spi_bfin5xx.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2007 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/io.h>
  15. #include <linux/ioport.h>
  16. #include <linux/irq.h>
  17. #include <linux/errno.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/dma-mapping.h>
  21. #include <linux/spi/spi.h>
  22. #include <linux/workqueue.h>
  23. #include <asm/dma.h>
  24. #include <asm/portmux.h>
  25. #include <asm/bfin5xx_spi.h>
  26. #include <asm/cacheflush.h>
  27. #define DRV_NAME "bfin-spi"
  28. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  29. #define DRV_DESC "Blackfin BF5xx on-chip SPI Controller Driver"
  30. #define DRV_VERSION "1.0"
  31. MODULE_AUTHOR(DRV_AUTHOR);
  32. MODULE_DESCRIPTION(DRV_DESC);
  33. MODULE_LICENSE("GPL");
  34. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07) == 0)
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. #define QUEUE_RUNNING 0
  40. #define QUEUE_STOPPED 1
  41. struct driver_data {
  42. /* Driver model hookup */
  43. struct platform_device *pdev;
  44. /* SPI framework hookup */
  45. struct spi_master *master;
  46. /* Regs base of SPI controller */
  47. void __iomem *regs_base;
  48. /* Pin request list */
  49. u16 *pin_req;
  50. /* BFIN hookup */
  51. struct bfin5xx_spi_master *master_info;
  52. /* Driver message queue */
  53. struct workqueue_struct *workqueue;
  54. struct work_struct pump_messages;
  55. spinlock_t lock;
  56. struct list_head queue;
  57. int busy;
  58. int run;
  59. /* Message Transfer pump */
  60. struct tasklet_struct pump_transfers;
  61. /* Current message transfer state info */
  62. struct spi_message *cur_msg;
  63. struct spi_transfer *cur_transfer;
  64. struct chip_data *cur_chip;
  65. size_t len_in_bytes;
  66. size_t len;
  67. void *tx;
  68. void *tx_end;
  69. void *rx;
  70. void *rx_end;
  71. /* DMA stuffs */
  72. int dma_channel;
  73. int dma_mapped;
  74. int dma_requested;
  75. dma_addr_t rx_dma;
  76. dma_addr_t tx_dma;
  77. size_t rx_map_len;
  78. size_t tx_map_len;
  79. u8 n_bytes;
  80. int cs_change;
  81. void (*write) (struct driver_data *);
  82. void (*read) (struct driver_data *);
  83. void (*duplex) (struct driver_data *);
  84. };
  85. struct chip_data {
  86. u16 ctl_reg;
  87. u16 baud;
  88. u16 flag;
  89. u8 chip_select_num;
  90. u8 n_bytes;
  91. u8 width; /* 0 or 1 */
  92. u8 enable_dma;
  93. u8 bits_per_word; /* 8 or 16 */
  94. u8 cs_change_per_word;
  95. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  96. void (*write) (struct driver_data *);
  97. void (*read) (struct driver_data *);
  98. void (*duplex) (struct driver_data *);
  99. };
  100. #define DEFINE_SPI_REG(reg, off) \
  101. static inline u16 read_##reg(struct driver_data *drv_data) \
  102. { return bfin_read16(drv_data->regs_base + off); } \
  103. static inline void write_##reg(struct driver_data *drv_data, u16 v) \
  104. { bfin_write16(drv_data->regs_base + off, v); }
  105. DEFINE_SPI_REG(CTRL, 0x00)
  106. DEFINE_SPI_REG(FLAG, 0x04)
  107. DEFINE_SPI_REG(STAT, 0x08)
  108. DEFINE_SPI_REG(TDBR, 0x0C)
  109. DEFINE_SPI_REG(RDBR, 0x10)
  110. DEFINE_SPI_REG(BAUD, 0x14)
  111. DEFINE_SPI_REG(SHAW, 0x18)
  112. static void bfin_spi_enable(struct driver_data *drv_data)
  113. {
  114. u16 cr;
  115. cr = read_CTRL(drv_data);
  116. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  117. }
  118. static void bfin_spi_disable(struct driver_data *drv_data)
  119. {
  120. u16 cr;
  121. cr = read_CTRL(drv_data);
  122. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  123. }
  124. /* Caculate the SPI_BAUD register value based on input HZ */
  125. static u16 hz_to_spi_baud(u32 speed_hz)
  126. {
  127. u_long sclk = get_sclk();
  128. u16 spi_baud = (sclk / (2 * speed_hz));
  129. if ((sclk % (2 * speed_hz)) > 0)
  130. spi_baud++;
  131. if (spi_baud < MIN_SPI_BAUD_VAL)
  132. spi_baud = MIN_SPI_BAUD_VAL;
  133. return spi_baud;
  134. }
  135. static int flush(struct driver_data *drv_data)
  136. {
  137. unsigned long limit = loops_per_jiffy << 1;
  138. /* wait for stop and clear stat */
  139. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && limit--)
  140. cpu_relax();
  141. write_STAT(drv_data, BIT_STAT_CLR);
  142. return limit;
  143. }
  144. /* Chip select operation functions for cs_change flag */
  145. static void cs_active(struct driver_data *drv_data, struct chip_data *chip)
  146. {
  147. u16 flag = read_FLAG(drv_data);
  148. flag |= chip->flag;
  149. flag &= ~(chip->flag << 8);
  150. write_FLAG(drv_data, flag);
  151. }
  152. static void cs_deactive(struct driver_data *drv_data, struct chip_data *chip)
  153. {
  154. u16 flag = read_FLAG(drv_data);
  155. flag |= (chip->flag << 8);
  156. write_FLAG(drv_data, flag);
  157. /* Move delay here for consistency */
  158. if (chip->cs_chg_udelay)
  159. udelay(chip->cs_chg_udelay);
  160. }
  161. #define MAX_SPI_SSEL 7
  162. /* stop controller and re-config current chip*/
  163. static void restore_state(struct driver_data *drv_data)
  164. {
  165. struct chip_data *chip = drv_data->cur_chip;
  166. /* Clear status and disable clock */
  167. write_STAT(drv_data, BIT_STAT_CLR);
  168. bfin_spi_disable(drv_data);
  169. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  170. /* Load the registers */
  171. write_CTRL(drv_data, chip->ctl_reg);
  172. write_BAUD(drv_data, chip->baud);
  173. bfin_spi_enable(drv_data);
