bpf_jit_comp.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. #include <linux/moduleloader.h>
  2. #include <linux/workqueue.h>
  3. #include <linux/netdevice.h>
  4. #include <linux/filter.h>
  5. #include <linux/cache.h>
  6. #include <asm/cacheflush.h>
  7. #include <asm/ptrace.h>
  8. #include "bpf_jit.h"
  9. int bpf_jit_enable __read_mostly;
  10. /* assembly code in arch/sparc/net/bpf_jit_asm.S */
  11. extern u32 bpf_jit_load_word[];
  12. extern u32 bpf_jit_load_half[];
  13. extern u32 bpf_jit_load_byte[];
  14. extern u32 bpf_jit_load_byte_msh[];
  15. extern u32 bpf_jit_load_word_positive_offset[];
  16. extern u32 bpf_jit_load_half_positive_offset[];
  17. extern u32 bpf_jit_load_byte_positive_offset[];
  18. extern u32 bpf_jit_load_byte_msh_positive_offset[];
  19. extern u32 bpf_jit_load_word_negative_offset[];
  20. extern u32 bpf_jit_load_half_negative_offset[];
  21. extern u32 bpf_jit_load_byte_negative_offset[];
  22. extern u32 bpf_jit_load_byte_msh_negative_offset[];
  23. static inline bool is_simm13(unsigned int value)
  24. {
  25. return value + 0x1000 < 0x2000;
  26. }
  27. static void bpf_flush_icache(void *start_, void *end_)
  28. {
  29. #ifdef CONFIG_SPARC64
  30. /* Cheetah's I-cache is fully coherent. */
  31. if (tlb_type == spitfire) {
  32. unsigned long start = (unsigned long) start_;
  33. unsigned long end = (unsigned long) end_;
  34. start &= ~7UL;
  35. end = (end + 7UL) & ~7UL;
  36. while (start < end) {
  37. flushi(start);
  38. start += 32;
  39. }
  40. }
  41. #endif
  42. }
  43. #define SEEN_DATAREF 1 /* might call external helpers */
  44. #define SEEN_XREG 2 /* ebx is used */
  45. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  46. #define S13(X) ((X) & 0x1fff)
  47. #define IMMED 0x00002000
  48. #define RD(X) ((X) << 25)
  49. #define RS1(X) ((X) << 14)
  50. #define RS2(X) ((X))
  51. #define OP(X) ((X) << 30)
  52. #define OP2(X) ((X) << 22)
  53. #define OP3(X) ((X) << 19)
  54. #define COND(X) ((X) << 25)
  55. #define F1(X) OP(X)
  56. #define F2(X, Y) (OP(X) | OP2(Y))
  57. #define F3(X, Y) (OP(X) | OP3(Y))
  58. #define CONDN COND (0x0)
  59. #define CONDE COND (0x1)
  60. #define CONDLE COND (0x2)
  61. #define CONDL COND (0x3)
  62. #define CONDLEU COND (0x4)
  63. #define CONDCS COND (0x5)
  64. #define CONDNEG COND (0x6)
  65. #define CONDVC COND (0x7)
  66. #define CONDA COND (0x8)
  67. #define CONDNE COND (0x9)
  68. #define CONDG COND (0xa)
  69. #define CONDGE COND (0xb)
  70. #define CONDGU COND (0xc)
  71. #define CONDCC COND (0xd)
  72. #define CONDPOS COND (0xe)
  73. #define CONDVS COND (0xf)
  74. #define CONDGEU CONDCC
  75. #define CONDLU CONDCS
  76. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  77. #define BA (F2(0, 2) | CONDA)
  78. #define BGU (F2(0, 2) | CONDGU)
