mtdpart.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /* Our partition node structure */
  37. struct mtd_part {
  38. struct mtd_info mtd;
  39. struct mtd_info *master;
  40. uint64_t offset;
  41. struct list_head list;
  42. };
  43. /*
  44. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  45. * the pointer to that structure with this macro.
  46. */
  47. #define PART(x) ((struct mtd_part *)(x))
  48. /*
  49. * MTD methods which simply translate the effective address and pass through
  50. * to the _real_ device.
  51. */
  52. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  53. size_t *retlen, u_char *buf)
  54. {
  55. struct mtd_part *part = PART(mtd);
  56. struct mtd_ecc_stats stats;
  57. int res;
  58. stats = part->master->ecc_stats;
  59. if (from >= mtd->size)
  60. len = 0;
  61. else if (from + len > mtd->size)
  62. len = mtd->size - from;
  63. res = mtd_read(part->master, from + part->offset, len, retlen, buf);
  64. if (unlikely(res)) {
  65. if (mtd_is_bitflip(res))
  66. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  67. if (mtd_is_eccerr(res))
  68. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  69. }
  70. return res;
  71. }
  72. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  73. size_t *retlen, void **virt, resource_size_t *phys)
  74. {
  75. struct mtd_part *part = PART(mtd);
  76. if (from >= mtd->size)
  77. len = 0;
  78. else if (from + len > mtd->size)
  79. len = mtd->size - from;
  80. return mtd_point(part->master, from + part->offset, len, retlen,
  81. virt, phys);
  82. }
  83. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  84. {
  85. struct mtd_part *part = PART(mtd);
  86. mtd_unpoint(part->master, from + part->offset, len);
  87. }
  88. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  89. unsigned long len,
  90. unsigned long offset,
  91. unsigned long flags)
  92. {
  93. struct mtd_part *part = PART(mtd);
  94. offset += part->offset;
  95. return mtd_get_unmapped_area(part->master, len, offset, flags);
  96. }
  97. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  98. struct mtd_oob_ops *ops)
  99. {
  100. struct mtd_part *part = PART(mtd);
  101. int res;
  102. if (from >= mtd->size)
  103. return -EINVAL;
  104. if (ops->datbuf && from + ops->len > mtd->size)
  105. return -EINVAL;
  106. /*
  107. * If OOB is also requested, make sure that we do not read past the end
  108. * of this partition.
  109. */
  110. if (ops->oobbuf) {
  111. size_t len, pages;
  112. if (ops->mode == MTD_OPS_AUTO_OOB)
  113. len = mtd->oobavail;
  114. else
  115. len = mtd->oobsize;
  116. pages = mtd_div_by_ws(mtd->size, mtd);
  117. pages -= mtd_div_by_ws(from, mtd);
  118. if (ops->ooboffs + ops->ooblen > pages * len)
  119. return -EINVAL;
  120. }
  121. res = part->master->read_oob(part->master, from + part->offset, ops);
  122. if (unlikely(res)) {
  123. if (mtd_is_bitflip(res))
  124. mtd->ecc_stats.corrected++;
  125. if (mtd_is_eccerr(res))
  126. mtd->ecc_stats.failed++;
  127. }
  128. return res;
  129. }
  130. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  131. size_t len, size_t *retlen, u_char *buf)
  132. {
  133. struct mtd_part *part = PART(mtd);
  134. return part->master->read_user_prot_reg(part->master, from,
  135. len, retlen, buf);
  136. }
  137. static int part_get_user_prot_info(struct mtd_info *mtd,
  138. struct otp_info *buf, size_t len)
  139. {
  140. struct mtd_part *part = PART(mtd);
  141. return part->master->get_user_prot_info(part->master, buf, len);
  142. }
  143. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  144. size_t len, size_t *retlen, u_char *buf)
