diskonchip.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784
  1. /*
  2. * drivers/mtd/nand/diskonchip.c
  3. *
  4. * (C) 2003 Red Hat, Inc.
  5. * (C) 2004 Dan Brown <dan_brown@ieee.org>
  6. * (C) 2004 Kalev Lember <kalev@smartlink.ee>
  7. *
  8. * Author: David Woodhouse <dwmw2@infradead.org>
  9. * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10. * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11. *
  12. * Error correction code lifted from the old docecc code
  13. * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14. * Copyright (C) 2000 Netgem S.A.
  15. * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16. *
  17. * Interface to generic NAND code for M-Systems DiskOnChip devices
  18. *
  19. * $Id: diskonchip.c,v 1.55 2005/11/07 11:14:30 gleixner Exp $
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/init.h>
  23. #include <linux/sched.h>
  24. #include <linux/delay.h>
  25. #include <linux/rslib.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <linux/mtd/nand.h>
  30. #include <linux/mtd/doc2000.h>
  31. #include <linux/mtd/compatmac.h>
  32. #include <linux/mtd/partitions.h>
  33. #include <linux/mtd/inftl.h>
  34. /* Where to look for the devices? */
  35. #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  36. #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  37. #endif
  38. static unsigned long __initdata doc_locations[] = {
  39. #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  40. #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  41. 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  42. 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  43. 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  44. 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  45. 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  46. #else /* CONFIG_MTD_DOCPROBE_HIGH */
  47. 0xc8000, 0xca000, 0xcc000, 0xce000,
  48. 0xd0000, 0xd2000, 0xd4000, 0xd6000,
  49. 0xd8000, 0xda000, 0xdc000, 0xde000,
  50. 0xe0000, 0xe2000, 0xe4000, 0xe6000,
  51. 0xe8000, 0xea000, 0xec000, 0xee000,
  52. #endif /* CONFIG_MTD_DOCPROBE_HIGH */
  53. #elif defined(__PPC__)
  54. 0xe4000000,
  55. #elif defined(CONFIG_MOMENCO_OCELOT)
  56. 0x2f000000,
  57. 0xff000000,
  58. #elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
  59. 0xff000000,
  60. #else
  61. #warning Unknown architecture for DiskOnChip. No default probe locations defined
  62. #endif
  63. 0xffffffff };
  64. static struct mtd_info *doclist = NULL;
  65. struct doc_priv {
  66. void __iomem *virtadr;
  67. unsigned long physadr;
  68. u_char ChipID;
  69. u_char CDSNControl;
  70. int chips_per_floor; /* The number of chips detected on each floor */
  71. int curfloor;
  72. int curchip;
  73. int mh0_page;
  74. int mh1_page;
  75. struct mtd_info *nextdoc;
  76. };
  77. /* This is the syndrome computed by the HW ecc generator upon reading an empty
  78. page, one with all 0xff for data and stored ecc code. */
  79. static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  80. /* This is the ecc value computed by the HW ecc generator upon writing an empty
  81. page, one with all 0xff for data. */
  82. static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  83. #define INFTL_BBT_RESERVED_BLOCKS 4
  84. #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  85. #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  86. #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  87. static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  88. unsigned int bitmask);
  89. static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  90. static int debug = 0;
  91. module_param(debug, int, 0);
  92. static int try_dword = 1;
  93. module_param(try_dword, int, 0);
  94. static int no_ecc_failures = 0;
  95. module_param(no_ecc_failures, int, 0);
  96. static int no_autopart = 0;
  97. module_param(no_autopart, int, 0);
  98. static int show_firmware_partition = 0;
  99. module_param(show_firmware_partition, int, 0);
  100. #ifdef MTD_NAND_DISKONCHIP_BBTWRITE
  101. static int inftl_bbt_write = 1;
  102. #else
  103. static int inftl_bbt_write = 0;
  104. #endif
  105. module_param(inftl_bbt_write, int, 0);
  106. static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
  107. module_param(doc_config_location, ulong, 0);
  108. MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
  109. /* Sector size for HW ECC */
  110. #define SECTOR_SIZE 512
  111. /* The sector bytes are packed into NB_DATA 10 bit words */
  112. #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
  113. /* Number of roots */
  114. #define NROOTS 4
  115. /* First consective root */
  116. #define FCR 510
  117. /* Number of symbols */
  118. #define NN 1023
  119. /* the Reed Solomon control structure */
  120. static struct rs_control *rs_decoder;
  121. /*
  122. * The HW decoder in the DoC ASIC's provides us a error syndrome,
  123. * which we must convert to a standard syndrom usable by the generic
  124. * Reed-Solomon library code.
  125. *
  126. * Fabrice Bellard figured this out in the old docecc code. I added
  127. * some comments, improved a minor bit and converted it to make use
  128. * of the generic Reed-Solomon libary. tglx
  129. */
  130. static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
  131. {
  132. int i, j, nerr, errpos[8];
  133. uint8_t parity;
  134. uint16_t ds[4], s[5], tmp, errval[8], syn[4];
  135. /* Convert the ecc bytes into words */
  136. ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
  137. ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
  138. ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
  139. ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
  140. parity = ecc[1];
  141. /* Initialize the syndrom buffer */
  142. for (i = 0; i < NROOTS; i++)
  143. s[i] = ds[0];
  144. /*
  145. * Evaluate
  146. * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
  147. * where x = alpha^(FCR + i)
  148. */
  149. for (j = 1; j < NROOTS; j++) {
  150. if (ds[j] == 0)
  151. continue;
  152. tmp = rs->index_of[ds[j]];
  153. for (i = 0; i < NROOTS; i++)
  154. s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
  155. }
  156. /* Calc s[i] = s[i] / alpha^(v + i) */
  157. for (i = 0; i < NROOTS; i++) {
  158. if (syn[i])
  159. syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
  160. }
  161. /* Call the decoder library */
  162. nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
  163. /* Incorrectable errors ? */
  164. if (nerr < 0)
  165. return nerr;
  166. /*
  167. * Correct the errors. The bitpositions are a bit of magic,
  168. * but they are given by the design of the de/encoder circuit
  169. * in the DoC ASIC's.