  79. #define BLEU (F2(0, 2) | CONDLEU)
  80. #define BGEU (F2(0, 2) | CONDGEU)
  81. #define BLU (F2(0, 2) | CONDLU)
  82. #define BE (F2(0, 2) | CONDE)
  83. #define BNE (F2(0, 2) | CONDNE)
  84. #ifdef CONFIG_SPARC64
  85. #define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
  86. #else
  87. #define BNE_PTR BNE
  88. #endif
  89. #define SETHI(K, REG) \
  90. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  91. #define OR_LO(K, REG) \
  92. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  93. #define ADD F3(2, 0x00)
  94. #define AND F3(2, 0x01)
  95. #define ANDCC F3(2, 0x11)
  96. #define OR F3(2, 0x02)
  97. #define SUB F3(2, 0x04)
  98. #define SUBCC F3(2, 0x14)
  99. #define MUL F3(2, 0x0a) /* umul */
  100. #define DIV F3(2, 0x0e) /* udiv */
  101. #define SLL F3(2, 0x25)
  102. #define SRL F3(2, 0x26)
  103. #define JMPL F3(2, 0x38)
  104. #define CALL F1(1)
  105. #define BR F2(0, 0x01)
  106. #define RD_Y F3(2, 0x28)
  107. #define WR_Y F3(2, 0x30)
  108. #define LD32 F3(3, 0x00)
  109. #define LD8 F3(3, 0x01)
  110. #define LD16 F3(3, 0x02)
  111. #define LD64 F3(3, 0x0b)
  112. #define ST32 F3(3, 0x04)
  113. #ifdef CONFIG_SPARC64
  114. #define LDPTR LD64
  115. #define BASE_STACKFRAME 176
  116. #else
  117. #define LDPTR LD32
  118. #define BASE_STACKFRAME 96
  119. #endif
  120. #define LD32I (LD32 | IMMED)
  121. #define LD8I (LD8 | IMMED)
  122. #define LD16I (LD16 | IMMED)
  123. #define LD64I (LD64 | IMMED)
  124. #define LDPTRI (LDPTR | IMMED)
  125. #define ST32I (ST32 | IMMED)
  126. #define emit_nop() \
  127. do { \
  128. *prog++ = SETHI(0, G0); \
  129. } while (0)
  130. #define emit_neg() \
  131. do { /* sub %g0, r_A, r_A */ \
  132. *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
  133. } while (0)
  134. #define emit_reg_move(FROM, TO) \
  135. do { /* or %g0, FROM, TO */ \
  136. *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
  137. } while (0)
  138. #define emit_clear(REG) \
  139. do { /* or %g0, %g0, REG */ \
  140. *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
  141. } while (0)
  142. #define emit_set_const(K, REG) \
  143. do { /* sethi %hi(K), REG */ \
  144. *prog++ = SETHI(K, REG); \
  145. /* or REG, %lo(K), REG */ \
  146. *prog++ = OR_LO(K, REG); \
  147. } while (0)
  148. /* Emit
  149. *
  150. * OP r_A, r_X, r_A
  151. */
  152. #define emit_alu_X(OPCODE) \
  153. do { \
  154. seen |= SEEN_XREG; \
  155. *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
  156. } while (0)
  157. /* Emit either:
  158. *
  159. * OP r_A, K, r_A
  160. *
  161. * or
  162. *
  163. * sethi %hi(K), r_TMP
  164. * or r_TMP, %lo(K), r_TMP
  165. * OP r_A, r_TMP, r_A
  166. *
  167. * depending upon whether K fits in a signed 13-bit
  168. * immediate instruction field. Emit nothing if K
  169. * is zero.
