mmu-hash64.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x8
  26. #define STAB0_OFFSET (STAB0_PAGE << 12)
  27. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. #define SLB_MIN_SIZE 32
  37. /* Bits in the SLB ESID word */
  38. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  39. /* Bits in the SLB VSID word */
  40. #define SLB_VSID_SHIFT 12
  41. #define SLB_VSID_SHIFT_1T 24
  42. #define SLB_VSID_SSIZE_SHIFT 62
  43. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  44. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  45. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  46. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  47. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  48. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  49. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  50. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  51. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  52. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  53. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  54. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  55. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  56. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  57. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  58. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  59. #define SLBIE_C (0x08000000)
  60. #define SLBIE_SSIZE_SHIFT 25
  61. /*
  62. * Hash table
  63. */
  64. #define HPTES_PER_GROUP 8
  65. #define HPTE_V_SSIZE_SHIFT 62
  66. #define HPTE_V_AVPN_SHIFT 7
  67. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  68. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  69. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  70. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  71. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  72. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  73. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  74. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  75. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  76. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  77. #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
  78. #define HPTE_R_RPN_SHIFT 12
  79. #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
  80. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  81. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  82. #define HPTE_R_G ASM_CONST(0x0000000000000008)
  83. #define HPTE_R_M ASM_CONST(0x0000000000000010)
  84. #define HPTE_R_I ASM_CONST(0x0000000000000020)
  85. #define HPTE_R_W ASM_CONST(0x0000000000000040)
  86. #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
  87. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  88. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  89. #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
  90. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  91. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  92. /* Values for PP (assumes Ks=0, Kp=1) */
  93. #define PP_RWXX 0 /* Supervisor read/write, User none */
  94. #define PP_RWRX 1 /* Supervisor read/write, User read */
  95. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  96. #define PP_RXRX 3 /* Supervisor read, User read */
  97. #define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
  98. #ifndef __ASSEMBLY__
  99. struct hash_pte {
  100. unsigned long v;
  101. unsigned long r;
  102. };
  103. extern struct hash_pte *htab_address;
  104. extern unsigned long htab_size_bytes;
  105. extern unsigned long htab_hash_mask;
  106. /*
  107. * Page size definition
  108. *
  109. * shift : is the "PAGE_SHIFT" value for that page size
  110. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  111. * directly to a slbmte "vsid" value
  112. * penc : is the HPTE encoding mask for the "LP" field:
  113. *
  114. */
  115. struct mmu_psize_def
  116. {
  117. unsigned int shift; /* number of bits */
  118. unsigned int penc; /* HPTE encoding */
  119. unsigned int tlbiel; /* tlbiel supported for that page size */
  120. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  121. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  122. };
  123. #endif /* __ASSEMBLY__ */
  124. /*
  125. * Segment sizes.
  126. * These are the values used by hardware in the B field of
  127. * SLB entries and the first dword of MMU hashtable entries.
  128. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  129. */
  130. #define MMU_SEGSIZE_256M 0
  131. #define MMU_SEGSIZE_1T 1
  132. /*
  133. * encode page number shift.
  134. * in order to fit the 78 bit va in a 64 bit variable we shift the va by
  135. * 12 bits. This enable us to address upto 76 bit va.
  136. * For hpt hash from a va we can ignore the page size bits of va and for
  137. * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
  138. * we work in all cases including 4k page size.
  139. */
  140. #define VPN_SHIFT 12
  141. #ifndef __ASSEMBLY__
  142. static inline int segment_shift(int ssize)
  143. {
  144. if (ssize == MMU_SEGSIZE_256M)
  145. return SID_SHIFT;
  146. return SID_SHIFT_1T;
  147. }
  148. /*
  149. * The current system page and segment sizes
  150. */
  151. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  152. extern int mmu_linear_psize;
  153. extern int mmu_virtual_psize;
  154. extern int mmu_vmalloc_psize;
  155. extern int mmu_vmemmap_psize;
  156. extern int mmu_io_psize;
  157. extern int mmu_kernel_ssize;
  158. extern int mmu_highuser_ssize;
  159. extern u16 mmu_slb_size;
  160. extern unsigned long tce_alloc_start, tce_alloc_end;
  161. /*
  162. * If the processor supports 64k normal pages but not 64k cache
  163. * inhibited pages, we have to be prepared to switch processes
  164. * to use 4k pages when they create cache-inhibited mappings.
