mmu.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include <asm/cmpxchg.h>
  26. #include "vmx.h"
  27. #include "kvm.h"
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  79. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  83. #define PT64_LEVEL_MASK(level) \
  84. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  85. #define PT64_INDEX(address, level)\
  86. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  87. #define PT32_LEVEL_BITS 10
  88. #define PT32_LEVEL_SHIFT(level) \
  89. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  90. #define PT32_LEVEL_MASK(level) \
  91. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT32_BASE_ADDR_MASK PAGE_MASK
  98. #define PT32_DIR_BASE_ADDR_MASK \
  99. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  100. #define PFERR_PRESENT_MASK (1U << 0)
  101. #define PFERR_WRITE_MASK (1U << 1)
  102. #define PFERR_USER_MASK (1U << 2)
  103. #define PFERR_FETCH_MASK (1U << 4)
  104. #define PT64_ROOT_LEVEL 4
  105. #define PT32_ROOT_LEVEL 2
  106. #define PT32E_ROOT_LEVEL 3
  107. #define PT_DIRECTORY_LEVEL 2
  108. #define PT_PAGE_TABLE_LEVEL 1
  109. #define RMAP_EXT 4
  110. struct kvm_rmap_desc {
  111. u64 *shadow_ptes[RMAP_EXT];
  112. struct kvm_rmap_desc *more;
  113. };
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_cache;
  117. static struct kmem_cache *mmu_page_header_cache;
  118. static int is_write_protection(struct kvm_vcpu *vcpu)
  119. {
  120. return vcpu->cr0 & CR0_WP_MASK;
  121. }
  122. static int is_cpuid_PSE36(void)
  123. {
  124. return 1;
  125. }
  126. static int is_nx(struct kvm_vcpu *vcpu)
  127. {
  128. return vcpu->shadow_efer & EFER_NX;
  129. }
  130. static int is_present_pte(unsigned long pte)
  131. {
  132. return pte & PT_PRESENT_MASK;
  133. }
  134. static int is_writeble_pte(unsigned long pte)
  135. {
  136. return pte & PT_WRITABLE_MASK;
  137. }
  138. static int is_io_pte(unsigned long pte)
  139. {
  140. return pte & PT_SHADOW_IO_MARK;
  141. }
  142. static int is_rmap_pte(u64 pte)
  143. {
  144. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  145. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  146. }
  147. static void set_shadow_pte(u64 *sptep, u64 spte)
  148. {
  149. #ifdef CONFIG_X86_64
  150. set_64bit((unsigned long *)sptep, spte);
  151. #else
  152. set_64bit((unsigned long long *)sptep, spte);
  153. #endif
  154. }
  155. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  156. struct kmem_cache *base_cache, int min,
  157. gfp_t gfp_flags)
  158. {
  159. void *obj;
  160. if (cache->nobjs >= min)
  161. return 0;
  162. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  163. obj = kmem_cache_zalloc(base_cache, gfp_flags);
  164. if (!obj)
  165. return -ENOMEM;
  166. cache->objects[cache->nobjs++] = obj;
  167. }
  168. return 0;
  169. }
  170. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  171. {
  172. while (mc->nobjs)
  173. kfree(mc->objects[--mc->nobjs]);
  174. }
  175. static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
  176. {
  177. int r;
  178. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  179. pte_chain_cache, 4, gfp_flags);
  180. if (r)
  181. goto out;
  182. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  183. rmap_desc_cache, 1, gfp_flags);
  184. if (r)
  185. goto out;
  186. r = mmu_topup_memory_cache(&vcpu->mmu_page_cache,
  187. mmu_page_cache, 4, gfp_flags);
  188. if (r)
  189. goto out;
  190. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  191. mmu_page_header_cache, 4, gfp_flags);
  192. out:
  193. return r;
  194. }
  195. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  196. {
  197. int r;
  198. r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
  199. if (r < 0) {
  200. spin_unlock(&vcpu->kvm->lock);
  201. kvm_arch_ops->vcpu_put(vcpu);
  202. r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
  203. kvm_arch_ops->vcpu_load(vcpu);
  204. spin_lock(&vcpu->kvm->lock);
  205. }
  206. return r;
  207. }
  208. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  209. {
  210. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  211. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  212. mmu_free_memory_cache(&vcpu->mmu_page_cache);
  213. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  214. }
  215. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  216. size_t size)
  217. {
  218. void *p;
  219. BUG_ON(!mc->nobjs);
  220. p = mc->objects[--mc->nobjs];
  221. memset(p, 0, size);
  222. return p;
  223. }
  224. static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
  225. {
  226. if (mc->nobjs < KVM_NR_MEM_OBJS)
  227. mc->objects[mc->nobjs++] = obj;
  228. else
  229. kfree(obj);
  230. }
  231. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  232. {
  233. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  234. sizeof(struct kvm_pte_chain));
  235. }
  236. static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
  237. struct kvm_pte_chain *pc)
  238. {
  239. mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
  240. }
  241. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  242. {
  243. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  244. sizeof(struct kvm_rmap_desc));
  245. }
  246. static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
  247. struct kvm_rmap_desc *rd)
  248. {
  249. mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
  250. }
  251. /*
  252. * Reverse mapping data structures:
  253. *
  254. * If page->private bit zero is zero, then page->private points to the
  255. * shadow page table entry that points to page_address(page).
