ll_rw_blk.c 92 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626
  1. /*
  2. * linux/drivers/block/ll_rw_blk.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  6. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  7. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  8. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  9. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10. */
  11. /*
  12. * This handles all read/write requests to block devices
  13. */
  14. #include <linux/config.h>
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/backing-dev.h>
  18. #include <linux/bio.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/mm.h>
  22. #include <linux/kernel_stat.h>
  23. #include <linux/string.h>
  24. #include <linux/init.h>
  25. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  26. #include <linux/completion.h>
  27. #include <linux/slab.h>
  28. #include <linux/swap.h>
  29. #include <linux/writeback.h>
  30. #include <linux/blkdev.h>
  31. /*
  32. * for max sense size
  33. */
  34. #include <scsi/scsi_cmnd.h>
  35. static void blk_unplug_work(void *data);
  36. static void blk_unplug_timeout(unsigned long data);
  37. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  38. /*
  39. * For the allocated request tables
  40. */
  41. static kmem_cache_t *request_cachep;
  42. /*
  43. * For queue allocation
  44. */
  45. static kmem_cache_t *requestq_cachep;
  46. /*
  47. * For io context allocations
  48. */
  49. static kmem_cache_t *iocontext_cachep;
  50. static wait_queue_head_t congestion_wqh[2] = {
  51. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  52. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  53. };
  54. /*
  55. * Controlling structure to kblockd
  56. */
  57. static struct workqueue_struct *kblockd_workqueue;
  58. unsigned long blk_max_low_pfn, blk_max_pfn;
  59. EXPORT_SYMBOL(blk_max_low_pfn);
  60. EXPORT_SYMBOL(blk_max_pfn);
  61. /* Amount of time in which a process may batch requests */
  62. #define BLK_BATCH_TIME (HZ/50UL)
  63. /* Number of requests a "batching" process may submit */
  64. #define BLK_BATCH_REQ 32
  65. /*
  66. * Return the threshold (number of used requests) at which the queue is
  67. * considered to be congested. It include a little hysteresis to keep the
  68. * context switch rate down.
  69. */
  70. static inline int queue_congestion_on_threshold(struct request_queue *q)
  71. {
  72. return q->nr_congestion_on;
  73. }
  74. /*
  75. * The threshold at which a queue is considered to be uncongested
  76. */
  77. static inline int queue_congestion_off_threshold(struct request_queue *q)
  78. {
  79. return q->nr_congestion_off;
  80. }
  81. static void blk_queue_congestion_threshold(struct request_queue *q)
  82. {
  83. int nr;
  84. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  85. if (nr > q->nr_requests)
  86. nr = q->nr_requests;
  87. q->nr_congestion_on = nr;
  88. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  89. if (nr < 1)
  90. nr = 1;
  91. q->nr_congestion_off = nr;
  92. }
  93. /*
  94. * A queue has just exitted congestion. Note this in the global counter of
  95. * congested queues, and wake up anyone who was waiting for requests to be
  96. * put back.
  97. */
  98. static void clear_queue_congested(request_queue_t *q, int rw)
  99. {
  100. enum bdi_state bit;
  101. wait_queue_head_t *wqh = &congestion_wqh[rw];
  102. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  103. clear_bit(bit, &q->backing_dev_info.state);
  104. smp_mb__after_clear_bit();
  105. if (waitqueue_active(wqh))
  106. wake_up(wqh);
  107. }
  108. /*
  109. * A queue has just entered congestion. Flag that in the queue's VM-visible
  110. * state flags and increment the global gounter of congested queues.
  111. */
  112. static void set_queue_congested(request_queue_t *q, int rw)
  113. {
  114. enum bdi_state bit;
  115. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  116. set_bit(bit, &q->backing_dev_info.state);
  117. }
  118. /**
  119. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  120. * @bdev: device
  121. *
  122. * Locates the passed device's request queue and returns the address of its
  123. * backing_dev_info
  124. *
  125. * Will return NULL if the request queue cannot be located.
  126. */
  127. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  128. {
  129. struct backing_dev_info *ret = NULL;
  130. request_queue_t *q = bdev_get_queue(bdev);
  131. if (q)
  132. ret = &q->backing_dev_info;
  133. return ret;
  134. }
  135. EXPORT_SYMBOL(blk_get_backing_dev_info);
  136. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  137. {
  138. q->activity_fn = fn;
  139. q->activity_data = data;
  140. }
  141. EXPORT_SYMBOL(blk_queue_activity_fn);
  142. /**
  143. * blk_queue_prep_rq - set a prepare_request function for queue
  144. * @q: queue
  145. * @pfn: prepare_request function
  146. *
  147. * It's possible for a queue to register a prepare_request callback which
  148. * is invoked before the request is handed to the request_fn. The goal of
  149. * the function is to prepare a request for I/O, it can be used to build a
  150. * cdb from the request data for instance.
  151. *
  152. */
  153. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  154. {
  155. q->prep_rq_fn = pfn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_prep_rq);
  158. /**
  159. * blk_queue_merge_bvec - set a merge_bvec function for queue
  160. * @q: queue
  161. * @mbfn: merge_bvec_fn
  162. *
  163. * Usually queues have static limitations on the max sectors or segments that
  164. * we can put in a request. Stacking drivers may have some settings that
  165. * are dynamic, and thus we have to query the queue whether it is ok to
  166. * add a new bio_vec to a bio at a given offset or not. If the block device
  167. * has such limitations, it needs to register a merge_bvec_fn to control
  168. * the size of bio's sent to it. Note that a block device *must* allow a
  169. * single page to be added to an empty bio. The block device driver may want
  170. * to use the bio_split() function to deal with these bio's. By default
  171. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  172. * honored.
  173. */
  174. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  175. {
  176. q->merge_bvec_fn = mbfn;
  177. }
  178. EXPORT_SYMBOL(blk_queue_merge_bvec);
  179. /**
  180. * blk_queue_make_request - define an alternate make_request function for a device
  181. * @q: the request queue for the device to be affected
  182. * @mfn: the alternate make_request function
  183. *
  184. * Description:
  185. * The normal way for &struct bios to be passed to a device
  186. * driver is for them to be collected into requests on a request
  187. * queue, and then to allow the device driver to select requests
  188. * off that queue when it is ready. This works well for many block
  189. * devices. However some block devices (typically virtual devices
  190. * such as md or lvm) do not benefit from the processing on the
  191. * request queue, and are served best by having the requests passed
  192. * directly to them. This can be achieved by providing a function
  193. * to blk_queue_make_request().
  194. *
  195. * Caveat:
  196. * The driver that does this *must* be able to deal appropriately
  197. * with buffers in "highmemory". This can be accomplished by either calling
  198. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  199. * blk_queue_bounce() to create a buffer in normal memory.
  200. **/
  201. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  202. {
  203. /*
  204. * set defaults
  205. */
  206. q->nr_requests = BLKDEV_MAX_RQ;
  207. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  208. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  209. q->make_request_fn = mfn;
  210. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  211. q->backing_dev_info.state = 0;
  212. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  213. blk_queue_max_sectors(q, MAX_SECTORS);
  214. blk_queue_hardsect_size(q, 512);
  215. blk_queue_dma_alignment(q, 511);
  216. blk_queue_congestion_threshold(q);
  217. q->nr_batching = BLK_BATCH_REQ;
  218. q->unplug_thresh = 4; /* hmm */
  219. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  220. if (q->unplug_delay == 0)
  221. q->unplug_delay = 1;
  222. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  223. q->unplug_timer.function = blk_unplug_timeout;
  224. q->unplug_timer.data = (unsigned long)q;
  225. /*
  226. * by default assume old behaviour and bounce for any highmem page
  227. */
  228. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  229. blk_queue_activity_fn(q, NULL, NULL);
  230. }
  231. EXPORT_SYMBOL(blk_queue_make_request);
  232. static inline void rq_init(request_queue_t *q, struct request *rq)
  233. {
  234. INIT_LIST_HEAD(&rq->queuelist);
  235. rq->errors = 0;
  236. rq->rq_status = RQ_ACTIVE;
  237. rq->bio = rq->biotail = NULL;
  238. rq->ioprio = 0;
  239. rq->buffer = NULL;
  240. rq->ref_count = 1;
  241. rq->q = q;
  242. rq->waiting = NULL;
  243. rq->special = NULL;
  244. rq->data_len = 0;
  245. rq->data = NULL;
  246. rq->nr_phys_segments = 0;
  247. rq->sense = NULL;
  248. rq->end_io = NULL;
  249. rq->end_io_data = NULL;
  250. }
  251. /**
  252. * blk_queue_ordered - does this queue support ordered writes
  253. * @q: the request queue
  254. * @flag: see below
  255. *
  256. * Description:
  257. * For journalled file systems, doing ordered writes on a commit
  258. * block instead of explicitly doing wait_on_buffer (which is bad
  259. * for performance) can be a big win. Block drivers supporting this
  260. * feature should call this function and indicate so.