  174. cs_active(drv_data, chip);
  175. }
  176. /* used to kick off transfer in rx mode */
  177. static unsigned short dummy_read(struct driver_data *drv_data)
  178. {
  179. unsigned short tmp;
  180. tmp = read_RDBR(drv_data);
  181. return tmp;
  182. }
  183. static void null_writer(struct driver_data *drv_data)
  184. {
  185. u8 n_bytes = drv_data->n_bytes;
  186. while (drv_data->tx < drv_data->tx_end) {
  187. write_TDBR(drv_data, 0);
  188. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  189. cpu_relax();
  190. drv_data->tx += n_bytes;
  191. }
  192. }
  193. static void null_reader(struct driver_data *drv_data)
  194. {
  195. u8 n_bytes = drv_data->n_bytes;
  196. dummy_read(drv_data);
  197. while (drv_data->rx < drv_data->rx_end) {
  198. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  199. cpu_relax();
  200. dummy_read(drv_data);
  201. drv_data->rx += n_bytes;
  202. }
  203. }
  204. static void u8_writer(struct driver_data *drv_data)
  205. {
  206. dev_dbg(&drv_data->pdev->dev,
  207. "cr8-s is 0x%x\n", read_STAT(drv_data));
  208. while (drv_data->tx < drv_data->tx_end) {
  209. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  210. while (read_STAT(drv_data) & BIT_STAT_TXS)
  211. cpu_relax();
  212. ++drv_data->tx;
  213. }
  214. /* poll for SPI completion before return */
  215. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  216. cpu_relax();
  217. }
  218. static void u8_cs_chg_writer(struct driver_data *drv_data)
  219. {
  220. struct chip_data *chip = drv_data->cur_chip;
  221. while (drv_data->tx < drv_data->tx_end) {
  222. cs_active(drv_data, chip);
  223. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  224. while (read_STAT(drv_data) & BIT_STAT_TXS)
  225. cpu_relax();
  226. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  227. cpu_relax();
  228. cs_deactive(drv_data, chip);
  229. ++drv_data->tx;
  230. }
  231. }
  232. static void u8_reader(struct driver_data *drv_data)
  233. {
  234. dev_dbg(&drv_data->pdev->dev,
  235. "cr-8 is 0x%x\n", read_STAT(drv_data));
  236. /* poll for SPI completion before start */
  237. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  238. cpu_relax();
  239. /* clear TDBR buffer before read(else it will be shifted out) */
  240. write_TDBR(drv_data, 0xFFFF);
  241. dummy_read(drv_data);
  242. while (drv_data->rx < drv_data->rx_end - 1) {
  243. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  244. cpu_relax();
  245. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  246. ++drv_data->rx;
  247. }
  248. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  249. cpu_relax();
  250. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  251. ++drv_data->rx;
  252. }
  253. static void u8_cs_chg_reader(struct driver_data *drv_data)
  254. {
  255. struct chip_data *chip = drv_data->cur_chip;
  256. while (drv_data->rx < drv_data->rx_end) {
  257. cs_active(drv_data, chip);
  258. read_RDBR(drv_data); /* kick off */
  259. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  260. cpu_relax();
  261. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  262. cpu_relax();
  263. *(u8 *) (drv_data->rx) = read_SHAW(drv_data);
  264. cs_deactive(drv_data, chip);
  265. ++drv_data->rx;
  266. }
  267. }
  268. static void u8_duplex(struct driver_data *drv_data)
  269. {
  270. /* in duplex mode, clk is triggered by writing of TDBR */
  271. while (drv_data->rx < drv_data->rx_end) {
  272. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  273. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  274. cpu_relax();
  275. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  276. cpu_relax();
  277. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  278. ++drv_data->rx;
  279. ++drv_data->tx;
  280. }
  281. }
  282. static void u8_cs_chg_duplex(struct driver_data *drv_data)
  283. {
  284. struct chip_data *chip = drv_data->cur_chip;
  285. while (drv_data->rx < drv_data->rx_end) {
  286. cs_active(drv_data, chip);
  287. write_TDBR(drv_data, (*(u8 *) (drv_data->tx)));
  288. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  289. cpu_relax();
  290. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  291. cpu_relax();
  292. *(u8 *) (drv_data->rx) = read_RDBR(drv_data);
  293. cs_deactive(drv_data, chip);
  294. ++drv_data->rx;
  295. ++drv_data->tx;
  296. }
  297. }
  298. static void u16_writer(struct driver_data *drv_data)
  299. {
  300. dev_dbg(&drv_data->pdev->dev,
  301. "cr16 is 0x%x\n", read_STAT(drv_data));
  302. while (drv_data->tx < drv_data->tx_end) {
  303. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  304. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  305. cpu_relax();
  306. drv_data->tx += 2;
  307. }
  308. /* poll for SPI completion before return */
  309. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  310. cpu_relax();
  311. }
  312. static void u16_cs_chg_writer(struct driver_data *drv_data)
  313. {
  314. struct chip_data *chip = drv_data->cur_chip;
  315. while (drv_data->tx < drv_data->tx_end) {
  316. cs_active(drv_data, chip);
  317. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  318. while ((read_STAT(drv_data) & BIT_STAT_TXS))
  319. cpu_relax();
  320. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  321. cpu_relax();
  322. cs_deactive(drv_data, chip);
  323. drv_data->tx += 2;
  324. }
  325. }
  326. static void u16_reader(struct driver_data *drv_data)
  327. {
