,
  445. [HSR_EC_CP15_32] = kvm_handle_cp15_32,
  446. [HSR_EC_CP15_64] = kvm_handle_cp15_64,
  447. [HSR_EC_CP14_MR] = kvm_handle_cp14_access,
  448. [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
  449. [HSR_EC_CP14_64] = kvm_handle_cp14_access,
  450. [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
  451. [HSR_EC_CP10_ID] = kvm_handle_cp10_id,
  452. [HSR_EC_SVC_HYP] = handle_svc_hyp,
  453. [HSR_EC_HVC] = handle_hvc,
  454. [HSR_EC_SMC] = handle_smc,
  455. [HSR_EC_IABT] = kvm_handle_guest_abort,
  456. [HSR_EC_IABT_HYP] = handle_pabt_hyp,
  457. [HSR_EC_DABT] = kvm_handle_guest_abort,
  458. [HSR_EC_DABT_HYP] = handle_dabt_hyp,
  459. };
  460. /*
  461. * A conditional instruction is allowed to trap, even though it
  462. * wouldn't be executed. So let's re-implement the hardware, in
  463. * software!
  464. */
  465. static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
  466. {
  467. unsigned long cpsr, cond, insn;
  468. /*
  469. * Exception Code 0 can only happen if we set HCR.TGE to 1, to
  470. * catch undefined instructions, and then we won't get past
  471. * the arm_exit_handlers test anyway.
  472. */
  473. BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
  474. /* Top two bits non-zero? Unconditional. */
  475. if (vcpu->arch.hsr >> 30)
  476. return true;
  477. cpsr = *vcpu_cpsr(vcpu);
  478. /* Is condition field valid? */
  479. if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
  480. cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
  481. else {
  482. /* This can happen in Thumb mode: examine IT state. */
  483. unsigned long it;
  484. it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
  485. /* it == 0 => unconditional. */
  486. if (it == 0)
  487. return true;
  488. /* The cond for this insn works out as the top 4 bits. */
  489. cond = (it >> 4);
  490. }
  491. /* Shift makes it look like an ARM-mode instruction */
  492. insn = cond << 28;
  493. return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
  494. }
  495. /*
  496. * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
  497. * proper exit to QEMU.
  498. */
  499. static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
  500. int exception_index)
  501. {
  502. unsigned long hsr_ec;
  503. switch (exception_index) {
  504. case ARM_EXCEPTION_IRQ:
  505. return 1;
  506. case ARM_EXCEPTION_UNDEFINED:
  507. kvm_err("Undefined exception in Hyp mode at: %#08x\n",
  508. vcpu->arch.hyp_pc);
  509. BUG();
  510. panic("KVM: Hypervisor undefined exception!\n");
  511. case ARM_EXCEPTION_DATA_ABORT:
  512. case ARM_EXCEPTION_PREF_ABORT:
  513. case ARM_EXCEPTION_HVC:
  514. hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
  515. if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
  516. || !arm_exit_handlers[hsr_ec]) {
  517. kvm_err("Unkown exception class: %#08lx, "
  518. "hsr: %#08x\n", hsr_ec,
  519. (unsigned int)vcpu->arch.hsr);
  520. BUG();
  521. }
  522. /*
  523. * See ARM ARM B1.14.1: "Hyp traps on instructions
  524. * that fail their condition code check"
  525. */
  526. if (!kvm_condition_valid(vcpu)) {
  527. bool is_wide = vcpu->arch.hsr & HSR_IL;
  528. kvm_skip_instr(vcpu, is_wide);
  529. return 1;
  530. }
  531. return arm_exit_handlers[hsr_ec](vcpu, run);
  532. default:
  533. kvm_pr_unimpl("Unsupported exception type: %d",
  534. exception_index);
  535. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  536. return 0;
  537. }
  538. }
  539. static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
  540. {
  541. if (likely(vcpu->arch.has_run_once))
  542. return 0;
  543. vcpu->arch.has_run_once = true;
  544. /*
  545. * Initialize the VGIC before running a vcpu the first time on
  546. * this VM.
  547. */
  548. if (irqchip_in_kernel(vcpu->kvm) &&
  549. unlikely(!vgic_initialized(vcpu->kvm))) {
  550. int ret = kvm_vgic_init(vcpu->kvm);
  551. if (ret)
  552. return ret;
  553. }
  554. /*
  555. * Handle the "start in power-off" case by calling into the
  556. * PSCI code.