  256. *
  257. * If page->private bit zero is one, (then page->private & ~1) points
  258. * to a struct kvm_rmap_desc containing more mappings.
  259. */
  260. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  261. {
  262. struct page *page;
  263. struct kvm_rmap_desc *desc;
  264. int i;
  265. if (!is_rmap_pte(*spte))
  266. return;
  267. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  268. if (!page_private(page)) {
  269. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  270. set_page_private(page,(unsigned long)spte);
  271. } else if (!(page_private(page) & 1)) {
  272. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  273. desc = mmu_alloc_rmap_desc(vcpu);
  274. desc->shadow_ptes[0] = (u64 *)page_private(page);
  275. desc->shadow_ptes[1] = spte;
  276. set_page_private(page,(unsigned long)desc | 1);
  277. } else {
  278. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  279. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  280. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  281. desc = desc->more;
  282. if (desc->shadow_ptes[RMAP_EXT-1]) {
  283. desc->more = mmu_alloc_rmap_desc(vcpu);
  284. desc = desc->more;
  285. }
  286. for (i = 0; desc->shadow_ptes[i]; ++i)
  287. ;
  288. desc->shadow_ptes[i] = spte;
  289. }
  290. }
  291. static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
  292. struct page *page,
  293. struct kvm_rmap_desc *desc,
  294. int i,
  295. struct kvm_rmap_desc *prev_desc)
  296. {
  297. int j;
  298. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  299. ;
  300. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  301. desc->shadow_ptes[j] = NULL;
  302. if (j != 0)
  303. return;
  304. if (!prev_desc && !desc->more)
  305. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  306. else
  307. if (prev_desc)
  308. prev_desc->more = desc->more;
  309. else
  310. set_page_private(page,(unsigned long)desc->more | 1);
  311. mmu_free_rmap_desc(vcpu, desc);
  312. }
  313. static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
  314. {
  315. struct page *page;
  316. struct kvm_rmap_desc *desc;
  317. struct kvm_rmap_desc *prev_desc;
  318. int i;
  319. if (!is_rmap_pte(*spte))
  320. return;
  321. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  322. if (!page_private(page)) {
  323. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  324. BUG();
  325. } else if (!(page_private(page) & 1)) {
  326. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  327. if ((u64 *)page_private(page) != spte) {
  328. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  329. spte, *spte);
  330. BUG();
  331. }
  332. set_page_private(page,0);
  333. } else {
  334. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  335. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  336. prev_desc = NULL;
  337. while (desc) {
  338. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  339. if (desc->shadow_ptes[i] == spte) {
  340. rmap_desc_remove_entry(vcpu, page,
  341. desc, i,
  342. prev_desc);
  343. return;
  344. }
  345. prev_desc = desc;
  346. desc = desc->more;
  347. }
  348. BUG();
  349. }
  350. }
  351. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  352. {
  353. struct kvm *kvm = vcpu->kvm;
  354. struct page *page;
  355. struct kvm_rmap_desc *desc;
  356. u64 *spte;
  357. page = gfn_to_page(kvm, gfn);
  358. BUG_ON(!page);
  359. while (page_private(page)) {
  360. if (!(page_private(page) & 1))
  361. spte = (u64 *)page_private(page);
  362. else {
  363. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  364. spte = desc->shadow_ptes[0];
  365. }
  366. BUG_ON(!spte);
  367. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  368. != page_to_pfn(page));
  369. BUG_ON(!(*spte & PT_PRESENT_MASK));
  370. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  371. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  372. rmap_remove(vcpu, spte);
  373. kvm_arch_ops->tlb_flush(vcpu);
  374. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  375. }
  376. }
  377. #ifdef MMU_DEBUG
  378. static int is_empty_shadow_page(u64 *spt)
  379. {
  380. u64 *pos;
  381. u64 *end;
  382. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  383. if (*pos != 0) {
  384. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  385. pos, *pos);
  386. return 0;
  387. }
  388. return 1;
  389. }
  390. #endif
  391. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
  392. struct kvm_mmu_page *page_head)
  393. {
  394. ASSERT(is_empty_shadow_page(page_head->spt));
  395. list_del(&page_head->link);
  396. mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt);
  397. mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head);
  398. ++vcpu->kvm->n_free_mmu_pages;
  399. }
  400. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  401. {
  402. return gfn;