  170. */
  171. for (i = 0; i < nerr; i++) {
  172. int index, bitpos, pos = 1015 - errpos[i];
  173. uint8_t val;
  174. if (pos >= NB_DATA && pos < 1019)
  175. continue;
  176. if (pos < NB_DATA) {
  177. /* extract bit position (MSB first) */
  178. pos = 10 * (NB_DATA - 1 - pos) - 6;
  179. /* now correct the following 10 bits. At most two bytes
  180. can be modified since pos is even */
  181. index = (pos >> 3) ^ 1;
  182. bitpos = pos & 7;
  183. if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
  184. val = (uint8_t) (errval[i] >> (2 + bitpos));
  185. parity ^= val;
  186. if (index < SECTOR_SIZE)
  187. data[index] ^= val;
  188. }
  189. index = ((pos >> 3) + 1) ^ 1;
  190. bitpos = (bitpos + 10) & 7;
  191. if (bitpos == 0)
  192. bitpos = 8;
  193. if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
  194. val = (uint8_t) (errval[i] << (8 - bitpos));
  195. parity ^= val;
  196. if (index < SECTOR_SIZE)
  197. data[index] ^= val;
  198. }
  199. }
  200. }
  201. /* If the parity is wrong, no rescue possible */
  202. return parity ? -1 : nerr;
  203. }
  204. static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
  205. {
  206. volatile char dummy;
  207. int i;
  208. for (i = 0; i < cycles; i++) {
  209. if (DoC_is_Millennium(doc))
  210. dummy = ReadDOC(doc->virtadr, NOP);
  211. else if (DoC_is_MillenniumPlus(doc))
  212. dummy = ReadDOC(doc->virtadr, Mplus_NOP);
  213. else
  214. dummy = ReadDOC(doc->virtadr, DOCStatus);
  215. }
  216. }
  217. #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
  218. /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
  219. static int _DoC_WaitReady(struct doc_priv *doc)
  220. {
  221. void __iomem *docptr = doc->virtadr;
  222. unsigned long timeo = jiffies + (HZ * 10);
  223. if (debug)
  224. printk("_DoC_WaitReady...\n");
  225. /* Out-of-line routine to wait for chip response */
  226. if (DoC_is_MillenniumPlus(doc)) {
  227. while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
  228. if (time_after(jiffies, timeo)) {
  229. printk("_DoC_WaitReady timed out.\n");
  230. return -EIO;
  231. }
  232. udelay(1);
  233. cond_resched();
  234. }
  235. } else {
  236. while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
  237. if (time_after(jiffies, timeo)) {
  238. printk("_DoC_WaitReady timed out.\n");
  239. return -EIO;
  240. }
  241. udelay(1);
  242. cond_resched();
  243. }
  244. }
  245. return 0;
  246. }
  247. static inline int DoC_WaitReady(struct doc_priv *doc)
  248. {
  249. void __iomem *docptr = doc->virtadr;
  250. int ret = 0;
  251. if (DoC_is_MillenniumPlus(doc)) {
  252. DoC_Delay(doc, 4);
  253. if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
  254. /* Call the out-of-line routine to wait */
  255. ret = _DoC_WaitReady(doc);
  256. } else {
  257. DoC_Delay(doc, 4);
  258. if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
  259. /* Call the out-of-line routine to wait */
  260. ret = _DoC_WaitReady(doc);
  261. DoC_Delay(doc, 2);
  262. }
  263. if (debug)
  264. printk("DoC_WaitReady OK\n");
  265. return ret;
  266. }
  267. static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
  268. {
  269. struct nand_chip *this = mtd->priv;
  270. struct doc_priv *doc = this->priv;
  271. void __iomem *docptr = doc->virtadr;
  272. if (debug)
  273. printk("write_byte %02x\n", datum);
  274. WriteDOC(datum, docptr, CDSNSlowIO);
  275. WriteDOC(datum, docptr, 2k_CDSN_IO);
  276. }
  277. static u_char doc2000_read_byte(struct mtd_info *mtd)
  278. {
  279. struct nand_chip *this = mtd->priv;
  280. struct doc_priv *doc = this->priv;
  281. void __iomem *docptr = doc->virtadr;
  282. u_char ret;
  283. ReadDOC(docptr, CDSNSlowIO);
  284. DoC_Delay(doc, 2);
  285. ret = ReadDOC(docptr, 2k_CDSN_IO);
  286. if (debug)
  287. printk("read_byte returns %02x\n", ret);
  288. return ret;
  289. }
  290. static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
  291. {
  292. struct nand_chip *this = mtd->priv;
  293. struct doc_priv *doc = this->priv;
  294. void __iomem *docptr = doc->virtadr;
  295. int i;
  296. if (debug)
  297. printk("writebuf of %d bytes: ", len);
  298. for (i = 0; i < len; i++) {
  299. WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
  300. if (debug && i < 16)
  301. printk("%02x ", buf[i]);
  302. }
  303. if (debug)
  304. printk("\n");
  305. }
  306. static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
  307. {
  308. struct nand_chip *this = mtd->priv;
  309. struct doc_priv *doc = this->priv;
  310. void __iomem *docptr = doc->virtadr;
  311. int i;
  312. if (debug)
  313. printk("readbuf of %d bytes: ", len);
  314. for (i = 0; i < len; i++) {
  315. buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
  316. }
  317. }
  318. static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
  319. {
  320. struct nand_chip *this = mtd->priv;
  321. struct doc_priv *doc = this->priv;
  322. void __iomem *docptr = doc->virtadr;
  323. int i;
  324. if (debug)
  325. printk("readbuf_dword of %d bytes: ", len);
  326. if (unlikely((((unsigned long)buf) | len) & 3)) {
  327. for (i = 0; i < len; i++) {
  328. *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
  329. }
  330. } else {
  331. for (i = 0; i < len; i += 4) {
  332. *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
  333. }
  334. }
  335. }
  336. static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
  337. {
  338. struct nand_chip *this = mtd->priv;
  339. struct doc_priv *doc = this->priv;
  340. void __iomem *docptr = doc->virtadr;
  341. int i;
  342. for (i = 0; i < len; i++)
  343. if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
  344. return -EFAULT;
  345. return 0;
  346. }
  347. static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
  348. {
  349. struct nand_chip *this = mtd->priv;
  350. struct doc_priv *doc = this->priv;
  351. uint16_t ret;
  352. doc200x_select_chip(mtd, nr);
  353. doc200x_hwcontrol(mtd, NAND_CMD_READID,
  354. NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  355. doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  356. doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  357. /* We cant' use dev_ready here, but at least we wait for the
  358. * command to complete
  359. */
  360. udelay(50);
  361. ret = this->read_byte(mtd) << 8;
  362. ret |= this->read_byte(mtd);
  363. if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
  364. /* First chip probe. See if we get same results by 32-bit access */
  365. union {
  366. uint32_t dword;
  367. uint8_t byte[4];
  368. } ident;
  369. void __iomem *docptr = doc->virtadr;
  370. doc200x_hwcontrol(mtd, NAND_CMD_READID,
  371. NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  372. doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  373. doc200x_hwcontrol(mtd, NAND_CMD_NONE,
  374. NAND_NCE | NAND_CTRL_CHANGE);
  375. udelay(50);
  376. ident.dword = readl(docptr + DoC_2k_CDSN_IO);
  377. if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
  378. printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
  379. this->read_buf = &doc2000_readbuf_dword;
  380. }
  381. }
  382. return ret;
  383. }
  384. static void __init doc2000_count_chips(struct mtd_info *mtd)
  385. {
  386. struct nand_chip *this = mtd->priv;
  387. struct doc_priv *doc = this->priv;
  388. uint16_t mfrid;
  389. int i;
  390. /* Max 4 chips per floor on DiskOnChip 2000 */
  391. doc->chips_per_floor = 4;
  392. /* Find out what the first chip is */
  393. mfrid = doc200x_ident_chip(mtd, 0);
  394. /* Find how many chips in each floor. */
  395. for (i = 1; i < 4; i++) {
  396. if (doc200x_ident_chip(mtd, i) != mfrid)
  397. break;
  398. }
  399. doc->chips_per_floor = i;
  400. printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
  401. }