  145. {
  146. struct mtd_part *part = PART(mtd);
  147. return part->master->read_fact_prot_reg(part->master, from,
  148. len, retlen, buf);
  149. }
  150. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  151. size_t len)
  152. {
  153. struct mtd_part *part = PART(mtd);
  154. return part->master->get_fact_prot_info(part->master, buf, len);
  155. }
  156. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  157. size_t *retlen, const u_char *buf)
  158. {
  159. struct mtd_part *part = PART(mtd);
  160. if (!(mtd->flags & MTD_WRITEABLE))
  161. return -EROFS;
  162. if (to >= mtd->size)
  163. len = 0;
  164. else if (to + len > mtd->size)
  165. len = mtd->size - to;
  166. return mtd_write(part->master, to + part->offset, len, retlen, buf);
  167. }
  168. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  169. size_t *retlen, const u_char *buf)
  170. {
  171. struct mtd_part *part = PART(mtd);
  172. if (!(mtd->flags & MTD_WRITEABLE))
  173. return -EROFS;
  174. if (to >= mtd->size)
  175. len = 0;
  176. else if (to + len > mtd->size)
  177. len = mtd->size - to;
  178. return mtd_panic_write(part->master, to + part->offset, len, retlen,
  179. buf);
  180. }
  181. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  182. struct mtd_oob_ops *ops)
  183. {
  184. struct mtd_part *part = PART(mtd);
  185. if (!(mtd->flags & MTD_WRITEABLE))
  186. return -EROFS;
  187. if (to >= mtd->size)
  188. return -EINVAL;
  189. if (ops->datbuf && to + ops->len > mtd->size)
  190. return -EINVAL;
  191. return part->master->write_oob(part->master, to + part->offset, ops);
  192. }
  193. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  194. size_t len, size_t *retlen, u_char *buf)
  195. {
  196. struct mtd_part *part = PART(mtd);
  197. return part->master->write_user_prot_reg(part->master, from,
  198. len, retlen, buf);
  199. }
  200. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  201. size_t len)
  202. {
  203. struct mtd_part *part = PART(mtd);
  204. return part->master->lock_user_prot_reg(part->master, from, len);
  205. }
  206. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  207. unsigned long count, loff_t to, size_t *retlen)
  208. {
  209. struct mtd_part *part = PART(mtd);
  210. if (!(mtd->flags & MTD_WRITEABLE))
  211. return -EROFS;
  212. return part->master->writev(part->master, vecs, count,
  213. to + part->offset, retlen);
  214. }
  215. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  216. {
  217. struct mtd_part *part = PART(mtd);
  218. int ret;
  219. if (!(mtd->flags & MTD_WRITEABLE))
  220. return -EROFS;
  221. if (instr->addr >= mtd->size)
  222. return -EINVAL;
  223. instr->addr += part->offset;
  224. ret = mtd_erase(part->master, instr);
  225. if (ret) {
  226. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  227. instr->fail_addr -= part->offset;
  228. instr->addr -= part->offset;
  229. }
  230. return ret;
  231. }
  232. void mtd_erase_callback(struct erase_info *instr)
  233. {
  234. if (instr->mtd->erase == part_erase) {
  235. struct mtd_part *part = PART(instr->mtd);
  236. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  237. instr->fail_addr -= part->offset;
  238. instr->addr -= part->offset;
  239. }
  240. if (instr->callback)
  241. instr->callback(instr);
  242. }
  243. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  244. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  245. {
  246. struct mtd_part *part = PART(mtd);
  247. if ((len + ofs) > mtd->size)
  248. return -EINVAL;
  249. return part->master->lock(part->master, ofs + part->offset, len);
  250. }