  328. dev_dbg(&drv_data->pdev->dev,
  329. "cr-16 is 0x%x\n", read_STAT(drv_data));
  330. /* poll for SPI completion before start */
  331. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  332. cpu_relax();
  333. /* clear TDBR buffer before read(else it will be shifted out) */
  334. write_TDBR(drv_data, 0xFFFF);
  335. dummy_read(drv_data);
  336. while (drv_data->rx < (drv_data->rx_end - 2)) {
  337. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  338. cpu_relax();
  339. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  340. drv_data->rx += 2;
  341. }
  342. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  343. cpu_relax();
  344. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  345. drv_data->rx += 2;
  346. }
  347. static void u16_cs_chg_reader(struct driver_data *drv_data)
  348. {
  349. struct chip_data *chip = drv_data->cur_chip;
  350. /* poll for SPI completion before start */
  351. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  352. cpu_relax();
  353. /* clear TDBR buffer before read(else it will be shifted out) */
  354. write_TDBR(drv_data, 0xFFFF);
  355. cs_active(drv_data, chip);
  356. dummy_read(drv_data);
  357. while (drv_data->rx < drv_data->rx_end - 2) {
  358. cs_deactive(drv_data, chip);
  359. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  360. cpu_relax();
  361. cs_active(drv_data, chip);
  362. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  363. drv_data->rx += 2;
  364. }
  365. cs_deactive(drv_data, chip);
  366. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  367. cpu_relax();
  368. *(u16 *) (drv_data->rx) = read_SHAW(drv_data);
  369. drv_data->rx += 2;
  370. }
  371. static void u16_duplex(struct driver_data *drv_data)
  372. {
  373. /* in duplex mode, clk is triggered by writing of TDBR */
  374. while (drv_data->tx < drv_data->tx_end) {
  375. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  376. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  377. cpu_relax();
  378. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  379. cpu_relax();
  380. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  381. drv_data->rx += 2;
  382. drv_data->tx += 2;
  383. }
  384. }
  385. static void u16_cs_chg_duplex(struct driver_data *drv_data)
  386. {
  387. struct chip_data *chip = drv_data->cur_chip;
  388. while (drv_data->tx < drv_data->tx_end) {
  389. cs_active(drv_data, chip);
  390. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  391. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  392. cpu_relax();
  393. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  394. cpu_relax();
  395. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  396. cs_deactive(drv_data, chip);
  397. drv_data->rx += 2;
  398. drv_data->tx += 2;
  399. }
  400. }
  401. /* test if ther is more transfer to be done */
  402. static void *next_transfer(struct driver_data *drv_data)
  403. {
  404. struct spi_message *msg = drv_data->cur_msg;
  405. struct spi_transfer *trans = drv_data->cur_transfer;
  406. /* Move to next transfer */
  407. if (trans->transfer_list.next != &msg->transfers) {
  408. drv_data->cur_transfer =
  409. list_entry(trans->transfer_list.next,
  410. struct spi_transfer, transfer_list);
  411. return RUNNING_STATE;
  412. } else
  413. return DONE_STATE;
  414. }
  415. /*
  416. * caller already set message->status;
  417. * dma and pio irqs are blocked give finished message back
  418. */
  419. static void giveback(struct driver_data *drv_data)
  420. {
  421. struct chip_data *chip = drv_data->cur_chip;
  422. struct spi_transfer *last_transfer;
  423. unsigned long flags;
  424. struct spi_message *msg;
  425. spin_lock_irqsave(&drv_data->lock, flags);
  426. msg = drv_data->cur_msg;
  427. drv_data->cur_msg = NULL;
  428. drv_data->cur_transfer = NULL;
  429. drv_data->cur_chip = NULL;
  430. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  431. spin_unlock_irqrestore(&drv_data->lock, flags);
  432. last_transfer = list_entry(msg->transfers.prev,
  433. struct spi_transfer, transfer_list);
  434. msg->state = NULL;
  435. /* disable chip select signal. And not stop spi in autobuffer mode */
  436. if (drv_data->tx_dma != 0xFFFF) {
  437. cs_deactive(drv_data, chip);
  438. bfin_spi_disable(drv_data);
  439. }
  440. if (!drv_data->cs_change)
  441. cs_deactive(drv_data, chip);
  442. if (msg->complete)
  443. msg->complete(msg->context);
  444. }
  445. static irqreturn_t dma_irq_handler(int irq, void *dev_id)
  446. {
  447. struct driver_data *drv_data = dev_id;
  448. struct chip_data *chip = drv_data->cur_chip;
  449. struct spi_message *msg = drv_data->cur_msg;
  450. u16 spistat = read_STAT(drv_data);
  451. dev_dbg(&drv_data->pdev->dev, "in dma_irq_handler\n");
  452. clear_dma_irqstat(drv_data->dma_channel);
  453. /* Wait for DMA to complete */
  454. while (get_dma_curr_irqstat(drv_data->dma_channel) & DMA_RUN)
  455. cpu_relax();
  456. /*
  457. * wait for the last transaction shifted out. HRM states:
  458. * at this point there may still be data in the SPI DMA FIFO waiting
  459. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  460. * register until it goes low for 2 successive reads
  461. */
  462. if (drv_data->tx != NULL) {
  463. while ((read_STAT(drv_data) & TXS) ||
  464. (read_STAT(drv_data) & TXS))
  465. cpu_relax();
  466. }
  467. while (!(read_STAT(drv_data) & SPIF))
  468. cpu_relax();