  402. static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
  403. {
  404. struct doc_priv *doc = this->priv;
  405. int status;
  406. DoC_WaitReady(doc);
  407. this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
  408. DoC_WaitReady(doc);
  409. status = (int)this->read_byte(mtd);
  410. return status;
  411. }
  412. static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
  413. {
  414. struct nand_chip *this = mtd->priv;
  415. struct doc_priv *doc = this->priv;
  416. void __iomem *docptr = doc->virtadr;
  417. WriteDOC(datum, docptr, CDSNSlowIO);
  418. WriteDOC(datum, docptr, Mil_CDSN_IO);
  419. WriteDOC(datum, docptr, WritePipeTerm);
  420. }
  421. static u_char doc2001_read_byte(struct mtd_info *mtd)
  422. {
  423. struct nand_chip *this = mtd->priv;
  424. struct doc_priv *doc = this->priv;
  425. void __iomem *docptr = doc->virtadr;
  426. //ReadDOC(docptr, CDSNSlowIO);
  427. /* 11.4.5 -- delay twice to allow extended length cycle */
  428. DoC_Delay(doc, 2);
  429. ReadDOC(docptr, ReadPipeInit);
  430. //return ReadDOC(docptr, Mil_CDSN_IO);
  431. return ReadDOC(docptr, LastDataRead);
  432. }
  433. static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
  434. {
  435. struct nand_chip *this = mtd->priv;
  436. struct doc_priv *doc = this->priv;
  437. void __iomem *docptr = doc->virtadr;
  438. int i;
  439. for (i = 0; i < len; i++)
  440. WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
  441. /* Terminate write pipeline */
  442. WriteDOC(0x00, docptr, WritePipeTerm);
  443. }
  444. static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
  445. {
  446. struct nand_chip *this = mtd->priv;
  447. struct doc_priv *doc = this->priv;
  448. void __iomem *docptr = doc->virtadr;
  449. int i;
  450. /* Start read pipeline */
  451. ReadDOC(docptr, ReadPipeInit);
  452. for (i = 0; i < len - 1; i++)
  453. buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
  454. /* Terminate read pipeline */
  455. buf[i] = ReadDOC(docptr, LastDataRead);
  456. }
  457. static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
  458. {
  459. struct nand_chip *this = mtd->priv;
  460. struct doc_priv *doc = this->priv;
  461. void __iomem *docptr = doc->virtadr;
  462. int i;
  463. /* Start read pipeline */
  464. ReadDOC(docptr, ReadPipeInit);
  465. for (i = 0; i < len - 1; i++)
  466. if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
  467. ReadDOC(docptr, LastDataRead);
  468. return i;
  469. }
  470. if (buf[i] != ReadDOC(docptr, LastDataRead))
  471. return i;
  472. return 0;
  473. }
  474. static u_char doc2001plus_read_byte(struct mtd_info *mtd)
  475. {
  476. struct nand_chip *this = mtd->priv;
  477. struct doc_priv *doc = this->priv;
  478. void __iomem *docptr = doc->virtadr;
  479. u_char ret;
  480. ReadDOC(docptr, Mplus_ReadPipeInit);
  481. ReadDOC(docptr, Mplus_ReadPipeInit);
  482. ret = ReadDOC(docptr, Mplus_LastDataRead);
  483. if (debug)
  484. printk("read_byte returns %02x\n", ret);
  485. return ret;
  486. }
  487. static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
  488. {
  489. struct nand_chip *this = mtd->priv;
  490. struct doc_priv *doc = this->priv;
  491. void __iomem *docptr = doc->virtadr;
  492. int i;
  493. if (debug)
  494. printk("writebuf of %d bytes: ", len);
  495. for (i = 0; i < len; i++) {
  496. WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
  497. if (debug && i < 16)
  498. printk("%02x ", buf[i]);
  499. }
  500. if (debug)
  501. printk("\n");
  502. }
  503. static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
  504. {
  505. struct nand_chip *this = mtd->priv;
  506. struct doc_priv *doc = this->priv;
  507. void __iomem *docptr = doc->virtadr;
  508. int i;
  509. if (debug)
  510. printk("readbuf of %d bytes: ", len);
  511. /* Start read pipeline */
  512. ReadDOC(docptr, Mplus_ReadPipeInit);
  513. ReadDOC(docptr, Mplus_ReadPipeInit);
  514. for (i = 0; i < len - 2; i++) {
  515. buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
  516. if (debug && i < 16)
  517. printk("%02x ", buf[i]);
  518. }
  519. /* Terminate read pipeline */
  520. buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
  521. if (debug && i < 16)
  522. printk("%02x ", buf[len - 2]);
  523. buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
  524. if (debug && i < 16)
  525. printk("%02x ", buf[len - 1]);
  526. if (debug)
  527. printk("\n");
  528. }
  529. static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
  530. {
  531. struct nand_chip *this = mtd->priv;
  532. struct doc_priv *doc = this->priv;
  533. void __iomem *docptr = doc->virtadr;
  534. int i;
  535. if (debug)
  536. printk("verifybuf of %d bytes: ", len);
  537. /* Start read pipeline */
  538. ReadDOC(docptr, Mplus_ReadPipeInit);
  539. ReadDOC(docptr, Mplus_ReadPipeInit);
  540. for (i = 0; i < len - 2; i++)
  541. if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
  542. ReadDOC(docptr, Mplus_LastDataRead);
  543. ReadDOC(docptr, Mplus_LastDataRead);
  544. return i;
  545. }
  546. if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
  547. return len - 2;
  548. if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
  549. return len - 1;
  550. return 0;
  551. }
  552. static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
  553. {
  554. struct nand_chip *this = mtd->priv;
  555. struct doc_priv *doc = this->priv;
  556. void __iomem *docptr = doc->virtadr;
  557. int floor = 0;
  558. if (debug)
  559. printk("select chip (%d)\n", chip);
  560. if (chip == -1) {
  561. /* Disable flash internally */
  562. WriteDOC(0, docptr, Mplus_FlashSelect);
  563. return;
  564. }
  565. floor = chip / doc->chips_per_floor;
  566. chip -= (floor * doc->chips_per_floor);
  567. /* Assert ChipEnable and deassert WriteProtect */
  568. WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
  569. this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
  570. doc->curchip = chip;
  571. doc->curfloor = floor;
  572. }
  573. static void doc200x_select_chip(struct mtd_info *mtd, int chip)
  574. {
  575. struct nand_chip *this = mtd->priv;
  576. struct doc_priv *doc = this->priv;
  577. void __iomem *docptr = doc->virtadr;
  578. int floor = 0;
  579. if (debug)
  580. printk("select chip (%d)\n", chip);
  581. if (chip == -1)
  582. return;
  583. floor = chip / doc->chips_per_floor;
  584. chip -= (floor * doc->chips_per_floor);
  585. /* 11.4.4 -- deassert CE before changing chip */
  586. doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
  587. WriteDOC(floor, docptr, FloorSelect);
  588. WriteDOC(chip, docptr, CDSNDeviceSelect);
  589. doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  590. doc->curchip = chip;
  591. doc->curfloor = floor;
  592. }
  593. #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
  594. static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  595. unsigned int ctrl)
  596. {
  597. struct nand_chip *this = mtd->priv;
  598. struct doc_priv *doc = this->priv;
  599. void __iomem *docptr = doc->virtadr;
  600. if (ctrl & NAND_CTRL_CHANGE) {
  601. doc->CDSNControl &= ~CDSN_CTRL_MSK;
  602. doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
  603. if (debug)
  604. printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
  605. WriteDOC(doc->CDSNControl, docptr, CDSNControl);
  606. /* 11.4.3 -- 4 NOPs after CSDNControl write */
  607. DoC_Delay(doc, 4);
  608. }
  609. if (cmd != NAND_CMD_NONE)
  610. this->write_byte(mtd, cmd);
  611. }
  612. static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
  613. {
  614. struct nand_chip *this = mtd->priv;
  615. struct doc_priv *doc = this->priv;
  616. void __iomem *docptr = doc->virtadr;
  617. /*
  618. * Must terminate write pipeline before sending any commands
  619. * to the device.