  403. }
  404. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  405. u64 *parent_pte)
  406. {
  407. struct kvm_mmu_page *page;
  408. if (!vcpu->kvm->n_free_mmu_pages)
  409. return NULL;
  410. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  411. sizeof *page);
  412. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  413. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  414. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  415. ASSERT(is_empty_shadow_page(page->spt));
  416. page->slot_bitmap = 0;
  417. page->multimapped = 0;
  418. page->parent_pte = parent_pte;
  419. --vcpu->kvm->n_free_mmu_pages;
  420. return page;
  421. }
  422. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  423. struct kvm_mmu_page *page, u64 *parent_pte)
  424. {
  425. struct kvm_pte_chain *pte_chain;
  426. struct hlist_node *node;
  427. int i;
  428. if (!parent_pte)
  429. return;
  430. if (!page->multimapped) {
  431. u64 *old = page->parent_pte;
  432. if (!old) {
  433. page->parent_pte = parent_pte;
  434. return;
  435. }
  436. page->multimapped = 1;
  437. pte_chain = mmu_alloc_pte_chain(vcpu);
  438. INIT_HLIST_HEAD(&page->parent_ptes);
  439. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  440. pte_chain->parent_ptes[0] = old;
  441. }
  442. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  443. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  444. continue;
  445. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  446. if (!pte_chain->parent_ptes[i]) {
  447. pte_chain->parent_ptes[i] = parent_pte;
  448. return;
  449. }
  450. }
  451. pte_chain = mmu_alloc_pte_chain(vcpu);
  452. BUG_ON(!pte_chain);
  453. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  454. pte_chain->parent_ptes[0] = parent_pte;
  455. }
  456. static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
  457. struct kvm_mmu_page *page,
  458. u64 *parent_pte)
  459. {
  460. struct kvm_pte_chain *pte_chain;
  461. struct hlist_node *node;
  462. int i;
  463. if (!page->multimapped) {
  464. BUG_ON(page->parent_pte != parent_pte);
  465. page->parent_pte = NULL;
  466. return;
  467. }
  468. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  469. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  470. if (!pte_chain->parent_ptes[i])
  471. break;
  472. if (pte_chain->parent_ptes[i] != parent_pte)
  473. continue;
  474. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  475. && pte_chain->parent_ptes[i + 1]) {
  476. pte_chain->parent_ptes[i]
  477. = pte_chain->parent_ptes[i + 1];
  478. ++i;
  479. }
  480. pte_chain->parent_ptes[i] = NULL;
  481. if (i == 0) {
  482. hlist_del(&pte_chain->link);
  483. mmu_free_pte_chain(vcpu, pte_chain);
  484. if (hlist_empty(&page->parent_ptes)) {
  485. page->multimapped = 0;
  486. page->parent_pte = NULL;
  487. }
  488. }
  489. return;
  490. }
  491. BUG();
  492. }
  493. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  494. gfn_t gfn)
  495. {
  496. unsigned index;
  497. struct hlist_head *bucket;
  498. struct kvm_mmu_page *page;
  499. struct hlist_node *node;
  500. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  501. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  502. bucket = &vcpu->kvm->mmu_page_hash[index];
  503. hlist_for_each_entry(page, node, bucket, hash_link)
  504. if (page->gfn == gfn && !page->role.metaphysical) {
  505. pgprintk("%s: found role %x\n",
  506. __FUNCTION__, page->role.word);
  507. return page;
  508. }
  509. return NULL;
  510. }
  511. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  512. gfn_t gfn,
  513. gva_t gaddr,
  514. unsigned level,
  515. int metaphysical,
  516. unsigned hugepage_access,
  517. u64 *parent_pte)
  518. {
  519. union kvm_mmu_page_role role;
  520. unsigned index;
  521. unsigned quadrant;
  522. struct hlist_head *bucket;
  523. struct kvm_mmu_page *page;
  524. struct hlist_node *node;
  525. role.word = 0;
  526. role.glevels = vcpu->mmu.root_level;
  527. role.level = level;
  528. role.metaphysical = metaphysical;
  529. role.hugepage_access = hugepage_access;
  530. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  531. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  532. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  533. role.quadrant = quadrant;
  534. }
  535. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  536. gfn, role.word);
  537. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  538. bucket = &vcpu->kvm->mmu_page_hash[index];
  539. hlist_for_each_entry(page, node, bucket, hash_link)
  540. if (page->gfn == gfn && page->role.word == role.word) {
  541. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  542. pgprintk("%s: found\n", __FUNCTION__);
  543. return page;
  544. }
  545. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  546. if (!page)
  547. return page;