  261. *
  262. **/
  263. void blk_queue_ordered(request_queue_t *q, int flag)
  264. {
  265. switch (flag) {
  266. case QUEUE_ORDERED_NONE:
  267. if (q->flush_rq)
  268. kmem_cache_free(request_cachep, q->flush_rq);
  269. q->flush_rq = NULL;
  270. q->ordered = flag;
  271. break;
  272. case QUEUE_ORDERED_TAG:
  273. q->ordered = flag;
  274. break;
  275. case QUEUE_ORDERED_FLUSH:
  276. q->ordered = flag;
  277. if (!q->flush_rq)
  278. q->flush_rq = kmem_cache_alloc(request_cachep,
  279. GFP_KERNEL);
  280. break;
  281. default:
  282. printk("blk_queue_ordered: bad value %d\n", flag);
  283. break;
  284. }
  285. }
  286. EXPORT_SYMBOL(blk_queue_ordered);
  287. /**
  288. * blk_queue_issue_flush_fn - set function for issuing a flush
  289. * @q: the request queue
  290. * @iff: the function to be called issuing the flush
  291. *
  292. * Description:
  293. * If a driver supports issuing a flush command, the support is notified
  294. * to the block layer by defining it through this call.
  295. *
  296. **/
  297. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  298. {
  299. q->issue_flush_fn = iff;
  300. }
  301. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  302. /*
  303. * Cache flushing for ordered writes handling
  304. */
  305. static void blk_pre_flush_end_io(struct request *flush_rq)
  306. {
  307. struct request *rq = flush_rq->end_io_data;
  308. request_queue_t *q = rq->q;
  309. elv_completed_request(q, flush_rq);
  310. rq->flags |= REQ_BAR_PREFLUSH;
  311. if (!flush_rq->errors)
  312. elv_requeue_request(q, rq);
  313. else {
  314. q->end_flush_fn(q, flush_rq);
  315. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  316. q->request_fn(q);
  317. }
  318. }
  319. static void blk_post_flush_end_io(struct request *flush_rq)
  320. {
  321. struct request *rq = flush_rq->end_io_data;
  322. request_queue_t *q = rq->q;
  323. elv_completed_request(q, flush_rq);
  324. rq->flags |= REQ_BAR_POSTFLUSH;
  325. q->end_flush_fn(q, flush_rq);
  326. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  327. q->request_fn(q);
  328. }
  329. struct request *blk_start_pre_flush(request_queue_t *q, struct request *rq)
  330. {
  331. struct request *flush_rq = q->flush_rq;
  332. BUG_ON(!blk_barrier_rq(rq));
  333. if (test_and_set_bit(QUEUE_FLAG_FLUSH, &q->queue_flags))
  334. return NULL;
  335. rq_init(q, flush_rq);
  336. flush_rq->elevator_private = NULL;
  337. flush_rq->flags = REQ_BAR_FLUSH;
  338. flush_rq->rq_disk = rq->rq_disk;
  339. flush_rq->rl = NULL;
  340. /*
  341. * prepare_flush returns 0 if no flush is needed, just mark both
  342. * pre and post flush as done in that case
  343. */
  344. if (!q->prepare_flush_fn(q, flush_rq)) {
  345. rq->flags |= REQ_BAR_PREFLUSH | REQ_BAR_POSTFLUSH;
  346. clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
  347. return rq;
  348. }
  349. /*
  350. * some drivers dequeue requests right away, some only after io
  351. * completion. make sure the request is dequeued.
  352. */
  353. if (!list_empty(&rq->queuelist))
  354. blkdev_dequeue_request(rq);
  355. flush_rq->end_io_data = rq;
  356. flush_rq->end_io = blk_pre_flush_end_io;
  357. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  358. return flush_rq;
  359. }
  360. static void blk_start_post_flush(request_queue_t *q, struct request *rq)
  361. {
  362. struct request *flush_rq = q->flush_rq;
  363. BUG_ON(!blk_barrier_rq(rq));
  364. rq_init(q, flush_rq);
  365. flush_rq->elevator_private = NULL;
  366. flush_rq->flags = REQ_BAR_FLUSH;
  367. flush_rq->rq_disk = rq->rq_disk;
  368. flush_rq->rl = NULL;
  369. if (q->prepare_flush_fn(q, flush_rq)) {
  370. flush_rq->end_io_data = rq;
  371. flush_rq->end_io = blk_post_flush_end_io;
  372. __elv_add_request(q, flush_rq, ELEVATOR_INSERT_FRONT, 0);
  373. q->request_fn(q);
  374. }
  375. }
  376. static inline int blk_check_end_barrier(request_queue_t *q, struct request *rq,
  377. int sectors)
  378. {
  379. if (sectors > rq->nr_sectors)
  380. sectors = rq->nr_sectors;
  381. rq->nr_sectors -= sectors;
  382. return rq->nr_sectors;
  383. }
  384. static int __blk_complete_barrier_rq(request_queue_t *q, struct request *rq,
  385. int sectors, int queue_locked)
  386. {
  387. if (q->ordered != QUEUE_ORDERED_FLUSH)
  388. return 0;
  389. if (!blk_fs_request(rq) || !blk_barrier_rq(rq))
  390. return 0;
  391. if (blk_barrier_postflush(rq))
  392. return 0;
  393. if (!blk_check_end_barrier(q, rq, sectors)) {
  394. unsigned long flags = 0;
  395. if (!queue_locked)
  396. spin_lock_irqsave(q->queue_lock, flags);
  397. blk_start_post_flush(q, rq);
  398. if (!queue_locked)
  399. spin_unlock_irqrestore(q->queue_lock, flags);
  400. }
  401. return 1;
  402. }
  403. /**
  404. * blk_complete_barrier_rq - complete possible barrier request
  405. * @q: the request queue for the device
  406. * @rq: the request
  407. * @sectors: number of sectors to complete
  408. *
  409. * Description:
  410. * Used in driver end_io handling to determine whether to postpone
  411. * completion of a barrier request until a post flush has been done. This
  412. * is the unlocked variant, used if the caller doesn't already hold the
  413. * queue lock.
  414. **/
  415. int blk_complete_barrier_rq(request_queue_t *q, struct request *rq, int sectors)
  416. {
  417. return __blk_complete_barrier_rq(q, rq, sectors, 0);
  418. }
  419. EXPORT_SYMBOL(blk_complete_barrier_rq);
  420. /**
  421. * blk_complete_barrier_rq_locked - complete possible barrier request
  422. * @q: the request queue for the device
  423. * @rq: the request
  424. * @sectors: number of sectors to complete
  425. *
  426. * Description:
  427. * See blk_complete_barrier_rq(). This variant must be used if the caller
  428. * holds the queue lock.
  429. **/
  430. int blk_complete_barrier_rq_locked(request_queue_t *q, struct request *rq,
  431. int sectors)
  432. {
  433. return __blk_complete_barrier_rq(q, rq, sectors, 1);
  434. }
  435. EXPORT_SYMBOL(blk_complete_barrier_rq_locked);
  436. /**
  437. * blk_queue_bounce_limit - set bounce buffer limit for queue
  438. * @q: the request queue for the device
  439. * @dma_addr: bus address limit
  440. *
  441. * Description:
  442. * Different hardware can have different requirements as to what pages
  443. * it can do I/O directly to. A low level driver can call
  444. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  445. * buffers for doing I/O to pages residing above @page. By default
  446. * the block layer sets this to the highest numbered "low" memory page.