  620. */
  621. if (command == NAND_CMD_PAGEPROG) {
  622. WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
  623. WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
  624. }
  625. /*
  626. * Write out the command to the device.
  627. */
  628. if (command == NAND_CMD_SEQIN) {
  629. int readcmd;
  630. if (column >= mtd->writesize) {
  631. /* OOB area */
  632. column -= mtd->writesize;
  633. readcmd = NAND_CMD_READOOB;
  634. } else if (column < 256) {
  635. /* First 256 bytes --> READ0 */
  636. readcmd = NAND_CMD_READ0;
  637. } else {
  638. column -= 256;
  639. readcmd = NAND_CMD_READ1;
  640. }
  641. WriteDOC(readcmd, docptr, Mplus_FlashCmd);
  642. }
  643. WriteDOC(command, docptr, Mplus_FlashCmd);
  644. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  645. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  646. if (column != -1 || page_addr != -1) {
  647. /* Serially input address */
  648. if (column != -1) {
  649. /* Adjust columns for 16 bit buswidth */
  650. if (this->options & NAND_BUSWIDTH_16)
  651. column >>= 1;
  652. WriteDOC(column, docptr, Mplus_FlashAddress);
  653. }
  654. if (page_addr != -1) {
  655. WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
  656. WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
  657. /* One more address cycle for higher density devices */
  658. if (this->chipsize & 0x0c000000) {
  659. WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
  660. printk("high density\n");
  661. }
  662. }
  663. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  664. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  665. /* deassert ALE */
  666. if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  667. command == NAND_CMD_READOOB || command == NAND_CMD_READID)
  668. WriteDOC(0, docptr, Mplus_FlashControl);
  669. }
  670. /*
  671. * program and erase have their own busy handlers
  672. * status and sequential in needs no delay
  673. */
  674. switch (command) {
  675. case NAND_CMD_PAGEPROG:
  676. case NAND_CMD_ERASE1:
  677. case NAND_CMD_ERASE2:
  678. case NAND_CMD_SEQIN:
  679. case NAND_CMD_STATUS:
  680. return;
  681. case NAND_CMD_RESET:
  682. if (this->dev_ready)
  683. break;
  684. udelay(this->chip_delay);
  685. WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
  686. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  687. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  688. while (!(this->read_byte(mtd) & 0x40)) ;
  689. return;
  690. /* This applies to read commands */
  691. default:
  692. /*
  693. * If we don't have access to the busy pin, we apply the given
  694. * command delay
  695. */
  696. if (!this->dev_ready) {
  697. udelay(this->chip_delay);
  698. return;
  699. }
  700. }
  701. /* Apply this short delay always to ensure that we do wait tWB in
  702. * any case on any machine. */
  703. ndelay(100);
  704. /* wait until command is processed */
  705. while (!this->dev_ready(mtd)) ;
  706. }
  707. static int doc200x_dev_ready(struct mtd_info *mtd)
  708. {
  709. struct nand_chip *this = mtd->priv;
  710. struct doc_priv *doc = this->priv;
  711. void __iomem *docptr = doc->virtadr;
  712. if (DoC_is_MillenniumPlus(doc)) {
  713. /* 11.4.2 -- must NOP four times before checking FR/B# */
  714. DoC_Delay(doc, 4);
  715. if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
  716. if (debug)
  717. printk("not ready\n");
  718. return 0;
  719. }
  720. if (debug)
  721. printk("was ready\n");
  722. return 1;
  723. } else {
  724. /* 11.4.2 -- must NOP four times before checking FR/B# */
  725. DoC_Delay(doc, 4);
  726. if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
  727. if (debug)
  728. printk("not ready\n");
  729. return 0;
  730. }
  731. /* 11.4.2 -- Must NOP twice if it's ready */
  732. DoC_Delay(doc, 2);
  733. if (debug)
  734. printk("was ready\n");
  735. return 1;
  736. }
  737. }
  738. static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  739. {
  740. /* This is our last resort if we couldn't find or create a BBT. Just
  741. pretend all blocks are good. */
  742. return 0;
  743. }
  744. static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
  745. {
  746. struct nand_chip *this = mtd->priv;
  747. struct doc_priv *doc = this->priv;
  748. void __iomem *docptr = doc->virtadr;
  749. /* Prime the ECC engine */
  750. switch (mode) {
  751. case NAND_ECC_READ:
  752. WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
  753. WriteDOC(DOC_ECC_EN, docptr, ECCConf);
  754. break;
  755. case NAND_ECC_WRITE:
  756. WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
  757. WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
  758. break;
  759. }
  760. }
  761. static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
  762. {
  763. struct nand_chip *this = mtd->priv;
  764. struct doc_priv *doc = this->priv;
  765. void __iomem *docptr = doc->virtadr;
  766. /* Prime the ECC engine */
  767. switch (mode) {
  768. case NAND_ECC_READ:
  769. WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
  770. WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
  771. break;
  772. case NAND_ECC_WRITE:
  773. WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
  774. WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
  775. break;
  776. }
  777. }
  778. /* This code is only called on write */
  779. static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
  780. {
  781. struct nand_chip *this = mtd->priv;
  782. struct doc_priv *doc = this->priv;
  783. void __iomem *docptr = doc->virtadr;
  784. int i;
  785. int emptymatch = 1;
  786. /* flush the pipeline */
  787. if (DoC_is_2000(doc)) {
  788. WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
  789. WriteDOC(0, docptr, 2k_CDSN_IO);
  790. WriteDOC(0, docptr, 2k_CDSN_IO);
  791. WriteDOC(0, docptr, 2k_CDSN_IO);
  792. WriteDOC(doc->CDSNControl, docptr, CDSNControl);
  793. } else if (DoC_is_MillenniumPlus(doc)) {
  794. WriteDOC(0, docptr, Mplus_NOP);
  795. WriteDOC(0, docptr, Mplus_NOP);
  796. WriteDOC(0, docptr, Mplus_NOP);
  797. } else {
  798. WriteDOC(0, docptr, NOP);
  799. WriteDOC(0, docptr, NOP);
  800. WriteDOC(0, docptr, NOP);
  801. }
  802. for (i = 0; i < 6; i++) {
  803. if (DoC_is_MillenniumPlus(doc))
  804. ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
  805. else
  806. ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
  807. if (ecc_code[i] != empty_write_ecc[i])
  808. emptymatch = 0;
  809. }
  810. if (DoC_is_MillenniumPlus(doc))
  811. WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
  812. else
  813. WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
  814. #if 0
  815. /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
  816. if (emptymatch) {
  817. /* Note: this somewhat expensive test should not be triggered
  818. often. It could be optimized away by examining the data in
  819. the writebuf routine, and remembering the result. */
  820. for (i = 0; i < 512; i++) {
  821. if (dat[i] == 0xff)
  822. continue;
  823. emptymatch = 0;
  824. break;
  825. }
  826. }
  827. /* If emptymatch still =1, we do have an all-0xff data buffer.