  469. if (spistat & RBSY) {
  470. msg->state = ERROR_STATE;
  471. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  472. } else {
  473. msg->actual_length += drv_data->len_in_bytes;
  474. if (drv_data->cs_change)
  475. cs_deactive(drv_data, chip);
  476. /* Move to next transfer */
  477. msg->state = next_transfer(drv_data);
  478. }
  479. /* Schedule transfer tasklet */
  480. tasklet_schedule(&drv_data->pump_transfers);
  481. /* free the irq handler before next transfer */
  482. dev_dbg(&drv_data->pdev->dev,
  483. "disable dma channel irq%d\n",
  484. drv_data->dma_channel);
  485. dma_disable_irq(drv_data->dma_channel);
  486. return IRQ_HANDLED;
  487. }
  488. static void pump_transfers(unsigned long data)
  489. {
  490. struct driver_data *drv_data = (struct driver_data *)data;
  491. struct spi_message *message = NULL;
  492. struct spi_transfer *transfer = NULL;
  493. struct spi_transfer *previous = NULL;
  494. struct chip_data *chip = NULL;
  495. u8 width;
  496. u16 cr, dma_width, dma_config;
  497. u32 tranf_success = 1;
  498. u8 full_duplex = 0;
  499. /* Get current state information */
  500. message = drv_data->cur_msg;
  501. transfer = drv_data->cur_transfer;
  502. chip = drv_data->cur_chip;
  503. /*
  504. * if msg is error or done, report it back using complete() callback
  505. */
  506. /* Handle for abort */
  507. if (message->state == ERROR_STATE) {
  508. message->status = -EIO;
  509. giveback(drv_data);
  510. return;
  511. }
  512. /* Handle end of message */
  513. if (message->state == DONE_STATE) {
  514. message->status = 0;
  515. giveback(drv_data);
  516. return;
  517. }
  518. /* Delay if requested at end of transfer */
  519. if (message->state == RUNNING_STATE) {
  520. previous = list_entry(transfer->transfer_list.prev,
  521. struct spi_transfer, transfer_list);
  522. if (previous->delay_usecs)
  523. udelay(previous->delay_usecs);
  524. }
  525. /* Setup the transfer state based on the type of transfer */
  526. if (flush(drv_data) == 0) {
  527. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  528. message->status = -EIO;
  529. giveback(drv_data);
  530. return;
  531. }
  532. if (transfer->tx_buf != NULL) {
  533. drv_data->tx = (void *)transfer->tx_buf;
  534. drv_data->tx_end = drv_data->tx + transfer->len;
  535. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  536. transfer->tx_buf, drv_data->tx_end);
  537. } else {
  538. drv_data->tx = NULL;
  539. }
  540. if (transfer->rx_buf != NULL) {
  541. full_duplex = transfer->tx_buf != NULL;
  542. drv_data->rx = transfer->rx_buf;
  543. drv_data->rx_end = drv_data->rx + transfer->len;
  544. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  545. transfer->rx_buf, drv_data->rx_end);
  546. } else {
  547. drv_data->rx = NULL;
  548. }
  549. drv_data->rx_dma = transfer->rx_dma;
  550. drv_data->tx_dma = transfer->tx_dma;
  551. drv_data->len_in_bytes = transfer->len;
  552. drv_data->cs_change = transfer->cs_change;
  553. /* Bits per word setup */
  554. switch (transfer->bits_per_word) {
  555. case 8:
  556. drv_data->n_bytes = 1;
  557. width = CFG_SPI_WORDSIZE8;
  558. drv_data->read = chip->cs_change_per_word ?
  559. u8_cs_chg_reader : u8_reader;
  560. drv_data->write = chip->cs_change_per_word ?
  561. u8_cs_chg_writer : u8_writer;
  562. drv_data->duplex = chip->cs_change_per_word ?
  563. u8_cs_chg_duplex : u8_duplex;
  564. break;
  565. case 16:
  566. drv_data->n_bytes = 2;
  567. width = CFG_SPI_WORDSIZE16;
  568. drv_data->read = chip->cs_change_per_word ?
  569. u16_cs_chg_reader : u16_reader;
  570. drv_data->write = chip->cs_change_per_word ?
  571. u16_cs_chg_writer : u16_writer;
  572. drv_data->duplex = chip->cs_change_per_word ?
  573. u16_cs_chg_duplex : u16_duplex;
  574. break;
  575. default:
  576. /* No change, the same as default setting */
  577. drv_data->n_bytes = chip->n_bytes;
  578. width = chip->width;
  579. drv_data->write = drv_data->tx ? chip->write : null_writer;
  580. drv_data->read = drv_data->rx ? chip->read : null_reader;
  581. drv_data->duplex = chip->duplex ? chip->duplex : null_writer;
  582. break;
  583. }
  584. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  585. cr |= (width << 8);
  586. write_CTRL(drv_data, cr);
  587. if (width == CFG_SPI_WORDSIZE16) {
  588. drv_data->len = (transfer->len) >> 1;
  589. } else {
  590. drv_data->len = transfer->len;
  591. }
  592. dev_dbg(&drv_data->pdev->dev,
  593. "transfer: drv_data->write is %p, chip->write is %p, null_wr is %p\n",
  594. drv_data->write, chip->write, null_writer);
  595. /* speed and width has been set on per message */
  596. message->state = RUNNING_STATE;
  597. dma_config = 0;
  598. /* Speed setup (surely valid because already checked) */
  599. if (transfer->speed_hz)
  600. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  601. else
  602. write_BAUD(drv_data, chip->baud);
  603. write_STAT(drv_data, BIT_STAT_CLR);
  604. cr = (read_CTRL(drv_data) & (~BIT_CTL_TIMOD));
  605. cs_active(drv_data, chip);
  606. dev_dbg(&drv_data->pdev->dev,
  607. "now pumping a transfer: width is %d, len is %d\n",
  608. width, transfer->len);
  609. /*
  610. * Try to map dma buffer and do a dma transfer. If successful use,
  611. * different way to r/w according to the enable_dma settings and if
  612. * we are not doing a full duplex transfer (since the hardware does
  613. * not support full duplex DMA transfers).