  548. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  549. page->gfn = gfn;
  550. page->role = role;
  551. hlist_add_head(&page->hash_link, bucket);
  552. if (!metaphysical)
  553. rmap_write_protect(vcpu, gfn);
  554. return page;
  555. }
  556. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  557. struct kvm_mmu_page *page)
  558. {
  559. unsigned i;
  560. u64 *pt;
  561. u64 ent;
  562. pt = page->spt;
  563. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  564. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  565. if (pt[i] & PT_PRESENT_MASK)
  566. rmap_remove(vcpu, &pt[i]);
  567. pt[i] = 0;
  568. }
  569. kvm_arch_ops->tlb_flush(vcpu);
  570. return;
  571. }
  572. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  573. ent = pt[i];
  574. pt[i] = 0;
  575. if (!(ent & PT_PRESENT_MASK))
  576. continue;
  577. ent &= PT64_BASE_ADDR_MASK;
  578. mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
  579. }
  580. }
  581. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  582. struct kvm_mmu_page *page,
  583. u64 *parent_pte)
  584. {
  585. mmu_page_remove_parent_pte(vcpu, page, parent_pte);
  586. }
  587. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  588. struct kvm_mmu_page *page)
  589. {
  590. u64 *parent_pte;
  591. while (page->multimapped || page->parent_pte) {
  592. if (!page->multimapped)
  593. parent_pte = page->parent_pte;
  594. else {
  595. struct kvm_pte_chain *chain;
  596. chain = container_of(page->parent_ptes.first,
  597. struct kvm_pte_chain, link);
  598. parent_pte = chain->parent_ptes[0];
  599. }
  600. BUG_ON(!parent_pte);
  601. kvm_mmu_put_page(vcpu, page, parent_pte);
  602. set_shadow_pte(parent_pte, 0);
  603. }
  604. kvm_mmu_page_unlink_children(vcpu, page);
  605. if (!page->root_count) {
  606. hlist_del(&page->hash_link);
  607. kvm_mmu_free_page(vcpu, page);
  608. } else
  609. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  610. }
  611. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  612. {
  613. unsigned index;
  614. struct hlist_head *bucket;
  615. struct kvm_mmu_page *page;
  616. struct hlist_node *node, *n;
  617. int r;
  618. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  619. r = 0;
  620. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  621. bucket = &vcpu->kvm->mmu_page_hash[index];
  622. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  623. if (page->gfn == gfn && !page->role.metaphysical) {
  624. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  625. page->role.word);
  626. kvm_mmu_zap_page(vcpu, page);
  627. r = 1;
  628. }
  629. return r;
  630. }
  631. static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
  632. {
  633. struct kvm_mmu_page *page;
  634. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  635. pgprintk("%s: zap %lx %x\n",
  636. __FUNCTION__, gfn, page->role.word);
  637. kvm_mmu_zap_page(vcpu, page);
  638. }
  639. }
  640. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  641. {
  642. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  643. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  644. __set_bit(slot, &page_head->slot_bitmap);
  645. }
  646. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  647. {
  648. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  649. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  650. }
  651. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  652. {
  653. struct page *page;
  654. ASSERT((gpa & HPA_ERR_MASK) == 0);
  655. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  656. if (!page)
  657. return gpa | HPA_ERR_MASK;
  658. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  659. | (gpa & (PAGE_SIZE-1));
  660. }
  661. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  662. {
  663. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  664. if (gpa == UNMAPPED_GVA)
  665. return UNMAPPED_GVA;
  666. return gpa_to_hpa(vcpu, gpa);
  667. }
  668. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  669. {
  670. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  671. if (gpa == UNMAPPED_GVA)
  672. return NULL;
  673. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  674. }
  675. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  676. {
  677. }
  678. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  679. {
  680. int level = PT32E_ROOT_LEVEL;
  681. hpa_t table_addr = vcpu->mmu.root_hpa;
  682. for (; ; level--) {
  683. u32 index = PT64_INDEX(v, level);
  684. u64 *table;
  685. u64 pte;
  686. ASSERT(VALID_PAGE(table_addr));
  687. table = __va(table_addr);
  688. if (level == 1) {
  689. pte = table[index];
  690. if (is_present_pte(pte) && is_writeble_pte(pte))
  691. return 0;
  692. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  693. page_header_update_slot(vcpu->kvm, table, v);