  828. Return all-0xff ecc value instead of the computed one, so
  829. it'll look just like a freshly-erased page. */
  830. if (emptymatch)
  831. memset(ecc_code, 0xff, 6);
  832. #endif
  833. return 0;
  834. }
  835. static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
  836. {
  837. int i, ret = 0;
  838. struct nand_chip *this = mtd->priv;
  839. struct doc_priv *doc = this->priv;
  840. void __iomem *docptr = doc->virtadr;
  841. volatile u_char dummy;
  842. int emptymatch = 1;
  843. /* flush the pipeline */
  844. if (DoC_is_2000(doc)) {
  845. dummy = ReadDOC(docptr, 2k_ECCStatus);
  846. dummy = ReadDOC(docptr, 2k_ECCStatus);
  847. dummy = ReadDOC(docptr, 2k_ECCStatus);
  848. } else if (DoC_is_MillenniumPlus(doc)) {
  849. dummy = ReadDOC(docptr, Mplus_ECCConf);
  850. dummy = ReadDOC(docptr, Mplus_ECCConf);
  851. dummy = ReadDOC(docptr, Mplus_ECCConf);
  852. } else {
  853. dummy = ReadDOC(docptr, ECCConf);
  854. dummy = ReadDOC(docptr, ECCConf);
  855. dummy = ReadDOC(docptr, ECCConf);
  856. }
  857. /* Error occured ? */
  858. if (dummy & 0x80) {
  859. for (i = 0; i < 6; i++) {
  860. if (DoC_is_MillenniumPlus(doc))
  861. calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
  862. else
  863. calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
  864. if (calc_ecc[i] != empty_read_syndrome[i])
  865. emptymatch = 0;
  866. }
  867. /* If emptymatch=1, the read syndrome is consistent with an
  868. all-0xff data and stored ecc block. Check the stored ecc. */
  869. if (emptymatch) {
  870. for (i = 0; i < 6; i++) {
  871. if (read_ecc[i] == 0xff)
  872. continue;
  873. emptymatch = 0;
  874. break;
  875. }
  876. }
  877. /* If emptymatch still =1, check the data block. */
  878. if (emptymatch) {
  879. /* Note: this somewhat expensive test should not be triggered
  880. often. It could be optimized away by examining the data in
  881. the readbuf routine, and remembering the result. */
  882. for (i = 0; i < 512; i++) {
  883. if (dat[i] == 0xff)
  884. continue;
  885. emptymatch = 0;
  886. break;
  887. }
  888. }
  889. /* If emptymatch still =1, this is almost certainly a freshly-
  890. erased block, in which case the ECC will not come out right.
  891. We'll suppress the error and tell the caller everything's
  892. OK. Because it is. */
  893. if (!emptymatch)
  894. ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
  895. if (ret > 0)
  896. printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
  897. }
  898. if (DoC_is_MillenniumPlus(doc))
  899. WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
  900. else
  901. WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
  902. if (no_ecc_failures && (ret == -1)) {
  903. printk(KERN_ERR "suppressing ECC failure\n");
  904. ret = 0;
  905. }
  906. return ret;
  907. }
  908. //u_char mydatabuf[528];
  909. /* The strange out-of-order .oobfree list below is a (possibly unneeded)
  910. * attempt to retain compatibility. It used to read:
  911. * .oobfree = { {8, 8} }
  912. * Since that leaves two bytes unusable, it was changed. But the following
  913. * scheme might affect existing jffs2 installs by moving the cleanmarker:
  914. * .oobfree = { {6, 10} }
  915. * jffs2 seems to handle the above gracefully, but the current scheme seems
  916. * safer. The only problem with it is that any code that parses oobfree must
  917. * be able to handle out-of-order segments.
  918. */
  919. static struct nand_oobinfo doc200x_oobinfo = {
  920. .useecc = MTD_NANDECC_AUTOPLACE,
  921. .eccbytes = 6,
  922. .eccpos = {0, 1, 2, 3, 4, 5},
  923. .oobfree = {{8, 8}, {6, 2}}
  924. };
  925. /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
  926. On sucessful return, buf will contain a copy of the media header for
  927. further processing. id is the string to scan for, and will presumably be
  928. either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
  929. header. The page #s of the found media headers are placed in mh0_page and
  930. mh1_page in the DOC private structure. */
  931. static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
  932. {
  933. struct nand_chip *this = mtd->priv;
  934. struct doc_priv *doc = this->priv;
  935. unsigned offs;
  936. int ret;
  937. size_t retlen;
  938. for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
  939. ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
  940. if (retlen != mtd->writesize)
  941. continue;
  942. if (ret) {
  943. printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
  944. }
  945. if (memcmp(buf, id, 6))
  946. continue;
  947. printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
  948. if (doc->mh0_page == -1) {
  949. doc->mh0_page = offs >> this->page_shift;
  950. if (!findmirror)
  951. return 1;
  952. continue;
  953. }
  954. doc->mh1_page = offs >> this->page_shift;
  955. return 2;
  956. }
  957. if (doc->mh0_page == -1) {
  958. printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
  959. return 0;
  960. }
  961. /* Only one mediaheader was found. We want buf to contain a
  962. mediaheader on return, so we'll have to re-read the one we found. */
  963. offs = doc->mh0_page << this->page_shift;
  964. ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
  965. if (retlen != mtd->writesize) {
  966. /* Insanity. Give up. */
  967. printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
  968. return 0;
  969. }
  970. return 1;
  971. }
  972. static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
  973. {
  974. struct nand_chip *this = mtd->priv;
  975. struct doc_priv *doc = this->priv;
  976. int ret = 0;
  977. u_char *buf;
  978. struct NFTLMediaHeader *mh;
  979. const unsigned psize = 1 << this->page_shift;
  980. int numparts = 0;
  981. unsigned blocks, maxblocks;
  982. int offs, numheaders;
  983. buf = kmalloc(mtd->writesize, GFP_KERNEL);
  984. if (!buf) {
  985. printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
  986. return 0;
  987. }
  988. if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
  989. goto out;
  990. mh = (struct NFTLMediaHeader *)buf;
  991. mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
  992. mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
  993. mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
  994. printk(KERN_INFO " DataOrgID = %s\n"
  995. " NumEraseUnits = %d\n"
  996. " FirstPhysicalEUN = %d\n"
  997. " FormattedSize = %d\n"
  998. " UnitSizeFactor = %d\n",
  999. mh->DataOrgID, mh->NumEraseUnits,
  1000. mh->FirstPhysicalEUN, mh->FormattedSize,
  1001. mh->UnitSizeFactor);
  1002. blocks = mtd->size >> this->phys_erase_shift;
  1003. maxblocks = min(32768U, mtd->erasesize - psize);
  1004. if (mh->UnitSizeFactor == 0x00) {
  1005. /* Auto-determine UnitSizeFactor. The constraints are:
  1006. - There can be at most 32768 virtual blocks.
  1007. - There can be at most (virtual block size - page size)
  1008. virtual blocks (because MediaHeader+BBT must fit in 1).
  1009. */
  1010. mh->UnitSizeFactor = 0xff;
  1011. while (blocks > maxblocks) {
  1012. blocks >>= 1;
  1013. maxblocks = min(32768U, (maxblocks << 1) + psize);
  1014. mh->UnitSizeFactor--;
  1015. }
  1016. printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
  1017. }
  1018. /* NOTE: The lines below modify internal variables of the NAND and MTD
  1019. layers; variables with have already been configured by nand_scan.
