pci.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715
  1. /*
  2. * pci.c - Low-Level PCI Access in IA-64
  3. *
  4. * Derived from bios32.c of i386 tree.
  5. *
  6. * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
  7. * David Mosberger-Tang <davidm@hpl.hp.com>
  8. * Bjorn Helgaas <bjorn.helgaas@hp.com>
  9. * Copyright (C) 2004 Silicon Graphics, Inc.
  10. *
  11. * Note: Above list of copyright holders is incomplete...
  12. */
  13. #include <linux/config.h>
  14. #include <linux/acpi.h>
  15. #include <linux/types.h>
  16. #include <linux/kernel.h>
  17. #include <linux/pci.h>
  18. #include <linux/init.h>
  19. #include <linux/ioport.h>
  20. #include <linux/slab.h>
  21. #include <linux/smp_lock.h>
  22. #include <linux/spinlock.h>
  23. #include <asm/machvec.h>
  24. #include <asm/page.h>
  25. #include <asm/segment.h>
  26. #include <asm/system.h>
  27. #include <asm/io.h>
  28. #include <asm/sal.h>
  29. #include <asm/smp.h>
  30. #include <asm/irq.h>
  31. #include <asm/hw_irq.h>
  32. /*
  33. * Low-level SAL-based PCI configuration access functions. Note that SAL
  34. * calls are already serialized (via sal_lock), so we don't need another
  35. * synchronization mechanism here.
  36. */
  37. #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
  38. (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
  39. /* SAL 3.2 adds support for extended config space. */
  40. #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
  41. (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
  42. static int
  43. pci_sal_read (unsigned int seg, unsigned int bus, unsigned int devfn,
  44. int reg, int len, u32 *value)
  45. {
  46. u64 addr, data = 0;
  47. int mode, result;
  48. if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  49. return -EINVAL;
  50. if ((seg | reg) <= 255) {
  51. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  52. mode = 0;
  53. } else {
  54. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  55. mode = 1;
  56. }
  57. result = ia64_sal_pci_config_read(addr, mode, len, &data);
  58. if (result != 0)
  59. return -EINVAL;
  60. *value = (u32) data;
  61. return 0;
  62. }
  63. static int
  64. pci_sal_write (unsigned int seg, unsigned int bus, unsigned int devfn,
  65. int reg, int len, u32 value)
  66. {
  67. u64 addr;
  68. int mode, result;
  69. if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
  70. return -EINVAL;
  71. if ((seg | reg) <= 255) {
  72. addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
  73. mode = 0;
  74. } else {
  75. addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
  76. mode = 1;
  77. }
  78. result = ia64_sal_pci_config_write(addr, mode, len, value);
  79. if (result != 0)
  80. return -EINVAL;
  81. return 0;
  82. }
  83. static struct pci_raw_ops pci_sal_ops = {
  84. .read = pci_sal_read,
  85. .write = pci_sal_write
  86. };
  87. struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;
  88. static int
  89. pci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value)
  90. {
  91. return raw_pci_ops->read(pci_domain_nr(bus), bus->number,
  92. devfn, where, size, value);
  93. }
  94. static int
  95. pci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value)
  96. {
  97. return raw_pci_ops->write(pci_domain_nr(bus), bus->number,
  98. devfn, where, size, value);
  99. }
  100. struct pci_ops pci_root_ops = {
  101. .read = pci_read,
  102. .write = pci_write,
  103. };
  104. #ifdef CONFIG_NUMA
  105. extern acpi_status acpi_map_iosapic(acpi_handle, u32, void *, void **);
  106. static void acpi_map_iosapics(void)
  107. {
  108. acpi_get_devices(NULL, acpi_map_iosapic, NULL, NULL);
  109. }
  110. #else
  111. static void acpi_map_iosapics(void)
  112. {
  113. return;
  114. }
  115. #endif /* CONFIG_NUMA */