  694. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  695. PT_USER_MASK;
  696. rmap_add(vcpu, &table[index]);
  697. return 0;
  698. }
  699. if (table[index] == 0) {
  700. struct kvm_mmu_page *new_table;
  701. gfn_t pseudo_gfn;
  702. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  703. >> PAGE_SHIFT;
  704. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  705. v, level - 1,
  706. 1, 0, &table[index]);
  707. if (!new_table) {
  708. pgprintk("nonpaging_map: ENOMEM\n");
  709. return -ENOMEM;
  710. }
  711. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  712. | PT_WRITABLE_MASK | PT_USER_MASK;
  713. }
  714. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  715. }
  716. }
  717. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  718. {
  719. int i;
  720. struct kvm_mmu_page *page;
  721. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  722. return;
  723. #ifdef CONFIG_X86_64
  724. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  725. hpa_t root = vcpu->mmu.root_hpa;
  726. page = page_header(root);
  727. --page->root_count;
  728. vcpu->mmu.root_hpa = INVALID_PAGE;
  729. return;
  730. }
  731. #endif
  732. for (i = 0; i < 4; ++i) {
  733. hpa_t root = vcpu->mmu.pae_root[i];
  734. if (root) {
  735. root &= PT64_BASE_ADDR_MASK;
  736. page = page_header(root);
  737. --page->root_count;
  738. }
  739. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  740. }
  741. vcpu->mmu.root_hpa = INVALID_PAGE;
  742. }
  743. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  744. {
  745. int i;
  746. gfn_t root_gfn;
  747. struct kvm_mmu_page *page;
  748. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  749. #ifdef CONFIG_X86_64
  750. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  751. hpa_t root = vcpu->mmu.root_hpa;
  752. ASSERT(!VALID_PAGE(root));
  753. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  754. PT64_ROOT_LEVEL, 0, 0, NULL);
  755. root = __pa(page->spt);
  756. ++page->root_count;
  757. vcpu->mmu.root_hpa = root;
  758. return;
  759. }
  760. #endif
  761. for (i = 0; i < 4; ++i) {
  762. hpa_t root = vcpu->mmu.pae_root[i];
  763. ASSERT(!VALID_PAGE(root));
  764. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  765. if (!is_present_pte(vcpu->pdptrs[i])) {
  766. vcpu->mmu.pae_root[i] = 0;
  767. continue;
  768. }
  769. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  770. } else if (vcpu->mmu.root_level == 0)
  771. root_gfn = 0;
  772. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  773. PT32_ROOT_LEVEL, !is_paging(vcpu),
  774. 0, NULL);
  775. root = __pa(page->spt);
  776. ++page->root_count;
  777. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  778. }
  779. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  780. }
  781. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  782. {
  783. return vaddr;
  784. }
  785. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  786. u32 error_code)
  787. {
  788. gpa_t addr = gva;
  789. hpa_t paddr;
  790. int r;
  791. r = mmu_topup_memory_caches(vcpu);
  792. if (r)
  793. return r;
  794. ASSERT(vcpu);
  795. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  796. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  797. if (is_error_hpa(paddr))
  798. return 1;
  799. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  800. }
  801. static void nonpaging_free(struct kvm_vcpu *vcpu)
  802. {
  803. mmu_free_roots(vcpu);
  804. }
  805. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  806. {
  807. struct kvm_mmu *context = &vcpu->mmu;
  808. context->new_cr3 = nonpaging_new_cr3;
  809. context->page_fault = nonpaging_page_fault;
  810. context->gva_to_gpa = nonpaging_gva_to_gpa;
  811. context->free = nonpaging_free;
  812. context->root_level = 0;
  813. context->shadow_root_level = PT32E_ROOT_LEVEL;
  814. context->root_hpa = INVALID_PAGE;
  815. return 0;
  816. }
  817. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  818. {
  819. ++vcpu->stat.tlb_flush;
  820. kvm_arch_ops->tlb_flush(vcpu);
  821. }
  822. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  823. {
  824. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  825. mmu_free_roots(vcpu);
  826. }
  827. static void inject_page_fault(struct kvm_vcpu *vcpu,
  828. u64 addr,
  829. u32 err_code)
  830. {
  831. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  832. }
  833. static void paging_free(struct kvm_vcpu *vcpu)
  834. {
  835. nonpaging_free(vcpu);
  836. }
  837. #define PTTYPE 64
  838. #include "paging_tmpl.h"
  839. #undef PTTYPE
  840. #define PTTYPE 32
  841. #include "paging_tmpl.h"
  842. #undef PTTYPE
  843. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  844. {
  845. struct kvm_mmu *context = &vcpu->mmu;
  846. ASSERT(is_pae(vcpu));
  847. context->new_cr3 = paging_new_cr3;