  251. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  252. {
  253. struct mtd_part *part = PART(mtd);
  254. if ((len + ofs) > mtd->size)
  255. return -EINVAL;
  256. return part->master->unlock(part->master, ofs + part->offset, len);
  257. }
  258. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  259. {
  260. struct mtd_part *part = PART(mtd);
  261. if ((len + ofs) > mtd->size)
  262. return -EINVAL;
  263. return part->master->is_locked(part->master, ofs + part->offset, len);
  264. }
  265. static void part_sync(struct mtd_info *mtd)
  266. {
  267. struct mtd_part *part = PART(mtd);
  268. part->master->sync(part->master);
  269. }
  270. static int part_suspend(struct mtd_info *mtd)
  271. {
  272. struct mtd_part *part = PART(mtd);
  273. return part->master->suspend(part->master);
  274. }
  275. static void part_resume(struct mtd_info *mtd)
  276. {
  277. struct mtd_part *part = PART(mtd);
  278. part->master->resume(part->master);
  279. }
  280. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  281. {
  282. struct mtd_part *part = PART(mtd);
  283. if (ofs >= mtd->size)
  284. return -EINVAL;
  285. ofs += part->offset;
  286. return part->master->block_isbad(part->master, ofs);
  287. }
  288. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  289. {
  290. struct mtd_part *part = PART(mtd);
  291. int res;
  292. if (!(mtd->flags & MTD_WRITEABLE))
  293. return -EROFS;
  294. if (ofs >= mtd->size)
  295. return -EINVAL;
  296. ofs += part->offset;
  297. res = part->master->block_markbad(part->master, ofs);
  298. if (!res)
  299. mtd->ecc_stats.badblocks++;
  300. return res;
  301. }
  302. static inline void free_partition(struct mtd_part *p)
  303. {
  304. kfree(p->mtd.name);
  305. kfree(p);
  306. }
  307. /*
  308. * This function unregisters and destroy all slave MTD objects which are
  309. * attached to the given master MTD object.
  310. */
  311. int del_mtd_partitions(struct mtd_info *master)
  312. {
  313. struct mtd_part *slave, *next;
  314. int ret, err = 0;
  315. mutex_lock(&mtd_partitions_mutex);
  316. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  317. if (slave->master == master) {
  318. ret = del_mtd_device(&slave->mtd);
  319. if (ret < 0) {
  320. err = ret;
  321. continue;
  322. }
  323. list_del(&slave->list);
  324. free_partition(slave);
  325. }
  326. mutex_unlock(&mtd_partitions_mutex);
  327. return err;
  328. }
  329. static struct mtd_part *allocate_partition(struct mtd_info *master,
  330. const struct mtd_partition *part, int partno,
  331. uint64_t cur_offset)
  332. {
  333. struct mtd_part *slave;
  334. char *name;
  335. /* allocate the partition structure */
  336. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  337. name = kstrdup(part->name, GFP_KERNEL);
  338. if (!name || !slave) {
  339. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  340. master->name);
  341. kfree(name);
  342. kfree(slave);
  343. return ERR_PTR(-ENOMEM);
  344. }
  345. /* set up the MTD object for this partition */
  346. slave->mtd.type = master->type;
  347. slave->mtd.flags = master->flags & ~part->mask_flags;
  348. slave->mtd.size = part->size;
  349. slave->mtd.writesize = master->writesize;
  350. slave->mtd.writebufsize = master->writebufsize;
  351. slave->mtd.oobsize = master->oobsize;
  352. slave->mtd.oobavail = master->oobavail;
  353. slave->mtd.subpage_sft = master->subpage_sft;
  354. slave->mtd.name = name;
  355. slave->mtd.owner = master->owner;
  356. slave->mtd.backing_dev_info = master->backing_dev_info;
  357. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  358. * to have the same data be in two different partitions.