  1020. Unfortunately, we didn't know before this point what these values
  1021. should be. Thus, this code is somewhat dependant on the exact
  1022. implementation of the NAND layer. */
  1023. if (mh->UnitSizeFactor != 0xff) {
  1024. this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
  1025. mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
  1026. printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
  1027. blocks = mtd->size >> this->bbt_erase_shift;
  1028. maxblocks = min(32768U, mtd->erasesize - psize);
  1029. }
  1030. if (blocks > maxblocks) {
  1031. printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
  1032. goto out;
  1033. }
  1034. /* Skip past the media headers. */
  1035. offs = max(doc->mh0_page, doc->mh1_page);
  1036. offs <<= this->page_shift;
  1037. offs += mtd->erasesize;
  1038. if (show_firmware_partition == 1) {
  1039. parts[0].name = " DiskOnChip Firmware / Media Header partition";
  1040. parts[0].offset = 0;
  1041. parts[0].size = offs;
  1042. numparts = 1;
  1043. }
  1044. parts[numparts].name = " DiskOnChip BDTL partition";
  1045. parts[numparts].offset = offs;
  1046. parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
  1047. offs += parts[numparts].size;
  1048. numparts++;
  1049. if (offs < mtd->size) {
  1050. parts[numparts].name = " DiskOnChip Remainder partition";
  1051. parts[numparts].offset = offs;
  1052. parts[numparts].size = mtd->size - offs;
  1053. numparts++;
  1054. }
  1055. ret = numparts;
  1056. out:
  1057. kfree(buf);
  1058. return ret;
  1059. }
  1060. /* This is a stripped-down copy of the code in inftlmount.c */
  1061. static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
  1062. {
  1063. struct nand_chip *this = mtd->priv;
  1064. struct doc_priv *doc = this->priv;
  1065. int ret = 0;
  1066. u_char *buf;
  1067. struct INFTLMediaHeader *mh;
  1068. struct INFTLPartition *ip;
  1069. int numparts = 0;
  1070. int blocks;
  1071. int vshift, lastvunit = 0;
  1072. int i;
  1073. int end = mtd->size;
  1074. if (inftl_bbt_write)
  1075. end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
  1076. buf = kmalloc(mtd->writesize, GFP_KERNEL);
  1077. if (!buf) {
  1078. printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
  1079. return 0;
  1080. }
  1081. if (!find_media_headers(mtd, buf, "BNAND", 0))
  1082. goto out;
  1083. doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
  1084. mh = (struct INFTLMediaHeader *)buf;
  1085. mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
  1086. mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
  1087. mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
  1088. mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
  1089. mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
  1090. mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
  1091. printk(KERN_INFO " bootRecordID = %s\n"
  1092. " NoOfBootImageBlocks = %d\n"
  1093. " NoOfBinaryPartitions = %d\n"
  1094. " NoOfBDTLPartitions = %d\n"
  1095. " BlockMultiplerBits = %d\n"
  1096. " FormatFlgs = %d\n"
  1097. " OsakVersion = %d.%d.%d.%d\n"
  1098. " PercentUsed = %d\n",
  1099. mh->bootRecordID, mh->NoOfBootImageBlocks,
  1100. mh->NoOfBinaryPartitions,
  1101. mh->NoOfBDTLPartitions,
  1102. mh->BlockMultiplierBits, mh->FormatFlags,
  1103. ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
  1104. ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
  1105. ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
  1106. ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
  1107. mh->PercentUsed);
  1108. vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
  1109. blocks = mtd->size >> vshift;
  1110. if (blocks > 32768) {
  1111. printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
  1112. goto out;
  1113. }
  1114. blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
  1115. if (inftl_bbt_write && (blocks > mtd->erasesize)) {
  1116. printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
  1117. goto out;
  1118. }
  1119. /* Scan the partitions */
  1120. for (i = 0; (i < 4); i++) {
  1121. ip = &(mh->Partitions[i]);
  1122. ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
  1123. ip->firstUnit = le32_to_cpu(ip->firstUnit);
  1124. ip->lastUnit = le32_to_cpu(ip->lastUnit);
  1125. ip->flags = le32_to_cpu(ip->flags);
  1126. ip->spareUnits = le32_to_cpu(ip->spareUnits);
  1127. ip->Reserved0 = le32_to_cpu(ip->Reserved0);
  1128. printk(KERN_INFO " PARTITION[%d] ->\n"
  1129. " virtualUnits = %d\n"
  1130. " firstUnit = %d\n"
  1131. " lastUnit = %d\n"
  1132. " flags = 0x%x\n"
  1133. " spareUnits = %d\n",
  1134. i, ip->virtualUnits, ip->firstUnit,
  1135. ip->lastUnit, ip->flags,
  1136. ip->spareUnits);
  1137. if ((show_firmware_partition == 1) &&
  1138. (i == 0) && (ip->firstUnit > 0)) {
  1139. parts[0].name = " DiskOnChip IPL / Media Header partition";
  1140. parts[0].offset = 0;
  1141. parts[0].size = mtd->erasesize * ip->firstUnit;
  1142. numparts = 1;
  1143. }
  1144. if (ip->flags & INFTL_BINARY)
  1145. parts[numparts].name = " DiskOnChip BDK partition";
  1146. else
  1147. parts[numparts].name = " DiskOnChip BDTL partition";
  1148. parts[numparts].offset = ip->firstUnit << vshift;
  1149. parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
  1150. numparts++;
  1151. if (ip->lastUnit > lastvunit)
  1152. lastvunit = ip->lastUnit;
  1153. if (ip->flags & INFTL_LAST)
  1154. break;
  1155. }
  1156. lastvunit++;
  1157. if ((lastvunit << vshift) < end) {
  1158. parts[numparts].name = " DiskOnChip Remainder partition";
  1159. parts[numparts].offset = lastvunit << vshift;
  1160. parts[numparts].size = end - parts[numparts].offset;
  1161. numparts++;
  1162. }
  1163. ret = numparts;
  1164. out:
  1165. kfree(buf);
  1166. return ret;
  1167. }
  1168. static int __init nftl_scan_bbt(struct mtd_info *mtd)
  1169. {
  1170. int ret, numparts;
  1171. struct nand_chip *this = mtd->priv;
  1172. struct doc_priv *doc = this->priv;
  1173. struct mtd_partition parts[2];
  1174. memset((char *)parts, 0, sizeof(parts));
  1175. /* On NFTL, we have to find the media headers before we can read the
  1176. BBTs, since they're stored in the media header eraseblocks. */
  1177. numparts = nftl_partscan(mtd, parts);
  1178. if (!numparts)
  1179. return -EIO;
  1180. this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
  1181. NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