  848. context->page_fault = paging64_page_fault;
  849. context->gva_to_gpa = paging64_gva_to_gpa;
  850. context->free = paging_free;
  851. context->root_level = level;
  852. context->shadow_root_level = level;
  853. context->root_hpa = INVALID_PAGE;
  854. return 0;
  855. }
  856. static int paging64_init_context(struct kvm_vcpu *vcpu)
  857. {
  858. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  859. }
  860. static int paging32_init_context(struct kvm_vcpu *vcpu)
  861. {
  862. struct kvm_mmu *context = &vcpu->mmu;
  863. context->new_cr3 = paging_new_cr3;
  864. context->page_fault = paging32_page_fault;
  865. context->gva_to_gpa = paging32_gva_to_gpa;
  866. context->free = paging_free;
  867. context->root_level = PT32_ROOT_LEVEL;
  868. context->shadow_root_level = PT32E_ROOT_LEVEL;
  869. context->root_hpa = INVALID_PAGE;
  870. return 0;
  871. }
  872. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  873. {
  874. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  875. }
  876. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  877. {
  878. ASSERT(vcpu);
  879. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  880. if (!is_paging(vcpu))
  881. return nonpaging_init_context(vcpu);
  882. else if (is_long_mode(vcpu))
  883. return paging64_init_context(vcpu);
  884. else if (is_pae(vcpu))
  885. return paging32E_init_context(vcpu);
  886. else
  887. return paging32_init_context(vcpu);
  888. }
  889. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  890. {
  891. ASSERT(vcpu);
  892. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  893. vcpu->mmu.free(vcpu);
  894. vcpu->mmu.root_hpa = INVALID_PAGE;
  895. }
  896. }
  897. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  898. {
  899. destroy_kvm_mmu(vcpu);
  900. return init_kvm_mmu(vcpu);
  901. }
  902. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  903. {
  904. int r;
  905. spin_lock(&vcpu->kvm->lock);
  906. r = mmu_topup_memory_caches(vcpu);
  907. if (r)
  908. goto out;
  909. mmu_alloc_roots(vcpu);
  910. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  911. kvm_mmu_flush_tlb(vcpu);
  912. out:
  913. spin_unlock(&vcpu->kvm->lock);
  914. return r;
  915. }
  916. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  917. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  918. {
  919. mmu_free_roots(vcpu);
  920. }
  921. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  922. struct kvm_mmu_page *page,
  923. u64 *spte)
  924. {
  925. u64 pte;
  926. struct kvm_mmu_page *child;
  927. pte = *spte;
  928. if (is_present_pte(pte)) {
  929. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  930. rmap_remove(vcpu, spte);
  931. else {
  932. child = page_header(pte & PT64_BASE_ADDR_MASK);
  933. mmu_page_remove_parent_pte(vcpu, child, spte);
  934. }
  935. }
  936. *spte = 0;
  937. }
  938. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  939. struct kvm_mmu_page *page,
  940. u64 *spte,
  941. const void *new, int bytes)
  942. {
  943. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  944. return;
  945. if (page->role.glevels == PT32_ROOT_LEVEL)
  946. paging32_update_pte(vcpu, page, spte, new, bytes);
  947. else
  948. paging64_update_pte(vcpu, page, spte, new, bytes);
  949. }
  950. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  951. const u8 *old, const u8 *new, int bytes)
  952. {
  953. gfn_t gfn = gpa >> PAGE_SHIFT;
  954. struct kvm_mmu_page *page;
  955. struct hlist_node *node, *n;
  956. struct hlist_head *bucket;
  957. unsigned index;
  958. u64 *spte;
  959. unsigned offset = offset_in_page(gpa);
  960. unsigned pte_size;
  961. unsigned page_offset;
  962. unsigned misaligned;
  963. unsigned quadrant;
  964. int level;
  965. int flooded = 0;
  966. int npte;
  967. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  968. if (gfn == vcpu->last_pt_write_gfn) {
  969. ++vcpu->last_pt_write_count;
  970. if (vcpu->last_pt_write_count >= 3)
  971. flooded = 1;
  972. } else {
  973. vcpu->last_pt_write_gfn = gfn;
  974. vcpu->last_pt_write_count = 1;
  975. }
  976. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  977. bucket = &vcpu->kvm->mmu_page_hash[index];
  978. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  979. if (page->gfn != gfn || page->role.metaphysical)
  980. continue;
  981. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  982. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  983. misaligned |= bytes < 4;
  984. if (misaligned || flooded) {
  985. /*
  986. * Misaligned accesses are too much trouble to fix
  987. * up; also, they usually indicate a page is not used
  988. * as a page table.
  989. *
  990. * If we're seeing too many writes to a page,
  991. * it may no longer be a page table, or we may be
  992. * forking, in which case it is better to unmap the
  993. * page.
