md.c 98 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. kfree(new);
  164. return mddev;
  165. }
  166. if (new) {
  167. list_add(&new->all_mddevs, &all_mddevs);
  168. spin_unlock(&all_mddevs_lock);
  169. return new;
  170. }
  171. spin_unlock(&all_mddevs_lock);
  172. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  173. if (!new)
  174. return NULL;
  175. memset(new, 0, sizeof(*new));
  176. new->unit = unit;
  177. if (MAJOR(unit) == MD_MAJOR)
  178. new->md_minor = MINOR(unit);
  179. else
  180. new->md_minor = MINOR(unit) >> MdpMinorShift;
  181. init_MUTEX(&new->reconfig_sem);
  182. INIT_LIST_HEAD(&new->disks);
  183. INIT_LIST_HEAD(&new->all_mddevs);
  184. init_timer(&new->safemode_timer);
  185. atomic_set(&new->active, 1);
  186. spin_lock_init(&new->write_lock);
  187. init_waitqueue_head(&new->sb_wait);
  188. new->queue = blk_alloc_queue(GFP_KERNEL);
  189. if (!new->queue) {
  190. kfree(new);
  191. return NULL;
  192. }
  193. blk_queue_make_request(new->queue, md_fail_request);
  194. goto retry;
  195. }
  196. static inline int mddev_lock(mddev_t * mddev)
  197. {
  198. return down_interruptible(&mddev->reconfig_sem);
  199. }
  200. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  201. {
  202. down(&mddev->reconfig_sem);
  203. }
  204. static inline int mddev_trylock(mddev_t * mddev)
  205. {
  206. return down_trylock(&mddev->reconfig_sem);
  207. }
  208. static inline void mddev_unlock(mddev_t * mddev)
  209. {
  210. up(&mddev->reconfig_sem);
  211. md_wakeup_thread(mddev->thread);
  212. }
  213. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  214. {
  215. mdk_rdev_t * rdev;
  216. struct list_head *tmp;
  217. ITERATE_RDEV(mddev,rdev,tmp) {
  218. if (rdev->desc_nr == nr)
  219. return rdev;
  220. }
  221. return NULL;
  222. }
  223. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  224. {
  225. struct list_head *tmp;
  226. mdk_rdev_t *rdev;
  227. ITERATE_RDEV(mddev,rdev,tmp) {
  228. if (rdev->bdev->bd_dev == dev)
  229. return rdev;
  230. }
  231. return NULL;
  232. }
  233. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  234. {
  235. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  236. return MD_NEW_SIZE_BLOCKS(size);
  237. }
  238. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  239. {
  240. sector_t size;
  241. size = rdev->sb_offset;
  242. if (chunk_size)
  243. size &= ~((sector_t)chunk_size/1024 - 1);
  244. return size;
  245. }
  246. static int alloc_disk_sb(mdk_rdev_t * rdev)
  247. {
  248. if (rdev->sb_page)
  249. MD_BUG();
  250. rdev->sb_page = alloc_page(GFP_KERNEL);
  251. if (!rdev->sb_page) {
  252. printk(KERN_ALERT "md: out of memory.\n");
  253. return -EINVAL;
  254. }
  255. return 0;
  256. }
  257. static void free_disk_sb(mdk_rdev_t * rdev)
  258. {
  259. if (rdev->sb_page) {
  260. page_cache_release(rdev->sb_page);
  261. rdev->sb_loaded = 0;
  262. rdev->sb_page = NULL;
  263. rdev->sb_offset = 0;
  264. rdev->size = 0;
  265. }
  266. }
  267. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  268. {
  269. mdk_rdev_t *rdev = bio->bi_private;
  270. if (bio->bi_size)
  271. return 1;
  272. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  273. md_error(rdev->mddev, rdev);
  274. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  275. wake_up(&rdev->mddev->sb_wait);
  276. bio_put(bio);
  277. return 0;
  278. }
  279. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  280. sector_t sector, int size, struct page *page)
  281. {
  282. /* write first size bytes of page to sector of rdev
  283. * Increment mddev->pending_writes before returning
  284. * and decrement it on completion, waking up sb_wait
  285. * if zero is reached.
  286. * If an error occurred, call md_error
  287. */
  288. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  289. bio->bi_bdev = rdev->bdev;
  290. bio->bi_sector = sector;
  291. bio_add_page(bio, page, size, 0);
  292. bio->bi_private = rdev;
  293. bio->bi_end_io = super_written;
  294. atomic_inc(&mddev->pending_writes);
  295. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  296. }
  297. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  298. {
  299. if (bio->bi_size)
  300. return 1;
  301. complete((struct completion*)bio->bi_private);
  302. return 0;
  303. }
  304. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  305. struct page *page, int rw)
  306. {
  307. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  308. struct completion event;
  309. int ret;
  310. rw |= (1 << BIO_RW_SYNC);
  311. bio->bi_bdev = bdev;
  312. bio->bi_sector = sector;
  313. bio_add_page(bio, page, size, 0);
  314. init_completion(&event);
  315. bio->bi_private = &event;
  316. bio->bi_end_io = bi_complete;
  317. submit_bio(rw, bio);
  318. wait_for_completion(&event);
  319. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  320. bio_put(bio);
  321. return ret;
  322. }
  323. static int read_disk_sb(mdk_rdev_t * rdev)
  324. {
  325. char b[BDEVNAME_SIZE];
  326. if (!rdev->sb_page) {
  327. MD_BUG();
  328. return -EINVAL;
  329. }
  330. if (rdev->sb_loaded)
  331. return 0;
  332. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  333. goto fail;
  334. rdev->sb_loaded = 1;
  335. return 0;
  336. fail:
  337. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  338. bdevname(rdev->bdev,b));
  339. return -EINVAL;
  340. }
  341. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  342. {
  343. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  344. (sb1->set_uuid1 == sb2->set_uuid1) &&
  345. (sb1->set_uuid2 == sb2->set_uuid2) &&
  346. (sb1->set_uuid3 == sb2->set_uuid3))
  347. return 1;
  348. return 0;
  349. }
  350. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  351. {
  352. int ret;
  353. mdp_super_t *tmp1, *tmp2;
  354. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  355. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  356. if (!tmp1 || !tmp2) {
  357. ret = 0;
  358. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  359. goto abort;
  360. }
  361. *tmp1 = *sb1;
  362. *tmp2 = *sb2;
  363. /*
  364. * nr_disks is not constant
  365. */
  366. tmp1->nr_disks = 0;
  367. tmp2->nr_disks = 0;
  368. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  369. ret = 0;
  370. else
  371. ret = 1;
  372. abort:
  373. kfree(tmp1);
  374. kfree(tmp2);
  375. return ret;
  376. }
  377. static unsigned int calc_sb_csum(mdp_super_t * sb)
  378. {
  379. unsigned int disk_csum, csum;
  380. disk_csum = sb->sb_csum;
  381. sb->sb_csum = 0;
  382. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  383. sb->sb_csum = disk_csum;
  384. return csum;
  385. }
  386. /*
  387. * Handle superblock details.
  388. * We want to be able to handle multiple superblock formats
  389. * so we have a common interface to them all, and an array of
  390. * different handlers.
  391. * We rely on user-space to write the initial superblock, and support
  392. * reading and updating of superblocks.
  393. * Interface methods are:
  394. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  395. * loads and validates a superblock on dev.
  396. * if refdev != NULL, compare superblocks on both devices
  397. * Return:
  398. * 0 - dev has a superblock that is compatible with refdev
  399. * 1 - dev has a superblock that is compatible and newer than refdev
  400. * so dev should be used as the refdev in future
  401. * -EINVAL superblock incompatible or invalid
  402. * -othererror e.g. -EIO
  403. *
  404. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  405. * Verify that dev is acceptable into mddev.
  406. * The first time, mddev->raid_disks will be 0, and data from
  407. * dev should be merged in. Subsequent calls check that dev
  408. * is new enough. Return 0 or -EINVAL
  409. *
  410. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  411. * Update the superblock for rdev with data in mddev
  412. * This does not write to disc.
  413. *
  414. */
  415. struct super_type {
  416. char *name;
  417. struct module *owner;
  418. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  419. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  420. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. };
  422. /*
  423. * load_super for 0.90.0
  424. */
  425. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  426. {
  427. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  428. mdp_super_t *sb;
  429. int ret;
  430. sector_t sb_offset;
  431. /*
  432. * Calculate the position of the superblock,
  433. * it's at the end of the disk.
  434. *
  435. * It also happens to be a multiple of 4Kb.
  436. */
  437. sb_offset = calc_dev_sboffset(rdev->bdev);
  438. rdev->sb_offset = sb_offset;
  439. ret = read_disk_sb(rdev);
  440. if (ret) return ret;
  441. ret = -EINVAL;
  442. bdevname(rdev->bdev, b);
  443. sb = (mdp_super_t*)page_address(rdev->sb_page);
  444. if (sb->md_magic != MD_SB_MAGIC) {
  445. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  446. b);
  447. goto abort;
  448. }
  449. if (sb->major_version != 0 ||
  450. sb->minor_version != 90) {
  451. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  452. sb->major_version, sb->minor_version,
  453. b);
  454. goto abort;
  455. }
  456. if (sb->raid_disks <= 0)
  457. goto abort;
  458. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  459. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  460. b);
  461. goto abort;
  462. }
  463. rdev->preferred_minor = sb->md_minor;
  464. rdev->data_offset = 0;
  465. if (sb->level == LEVEL_MULTIPATH)
  466. rdev->desc_nr = -1;
  467. else
  468. rdev->desc_nr = sb->this_disk.number;
  469. if (refdev == 0)
  470. ret = 1;
  471. else {
  472. __u64 ev1, ev2;
  473. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  474. if (!uuid_equal(refsb, sb)) {
  475. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  476. b, bdevname(refdev->bdev,b2));
  477. goto abort;
  478. }
  479. if (!sb_equal(refsb, sb)) {
  480. printk(KERN_WARNING "md: %s has same UUID"
  481. " but different superblock to %s\n",
  482. b, bdevname(refdev->bdev, b2));
  483. goto abort;
  484. }
  485. ev1 = md_event(sb);
  486. ev2 = md_event(refsb);
  487. if (ev1 > ev2)
  488. ret = 1;
  489. else
  490. ret = 0;
  491. }
  492. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  493. abort:
  494. return ret;
  495. }
  496. /*
  497. * validate_super for 0.90.0
  498. */
  499. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  500. {
  501. mdp_disk_t *desc;
  502. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  503. rdev->raid_disk = -1;
  504. rdev->in_sync = 0;
  505. if (mddev->raid_disks == 0) {
  506. mddev->major_version = 0;
  507. mddev->minor_version = sb->minor_version;
  508. mddev->patch_version = sb->patch_version;
  509. mddev->persistent = ! sb->not_persistent;
  510. mddev->chunk_size = sb->chunk_size;
  511. mddev->ctime = sb->ctime;
  512. mddev->utime = sb->utime;
  513. mddev->level = sb->level;
  514. mddev->layout = sb->layout;
  515. mddev->raid_disks = sb->raid_disks;
  516. mddev->size = sb->size;
  517. mddev->events = md_event(sb);
  518. mddev->bitmap_offset = 0;
  519. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  520. if (sb->state & (1<<MD_SB_CLEAN))
  521. mddev->recovery_cp = MaxSector;
  522. else {
  523. if (sb->events_hi == sb->cp_events_hi &&
  524. sb->events_lo == sb->cp_events_lo) {
  525. mddev->recovery_cp = sb->recovery_cp;
  526. } else
  527. mddev->recovery_cp = 0;
  528. }
  529. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  530. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  531. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  532. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  533. mddev->max_disks = MD_SB_DISKS;
  534. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  535. mddev->bitmap_file == NULL) {
  536. if (mddev->level != 1) {
  537. /* FIXME use a better test */
  538. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  539. return -EINVAL;
  540. }
  541. mddev->bitmap_offset = mddev->default_bitmap_offset;
  542. }
  543. } else if (mddev->pers == NULL) {
  544. /* Insist on good event counter while assembling */
  545. __u64 ev1 = md_event(sb);
  546. ++ev1;
  547. if (ev1 < mddev->events)
  548. return -EINVAL;
  549. } else if (mddev->bitmap) {
  550. /* if adding to array with a bitmap, then we can accept an
  551. * older device ... but not too old.
  552. */
  553. __u64 ev1 = md_event(sb);
  554. if (ev1 < mddev->bitmap->events_cleared)
  555. return 0;
  556. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  557. return 0;
  558. if (mddev->level != LEVEL_MULTIPATH) {
  559. rdev->faulty = 0;
  560. rdev->flags = 0;
  561. desc = sb->disks + rdev->desc_nr;
  562. if (desc->state & (1<<MD_DISK_FAULTY))
  563. rdev->faulty = 1;
  564. else if (desc->state & (1<<MD_DISK_SYNC) &&
  565. desc->raid_disk < mddev->raid_disks) {
  566. rdev->in_sync = 1;
  567. rdev->raid_disk = desc->raid_disk;
  568. }
  569. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  570. set_bit(WriteMostly, &rdev->flags);
  571. } else /* MULTIPATH are always insync */
  572. rdev->in_sync = 1;
  573. return 0;
  574. }
  575. /*
  576. * sync_super for 0.90.0
  577. */
  578. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  579. {
  580. mdp_super_t *sb;
  581. struct list_head *tmp;
  582. mdk_rdev_t *rdev2;
  583. int next_spare = mddev->raid_disks;
  584. /* make rdev->sb match mddev data..
  585. *
  586. * 1/ zero out disks
  587. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  588. * 3/ any empty disks < next_spare become removed
  589. *
  590. * disks[0] gets initialised to REMOVED because
  591. * we cannot be sure from other fields if it has
  592. * been initialised or not.