  165. * If this is the case, mmu_ci_restrictions will be set to 1.
  166. */
  167. extern int mmu_ci_restrictions;
  168. /*
  169. * This computes the AVPN and B fields of the first dword of a HPTE,
  170. * for use when we want to match an existing PTE. The bottom 7 bits
  171. * of the returned value are zero.
  172. */
  173. static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
  174. int ssize)
  175. {
  176. unsigned long v;
  177. /*
  178. * The AVA field omits the low-order 23 bits of the 78 bits VA.
  179. * These bits are not needed in the PTE, because the
  180. * low-order b of these bits are part of the byte offset
  181. * into the virtual page and, if b < 23, the high-order
  182. * 23-b of these bits are always used in selecting the
  183. * PTEGs to be searched
  184. */
  185. v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
  186. v <<= HPTE_V_AVPN_SHIFT;
  187. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  188. return v;
  189. }
  190. /*
  191. * This function sets the AVPN and L fields of the HPTE appropriately
  192. * for the page size
  193. */
  194. static inline unsigned long hpte_encode_v(unsigned long vpn,
  195. int psize, int ssize)
  196. {
  197. unsigned long v;
  198. v = hpte_encode_avpn(vpn, psize, ssize);
  199. if (psize != MMU_PAGE_4K)
  200. v |= HPTE_V_LARGE;
  201. return v;
  202. }
  203. /*
  204. * This function sets the ARPN, and LP fields of the HPTE appropriately
  205. * for the page size. We assume the pa is already "clean" that is properly
  206. * aligned for the requested page size
  207. */
  208. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  209. {
  210. unsigned long r;
  211. /* A 4K page needs no special encoding */
  212. if (psize == MMU_PAGE_4K)
  213. return pa & HPTE_R_RPN;
  214. else {
  215. unsigned int penc = mmu_psize_defs[psize].penc;
  216. unsigned int shift = mmu_psize_defs[psize].shift;
  217. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  218. }
  219. return r;
  220. }
  221. /*
  222. * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
  223. */
  224. static inline unsigned long hpt_vpn(unsigned long ea,
  225. unsigned long vsid, int ssize)
  226. {
  227. unsigned long mask;
  228. int s_shift = segment_shift(ssize);
  229. mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
  230. return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
  231. }
  232. /*
  233. * This hashes a virtual address
  234. */
  235. static inline unsigned long hpt_hash(unsigned long vpn,
  236. unsigned int shift, int ssize)
  237. {
  238. int mask;
  239. unsigned long hash, vsid;
  240. /* VPN_SHIFT can be atmost 12 */
  241. if (ssize == MMU_SEGSIZE_256M) {
  242. mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
  243. hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
  244. ((vpn & mask) >> (shift - VPN_SHIFT));
  245. } else {
  246. mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
  247. vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
  248. hash = vsid ^ (vsid << 25) ^
  249. ((vpn & mask) >> (shift - VPN_SHIFT)) ;
  250. }
  251. return hash & 0x7fffffffffUL;
  252. }
  253. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  254. unsigned long vsid, pte_t *ptep, unsigned long trap,
  255. unsigned int local, int ssize, int subpage_prot);
  256. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  257. unsigned long vsid, pte_t *ptep, unsigned long trap,
  258. unsigned int local, int ssize);
  259. struct mm_struct;
  260. unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
  261. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  262. int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
  263. pte_t *ptep, unsigned long trap, int local, int ssize,
  264. unsigned int shift, unsigned int mmu_psize);
  265. extern void hash_failure_debug(unsigned long ea, unsigned long access,
  266. unsigned long vsid, unsigned long trap,
  267. int ssize, int psize, unsigned long pte);
  268. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  269. unsigned long pstart, unsigned long prot,
  270. int psize, int ssize);
  271. extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
  272. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  273. extern void hpte_init_native(void);
  274. extern void hpte_init_lpar(void);
  275. extern void hpte_init_beat(void);
  276. extern void hpte_init_beat_v3(void);
  277. extern void stabs_alloc(void);
  278. extern void slb_initialize(void);
  279. extern void slb_flush_and_rebolt(void);
  280. extern void stab_initialize(unsigned long stab);
  281. extern void slb_vmalloc_update(void);
  282. extern void slb_set_size(u16 size);
  283. #endif /* __ASSEMBLY__ */
  284. /*
  285. * VSID allocation
  286. *
  287. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  288. * is equal to the ESID, for user addresses it is:
  289. * (context << 15) | (esid & 0x7fff)
  290. *
  291. * The two forms are distinguishable because the top bit is 0 for user
  292. * addresses, whereas the top two bits are 1 for kernel addresses.