  359. */
  360. slave->mtd.dev.parent = master->dev.parent;
  361. slave->mtd.read = part_read;
  362. slave->mtd.write = part_write;
  363. if (master->panic_write)
  364. slave->mtd.panic_write = part_panic_write;
  365. if (master->point && master->unpoint) {
  366. slave->mtd.point = part_point;
  367. slave->mtd.unpoint = part_unpoint;
  368. }
  369. if (master->get_unmapped_area)
  370. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  371. if (master->read_oob)
  372. slave->mtd.read_oob = part_read_oob;
  373. if (master->write_oob)
  374. slave->mtd.write_oob = part_write_oob;
  375. if (master->read_user_prot_reg)
  376. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  377. if (master->read_fact_prot_reg)
  378. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  379. if (master->write_user_prot_reg)
  380. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  381. if (master->lock_user_prot_reg)
  382. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  383. if (master->get_user_prot_info)
  384. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  385. if (master->get_fact_prot_info)
  386. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  387. if (master->sync)
  388. slave->mtd.sync = part_sync;
  389. if (!partno && !master->dev.class && master->suspend && master->resume) {
  390. slave->mtd.suspend = part_suspend;
  391. slave->mtd.resume = part_resume;
  392. }
  393. if (master->writev)
  394. slave->mtd.writev = part_writev;
  395. if (master->lock)
  396. slave->mtd.lock = part_lock;
  397. if (master->unlock)
  398. slave->mtd.unlock = part_unlock;
  399. if (master->is_locked)
  400. slave->mtd.is_locked = part_is_locked;
  401. if (master->block_isbad)
  402. slave->mtd.block_isbad = part_block_isbad;
  403. if (master->block_markbad)
  404. slave->mtd.block_markbad = part_block_markbad;
  405. slave->mtd.erase = part_erase;
  406. slave->master = master;
  407. slave->offset = part->offset;
  408. if (slave->offset == MTDPART_OFS_APPEND)
  409. slave->offset = cur_offset;
  410. if (slave->offset == MTDPART_OFS_NXTBLK) {
  411. slave->offset = cur_offset;
  412. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  413. /* Round up to next erasesize */
  414. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  415. printk(KERN_NOTICE "Moving partition %d: "
  416. "0x%012llx -> 0x%012llx\n", partno,
  417. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  418. }
  419. }
  420. if (slave->offset == MTDPART_OFS_RETAIN) {
  421. slave->offset = cur_offset;
  422. if (master->size - slave->offset >= slave->mtd.size) {
  423. slave->mtd.size = master->size - slave->offset
  424. - slave->mtd.size;
  425. } else {
  426. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  427. part->name, master->size - slave->offset,
  428. slave->mtd.size);
  429. /* register to preserve ordering */
  430. goto out_register;
  431. }
  432. }
  433. if (slave->mtd.size == MTDPART_SIZ_FULL)
  434. slave->mtd.size = master->size - slave->offset;
  435. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  436. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  437. /* let's do some sanity checks */
  438. if (slave->offset >= master->size) {
  439. /* let's register it anyway to preserve ordering */
  440. slave->offset = 0;
  441. slave->mtd.size = 0;
  442. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  443. part->name);
  444. goto out_register;
  445. }
  446. if (slave->offset + slave->mtd.size > master->size) {
  447. slave->mtd.size = master->size - slave->offset;
  448. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  449. part->name, master->name, (unsigned long long)slave->mtd.size);
  450. }
  451. if (master->numeraseregions > 1) {
  452. /* Deal with variable erase size stuff */
  453. int i, max = master->numeraseregions;
  454. u64 end = slave->offset + slave->mtd.size;
  455. struct mtd_erase_region_info *regions = master->eraseregions;