  593. */
  594. int i;
  595. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  596. sb = (mdp_super_t*)page_address(rdev->sb_page);
  597. memset(sb, 0, sizeof(*sb));
  598. sb->md_magic = MD_SB_MAGIC;
  599. sb->major_version = mddev->major_version;
  600. sb->minor_version = mddev->minor_version;
  601. sb->patch_version = mddev->patch_version;
  602. sb->gvalid_words = 0; /* ignored */
  603. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  604. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  605. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  606. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  607. sb->ctime = mddev->ctime;
  608. sb->level = mddev->level;
  609. sb->size = mddev->size;
  610. sb->raid_disks = mddev->raid_disks;
  611. sb->md_minor = mddev->md_minor;
  612. sb->not_persistent = !mddev->persistent;
  613. sb->utime = mddev->utime;
  614. sb->state = 0;
  615. sb->events_hi = (mddev->events>>32);
  616. sb->events_lo = (u32)mddev->events;
  617. if (mddev->in_sync)
  618. {
  619. sb->recovery_cp = mddev->recovery_cp;
  620. sb->cp_events_hi = (mddev->events>>32);
  621. sb->cp_events_lo = (u32)mddev->events;
  622. if (mddev->recovery_cp == MaxSector)
  623. sb->state = (1<< MD_SB_CLEAN);
  624. } else
  625. sb->recovery_cp = 0;
  626. sb->layout = mddev->layout;
  627. sb->chunk_size = mddev->chunk_size;
  628. if (mddev->bitmap && mddev->bitmap_file == NULL)
  629. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  630. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  631. ITERATE_RDEV(mddev,rdev2,tmp) {
  632. mdp_disk_t *d;
  633. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  634. rdev2->desc_nr = rdev2->raid_disk;
  635. else
  636. rdev2->desc_nr = next_spare++;
  637. d = &sb->disks[rdev2->desc_nr];
  638. nr_disks++;
  639. d->number = rdev2->desc_nr;
  640. d->major = MAJOR(rdev2->bdev->bd_dev);
  641. d->minor = MINOR(rdev2->bdev->bd_dev);
  642. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  643. d->raid_disk = rdev2->raid_disk;
  644. else
  645. d->raid_disk = rdev2->desc_nr; /* compatibility */
  646. if (rdev2->faulty) {
  647. d->state = (1<<MD_DISK_FAULTY);
  648. failed++;
  649. } else if (rdev2->in_sync) {
  650. d->state = (1<<MD_DISK_ACTIVE);
  651. d->state |= (1<<MD_DISK_SYNC);
  652. active++;
  653. working++;
  654. } else {
  655. d->state = 0;
  656. spare++;
  657. working++;
  658. }
  659. if (test_bit(WriteMostly, &rdev2->flags))
  660. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  661. }
  662. /* now set the "removed" and "faulty" bits on any missing devices */
  663. for (i=0 ; i < mddev->raid_disks ; i++) {
  664. mdp_disk_t *d = &sb->disks[i];
  665. if (d->state == 0 && d->number == 0) {
  666. d->number = i;
  667. d->raid_disk = i;
  668. d->state = (1<<MD_DISK_REMOVED);
  669. d->state |= (1<<MD_DISK_FAULTY);
  670. failed++;
  671. }
  672. }
  673. sb->nr_disks = nr_disks;
  674. sb->active_disks = active;
  675. sb->working_disks = working;
  676. sb->failed_disks = failed;
  677. sb->spare_disks = spare;
  678. sb->this_disk = sb->disks[rdev->desc_nr];
  679. sb->sb_csum = calc_sb_csum(sb);
  680. }
  681. /*
  682. * version 1 superblock
  683. */
  684. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  685. {
  686. unsigned int disk_csum, csum;
  687. unsigned long long newcsum;
  688. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  689. unsigned int *isuper = (unsigned int*)sb;
  690. int i;
  691. disk_csum = sb->sb_csum;
  692. sb->sb_csum = 0;
  693. newcsum = 0;
  694. for (i=0; size>=4; size -= 4 )
  695. newcsum += le32_to_cpu(*isuper++);
  696. if (size == 2)
  697. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  698. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  699. sb->sb_csum = disk_csum;
  700. return cpu_to_le32(csum);
  701. }
  702. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  703. {
  704. struct mdp_superblock_1 *sb;
  705. int ret;
  706. sector_t sb_offset;
  707. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  708. /*
  709. * Calculate the position of the superblock.
  710. * It is always aligned to a 4K boundary and
  711. * depeding on minor_version, it can be:
  712. * 0: At least 8K, but less than 12K, from end of device
  713. * 1: At start of device
  714. * 2: 4K from start of device.
  715. */
  716. switch(minor_version) {
  717. case 0:
  718. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  719. sb_offset -= 8*2;
  720. sb_offset &= ~(sector_t)(4*2-1);
  721. /* convert from sectors to K */
  722. sb_offset /= 2;
  723. break;
  724. case 1:
  725. sb_offset = 0;
  726. break;
  727. case 2:
  728. sb_offset = 4;
  729. break;
  730. default:
  731. return -EINVAL;
  732. }
  733. rdev->sb_offset = sb_offset;
  734. ret = read_disk_sb(rdev);
  735. if (ret) return ret;
  736. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  737. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  738. sb->major_version != cpu_to_le32(1) ||
  739. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  740. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  741. sb->feature_map != 0)
  742. return -EINVAL;
  743. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  744. printk("md: invalid superblock checksum on %s\n",
  745. bdevname(rdev->bdev,b));
  746. return -EINVAL;
  747. }
  748. if (le64_to_cpu(sb->data_size) < 10) {
  749. printk("md: data_size too small on %s\n",
  750. bdevname(rdev->bdev,b));
  751. return -EINVAL;
  752. }
  753. rdev->preferred_minor = 0xffff;
  754. rdev->data_offset = le64_to_cpu(sb->data_offset);
  755. if (refdev == 0)
  756. return 1;
  757. else {
  758. __u64 ev1, ev2;
  759. struct mdp_superblock_1 *refsb =
  760. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  761. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  762. sb->level != refsb->level ||
  763. sb->layout != refsb->layout ||
  764. sb->chunksize != refsb->chunksize) {
  765. printk(KERN_WARNING "md: %s has strangely different"
  766. " superblock to %s\n",
  767. bdevname(rdev->bdev,b),
  768. bdevname(refdev->bdev,b2));
  769. return -EINVAL;
  770. }
  771. ev1 = le64_to_cpu(sb->events);
  772. ev2 = le64_to_cpu(refsb->events);
  773. if (ev1 > ev2)
  774. return 1;
  775. }
  776. if (minor_version)
  777. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  778. else
  779. rdev->size = rdev->sb_offset;
  780. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  781. return -EINVAL;
  782. rdev->size = le64_to_cpu(sb->data_size)/2;
  783. if (le32_to_cpu(sb->chunksize))
  784. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  785. return 0;
  786. }
  787. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  788. {
  789. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  790. rdev->raid_disk = -1;
  791. rdev->in_sync = 0;
  792. if (mddev->raid_disks == 0) {
  793. mddev->major_version = 1;
  794. mddev->patch_version = 0;
  795. mddev->persistent = 1;
  796. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  797. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  798. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  799. mddev->level = le32_to_cpu(sb->level);
  800. mddev->layout = le32_to_cpu(sb->layout);
  801. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  802. mddev->size = le64_to_cpu(sb->size)/2;
  803. mddev->events = le64_to_cpu(sb->events);
  804. mddev->bitmap_offset = 0;
  805. mddev->default_bitmap_offset = 0;
  806. if (mddev->minor_version == 0)
  807. mddev->default_bitmap_offset = -(64*1024)/512;
  808. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  809. memcpy(mddev->uuid, sb->set_uuid, 16);
  810. mddev->max_disks = (4096-256)/2;
  811. if ((le32_to_cpu(sb->feature_map) & 1) &&
  812. mddev->bitmap_file == NULL ) {
  813. if (mddev->level != 1) {
  814. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  815. return -EINVAL;
  816. }
  817. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  818. }
  819. } else if (mddev->pers == NULL) {
  820. /* Insist of good event counter while assembling */
  821. __u64 ev1 = le64_to_cpu(sb->events);
  822. ++ev1;
  823. if (ev1 < mddev->events)
  824. return -EINVAL;
  825. } else if (mddev->bitmap) {
  826. /* If adding to array with a bitmap, then we can accept an
  827. * older device, but not too old.
  828. */
  829. __u64 ev1 = le64_to_cpu(sb->events);
  830. if (ev1 < mddev->bitmap->events_cleared)
  831. return 0;
  832. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  833. return 0;
  834. if (mddev->level != LEVEL_MULTIPATH) {
  835. int role;
  836. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  837. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  838. switch(role) {
  839. case 0xffff: /* spare */
  840. rdev->faulty = 0;
  841. break;
  842. case 0xfffe: /* faulty */
  843. rdev->faulty = 1;
  844. break;
  845. default:
  846. rdev->in_sync = 1;
  847. rdev->faulty = 0;
  848. rdev->raid_disk = role;
  849. break;
  850. }
  851. rdev->flags = 0;
  852. if (sb->devflags & WriteMostly1)
  853. set_bit(WriteMostly, &rdev->flags);
  854. } else /* MULTIPATH are always insync */
  855. rdev->in_sync = 1;
  856. return 0;
  857. }
  858. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  859. {
  860. struct mdp_superblock_1 *sb;
  861. struct list_head *tmp;
  862. mdk_rdev_t *rdev2;
  863. int max_dev, i;
  864. /* make rdev->sb match mddev and rdev data. */
  865. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  866. sb->feature_map = 0;
  867. sb->pad0 = 0;
  868. memset(sb->pad1, 0, sizeof(sb->pad1));
  869. memset(sb->pad2, 0, sizeof(sb->pad2));
  870. memset(sb->pad3, 0, sizeof(sb->pad3));
  871. sb->utime = cpu_to_le64((__u64)mddev->utime);
  872. sb->events = cpu_to_le64(mddev->events);
  873. if (mddev->in_sync)
  874. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  875. else
  876. sb->resync_offset = cpu_to_le64(0);
  877. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  878. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  879. sb->feature_map = cpu_to_le32(1);
  880. }
  881. max_dev = 0;
  882. ITERATE_RDEV(mddev,rdev2,tmp)
  883. if (rdev2->desc_nr+1 > max_dev)
  884. max_dev = rdev2->desc_nr+1;
  885. sb->max_dev = cpu_to_le32(max_dev);
  886. for (i=0; i<max_dev;i++)
  887. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  888. ITERATE_RDEV(mddev,rdev2,tmp) {
  889. i = rdev2->desc_nr;
  890. if (rdev2->faulty)
  891. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  892. else if (rdev2->in_sync)
  893. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  894. else
  895. sb->dev_roles[i] = cpu_to_le16(0xffff);
  896. }
  897. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  898. sb->sb_csum = calc_sb_1_csum(sb);
  899. }
  900. static struct super_type super_types[] = {
  901. [0] = {
  902. .name = "0.90.0",
  903. .owner = THIS_MODULE,
  904. .load_super = super_90_load,
  905. .validate_super = super_90_validate,
  906. .sync_super = super_90_sync,
  907. },
  908. [1] = {
  909. .name = "md-1",
  910. .owner = THIS_MODULE,
  911. .load_super = super_1_load,
  912. .validate_super = super_1_validate,
  913. .sync_super = super_1_sync,
  914. },
  915. };
  916. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  917. {
  918. struct list_head *tmp;
  919. mdk_rdev_t *rdev;
  920. ITERATE_RDEV(mddev,rdev,tmp)
  921. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  922. return rdev;
  923. return NULL;
  924. }
  925. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  926. {
  927. struct list_head *tmp;
  928. mdk_rdev_t *rdev;
  929. ITERATE_RDEV(mddev1,rdev,tmp)
  930. if (match_dev_unit(mddev2, rdev))
  931. return 1;
  932. return 0;
  933. }
  934. static LIST_HEAD(pending_raid_disks);
  935. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  936. {
  937. mdk_rdev_t *same_pdev;
  938. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  939. if (rdev->mddev) {
  940. MD_BUG();
  941. return -EINVAL;
  942. }
  943. same_pdev = match_dev_unit(mddev, rdev);
  944. if (same_pdev)
  945. printk(KERN_WARNING
  946. "%s: WARNING: %s appears to be on the same physical"
  947. " disk as %s. True\n protection against single-disk"
  948. " failure might be compromised.\n",
  949. mdname(mddev), bdevname(rdev->bdev,b),
  950. bdevname(same_pdev->bdev,b2));
  951. /* Verify rdev->desc_nr is unique.
  952. * If it is -1, assign a free number, else
  953. * check number is not in use
  954. */
  955. if (rdev->desc_nr < 0) {
  956. int choice = 0;
  957. if (mddev->pers) choice = mddev->raid_disks;
  958. while (find_rdev_nr(mddev, choice))
  959. choice++;
  960. rdev->desc_nr = choice;
  961. } else {
  962. if (find_rdev_nr(mddev, rdev->desc_nr))
  963. return -EBUSY;
  964. }
  965. list_add(&rdev->same_set, &mddev->disks);
  966. rdev->mddev = mddev;
  967. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  968. return 0;
  969. }
  970. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  971. {
  972. char b[BDEVNAME_SIZE];
  973. if (!rdev->mddev) {
  974. MD_BUG();
  975. return;
  976. }
  977. list_del_init(&rdev->same_set);
  978. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  979. rdev->mddev = NULL;
  980. }
  981. /*
  982. * prevent the device from being mounted, repartitioned or
  983. * otherwise reused by a RAID array (or any other kernel
  984. * subsystem), by bd_claiming the device.