  994. */
  995. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  996. gpa, bytes, page->role.word);
  997. kvm_mmu_zap_page(vcpu, page);
  998. continue;
  999. }
  1000. page_offset = offset;
  1001. level = page->role.level;
  1002. npte = 1;
  1003. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1004. page_offset <<= 1; /* 32->64 */
  1005. /*
  1006. * A 32-bit pde maps 4MB while the shadow pdes map
  1007. * only 2MB. So we need to double the offset again
  1008. * and zap two pdes instead of one.
  1009. */
  1010. if (level == PT32_ROOT_LEVEL) {
  1011. page_offset &= ~7; /* kill rounding error */
  1012. page_offset <<= 1;
  1013. npte = 2;
  1014. }
  1015. quadrant = page_offset >> PAGE_SHIFT;
  1016. page_offset &= ~PAGE_MASK;
  1017. if (quadrant != page->role.quadrant)
  1018. continue;
  1019. }
  1020. spte = &page->spt[page_offset / sizeof(*spte)];
  1021. while (npte--) {
  1022. mmu_pte_write_zap_pte(vcpu, page, spte);
  1023. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
  1024. ++spte;
  1025. }
  1026. }
  1027. }
  1028. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1029. {
  1030. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1031. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1032. }
  1033. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1034. {
  1035. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1036. struct kvm_mmu_page *page;
  1037. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1038. struct kvm_mmu_page, link);
  1039. kvm_mmu_zap_page(vcpu, page);
  1040. }
  1041. }
  1042. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  1043. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1044. {
  1045. struct kvm_mmu_page *page;
  1046. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1047. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1048. struct kvm_mmu_page, link);
  1049. kvm_mmu_zap_page(vcpu, page);
  1050. }
  1051. free_page((unsigned long)vcpu->mmu.pae_root);
  1052. }
  1053. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1054. {
  1055. struct page *page;
  1056. int i;
  1057. ASSERT(vcpu);
  1058. vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
  1059. /*
  1060. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1061. * Therefore we need to allocate shadow page tables in the first
  1062. * 4GB of memory, which happens to fit the DMA32 zone.
  1063. */
  1064. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1065. if (!page)
  1066. goto error_1;
  1067. vcpu->mmu.pae_root = page_address(page);
  1068. for (i = 0; i < 4; ++i)
  1069. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1070. return 0;
  1071. error_1:
  1072. free_mmu_pages(vcpu);
  1073. return -ENOMEM;
  1074. }
  1075. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1076. {
  1077. ASSERT(vcpu);
  1078. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1079. return alloc_mmu_pages(vcpu);
  1080. }
  1081. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1082. {
  1083. ASSERT(vcpu);
  1084. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1085. return init_kvm_mmu(vcpu);
  1086. }
  1087. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1088. {
  1089. ASSERT(vcpu);
  1090. destroy_kvm_mmu(vcpu);
  1091. free_mmu_pages(vcpu);
  1092. mmu_free_memory_caches(vcpu);
  1093. }
  1094. void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  1095. {
  1096. struct kvm *kvm = vcpu->kvm;
  1097. struct kvm_mmu_page *page;
  1098. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1099. int i;
  1100. u64 *pt;
  1101. if (!test_bit(slot, &page->slot_bitmap))
  1102. continue;
  1103. pt = page->spt;
  1104. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1105. /* avoid RMW */
  1106. if (pt[i] & PT_WRITABLE_MASK) {
  1107. rmap_remove(vcpu, &pt[i]);
  1108. pt[i] &= ~PT_WRITABLE_MASK;
  1109. }
  1110. }
  1111. }
  1112. void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
  1113. {
  1114. destroy_kvm_mmu(vcpu);
  1115. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1116. struct kvm_mmu_page *page;
  1117. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1118. struct kvm_mmu_page, link);
  1119. kvm_mmu_zap_page(vcpu, page);
  1120. }
  1121. mmu_free_memory_caches(vcpu);
  1122. kvm_arch_ops->tlb_flush(vcpu);
  1123. init_kvm_mmu(vcpu);
  1124. }
  1125. void kvm_mmu_module_exit(void)
  1126. {
  1127. if (pte_chain_cache)
  1128. kmem_cache_destroy(pte_chain_cache);
  1129. if (rmap_desc_cache)
  1130. kmem_cache_destroy(rmap_desc_cache);
  1131. if (mmu_page_cache)
  1132. kmem_cache_destroy(mmu_page_cache);
  1133. if (mmu_page_header_cache)
  1134. kmem_cache_destroy(mmu_page_header_cache);
  1135. }
  1136. int kvm_mmu_module_init(void)
  1137. {