  293. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  294. * now.
  295. *
  296. * The proto-VSIDs are then scrambled into real VSIDs with the
  297. * multiplicative hash:
  298. *
  299. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  300. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  301. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  302. *
  303. * This scramble is only well defined for proto-VSIDs below
  304. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  305. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  306. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  307. * Because the modulus is 2^n-1 we can compute it efficiently without
  308. * a divide or extra multiply (see below).
  309. *
  310. * This scheme has several advantages over older methods:
  311. *
  312. * - We have VSIDs allocated for every kernel address
  313. * (i.e. everything above 0xC000000000000000), except the very top
  314. * segment, which simplifies several things.
  315. *
  316. * - We allow for 16 significant bits of ESID and 19 bits of
  317. * context for user addresses. i.e. 16T (44 bits) of address space for
  318. * up to half a million contexts.
  319. *
  320. * - The scramble function gives robust scattering in the hash
  321. * table (at least based on some initial results). The previous
  322. * method was more susceptible to pathological cases giving excessive
  323. * hash collisions.
  324. */
  325. /*
  326. * WARNING - If you change these you must make sure the asm
  327. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  328. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  329. */
  330. #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
  331. #define VSID_BITS_256M 36
  332. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  333. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  334. #define VSID_BITS_1T 24
  335. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  336. #define CONTEXT_BITS 19
  337. #define USER_ESID_BITS 16
  338. #define USER_ESID_BITS_1T 4
  339. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  340. /*
  341. * This macro generates asm code to compute the VSID scramble
  342. * function. Used in slb_allocate() and do_stab_bolted. The function
  343. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  344. *
  345. * rt = register continaing the proto-VSID and into which the
  346. * VSID will be stored
  347. * rx = scratch register (clobbered)
  348. *
  349. * - rt and rx must be different registers
  350. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  351. * bits may contain other garbage, so you may need to mask the
  352. * result.
  353. */
  354. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  355. lis rx,VSID_MULTIPLIER_##size@h; \
  356. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  357. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  358. \
  359. srdi rx,rt,VSID_BITS_##size; \
  360. clrldi rt,rt,(64-VSID_BITS_##size); \
  361. add rt,rt,rx; /* add high and low bits */ \
  362. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  363. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  364. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  365. * the bit clear, r3 already has the answer we want, if it \
  366. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  367. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  368. addi rx,rt,1; \
  369. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  370. add rt,rt,rx
  371. #ifndef __ASSEMBLY__
  372. #ifdef CONFIG_PPC_SUBPAGE_PROT
  373. /*
  374. * For the sub-page protection option, we extend the PGD with one of
  375. * these. Basically we have a 3-level tree, with the top level being
  376. * the protptrs array. To optimize speed and memory consumption when
  377. * only addresses < 4GB are being protected, pointers to the first
  378. * four pages of sub-page protection words are stored in the low_prot
  379. * array.