  116. static int __init
  117. pci_acpi_init (void)
  118. {
  119. acpi_map_iosapics();
  120. return 0;
  121. }
  122. subsys_initcall(pci_acpi_init);
  123. /* Called by ACPI when it finds a new root bus. */
  124. static struct pci_controller * __devinit
  125. alloc_pci_controller (int seg)
  126. {
  127. struct pci_controller *controller;
  128. controller = kmalloc(sizeof(*controller), GFP_KERNEL);
  129. if (!controller)
  130. return NULL;
  131. memset(controller, 0, sizeof(*controller));
  132. controller->segment = seg;
  133. return controller;
  134. }
  135. static u64 __devinit
  136. add_io_space (struct acpi_resource_address64 *addr)
  137. {
  138. u64 offset;
  139. int sparse = 0;
  140. int i;
  141. if (addr->address_translation_offset == 0)
  142. return IO_SPACE_BASE(0); /* part of legacy IO space */
  143. if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)
  144. sparse = 1;
  145. offset = (u64) ioremap(addr->address_translation_offset, 0);
  146. for (i = 0; i < num_io_spaces; i++)
  147. if (io_space[i].mmio_base == offset &&
  148. io_space[i].sparse == sparse)
  149. return IO_SPACE_BASE(i);
  150. if (num_io_spaces == MAX_IO_SPACES) {
  151. printk("Too many IO port spaces\n");
  152. return ~0;
  153. }
  154. i = num_io_spaces++;
  155. io_space[i].mmio_base = offset;
  156. io_space[i].sparse = sparse;
  157. return IO_SPACE_BASE(i);
  158. }
  159. static acpi_status __devinit
  160. count_window (struct acpi_resource *resource, void *data)
  161. {
  162. unsigned int *windows = (unsigned int *) data;
  163. struct acpi_resource_address64 addr;
  164. acpi_status status;
  165. status = acpi_resource_to_address64(resource, &addr);
  166. if (ACPI_SUCCESS(status))
  167. if (addr.resource_type == ACPI_MEMORY_RANGE ||
  168. addr.resource_type == ACPI_IO_RANGE)
  169. (*windows)++;
  170. return AE_OK;
  171. }
  172. struct pci_root_info {
  173. struct pci_controller *controller;
  174. char *name;
  175. };
  176. static __devinit acpi_status add_window(struct acpi_resource *res, void *data)
  177. {
  178. struct pci_root_info *info = data;
  179. struct pci_window *window;
  180. struct acpi_resource_address64 addr;
  181. acpi_status status;
  182. unsigned long flags, offset = 0;
  183. struct resource *root;
  184. status = acpi_resource_to_address64(res, &addr);
  185. if (!ACPI_SUCCESS(status))
  186. return AE_OK;
  187. if (!addr.address_length)
  188. return AE_OK;
  189. if (addr.resource_type == ACPI_MEMORY_RANGE) {
  190. flags = IORESOURCE_MEM;
  191. root = &iomem_resource;
  192. offset = addr.address_translation_offset;
  193. } else if (addr.resource_type == ACPI_IO_RANGE) {
  194. flags = IORESOURCE_IO;
  195. root = &ioport_resource;
  196. offset = add_io_space(&addr);
  197. if (offset == ~0)
  198. return AE_OK;
  199. } else
  200. return AE_OK;
  201. window = &info->controller->window[info->controller->windows++];
  202. window->resource.name = info->name;
  203. window->resource.flags = flags;
  204. window->resource.start = addr.min_address_range + offset;
  205. window->resource.end = addr.max_address_range + offset;
  206. window->resource.child = NULL;
  207. window->offset = offset;
  208. if (insert_resource(root, &window->resource)) {
  209. printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",
  210. window->resource.start, window->resource.end,
  211. root->name, info->name);
  212. }
  213. return AE_OK;
  214. }
  215. static void __devinit
  216. pcibios_setup_root_windows(struct pci_bus *bus, struct pci_controller *ctrl)
  217. {
  218. int i, j;
  219. j = 0;
  220. for (i = 0; i < ctrl->windows; i++) {
  221. struct resource *res = &ctrl->window[i].resource;
  222. /* HP's firmware has a hack to work around a Windows bug.