  614. */
  615. if (!full_duplex && drv_data->cur_chip->enable_dma
  616. && drv_data->len > 6) {
  617. unsigned long dma_start_addr;
  618. disable_dma(drv_data->dma_channel);
  619. clear_dma_irqstat(drv_data->dma_channel);
  620. bfin_spi_disable(drv_data);
  621. /* config dma channel */
  622. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  623. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  624. if (width == CFG_SPI_WORDSIZE16) {
  625. set_dma_x_modify(drv_data->dma_channel, 2);
  626. dma_width = WDSIZE_16;
  627. } else {
  628. set_dma_x_modify(drv_data->dma_channel, 1);
  629. dma_width = WDSIZE_8;
  630. }
  631. /* poll for SPI completion before start */
  632. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  633. cpu_relax();
  634. /* dirty hack for autobuffer DMA mode */
  635. if (drv_data->tx_dma == 0xFFFF) {
  636. dev_dbg(&drv_data->pdev->dev,
  637. "doing autobuffer DMA out.\n");
  638. /* no irq in autobuffer mode */
  639. dma_config =
  640. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  641. set_dma_config(drv_data->dma_channel, dma_config);
  642. set_dma_start_addr(drv_data->dma_channel,
  643. (unsigned long)drv_data->tx);
  644. enable_dma(drv_data->dma_channel);
  645. /* start SPI transfer */
  646. write_CTRL(drv_data,
  647. (cr | CFG_SPI_DMAWRITE | BIT_CTL_ENABLE));
  648. /* just return here, there can only be one transfer
  649. * in this mode
  650. */
  651. message->status = 0;
  652. giveback(drv_data);
  653. return;
  654. }
  655. /* In dma mode, rx or tx must be NULL in one transfer */
  656. dma_config = (RESTART | dma_width | DI_EN);
  657. if (drv_data->rx != NULL) {
  658. /* set transfer mode, and enable SPI */
  659. dev_dbg(&drv_data->pdev->dev, "doing DMA in.\n");
  660. /* invalidate caches, if needed */
  661. if (bfin_addr_dcachable((unsigned long) drv_data->rx))
  662. invalidate_dcache_range((unsigned long) drv_data->rx,
  663. (unsigned long) (drv_data->rx +
  664. drv_data->len_in_bytes));
  665. /* clear tx reg soformer data is not shifted out */
  666. write_TDBR(drv_data, 0xFFFF);
  667. dma_config |= WNR;
  668. dma_start_addr = (unsigned long)drv_data->rx;
  669. cr |= CFG_SPI_DMAREAD;
  670. } else if (drv_data->tx != NULL) {
  671. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  672. /* flush caches, if needed */
  673. if (bfin_addr_dcachable((unsigned long) drv_data->tx))
  674. flush_dcache_range((unsigned long) drv_data->tx,
  675. (unsigned long) (drv_data->tx +
  676. drv_data->len_in_bytes));
  677. dma_start_addr = (unsigned long)drv_data->tx;
  678. cr |= CFG_SPI_DMAWRITE;
  679. } else
  680. BUG();
  681. /* start dma */
  682. dma_enable_irq(drv_data->dma_channel);
  683. set_dma_config(drv_data->dma_channel, dma_config);
  684. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  685. enable_dma(drv_data->dma_channel);
  686. /* start SPI transfer */
  687. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  688. } else {
  689. /* IO mode write then read */
  690. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  691. if (full_duplex) {
  692. /* full duplex mode */
  693. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  694. (drv_data->rx_end - drv_data->rx));
  695. dev_dbg(&drv_data->pdev->dev,
  696. "IO duplex: cr is 0x%x\n", cr);
  697. /* set SPI transfer mode */
  698. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  699. drv_data->duplex(drv_data);
  700. if (drv_data->tx != drv_data->tx_end)
  701. tranf_success = 0;
  702. } else if (drv_data->tx != NULL) {
  703. /* write only half duplex */
  704. dev_dbg(&drv_data->pdev->dev,
  705. "IO write: cr is 0x%x\n", cr);
  706. /* set SPI transfer mode */
  707. write_CTRL(drv_data, (cr | CFG_SPI_WRITE));
  708. drv_data->write(drv_data);
  709. if (drv_data->tx != drv_data->tx_end)
  710. tranf_success = 0;
  711. } else if (drv_data->rx != NULL) {
  712. /* read only half duplex */
  713. dev_dbg(&drv_data->pdev->dev,
  714. "IO read: cr is 0x%x\n", cr);
  715. /* set SPI transfer mode */
  716. write_CTRL(drv_data, (cr | CFG_SPI_READ));
  717. drv_data->read(drv_data);
  718. if (drv_data->rx != drv_data->rx_end)
  719. tranf_success = 0;
  720. }
  721. if (!tranf_success) {
  722. dev_dbg(&drv_data->pdev->dev,
  723. "IO write error!\n");
  724. message->state = ERROR_STATE;
  725. } else {
  726. /* Update total byte transfered */
  727. message->actual_length += drv_data->len_in_bytes;
  728. /* Move to next transfer of this msg */
  729. message->state = next_transfer(drv_data);
  730. }
  731. /* Schedule next transfer tasklet */
  732. tasklet_schedule(&drv_data->pump_transfers);
  733. }
  734. }
  735. /* pop a msg from queue and kick off real transfer */
  736. static void pump_messages(struct work_struct *work)
  737. {
  738. struct driver_data *drv_data;
  739. unsigned long flags;
  740. drv_data = container_of(work, struct driver_data, pump_messages);
  741. /* Lock queue and check for queue work */
  742. spin_lock_irqsave(&drv_data->lock, flags);
  743. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  744. /* pumper kicked off but no work to do */
  745. drv_data->busy = 0;
  746. spin_unlock_irqrestore(&drv_data->lock, flags);
  747. return;
  748. }
  749. /* Make sure we are not already running a message */
  750. if (drv_data->cur_msg) {
  751. spin_unlock_irqrestore(&drv_data->lock, flags);
  752. return;
  753. }
  754. /* Extract head of queue */
  755. drv_data->cur_msg = list_entry(drv_data->queue.next,
  756. struct spi_message, queue);
  757. /* Setup the SSP using the per chip configuration */
  758. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  759. restore_state(drv_data);
  760. list_del_init(&drv_data->cur_msg->queue);
  761. /* Initial message state */
  762. drv_data->cur_msg->state = START_STATE;
  763. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  764. struct spi_transfer, transfer_list);
  765. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  766. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  767. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  768. drv_data->cur_chip->ctl_reg);
  769. dev_dbg(&drv_data->pdev->dev,
  770. "the first transfer len is %d\n",
  771. drv_data->cur_transfer->len);
  772. /* Mark as busy and launch transfers */
  773. tasklet_schedule(&drv_data->pump_transfers);
  774. drv_data->busy = 1;
  775. spin_unlock_irqrestore(&drv_data->lock, flags);
  776. }
  777. /*
  778. * got a msg to transfer, queue it in drv_data->queue.