  447. **/
  448. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  449. {
  450. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  451. /*
  452. * set appropriate bounce gfp mask -- unfortunately we don't have a
  453. * full 4GB zone, so we have to resort to low memory for any bounces.
  454. * ISA has its own < 16MB zone.
  455. */
  456. if (bounce_pfn < blk_max_low_pfn) {
  457. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  458. init_emergency_isa_pool();
  459. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  460. } else
  461. q->bounce_gfp = GFP_NOIO;
  462. q->bounce_pfn = bounce_pfn;
  463. }
  464. EXPORT_SYMBOL(blk_queue_bounce_limit);
  465. /**
  466. * blk_queue_max_sectors - set max sectors for a request for this queue
  467. * @q: the request queue for the device
  468. * @max_sectors: max sectors in the usual 512b unit
  469. *
  470. * Description:
  471. * Enables a low level driver to set an upper limit on the size of
  472. * received requests.
  473. **/
  474. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  475. {
  476. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  477. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  478. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  479. }
  480. q->max_sectors = q->max_hw_sectors = max_sectors;
  481. }
  482. EXPORT_SYMBOL(blk_queue_max_sectors);
  483. /**
  484. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  485. * @q: the request queue for the device
  486. * @max_segments: max number of segments
  487. *
  488. * Description:
  489. * Enables a low level driver to set an upper limit on the number of
  490. * physical data segments in a request. This would be the largest sized
  491. * scatter list the driver could handle.
  492. **/
  493. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  494. {
  495. if (!max_segments) {
  496. max_segments = 1;
  497. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  498. }
  499. q->max_phys_segments = max_segments;
  500. }
  501. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  502. /**
  503. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  504. * @q: the request queue for the device
  505. * @max_segments: max number of segments
  506. *
  507. * Description:
  508. * Enables a low level driver to set an upper limit on the number of
  509. * hw data segments in a request. This would be the largest number of
  510. * address/length pairs the host adapter can actually give as once
  511. * to the device.
  512. **/
  513. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  514. {
  515. if (!max_segments) {
  516. max_segments = 1;
  517. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  518. }
  519. q->max_hw_segments = max_segments;
  520. }
  521. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  522. /**
  523. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  524. * @q: the request queue for the device
  525. * @max_size: max size of segment in bytes
  526. *
  527. * Description:
  528. * Enables a low level driver to set an upper limit on the size of a
  529. * coalesced segment
  530. **/
  531. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  532. {
  533. if (max_size < PAGE_CACHE_SIZE) {
  534. max_size = PAGE_CACHE_SIZE;
  535. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  536. }
  537. q->max_segment_size = max_size;
  538. }
  539. EXPORT_SYMBOL(blk_queue_max_segment_size);
  540. /**
  541. * blk_queue_hardsect_size - set hardware sector size for the queue
  542. * @q: the request queue for the device
  543. * @size: the hardware sector size, in bytes
  544. *
  545. * Description:
  546. * This should typically be set to the lowest possible sector size
  547. * that the hardware can operate on (possible without reverting to
  548. * even internal read-modify-write operations). Usually the default
  549. * of 512 covers most hardware.
  550. **/
  551. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  552. {
  553. q->hardsect_size = size;
  554. }
  555. EXPORT_SYMBOL(blk_queue_hardsect_size);
  556. /*
  557. * Returns the minimum that is _not_ zero, unless both are zero.
  558. */
  559. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  560. /**
  561. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  562. * @t: the stacking driver (top)
  563. * @b: the underlying device (bottom)
  564. **/
  565. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  566. {
  567. /* zero is "infinity" */
  568. t->max_sectors = t->max_hw_sectors =
  569. min_not_zero(t->max_sectors,b->max_sectors);
  570. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  571. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  572. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  573. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  574. }
  575. EXPORT_SYMBOL(blk_queue_stack_limits);
  576. /**
  577. * blk_queue_segment_boundary - set boundary rules for segment merging
  578. * @q: the request queue for the device
  579. * @mask: the memory boundary mask
  580. **/
  581. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  582. {
  583. if (mask < PAGE_CACHE_SIZE - 1) {
  584. mask = PAGE_CACHE_SIZE - 1;
  585. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  586. }
  587. q->seg_boundary_mask = mask;
  588. }
  589. EXPORT_SYMBOL(blk_queue_segment_boundary);
  590. /**
  591. * blk_queue_dma_alignment - set dma length and memory alignment
  592. * @q: the request queue for the device
  593. * @mask: alignment mask
  594. *
  595. * description:
  596. * set required memory and length aligment for direct dma transactions.
  597. * this is used when buiding direct io requests for the queue.
  598. *
  599. **/
  600. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  601. {
  602. q->dma_alignment = mask;
  603. }
  604. EXPORT_SYMBOL(blk_queue_dma_alignment);
  605. /**
  606. * blk_queue_find_tag - find a request by its tag and queue
  607. *
  608. * @q: The request queue for the device
  609. * @tag: The tag of the request
  610. *
  611. * Notes:
  612. * Should be used when a device returns a tag and you want to match
  613. * it with a request.
  614. *
  615. * no locks need be held.
  616. **/
  617. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  618. {
  619. struct blk_queue_tag *bqt = q->queue_tags;
  620. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  621. return NULL;
  622. return bqt->tag_index[tag];
  623. }
  624. EXPORT_SYMBOL(blk_queue_find_tag);
  625. /**
  626. * __blk_queue_free_tags - release tag maintenance info
  627. * @q: the request queue for the device
  628. *
  629. * Notes:
  630. * blk_cleanup_queue() will take care of calling this function, if tagging
  631. * has been used. So there's no need to call this directly.
  632. **/
  633. static void __blk_queue_free_tags(request_queue_t *q)
  634. {
  635. struct blk_queue_tag *bqt = q->queue_tags;
  636. if (!bqt)
  637. return;
  638. if (atomic_dec_and_test(&bqt->refcnt)) {
  639. BUG_ON(bqt->busy);
  640. BUG_ON(!list_empty(&bqt->busy_list));
  641. kfree(bqt->tag_index);
  642. bqt->tag_index = NULL;
  643. kfree(bqt->tag_map);
  644. bqt->tag_map = NULL;
  645. kfree(bqt);
  646. }
  647. q->queue_tags = NULL;
  648. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  649. }
  650. /**
  651. * blk_queue_free_tags - release tag maintenance info
  652. * @q: the request queue for the device
  653. *
  654. * Notes:
  655. * This is used to disabled tagged queuing to a device, yet leave
  656. * queue in function.
  657. **/
  658. void blk_queue_free_tags(request_queue_t *q)
  659. {
  660. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  661. }
  662. EXPORT_SYMBOL(blk_queue_free_tags);
  663. static int
  664. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  665. {
  666. struct request **tag_index;
  667. unsigned long *tag_map;
  668. int nr_ulongs;
  669. if (depth > q->nr_requests * 2) {
  670. depth = q->nr_requests * 2;
  671. printk(KERN_ERR "%s: adjusted depth to %d\n",
  672. __FUNCTION__, depth);
  673. }
  674. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  675. if (!tag_index)
  676. goto fail;
  677. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  678. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  679. if (!tag_map)
  680. goto fail;
  681. memset(tag_index, 0, depth * sizeof(struct request *));
  682. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  683. tags->real_max_depth = depth;
  684. tags->max_depth = depth;
  685. tags->tag_index = tag_index;
  686. tags->tag_map = tag_map;
  687. return 0;
  688. fail:
  689. kfree(tag_index);
  690. return -ENOMEM;
  691. }
  692. /**
  693. * blk_queue_init_tags - initialize the queue tag info
  694. * @q: the request queue for the device
  695. * @depth: the maximum queue depth supported
  696. * @tags: the tag to use
  697. **/
  698. int blk_queue_init_tags(request_queue_t *q, int depth,
  699. struct blk_queue_tag *tags)
  700. {
  701. int rc;
  702. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  703. if (!tags && !q->queue_tags) {
  704. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  705. if (!tags)
  706. goto fail;
  707. if (init_tag_map(q, tags, depth))
  708. goto fail;
  709. INIT_LIST_HEAD(&tags->busy_list);
  710. tags->busy = 0;
  711. atomic_set(&tags->refcnt, 1);
  712. } else if (q->queue_tags) {
  713. if ((rc = blk_queue_resize_tags(q, depth)))
  714. return rc;
  715. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  716. return 0;
  717. } else
  718. atomic_inc(&tags->refcnt);
  719. /*
  720. * assign it, all done
  721. */
  722. q->queue_tags = tags;
  723. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  724. return 0;
  725. fail:
  726. kfree(tags);
  727. return -ENOMEM;
  728. }
  729. EXPORT_SYMBOL(blk_queue_init_tags);
  730. /**
  731. * blk_queue_resize_tags - change the queueing depth
  732. * @q: the request queue for the device
  733. * @new_depth: the new max command queueing depth
  734. *
  735. * Notes:
  736. * Must be called with the queue lock held.