  985. */
  986. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  987. {
  988. int err = 0;
  989. struct block_device *bdev;
  990. char b[BDEVNAME_SIZE];
  991. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  992. if (IS_ERR(bdev)) {
  993. printk(KERN_ERR "md: could not open %s.\n",
  994. __bdevname(dev, b));
  995. return PTR_ERR(bdev);
  996. }
  997. err = bd_claim(bdev, rdev);
  998. if (err) {
  999. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1000. bdevname(bdev, b));
  1001. blkdev_put(bdev);
  1002. return err;
  1003. }
  1004. rdev->bdev = bdev;
  1005. return err;
  1006. }
  1007. static void unlock_rdev(mdk_rdev_t *rdev)
  1008. {
  1009. struct block_device *bdev = rdev->bdev;
  1010. rdev->bdev = NULL;
  1011. if (!bdev)
  1012. MD_BUG();
  1013. bd_release(bdev);
  1014. blkdev_put(bdev);
  1015. }
  1016. void md_autodetect_dev(dev_t dev);
  1017. static void export_rdev(mdk_rdev_t * rdev)
  1018. {
  1019. char b[BDEVNAME_SIZE];
  1020. printk(KERN_INFO "md: export_rdev(%s)\n",
  1021. bdevname(rdev->bdev,b));
  1022. if (rdev->mddev)
  1023. MD_BUG();
  1024. free_disk_sb(rdev);
  1025. list_del_init(&rdev->same_set);
  1026. #ifndef MODULE
  1027. md_autodetect_dev(rdev->bdev->bd_dev);
  1028. #endif
  1029. unlock_rdev(rdev);
  1030. kfree(rdev);
  1031. }
  1032. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1033. {
  1034. unbind_rdev_from_array(rdev);
  1035. export_rdev(rdev);
  1036. }
  1037. static void export_array(mddev_t *mddev)
  1038. {
  1039. struct list_head *tmp;
  1040. mdk_rdev_t *rdev;
  1041. ITERATE_RDEV(mddev,rdev,tmp) {
  1042. if (!rdev->mddev) {
  1043. MD_BUG();
  1044. continue;
  1045. }
  1046. kick_rdev_from_array(rdev);
  1047. }
  1048. if (!list_empty(&mddev->disks))
  1049. MD_BUG();
  1050. mddev->raid_disks = 0;
  1051. mddev->major_version = 0;
  1052. }
  1053. static void print_desc(mdp_disk_t *desc)
  1054. {
  1055. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1056. desc->major,desc->minor,desc->raid_disk,desc->state);
  1057. }
  1058. static void print_sb(mdp_super_t *sb)
  1059. {
  1060. int i;
  1061. printk(KERN_INFO
  1062. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1063. sb->major_version, sb->minor_version, sb->patch_version,
  1064. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1065. sb->ctime);
  1066. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1067. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1068. sb->md_minor, sb->layout, sb->chunk_size);
  1069. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1070. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1071. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1072. sb->failed_disks, sb->spare_disks,
  1073. sb->sb_csum, (unsigned long)sb->events_lo);
  1074. printk(KERN_INFO);
  1075. for (i = 0; i < MD_SB_DISKS; i++) {
  1076. mdp_disk_t *desc;
  1077. desc = sb->disks + i;
  1078. if (desc->number || desc->major || desc->minor ||
  1079. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1080. printk(" D %2d: ", i);
  1081. print_desc(desc);
  1082. }
  1083. }
  1084. printk(KERN_INFO "md: THIS: ");
  1085. print_desc(&sb->this_disk);
  1086. }
  1087. static void print_rdev(mdk_rdev_t *rdev)
  1088. {
  1089. char b[BDEVNAME_SIZE];
  1090. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1091. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1092. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1093. if (rdev->sb_loaded) {
  1094. printk(KERN_INFO "md: rdev superblock:\n");
  1095. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1096. } else
  1097. printk(KERN_INFO "md: no rdev superblock!\n");
  1098. }
  1099. void md_print_devices(void)
  1100. {
  1101. struct list_head *tmp, *tmp2;
  1102. mdk_rdev_t *rdev;
  1103. mddev_t *mddev;
  1104. char b[BDEVNAME_SIZE];
  1105. printk("\n");
  1106. printk("md: **********************************\n");
  1107. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1108. printk("md: **********************************\n");
  1109. ITERATE_MDDEV(mddev,tmp) {
  1110. if (mddev->bitmap)
  1111. bitmap_print_sb(mddev->bitmap);
  1112. else
  1113. printk("%s: ", mdname(mddev));
  1114. ITERATE_RDEV(mddev,rdev,tmp2)
  1115. printk("<%s>", bdevname(rdev->bdev,b));
  1116. printk("\n");
  1117. ITERATE_RDEV(mddev,rdev,tmp2)
  1118. print_rdev(rdev);
  1119. }
  1120. printk("md: **********************************\n");
  1121. printk("\n");
  1122. }
  1123. static void sync_sbs(mddev_t * mddev)
  1124. {
  1125. mdk_rdev_t *rdev;
  1126. struct list_head *tmp;
  1127. ITERATE_RDEV(mddev,rdev,tmp) {
  1128. super_types[mddev->major_version].
  1129. sync_super(mddev, rdev);
  1130. rdev->sb_loaded = 1;
  1131. }
  1132. }
  1133. static void md_update_sb(mddev_t * mddev)
  1134. {
  1135. int err;
  1136. struct list_head *tmp;
  1137. mdk_rdev_t *rdev;
  1138. int sync_req;
  1139. repeat:
  1140. spin_lock(&mddev->write_lock);
  1141. sync_req = mddev->in_sync;
  1142. mddev->utime = get_seconds();
  1143. mddev->events ++;
  1144. if (!mddev->events) {
  1145. /*
  1146. * oops, this 64-bit counter should never wrap.
  1147. * Either we are in around ~1 trillion A.C., assuming
  1148. * 1 reboot per second, or we have a bug:
  1149. */
  1150. MD_BUG();
  1151. mddev->events --;
  1152. }
  1153. mddev->sb_dirty = 2;
  1154. sync_sbs(mddev);
  1155. /*
  1156. * do not write anything to disk if using
  1157. * nonpersistent superblocks
  1158. */
  1159. if (!mddev->persistent) {
  1160. mddev->sb_dirty = 0;
  1161. spin_unlock(&mddev->write_lock);
  1162. wake_up(&mddev->sb_wait);
  1163. return;
  1164. }
  1165. spin_unlock(&mddev->write_lock);
  1166. dprintk(KERN_INFO
  1167. "md: updating %s RAID superblock on device (in sync %d)\n",
  1168. mdname(mddev),mddev->in_sync);
  1169. err = bitmap_update_sb(mddev->bitmap);
  1170. ITERATE_RDEV(mddev,rdev,tmp) {
  1171. char b[BDEVNAME_SIZE];
  1172. dprintk(KERN_INFO "md: ");
  1173. if (rdev->faulty)
  1174. dprintk("(skipping faulty ");
  1175. dprintk("%s ", bdevname(rdev->bdev,b));
  1176. if (!rdev->faulty) {
  1177. md_super_write(mddev,rdev,
  1178. rdev->sb_offset<<1, MD_SB_BYTES,
  1179. rdev->sb_page);
  1180. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1181. bdevname(rdev->bdev,b),
  1182. (unsigned long long)rdev->sb_offset);
  1183. } else
  1184. dprintk(")\n");
  1185. if (mddev->level == LEVEL_MULTIPATH)
  1186. /* only need to write one superblock... */
  1187. break;
  1188. }
  1189. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1190. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1191. spin_lock(&mddev->write_lock);
  1192. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1193. /* have to write it out again */
  1194. spin_unlock(&mddev->write_lock);
  1195. goto repeat;
  1196. }
  1197. mddev->sb_dirty = 0;
  1198. spin_unlock(&mddev->write_lock);
  1199. wake_up(&mddev->sb_wait);
  1200. }
  1201. /*
  1202. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1203. *
  1204. * mark the device faulty if:
  1205. *
  1206. * - the device is nonexistent (zero size)
  1207. * - the device has no valid superblock
  1208. *
  1209. * a faulty rdev _never_ has rdev->sb set.
  1210. */
  1211. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1212. {
  1213. char b[BDEVNAME_SIZE];
  1214. int err;
  1215. mdk_rdev_t *rdev;
  1216. sector_t size;
  1217. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1218. if (!rdev) {
  1219. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1220. return ERR_PTR(-ENOMEM);
  1221. }
  1222. memset(rdev, 0, sizeof(*rdev));
  1223. if ((err = alloc_disk_sb(rdev)))
  1224. goto abort_free;
  1225. err = lock_rdev(rdev, newdev);
  1226. if (err)
  1227. goto abort_free;
  1228. rdev->desc_nr = -1;
  1229. rdev->faulty = 0;
  1230. rdev->in_sync = 0;
  1231. rdev->data_offset = 0;
  1232. atomic_set(&rdev->nr_pending, 0);
  1233. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1234. if (!size) {
  1235. printk(KERN_WARNING
  1236. "md: %s has zero or unknown size, marking faulty!\n",
  1237. bdevname(rdev->bdev,b));
  1238. err = -EINVAL;
  1239. goto abort_free;
  1240. }
  1241. if (super_format >= 0) {
  1242. err = super_types[super_format].
  1243. load_super(rdev, NULL, super_minor);
  1244. if (err == -EINVAL) {
  1245. printk(KERN_WARNING
  1246. "md: %s has invalid sb, not importing!\n",
  1247. bdevname(rdev->bdev,b));
  1248. goto abort_free;
  1249. }
  1250. if (err < 0) {
  1251. printk(KERN_WARNING
  1252. "md: could not read %s's sb, not importing!\n",
  1253. bdevname(rdev->bdev,b));
  1254. goto abort_free;
  1255. }
  1256. }
  1257. INIT_LIST_HEAD(&rdev->same_set);
  1258. return rdev;
  1259. abort_free:
  1260. if (rdev->sb_page) {
  1261. if (rdev->bdev)
  1262. unlock_rdev(rdev);
  1263. free_disk_sb(rdev);
  1264. }
  1265. kfree(rdev);
  1266. return ERR_PTR(err);
  1267. }
  1268. /*
  1269. * Check a full RAID array for plausibility
  1270. */
  1271. static void analyze_sbs(mddev_t * mddev)
  1272. {
  1273. int i;
  1274. struct list_head *tmp;
  1275. mdk_rdev_t *rdev, *freshest;
  1276. char b[BDEVNAME_SIZE];
  1277. freshest = NULL;
  1278. ITERATE_RDEV(mddev,rdev,tmp)
  1279. switch (super_types[mddev->major_version].
  1280. load_super(rdev, freshest, mddev->minor_version)) {
  1281. case 1:
  1282. freshest = rdev;
  1283. break;
  1284. case 0:
  1285. break;
  1286. default:
  1287. printk( KERN_ERR \
  1288. "md: fatal superblock inconsistency in %s"
  1289. " -- removing from array\n",
  1290. bdevname(rdev->bdev,b));
  1291. kick_rdev_from_array(rdev);
  1292. }
  1293. super_types[mddev->major_version].
  1294. validate_super(mddev, freshest);
  1295. i = 0;
  1296. ITERATE_RDEV(mddev,rdev,tmp) {
  1297. if (rdev != freshest)
  1298. if (super_types[mddev->major_version].
  1299. validate_super(mddev, rdev)) {
  1300. printk(KERN_WARNING "md: kicking non-fresh %s"
  1301. " from array!\n",
  1302. bdevname(rdev->bdev,b));
  1303. kick_rdev_from_array(rdev);
  1304. continue;
  1305. }
  1306. if (mddev->level == LEVEL_MULTIPATH) {
  1307. rdev->desc_nr = i++;
  1308. rdev->raid_disk = rdev->desc_nr;
  1309. rdev->in_sync = 1;
  1310. }
  1311. }
  1312. if (mddev->recovery_cp != MaxSector &&
  1313. mddev->level >= 1)
  1314. printk(KERN_ERR "md: %s: raid array is not clean"
  1315. " -- starting background reconstruction\n",
  1316. mdname(mddev));
  1317. }
  1318. int mdp_major = 0;
  1319. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1320. {
  1321. static DECLARE_MUTEX(disks_sem);
  1322. mddev_t *mddev = mddev_find(dev);
  1323. struct gendisk *disk;
  1324. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1325. int shift = partitioned ? MdpMinorShift : 0;
  1326. int unit = MINOR(dev) >> shift;
  1327. if (!mddev)
  1328. return NULL;
  1329. down(&disks_sem);
  1330. if (mddev->gendisk) {
  1331. up(&disks_sem);
  1332. mddev_put(mddev);
  1333. return NULL;
  1334. }
  1335. disk = alloc_disk(1 << shift);
  1336. if (!disk) {
  1337. up(&disks_sem);
  1338. mddev_put(mddev);
  1339. return NULL;
  1340. }
  1341. disk->major = MAJOR(dev);
  1342. disk->first_minor = unit << shift;
  1343. if (partitioned) {
  1344. sprintf(disk->disk_name, "md_d%d", unit);
  1345. sprintf(disk->devfs_name, "md/d%d", unit);
  1346. } else {
  1347. sprintf(disk->disk_name, "md%d", unit);
  1348. sprintf(disk->devfs_name, "md/%d", unit);
  1349. }
  1350. disk->fops = &md_fops;
  1351. disk->private_data = mddev;
  1352. disk->queue = mddev->queue;
  1353. add_disk(disk);
  1354. mddev->gendisk = disk;
  1355. up(&disks_sem);
  1356. return NULL;
  1357. }
  1358. void md_wakeup_thread(mdk_thread_t *thread);
  1359. static void md_safemode_timeout(unsigned long data)
  1360. {
  1361. mddev_t *mddev = (mddev_t *) data;
  1362. mddev->safemode = 1;
  1363. md_wakeup_thread(mddev->thread);
  1364. }
  1365. static int do_md_run(mddev_t * mddev)
  1366. {
  1367. int pnum, err;
  1368. int chunk_size;
  1369. struct list_head *tmp;
  1370. mdk_rdev_t *rdev;
  1371. struct gendisk *disk;
  1372. char b[BDEVNAME_SIZE];
  1373. if (list_empty(&mddev->disks))
  1374. /* cannot run an array with no devices.. */
  1375. return -EINVAL;
  1376. if (mddev->pers)
  1377. return -EBUSY;
  1378. /*
  1379. * Analyze all RAID superblock(s)
  1380. */
  1381. if (!mddev->raid_disks)
  1382. analyze_sbs(mddev);
  1383. chunk_size = mddev->chunk_size;
  1384. pnum = level_to_pers(mddev->level);
  1385. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1386. if (!chunk_size) {
  1387. /*
  1388. * 'default chunksize' in the old md code used to
  1389. * be PAGE_SIZE, baaad.
  1390. * we abort here to be on the safe side. We don't
  1391. * want to continue the bad practice.
  1392. */
  1393. printk(KERN_ERR
  1394. "no chunksize specified, see 'man raidtab'\n");
  1395. return -EINVAL;
  1396. }
  1397. if (chunk_size > MAX_CHUNK_SIZE) {
  1398. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1399. chunk_size, MAX_CHUNK_SIZE);
  1400. return -EINVAL;
  1401. }
  1402. /*
  1403. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1404. */
  1405. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1406. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1407. return -EINVAL;
  1408. }
  1409. if (chunk_size < PAGE_SIZE) {
  1410. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1411. chunk_size, PAGE_SIZE);
  1412. return -EINVAL;
  1413. }
  1414. /* devices must have minimum size of one chunk */
  1415. ITERATE_RDEV(mddev,rdev,tmp) {
  1416. if (rdev->faulty)
  1417. continue;
  1418. if (rdev->size < chunk_size / 1024) {
  1419. printk(KERN_WARNING
  1420. "md: Dev %s smaller than chunk_size:"
  1421. " %lluk < %dk\n",
  1422. bdevname(rdev->bdev,b),
  1423. (unsigned long long)rdev->size,
  1424. chunk_size / 1024);
  1425. return -EINVAL;
  1426. }
  1427. }
  1428. }
  1429. #ifdef CONFIG_KMOD
  1430. if (!pers[pnum])
  1431. {
  1432. request_module("md-personality-%d", pnum);
  1433. }
  1434. #endif
  1435. /*
  1436. * Drop all container device buffers, from now on
  1437. * the only valid external interface is through the md
  1438. * device.