  1138. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1139. sizeof(struct kvm_pte_chain),
  1140. 0, 0, NULL, NULL);
  1141. if (!pte_chain_cache)
  1142. goto nomem;
  1143. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1144. sizeof(struct kvm_rmap_desc),
  1145. 0, 0, NULL, NULL);
  1146. if (!rmap_desc_cache)
  1147. goto nomem;
  1148. mmu_page_cache = kmem_cache_create("kvm_mmu_page",
  1149. PAGE_SIZE,
  1150. PAGE_SIZE, 0, NULL, NULL);
  1151. if (!mmu_page_cache)
  1152. goto nomem;
  1153. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1154. sizeof(struct kvm_mmu_page),
  1155. 0, 0, NULL, NULL);
  1156. if (!mmu_page_header_cache)
  1157. goto nomem;
  1158. return 0;
  1159. nomem:
  1160. kvm_mmu_module_exit();
  1161. return -ENOMEM;
  1162. }
  1163. #ifdef AUDIT
  1164. static const char *audit_msg;
  1165. static gva_t canonicalize(gva_t gva)
  1166. {
  1167. #ifdef CONFIG_X86_64
  1168. gva = (long long)(gva << 16) >> 16;
  1169. #endif
  1170. return gva;
  1171. }
  1172. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1173. gva_t va, int level)
  1174. {
  1175. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1176. int i;
  1177. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1178. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1179. u64 ent = pt[i];
  1180. if (!(ent & PT_PRESENT_MASK))
  1181. continue;
  1182. va = canonicalize(va);
  1183. if (level > 1)
  1184. audit_mappings_page(vcpu, ent, va, level - 1);
  1185. else {
  1186. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1187. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1188. if ((ent & PT_PRESENT_MASK)
  1189. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1190. printk(KERN_ERR "audit error: (%s) levels %d"
  1191. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1192. audit_msg, vcpu->mmu.root_level,
  1193. va, gpa, hpa, ent);
  1194. }
  1195. }
  1196. }
  1197. static void audit_mappings(struct kvm_vcpu *vcpu)
  1198. {
  1199. unsigned i;
  1200. if (vcpu->mmu.root_level == 4)
  1201. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1202. else
  1203. for (i = 0; i < 4; ++i)
  1204. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1205. audit_mappings_page(vcpu,
  1206. vcpu->mmu.pae_root[i],
  1207. i << 30,
  1208. 2);
  1209. }
  1210. static int count_rmaps(struct kvm_vcpu *vcpu)
  1211. {
  1212. int nmaps = 0;
  1213. int i, j, k;
  1214. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1215. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1216. struct kvm_rmap_desc *d;
  1217. for (j = 0; j < m->npages; ++j) {
  1218. struct page *page = m->phys_mem[j];
  1219. if (!page->private)
  1220. continue;
  1221. if (!(page->private & 1)) {
  1222. ++nmaps;
  1223. continue;
  1224. }
  1225. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1226. while (d) {
  1227. for (k = 0; k < RMAP_EXT; ++k)
  1228. if (d->shadow_ptes[k])
  1229. ++nmaps;
  1230. else
  1231. break;
  1232. d = d->more;
  1233. }
  1234. }
  1235. }
  1236. return nmaps;
  1237. }
  1238. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1239. {
  1240. int nmaps = 0;
  1241. struct kvm_mmu_page *page;
  1242. int i;
  1243. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1244. u64 *pt = page->spt;
  1245. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1246. continue;
  1247. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1248. u64 ent = pt[i];
  1249. if (!(ent & PT_PRESENT_MASK))
  1250. continue;
  1251. if (!(ent & PT_WRITABLE_MASK))
  1252. continue;
  1253. ++nmaps;
  1254. }
  1255. }
  1256. return nmaps;
  1257. }
  1258. static void audit_rmap(struct kvm_vcpu *vcpu)
  1259. {
  1260. int n_rmap = count_rmaps(vcpu);
  1261. int n_actual = count_writable_mappings(vcpu);
  1262. if (n_rmap != n_actual)
  1263. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1264. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1265. }
  1266. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1267. {
  1268. struct kvm_mmu_page *page;
  1269. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1270. hfn_t hfn;
  1271. struct page *pg;
  1272. if (page->role.metaphysical)
  1273. continue;
  1274. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1275. >> PAGE_SHIFT;
  1276. pg = pfn_to_page(hfn);
  1277. if (pg->private)
  1278. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1279. " mappings: gfn %lx role %x\n",
  1280. __FUNCTION__, audit_msg, page->gfn,
  1281. page->role.word);
  1282. }
  1283. }
  1284. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1285. {
  1286. int olddbg = dbg;
  1287. dbg = 0;
  1288. audit_msg = msg;
  1289. audit_rmap(vcpu);
  1290. audit_write_protection(vcpu);
  1291. audit_mappings(vcpu);
  1292. dbg = olddbg;
  1293. }
  1294. #endif