  737. **/
  738. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  739. {
  740. struct blk_queue_tag *bqt = q->queue_tags;
  741. struct request **tag_index;
  742. unsigned long *tag_map;
  743. int max_depth, nr_ulongs;
  744. if (!bqt)
  745. return -ENXIO;
  746. /*
  747. * if we already have large enough real_max_depth. just
  748. * adjust max_depth. *NOTE* as requests with tag value
  749. * between new_depth and real_max_depth can be in-flight, tag
  750. * map can not be shrunk blindly here.
  751. */
  752. if (new_depth <= bqt->real_max_depth) {
  753. bqt->max_depth = new_depth;
  754. return 0;
  755. }
  756. /*
  757. * save the old state info, so we can copy it back
  758. */
  759. tag_index = bqt->tag_index;
  760. tag_map = bqt->tag_map;
  761. max_depth = bqt->real_max_depth;
  762. if (init_tag_map(q, bqt, new_depth))
  763. return -ENOMEM;
  764. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  765. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  766. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  767. kfree(tag_index);
  768. kfree(tag_map);
  769. return 0;
  770. }
  771. EXPORT_SYMBOL(blk_queue_resize_tags);
  772. /**
  773. * blk_queue_end_tag - end tag operations for a request
  774. * @q: the request queue for the device
  775. * @rq: the request that has completed
  776. *
  777. * Description:
  778. * Typically called when end_that_request_first() returns 0, meaning
  779. * all transfers have been done for a request. It's important to call
  780. * this function before end_that_request_last(), as that will put the
  781. * request back on the free list thus corrupting the internal tag list.
  782. *
  783. * Notes:
  784. * queue lock must be held.
  785. **/
  786. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  787. {
  788. struct blk_queue_tag *bqt = q->queue_tags;
  789. int tag = rq->tag;
  790. BUG_ON(tag == -1);
  791. if (unlikely(tag >= bqt->real_max_depth))
  792. /*
  793. * This can happen after tag depth has been reduced.
  794. * FIXME: how about a warning or info message here?
  795. */
  796. return;
  797. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  798. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  799. __FUNCTION__, tag);
  800. return;
  801. }
  802. list_del_init(&rq->queuelist);
  803. rq->flags &= ~REQ_QUEUED;
  804. rq->tag = -1;
  805. if (unlikely(bqt->tag_index[tag] == NULL))
  806. printk(KERN_ERR "%s: tag %d is missing\n",
  807. __FUNCTION__, tag);
  808. bqt->tag_index[tag] = NULL;
  809. bqt->busy--;
  810. }
  811. EXPORT_SYMBOL(blk_queue_end_tag);
  812. /**
  813. * blk_queue_start_tag - find a free tag and assign it
  814. * @q: the request queue for the device
  815. * @rq: the block request that needs tagging
  816. *
  817. * Description:
  818. * This can either be used as a stand-alone helper, or possibly be
  819. * assigned as the queue &prep_rq_fn (in which case &struct request
  820. * automagically gets a tag assigned). Note that this function
  821. * assumes that any type of request can be queued! if this is not
  822. * true for your device, you must check the request type before
  823. * calling this function. The request will also be removed from
  824. * the request queue, so it's the drivers responsibility to readd
  825. * it if it should need to be restarted for some reason.
  826. *
  827. * Notes:
  828. * queue lock must be held.
  829. **/
  830. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  831. {
  832. struct blk_queue_tag *bqt = q->queue_tags;
  833. int tag;
  834. if (unlikely((rq->flags & REQ_QUEUED))) {
  835. printk(KERN_ERR
  836. "%s: request %p for device [%s] already tagged %d",
  837. __FUNCTION__, rq,
  838. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  839. BUG();
  840. }
  841. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  842. if (tag >= bqt->max_depth)
  843. return 1;
  844. __set_bit(tag, bqt->tag_map);
  845. rq->flags |= REQ_QUEUED;
  846. rq->tag = tag;
  847. bqt->tag_index[tag] = rq;
  848. blkdev_dequeue_request(rq);
  849. list_add(&rq->queuelist, &bqt->busy_list);
  850. bqt->busy++;
  851. return 0;
  852. }
  853. EXPORT_SYMBOL(blk_queue_start_tag);
  854. /**
  855. * blk_queue_invalidate_tags - invalidate all pending tags
  856. * @q: the request queue for the device
  857. *
  858. * Description:
  859. * Hardware conditions may dictate a need to stop all pending requests.
  860. * In this case, we will safely clear the block side of the tag queue and
  861. * readd all requests to the request queue in the right order.
  862. *
  863. * Notes:
  864. * queue lock must be held.
  865. **/
  866. void blk_queue_invalidate_tags(request_queue_t *q)
  867. {
  868. struct blk_queue_tag *bqt = q->queue_tags;
  869. struct list_head *tmp, *n;
  870. struct request *rq;
  871. list_for_each_safe(tmp, n, &bqt->busy_list) {
  872. rq = list_entry_rq(tmp);
  873. if (rq->tag == -1) {
  874. printk(KERN_ERR
  875. "%s: bad tag found on list\n", __FUNCTION__);
  876. list_del_init(&rq->queuelist);
  877. rq->flags &= ~REQ_QUEUED;
  878. } else
  879. blk_queue_end_tag(q, rq);
  880. rq->flags &= ~REQ_STARTED;
  881. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  882. }
  883. }
  884. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  885. static char *rq_flags[] = {
  886. "REQ_RW",
  887. "REQ_FAILFAST",
  888. "REQ_SORTED",
  889. "REQ_SOFTBARRIER",
  890. "REQ_HARDBARRIER",
  891. "REQ_CMD",
  892. "REQ_NOMERGE",
  893. "REQ_STARTED",
  894. "REQ_DONTPREP",
  895. "REQ_QUEUED",
  896. "REQ_ELVPRIV",
  897. "REQ_PC",
  898. "REQ_BLOCK_PC",
  899. "REQ_SENSE",
  900. "REQ_FAILED",
  901. "REQ_QUIET",
  902. "REQ_SPECIAL",
  903. "REQ_DRIVE_CMD",
  904. "REQ_DRIVE_TASK",
  905. "REQ_DRIVE_TASKFILE",
  906. "REQ_PREEMPT",
  907. "REQ_PM_SUSPEND",
  908. "REQ_PM_RESUME",
  909. "REQ_PM_SHUTDOWN",
  910. };
  911. void blk_dump_rq_flags(struct request *rq, char *msg)
  912. {
  913. int bit;
  914. printk("%s: dev %s: flags = ", msg,
  915. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  916. bit = 0;
  917. do {
  918. if (rq->flags & (1 << bit))
  919. printk("%s ", rq_flags[bit]);
  920. bit++;
  921. } while (bit < __REQ_NR_BITS);
  922. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  923. rq->nr_sectors,
  924. rq->current_nr_sectors);
  925. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  926. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  927. printk("cdb: ");
  928. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  929. printk("%02x ", rq->cmd[bit]);
  930. printk("\n");
  931. }
  932. }
  933. EXPORT_SYMBOL(blk_dump_rq_flags);
  934. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  935. {
  936. struct bio_vec *bv, *bvprv = NULL;
  937. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  938. int high, highprv = 1;
  939. if (unlikely(!bio->bi_io_vec))
  940. return;
  941. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  942. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  943. bio_for_each_segment(bv, bio, i) {
  944. /*
  945. * the trick here is making sure that a high page is never
  946. * considered part of another segment, since that might
  947. * change with the bounce page.