  1439. * Also find largest hardsector size
  1440. */
  1441. ITERATE_RDEV(mddev,rdev,tmp) {
  1442. if (rdev->faulty)
  1443. continue;
  1444. sync_blockdev(rdev->bdev);
  1445. invalidate_bdev(rdev->bdev, 0);
  1446. }
  1447. md_probe(mddev->unit, NULL, NULL);
  1448. disk = mddev->gendisk;
  1449. if (!disk)
  1450. return -ENOMEM;
  1451. spin_lock(&pers_lock);
  1452. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1453. spin_unlock(&pers_lock);
  1454. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1455. pnum);
  1456. return -EINVAL;
  1457. }
  1458. mddev->pers = pers[pnum];
  1459. spin_unlock(&pers_lock);
  1460. mddev->recovery = 0;
  1461. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1462. /* before we start the array running, initialise the bitmap */
  1463. err = bitmap_create(mddev);
  1464. if (err)
  1465. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1466. mdname(mddev), err);
  1467. else
  1468. err = mddev->pers->run(mddev);
  1469. if (err) {
  1470. printk(KERN_ERR "md: pers->run() failed ...\n");
  1471. module_put(mddev->pers->owner);
  1472. mddev->pers = NULL;
  1473. bitmap_destroy(mddev);
  1474. return err;
  1475. }
  1476. atomic_set(&mddev->writes_pending,0);
  1477. mddev->safemode = 0;
  1478. mddev->safemode_timer.function = md_safemode_timeout;
  1479. mddev->safemode_timer.data = (unsigned long) mddev;
  1480. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1481. mddev->in_sync = 1;
  1482. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1483. md_wakeup_thread(mddev->thread);
  1484. if (mddev->sb_dirty)
  1485. md_update_sb(mddev);
  1486. set_capacity(disk, mddev->array_size<<1);
  1487. /* If we call blk_queue_make_request here, it will
  1488. * re-initialise max_sectors etc which may have been
  1489. * refined inside -> run. So just set the bits we need to set.
  1490. * Most initialisation happended when we called
  1491. * blk_queue_make_request(..., md_fail_request)
  1492. * earlier.
  1493. */
  1494. mddev->queue->queuedata = mddev;
  1495. mddev->queue->make_request_fn = mddev->pers->make_request;
  1496. mddev->changed = 1;
  1497. return 0;
  1498. }
  1499. static int restart_array(mddev_t *mddev)
  1500. {
  1501. struct gendisk *disk = mddev->gendisk;
  1502. int err;
  1503. /*
  1504. * Complain if it has no devices
  1505. */
  1506. err = -ENXIO;
  1507. if (list_empty(&mddev->disks))
  1508. goto out;
  1509. if (mddev->pers) {
  1510. err = -EBUSY;
  1511. if (!mddev->ro)
  1512. goto out;
  1513. mddev->safemode = 0;
  1514. mddev->ro = 0;
  1515. set_disk_ro(disk, 0);
  1516. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1517. mdname(mddev));
  1518. /*
  1519. * Kick recovery or resync if necessary
  1520. */
  1521. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1522. md_wakeup_thread(mddev->thread);
  1523. err = 0;
  1524. } else {
  1525. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1526. mdname(mddev));
  1527. err = -EINVAL;
  1528. }
  1529. out:
  1530. return err;
  1531. }
  1532. static int do_md_stop(mddev_t * mddev, int ro)
  1533. {
  1534. int err = 0;
  1535. struct gendisk *disk = mddev->gendisk;
  1536. if (mddev->pers) {
  1537. if (atomic_read(&mddev->active)>2) {
  1538. printk("md: %s still in use.\n",mdname(mddev));
  1539. return -EBUSY;
  1540. }
  1541. if (mddev->sync_thread) {
  1542. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1543. md_unregister_thread(mddev->sync_thread);
  1544. mddev->sync_thread = NULL;
  1545. }
  1546. del_timer_sync(&mddev->safemode_timer);
  1547. invalidate_partition(disk, 0);
  1548. if (ro) {
  1549. err = -ENXIO;
  1550. if (mddev->ro)
  1551. goto out;
  1552. mddev->ro = 1;
  1553. } else {
  1554. bitmap_flush(mddev);
  1555. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1556. if (mddev->ro)
  1557. set_disk_ro(disk, 0);
  1558. blk_queue_make_request(mddev->queue, md_fail_request);
  1559. mddev->pers->stop(mddev);
  1560. module_put(mddev->pers->owner);
  1561. mddev->pers = NULL;
  1562. if (mddev->ro)
  1563. mddev->ro = 0;
  1564. }
  1565. if (!mddev->in_sync) {
  1566. /* mark array as shutdown cleanly */
  1567. mddev->in_sync = 1;
  1568. md_update_sb(mddev);
  1569. }
  1570. if (ro)
  1571. set_disk_ro(disk, 1);
  1572. }
  1573. bitmap_destroy(mddev);
  1574. if (mddev->bitmap_file) {
  1575. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1576. fput(mddev->bitmap_file);
  1577. mddev->bitmap_file = NULL;
  1578. }
  1579. mddev->bitmap_offset = 0;
  1580. /*
  1581. * Free resources if final stop
  1582. */
  1583. if (!ro) {
  1584. struct gendisk *disk;
  1585. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1586. export_array(mddev);
  1587. mddev->array_size = 0;
  1588. disk = mddev->gendisk;
  1589. if (disk)
  1590. set_capacity(disk, 0);
  1591. mddev->changed = 1;
  1592. } else
  1593. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1594. mdname(mddev));
  1595. err = 0;
  1596. out:
  1597. return err;
  1598. }
  1599. static void autorun_array(mddev_t *mddev)
  1600. {
  1601. mdk_rdev_t *rdev;
  1602. struct list_head *tmp;
  1603. int err;
  1604. if (list_empty(&mddev->disks))
  1605. return;
  1606. printk(KERN_INFO "md: running: ");
  1607. ITERATE_RDEV(mddev,rdev,tmp) {
  1608. char b[BDEVNAME_SIZE];
  1609. printk("<%s>", bdevname(rdev->bdev,b));
  1610. }
  1611. printk("\n");
  1612. err = do_md_run (mddev);
  1613. if (err) {
  1614. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1615. do_md_stop (mddev, 0);
  1616. }
  1617. }
  1618. /*
  1619. * lets try to run arrays based on all disks that have arrived
  1620. * until now. (those are in pending_raid_disks)
  1621. *
  1622. * the method: pick the first pending disk, collect all disks with
  1623. * the same UUID, remove all from the pending list and put them into
  1624. * the 'same_array' list. Then order this list based on superblock
  1625. * update time (freshest comes first), kick out 'old' disks and
  1626. * compare superblocks. If everything's fine then run it.
  1627. *
  1628. * If "unit" is allocated, then bump its reference count
  1629. */
  1630. static void autorun_devices(int part)
  1631. {
  1632. struct list_head candidates;
  1633. struct list_head *tmp;
  1634. mdk_rdev_t *rdev0, *rdev;
  1635. mddev_t *mddev;
  1636. char b[BDEVNAME_SIZE];
  1637. printk(KERN_INFO "md: autorun ...\n");
  1638. while (!list_empty(&pending_raid_disks)) {
  1639. dev_t dev;
  1640. rdev0 = list_entry(pending_raid_disks.next,
  1641. mdk_rdev_t, same_set);
  1642. printk(KERN_INFO "md: considering %s ...\n",
  1643. bdevname(rdev0->bdev,b));
  1644. INIT_LIST_HEAD(&candidates);
  1645. ITERATE_RDEV_PENDING(rdev,tmp)
  1646. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1647. printk(KERN_INFO "md: adding %s ...\n",
  1648. bdevname(rdev->bdev,b));
  1649. list_move(&rdev->same_set, &candidates);
  1650. }
  1651. /*
  1652. * now we have a set of devices, with all of them having
  1653. * mostly sane superblocks. It's time to allocate the
  1654. * mddev.
  1655. */
  1656. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1657. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1658. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1659. break;
  1660. }
  1661. if (part)
  1662. dev = MKDEV(mdp_major,
  1663. rdev0->preferred_minor << MdpMinorShift);
  1664. else
  1665. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1666. md_probe(dev, NULL, NULL);
  1667. mddev = mddev_find(dev);
  1668. if (!mddev) {
  1669. printk(KERN_ERR
  1670. "md: cannot allocate memory for md drive.\n");
  1671. break;
  1672. }
  1673. if (mddev_lock(mddev))
  1674. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1675. mdname(mddev));
  1676. else if (mddev->raid_disks || mddev->major_version
  1677. || !list_empty(&mddev->disks)) {
  1678. printk(KERN_WARNING
  1679. "md: %s already running, cannot run %s\n",
  1680. mdname(mddev), bdevname(rdev0->bdev,b));
  1681. mddev_unlock(mddev);
  1682. } else {
  1683. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1684. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1685. list_del_init(&rdev->same_set);
  1686. if (bind_rdev_to_array(rdev, mddev))
  1687. export_rdev(rdev);
  1688. }
  1689. autorun_array(mddev);
  1690. mddev_unlock(mddev);
  1691. }
  1692. /* on success, candidates will be empty, on error
  1693. * it won't...
  1694. */
  1695. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1696. export_rdev(rdev);
  1697. mddev_put(mddev);
  1698. }
  1699. printk(KERN_INFO "md: ... autorun DONE.\n");
  1700. }
  1701. /*
  1702. * import RAID devices based on one partition
  1703. * if possible, the array gets run as well.
  1704. */
  1705. static int autostart_array(dev_t startdev)
  1706. {
  1707. char b[BDEVNAME_SIZE];
  1708. int err = -EINVAL, i;
  1709. mdp_super_t *sb = NULL;
  1710. mdk_rdev_t *start_rdev = NULL, *rdev;
  1711. start_rdev = md_import_device(startdev, 0, 0);
  1712. if (IS_ERR(start_rdev))
  1713. return err;
  1714. /* NOTE: this can only work for 0.90.0 superblocks */
  1715. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1716. if (sb->major_version != 0 ||
  1717. sb->minor_version != 90 ) {
  1718. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1719. export_rdev(start_rdev);
  1720. return err;
  1721. }
  1722. if (start_rdev->faulty) {
  1723. printk(KERN_WARNING
  1724. "md: can not autostart based on faulty %s!\n",
  1725. bdevname(start_rdev->bdev,b));
  1726. export_rdev(start_rdev);
  1727. return err;
  1728. }
  1729. list_add(&start_rdev->same_set, &pending_raid_disks);
  1730. for (i = 0; i < MD_SB_DISKS; i++) {
  1731. mdp_disk_t *desc = sb->disks + i;
  1732. dev_t dev = MKDEV(desc->major, desc->minor);
  1733. if (!dev)
  1734. continue;
  1735. if (dev == startdev)
  1736. continue;
  1737. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1738. continue;
  1739. rdev = md_import_device(dev, 0, 0);
  1740. if (IS_ERR(rdev))
  1741. continue;
  1742. list_add(&rdev->same_set, &pending_raid_disks);
  1743. }
  1744. /*
  1745. * possibly return codes
  1746. */
  1747. autorun_devices(0);
  1748. return 0;
  1749. }
  1750. static int get_version(void __user * arg)
  1751. {
  1752. mdu_version_t ver;
  1753. ver.major = MD_MAJOR_VERSION;
  1754. ver.minor = MD_MINOR_VERSION;
  1755. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1756. if (copy_to_user(arg, &ver, sizeof(ver)))
  1757. return -EFAULT;
  1758. return 0;
  1759. }
  1760. static int get_array_info(mddev_t * mddev, void __user * arg)
  1761. {
  1762. mdu_array_info_t info;
  1763. int nr,working,active,failed,spare;
  1764. mdk_rdev_t *rdev;
  1765. struct list_head *tmp;
  1766. nr=working=active=failed=spare=0;
  1767. ITERATE_RDEV(mddev,rdev,tmp) {
  1768. nr++;
  1769. if (rdev->faulty)
  1770. failed++;
  1771. else {
  1772. working++;
  1773. if (rdev->in_sync)
  1774. active++;
  1775. else
  1776. spare++;
  1777. }
  1778. }
  1779. info.major_version = mddev->major_version;
  1780. info.minor_version = mddev->minor_version;
  1781. info.patch_version = MD_PATCHLEVEL_VERSION;
  1782. info.ctime = mddev->ctime;
  1783. info.level = mddev->level;
  1784. info.size = mddev->size;
  1785. info.nr_disks = nr;
  1786. info.raid_disks = mddev->raid_disks;
  1787. info.md_minor = mddev->md_minor;
  1788. info.not_persistent= !mddev->persistent;
  1789. info.utime = mddev->utime;
  1790. info.state = 0;
  1791. if (mddev->in_sync)
  1792. info.state = (1<<MD_SB_CLEAN);
  1793. if (mddev->bitmap && mddev->bitmap_offset)
  1794. info.state = (1<<MD_SB_BITMAP_PRESENT);
  1795. info.active_disks = active;
  1796. info.working_disks = working;
  1797. info.failed_disks = failed;
  1798. info.spare_disks = spare;
  1799. info.layout = mddev->layout;
  1800. info.chunk_size = mddev->chunk_size;
  1801. if (copy_to_user(arg, &info, sizeof(info)))
  1802. return -EFAULT;
  1803. return 0;
  1804. }
  1805. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  1806. {
  1807. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1808. char *ptr, *buf = NULL;
  1809. int err = -ENOMEM;
  1810. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1811. if (!file)
  1812. goto out;
  1813. /* bitmap disabled, zero the first byte and copy out */
  1814. if (!mddev->bitmap || !mddev->bitmap->file) {
  1815. file->pathname[0] = '\0';
  1816. goto copy_out;
  1817. }
  1818. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1819. if (!buf)
  1820. goto out;
  1821. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1822. if (!ptr)
  1823. goto out;
  1824. strcpy(file->pathname, ptr);
  1825. copy_out:
  1826. err = 0;
  1827. if (copy_to_user(arg, file, sizeof(*file)))
  1828. err = -EFAULT;
  1829. out:
  1830. kfree(buf);
  1831. kfree(file);
  1832. return err;
  1833. }
  1834. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1835. {
  1836. mdu_disk_info_t info;
  1837. unsigned int nr;
  1838. mdk_rdev_t *rdev;
  1839. if (copy_from_user(&info, arg, sizeof(info)))
  1840. return -EFAULT;
  1841. nr = info.number;
  1842. rdev = find_rdev_nr(mddev, nr);
  1843. if (rdev) {
  1844. info.major = MAJOR(rdev->bdev->bd_dev);
  1845. info.minor = MINOR(rdev->bdev->bd_dev);
  1846. info.raid_disk = rdev->raid_disk;
  1847. info.state = 0;
  1848. if (rdev->faulty)
  1849. info.state |= (1<<MD_DISK_FAULTY);
  1850. else if (rdev->in_sync) {
  1851. info.state |= (1<<MD_DISK_ACTIVE);
  1852. info.state |= (1<<MD_DISK_SYNC);
  1853. }
  1854. if (test_bit(WriteMostly, &rdev->flags))
  1855. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  1856. } else {
  1857. info.major = info.minor = 0;
  1858. info.raid_disk = -1;
  1859. info.state = (1<<MD_DISK_REMOVED);
  1860. }
  1861. if (copy_to_user(arg, &info, sizeof(info)))
  1862. return -EFAULT;
  1863. return 0;
  1864. }
  1865. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1866. {
  1867. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1868. mdk_rdev_t *rdev;
  1869. dev_t dev = MKDEV(info->major,info->minor);
  1870. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1871. return -EOVERFLOW;
  1872. if (!mddev->raid_disks) {
  1873. int err;
  1874. /* expecting a device which has a superblock */
  1875. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1876. if (IS_ERR(rdev)) {
  1877. printk(KERN_WARNING
  1878. "md: md_import_device returned %ld\n",
  1879. PTR_ERR(rdev));
  1880. return PTR_ERR(rdev);
  1881. }
  1882. if (!list_empty(&mddev->disks)) {
  1883. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1884. mdk_rdev_t, same_set);
  1885. int err = super_types[mddev->major_version]
  1886. .load_super(rdev, rdev0, mddev->minor_version);
  1887. if (err < 0) {
  1888. printk(KERN_WARNING
  1889. "md: %s has different UUID to %s\n",
  1890. bdevname(rdev->bdev,b),
  1891. bdevname(rdev0->bdev,b2));
  1892. export_rdev(rdev);
  1893. return -EINVAL;
  1894. }
  1895. }
  1896. err = bind_rdev_to_array(rdev, mddev);
  1897. if (err)
  1898. export_rdev(rdev);
  1899. return err;
  1900. }
  1901. /*
  1902. * add_new_disk can be used once the array is assembled
  1903. * to add "hot spares". They must already have a superblock
  1904. * written
  1905. */
  1906. if (mddev->pers) {
  1907. int err;
  1908. if (!mddev->pers->hot_add_disk) {
  1909. printk(KERN_WARNING
  1910. "%s: personality does not support diskops!\n",
  1911. mdname(mddev));
  1912. return -EINVAL;
  1913. }
  1914. if (mddev->persistent)
  1915. rdev = md_import_device(dev, mddev->major_version,
  1916. mddev->minor_version);
  1917. else
  1918. rdev = md_import_device(dev, -1, -1);
  1919. if (IS_ERR(rdev)) {
  1920. printk(KERN_WARNING
  1921. "md: md_import_device returned %ld\n",
  1922. PTR_ERR(rdev));
  1923. return PTR_ERR(rdev);
  1924. }
  1925. /* set save_raid_disk if appropriate */
  1926. if (!mddev->persistent) {
  1927. if (info->state & (1<<MD_DISK_SYNC) &&
  1928. info->raid_disk < mddev->raid_disks)
  1929. rdev->raid_disk = info->raid_disk;
  1930. else
  1931. rdev->raid_disk = -1;
  1932. } else
  1933. super_types[mddev->major_version].