  1182. NAND_BBT_VERSION;
  1183. this->bbt_td->veroffs = 7;
  1184. this->bbt_td->pages[0] = doc->mh0_page + 1;
  1185. if (doc->mh1_page != -1) {
  1186. this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
  1187. NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
  1188. NAND_BBT_VERSION;
  1189. this->bbt_md->veroffs = 7;
  1190. this->bbt_md->pages[0] = doc->mh1_page + 1;
  1191. } else {
  1192. this->bbt_md = NULL;
  1193. }
  1194. /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
  1195. At least as nand_bbt.c is currently written. */
  1196. if ((ret = nand_scan_bbt(mtd, NULL)))
  1197. return ret;
  1198. add_mtd_device(mtd);
  1199. #ifdef CONFIG_MTD_PARTITIONS
  1200. if (!no_autopart)
  1201. add_mtd_partitions(mtd, parts, numparts);
  1202. #endif
  1203. return 0;
  1204. }
  1205. static int __init inftl_scan_bbt(struct mtd_info *mtd)
  1206. {
  1207. int ret, numparts;
  1208. struct nand_chip *this = mtd->priv;
  1209. struct doc_priv *doc = this->priv;
  1210. struct mtd_partition parts[5];
  1211. if (this->numchips > doc->chips_per_floor) {
  1212. printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
  1213. return -EIO;
  1214. }
  1215. if (DoC_is_MillenniumPlus(doc)) {
  1216. this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
  1217. if (inftl_bbt_write)
  1218. this->bbt_td->options |= NAND_BBT_WRITE;
  1219. this->bbt_td->pages[0] = 2;
  1220. this->bbt_md = NULL;
  1221. } else {
  1222. this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
  1223. if (inftl_bbt_write)
  1224. this->bbt_td->options |= NAND_BBT_WRITE;
  1225. this->bbt_td->offs = 8;
  1226. this->bbt_td->len = 8;
  1227. this->bbt_td->veroffs = 7;
  1228. this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
  1229. this->bbt_td->reserved_block_code = 0x01;
  1230. this->bbt_td->pattern = "MSYS_BBT";
  1231. this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
  1232. if (inftl_bbt_write)
  1233. this->bbt_md->options |= NAND_BBT_WRITE;
  1234. this->bbt_md->offs = 8;
  1235. this->bbt_md->len = 8;
  1236. this->bbt_md->veroffs = 7;
  1237. this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
  1238. this->bbt_md->reserved_block_code = 0x01;
  1239. this->bbt_md->pattern = "TBB_SYSM";
  1240. }
  1241. /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
  1242. At least as nand_bbt.c is currently written. */
  1243. if ((ret = nand_scan_bbt(mtd, NULL)))
  1244. return ret;
  1245. memset((char *)parts, 0, sizeof(parts));
  1246. numparts = inftl_partscan(mtd, parts);
  1247. /* At least for now, require the INFTL Media Header. We could probably
  1248. do without it for non-INFTL use, since all it gives us is
  1249. autopartitioning, but I want to give it more thought. */
  1250. if (!numparts)
  1251. return -EIO;
  1252. add_mtd_device(mtd);
  1253. #ifdef CONFIG_MTD_PARTITIONS
  1254. if (!no_autopart)
  1255. add_mtd_partitions(mtd, parts, numparts);
  1256. #endif
  1257. return 0;
  1258. }
  1259. static inline int __init doc2000_init(struct mtd_info *mtd)
  1260. {
  1261. struct nand_chip *this = mtd->priv;
  1262. struct doc_priv *doc = this->priv;
  1263. this->write_byte = doc2000_write_byte;
  1264. this->read_byte = doc2000_read_byte;
  1265. this->write_buf = doc2000_writebuf;
  1266. this->read_buf = doc2000_readbuf;
  1267. this->verify_buf = doc2000_verifybuf;
  1268. this->scan_bbt = nftl_scan_bbt;
  1269. doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
  1270. doc2000_count_chips(mtd);
  1271. mtd->name = "DiskOnChip 2000 (NFTL Model)";
  1272. return (4 * doc->chips_per_floor);
  1273. }
  1274. static inline int __init doc2001_init(struct mtd_info *mtd)
  1275. {
  1276. struct nand_chip *this = mtd->priv;
  1277. struct doc_priv *doc = this->priv;
  1278. this->write_byte = doc2001_write_byte;
  1279. this->read_byte = doc2001_read_byte;
  1280. this->write_buf = doc2001_writebuf;
  1281. this->read_buf = doc2001_readbuf;
  1282. this->verify_buf = doc2001_verifybuf;
  1283. ReadDOC(doc->virtadr, ChipID);
  1284. ReadDOC(doc->virtadr, ChipID);
  1285. ReadDOC(doc->virtadr, ChipID);
  1286. if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
  1287. /* It's not a Millennium; it's one of the newer
  1288. DiskOnChip 2000 units with a similar ASIC.
  1289. Treat it like a Millennium, except that it
  1290. can have multiple chips. */
  1291. doc2000_count_chips(mtd);
  1292. mtd->name = "DiskOnChip 2000 (INFTL Model)";
  1293. this->scan_bbt = inftl_scan_bbt;
  1294. return (4 * doc->chips_per_floor);
  1295. } else {
  1296. /* Bog-standard Millennium */
  1297. doc->chips_per_floor = 1;
  1298. mtd->name = "DiskOnChip Millennium";
  1299. this->scan_bbt = nftl_scan_bbt;
  1300. return 1;
  1301. }
  1302. }
  1303. static inline int __init doc2001plus_init(struct mtd_info *mtd)
  1304. {
  1305. struct nand_chip *this = mtd->priv;
  1306. struct doc_priv *doc = this->priv;
  1307. this->write_byte = NULL;
  1308. this->read_byte = doc2001plus_read_byte;
  1309. this->write_buf = doc2001plus_writebuf;
  1310. this->read_buf = doc2001plus_readbuf;
  1311. this->verify_buf = doc2001plus_verifybuf;
  1312. this->scan_bbt = inftl_scan_bbt;
  1313. this->cmd_ctrl = NULL;
  1314. this->select_chip = doc2001plus_select_chip;
  1315. this->cmdfunc = doc2001plus_command;
  1316. this->ecc.hwctl = doc2001plus_enable_hwecc;
  1317. doc->chips_per_floor = 1;
  1318. mtd->name = "DiskOnChip Millennium Plus";
  1319. return 1;
  1320. }
  1321. static int __init doc_probe(unsigned long physadr)
  1322. {
  1323. unsigned char ChipID;
  1324. struct mtd_info *mtd;
  1325. struct nand_chip *nand;
  1326. struct doc_priv *doc;
  1327. void __iomem *virtadr;
  1328. unsigned char save_control;
  1329. unsigned char tmp, tmpb, tmpc;
  1330. int reg, len, numchips;
  1331. int ret = 0;
  1332. virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
  1333. if (!virtadr) {
  1334. printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
  1335. return -EIO;
  1336. }
  1337. /* It's not possible to cleanly detect the DiskOnChip - the
  1338. * bootup procedure will put the device into reset mode, and
  1339. * it's not possible to talk to it without actually writing
  1340. * to the DOCControl register. So we store the current contents
  1341. * of the DOCControl register's location, in case we later decide
  1342. * that it's not a DiskOnChip, and want to put it back how we
  1343. * found it.