  948. */
  949. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  950. if (high || highprv)
  951. goto new_hw_segment;
  952. if (cluster) {
  953. if (seg_size + bv->bv_len > q->max_segment_size)
  954. goto new_segment;
  955. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  956. goto new_segment;
  957. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  958. goto new_segment;
  959. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  960. goto new_hw_segment;
  961. seg_size += bv->bv_len;
  962. hw_seg_size += bv->bv_len;
  963. bvprv = bv;
  964. continue;
  965. }
  966. new_segment:
  967. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  968. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  969. hw_seg_size += bv->bv_len;
  970. } else {
  971. new_hw_segment:
  972. if (hw_seg_size > bio->bi_hw_front_size)
  973. bio->bi_hw_front_size = hw_seg_size;
  974. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  975. nr_hw_segs++;
  976. }
  977. nr_phys_segs++;
  978. bvprv = bv;
  979. seg_size = bv->bv_len;
  980. highprv = high;
  981. }
  982. if (hw_seg_size > bio->bi_hw_back_size)
  983. bio->bi_hw_back_size = hw_seg_size;
  984. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  985. bio->bi_hw_front_size = hw_seg_size;
  986. bio->bi_phys_segments = nr_phys_segs;
  987. bio->bi_hw_segments = nr_hw_segs;
  988. bio->bi_flags |= (1 << BIO_SEG_VALID);
  989. }
  990. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  991. struct bio *nxt)
  992. {
  993. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  994. return 0;
  995. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  996. return 0;
  997. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  998. return 0;
  999. /*
  1000. * bio and nxt are contigous in memory, check if the queue allows
  1001. * these two to be merged into one
  1002. */
  1003. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1004. return 1;
  1005. return 0;
  1006. }
  1007. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1008. struct bio *nxt)
  1009. {
  1010. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1011. blk_recount_segments(q, bio);
  1012. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1013. blk_recount_segments(q, nxt);
  1014. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1015. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1016. return 0;
  1017. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1018. return 0;
  1019. return 1;
  1020. }
  1021. /*
  1022. * map a request to scatterlist, return number of sg entries setup. Caller
  1023. * must make sure sg can hold rq->nr_phys_segments entries
  1024. */
  1025. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1026. {
  1027. struct bio_vec *bvec, *bvprv;
  1028. struct bio *bio;
  1029. int nsegs, i, cluster;
  1030. nsegs = 0;
  1031. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1032. /*
  1033. * for each bio in rq
  1034. */
  1035. bvprv = NULL;
  1036. rq_for_each_bio(bio, rq) {
  1037. /*
  1038. * for each segment in bio
  1039. */
  1040. bio_for_each_segment(bvec, bio, i) {
  1041. int nbytes = bvec->bv_len;
  1042. if (bvprv && cluster) {
  1043. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1044. goto new_segment;
  1045. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1046. goto new_segment;
  1047. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1048. goto new_segment;
  1049. sg[nsegs - 1].length += nbytes;
  1050. } else {
  1051. new_segment:
  1052. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1053. sg[nsegs].page = bvec->bv_page;
  1054. sg[nsegs].length = nbytes;
  1055. sg[nsegs].offset = bvec->bv_offset;
  1056. nsegs++;
  1057. }
  1058. bvprv = bvec;
  1059. } /* segments in bio */
  1060. } /* bios in rq */
  1061. return nsegs;
  1062. }
  1063. EXPORT_SYMBOL(blk_rq_map_sg);
  1064. /*
  1065. * the standard queue merge functions, can be overridden with device
  1066. * specific ones if so desired
  1067. */
  1068. static inline int ll_new_mergeable(request_queue_t *q,
  1069. struct request *req,
  1070. struct bio *bio)
  1071. {
  1072. int nr_phys_segs = bio_phys_segments(q, bio);
  1073. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1074. req->flags |= REQ_NOMERGE;
  1075. if (req == q->last_merge)
  1076. q->last_merge = NULL;
  1077. return 0;
  1078. }
  1079. /*
  1080. * A hw segment is just getting larger, bump just the phys
  1081. * counter.
  1082. */
  1083. req->nr_phys_segments += nr_phys_segs;
  1084. return 1;
  1085. }
  1086. static inline int ll_new_hw_segment(request_queue_t *q,
  1087. struct request *req,
  1088. struct bio *bio)
  1089. {
  1090. int nr_hw_segs = bio_hw_segments(q, bio);
  1091. int nr_phys_segs = bio_phys_segments(q, bio);
  1092. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1093. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1094. req->flags |= REQ_NOMERGE;
  1095. if (req == q->last_merge)
  1096. q->last_merge = NULL;
  1097. return 0;
  1098. }
  1099. /*
  1100. * This will form the start of a new hw segment. Bump both
  1101. * counters.
  1102. */
  1103. req->nr_hw_segments += nr_hw_segs;
  1104. req->nr_phys_segments += nr_phys_segs;
  1105. return 1;
  1106. }
  1107. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1108. struct bio *bio)
  1109. {
  1110. int len;
  1111. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1112. req->flags |= REQ_NOMERGE;
  1113. if (req == q->last_merge)
  1114. q->last_merge = NULL;
  1115. return 0;
  1116. }
  1117. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1118. blk_recount_segments(q, req->biotail);
  1119. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1120. blk_recount_segments(q, bio);
  1121. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1122. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1123. !BIOVEC_VIRT_OVERSIZE(len)) {
  1124. int mergeable = ll_new_mergeable(q, req, bio);
  1125. if (mergeable) {
  1126. if (req->nr_hw_segments == 1)
  1127. req->bio->bi_hw_front_size = len;
  1128. if (bio->bi_hw_segments == 1)
  1129. bio->bi_hw_back_size = len;
  1130. }
  1131. return mergeable;
  1132. }
  1133. return ll_new_hw_segment(q, req, bio);
  1134. }
  1135. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1136. struct bio *bio)
  1137. {
  1138. int len;
  1139. if (req->nr_sectors + bio_sectors(bio) > q->max_sectors) {
  1140. req->flags |= REQ_NOMERGE;
  1141. if (req == q->last_merge)
  1142. q->last_merge = NULL;
  1143. return 0;
  1144. }
  1145. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1146. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1147. blk_recount_segments(q, bio);
  1148. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1149. blk_recount_segments(q, req->bio);
  1150. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1151. !BIOVEC_VIRT_OVERSIZE(len)) {
  1152. int mergeable = ll_new_mergeable(q, req, bio);
  1153. if (mergeable) {
  1154. if (bio->bi_hw_segments == 1)
  1155. bio->bi_hw_front_size = len;
  1156. if (req->nr_hw_segments == 1)
  1157. req->biotail->bi_hw_back_size = len;
  1158. }
  1159. return mergeable;
  1160. }
  1161. return ll_new_hw_segment(q, req, bio);
  1162. }
  1163. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1164. struct request *next)
  1165. {
  1166. int total_phys_segments;
  1167. int total_hw_segments;
  1168. /*
  1169. * First check if the either of the requests are re-queued
  1170. * requests. Can't merge them if they are.
  1171. */
  1172. if (req->special || next->special)
  1173. return 0;
  1174. /*
  1175. * Will it become too large?