  557. */
  558. if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
  559. *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
  560. kvm_psci_call(vcpu);
  561. }
  562. return 0;
  563. }
  564. static void vcpu_pause(struct kvm_vcpu *vcpu)
  565. {
  566. wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
  567. wait_event_interruptible(*wq, !vcpu->arch.pause);
  568. }
  569. /**
  570. * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
  571. * @vcpu: The VCPU pointer
  572. * @run: The kvm_run structure pointer used for userspace state exchange
  573. *
  574. * This function is called through the VCPU_RUN ioctl called from user space. It
  575. * will execute VM code in a loop until the time slice for the process is used
  576. * or some emulation is needed from user space in which case the function will
  577. * return with return value 0 and with the kvm_run structure filled in with the
  578. * required data for the requested emulation.
  579. */
  580. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
  581. {
  582. int ret;
  583. sigset_t sigsaved;
  584. /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
  585. if (unlikely(vcpu->arch.target < 0))
  586. return -ENOEXEC;
  587. ret = kvm_vcpu_first_run_init(vcpu);
  588. if (ret)
  589. return ret;
  590. if (run->exit_reason == KVM_EXIT_MMIO) {
  591. ret = kvm_handle_mmio_return(vcpu, vcpu->run);
  592. if (ret)
  593. return ret;
  594. }
  595. if (vcpu->sigset_active)
  596. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  597. ret = 1;
  598. run->exit_reason = KVM_EXIT_UNKNOWN;
  599. while (ret > 0) {
  600. /*
  601. * Check conditions before entering the guest
  602. */
  603. cond_resched();
  604. update_vttbr(vcpu->kvm);
  605. if (vcpu->arch.pause)
  606. vcpu_pause(vcpu);
  607. kvm_vgic_flush_hwstate(vcpu);
  608. kvm_timer_flush_hwstate(vcpu);
  609. local_irq_disable();
  610. /*
  611. * Re-check atomic conditions
  612. */
  613. if (signal_pending(current)) {
  614. ret = -EINTR;
  615. run->exit_reason = KVM_EXIT_INTR;
  616. }
  617. if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
  618. local_irq_enable();
  619. kvm_timer_sync_hwstate(vcpu);
  620. kvm_vgic_sync_hwstate(vcpu);
  621. continue;
  622. }
  623. /**************************************************************
  624. * Enter the guest
  625. */
  626. trace_kvm_entry(*vcpu_pc(vcpu));
  627. kvm_guest_enter();
  628. vcpu->mode = IN_GUEST_MODE;
  629. ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
  630. vcpu->mode = OUTSIDE_GUEST_MODE;
  631. vcpu->arch.last_pcpu = smp_processor_id();
  632. kvm_guest_exit();
  633. trace_kvm_exit(*vcpu_pc(vcpu));
  634. /*
  635. * We may have taken a host interrupt in HYP mode (ie
  636. * while executing the guest). This interrupt is still
  637. * pending, as we haven't serviced it yet!
  638. *
  639. * We're now back in SVC mode, with interrupts
  640. * disabled. Enabling the interrupts now will have
  641. * the effect of taking the interrupt again, in SVC
  642. * mode this time.
  643. */
  644. local_irq_enable();
  645. /*
  646. * Back from guest
  647. *************************************************************/
  648. kvm_timer_sync_hwstate(vcpu);
  649. kvm_vgic_sync_hwstate(vcpu);
  650. ret = handle_exit(vcpu, run, ret);
  651. }
  652. if (vcpu->sigset_active)
  653. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  654. return ret;
  655. }
  656. static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
  657. {
  658. int bit_index;
  659. bool set;
  660. unsigned long *ptr;
  661. if (number == KVM_ARM_IRQ_CPU_IRQ)
  662. bit_index = __ffs(HCR_VI);
  663. else /* KVM_ARM_IRQ_CPU_FIQ */
  664. bit_index = __ffs(HCR_VF);
  665. ptr = (unsigned long *)&vcpu->arch.irq_lines;
  666. if (level)
  667. set = test_and_set_bit(bit_index, ptr);
  668. else
  669. set = test_and_clear_bit(bit_index, ptr);
  670. /*
  671. * If we didn't change anything, no need to wake up or kick other CPUs
  672. */
  673. if (set == level)
  674. return 0;
  675. /*
  676. * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
  677. * trigger a world-switch round on the running physical CPU to set the
  678. * virtual IRQ/FIQ fields in the HCR appropriately.