  779. * And kick off message pumper
  780. */
  781. static int transfer(struct spi_device *spi, struct spi_message *msg)
  782. {
  783. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  784. unsigned long flags;
  785. spin_lock_irqsave(&drv_data->lock, flags);
  786. if (drv_data->run == QUEUE_STOPPED) {
  787. spin_unlock_irqrestore(&drv_data->lock, flags);
  788. return -ESHUTDOWN;
  789. }
  790. msg->actual_length = 0;
  791. msg->status = -EINPROGRESS;
  792. msg->state = START_STATE;
  793. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  794. list_add_tail(&msg->queue, &drv_data->queue);
  795. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  796. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  797. spin_unlock_irqrestore(&drv_data->lock, flags);
  798. return 0;
  799. }
  800. #define MAX_SPI_SSEL 7
  801. static u16 ssel[3][MAX_SPI_SSEL] = {
  802. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  803. P_SPI0_SSEL4, P_SPI0_SSEL5,
  804. P_SPI0_SSEL6, P_SPI0_SSEL7},
  805. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  806. P_SPI1_SSEL4, P_SPI1_SSEL5,
  807. P_SPI1_SSEL6, P_SPI1_SSEL7},
  808. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  809. P_SPI2_SSEL4, P_SPI2_SSEL5,
  810. P_SPI2_SSEL6, P_SPI2_SSEL7},
  811. };
  812. /* first setup for new devices */
  813. static int setup(struct spi_device *spi)
  814. {
  815. struct bfin5xx_spi_chip *chip_info = NULL;
  816. struct chip_data *chip;
  817. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  818. u8 spi_flg;
  819. /* Abort device setup if requested features are not supported */
  820. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  821. dev_err(&spi->dev, "requested mode not fully supported\n");
  822. return -EINVAL;
  823. }
  824. /* Zero (the default) here means 8 bits */
  825. if (!spi->bits_per_word)
  826. spi->bits_per_word = 8;
  827. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  828. return -EINVAL;
  829. /* Only alloc (or use chip_info) on first setup */
  830. chip = spi_get_ctldata(spi);
  831. if (chip == NULL) {
  832. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  833. if (!chip)
  834. return -ENOMEM;
  835. chip->enable_dma = 0;
  836. chip_info = spi->controller_data;
  837. }
  838. /* chip_info isn't always needed */
  839. if (chip_info) {
  840. /* Make sure people stop trying to set fields via ctl_reg
  841. * when they should actually be using common SPI framework.
  842. * Currently we let through: WOM EMISO PSSE GM SZ TIMOD.
  843. * Not sure if a user actually needs/uses any of these,
  844. * but let's assume (for now) they do.
  845. */
  846. if (chip_info->ctl_reg & (SPE|MSTR|CPOL|CPHA|LSBF|SIZE)) {
  847. dev_err(&spi->dev, "do not set bits in ctl_reg "
  848. "that the SPI framework manages\n");
  849. return -EINVAL;
  850. }
  851. chip->enable_dma = chip_info->enable_dma != 0
  852. && drv_data->master_info->enable_dma;
  853. chip->ctl_reg = chip_info->ctl_reg;
  854. chip->bits_per_word = chip_info->bits_per_word;
  855. chip->cs_change_per_word = chip_info->cs_change_per_word;
  856. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  857. }
  858. /* translate common spi framework into our register */
  859. if (spi->mode & SPI_CPOL)
  860. chip->ctl_reg |= CPOL;
  861. if (spi->mode & SPI_CPHA)
  862. chip->ctl_reg |= CPHA;
  863. if (spi->mode & SPI_LSB_FIRST)
  864. chip->ctl_reg |= LSBF;
  865. /* we dont support running in slave mode (yet?) */
  866. chip->ctl_reg |= MSTR;
  867. /*
  868. * if any one SPI chip is registered and wants DMA, request the
  869. * DMA channel for it
  870. */
  871. if (chip->enable_dma && !drv_data->dma_requested) {
  872. /* register dma irq handler */
  873. if (request_dma(drv_data->dma_channel, "BF53x_SPI_DMA") < 0) {
  874. dev_dbg(&spi->dev,
  875. "Unable to request BlackFin SPI DMA channel\n");
  876. return -ENODEV;
  877. }
  878. if (set_dma_callback(drv_data->dma_channel,
  879. (void *)dma_irq_handler, drv_data) < 0) {
  880. dev_dbg(&spi->dev, "Unable to set dma callback\n");
  881. return -EPERM;
  882. }
  883. dma_disable_irq(drv_data->dma_channel);
  884. drv_data->dma_requested = 1;
  885. }
  886. /*
  887. * Notice: for blackfin, the speed_hz is the value of register
  888. * SPI_BAUD, not the real baudrate
  889. */
  890. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  891. spi_flg = ~(1 << (spi->chip_select));
  892. chip->flag = ((u16) spi_flg << 8) | (1 << (spi->chip_select));
  893. chip->chip_select_num = spi->chip_select;
  894. switch (chip->bits_per_word) {
  895. case 8:
  896. chip->n_bytes = 1;
  897. chip->width = CFG_SPI_WORDSIZE8;
  898. chip->read = chip->cs_change_per_word ?