  1176. */
  1177. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1178. return 0;
  1179. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1180. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1181. total_phys_segments--;
  1182. if (total_phys_segments > q->max_phys_segments)
  1183. return 0;
  1184. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1185. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1186. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1187. /*
  1188. * propagate the combined length to the end of the requests
  1189. */
  1190. if (req->nr_hw_segments == 1)
  1191. req->bio->bi_hw_front_size = len;
  1192. if (next->nr_hw_segments == 1)
  1193. next->biotail->bi_hw_back_size = len;
  1194. total_hw_segments--;
  1195. }
  1196. if (total_hw_segments > q->max_hw_segments)
  1197. return 0;
  1198. /* Merge is OK... */
  1199. req->nr_phys_segments = total_phys_segments;
  1200. req->nr_hw_segments = total_hw_segments;
  1201. return 1;
  1202. }
  1203. /*
  1204. * "plug" the device if there are no outstanding requests: this will
  1205. * force the transfer to start only after we have put all the requests
  1206. * on the list.
  1207. *
  1208. * This is called with interrupts off and no requests on the queue and
  1209. * with the queue lock held.
  1210. */
  1211. void blk_plug_device(request_queue_t *q)
  1212. {
  1213. WARN_ON(!irqs_disabled());
  1214. /*
  1215. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1216. * which will restart the queueing
  1217. */
  1218. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1219. return;
  1220. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1221. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1222. }
  1223. EXPORT_SYMBOL(blk_plug_device);
  1224. /*
  1225. * remove the queue from the plugged list, if present. called with
  1226. * queue lock held and interrupts disabled.
  1227. */
  1228. int blk_remove_plug(request_queue_t *q)
  1229. {
  1230. WARN_ON(!irqs_disabled());
  1231. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1232. return 0;
  1233. del_timer(&q->unplug_timer);
  1234. return 1;
  1235. }
  1236. EXPORT_SYMBOL(blk_remove_plug);
  1237. /*
  1238. * remove the plug and let it rip..
  1239. */
  1240. void __generic_unplug_device(request_queue_t *q)
  1241. {
  1242. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1243. return;
  1244. if (!blk_remove_plug(q))
  1245. return;
  1246. q->request_fn(q);
  1247. }
  1248. EXPORT_SYMBOL(__generic_unplug_device);
  1249. /**
  1250. * generic_unplug_device - fire a request queue
  1251. * @q: The &request_queue_t in question
  1252. *
  1253. * Description:
  1254. * Linux uses plugging to build bigger requests queues before letting
  1255. * the device have at them. If a queue is plugged, the I/O scheduler
  1256. * is still adding and merging requests on the queue. Once the queue
  1257. * gets unplugged, the request_fn defined for the queue is invoked and
  1258. * transfers started.
  1259. **/
  1260. void generic_unplug_device(request_queue_t *q)
  1261. {
  1262. spin_lock_irq(q->queue_lock);
  1263. __generic_unplug_device(q);
  1264. spin_unlock_irq(q->queue_lock);
  1265. }
  1266. EXPORT_SYMBOL(generic_unplug_device);
  1267. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1268. struct page *page)
  1269. {
  1270. request_queue_t *q = bdi->unplug_io_data;
  1271. /*
  1272. * devices don't necessarily have an ->unplug_fn defined
  1273. */
  1274. if (q->unplug_fn)
  1275. q->unplug_fn(q);
  1276. }
  1277. static void blk_unplug_work(void *data)
  1278. {
  1279. request_queue_t *q = data;
  1280. q->unplug_fn(q);
  1281. }
  1282. static void blk_unplug_timeout(unsigned long data)
  1283. {
  1284. request_queue_t *q = (request_queue_t *)data;
  1285. kblockd_schedule_work(&q->unplug_work);
  1286. }
  1287. /**
  1288. * blk_start_queue - restart a previously stopped queue
  1289. * @q: The &request_queue_t in question
  1290. *
  1291. * Description:
  1292. * blk_start_queue() will clear the stop flag on the queue, and call
  1293. * the request_fn for the queue if it was in a stopped state when
  1294. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1295. **/
  1296. void blk_start_queue(request_queue_t *q)
  1297. {
  1298. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1299. /*
  1300. * one level of recursion is ok and is much faster than kicking
  1301. * the unplug handling
  1302. */
  1303. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1304. q->request_fn(q);
  1305. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1306. } else {
  1307. blk_plug_device(q);
  1308. kblockd_schedule_work(&q->unplug_work);
  1309. }
  1310. }
  1311. EXPORT_SYMBOL(blk_start_queue);
  1312. /**
  1313. * blk_stop_queue - stop a queue
  1314. * @q: The &request_queue_t in question
  1315. *
  1316. * Description:
  1317. * The Linux block layer assumes that a block driver will consume all
  1318. * entries on the request queue when the request_fn strategy is called.
  1319. * Often this will not happen, because of hardware limitations (queue
  1320. * depth settings). If a device driver gets a 'queue full' response,
  1321. * or if it simply chooses not to queue more I/O at one point, it can
  1322. * call this function to prevent the request_fn from being called until
  1323. * the driver has signalled it's ready to go again. This happens by calling
  1324. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1325. **/
  1326. void blk_stop_queue(request_queue_t *q)
  1327. {
  1328. blk_remove_plug(q);
  1329. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1330. }
  1331. EXPORT_SYMBOL(blk_stop_queue);
  1332. /**
  1333. * blk_sync_queue - cancel any pending callbacks on a queue
  1334. * @q: the queue
  1335. *
  1336. * Description:
  1337. * The block layer may perform asynchronous callback activity
  1338. * on a queue, such as calling the unplug function after a timeout.
  1339. * A block device may call blk_sync_queue to ensure that any
  1340. * such activity is cancelled, thus allowing it to release resources
  1341. * the the callbacks might use. The caller must already have made sure
  1342. * that its ->make_request_fn will not re-add plugging prior to calling
  1343. * this function.
  1344. *
  1345. */
  1346. void blk_sync_queue(struct request_queue *q)
  1347. {
  1348. del_timer_sync(&q->unplug_timer);
  1349. kblockd_flush();
  1350. }
  1351. EXPORT_SYMBOL(blk_sync_queue);
  1352. /**
  1353. * blk_run_queue - run a single device queue
  1354. * @q: The queue to run
  1355. */
  1356. void blk_run_queue(struct request_queue *q)
  1357. {
  1358. unsigned long flags;
  1359. spin_lock_irqsave(q->queue_lock, flags);
  1360. blk_remove_plug(q);
  1361. if (!elv_queue_empty(q))
  1362. q->request_fn(q);
  1363. spin_unlock_irqrestore(q->queue_lock, flags);
  1364. }
  1365. EXPORT_SYMBOL(blk_run_queue);
  1366. /**
  1367. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1368. * @q: the request queue to be released
  1369. *
  1370. * Description:
  1371. * blk_cleanup_queue is the pair to blk_init_queue() or
  1372. * blk_queue_make_request(). It should be called when a request queue is
  1373. * being released; typically when a block device is being de-registered.
  1374. * Currently, its primary task it to free all the &struct request
  1375. * structures that were allocated to the queue and the queue itself.
  1376. *
  1377. * Caveat:
  1378. * Hopefully the low level driver will have finished any
  1379. * outstanding requests first...
  1380. **/
  1381. void blk_cleanup_queue(request_queue_t * q)
  1382. {
  1383. struct request_list *rl = &q->rq;
  1384. if (!atomic_dec_and_test(&q->refcnt))
  1385. return;
  1386. if (q->elevator)
  1387. elevator_exit(q->elevator);
  1388. blk_sync_queue(q);
  1389. if (rl->rq_pool)
  1390. mempool_destroy(rl->rq_pool);
  1391. if (q->queue_tags)
  1392. __blk_queue_free_tags(q);
  1393. blk_queue_ordered(q, QUEUE_ORDERED_NONE);
  1394. kmem_cache_free(requestq_cachep, q);
  1395. }
  1396. EXPORT_SYMBOL(blk_cleanup_queue);
  1397. static int blk_init_free_list(request_queue_t *q)
  1398. {
  1399. struct request_list *rl = &q->rq;
  1400. rl->count[READ] = rl->count[WRITE] = 0;
  1401. rl->starved[READ] = rl->starved[WRITE] = 0;
  1402. rl->elvpriv = 0;
  1403. init_waitqueue_head(&rl->wait[READ]);
  1404. init_waitqueue_head(&rl->wait[WRITE]);
  1405. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1406. mempool_free_slab, request_cachep, q->node);
  1407. if (!rl->rq_pool)
  1408. return -ENOMEM;
  1409. return 0;
  1410. }
  1411. static int __make_request(request_queue_t *, struct bio *);
  1412. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1413. {
  1414. return blk_alloc_queue_node(gfp_mask, -1);
  1415. }
  1416. EXPORT_SYMBOL(blk_alloc_queue);
  1417. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1418. {
  1419. request_queue_t *q;
  1420. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1421. if (!q)
  1422. return NULL;
  1423. memset(q, 0, sizeof(*q));
  1424. init_timer(&q->unplug_timer);
  1425. atomic_set(&q->refcnt, 1);
  1426. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1427. q->backing_dev_info.unplug_io_data = q;
  1428. return q;
  1429. }
  1430. EXPORT_SYMBOL(blk_alloc_queue_node);
  1431. /**
  1432. * blk_init_queue - prepare a request queue for use with a block device
  1433. * @rfn: The function to be called to process requests that have been
  1434. * placed on the queue.