  223. * Ignore these tiny memory ranges */
  224. if ((res->flags & IORESOURCE_MEM) &&
  225. (res->end - res->start < 16))
  226. continue;
  227. if (j >= PCI_BUS_NUM_RESOURCES) {
  228. printk("Ignoring range [%lx-%lx] (%lx)\n", res->start,
  229. res->end, res->flags);
  230. continue;
  231. }
  232. bus->resource[j++] = res;
  233. }
  234. }
  235. struct pci_bus * __devinit
  236. pci_acpi_scan_root(struct acpi_device *device, int domain, int bus)
  237. {
  238. struct pci_root_info info;
  239. struct pci_controller *controller;
  240. unsigned int windows = 0;
  241. struct pci_bus *pbus;
  242. char *name;
  243. controller = alloc_pci_controller(domain);
  244. if (!controller)
  245. goto out1;
  246. controller->acpi_handle = device->handle;
  247. acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
  248. &windows);
  249. controller->window = kmalloc(sizeof(*controller->window) * windows,
  250. GFP_KERNEL);
  251. if (!controller->window)
  252. goto out2;
  253. name = kmalloc(16, GFP_KERNEL);
  254. if (!name)
  255. goto out3;
  256. sprintf(name, "PCI Bus %04x:%02x", domain, bus);
  257. info.controller = controller;
  258. info.name = name;
  259. acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window,
  260. &info);
  261. pbus = pci_scan_bus(bus, &pci_root_ops, controller);
  262. if (pbus)
  263. pcibios_setup_root_windows(pbus, controller);
  264. return pbus;
  265. out3:
  266. kfree(controller->window);
  267. out2:
  268. kfree(controller);
  269. out1:
  270. return NULL;
  271. }
  272. void pcibios_resource_to_bus(struct pci_dev *dev,
  273. struct pci_bus_region *region, struct resource *res)
  274. {
  275. struct pci_controller *controller = PCI_CONTROLLER(dev);
  276. unsigned long offset = 0;
  277. int i;
  278. for (i = 0; i < controller->windows; i++) {
  279. struct pci_window *window = &controller->window[i];
  280. if (!(window->resource.flags & res->flags))
  281. continue;
  282. if (window->resource.start > res->start)
  283. continue;
  284. if (window->resource.end < res->end)
  285. continue;
  286. offset = window->offset;
  287. break;
  288. }
  289. region->start = res->start - offset;
  290. region->end = res->end - offset;
  291. }
  292. EXPORT_SYMBOL(pcibios_resource_to_bus);
  293. void pcibios_bus_to_resource(struct pci_dev *dev,
  294. struct resource *res, struct pci_bus_region *region)
  295. {
  296. struct pci_controller *controller = PCI_CONTROLLER(dev);
  297. unsigned long offset = 0;
  298. int i;
  299. for (i = 0; i < controller->windows; i++) {
  300. struct pci_window *window = &controller->window[i];
  301. if (!(window->resource.flags & res->flags))
  302. continue;
  303. if (window->resource.start - window->offset > region->start)
  304. continue;
  305. if (window->resource.end - window->offset < region->end)
  306. continue;
  307. offset = window->offset;
  308. break;
  309. }
  310. res->start = region->start + offset;
  311. res->end = region->end + offset;
  312. }
  313. static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
  314. {
  315. struct pci_bus_region region;
  316. int i;
  317. int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \
  318. PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
  319. for (i = 0; i < limit; i++) {
  320. if (!dev->resource[i].flags)
  321. continue;
  322. region.start = dev->resource[i].start;
  323. region.end = dev->resource[i].end;
  324. pcibios_bus_to_resource(dev, &dev->resource[i], &region);
  325. pci_claim_resource(dev, i);
  326. }
  327. }
  328. /*
  329. * Called after each bus is probed, but before its children are examined.