  899. u8_cs_chg_reader : u8_reader;
  900. chip->write = chip->cs_change_per_word ?
  901. u8_cs_chg_writer : u8_writer;
  902. chip->duplex = chip->cs_change_per_word ?
  903. u8_cs_chg_duplex : u8_duplex;
  904. break;
  905. case 16:
  906. chip->n_bytes = 2;
  907. chip->width = CFG_SPI_WORDSIZE16;
  908. chip->read = chip->cs_change_per_word ?
  909. u16_cs_chg_reader : u16_reader;
  910. chip->write = chip->cs_change_per_word ?
  911. u16_cs_chg_writer : u16_writer;
  912. chip->duplex = chip->cs_change_per_word ?
  913. u16_cs_chg_duplex : u16_duplex;
  914. break;
  915. default:
  916. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  917. chip->bits_per_word);
  918. kfree(chip);
  919. return -ENODEV;
  920. }
  921. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  922. spi->modalias, chip->width, chip->enable_dma);
  923. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  924. chip->ctl_reg, chip->flag);
  925. spi_set_ctldata(spi, chip);
  926. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  927. if ((chip->chip_select_num > 0)
  928. && (chip->chip_select_num <= spi->master->num_chipselect))
  929. peripheral_request(ssel[spi->master->bus_num]
  930. [chip->chip_select_num-1], spi->modalias);
  931. cs_deactive(drv_data, chip);
  932. return 0;
  933. }
  934. /*
  935. * callback for spi framework.
  936. * clean driver specific data
  937. */
  938. static void cleanup(struct spi_device *spi)
  939. {
  940. struct chip_data *chip = spi_get_ctldata(spi);
  941. if ((chip->chip_select_num > 0)
  942. && (chip->chip_select_num <= spi->master->num_chipselect))
  943. peripheral_free(ssel[spi->master->bus_num]
  944. [chip->chip_select_num-1]);
  945. kfree(chip);
  946. }
  947. static inline int init_queue(struct driver_data *drv_data)
  948. {
  949. INIT_LIST_HEAD(&drv_data->queue);
  950. spin_lock_init(&drv_data->lock);
  951. drv_data->run = QUEUE_STOPPED;
  952. drv_data->busy = 0;
  953. /* init transfer tasklet */
  954. tasklet_init(&drv_data->pump_transfers,
  955. pump_transfers, (unsigned long)drv_data);
  956. /* init messages workqueue */
  957. INIT_WORK(&drv_data->pump_messages, pump_messages);
  958. drv_data->workqueue = create_singlethread_workqueue(
  959. dev_name(drv_data->master->dev.parent));
  960. if (drv_data->workqueue == NULL)
  961. return -EBUSY;
  962. return 0;
  963. }
  964. static inline int start_queue(struct driver_data *drv_data)
  965. {
  966. unsigned long flags;
  967. spin_lock_irqsave(&drv_data->lock, flags);
  968. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  969. spin_unlock_irqrestore(&drv_data->lock, flags);
  970. return -EBUSY;
  971. }
  972. drv_data->run = QUEUE_RUNNING;
  973. drv_data->cur_msg = NULL;
  974. drv_data->cur_transfer = NULL;
  975. drv_data->cur_chip = NULL;
  976. spin_unlock_irqrestore(&drv_data->lock, flags);
  977. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  978. return 0;
  979. }
  980. static inline int stop_queue(struct driver_data *drv_data)
  981. {
  982. unsigned long flags;
  983. unsigned limit = 500;
  984. int status = 0;
  985. spin_lock_irqsave(&drv_data->lock, flags);
  986. /*
  987. * This is a bit lame, but is optimized for the common execution path.