  1435. * @lock: Request queue spin lock
  1436. *
  1437. * Description:
  1438. * If a block device wishes to use the standard request handling procedures,
  1439. * which sorts requests and coalesces adjacent requests, then it must
  1440. * call blk_init_queue(). The function @rfn will be called when there
  1441. * are requests on the queue that need to be processed. If the device
  1442. * supports plugging, then @rfn may not be called immediately when requests
  1443. * are available on the queue, but may be called at some time later instead.
  1444. * Plugged queues are generally unplugged when a buffer belonging to one
  1445. * of the requests on the queue is needed, or due to memory pressure.
  1446. *
  1447. * @rfn is not required, or even expected, to remove all requests off the
  1448. * queue, but only as many as it can handle at a time. If it does leave
  1449. * requests on the queue, it is responsible for arranging that the requests
  1450. * get dealt with eventually.
  1451. *
  1452. * The queue spin lock must be held while manipulating the requests on the
  1453. * request queue.
  1454. *
  1455. * Function returns a pointer to the initialized request queue, or NULL if
  1456. * it didn't succeed.
  1457. *
  1458. * Note:
  1459. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1460. * when the block device is deactivated (such as at module unload).
  1461. **/
  1462. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1463. {
  1464. return blk_init_queue_node(rfn, lock, -1);
  1465. }
  1466. EXPORT_SYMBOL(blk_init_queue);
  1467. request_queue_t *
  1468. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1469. {
  1470. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1471. if (!q)
  1472. return NULL;
  1473. q->node = node_id;
  1474. if (blk_init_free_list(q))
  1475. goto out_init;
  1476. /*
  1477. * if caller didn't supply a lock, they get per-queue locking with
  1478. * our embedded lock
  1479. */
  1480. if (!lock) {
  1481. spin_lock_init(&q->__queue_lock);
  1482. lock = &q->__queue_lock;
  1483. }
  1484. q->request_fn = rfn;
  1485. q->back_merge_fn = ll_back_merge_fn;
  1486. q->front_merge_fn = ll_front_merge_fn;
  1487. q->merge_requests_fn = ll_merge_requests_fn;
  1488. q->prep_rq_fn = NULL;
  1489. q->unplug_fn = generic_unplug_device;
  1490. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1491. q->queue_lock = lock;
  1492. blk_queue_segment_boundary(q, 0xffffffff);
  1493. blk_queue_make_request(q, __make_request);
  1494. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1495. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1496. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1497. /*
  1498. * all done
  1499. */
  1500. if (!elevator_init(q, NULL)) {
  1501. blk_queue_congestion_threshold(q);
  1502. return q;
  1503. }
  1504. blk_cleanup_queue(q);
  1505. out_init:
  1506. kmem_cache_free(requestq_cachep, q);
  1507. return NULL;
  1508. }
  1509. EXPORT_SYMBOL(blk_init_queue_node);
  1510. int blk_get_queue(request_queue_t *q)
  1511. {
  1512. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1513. atomic_inc(&q->refcnt);
  1514. return 0;
  1515. }
  1516. return 1;
  1517. }
  1518. EXPORT_SYMBOL(blk_get_queue);
  1519. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1520. {
  1521. if (rq->flags & REQ_ELVPRIV)
  1522. elv_put_request(q, rq);
  1523. mempool_free(rq, q->rq.rq_pool);
  1524. }
  1525. static inline struct request *
  1526. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1527. int priv, gfp_t gfp_mask)
  1528. {
  1529. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1530. if (!rq)
  1531. return NULL;
  1532. /*
  1533. * first three bits are identical in rq->flags and bio->bi_rw,
  1534. * see bio.h and blkdev.h
  1535. */
  1536. rq->flags = rw;
  1537. if (priv) {
  1538. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1539. mempool_free(rq, q->rq.rq_pool);
  1540. return NULL;
  1541. }
  1542. rq->flags |= REQ_ELVPRIV;
  1543. }
  1544. return rq;
  1545. }
  1546. /*
  1547. * ioc_batching returns true if the ioc is a valid batching request and
  1548. * should be given priority access to a request.
  1549. */
  1550. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1551. {
  1552. if (!ioc)
  1553. return 0;
  1554. /*
  1555. * Make sure the process is able to allocate at least 1 request
  1556. * even if the batch times out, otherwise we could theoretically
  1557. * lose wakeups.
  1558. */
  1559. return ioc->nr_batch_requests == q->nr_batching ||
  1560. (ioc->nr_batch_requests > 0
  1561. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1562. }
  1563. /*
  1564. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1565. * will cause the process to be a "batcher" on all queues in the system. This
  1566. * is the behaviour we want though - once it gets a wakeup it should be given
  1567. * a nice run.
  1568. */
  1569. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1570. {
  1571. if (!ioc || ioc_batching(q, ioc))
  1572. return;
  1573. ioc->nr_batch_requests = q->nr_batching;
  1574. ioc->last_waited = jiffies;
  1575. }
  1576. static void __freed_request(request_queue_t *q, int rw)
  1577. {
  1578. struct request_list *rl = &q->rq;
  1579. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1580. clear_queue_congested(q, rw);
  1581. if (rl->count[rw] + 1 <= q->nr_requests) {
  1582. if (waitqueue_active(&rl->wait[rw]))
  1583. wake_up(&rl->wait[rw]);
  1584. blk_clear_queue_full(q, rw);
  1585. }
  1586. }
  1587. /*
  1588. * A request has just been released. Account for it, update the full and
  1589. * congestion status, wake up any waiters. Called under q->queue_lock.
  1590. */
  1591. static void freed_request(request_queue_t *q, int rw, int priv)
  1592. {
  1593. struct request_list *rl = &q->rq;
  1594. rl->count[rw]--;
  1595. if (priv)
  1596. rl->elvpriv--;
  1597. __freed_request(q, rw);
  1598. if (unlikely(rl->starved[rw ^ 1]))
  1599. __freed_request(q, rw ^ 1);
  1600. }
  1601. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1602. /*
  1603. * Get a free request, queue_lock must be held.
  1604. * Returns NULL on failure, with queue_lock held.
  1605. * Returns !NULL on success, with queue_lock *not held*.
  1606. */
  1607. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1608. gfp_t gfp_mask)
  1609. {
  1610. struct request *rq = NULL;
  1611. struct request_list *rl = &q->rq;
  1612. struct io_context *ioc = current_io_context(GFP_ATOMIC);
  1613. int priv;
  1614. if (rl->count[rw]+1 >= q->nr_requests) {
  1615. /*
  1616. * The queue will fill after this allocation, so set it as
  1617. * full, and mark this process as "batching". This process
  1618. * will be allowed to complete a batch of requests, others
  1619. * will be blocked.