  380. * Each page of sub-page protection words protects 1GB (4 bytes
  381. * protects 64k). For the 3-level tree, each page of pointers then
  382. * protects 8TB.
  383. */
  384. struct subpage_prot_table {
  385. unsigned long maxaddr; /* only addresses < this are protected */
  386. unsigned int **protptrs[2];
  387. unsigned int *low_prot[4];
  388. };
  389. #define SBP_L1_BITS (PAGE_SHIFT - 2)
  390. #define SBP_L2_BITS (PAGE_SHIFT - 3)
  391. #define SBP_L1_COUNT (1 << SBP_L1_BITS)
  392. #define SBP_L2_COUNT (1 << SBP_L2_BITS)
  393. #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
  394. #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
  395. extern void subpage_prot_free(struct mm_struct *mm);
  396. extern void subpage_prot_init_new_context(struct mm_struct *mm);
  397. #else
  398. static inline void subpage_prot_free(struct mm_struct *mm) {}
  399. static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
  400. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  401. typedef unsigned long mm_context_id_t;
  402. struct spinlock;
  403. typedef struct {
  404. mm_context_id_t id;
  405. u16 user_psize; /* page size index */
  406. #ifdef CONFIG_PPC_MM_SLICES
  407. u64 low_slices_psize; /* SLB page size encodings */
  408. /*
  409. * Right now we support 64TB and 4 bits for each
  410. * 1TB slice we need 32 bytes for 64TB.
  411. */
  412. unsigned char high_slices_psize[32]; /* 4 bits per slice for now */
  413. #else
  414. u16 sllp; /* SLB page size encoding */
  415. #endif
  416. unsigned long vdso_base;
  417. #ifdef CONFIG_PPC_SUBPAGE_PROT
  418. struct subpage_prot_table spt;
  419. #endif /* CONFIG_PPC_SUBPAGE_PROT */
  420. #ifdef CONFIG_PPC_ICSWX
  421. struct spinlock *cop_lockp; /* guard acop and cop_pid */
  422. unsigned long acop; /* mask of enabled coprocessor types */
  423. unsigned int cop_pid; /* pid value used with coprocessors */
  424. #endif /* CONFIG_PPC_ICSWX */
  425. } mm_context_t;
  426. #if 0
  427. /*
  428. * The code below is equivalent to this function for arguments
  429. * < 2^VSID_BITS, which is all this should ever be called
  430. * with. However gcc is not clever enough to compute the
  431. * modulus (2^n-1) without a second multiply.
  432. */
  433. #define vsid_scramble(protovsid, size) \
  434. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  435. #else /* 1 */
  436. #define vsid_scramble(protovsid, size) \
  437. ({ \
  438. unsigned long x; \
  439. x = (protovsid) * VSID_MULTIPLIER_##size; \
  440. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  441. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  442. })
  443. #endif /* 1 */
  444. /* This is only valid for addresses >= PAGE_OFFSET */
  445. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  446. {
  447. if (ssize == MMU_SEGSIZE_256M)
  448. return vsid_scramble(ea >> SID_SHIFT, 256M);
  449. return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
  450. }
  451. /* Returns the segment size indicator for a user address */
  452. static inline int user_segment_size(unsigned long addr)
  453. {
  454. /* Use 1T segments if possible for addresses >= 1T */
  455. if (addr >= (1UL << SID_SHIFT_1T))
  456. return mmu_highuser_ssize;
  457. return MMU_SEGSIZE_256M;
  458. }
  459. /* This is only valid for user addresses (which are below 2^44) */
  460. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  461. int ssize)
  462. {
  463. if (ssize == MMU_SEGSIZE_256M)
  464. return vsid_scramble((context << USER_ESID_BITS)
  465. | (ea >> SID_SHIFT), 256M);
  466. return vsid_scramble((context << USER_ESID_BITS_1T)
  467. | (ea >> SID_SHIFT_1T), 1T);
  468. }
  469. #endif /* __ASSEMBLY__ */
  470. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */