uaccess_pt.c 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157
  1. /*
  2. * arch/s390/lib/uaccess_pt.c
  3. *
  4. * User access functions based on page table walks.
  5. *
  6. * Copyright IBM Corp. 2006
  7. * Author(s): Gerald Schaefer (gerald.schaefer@de.ibm.com)
  8. */
  9. #include <linux/errno.h>
  10. #include <linux/hardirq.h>
  11. #include <linux/mm.h>
  12. #include <asm/uaccess.h>
  13. #include <asm/futex.h>
  14. static inline int __handle_fault(struct mm_struct *mm, unsigned long address,
  15. int write_access)
  16. {
  17. struct vm_area_struct *vma;
  18. int ret = -EFAULT;
  19. if (in_atomic())
  20. return ret;
  21. down_read(&mm->mmap_sem);
  22. vma = find_vma(mm, address);
  23. if (unlikely(!vma))
  24. goto out;
  25. if (unlikely(vma->vm_start > address)) {
  26. if (!(vma->vm_flags & VM_GROWSDOWN))
  27. goto out;
  28. if (expand_stack(vma, address))
  29. goto out;
  30. }
  31. if (!write_access) {
  32. /* page not present, check vm flags */
  33. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  34. goto out;
  35. } else {
  36. if (!(vma->vm_flags & VM_WRITE))
  37. goto out;
  38. }
  39. survive:
  40. switch (handle_mm_fault(mm, vma, address, write_access)) {
  41. case VM_FAULT_MINOR:
  42. current->min_flt++;
  43. break;
  44. case VM_FAULT_MAJOR:
  45. current->maj_flt++;
  46. break;
  47. case VM_FAULT_SIGBUS:
  48. goto out_sigbus;
  49. case VM_FAULT_OOM:
  50. goto out_of_memory;
  51. default:
  52. BUG();
  53. }
  54. ret = 0;
  55. out:
  56. up_read(&mm->mmap_sem);
  57. return ret;
  58. out_of_memory:
  59. up_read(&mm->mmap_sem);
  60. if (is_init(current)) {
  61. yield();
  62. down_read(&mm->mmap_sem);
  63. goto survive;
  64. }
  65. printk("VM: killing process %s\n", current->comm);
  66. return ret;
  67. out_sigbus:
  68. up_read(&mm->mmap_sem);
  69. current->thread.prot_addr = address;
  70. current->thread.trap_no = 0x11;
  71. force_sig(SIGBUS, current);
  72. return ret;
  73. }
  74. static inline size_t __user_copy_pt(unsigned long uaddr, void *kptr,
  75. size_t n, int write_user)
  76. {
  77. struct mm_struct *mm = current->mm;
  78. unsigned long offset, pfn, done, size;
  79. pgd_t *pgd;
  80. pmd_t *pmd;
  81. pte_t *pte;
  82. void *from, *to;
  83. done = 0;
  84. retry:
  85. spin_lock(&mm->page_table_lock);
  86. do {
  87. pgd = pgd_offset(mm, uaddr);
  88. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  89. goto fault;
  90. pmd = pmd_offset(pgd, uaddr);
  91. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  92. goto fault;
  93. pte = pte_offset_map(pmd, uaddr);
  94. if (!pte || !pte_present(*pte) ||
  95. (write_user && !pte_write(*pte)))
  96. goto fault;
  97. pfn = pte_pfn(*pte);
  98. if (!pfn_valid(pfn))
  99. goto out;
  100. offset = uaddr & (PAGE_SIZE - 1);
  101. size = min(n - done, PAGE_SIZE - offset);
  102. if (write_user) {
  103. to = (void *)((pfn << PAGE_SHIFT) + offset);
  104. from = kptr + done;
  105. } else {
  106. from = (void *)((pfn << PAGE_SHIFT) + offset);
  107. to = kptr + done;
  108. }
  109. memcpy(to, from, size);
  110. done += size;
  111. uaddr += size;
  112. } while (done < n);
  113. out:
  114. spin_unlock(&mm->page_table_lock);
  115. return n - done;
  116. fault:
  117. spin_unlock(&mm->page_table_lock);
  118. if (__handle_fault(mm, uaddr, write_user))
  119. return n - done;
  120. goto retry;
  121. }
  122. size_t copy_from_user_pt(size_t n, const void __user *from, void *to)
  123. {
  124. size_t rc;
  125. if (segment_eq(get_fs(), KERNEL_DS)) {
  126. memcpy(to, (void __kernel __force *) from, n);
  127. return 0;
  128. }
  129. rc = __user_copy_pt((unsigned long) from, to, n, 0);
  130. if (unlikely(rc))
  131. memset(to + n - rc, 0, rc);
  132. return rc;
  133. }
  134. size_t copy_to_user_pt(size_t n, void __user *to, const void *from)
  135. {
  136. if (segment_eq(get_fs(), KERNEL_DS)) {
  137. memcpy((void __kernel __force *) to, from, n);
  138. return 0;
  139. }
  140. return __user_copy_pt((unsigned long) to, (void *) from, n, 1);
  141. }