  456. /* Find the first erase regions which is part of this
  457. * partition. */
  458. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  459. ;
  460. /* The loop searched for the region _behind_ the first one */
  461. if (i > 0)
  462. i--;
  463. /* Pick biggest erasesize */
  464. for (; i < max && regions[i].offset < end; i++) {
  465. if (slave->mtd.erasesize < regions[i].erasesize) {
  466. slave->mtd.erasesize = regions[i].erasesize;
  467. }
  468. }
  469. BUG_ON(slave->mtd.erasesize == 0);
  470. } else {
  471. /* Single erase size */
  472. slave->mtd.erasesize = master->erasesize;
  473. }
  474. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  475. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  476. /* Doesn't start on a boundary of major erase size */
  477. /* FIXME: Let it be writable if it is on a boundary of
  478. * _minor_ erase size though */
  479. slave->mtd.flags &= ~MTD_WRITEABLE;
  480. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  481. part->name);
  482. }
  483. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  484. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  485. slave->mtd.flags &= ~MTD_WRITEABLE;
  486. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  487. part->name);
  488. }
  489. slave->mtd.ecclayout = master->ecclayout;
  490. if (master->block_isbad) {
  491. uint64_t offs = 0;
  492. while (offs < slave->mtd.size) {
  493. if (master->block_isbad(master,
  494. offs + slave->offset))
  495. slave->mtd.ecc_stats.badblocks++;
  496. offs += slave->mtd.erasesize;
  497. }
  498. }
  499. out_register:
  500. return slave;
  501. }
  502. int mtd_add_partition(struct mtd_info *master, char *name,
  503. long long offset, long long length)
  504. {
  505. struct mtd_partition part;
  506. struct mtd_part *p, *new;
  507. uint64_t start, end;
  508. int ret = 0;
  509. /* the direct offset is expected */
  510. if (offset == MTDPART_OFS_APPEND ||
  511. offset == MTDPART_OFS_NXTBLK)
  512. return -EINVAL;
  513. if (length == MTDPART_SIZ_FULL)
  514. length = master->size - offset;
  515. if (length <= 0)
  516. return -EINVAL;
  517. part.name = name;
  518. part.size = length;
  519. part.offset = offset;
  520. part.mask_flags = 0;
  521. part.ecclayout = NULL;
  522. new = allocate_partition(master, &part, -1, offset);
  523. if (IS_ERR(new))
  524. return PTR_ERR(new);
  525. start = offset;
  526. end = offset + length;
  527. mutex_lock(&mtd_partitions_mutex);
  528. list_for_each_entry(p, &mtd_partitions, list)
  529. if (p->master == master) {
  530. if ((start >= p->offset) &&
  531. (start < (p->offset + p->mtd.size)))
  532. goto err_inv;
  533. if ((end >= p->offset) &&
  534. (end < (p->offset + p->mtd.size)))
  535. goto err_inv;
  536. }
  537. list_add(&new->list, &mtd_partitions);
  538. mutex_unlock(&mtd_partitions_mutex);
  539. add_mtd_device(&new->mtd);
  540. return ret;
  541. err_inv:
  542. mutex_unlock(&mtd_partitions_mutex);
  543. free_partition(new);
  544. return -EINVAL;
  545. }
  546. EXPORT_SYMBOL_GPL(mtd_add_partition);
  547. int mtd_del_partition(struct mtd_info *master, int partno)
  548. {
  549. struct mtd_part *slave, *next;
  550. int ret = -EINVAL;
  551. mutex_lock(&mtd_partitions_mutex);
  552. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  553. if ((slave->master == master) &&
  554. (slave->mtd.index == partno)) {
  555. ret = del_mtd_device(&slave->mtd);
  556. if (ret < 0)
  557. break;
  558. list_del(&slave->list);
  559. free_partition(slave);
  560. break;
  561. }
  562. mutex_unlock(&mtd_partitions_mutex);
  563. return ret;
  564. }
  565. EXPORT_SYMBOL_GPL(mtd_del_partition);
  566. /*
  567. * This function, given a master MTD object and a partition table, creates
  568. * and registers slave MTD objects which are bound to the master according to
  569. * the partition definitions.
  570. *
  571. * We don't register the master, or expect the caller to have done so,
  572. * for reasons of data integrity.