  170. */
  171. #define emit_alu_K(OPCODE, K) \
  172. do { \
  173. if (K) { \
  174. unsigned int _insn = OPCODE; \
  175. _insn |= RS1(r_A) | RD(r_A); \
  176. if (is_simm13(K)) { \
  177. *prog++ = _insn | IMMED | S13(K); \
  178. } else { \
  179. emit_set_const(K, r_TMP); \
  180. *prog++ = _insn | RS2(r_TMP); \
  181. } \
  182. } \
  183. } while (0)
  184. #define emit_loadimm(K, DEST) \
  185. do { \
  186. if (is_simm13(K)) { \
  187. /* or %g0, K, DEST */ \
  188. *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
  189. } else { \
  190. emit_set_const(K, DEST); \
  191. } \
  192. } while (0)
  193. #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
  194. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  195. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
  196. *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
  197. } while(0)
  198. #define emit_load32(BASE, STRUCT, FIELD, DEST) \
  199. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  200. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
  201. *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
  202. } while(0)
  203. #define emit_load16(BASE, STRUCT, FIELD, DEST) \
  204. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  205. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
  206. *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
  207. } while(0)
  208. #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
  209. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  210. *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
  211. } while(0)
  212. #define emit_load8(BASE, STRUCT, FIELD, DEST) \
  213. do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
  214. __emit_load8(BASE, STRUCT, FIELD, DEST); \
  215. } while(0)
  216. #define emit_ldmem(OFF, DEST) \
  217. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
  218. } while(0)
  219. #define emit_stmem(OFF, SRC) \
  220. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
  221. } while(0)
  222. #define cpu_off offsetof(struct thread_info, cpu)
  223. #ifdef CONFIG_SMP
  224. #ifdef CONFIG_SPARC64
  225. #define emit_load_cpu(REG) \
  226. emit_load16(G6, struct thread_info, cpu, REG)
  227. #else
  228. #define emit_load_cpu(REG) \
  229. emit_load32(G6, struct thread_info, cpu, REG)
  230. #endif
  231. #else
  232. #define emit_load_cpu(REG) emit_clear(REG)
  233. #endif
  234. #define emit_skb_loadptr(FIELD, DEST) \
  235. emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
  236. #define emit_skb_load32(FIELD, DEST) \
  237. emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
  238. #define emit_skb_load16(FIELD, DEST) \
  239. emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
  240. #define __emit_skb_load8(FIELD, DEST) \
  241. __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  242. #define emit_skb_load8(FIELD, DEST) \
  243. emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  244. #define emit_jmpl(BASE, IMM_OFF, LREG) \
  245. *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
  246. #define emit_call(FUNC) \
  247. do { void *_here = image + addrs[i] - 8; \
  248. unsigned int _off = (void *)(FUNC) - _here; \
  249. *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
  250. emit_nop(); \
  251. } while (0)
  252. #define emit_branch(BR_OPC, DEST) \
  253. do { unsigned int _here = addrs[i] - 8; \
  254. *prog++ = BR_OPC | WDISP22((DEST) - _here); \
  255. } while(0)
  256. #define emit_branch_off(BR_OPC, OFF) \
  257. do { *prog++ = BR_OPC | WDISP22(OFF); \