  679. */
  680. kvm_vcpu_kick(vcpu);
  681. return 0;
  682. }
  683. int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
  684. {
  685. u32 irq = irq_level->irq;
  686. unsigned int irq_type, vcpu_idx, irq_num;
  687. int nrcpus = atomic_read(&kvm->online_vcpus);
  688. struct kvm_vcpu *vcpu = NULL;
  689. bool level = irq_level->level;
  690. irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
  691. vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
  692. irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
  693. trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
  694. switch (irq_type) {
  695. case KVM_ARM_IRQ_TYPE_CPU:
  696. if (irqchip_in_kernel(kvm))
  697. return -ENXIO;
  698. if (vcpu_idx >= nrcpus)
  699. return -EINVAL;
  700. vcpu = kvm_get_vcpu(kvm, vcpu_idx);
  701. if (!vcpu)
  702. return -EINVAL;
  703. if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
  704. return -EINVAL;
  705. return vcpu_interrupt_line(vcpu, irq_num, level);
  706. case KVM_ARM_IRQ_TYPE_PPI:
  707. if (!irqchip_in_kernel(kvm))
  708. return -ENXIO;
  709. if (vcpu_idx >= nrcpus)
  710. return -EINVAL;
  711. vcpu = kvm_get_vcpu(kvm, vcpu_idx);
  712. if (!vcpu)
  713. return -EINVAL;
  714. if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
  715. return -EINVAL;
  716. return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
  717. case KVM_ARM_IRQ_TYPE_SPI:
  718. if (!irqchip_in_kernel(kvm))
  719. return -ENXIO;
  720. if (irq_num < VGIC_NR_PRIVATE_IRQS ||
  721. irq_num > KVM_ARM_IRQ_GIC_MAX)
  722. return -EINVAL;
  723. return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
  724. }
  725. return -EINVAL;
  726. }
  727. long kvm_arch_vcpu_ioctl(struct file *filp,
  728. unsigned int ioctl, unsigned long arg)
  729. {
  730. struct kvm_vcpu *vcpu = filp->private_data;
  731. void __user *argp = (void __user *)arg;
  732. switch (ioctl) {
  733. case KVM_ARM_VCPU_INIT: {
  734. struct kvm_vcpu_init init;
  735. if (copy_from_user(&init, argp, sizeof(init)))
  736. return -EFAULT;
  737. return kvm_vcpu_set_target(vcpu, &init);
  738. }
  739. case KVM_SET_ONE_REG:
  740. case KVM_GET_ONE_REG: {
  741. struct kvm_one_reg reg;
  742. if (copy_from_user(&reg, argp, sizeof(reg)))
  743. return -EFAULT;
  744. if (ioctl == KVM_SET_ONE_REG)
  745. return kvm_arm_set_reg(vcpu, &reg);
  746. else
  747. return kvm_arm_get_reg(vcpu, &reg);
  748. }
  749. case KVM_GET_REG_LIST: {
  750. struct kvm_reg_list __user *user_list = argp;
  751. struct kvm_reg_list reg_list;
  752. unsigned n;
  753. if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
  754. return -EFAULT;
  755. n = reg_list.n;
  756. reg_list.n = kvm_arm_num_regs(vcpu);
  757. if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
  758. return -EFAULT;
  759. if (n < reg_list.n)
  760. return -E2BIG;
  761. return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
  762. }
  763. default:
  764. return -EINVAL;
  765. }
  766. }
  767. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  768. {
  769. return -EINVAL;
  770. }
  771. static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
  772. struct kvm_arm_device_addr *dev_addr)
  773. {
  774. unsigned long dev_id, type;
  775. dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
  776. KVM_ARM_DEVICE_ID_SHIFT;
  777. type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
  778. KVM_ARM_DEVICE_TYPE_SHIFT;
  779. switch (dev_id) {
  780. case KVM_ARM_DEVICE_VGIC_V2:
  781. if (!vgic_present)
  782. return -ENXIO;
  783. return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
  784. default:
  785. return -ENODEV;
  786. }
  787. }
  788. long kvm_arch_vm_ioctl(struct file *filp,
  789. unsigned int ioctl, unsigned long arg)
  790. {
  791. struct kvm *kvm = filp->private_data;
  792. void __user *argp = (void __user *)arg;
  793. switch (ioctl) {
  794. case KVM_CREATE_IRQCHIP: {
  795. if (vgic_present)
  796. return kvm_vgic_create(kvm);
  797. else
  798. return -ENXIO;
  799. }
  800. case KVM_ARM_SET_DEVICE_ADDR: {
  801. struct kvm_arm_device_addr dev_addr;
  802. if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
  803. return -EFAULT;
  804. return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
  805. }
  806. default:
  807. return -EINVAL;
  808. }
  809. }
  810. static void cpu_init_hyp_mode(void *vector)
  811. {
  812. unsigned long long pgd_ptr;
  813. unsigned long pgd_low, pgd_high;
  814. unsigned long hyp_stack_ptr;
  815. unsigned long stack_page;
  816. unsigned long vector_ptr;
  817. /* Switch from the HYP stub to our own HYP init vector */
  818. __hyp_set_vectors((unsigned long)vector);
  819. pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
  820. pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
  821. pgd_high = (pgd_ptr >> 32ULL);
  822. stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
  823. hyp_stack_ptr = stack_page + PAGE_SIZE;
  824. vector_ptr = (unsigned long)__kvm_hyp_vector;
  825. /*
  826. * Call initialization code, and switch to the full blown
  827. * HYP code. The init code doesn't need to preserve these registers as
  828. * r1-r3 and r12 are already callee save according to the AAPCS.