  330. */
  331. void __devinit
  332. pcibios_fixup_bus (struct pci_bus *b)
  333. {
  334. struct pci_dev *dev;
  335. list_for_each_entry(dev, &b->devices, bus_list)
  336. pcibios_fixup_device_resources(dev);
  337. return;
  338. }
  339. void __devinit
  340. pcibios_update_irq (struct pci_dev *dev, int irq)
  341. {
  342. pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
  343. /* ??? FIXME -- record old value for shutdown. */
  344. }
  345. static inline int
  346. pcibios_enable_resources (struct pci_dev *dev, int mask)
  347. {
  348. u16 cmd, old_cmd;
  349. int idx;
  350. struct resource *r;
  351. if (!dev)
  352. return -EINVAL;
  353. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  354. old_cmd = cmd;
  355. for (idx=0; idx<6; idx++) {
  356. /* Only set up the desired resources. */
  357. if (!(mask & (1 << idx)))
  358. continue;
  359. r = &dev->resource[idx];
  360. if (!r->start && r->end) {
  361. printk(KERN_ERR
  362. "PCI: Device %s not available because of resource collisions\n",
  363. pci_name(dev));
  364. return -EINVAL;
  365. }
  366. if (r->flags & IORESOURCE_IO)
  367. cmd |= PCI_COMMAND_IO;
  368. if (r->flags & IORESOURCE_MEM)
  369. cmd |= PCI_COMMAND_MEMORY;
  370. }
  371. if (dev->resource[PCI_ROM_RESOURCE].start)
  372. cmd |= PCI_COMMAND_MEMORY;
  373. if (cmd != old_cmd) {
  374. printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);
  375. pci_write_config_word(dev, PCI_COMMAND, cmd);
  376. }
  377. return 0;
  378. }
  379. int
  380. pcibios_enable_device (struct pci_dev *dev, int mask)
  381. {
  382. int ret;
  383. ret = pcibios_enable_resources(dev, mask);
  384. if (ret < 0)
  385. return ret;
  386. return acpi_pci_irq_enable(dev);
  387. }
  388. #ifdef CONFIG_ACPI_DEALLOCATE_IRQ
  389. void
  390. pcibios_disable_device (struct pci_dev *dev)
  391. {
  392. acpi_pci_irq_disable(dev);
  393. }
  394. #endif /* CONFIG_ACPI_DEALLOCATE_IRQ */
  395. void
  396. pcibios_align_resource (void *data, struct resource *res,
  397. unsigned long size, unsigned long align)
  398. {
  399. }
  400. /*
  401. * PCI BIOS setup, always defaults to SAL interface
  402. */
  403. char * __init
  404. pcibios_setup (char *str)
  405. {
  406. return NULL;
  407. }
  408. int
  409. pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
  410. enum pci_mmap_state mmap_state, int write_combine)
  411. {
  412. /*
  413. * I/O space cannot be accessed via normal processor loads and
  414. * stores on this platform.
  415. */
  416. if (mmap_state == pci_mmap_io)
  417. /*
  418. * XXX we could relax this for I/O spaces for which ACPI
  419. * indicates that the space is 1-to-1 mapped. But at the
  420. * moment, we don't support multiple PCI address spaces and
  421. * the legacy I/O space is not 1-to-1 mapped, so this is moot.
  422. */
  423. return -EINVAL;
  424. /*
  425. * Leave vm_pgoff as-is, the PCI space address is the physical
  426. * address on this platform.
  427. */
  428. vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
  429. if (write_combine && efi_range_is_wc(vma->vm_start,
  430. vma->vm_end - vma->vm_start))
  431. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  432. else
  433. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  434. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  435. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  436. return -EAGAIN;
  437. return 0;
  438. }
  439. /**
  440. * ia64_pci_get_legacy_mem - generic legacy mem routine
  441. * @bus: bus to get legacy memory base address for
  442. *
  443. * Find the base of legacy memory for @bus. This is typically the first
  444. * megabyte of bus address space for @bus or is simply 0 on platforms whose
  445. * chipsets support legacy I/O and memory routing. Returns the base address
  446. * or an error pointer if an error occurred.
  447. *
  448. * This is the ia64 generic version of this routine. Other platforms
  449. * are free to override it with a machine vector.
  450. */
  451. char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
  452. {
  453. return (char *)__IA64_UNCACHED_OFFSET;
  454. }
  455. /**
  456. * pci_mmap_legacy_page_range - map legacy memory space to userland
  457. * @bus: bus whose legacy space we're mapping
  458. * @vma: vma passed in by mmap
  459. *
  460. * Map legacy memory space for this device back to userspace using a machine
  461. * vector to get the base address.