  258. } while(0)
  259. #define emit_jump(DEST) emit_branch(BA, DEST)
  260. #define emit_read_y(REG) *prog++ = RD_Y | RD(REG);
  261. #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0);
  262. #define emit_cmp(R1, R2) \
  263. *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
  264. #define emit_cmpi(R1, IMM) \
  265. *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  266. #define emit_btst(R1, R2) \
  267. *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
  268. #define emit_btsti(R1, IMM) \
  269. *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  270. #define emit_sub(R1, R2, R3) \
  271. *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
  272. #define emit_subi(R1, IMM, R3) \
  273. *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  274. #define emit_add(R1, R2, R3) \
  275. *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
  276. #define emit_addi(R1, IMM, R3) \
  277. *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  278. #define emit_alloc_stack(SZ) \
  279. *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  280. #define emit_release_stack(SZ) \
  281. *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  282. void bpf_jit_compile(struct sk_filter *fp)
  283. {
  284. unsigned int cleanup_addr, proglen, oldproglen = 0;
  285. u32 temp[8], *prog, *func, seen = 0, pass;
  286. const struct sock_filter *filter = fp->insns;
  287. int i, flen = fp->len, pc_ret0 = -1;
  288. unsigned int *addrs;
  289. void *image;
  290. if (!bpf_jit_enable)
  291. return;
  292. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  293. if (addrs == NULL)
  294. return;
  295. /* Before first pass, make a rough estimation of addrs[]
  296. * each bpf instruction is translated to less than 64 bytes
  297. */
  298. for (proglen = 0, i = 0; i < flen; i++) {
  299. proglen += 64;
  300. addrs[i] = proglen;
  301. }
  302. cleanup_addr = proglen; /* epilogue address */
  303. image = NULL;
  304. for (pass = 0; pass < 10; pass++) {
  305. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  306. /* no prologue/epilogue for trivial filters (RET something) */
  307. proglen = 0;
  308. prog = temp;
  309. /* Prologue */
  310. if (seen_or_pass0) {
  311. if (seen_or_pass0 & SEEN_MEM) {
  312. unsigned int sz = BASE_STACKFRAME;
  313. sz += BPF_MEMWORDS * sizeof(u32);
  314. emit_alloc_stack(sz);
  315. }
  316. /* Make sure we dont leek kernel memory. */
  317. if (seen_or_pass0 & SEEN_XREG)
  318. emit_clear(r_X);
  319. /* If this filter needs to access skb data,
  320. * load %o4 and %o5 with:
  321. * %o4 = skb->len - skb->data_len
  322. * %o5 = skb->data
  323. * And also back up %o7 into r_saved_O7 so we can
  324. * invoke the stubs using 'call'.
  325. */
  326. if (seen_or_pass0 & SEEN_DATAREF) {
  327. emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
  328. emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
  329. emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
  330. emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
  331. }
  332. }
  333. emit_reg_move(O7, r_saved_O7);
  334. switch (filter[0].code) {
  335. case BPF_S_RET_K:
  336. case BPF_S_LD_W_LEN:
  337. case BPF_S_ANC_PROTOCOL:
  338. case BPF_S_ANC_PKTTYPE:
  339. case BPF_S_ANC_IFINDEX:
  340. case BPF_S_ANC_MARK:
  341. case BPF_S_ANC_RXHASH:
  342. case BPF_S_ANC_CPU:
  343. case BPF_S_ANC_QUEUE:
  344. case BPF_S_LD_W_ABS:
  345. case BPF_S_LD_H_ABS:
  346. case BPF_S_LD_B_ABS:
  347. /* The first instruction sets the A register (or is