  988. * A wait_queue on the drv_data->busy could be used, but then the common
  989. * execution path (pump_messages) would be required to call wake_up or
  990. * friends on every SPI message. Do this instead
  991. */
  992. drv_data->run = QUEUE_STOPPED;
  993. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  994. spin_unlock_irqrestore(&drv_data->lock, flags);
  995. msleep(10);
  996. spin_lock_irqsave(&drv_data->lock, flags);
  997. }
  998. if (!list_empty(&drv_data->queue) || drv_data->busy)
  999. status = -EBUSY;
  1000. spin_unlock_irqrestore(&drv_data->lock, flags);
  1001. return status;
  1002. }
  1003. static inline int destroy_queue(struct driver_data *drv_data)
  1004. {
  1005. int status;
  1006. status = stop_queue(drv_data);
  1007. if (status != 0)
  1008. return status;
  1009. destroy_workqueue(drv_data->workqueue);
  1010. return 0;
  1011. }
  1012. static int __init bfin5xx_spi_probe(struct platform_device *pdev)
  1013. {
  1014. struct device *dev = &pdev->dev;
  1015. struct bfin5xx_spi_master *platform_info;
  1016. struct spi_master *master;
  1017. struct driver_data *drv_data = 0;
  1018. struct resource *res;
  1019. int status = 0;
  1020. platform_info = dev->platform_data;
  1021. /* Allocate master with space for drv_data */
  1022. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1023. if (!master) {
  1024. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1025. return -ENOMEM;
  1026. }
  1027. drv_data = spi_master_get_devdata(master);
  1028. drv_data->master = master;
  1029. drv_data->master_info = platform_info;
  1030. drv_data->pdev = pdev;
  1031. drv_data->pin_req = platform_info->pin_req;
  1032. master->bus_num = pdev->id;
  1033. master->num_chipselect = platform_info->num_chipselect;
  1034. master->cleanup = cleanup;
  1035. master->setup = setup;
  1036. master->transfer = transfer;
  1037. /* Find and map our resources */
  1038. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1039. if (res == NULL) {
  1040. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1041. status = -ENOENT;
  1042. goto out_error_get_res;
  1043. }
  1044. drv_data->regs_base = ioremap(res->start, (res->end - res->start + 1));
  1045. if (drv_data->regs_base == NULL) {
  1046. dev_err(dev, "Cannot map IO\n");
  1047. status = -ENXIO;
  1048. goto out_error_ioremap;
  1049. }
  1050. drv_data->dma_channel = platform_get_irq(pdev, 0);
  1051. if (drv_data->dma_channel < 0) {
  1052. dev_err(dev, "No DMA channel specified\n");
  1053. status = -ENOENT;
  1054. goto out_error_no_dma_ch;
  1055. }
  1056. /* Initial and start queue */
  1057. status = init_queue(drv_data);
  1058. if (status != 0) {
  1059. dev_err(dev, "problem initializing queue\n");
  1060. goto out_error_queue_alloc;
  1061. }
  1062. status = start_queue(drv_data);
  1063. if (status != 0) {
  1064. dev_err(dev, "problem starting queue\n");
  1065. goto out_error_queue_alloc;
  1066. }
  1067. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1068. if (status != 0) {
  1069. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1070. goto out_error_queue_alloc;
  1071. }
  1072. /* Register with the SPI framework */
  1073. platform_set_drvdata(pdev, drv_data);
  1074. status = spi_register_master(master);
  1075. if (status != 0) {
  1076. dev_err(dev, "problem registering spi master\n");
  1077. goto out_error_queue_alloc;
  1078. }
  1079. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1080. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1081. drv_data->dma_channel);
  1082. return status;
  1083. out_error_queue_alloc:
  1084. destroy_queue(drv_data);
  1085. out_error_no_dma_ch:
  1086. iounmap((void *) drv_data->regs_base);
  1087. out_error_ioremap:
  1088. out_error_get_res:
  1089. spi_master_put(master);
  1090. return status;
  1091. }
  1092. /* stop hardware and remove the driver */
  1093. static int __devexit bfin5xx_spi_remove(struct platform_device *pdev)
  1094. {
  1095. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1096. int status = 0;
  1097. if (!drv_data)
  1098. return 0;
  1099. /* Remove the queue */
  1100. status = destroy_queue(drv_data);
  1101. if (status != 0)
  1102. return status;
  1103. /* Disable the SSP at the peripheral and SOC level */
  1104. bfin_spi_disable(drv_data);
  1105. /* Release DMA */
  1106. if (drv_data->master_info->enable_dma) {
  1107. if (dma_channel_active(drv_data->dma_channel))
  1108. free_dma(drv_data->dma_channel);
  1109. }
  1110. /* Disconnect from the SPI framework */
  1111. spi_unregister_master(drv_data->master);
  1112. peripheral_free_list(drv_data->pin_req);
  1113. /* Prevent double remove */
  1114. platform_set_drvdata(pdev, NULL);
  1115. return 0;
  1116. }
  1117. #ifdef CONFIG_PM
  1118. static int bfin5xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1119. {
  1120. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1121. int status = 0;
  1122. status = stop_queue(drv_data);
  1123. if (status != 0)
  1124. return status;
  1125. /* stop hardware */
  1126. bfin_spi_disable(drv_data);
  1127. return 0;
  1128. }
  1129. static int bfin5xx_spi_resume(struct platform_device *pdev)
  1130. {
  1131. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1132. int status = 0;
  1133. /* Enable the SPI interface */
  1134. bfin_spi_enable(drv_data);
  1135. /* Start the queue running */
  1136. status = start_queue(drv_data);
  1137. if (status != 0) {
  1138. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1139. return status;
  1140. }
  1141. return 0;
  1142. }
  1143. #else
  1144. #define bfin5xx_spi_suspend NULL
  1145. #define bfin5xx_spi_resume NULL
  1146. #endif /* CONFIG_PM */
  1147. MODULE_ALIAS("platform:bfin-spi");
  1148. static struct platform_driver bfin5xx_spi_driver = {
  1149. .driver = {
  1150. .name = DRV_NAME,
  1151. .owner = THIS_MODULE,
  1152. },
  1153. .suspend = bfin5xx_spi_suspend,
  1154. .resume = bfin5xx_spi_resume,
  1155. .remove = __devexit_p(bfin5xx_spi_remove),
  1156. };
  1157. static int __init bfin5xx_spi_init(void)
  1158. {
  1159. return platform_driver_probe(&bfin5xx_spi_driver, bfin5xx_spi_probe);
  1160. }
  1161. module_init(bfin5xx_spi_init);
  1162. static void __exit bfin5xx_spi_exit(void)
  1163. {
  1164. platform_driver_unregister(&bfin5xx_spi_driver);
  1165. }
  1166. module_exit(bfin5xx_spi_exit);