  462. */
  463. int
  464. pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma)
  465. {
  466. char *addr;
  467. addr = pci_get_legacy_mem(bus);
  468. if (IS_ERR(addr))
  469. return PTR_ERR(addr);
  470. vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
  471. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  472. vma->vm_flags |= (VM_SHM | VM_RESERVED | VM_IO);
  473. if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  474. vma->vm_end - vma->vm_start, vma->vm_page_prot))
  475. return -EAGAIN;
  476. return 0;
  477. }
  478. /**
  479. * ia64_pci_legacy_read - read from legacy I/O space
  480. * @bus: bus to read
  481. * @port: legacy port value
  482. * @val: caller allocated storage for returned value
  483. * @size: number of bytes to read
  484. *
  485. * Simply reads @size bytes from @port and puts the result in @val.
  486. *
  487. * Again, this (and the write routine) are generic versions that can be
  488. * overridden by the platform. This is necessary on platforms that don't
  489. * support legacy I/O routing or that hard fail on legacy I/O timeouts.
  490. */
  491. int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
  492. {
  493. int ret = size;
  494. switch (size) {
  495. case 1:
  496. *val = inb(port);
  497. break;
  498. case 2:
  499. *val = inw(port);
  500. break;
  501. case 4:
  502. *val = inl(port);
  503. break;
  504. default:
  505. ret = -EINVAL;
  506. break;
  507. }
  508. return ret;
  509. }
  510. /**
  511. * ia64_pci_legacy_write - perform a legacy I/O write
  512. * @bus: bus pointer
  513. * @port: port to write
  514. * @val: value to write
  515. * @size: number of bytes to write from @val
  516. *
  517. * Simply writes @size bytes of @val to @port.
  518. */
  519. int ia64_pci_legacy_write(struct pci_dev *bus, u16 port, u32 val, u8 size)
  520. {
  521. int ret = 0;
  522. switch (size) {
  523. case 1:
  524. outb(val, port);
  525. break;
  526. case 2:
  527. outw(val, port);
  528. break;
  529. case 4:
  530. outl(val, port);
  531. break;
  532. default:
  533. ret = -EINVAL;
  534. break;
  535. }
  536. return ret;
  537. }
  538. /**
  539. * pci_cacheline_size - determine cacheline size for PCI devices
  540. * @dev: void
  541. *
  542. * We want to use the line-size of the outer-most cache. We assume
  543. * that this line-size is the same for all CPUs.
  544. *
  545. * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
  546. *
  547. * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
  548. */
  549. static unsigned long
  550. pci_cacheline_size (void)
  551. {
  552. u64 levels, unique_caches;
  553. s64 status;
  554. pal_cache_config_info_t cci;
  555. static u8 cacheline_size;
  556. if (cacheline_size)
  557. return cacheline_size;
  558. status = ia64_pal_cache_summary(&levels, &unique_caches);
  559. if (status != 0) {
  560. printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
  561. __FUNCTION__, status);
  562. return SMP_CACHE_BYTES;
  563. }
  564. status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,
  565. &cci);
  566. if (status != 0) {
  567. printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",
  568. __FUNCTION__, status);
  569. return SMP_CACHE_BYTES;
  570. }
  571. cacheline_size = 1 << cci.pcci_line_size;
  572. return cacheline_size;
  573. }
  574. /**
  575. * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi()
  576. * @dev: the PCI device for which MWI is enabled
  577. *
  578. * For ia64, we can get the cacheline sizes from PAL.
  579. *
  580. * RETURNS: An appropriate -ERRNO error value on eror, or zero for success.
  581. */
  582. int
  583. pcibios_prep_mwi (struct pci_dev *dev)
  584. {
  585. unsigned long desired_linesize, current_linesize;
  586. int rc = 0;
  587. u8 pci_linesize;
  588. desired_linesize = pci_cacheline_size();
  589. pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);
  590. current_linesize = 4 * pci_linesize;
  591. if (desired_linesize != current_linesize) {
  592. printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",
  593. pci_name(dev), current_linesize);
  594. if (current_linesize > desired_linesize) {
  595. printk(" expected %lu bytes instead\n", desired_linesize);
  596. rc = -EINVAL;
  597. } else {
  598. printk(" correcting to %lu\n", desired_linesize);
  599. pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);
  600. }
  601. }
  602. return rc;
  603. }
  604. int pci_vector_resources(int last, int nr_released)
  605. {
  606. int count = nr_released;
  607. count += (IA64_LAST_DEVICE_VECTOR - last);
  608. return count;
  609. }