  348. * a "RET 'constant'")
  349. */
  350. break;
  351. default:
  352. /* Make sure we dont leak kernel information to the
  353. * user.
  354. */
  355. emit_clear(r_A); /* A = 0 */
  356. }
  357. for (i = 0; i < flen; i++) {
  358. unsigned int K = filter[i].k;
  359. unsigned int t_offset;
  360. unsigned int f_offset;
  361. u32 t_op, f_op;
  362. int ilen;
  363. switch (filter[i].code) {
  364. case BPF_S_ALU_ADD_X: /* A += X; */
  365. emit_alu_X(ADD);
  366. break;
  367. case BPF_S_ALU_ADD_K: /* A += K; */
  368. emit_alu_K(ADD, K);
  369. break;
  370. case BPF_S_ALU_SUB_X: /* A -= X; */
  371. emit_alu_X(SUB);
  372. break;
  373. case BPF_S_ALU_SUB_K: /* A -= K */
  374. emit_alu_K(SUB, K);
  375. break;
  376. case BPF_S_ALU_AND_X: /* A &= X */
  377. emit_alu_X(AND);
  378. break;
  379. case BPF_S_ALU_AND_K: /* A &= K */
  380. emit_alu_K(AND, K);
  381. break;
  382. case BPF_S_ALU_OR_X: /* A |= X */
  383. emit_alu_X(OR);
  384. break;
  385. case BPF_S_ALU_OR_K: /* A |= K */
  386. emit_alu_K(OR, K);
  387. break;
  388. case BPF_S_ALU_LSH_X: /* A <<= X */
  389. emit_alu_X(SLL);
  390. break;
  391. case BPF_S_ALU_LSH_K: /* A <<= K */
  392. emit_alu_K(SLL, K);
  393. break;
  394. case BPF_S_ALU_RSH_X: /* A >>= X */
  395. emit_alu_X(SRL);
  396. break;
  397. case BPF_S_ALU_RSH_K: /* A >>= K */
  398. emit_alu_K(SRL, K);
  399. break;
  400. case BPF_S_ALU_MUL_X: /* A *= X; */
  401. emit_alu_X(MUL);
  402. break;
  403. case BPF_S_ALU_MUL_K: /* A *= K */
  404. emit_alu_K(MUL, K);
  405. break;
  406. case BPF_S_ALU_DIV_K: /* A /= K */
  407. emit_alu_K(MUL, K);
  408. emit_read_y(r_A);
  409. break;
  410. case BPF_S_ALU_DIV_X: /* A /= X; */
  411. emit_cmpi(r_X, 0);
  412. if (pc_ret0 > 0) {
  413. t_offset = addrs[pc_ret0 - 1];
  414. #ifdef CONFIG_SPARC32
  415. emit_branch(BE, t_offset + 20);
  416. #else
  417. emit_branch(BE, t_offset + 8);
  418. #endif
  419. emit_nop(); /* delay slot */
  420. } else {
  421. emit_branch_off(BNE, 16);
  422. emit_nop();
  423. #ifdef CONFIG_SPARC32
  424. emit_jump(cleanup_addr + 20);
  425. #else
  426. emit_jump(cleanup_addr + 8);
  427. #endif
  428. emit_clear(r_A);
  429. }
  430. emit_write_y(G0);
  431. #ifdef CONFIG_SPARC32
  432. emit_nop();
  433. emit_nop();
  434. emit_nop();
  435. #endif
  436. emit_alu_X(DIV);
  437. break;
  438. case BPF_S_ALU_NEG:
  439. emit_neg();
  440. break;
  441. case BPF_S_RET_K:
  442. if (!K) {
  443. if (pc_ret0 == -1)
  444. pc_ret0 = i;
  445. emit_clear(r_A);
  446. } else {
  447. emit_loadimm(K, r_A);
  448. }
  449. /* Fallthrough */
  450. case BPF_S_RET_A:
  451. if (seen_or_pass0) {
  452. if (i != flen - 1) {
  453. emit_jump(cleanup_addr);
  454. emit_nop();
  455. break;
  456. }
  457. if (seen_or_pass0 & SEEN_MEM) {
  458. unsigned int sz = BASE_STACKFRAME;
  459. sz += BPF_MEMWORDS * sizeof(u32);
  460. emit_release_stack(sz);
  461. }
  462. }
  463. /* jmpl %r_saved_O7 + 8, %g0 */
  464. emit_jmpl(r_saved_O7, 8, G0);
  465. emit_reg_move(r_A, O0); /* delay slot */
  466. break;
  467. case BPF_S_MISC_TAX:
  468. seen |= SEEN_XREG;
  469. emit_reg_move(r_A, r_X);
  470. break;
  471. case BPF_S_MISC_TXA:
  472. seen |= SEEN_XREG;
  473. emit_reg_move(r_X, r_A);
  474. break;
  475. case BPF_S_ANC_CPU:
  476. emit_load_cpu(r_A);
  477. break;
  478. case BPF_S_ANC_PROTOCOL:
  479. emit_skb_load16(protocol, r_A);
  480. break;
  481. #if 0
  482. /* GCC won't let us take the address of
  483. * a bit field even though we very much
  484. * know what we are doing here.
  485. */
  486. case BPF_S_ANC_PKTTYPE:
  487. __emit_skb_load8(pkt_type, r_A);
  488. emit_alu_K(SRL, 5);
  489. break;
  490. #endif
  491. case BPF_S_ANC_IFINDEX:
  492. emit_skb_loadptr(dev, r_A);
  493. emit_cmpi(r_A, 0);
  494. emit_branch(BNE_PTR, cleanup_addr + 4);
  495. emit_nop();
  496. emit_load32(r_A, struct net_device, ifindex, r_A);
  497. break;
  498. case BPF_S_ANC_MARK:
  499. emit_skb_load32(mark, r_A);
  500. break;
  501. case BPF_S_ANC_QUEUE:
  502. emit_skb_load16(queue_mapping, r_A);
  503. break;
  504. case BPF_S_ANC_HATYPE:
  505. emit_skb_loadptr(dev, r_A);
  506. emit_cmpi(r_A, 0);
  507. emit_branch(BNE_PTR, cleanup_addr + 4);
  508. emit_nop();
  509. emit_load16(r_A, struct net_device, type, r_A);
  510. break;
  511. case BPF_S_ANC_RXHASH:
  512. emit_skb_load32(rxhash, r_A);
  513. break;
  514. case BPF_S_LD_IMM:
  515. emit_loadimm(K, r_A);
  516. break;
  517. case BPF_S_LDX_IMM:
  518. emit_loadimm(K, r_X);
  519. break;
  520. case BPF_S_LD_MEM:
  521. emit_ldmem(K * 4, r_A);
  522. break;
  523. case BPF_S_LDX_MEM:
  524. emit_ldmem(K * 4, r_X);
  525. break;
  526. case BPF_S_ST:
  527. emit_stmem(K * 4, r_A);
  528. break;
  529. case BPF_S_STX:
  530. emit_stmem(K * 4, r_X);
  531. break;
  532. #define CHOOSE_LOAD_FUNC(K, func) \
  533. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  534. case BPF_S_LD_W_ABS:
  535. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
  536. common_load: seen |= SEEN_DATAREF;
  537. emit_loadimm(K, r_OFF);
  538. emit_call(func);
  539. break;
  540. case BPF_S_LD_H_ABS:
  541. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
  542. goto common_load;
  543. case BPF_S_LD_B_ABS:
  544. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
  545. goto common_load;
  546. case BPF_S_LDX_B_MSH:
  547. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
  548. goto common_load;
  549. case BPF_S_LD_W_IND:
  550. func = bpf_jit_load_word;
  551. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  552. if (K) {
  553. if (is_simm13(K)) {
  554. emit_addi(r_X, K, r_OFF);
  555. } else {
  556. emit_loadimm(K, r_TMP);
  557. emit_add(r_X, r_TMP, r_OFF);
  558. }
  559. } else {
  560. emit_reg_move(r_X, r_OFF);
  561. }
  562. emit_call(func);
  563. break;
  564. case BPF_S_LD_H_IND:
  565. func = bpf_jit_load_half;
  566. goto common_load_ind;
  567. case BPF_S_LD_B_IND:
  568. func = bpf_jit_load_byte;
  569. goto common_load_ind;
  570. case BPF_S_JMP_JA:
  571. emit_jump(addrs[i + K]);
  572. emit_nop();
  573. break;
  574. #define COND_SEL(CODE, TOP, FOP) \
  575. case CODE: \
  576. t_op = TOP; \
  577. f_op = FOP; \
  578. goto cond_branch
  579. COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
  580. COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
  581. COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
  582. COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
  583. COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
  584. COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
  585. COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
  586. COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
  587. cond_branch: f_offset = addrs[i + filter[i].jf];
  588. t_offset = addrs[i + filter[i].jt];