  1344. */
  1345. save_control = ReadDOC(virtadr, DOCControl);
  1346. /* Reset the DiskOnChip ASIC */
  1347. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
  1348. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
  1349. /* Enable the DiskOnChip ASIC */
  1350. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
  1351. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
  1352. ChipID = ReadDOC(virtadr, ChipID);
  1353. switch (ChipID) {
  1354. case DOC_ChipID_Doc2k:
  1355. reg = DoC_2k_ECCStatus;
  1356. break;
  1357. case DOC_ChipID_DocMil:
  1358. reg = DoC_ECCConf;
  1359. break;
  1360. case DOC_ChipID_DocMilPlus16:
  1361. case DOC_ChipID_DocMilPlus32:
  1362. case 0:
  1363. /* Possible Millennium Plus, need to do more checks */
  1364. /* Possibly release from power down mode */
  1365. for (tmp = 0; (tmp < 4); tmp++)
  1366. ReadDOC(virtadr, Mplus_Power);
  1367. /* Reset the Millennium Plus ASIC */
  1368. tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
  1369. WriteDOC(tmp, virtadr, Mplus_DOCControl);
  1370. WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
  1371. mdelay(1);
  1372. /* Enable the Millennium Plus ASIC */
  1373. tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
  1374. WriteDOC(tmp, virtadr, Mplus_DOCControl);
  1375. WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
  1376. mdelay(1);
  1377. ChipID = ReadDOC(virtadr, ChipID);
  1378. switch (ChipID) {
  1379. case DOC_ChipID_DocMilPlus16:
  1380. reg = DoC_Mplus_Toggle;
  1381. break;
  1382. case DOC_ChipID_DocMilPlus32:
  1383. printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
  1384. default:
  1385. ret = -ENODEV;
  1386. goto notfound;
  1387. }
  1388. break;
  1389. default:
  1390. ret = -ENODEV;
  1391. goto notfound;
  1392. }
  1393. /* Check the TOGGLE bit in the ECC register */
  1394. tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
  1395. tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
  1396. tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
  1397. if ((tmp == tmpb) || (tmp != tmpc)) {
  1398. printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
  1399. ret = -ENODEV;
  1400. goto notfound;
  1401. }
  1402. for (mtd = doclist; mtd; mtd = doc->nextdoc) {
  1403. unsigned char oldval;
  1404. unsigned char newval;
  1405. nand = mtd->priv;
  1406. doc = nand->priv;
  1407. /* Use the alias resolution register to determine if this is
  1408. in fact the same DOC aliased to a new address. If writes
  1409. to one chip's alias resolution register change the value on
  1410. the other chip, they're the same chip. */
  1411. if (ChipID == DOC_ChipID_DocMilPlus16) {
  1412. oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
  1413. newval = ReadDOC(virtadr, Mplus_AliasResolution);
  1414. } else {
  1415. oldval = ReadDOC(doc->virtadr, AliasResolution);
  1416. newval = ReadDOC(virtadr, AliasResolution);
  1417. }
  1418. if (oldval != newval)
  1419. continue;
  1420. if (ChipID == DOC_ChipID_DocMilPlus16) {
  1421. WriteDOC(~newval, virtadr, Mplus_AliasResolution);
  1422. oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
  1423. WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
  1424. } else {
  1425. WriteDOC(~newval, virtadr, AliasResolution);
  1426. oldval = ReadDOC(doc->virtadr, AliasResolution);
  1427. WriteDOC(newval, virtadr, AliasResolution); // restore it
  1428. }
  1429. newval = ~newval;
  1430. if (oldval == newval) {
  1431. printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
  1432. goto notfound;
  1433. }
  1434. }
  1435. printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
  1436. len = sizeof(struct mtd_info) +
  1437. sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
  1438. mtd = kmalloc(len, GFP_KERNEL);
  1439. if (!mtd) {
  1440. printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
  1441. ret = -ENOMEM;
  1442. goto fail;
  1443. }
  1444. memset(mtd, 0, len);
  1445. nand = (struct nand_chip *) (mtd + 1);
  1446. doc = (struct doc_priv *) (nand + 1);
  1447. nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
  1448. nand->bbt_md = nand->bbt_td + 1;
  1449. mtd->priv = nand;
  1450. mtd->owner = THIS_MODULE;
  1451. nand->priv = doc;
  1452. nand->select_chip = doc200x_select_chip;
  1453. nand->cmd_ctrl = doc200x_hwcontrol;
  1454. nand->dev_ready = doc200x_dev_ready;
  1455. nand->waitfunc = doc200x_wait;
  1456. nand->block_bad = doc200x_block_bad;
  1457. nand->ecc.hwctl = doc200x_enable_hwecc;
  1458. nand->ecc.calculate = doc200x_calculate_ecc;
  1459. nand->ecc.correct = doc200x_correct_data;
  1460. nand->autooob = &doc200x_oobinfo;
  1461. nand->ecc.mode = NAND_ECC_HW_SYNDROME;
  1462. nand->ecc.size = 512;
  1463. nand->ecc.bytes = 6;
  1464. nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
  1465. doc->physadr = physadr;
  1466. doc->virtadr = virtadr;
  1467. doc->ChipID = ChipID;
  1468. doc->curfloor = -1;
  1469. doc->curchip = -1;
  1470. doc->mh0_page = -1;
  1471. doc->mh1_page = -1;
  1472. doc->nextdoc = doclist;
  1473. if (ChipID == DOC_ChipID_Doc2k)
  1474. numchips = doc2000_init(mtd);
  1475. else if (ChipID == DOC_ChipID_DocMilPlus16)
  1476. numchips = doc2001plus_init(mtd);
  1477. else
  1478. numchips = doc2001_init(mtd);
  1479. if ((ret = nand_scan(mtd, numchips))) {
  1480. /* DBB note: i believe nand_release is necessary here, as
  1481. buffers may have been allocated in nand_base. Check with
  1482. Thomas. FIX ME! */
  1483. /* nand_release will call del_mtd_device, but we haven't yet
  1484. added it. This is handled without incident by
  1485. del_mtd_device, as far as I can tell. */
  1486. nand_release(mtd);
  1487. kfree(mtd);
  1488. goto fail;
  1489. }
  1490. /* Success! */
  1491. doclist = mtd;
  1492. return 0;
  1493. notfound:
  1494. /* Put back the contents of the DOCControl register, in case it's not
  1495. actually a DiskOnChip. */
  1496. WriteDOC(save_control, virtadr, DOCControl);
  1497. fail:
  1498. iounmap(virtadr);
  1499. return ret;
  1500. }
  1501. static void release_nanddoc(void)
  1502. {
  1503. struct mtd_info *mtd, *nextmtd;
  1504. struct nand_chip *nand;
  1505. struct doc_priv *doc;
  1506. for (mtd = doclist; mtd; mtd = nextmtd) {
  1507. nand = mtd->priv;
  1508. doc = nand->priv;
  1509. nextmtd = doc->nextdoc;
  1510. nand_release(mtd);
  1511. iounmap(doc->virtadr);
  1512. kfree(mtd);
  1513. }
  1514. }
  1515. static int __init init_nanddoc(void)
  1516. {
  1517. int i, ret = 0;
  1518. /* We could create the decoder on demand, if memory is a concern.
  1519. * This way we have it handy, if an error happens
  1520. *
  1521. * Symbolsize is 10 (bits)
  1522. * Primitve polynomial is x^10+x^3+1
  1523. * first consecutive root is 510
  1524. * primitve element to generate roots = 1
  1525. * generator polinomial degree = 4
  1526. */
  1527. rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
  1528. if (!rs_decoder) {
  1529. printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
  1530. return -ENOMEM;
  1531. }
  1532. if (doc_config_location) {
  1533. printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
  1534. ret = doc_probe(doc_config_location);
  1535. if (ret < 0)
  1536. goto outerr;
  1537. } else {
  1538. for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
  1539. doc_probe(doc_locations[i]);
  1540. }
  1541. }
  1542. /* No banner message any more. Print a message if no DiskOnChip
  1543. found, so the user knows we at least tried. */
  1544. if (!doclist) {
  1545. printk(KERN_INFO "No valid DiskOnChip devices found\n");
  1546. ret = -ENODEV;
  1547. goto outerr;
  1548. }
  1549. return 0;
  1550. outerr:
  1551. free_rs(rs_decoder);
  1552. return ret;
  1553. }
  1554. static void __exit cleanup_nanddoc(void)
  1555. {
  1556. /* Cleanup the nand/DoC resources */
  1557. release_nanddoc();
  1558. /* Free the reed solomon resources */
  1559. if (rs_decoder) {
  1560. free_rs(rs_decoder);
  1561. }
  1562. }
  1563. module_init(init_nanddoc);
  1564. module_exit(cleanup_nanddoc);
  1565. MODULE_LICENSE("GPL");
  1566. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  1567. MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");