  829. * Note that we slightly misuse the prototype by casing the pgd_low to
  830. * a void *.
  831. */
  832. kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
  833. }
  834. /**
  835. * Inits Hyp-mode on all online CPUs
  836. */
  837. static int init_hyp_mode(void)
  838. {
  839. phys_addr_t init_phys_addr;
  840. int cpu;
  841. int err = 0;
  842. /*
  843. * Allocate Hyp PGD and setup Hyp identity mapping
  844. */
  845. err = kvm_mmu_init();
  846. if (err)
  847. goto out_err;
  848. /*
  849. * It is probably enough to obtain the default on one
  850. * CPU. It's unlikely to be different on the others.
  851. */
  852. hyp_default_vectors = __hyp_get_vectors();
  853. /*
  854. * Allocate stack pages for Hypervisor-mode
  855. */
  856. for_each_possible_cpu(cpu) {
  857. unsigned long stack_page;
  858. stack_page = __get_free_page(GFP_KERNEL);
  859. if (!stack_page) {
  860. err = -ENOMEM;
  861. goto out_free_stack_pages;
  862. }
  863. per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
  864. }
  865. /*
  866. * Execute the init code on each CPU.
  867. *
  868. * Note: The stack is not mapped yet, so don't do anything else than
  869. * initializing the hypervisor mode on each CPU using a local stack
  870. * space for temporary storage.
  871. */
  872. init_phys_addr = virt_to_phys(__kvm_hyp_init);
  873. for_each_online_cpu(cpu) {
  874. smp_call_function_single(cpu, cpu_init_hyp_mode,
  875. (void *)(long)init_phys_addr, 1);
  876. }
  877. /*
  878. * Unmap the identity mapping
  879. */
  880. kvm_clear_hyp_idmap();
  881. /*
  882. * Map the Hyp-code called directly from the host
  883. */
  884. err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
  885. if (err) {
  886. kvm_err("Cannot map world-switch code\n");
  887. goto out_free_mappings;
  888. }
  889. /*
  890. * Map the Hyp stack pages
  891. */
  892. for_each_possible_cpu(cpu) {
  893. char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
  894. err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
  895. if (err) {
  896. kvm_err("Cannot map hyp stack\n");
  897. goto out_free_mappings;
  898. }
  899. }
  900. /*
  901. * Map the host VFP structures
  902. */
  903. kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
  904. if (!kvm_host_vfp_state) {
  905. err = -ENOMEM;
  906. kvm_err("Cannot allocate host VFP state\n");
  907. goto out_free_mappings;
  908. }
  909. for_each_possible_cpu(cpu) {
  910. struct vfp_hard_struct *vfp;
  911. vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
  912. err = create_hyp_mappings(vfp, vfp + 1);
  913. if (err) {
  914. kvm_err("Cannot map host VFP state: %d\n", err);
  915. goto out_free_vfp;
  916. }
  917. }
  918. /*
  919. * Init HYP view of VGIC
  920. */
  921. err = kvm_vgic_hyp_init();
  922. if (err)
  923. goto out_free_vfp;
  924. #ifdef CONFIG_KVM_ARM_VGIC
  925. vgic_present = true;
  926. #endif
  927. /*
  928. * Init HYP architected timer support
  929. */
  930. err = kvm_timer_hyp_init();
  931. if (err)
  932. goto out_free_mappings;
  933. kvm_info("Hyp mode initialized successfully\n");
  934. return 0;
  935. out_free_vfp:
  936. free_percpu(kvm_host_vfp_state);
  937. out_free_mappings:
  938. free_hyp_pmds();
  939. out_free_stack_pages:
  940. for_each_possible_cpu(cpu)
  941. free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
  942. out_err:
  943. kvm_err("error initializing Hyp mode: %d\n", err);
  944. return err;
  945. }
  946. /**
  947. * Initialize Hyp-mode and memory mappings on all CPUs.
  948. */
  949. int kvm_arch_init(void *opaque)
  950. {
  951. int err;
  952. if (!is_hyp_mode_available()) {
  953. kvm_err("HYP mode not available\n");
  954. return -ENODEV;
  955. }
  956. if (kvm_target_cpu() < 0) {
  957. kvm_err("Target CPU not supported!\n");
  958. return -ENODEV;
  959. }
  960. err = init_hyp_mode();
  961. if (err)
  962. goto out_err;
  963. kvm_coproc_table_init();
  964. return 0;
  965. out_err:
  966. return err;
  967. }
  968. /* NOP: Compiling as a module not supported */
  969. void kvm_arch_exit(void)
  970. {
  971. }
  972. static int arm_init(void)
  973. {
  974. int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  975. return rc;
  976. }
  977. module_init(arm_init);