  589. /* same targets, can avoid doing the test :) */
  590. if (filter[i].jt == filter[i].jf) {
  591. emit_jump(t_offset);
  592. emit_nop();
  593. break;
  594. }
  595. switch (filter[i].code) {
  596. case BPF_S_JMP_JGT_X:
  597. case BPF_S_JMP_JGE_X:
  598. case BPF_S_JMP_JEQ_X:
  599. seen |= SEEN_XREG;
  600. emit_cmp(r_A, r_X);
  601. break;
  602. case BPF_S_JMP_JSET_X:
  603. seen |= SEEN_XREG;
  604. emit_btst(r_A, r_X);
  605. break;
  606. case BPF_S_JMP_JEQ_K:
  607. case BPF_S_JMP_JGT_K:
  608. case BPF_S_JMP_JGE_K:
  609. if (is_simm13(K)) {
  610. emit_cmpi(r_A, K);
  611. } else {
  612. emit_loadimm(K, r_TMP);
  613. emit_cmp(r_A, r_TMP);
  614. }
  615. break;
  616. case BPF_S_JMP_JSET_K:
  617. if (is_simm13(K)) {
  618. emit_btsti(r_A, K);
  619. } else {
  620. emit_loadimm(K, r_TMP);
  621. emit_btst(r_A, r_TMP);
  622. }
  623. break;
  624. }
  625. if (filter[i].jt != 0) {
  626. if (filter[i].jf)
  627. t_offset += 8;
  628. emit_branch(t_op, t_offset);
  629. emit_nop(); /* delay slot */
  630. if (filter[i].jf) {
  631. emit_jump(f_offset);
  632. emit_nop();
  633. }
  634. break;
  635. }
  636. emit_branch(f_op, f_offset);
  637. emit_nop(); /* delay slot */
  638. break;
  639. default:
  640. /* hmm, too complex filter, give up with jit compiler */
  641. goto out;
  642. }
  643. ilen = (void *) prog - (void *) temp;
  644. if (image) {
  645. if (unlikely(proglen + ilen > oldproglen)) {
  646. pr_err("bpb_jit_compile fatal error\n");
  647. kfree(addrs);
  648. module_free(NULL, image);
  649. return;
  650. }
  651. memcpy(image + proglen, temp, ilen);
  652. }
  653. proglen += ilen;
  654. addrs[i] = proglen;
  655. prog = temp;
  656. }
  657. /* last bpf instruction is always a RET :
  658. * use it to give the cleanup instruction(s) addr
  659. */
  660. cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
  661. if (seen_or_pass0 & SEEN_MEM)
  662. cleanup_addr -= 4; /* add %sp, X, %sp; */
  663. if (image) {
  664. if (proglen != oldproglen)
  665. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
  666. proglen, oldproglen);
  667. break;
  668. }
  669. if (proglen == oldproglen) {
  670. image = module_alloc(max_t(unsigned int,
  671. proglen,
  672. sizeof(struct work_struct)));
  673. if (!image)
  674. goto out;
  675. }
  676. oldproglen = proglen;
  677. }
  678. if (bpf_jit_enable > 1)
  679. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  680. flen, proglen, pass, image);
  681. if (image) {
  682. if (bpf_jit_enable > 1)
  683. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  684. 16, 1, image, proglen, false);
  685. bpf_flush_icache(image, image + proglen);
  686. fp->bpf_func = (void *)image;
  687. }
  688. out:
  689. kfree(addrs);
  690. return;
  691. }
  692. static void jit_free_defer(struct work_struct *arg)
  693. {
  694. module_free(NULL, arg);
  695. }
  696. /* run from softirq, we must use a work_struct to call
  697. * module_free() from process context
  698. */
  699. void bpf_jit_free(struct sk_filter *fp)
  700. {
  701. if (fp->bpf_func != sk_run_filter) {
  702. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  703. INIT_WORK(work, jit_free_defer);
  704. schedule_work(work);
  705. }
  706. }