  1934. validate_super(mddev, rdev);
  1935. rdev->saved_raid_disk = rdev->raid_disk;
  1936. rdev->in_sync = 0; /* just to be sure */
  1937. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  1938. set_bit(WriteMostly, &rdev->flags);
  1939. rdev->raid_disk = -1;
  1940. err = bind_rdev_to_array(rdev, mddev);
  1941. if (err)
  1942. export_rdev(rdev);
  1943. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1944. md_wakeup_thread(mddev->thread);
  1945. return err;
  1946. }
  1947. /* otherwise, add_new_disk is only allowed
  1948. * for major_version==0 superblocks
  1949. */
  1950. if (mddev->major_version != 0) {
  1951. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1952. mdname(mddev));
  1953. return -EINVAL;
  1954. }
  1955. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1956. int err;
  1957. rdev = md_import_device (dev, -1, 0);
  1958. if (IS_ERR(rdev)) {
  1959. printk(KERN_WARNING
  1960. "md: error, md_import_device() returned %ld\n",
  1961. PTR_ERR(rdev));
  1962. return PTR_ERR(rdev);
  1963. }
  1964. rdev->desc_nr = info->number;
  1965. if (info->raid_disk < mddev->raid_disks)
  1966. rdev->raid_disk = info->raid_disk;
  1967. else
  1968. rdev->raid_disk = -1;
  1969. rdev->faulty = 0;
  1970. if (rdev->raid_disk < mddev->raid_disks)
  1971. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1972. else
  1973. rdev->in_sync = 0;
  1974. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  1975. set_bit(WriteMostly, &rdev->flags);
  1976. err = bind_rdev_to_array(rdev, mddev);
  1977. if (err) {
  1978. export_rdev(rdev);
  1979. return err;
  1980. }
  1981. if (!mddev->persistent) {
  1982. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1983. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1984. } else
  1985. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1986. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1987. if (!mddev->size || (mddev->size > rdev->size))
  1988. mddev->size = rdev->size;
  1989. }
  1990. return 0;
  1991. }
  1992. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1993. {
  1994. char b[BDEVNAME_SIZE];
  1995. mdk_rdev_t *rdev;
  1996. if (!mddev->pers)
  1997. return -ENODEV;
  1998. rdev = find_rdev(mddev, dev);
  1999. if (!rdev)
  2000. return -ENXIO;
  2001. if (rdev->raid_disk >= 0)
  2002. goto busy;
  2003. kick_rdev_from_array(rdev);
  2004. md_update_sb(mddev);
  2005. return 0;
  2006. busy:
  2007. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2008. bdevname(rdev->bdev,b), mdname(mddev));
  2009. return -EBUSY;
  2010. }
  2011. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2012. {
  2013. char b[BDEVNAME_SIZE];
  2014. int err;
  2015. unsigned int size;
  2016. mdk_rdev_t *rdev;
  2017. if (!mddev->pers)
  2018. return -ENODEV;
  2019. if (mddev->major_version != 0) {
  2020. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2021. " version-0 superblocks.\n",
  2022. mdname(mddev));
  2023. return -EINVAL;
  2024. }
  2025. if (!mddev->pers->hot_add_disk) {
  2026. printk(KERN_WARNING
  2027. "%s: personality does not support diskops!\n",
  2028. mdname(mddev));
  2029. return -EINVAL;
  2030. }
  2031. rdev = md_import_device (dev, -1, 0);
  2032. if (IS_ERR(rdev)) {
  2033. printk(KERN_WARNING
  2034. "md: error, md_import_device() returned %ld\n",
  2035. PTR_ERR(rdev));
  2036. return -EINVAL;
  2037. }
  2038. if (mddev->persistent)
  2039. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2040. else
  2041. rdev->sb_offset =
  2042. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2043. size = calc_dev_size(rdev, mddev->chunk_size);
  2044. rdev->size = size;
  2045. if (size < mddev->size) {
  2046. printk(KERN_WARNING
  2047. "%s: disk size %llu blocks < array size %llu\n",
  2048. mdname(mddev), (unsigned long long)size,
  2049. (unsigned long long)mddev->size);
  2050. err = -ENOSPC;
  2051. goto abort_export;
  2052. }
  2053. if (rdev->faulty) {
  2054. printk(KERN_WARNING
  2055. "md: can not hot-add faulty %s disk to %s!\n",
  2056. bdevname(rdev->bdev,b), mdname(mddev));
  2057. err = -EINVAL;
  2058. goto abort_export;
  2059. }
  2060. rdev->in_sync = 0;
  2061. rdev->desc_nr = -1;
  2062. bind_rdev_to_array(rdev, mddev);
  2063. /*
  2064. * The rest should better be atomic, we can have disk failures
  2065. * noticed in interrupt contexts ...
  2066. */
  2067. if (rdev->desc_nr == mddev->max_disks) {
  2068. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2069. mdname(mddev));
  2070. err = -EBUSY;
  2071. goto abort_unbind_export;
  2072. }
  2073. rdev->raid_disk = -1;
  2074. md_update_sb(mddev);
  2075. /*
  2076. * Kick recovery, maybe this spare has to be added to the
  2077. * array immediately.
  2078. */
  2079. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2080. md_wakeup_thread(mddev->thread);
  2081. return 0;
  2082. abort_unbind_export:
  2083. unbind_rdev_from_array(rdev);
  2084. abort_export:
  2085. export_rdev(rdev);
  2086. return err;
  2087. }
  2088. /* similar to deny_write_access, but accounts for our holding a reference
  2089. * to the file ourselves */
  2090. static int deny_bitmap_write_access(struct file * file)
  2091. {
  2092. struct inode *inode = file->f_mapping->host;
  2093. spin_lock(&inode->i_lock);
  2094. if (atomic_read(&inode->i_writecount) > 1) {
  2095. spin_unlock(&inode->i_lock);
  2096. return -ETXTBSY;
  2097. }
  2098. atomic_set(&inode->i_writecount, -1);
  2099. spin_unlock(&inode->i_lock);
  2100. return 0;
  2101. }
  2102. static int set_bitmap_file(mddev_t *mddev, int fd)
  2103. {
  2104. int err;
  2105. if (mddev->pers) {
  2106. if (!mddev->pers->quiesce)
  2107. return -EBUSY;
  2108. if (mddev->recovery || mddev->sync_thread)
  2109. return -EBUSY;
  2110. /* we should be able to change the bitmap.. */
  2111. }
  2112. if (fd >= 0) {
  2113. if (mddev->bitmap)
  2114. return -EEXIST; /* cannot add when bitmap is present */
  2115. mddev->bitmap_file = fget(fd);
  2116. if (mddev->bitmap_file == NULL) {
  2117. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2118. mdname(mddev));
  2119. return -EBADF;
  2120. }
  2121. err = deny_bitmap_write_access(mddev->bitmap_file);
  2122. if (err) {
  2123. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2124. mdname(mddev));
  2125. fput(mddev->bitmap_file);
  2126. mddev->bitmap_file = NULL;
  2127. return err;
  2128. }
  2129. mddev->bitmap_offset = 0; /* file overrides offset */
  2130. } else if (mddev->bitmap == NULL)
  2131. return -ENOENT; /* cannot remove what isn't there */
  2132. err = 0;
  2133. if (mddev->pers) {
  2134. mddev->pers->quiesce(mddev, 1);
  2135. if (fd >= 0)
  2136. err = bitmap_create(mddev);
  2137. if (fd < 0 || err)
  2138. bitmap_destroy(mddev);
  2139. mddev->pers->quiesce(mddev, 0);
  2140. } else if (fd < 0) {
  2141. if (mddev->bitmap_file)
  2142. fput(mddev->bitmap_file);
  2143. mddev->bitmap_file = NULL;
  2144. }
  2145. return err;
  2146. }
  2147. /*
  2148. * set_array_info is used two different ways
  2149. * The original usage is when creating a new array.
  2150. * In this usage, raid_disks is > 0 and it together with
  2151. * level, size, not_persistent,layout,chunksize determine the
  2152. * shape of the array.
  2153. * This will always create an array with a type-0.90.0 superblock.
  2154. * The newer usage is when assembling an array.
  2155. * In this case raid_disks will be 0, and the major_version field is
  2156. * use to determine which style super-blocks are to be found on the devices.
  2157. * The minor and patch _version numbers are also kept incase the
  2158. * super_block handler wishes to interpret them.
  2159. */
  2160. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2161. {
  2162. if (info->raid_disks == 0) {
  2163. /* just setting version number for superblock loading */
  2164. if (info->major_version < 0 ||
  2165. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2166. super_types[info->major_version].name == NULL) {
  2167. /* maybe try to auto-load a module? */
  2168. printk(KERN_INFO
  2169. "md: superblock version %d not known\n",
  2170. info->major_version);
  2171. return -EINVAL;
  2172. }
  2173. mddev->major_version = info->major_version;
  2174. mddev->minor_version = info->minor_version;
  2175. mddev->patch_version = info->patch_version;
  2176. return 0;
  2177. }
  2178. mddev->major_version = MD_MAJOR_VERSION;
  2179. mddev->minor_version = MD_MINOR_VERSION;
  2180. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2181. mddev->ctime = get_seconds();
  2182. mddev->level = info->level;
  2183. mddev->size = info->size;
  2184. mddev->raid_disks = info->raid_disks;
  2185. /* don't set md_minor, it is determined by which /dev/md* was
  2186. * openned
  2187. */
  2188. if (info->state & (1<<MD_SB_CLEAN))
  2189. mddev->recovery_cp = MaxSector;
  2190. else
  2191. mddev->recovery_cp = 0;
  2192. mddev->persistent = ! info->not_persistent;
  2193. mddev->layout = info->layout;
  2194. mddev->chunk_size = info->chunk_size;
  2195. mddev->max_disks = MD_SB_DISKS;
  2196. mddev->sb_dirty = 1;
  2197. /*
  2198. * Generate a 128 bit UUID
  2199. */
  2200. get_random_bytes(mddev->uuid, 16);
  2201. return 0;
  2202. }
  2203. /*
  2204. * update_array_info is used to change the configuration of an
  2205. * on-line array.
  2206. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2207. * fields in the info are checked against the array.
  2208. * Any differences that cannot be handled will cause an error.
  2209. * Normally, only one change can be managed at a time.
  2210. */
  2211. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2212. {
  2213. int rv = 0;
  2214. int cnt = 0;
  2215. int state = 0;
  2216. /* calculate expected state,ignoring low bits */
  2217. if (mddev->bitmap && mddev->bitmap_offset)
  2218. state |= (1 << MD_SB_BITMAP_PRESENT);
  2219. if (mddev->major_version != info->major_version ||
  2220. mddev->minor_version != info->minor_version ||
  2221. /* mddev->patch_version != info->patch_version || */
  2222. mddev->ctime != info->ctime ||
  2223. mddev->level != info->level ||
  2224. /* mddev->layout != info->layout || */
  2225. !mddev->persistent != info->not_persistent||
  2226. mddev->chunk_size != info->chunk_size ||
  2227. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2228. ((state^info->state) & 0xfffffe00)
  2229. )
  2230. return -EINVAL;
  2231. /* Check there is only one change */
  2232. if (mddev->size != info->size) cnt++;
  2233. if (mddev->raid_disks != info->raid_disks) cnt++;
  2234. if (mddev->layout != info->layout) cnt++;
  2235. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2236. if (cnt == 0) return 0;
  2237. if (cnt > 1) return -EINVAL;
  2238. if (mddev->layout != info->layout) {
  2239. /* Change layout
  2240. * we don't need to do anything at the md level, the
  2241. * personality will take care of it all.
  2242. */
  2243. if (mddev->pers->reconfig == NULL)
  2244. return -EINVAL;
  2245. else
  2246. return mddev->pers->reconfig(mddev, info->layout, -1);
  2247. }
  2248. if (mddev->size != info->size) {
  2249. mdk_rdev_t * rdev;
  2250. struct list_head *tmp;
  2251. if (mddev->pers->resize == NULL)
  2252. return -EINVAL;
  2253. /* The "size" is the amount of each device that is used.
  2254. * This can only make sense for arrays with redundancy.
  2255. * linear and raid0 always use whatever space is available
  2256. * We can only consider changing the size if no resync
  2257. * or reconstruction is happening, and if the new size
  2258. * is acceptable. It must fit before the sb_offset or,
  2259. * if that is <data_offset, it must fit before the
  2260. * size of each device.
  2261. * If size is zero, we find the largest size that fits.
  2262. */
  2263. if (mddev->sync_thread)
  2264. return -EBUSY;
  2265. ITERATE_RDEV(mddev,rdev,tmp) {
  2266. sector_t avail;
  2267. int fit = (info->size == 0);
  2268. if (rdev->sb_offset > rdev->data_offset)
  2269. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2270. else
  2271. avail = get_capacity(rdev->bdev->bd_disk)
  2272. - rdev->data_offset;
  2273. if (fit && (info->size == 0 || info->size > avail/2))
  2274. info->size = avail/2;
  2275. if (avail < ((sector_t)info->size << 1))
  2276. return -ENOSPC;
  2277. }
  2278. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2279. if (!rv) {
  2280. struct block_device *bdev;
  2281. bdev = bdget_disk(mddev->gendisk, 0);
  2282. if (bdev) {
  2283. down(&bdev->bd_inode->i_sem);
  2284. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2285. up(&bdev->bd_inode->i_sem);
  2286. bdput(bdev);
  2287. }
  2288. }
  2289. }
  2290. if (mddev->raid_disks != info->raid_disks) {
  2291. /* change the number of raid disks */
  2292. if (mddev->pers->reshape == NULL)
  2293. return -EINVAL;
  2294. if (info->raid_disks <= 0 ||
  2295. info->raid_disks >= mddev->max_disks)
  2296. return -EINVAL;
  2297. if (mddev->sync_thread)
  2298. return -EBUSY;
  2299. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2300. if (!rv) {
  2301. struct block_device *bdev;
  2302. bdev = bdget_disk(mddev->gendisk, 0);
  2303. if (bdev) {
  2304. down(&bdev->bd_inode->i_sem);
  2305. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2306. up(&bdev->bd_inode->i_sem);
  2307. bdput(bdev);
  2308. }
  2309. }
  2310. }
  2311. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2312. if (mddev->pers->quiesce == NULL)
  2313. return -EINVAL;
  2314. if (mddev->recovery || mddev->sync_thread)
  2315. return -EBUSY;
  2316. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2317. /* add the bitmap */
  2318. if (mddev->bitmap)
  2319. return -EEXIST;
  2320. if (mddev->default_bitmap_offset == 0)
  2321. return -EINVAL;
  2322. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2323. mddev->pers->quiesce(mddev, 1);
  2324. rv = bitmap_create(mddev);
  2325. if (rv)
  2326. bitmap_destroy(mddev);
  2327. mddev->pers->quiesce(mddev, 0);
  2328. } else {
  2329. /* remove the bitmap */
  2330. if (!mddev->bitmap)
  2331. return -ENOENT;
  2332. if (mddev->bitmap->file)
  2333. return -EINVAL;
  2334. mddev->pers->quiesce(mddev, 1);
  2335. bitmap_destroy(mddev);
  2336. mddev->pers->quiesce(mddev, 0);
  2337. mddev->bitmap_offset = 0;
  2338. }
  2339. }
  2340. md_update_sb(mddev);
  2341. return rv;
  2342. }
  2343. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2344. {
  2345. mdk_rdev_t *rdev;
  2346. if (mddev->pers == NULL)
  2347. return -ENODEV;
  2348. rdev = find_rdev(mddev, dev);
  2349. if (!rdev)
  2350. return -ENODEV;
  2351. md_error(mddev, rdev);
  2352. return 0;
  2353. }
  2354. static int md_ioctl(struct inode *inode, struct file *file,
  2355. unsigned int cmd, unsigned long arg)
  2356. {
  2357. int err = 0;
  2358. void __user *argp = (void __user *)arg;
  2359. struct hd_geometry __user *loc = argp;
  2360. mddev_t *mddev = NULL;
  2361. if (!capable(CAP_SYS_ADMIN))
  2362. return -EACCES;
  2363. /*
  2364. * Commands dealing with the RAID driver but not any
  2365. * particular array:
  2366. */
  2367. switch (cmd)
  2368. {
  2369. case RAID_VERSION:
  2370. err = get_version(argp);
  2371. goto done;
  2372. case PRINT_RAID_DEBUG:
  2373. err = 0;
  2374. md_print_devices();
  2375. goto done;
  2376. #ifndef MODULE
  2377. case RAID_AUTORUN:
  2378. err = 0;
  2379. autostart_arrays(arg);
  2380. goto done;
  2381. #endif
  2382. default:;
  2383. }
  2384. /*
  2385. * Commands creating/starting a new array:
  2386. */
  2387. mddev = inode->i_bdev->bd_disk->private_data;
  2388. if (!mddev) {
  2389. BUG();
  2390. goto abort;
  2391. }
  2392. if (cmd == START_ARRAY) {
  2393. /* START_ARRAY doesn't need to lock the array as autostart_array
  2394. * does the locking, and it could even be a different array
  2395. */
  2396. static int cnt = 3;
  2397. if (cnt > 0 ) {
  2398. printk(KERN_WARNING
  2399. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2400. "This will not be supported beyond 2.6\n",
  2401. current->comm, current->pid);
  2402. cnt--;
  2403. }
  2404. err = autostart_array(new_decode_dev(arg));
  2405. if (err) {
  2406. printk(KERN_WARNING "md: autostart failed!\n");
  2407. goto abort;
  2408. }
  2409. goto done;
  2410. }
  2411. err = mddev_lock(mddev);
  2412. if (err) {
  2413. printk(KERN_INFO
  2414. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2415. err, cmd);
  2416. goto abort;
  2417. }
  2418. switch (cmd)
  2419. {
  2420. case SET_ARRAY_INFO:
  2421. {
  2422. mdu_array_info_t info;
  2423. if (!arg)
  2424. memset(&info, 0, sizeof(info));
  2425. else if (copy_from_user(&info, argp, sizeof(info))) {
  2426. err = -EFAULT;
  2427. goto abort_unlock;
  2428. }
  2429. if (mddev->pers) {
  2430. err = update_array_info(mddev, &info);
  2431. if (err) {
  2432. printk(KERN_WARNING "md: couldn't update"
  2433. " array info. %d\n", err);
  2434. goto abort_unlock;
  2435. }
  2436. goto done_unlock;
  2437. }
  2438. if (!list_empty(&mddev->disks)) {
  2439. printk(KERN_WARNING
  2440. "md: array %s already has disks!\n",
  2441. mdname(mddev));
  2442. err = -EBUSY;
  2443. goto abort_unlock;
  2444. }
  2445. if (mddev->raid_disks) {
  2446. printk(KERN_WARNING
  2447. "md: array %s already initialised!\n",
  2448. mdname(mddev));
  2449. err = -EBUSY;
  2450. goto abort_unlock;
  2451. }
  2452. err = set_array_info(mddev, &info);
  2453. if (err) {
  2454. printk(KERN_WARNING "md: couldn't set"
  2455. " array info. %d\n", err);
  2456. goto abort_unlock;
  2457. }
  2458. }
  2459. goto done_unlock;
  2460. default:;
  2461. }
  2462. /*
  2463. * Commands querying/configuring an existing array:
  2464. */
  2465. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2466. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2467. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2468. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2469. err = -ENODEV;
  2470. goto abort_unlock;
  2471. }
  2472. /*
  2473. * Commands even a read-only array can execute:
  2474. */
  2475. switch (cmd)
  2476. {
  2477. case GET_ARRAY_INFO:
  2478. err = get_array_info(mddev, argp);
  2479. goto done_unlock;
  2480. case GET_BITMAP_FILE:
  2481. err = get_bitmap_file(mddev, argp);
  2482. goto done_unlock;
  2483. case GET_DISK_INFO:
  2484. err = get_disk_info(mddev, argp);
  2485. goto done_unlock;
  2486. case RESTART_ARRAY_RW:
  2487. err = restart_array(mddev);
  2488. goto done_unlock;
  2489. case STOP_ARRAY:
  2490. err = do_md_stop (mddev, 0);
  2491. goto done_unlock;
  2492. case STOP_ARRAY_RO:
  2493. err = do_md_stop (mddev, 1);
  2494. goto done_unlock;
  2495. /*
  2496. * We have a problem here : there is no easy way to give a CHS
  2497. * virtual geometry. We currently pretend that we have a 2 heads
  2498. * 4 sectors (with a BIG number of cylinders...). This drives
  2499. * dosfs just mad... ;-)
  2500. */
  2501. case HDIO_GETGEO:
  2502. if (!loc) {
  2503. err = -EINVAL;
  2504. goto abort_unlock;
  2505. }
  2506. err = put_user (2, (char __user *) &loc->heads);
  2507. if (err)
  2508. goto abort_unlock;
  2509. err = put_user (4, (char __user *) &loc->sectors);
  2510. if (err)
  2511. goto abort_unlock;
  2512. err = put_user(get_capacity(mddev->gendisk)/8,
  2513. (short __user *) &loc->cylinders);
  2514. if (err)
  2515. goto abort_unlock;
  2516. err = put_user (get_start_sect(inode->i_bdev),
  2517. (long __user *) &loc->start);
  2518. goto done_unlock;
  2519. }
  2520. /*
  2521. * The remaining ioctls are changing the state of the
  2522. * superblock, so we do not allow read-only arrays
  2523. * here:
  2524. */
  2525. if (mddev->ro) {
  2526. err = -EROFS;
  2527. goto abort_unlock;
  2528. }
  2529. switch (cmd)
  2530. {
  2531. case ADD_NEW_DISK:
  2532. {
  2533. mdu_disk_info_t info;
  2534. if (copy_from_user(&info, argp, sizeof(info)))
  2535. err = -EFAULT;
  2536. else
  2537. err = add_new_disk(mddev, &info);
  2538. goto done_unlock;
  2539. }
  2540. case HOT_REMOVE_DISK:
  2541. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2542. goto done_unlock;
  2543. case HOT_ADD_DISK:
  2544. err = hot_add_disk(mddev, new_decode_dev(arg));
  2545. goto done_unlock;
  2546. case SET_DISK_FAULTY:
  2547. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2548. goto done_unlock;
  2549. case RUN_ARRAY:
  2550. err = do_md_run (mddev);
  2551. goto done_unlock;
  2552. case SET_BITMAP_FILE:
  2553. err = set_bitmap_file(mddev, (int)arg);
  2554. goto done_unlock;
  2555. default:
  2556. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2557. printk(KERN_WARNING "md: %s(pid %d) used"
  2558. " obsolete MD ioctl, upgrade your"
  2559. " software to use new ictls.\n",
  2560. current->comm, current->pid);
  2561. err = -EINVAL;
  2562. goto abort_unlock;
  2563. }
  2564. done_unlock:
  2565. abort_unlock:
  2566. mddev_unlock(mddev);
  2567. return err;
  2568. done:
  2569. if (err)
  2570. MD_BUG();
  2571. abort:
  2572. return err;
  2573. }
  2574. static int md_open(struct inode *inode, struct file *file)
  2575. {
  2576. /*
  2577. * Succeed if we can lock the mddev, which confirms that
  2578. * it isn't being stopped right now.
  2579. */
  2580. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2581. int err;
  2582. if ((err = mddev_lock(mddev)))
  2583. goto out;
  2584. err = 0;
  2585. mddev_get(mddev);
  2586. mddev_unlock(mddev);
  2587. check_disk_change(inode->i_bdev);
  2588. out:
  2589. return err;
  2590. }
  2591. static int md_release(struct inode *inode, struct file * file)
  2592. {
  2593. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2594. if (!mddev)
  2595. BUG();
  2596. mddev_put(mddev);
  2597. return 0;
  2598. }
  2599. static int md_media_changed(struct gendisk *disk)
  2600. {
  2601. mddev_t *mddev = disk->private_data;
  2602. return mddev->changed;
  2603. }
  2604. static int md_revalidate(struct gendisk *disk)
  2605. {
  2606. mddev_t *mddev = disk->private_data;
  2607. mddev->changed = 0;
  2608. return 0;
  2609. }
  2610. static struct block_device_operations md_fops =
  2611. {
  2612. .owner = THIS_MODULE,
  2613. .open = md_open,
  2614. .release = md_release,
  2615. .ioctl = md_ioctl,
  2616. .media_changed = md_media_changed,
  2617. .revalidate_disk= md_revalidate,
  2618. };
  2619. static int md_thread(void * arg)
  2620. {
  2621. mdk_thread_t *thread = arg;
  2622. lock_kernel();
  2623. /*
  2624. * Detach thread
  2625. */
  2626. daemonize(thread->name, mdname(thread->mddev));
  2627. current->exit_signal = SIGCHLD;
  2628. allow_signal(SIGKILL);
  2629. thread->tsk = current;
  2630. /*
  2631. * md_thread is a 'system-thread', it's priority should be very
  2632. * high. We avoid resource deadlocks individually in each
  2633. * raid personality. (RAID5 does preallocation) We also use RR and
  2634. * the very same RT priority as kswapd, thus we will never get
  2635. * into a priority inversion deadlock.
  2636. *
  2637. * we definitely have to have equal or higher priority than
  2638. * bdflush, otherwise bdflush will deadlock if there are too
  2639. * many dirty RAID5 blocks.
  2640. */
  2641. unlock_kernel();
  2642. complete(thread->event);
  2643. while (thread->run) {
  2644. void (*run)(mddev_t *);
  2645. wait_event_interruptible_timeout(thread->wqueue,
  2646. test_bit(THREAD_WAKEUP, &thread->flags),
  2647. thread->timeout);
  2648. try_to_freeze();
  2649. clear_bit(THREAD_WAKEUP, &thread->flags);
  2650. run = thread->run;
  2651. if (run)
  2652. run(thread->mddev);
  2653. if (signal_pending(current))
  2654. flush_signals(current);
  2655. }
  2656. complete(thread->event);
  2657. return 0;
  2658. }
  2659. void md_wakeup_thread(mdk_thread_t *thread)
  2660. {
  2661. if (thread) {
  2662. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2663. set_bit(THREAD_WAKEUP, &thread->flags);
  2664. wake_up(&thread->wqueue);
  2665. }
  2666. }
  2667. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2668. const char *name)
  2669. {
  2670. mdk_thread_t *thread;
  2671. int ret;
  2672. struct completion event;
  2673. thread = (mdk_thread_t *) kmalloc
  2674. (sizeof(mdk_thread_t), GFP_KERNEL);
  2675. if (!thread)
  2676. return NULL;
  2677. memset(thread, 0, sizeof(mdk_thread_t));
  2678. init_waitqueue_head(&thread->wqueue);
  2679. init_completion(&event);
  2680. thread->event = &event;
  2681. thread->run = run;
  2682. thread->mddev = mddev;
  2683. thread->name = name;
  2684. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2685. ret = kernel_thread(md_thread, thread, 0);
  2686. if (ret < 0) {
  2687. kfree(thread);
  2688. return NULL;
  2689. }
  2690. wait_for_completion(&event);
  2691. return thread;
  2692. }
  2693. void md_unregister_thread(mdk_thread_t *thread)
  2694. {
  2695. struct completion event;
  2696. init_completion(&event);
  2697. thread->event = &event;
  2698. /* As soon as ->run is set to NULL, the task could disappear,
  2699. * so we need to hold tasklist_lock until we have sent the signal
  2700. */
  2701. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2702. read_lock(&tasklist_lock);
  2703. thread->run = NULL;
  2704. send_sig(SIGKILL, thread->tsk, 1);
  2705. read_unlock(&tasklist_lock);
  2706. wait_for_completion(&event);
  2707. kfree(thread);
  2708. }
  2709. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2710. {
  2711. if (!mddev) {
  2712. MD_BUG();
  2713. return;
  2714. }
  2715. if (!rdev || rdev->faulty)
  2716. return;
  2717. /*
  2718. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2719. mdname(mddev),
  2720. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2721. __builtin_return_address(0),__builtin_return_address(1),
  2722. __builtin_return_address(2),__builtin_return_address(3));
  2723. */
  2724. if (!mddev->pers->error_handler)
  2725. return;
  2726. mddev->pers->error_handler(mddev,rdev);
  2727. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2728. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2729. md_wakeup_thread(mddev->thread);
  2730. }
  2731. /* seq_file implementation /proc/mdstat */
  2732. static void status_unused(struct seq_file *seq)
  2733. {
  2734. int i = 0;
  2735. mdk_rdev_t *rdev;
  2736. struct list_head *tmp;
  2737. seq_printf(seq, "unused devices: ");
  2738. ITERATE_RDEV_PENDING(rdev,tmp) {
  2739. char b[BDEVNAME_SIZE];
  2740. i++;
  2741. seq_printf(seq, "%s ",
  2742. bdevname(rdev->bdev,b));
  2743. }
  2744. if (!i)
  2745. seq_printf(seq, "<none>");
  2746. seq_printf(seq, "\n");
  2747. }
  2748. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2749. {
  2750. unsigned long max_blocks, resync, res, dt, db, rt;
  2751. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2752. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2753. max_blocks = mddev->resync_max_sectors >> 1;
  2754. else
  2755. max_blocks = mddev->size;
  2756. /*
  2757. * Should not happen.
  2758. */
  2759. if (!max_blocks) {
  2760. MD_BUG();
  2761. return;
  2762. }
  2763. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2764. {
  2765. int i, x = res/50, y = 20-x;
  2766. seq_printf(seq, "[");
  2767. for (i = 0; i < x; i++)
  2768. seq_printf(seq, "=");
  2769. seq_printf(seq, ">");
  2770. for (i = 0; i < y; i++)
  2771. seq_printf(seq, ".");
  2772. seq_printf(seq, "] ");
  2773. }
  2774. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2775. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2776. "resync" : "recovery"),
  2777. res/10, res % 10, resync, max_blocks);
  2778. /*
  2779. * We do not want to overflow, so the order of operands and
  2780. * the * 100 / 100 trick are important. We do a +1 to be
  2781. * safe against division by zero. We only estimate anyway.
  2782. *
  2783. * dt: time from mark until now
  2784. * db: blocks written from mark until now
  2785. * rt: remaining time
  2786. */
  2787. dt = ((jiffies - mddev->resync_mark) / HZ);
  2788. if (!dt) dt++;
  2789. db = resync - (mddev->resync_mark_cnt/2);
  2790. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2791. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2792. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2793. }
  2794. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2795. {
  2796. struct list_head *tmp;
  2797. loff_t l = *pos;
  2798. mddev_t *mddev;
  2799. if (l >= 0x10000)
  2800. return NULL;
  2801. if (!l--)
  2802. /* header */
  2803. return (void*)1;
  2804. spin_lock(&all_mddevs_lock);
  2805. list_for_each(tmp,&all_mddevs)
  2806. if (!l--) {
  2807. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2808. mddev_get(mddev);
  2809. spin_unlock(&all_mddevs_lock);
  2810. return mddev;
  2811. }
  2812. spin_unlock(&all_mddevs_lock);
  2813. if (!l--)
  2814. return (void*)2;/* tail */
  2815. return NULL;
  2816. }
  2817. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2818. {
  2819. struct list_head *tmp;
  2820. mddev_t *next_mddev, *mddev = v;
  2821. ++*pos;
  2822. if (v == (void*)2)
  2823. return NULL;
  2824. spin_lock(&all_mddevs_lock);
  2825. if (v == (void*)1)
  2826. tmp = all_mddevs.next;
  2827. else
  2828. tmp = mddev->all_mddevs.next;
  2829. if (tmp != &all_mddevs)
  2830. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2831. else {
  2832. next_mddev = (void*)2;
  2833. *pos = 0x10000;
  2834. }
  2835. spin_unlock(&all_mddevs_lock);
  2836. if (v != (void*)1)
  2837. mddev_put(mddev);
  2838. return next_mddev;
  2839. }
  2840. static void md_seq_stop(struct seq_file *seq, void *v)
  2841. {
  2842. mddev_t *mddev = v;
  2843. if (mddev && v != (void*)1 && v != (void*)2)
  2844. mddev_put(mddev);
  2845. }
  2846. static int md_seq_show(struct seq_file *seq, void *v)
  2847. {
  2848. mddev_t *mddev = v;
  2849. sector_t size;
  2850. struct list_head *tmp2;
  2851. mdk_rdev_t *rdev;
  2852. int i;
  2853. struct bitmap *bitmap;
  2854. if (v == (void*)1) {
  2855. seq_printf(seq, "Personalities : ");
  2856. spin_lock(&pers_lock);
  2857. for (i = 0; i < MAX_PERSONALITY; i++)
  2858. if (pers[i])
  2859. seq_printf(seq, "[%s] ", pers[i]->name);
  2860. spin_unlock(&pers_lock);
  2861. seq_printf(seq, "\n");
  2862. return 0;
  2863. }
  2864. if (v == (void*)2) {
  2865. status_unused(seq);
  2866. return 0;
  2867. }
  2868. if (mddev_lock(mddev)!=0)
  2869. return -EINTR;
  2870. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2871. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2872. mddev->pers ? "" : "in");
  2873. if (mddev->pers) {
  2874. if (mddev->ro)
  2875. seq_printf(seq, " (read-only)");
  2876. seq_printf(seq, " %s", mddev->pers->name);
  2877. }
  2878. size = 0;
  2879. ITERATE_RDEV(mddev,rdev,tmp2) {
  2880. char b[BDEVNAME_SIZE];
  2881. seq_printf(seq, " %s[%d]",
  2882. bdevname(rdev->bdev,b), rdev->desc_nr);
  2883. if (test_bit(WriteMostly, &rdev->flags))
  2884. seq_printf(seq, "(W)");
  2885. if (rdev->faulty) {
  2886. seq_printf(seq, "(F)");
  2887. continue;
  2888. }
  2889. size += rdev->size;
  2890. }
  2891. if (!list_empty(&mddev->disks)) {
  2892. if (mddev->pers)
  2893. seq_printf(seq, "\n %llu blocks",
  2894. (unsigned long long)mddev->array_size);
  2895. else
  2896. seq_printf(seq, "\n %llu blocks",
  2897. (unsigned long long)size);
  2898. }
  2899. if (mddev->pers) {
  2900. mddev->pers->status (seq, mddev);
  2901. seq_printf(seq, "\n ");
  2902. if (mddev->curr_resync > 2) {
  2903. status_resync (seq, mddev);
  2904. seq_printf(seq, "\n ");
  2905. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2906. seq_printf(seq, " resync=DELAYED\n ");
  2907. } else
  2908. seq_printf(seq, "\n ");
  2909. if ((bitmap = mddev->bitmap)) {
  2910. unsigned long chunk_kb;
  2911. unsigned long flags;
  2912. spin_lock_irqsave(&bitmap->lock, flags);
  2913. chunk_kb = bitmap->chunksize >> 10;
  2914. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2915. "%lu%s chunk",
  2916. bitmap->pages - bitmap->missing_pages,
  2917. bitmap->pages,
  2918. (bitmap->pages - bitmap->missing_pages)
  2919. << (PAGE_SHIFT - 10),
  2920. chunk_kb ? chunk_kb : bitmap->chunksize,
  2921. chunk_kb ? "KB" : "B");
  2922. if (bitmap->file) {
  2923. seq_printf(seq, ", file: ");
  2924. seq_path(seq, bitmap->file->f_vfsmnt,
  2925. bitmap->file->f_dentry," \t\n");
  2926. }
  2927. seq_printf(seq, "\n");
  2928. spin_unlock_irqrestore(&bitmap->lock, flags);
  2929. }
  2930. seq_printf(seq, "\n");
  2931. }
  2932. mddev_unlock(mddev);
  2933. return 0;
  2934. }
  2935. static struct seq_operations md_seq_ops = {
  2936. .start = md_seq_start,
  2937. .next = md_seq_next,
  2938. .stop = md_seq_stop,
  2939. .show = md_seq_show,
  2940. };
  2941. static int md_seq_open(struct inode *inode, struct file *file)
  2942. {
  2943. int error;
  2944. error = seq_open(file, &md_seq_ops);
  2945. return error;
  2946. }
  2947. static struct file_operations md_seq_fops = {
  2948. .open = md_seq_open,
  2949. .read = seq_read,
  2950. .llseek = seq_lseek,
  2951. .release = seq_release,
  2952. };
  2953. int register_md_personality(int pnum, mdk_personality_t *p)
  2954. {
  2955. if (pnum >= MAX_PERSONALITY) {
  2956. printk(KERN_ERR
  2957. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2958. p->name, pnum, MAX_PERSONALITY-1);
  2959. return -EINVAL;
  2960. }
  2961. spin_lock(&pers_lock);
  2962. if (pers[pnum]) {
  2963. spin_unlock(&pers_lock);
  2964. return -EBUSY;
  2965. }
  2966. pers[pnum] = p;
  2967. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2968. spin_unlock(&pers_lock);
  2969. return 0;
  2970. }
  2971. int unregister_md_personality(int pnum)
  2972. {
  2973. if (pnum >= MAX_PERSONALITY)
  2974. return -EINVAL;
  2975. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2976. spin_lock(&pers_lock);
  2977. pers[pnum] = NULL;
  2978. spin_unlock(&pers_lock);
  2979. return 0;
  2980. }
  2981. static int is_mddev_idle(mddev_t *mddev)
  2982. {
  2983. mdk_rdev_t * rdev;
  2984. struct list_head *tmp;
  2985. int idle;
  2986. unsigned long curr_events;
  2987. idle = 1;
  2988. ITERATE_RDEV(mddev,rdev,tmp) {
  2989. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2990. curr_events = disk_stat_read(disk, read_sectors) +
  2991. disk_stat_read(disk, write_sectors) -
  2992. atomic_read(&disk->sync_io);
  2993. /* Allow some slack between valud of curr_events and last_events,
  2994. * as there are some uninteresting races.
  2995. * Note: the following is an unsigned comparison.
  2996. */
  2997. if ((curr_events - rdev->last_events + 32) > 64) {
  2998. rdev->last_events = curr_events;
  2999. idle = 0;
  3000. }
  3001. }
  3002. return idle;
  3003. }
  3004. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3005. {
  3006. /* another "blocks" (512byte) blocks have been synced */
  3007. atomic_sub(blocks, &mddev->recovery_active);
  3008. wake_up(&mddev->recovery_wait);
  3009. if (!ok) {
  3010. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3011. md_wakeup_thread(mddev->thread);
  3012. // stop recovery, signal do_sync ....
  3013. }
  3014. }
  3015. /* md_write_start(mddev, bi)
  3016. * If we need to update some array metadata (e.g. 'active' flag
  3017. * in superblock) before writing, schedule a superblock update
  3018. * and wait for it to complete.
  3019. */
  3020. void md_write_start(mddev_t *mddev, struct bio *bi)
  3021. {
  3022. DEFINE_WAIT(w);
  3023. if (bio_data_dir(bi) != WRITE)
  3024. return;
  3025. atomic_inc(&mddev->writes_pending);
  3026. if (mddev->in_sync) {
  3027. spin_lock(&mddev->write_lock);
  3028. if (mddev->in_sync) {
  3029. mddev->in_sync = 0;
  3030. mddev->sb_dirty = 1;
  3031. md_wakeup_thread(mddev->thread);
  3032. }
  3033. spin_unlock(&mddev->write_lock);
  3034. }
  3035. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3036. }
  3037. void md_write_end(mddev_t *mddev)
  3038. {
  3039. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3040. if (mddev->safemode == 2)
  3041. md_wakeup_thread(mddev->thread);
  3042. else
  3043. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3044. }
  3045. }
  3046. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3047. #define SYNC_MARKS 10
  3048. #define SYNC_MARK_STEP (3*HZ)
  3049. static void md_do_sync(mddev_t *mddev)
  3050. {
  3051. mddev_t *mddev2;
  3052. unsigned int currspeed = 0,
  3053. window;
  3054. sector_t max_sectors,j, io_sectors;
  3055. unsigned long mark[SYNC_MARKS];
  3056. sector_t mark_cnt[SYNC_MARKS];
  3057. int last_mark,m;
  3058. struct list_head *tmp;
  3059. sector_t last_check;
  3060. int skipped = 0;
  3061. /* just incase thread restarts... */
  3062. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3063. return;
  3064. /* we overload curr_resync somewhat here.
  3065. * 0 == not engaged in resync at all
  3066. * 2 == checking that there is no conflict with another sync
  3067. * 1 == like 2, but have yielded to allow conflicting resync to
  3068. * commense
  3069. * other == active in resync - this many blocks
  3070. *
  3071. * Before starting a resync we must have set curr_resync to
  3072. * 2, and then checked that every "conflicting" array has curr_resync
  3073. * less than ours. When we find one that is the same or higher
  3074. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3075. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3076. * This will mean we have to start checking from the beginning again.