  573. */
  574. int add_mtd_partitions(struct mtd_info *master,
  575. const struct mtd_partition *parts,
  576. int nbparts)
  577. {
  578. struct mtd_part *slave;
  579. uint64_t cur_offset = 0;
  580. int i;
  581. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  582. for (i = 0; i < nbparts; i++) {
  583. slave = allocate_partition(master, parts + i, i, cur_offset);
  584. if (IS_ERR(slave))
  585. return PTR_ERR(slave);
  586. mutex_lock(&mtd_partitions_mutex);
  587. list_add(&slave->list, &mtd_partitions);
  588. mutex_unlock(&mtd_partitions_mutex);
  589. add_mtd_device(&slave->mtd);
  590. cur_offset = slave->offset + slave->mtd.size;
  591. }
  592. return 0;
  593. }
  594. static DEFINE_SPINLOCK(part_parser_lock);
  595. static LIST_HEAD(part_parsers);
  596. static struct mtd_part_parser *get_partition_parser(const char *name)
  597. {
  598. struct mtd_part_parser *p, *ret = NULL;
  599. spin_lock(&part_parser_lock);
  600. list_for_each_entry(p, &part_parsers, list)
  601. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  602. ret = p;
  603. break;
  604. }
  605. spin_unlock(&part_parser_lock);
  606. return ret;
  607. }
  608. #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
  609. int register_mtd_parser(struct mtd_part_parser *p)
  610. {
  611. spin_lock(&part_parser_lock);
  612. list_add(&p->list, &part_parsers);
  613. spin_unlock(&part_parser_lock);
  614. return 0;
  615. }
  616. EXPORT_SYMBOL_GPL(register_mtd_parser);
  617. int deregister_mtd_parser(struct mtd_part_parser *p)
  618. {
  619. spin_lock(&part_parser_lock);
  620. list_del(&p->list);
  621. spin_unlock(&part_parser_lock);
  622. return 0;
  623. }
  624. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  625. /*
  626. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  627. * are changing this array!
  628. */
  629. static const char *default_mtd_part_types[] = {
  630. "cmdlinepart",
  631. "ofpart",
  632. NULL
  633. };
  634. /**
  635. * parse_mtd_partitions - parse MTD partitions
  636. * @master: the master partition (describes whole MTD device)
  637. * @types: names of partition parsers to try or %NULL
  638. * @pparts: array of partitions found is returned here
  639. * @data: MTD partition parser-specific data
  640. *
  641. * This function tries to find partition on MTD device @master. It uses MTD
  642. * partition parsers, specified in @types. However, if @types is %NULL, then
  643. * the default list of parsers is used. The default list contains only the
  644. * "cmdlinepart" and "ofpart" parsers ATM.
  645. *
  646. * This function may return:
  647. * o a negative error code in case of failure
  648. * o zero if no partitions were found
  649. * o a positive number of found partitions, in which case on exit @pparts will
  650. * point to an array containing this number of &struct mtd_info objects.
  651. */
  652. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  653. struct mtd_partition **pparts,
  654. struct mtd_part_parser_data *data)
  655. {
  656. struct mtd_part_parser *parser;
  657. int ret = 0;
  658. if (!types)
  659. types = default_mtd_part_types;
  660. for ( ; ret <= 0 && *types; types++) {
  661. parser = get_partition_parser(*types);
  662. if (!parser && !request_module("%s", *types))
  663. parser = get_partition_parser(*types);
  664. if (!parser)
  665. continue;
  666. ret = (*parser->parse_fn)(master, pparts, data);
  667. if (ret > 0) {
  668. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  669. ret, parser->name, master->name);
  670. }
  671. put_partition_parser(parser);
  672. }
  673. return ret;
  674. }
  675. int mtd_is_partition(struct mtd_info *mtd)
  676. {
  677. struct mtd_part *part;
  678. int ispart = 0;
  679. mutex_lock(&mtd_partitions_mutex);
  680. list_for_each_entry(part, &mtd_partitions, list)
  681. if (&part->mtd == mtd) {
  682. ispart = 1;
  683. break;
  684. }
  685. mutex_unlock(&mtd_partitions_mutex);
  686. return ispart;
  687. }
  688. EXPORT_SYMBOL_GPL(mtd_is_partition);