  3077. *
  3078. */
  3079. do {
  3080. mddev->curr_resync = 2;
  3081. try_again:
  3082. if (signal_pending(current)) {
  3083. flush_signals(current);
  3084. goto skip;
  3085. }
  3086. ITERATE_MDDEV(mddev2,tmp) {
  3087. if (mddev2 == mddev)
  3088. continue;
  3089. if (mddev2->curr_resync &&
  3090. match_mddev_units(mddev,mddev2)) {
  3091. DEFINE_WAIT(wq);
  3092. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3093. /* arbitrarily yield */
  3094. mddev->curr_resync = 1;
  3095. wake_up(&resync_wait);
  3096. }
  3097. if (mddev > mddev2 && mddev->curr_resync == 1)
  3098. /* no need to wait here, we can wait the next
  3099. * time 'round when curr_resync == 2
  3100. */
  3101. continue;
  3102. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3103. if (!signal_pending(current)
  3104. && mddev2->curr_resync >= mddev->curr_resync) {
  3105. printk(KERN_INFO "md: delaying resync of %s"
  3106. " until %s has finished resync (they"
  3107. " share one or more physical units)\n",
  3108. mdname(mddev), mdname(mddev2));
  3109. mddev_put(mddev2);
  3110. schedule();
  3111. finish_wait(&resync_wait, &wq);
  3112. goto try_again;
  3113. }
  3114. finish_wait(&resync_wait, &wq);
  3115. }
  3116. }
  3117. } while (mddev->curr_resync < 2);
  3118. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3119. /* resync follows the size requested by the personality,
  3120. * which defaults to physical size, but can be virtual size
  3121. */
  3122. max_sectors = mddev->resync_max_sectors;
  3123. else
  3124. /* recovery follows the physical size of devices */
  3125. max_sectors = mddev->size << 1;
  3126. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3127. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3128. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3129. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3130. "(but not more than %d KB/sec) for reconstruction.\n",
  3131. sysctl_speed_limit_max);
  3132. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3133. /* we don't use the checkpoint if there's a bitmap */
  3134. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3135. j = mddev->recovery_cp;
  3136. else
  3137. j = 0;
  3138. io_sectors = 0;
  3139. for (m = 0; m < SYNC_MARKS; m++) {
  3140. mark[m] = jiffies;
  3141. mark_cnt[m] = io_sectors;
  3142. }
  3143. last_mark = 0;
  3144. mddev->resync_mark = mark[last_mark];
  3145. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3146. /*
  3147. * Tune reconstruction:
  3148. */
  3149. window = 32*(PAGE_SIZE/512);
  3150. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3151. window/2,(unsigned long long) max_sectors/2);
  3152. atomic_set(&mddev->recovery_active, 0);
  3153. init_waitqueue_head(&mddev->recovery_wait);
  3154. last_check = 0;
  3155. if (j>2) {
  3156. printk(KERN_INFO
  3157. "md: resuming recovery of %s from checkpoint.\n",
  3158. mdname(mddev));
  3159. mddev->curr_resync = j;
  3160. }
  3161. while (j < max_sectors) {
  3162. sector_t sectors;
  3163. skipped = 0;
  3164. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3165. currspeed < sysctl_speed_limit_min);
  3166. if (sectors == 0) {
  3167. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3168. goto out;
  3169. }
  3170. if (!skipped) { /* actual IO requested */
  3171. io_sectors += sectors;
  3172. atomic_add(sectors, &mddev->recovery_active);
  3173. }
  3174. j += sectors;
  3175. if (j>1) mddev->curr_resync = j;
  3176. if (last_check + window > io_sectors || j == max_sectors)
  3177. continue;
  3178. last_check = io_sectors;
  3179. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3180. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3181. break;
  3182. repeat:
  3183. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3184. /* step marks */
  3185. int next = (last_mark+1) % SYNC_MARKS;
  3186. mddev->resync_mark = mark[next];
  3187. mddev->resync_mark_cnt = mark_cnt[next];
  3188. mark[next] = jiffies;
  3189. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3190. last_mark = next;
  3191. }
  3192. if (signal_pending(current)) {
  3193. /*
  3194. * got a signal, exit.
  3195. */
  3196. printk(KERN_INFO
  3197. "md: md_do_sync() got signal ... exiting\n");
  3198. flush_signals(current);
  3199. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3200. goto out;
  3201. }
  3202. /*
  3203. * this loop exits only if either when we are slower than
  3204. * the 'hard' speed limit, or the system was IO-idle for
  3205. * a jiffy.
  3206. * the system might be non-idle CPU-wise, but we only care
  3207. * about not overloading the IO subsystem. (things like an
  3208. * e2fsck being done on the RAID array should execute fast)
  3209. */
  3210. mddev->queue->unplug_fn(mddev->queue);
  3211. cond_resched();
  3212. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3213. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3214. if (currspeed > sysctl_speed_limit_min) {
  3215. if ((currspeed > sysctl_speed_limit_max) ||
  3216. !is_mddev_idle(mddev)) {
  3217. msleep_interruptible(250);
  3218. goto repeat;
  3219. }
  3220. }
  3221. }
  3222. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3223. /*
  3224. * this also signals 'finished resyncing' to md_stop
  3225. */
  3226. out:
  3227. mddev->queue->unplug_fn(mddev->queue);
  3228. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3229. /* tell personality that we are finished */
  3230. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3231. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3232. mddev->curr_resync > 2 &&
  3233. mddev->curr_resync >= mddev->recovery_cp) {
  3234. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3235. printk(KERN_INFO
  3236. "md: checkpointing recovery of %s.\n",
  3237. mdname(mddev));
  3238. mddev->recovery_cp = mddev->curr_resync;
  3239. } else
  3240. mddev->recovery_cp = MaxSector;
  3241. }
  3242. skip:
  3243. mddev->curr_resync = 0;
  3244. wake_up(&resync_wait);
  3245. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3246. md_wakeup_thread(mddev->thread);
  3247. }
  3248. /*
  3249. * This routine is regularly called by all per-raid-array threads to
  3250. * deal with generic issues like resync and super-block update.
  3251. * Raid personalities that don't have a thread (linear/raid0) do not
  3252. * need this as they never do any recovery or update the superblock.
  3253. *
  3254. * It does not do any resync itself, but rather "forks" off other threads
  3255. * to do that as needed.
  3256. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3257. * "->recovery" and create a thread at ->sync_thread.
  3258. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3259. * and wakeups up this thread which will reap the thread and finish up.
  3260. * This thread also removes any faulty devices (with nr_pending == 0).
  3261. *
  3262. * The overall approach is:
  3263. * 1/ if the superblock needs updating, update it.
  3264. * 2/ If a recovery thread is running, don't do anything else.
  3265. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3266. * 4/ If there are any faulty devices, remove them.
  3267. * 5/ If array is degraded, try to add spares devices
  3268. * 6/ If array has spares or is not in-sync, start a resync thread.
  3269. */
  3270. void md_check_recovery(mddev_t *mddev)
  3271. {
  3272. mdk_rdev_t *rdev;
  3273. struct list_head *rtmp;
  3274. if (mddev->bitmap)
  3275. bitmap_daemon_work(mddev->bitmap);
  3276. if (mddev->ro)
  3277. return;
  3278. if (signal_pending(current)) {
  3279. if (mddev->pers->sync_request) {
  3280. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3281. mdname(mddev));
  3282. mddev->safemode = 2;
  3283. }
  3284. flush_signals(current);
  3285. }
  3286. if ( ! (
  3287. mddev->sb_dirty ||
  3288. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3289. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3290. (mddev->safemode == 1) ||
  3291. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3292. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3293. ))
  3294. return;
  3295. if (mddev_trylock(mddev)==0) {
  3296. int spares =0;
  3297. spin_lock(&mddev->write_lock);
  3298. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3299. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3300. mddev->in_sync = 1;
  3301. mddev->sb_dirty = 1;
  3302. }
  3303. if (mddev->safemode == 1)
  3304. mddev->safemode = 0;
  3305. spin_unlock(&mddev->write_lock);
  3306. if (mddev->sb_dirty)
  3307. md_update_sb(mddev);
  3308. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3309. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3310. /* resync/recovery still happening */
  3311. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3312. goto unlock;
  3313. }
  3314. if (mddev->sync_thread) {
  3315. /* resync has finished, collect result */
  3316. md_unregister_thread(mddev->sync_thread);
  3317. mddev->sync_thread = NULL;
  3318. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3319. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3320. /* success...*/
  3321. /* activate any spares */
  3322. mddev->pers->spare_active(mddev);
  3323. }
  3324. md_update_sb(mddev);
  3325. /* if array is no-longer degraded, then any saved_raid_disk
  3326. * information must be scrapped
  3327. */
  3328. if (!mddev->degraded)
  3329. ITERATE_RDEV(mddev,rdev,rtmp)
  3330. rdev->saved_raid_disk = -1;
  3331. mddev->recovery = 0;
  3332. /* flag recovery needed just to double check */
  3333. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3334. goto unlock;
  3335. }
  3336. if (mddev->recovery)
  3337. /* probably just the RECOVERY_NEEDED flag */
  3338. mddev->recovery = 0;
  3339. /* no recovery is running.
  3340. * remove any failed drives, then
  3341. * add spares if possible.
  3342. * Spare are also removed and re-added, to allow
  3343. * the personality to fail the re-add.
  3344. */
  3345. ITERATE_RDEV(mddev,rdev,rtmp)
  3346. if (rdev->raid_disk >= 0 &&
  3347. (rdev->faulty || ! rdev->in_sync) &&
  3348. atomic_read(&rdev->nr_pending)==0) {
  3349. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3350. rdev->raid_disk = -1;
  3351. }
  3352. if (mddev->degraded) {
  3353. ITERATE_RDEV(mddev,rdev,rtmp)
  3354. if (rdev->raid_disk < 0
  3355. && !rdev->faulty) {
  3356. if (mddev->pers->hot_add_disk(mddev,rdev))
  3357. spares++;
  3358. else
  3359. break;
  3360. }
  3361. }
  3362. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3363. /* nothing we can do ... */
  3364. goto unlock;
  3365. }
  3366. if (mddev->pers->sync_request) {
  3367. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3368. if (!spares)
  3369. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3370. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3371. /* We are adding a device or devices to an array
  3372. * which has the bitmap stored on all devices.
  3373. * So make sure all bitmap pages get written
  3374. */
  3375. bitmap_write_all(mddev->bitmap);
  3376. }
  3377. mddev->sync_thread = md_register_thread(md_do_sync,
  3378. mddev,
  3379. "%s_resync");
  3380. if (!mddev->sync_thread) {
  3381. printk(KERN_ERR "%s: could not start resync"
  3382. " thread...\n",
  3383. mdname(mddev));
  3384. /* leave the spares where they are, it shouldn't hurt */
  3385. mddev->recovery = 0;
  3386. } else {
  3387. md_wakeup_thread(mddev->sync_thread);
  3388. }
  3389. }
  3390. unlock:
  3391. mddev_unlock(mddev);
  3392. }
  3393. }
  3394. static int md_notify_reboot(struct notifier_block *this,
  3395. unsigned long code, void *x)
  3396. {
  3397. struct list_head *tmp;
  3398. mddev_t *mddev;
  3399. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3400. printk(KERN_INFO "md: stopping all md devices.\n");
  3401. ITERATE_MDDEV(mddev,tmp)
  3402. if (mddev_trylock(mddev)==0)
  3403. do_md_stop (mddev, 1);
  3404. /*
  3405. * certain more exotic SCSI devices are known to be
  3406. * volatile wrt too early system reboots. While the
  3407. * right place to handle this issue is the given
  3408. * driver, we do want to have a safe RAID driver ...
  3409. */
  3410. mdelay(1000*1);
  3411. }
  3412. return NOTIFY_DONE;
  3413. }
  3414. static struct notifier_block md_notifier = {
  3415. .notifier_call = md_notify_reboot,
  3416. .next = NULL,
  3417. .priority = INT_MAX, /* before any real devices */
  3418. };
  3419. static void md_geninit(void)
  3420. {
  3421. struct proc_dir_entry *p;
  3422. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3423. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3424. if (p)
  3425. p->proc_fops = &md_seq_fops;
  3426. }
  3427. static int __init md_init(void)
  3428. {
  3429. int minor;
  3430. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3431. " MD_SB_DISKS=%d\n",
  3432. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3433. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3434. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3435. BITMAP_MINOR);
  3436. if (register_blkdev(MAJOR_NR, "md"))
  3437. return -1;
  3438. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3439. unregister_blkdev(MAJOR_NR, "md");
  3440. return -1;
  3441. }
  3442. devfs_mk_dir("md");
  3443. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3444. md_probe, NULL, NULL);
  3445. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3446. md_probe, NULL, NULL);
  3447. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3448. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3449. S_IFBLK|S_IRUSR|S_IWUSR,
  3450. "md/%d", minor);
  3451. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3452. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3453. S_IFBLK|S_IRUSR|S_IWUSR,
  3454. "md/mdp%d", minor);
  3455. register_reboot_notifier(&md_notifier);
  3456. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3457. md_geninit();
  3458. return (0);
  3459. }
  3460. #ifndef MODULE
  3461. /*
  3462. * Searches all registered partitions for autorun RAID arrays
  3463. * at boot time.
  3464. */
  3465. static dev_t detected_devices[128];
  3466. static int dev_cnt;
  3467. void md_autodetect_dev(dev_t dev)
  3468. {
  3469. if (dev_cnt >= 0 && dev_cnt < 127)
  3470. detected_devices[dev_cnt++] = dev;
  3471. }
  3472. static void autostart_arrays(int part)
  3473. {
  3474. mdk_rdev_t *rdev;
  3475. int i;
  3476. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3477. for (i = 0; i < dev_cnt; i++) {
  3478. dev_t dev = detected_devices[i];
  3479. rdev = md_import_device(dev,0, 0);
  3480. if (IS_ERR(rdev))
  3481. continue;
  3482. if (rdev->faulty) {
  3483. MD_BUG();
  3484. continue;
  3485. }
  3486. list_add(&rdev->same_set, &pending_raid_disks);
  3487. }
  3488. dev_cnt = 0;
  3489. autorun_devices(part);
  3490. }
  3491. #endif
  3492. static __exit void md_exit(void)
  3493. {
  3494. mddev_t *mddev;
  3495. struct list_head *tmp;
  3496. int i;
  3497. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3498. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3499. for (i=0; i < MAX_MD_DEVS; i++)
  3500. devfs_remove("md/%d", i);
  3501. for (i=0; i < MAX_MD_DEVS; i++)
  3502. devfs_remove("md/d%d", i);
  3503. devfs_remove("md");
  3504. unregister_blkdev(MAJOR_NR,"md");
  3505. unregister_blkdev(mdp_major, "mdp");
  3506. unregister_reboot_notifier(&md_notifier);
  3507. unregister_sysctl_table(raid_table_header);
  3508. remove_proc_entry("mdstat", NULL);
  3509. ITERATE_MDDEV(mddev,tmp) {
  3510. struct gendisk *disk = mddev->gendisk;
  3511. if (!disk)
  3512. continue;
  3513. export_array(mddev);
  3514. del_gendisk(disk);
  3515. put_disk(disk);
  3516. mddev->gendisk = NULL;
  3517. mddev_put(mddev);
  3518. }
  3519. }
  3520. module_init(md_init)
  3521. module_exit(md_exit)
  3522. EXPORT_SYMBOL(register_md_personality);
  3523. EXPORT_SYMBOL(unregister_md_personality);
  3524. EXPORT_SYMBOL(md_error);
  3525. EXPORT_SYMBOL(md_done_sync);
  3526. EXPORT_SYMBOL(md_write_start);
  3527. EXPORT_SYMBOL(md_write_end);
  3528. EXPORT_SYMBOL(md_register_thread);
  3529. EXPORT_SYMBOL(md_unregister_thread);
  3530. EXPORT_SYMBOL(md_wakeup_thread);
  3531. EXPORT_SYMBOL(md_print_devices);
  3532. EXPORT_SYMBOL(md_check_recovery);
  3533. MODULE_LICENSE("GPL");
  3534. MODULE_ALIAS("md");
  3535. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);