  1620. */
  1621. if (!blk_queue_full(q, rw)) {
  1622. ioc_set_batching(q, ioc);
  1623. blk_set_queue_full(q, rw);
  1624. }
  1625. }
  1626. switch (elv_may_queue(q, rw, bio)) {
  1627. case ELV_MQUEUE_NO:
  1628. goto rq_starved;
  1629. case ELV_MQUEUE_MAY:
  1630. break;
  1631. case ELV_MQUEUE_MUST:
  1632. goto get_rq;
  1633. }
  1634. if (blk_queue_full(q, rw) && !ioc_batching(q, ioc)) {
  1635. /*
  1636. * The queue is full and the allocating process is not a
  1637. * "batcher", and not exempted by the IO scheduler
  1638. */
  1639. goto out;
  1640. }
  1641. get_rq:
  1642. /*
  1643. * Only allow batching queuers to allocate up to 50% over the defined
  1644. * limit of requests, otherwise we could have thousands of requests
  1645. * allocated with any setting of ->nr_requests
  1646. */
  1647. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1648. goto out;
  1649. rl->count[rw]++;
  1650. rl->starved[rw] = 0;
  1651. if (rl->count[rw] >= queue_congestion_on_threshold(q))
  1652. set_queue_congested(q, rw);
  1653. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1654. if (priv)
  1655. rl->elvpriv++;
  1656. spin_unlock_irq(q->queue_lock);
  1657. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1658. if (!rq) {
  1659. /*
  1660. * Allocation failed presumably due to memory. Undo anything
  1661. * we might have messed up.
  1662. *
  1663. * Allocating task should really be put onto the front of the
  1664. * wait queue, but this is pretty rare.
  1665. */
  1666. spin_lock_irq(q->queue_lock);
  1667. freed_request(q, rw, priv);
  1668. /*
  1669. * in the very unlikely event that allocation failed and no
  1670. * requests for this direction was pending, mark us starved
  1671. * so that freeing of a request in the other direction will
  1672. * notice us. another possible fix would be to split the
  1673. * rq mempool into READ and WRITE
  1674. */
  1675. rq_starved:
  1676. if (unlikely(rl->count[rw] == 0))
  1677. rl->starved[rw] = 1;
  1678. goto out;
  1679. }
  1680. if (ioc_batching(q, ioc))
  1681. ioc->nr_batch_requests--;
  1682. rq_init(q, rq);
  1683. rq->rl = rl;
  1684. out:
  1685. return rq;
  1686. }
  1687. /*
  1688. * No available requests for this queue, unplug the device and wait for some
  1689. * requests to become available.
  1690. *
  1691. * Called with q->queue_lock held, and returns with it unlocked.
  1692. */
  1693. static struct request *get_request_wait(request_queue_t *q, int rw,
  1694. struct bio *bio)
  1695. {
  1696. struct request *rq;
  1697. rq = get_request(q, rw, bio, GFP_NOIO);
  1698. while (!rq) {
  1699. DEFINE_WAIT(wait);
  1700. struct request_list *rl = &q->rq;
  1701. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1702. TASK_UNINTERRUPTIBLE);
  1703. rq = get_request(q, rw, bio, GFP_NOIO);
  1704. if (!rq) {
  1705. struct io_context *ioc;
  1706. __generic_unplug_device(q);
  1707. spin_unlock_irq(q->queue_lock);
  1708. io_schedule();
  1709. /*
  1710. * After sleeping, we become a "batching" process and
  1711. * will be able to allocate at least one request, and
  1712. * up to a big batch of them for a small period time.
  1713. * See ioc_batching, ioc_set_batching
  1714. */
  1715. ioc = current_io_context(GFP_NOIO);
  1716. ioc_set_batching(q, ioc);
  1717. spin_lock_irq(q->queue_lock);
  1718. }
  1719. finish_wait(&rl->wait[rw], &wait);
  1720. }
  1721. return rq;
  1722. }
  1723. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1724. {
  1725. struct request *rq;
  1726. BUG_ON(rw != READ && rw != WRITE);
  1727. spin_lock_irq(q->queue_lock);
  1728. if (gfp_mask & __GFP_WAIT) {
  1729. rq = get_request_wait(q, rw, NULL);
  1730. } else {
  1731. rq = get_request(q, rw, NULL, gfp_mask);
  1732. if (!rq)
  1733. spin_unlock_irq(q->queue_lock);
  1734. }
  1735. /* q->queue_lock is unlocked at this point */
  1736. return rq;
  1737. }
  1738. EXPORT_SYMBOL(blk_get_request);
  1739. /**
  1740. * blk_requeue_request - put a request back on queue
  1741. * @q: request queue where request should be inserted
  1742. * @rq: request to be inserted
  1743. *
  1744. * Description:
  1745. * Drivers often keep queueing requests until the hardware cannot accept
  1746. * more, when that condition happens we need to put the request back
  1747. * on the queue. Must be called with queue lock held.
  1748. */
  1749. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1750. {
  1751. if (blk_rq_tagged(rq))
  1752. blk_queue_end_tag(q, rq);
  1753. elv_requeue_request(q, rq);
  1754. }
  1755. EXPORT_SYMBOL(blk_requeue_request);
  1756. /**
  1757. * blk_insert_request - insert a special request in to a request queue
  1758. * @q: request queue where request should be inserted
  1759. * @rq: request to be inserted
  1760. * @at_head: insert request at head or tail of queue
  1761. * @data: private data
  1762. *
  1763. * Description:
  1764. * Many block devices need to execute commands asynchronously, so they don't
  1765. * block the whole kernel from preemption during request execution. This is
  1766. * accomplished normally by inserting aritficial requests tagged as
  1767. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1768. * scheduled for actual execution by the request queue.
  1769. *
  1770. * We have the option of inserting the head or the tail of the queue.
  1771. * Typically we use the tail for new ioctls and so forth. We use the head
  1772. * of the queue for things like a QUEUE_FULL message from a device, or a
  1773. * host that is unable to accept a particular command.
  1774. */
  1775. void blk_insert_request(request_queue_t *q, struct request *rq,
  1776. int at_head, void *data)
  1777. {
  1778. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1779. unsigned long flags;
  1780. /*
  1781. * tell I/O scheduler that this isn't a regular read/write (ie it
  1782. * must not attempt merges on this) and that it acts as a soft
  1783. * barrier
  1784. */
  1785. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1786. rq->special = data;
  1787. spin_lock_irqsave(q->queue_lock, flags);
  1788. /*
  1789. * If command is tagged, release the tag
  1790. */
  1791. if (blk_rq_tagged(rq))
  1792. blk_queue_end_tag(q, rq);
  1793. drive_stat_acct(rq, rq->nr_sectors, 1);
  1794. __elv_add_request(q, rq, where, 0);
  1795. if (blk_queue_plugged(q))
  1796. __generic_unplug_device(q);
  1797. else
  1798. q->request_fn(q);
  1799. spin_unlock_irqrestore(q->queue_lock, flags);
  1800. }
  1801. EXPORT_SYMBOL(blk_insert_request);
  1802. /**
  1803. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1804. * @q: request queue where request should be inserted
  1805. * @rq: request structure to fill
  1806. * @ubuf: the user buffer
  1807. * @len: length of user data
  1808. *
  1809. * Description:
  1810. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1811. * a kernel bounce buffer is used.
  1812. *
  1813. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1814. * still in process context.
  1815. *
  1816. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1817. * before being submitted to the device, as pages mapped may be out of
  1818. * reach. It's the callers responsibility to make sure this happens. The
  1819. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1820. * unmapping.
  1821. */
  1822. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1823. unsigned int len)
  1824. {
  1825. unsigned long uaddr;
  1826. struct bio *bio;
  1827. int reading;
  1828. if (len > (q->max_sectors << 9))
  1829. return -EINVAL;
  1830. if (!len || !ubuf)
  1831. return -EINVAL;
  1832. reading = rq_data_dir(rq) == READ;
  1833. /*
  1834. * if alignment requirement is satisfied, map in user pages for
  1835. * direct dma. else, set up kernel bounce buffers
  1836. */
  1837. uaddr = (unsigned long) ubuf;
  1838. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1839. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1840. else
  1841. bio = bio_copy_user(q, uaddr, len, reading);
  1842. if (!IS_ERR(bio)) {
  1843. rq->bio = rq->biotail = bio;
  1844. blk_rq_bio_prep(q, rq, bio);
  1845. rq->buffer = rq->data = NULL;
  1846. rq->data_len = len;
  1847. return 0;
  1848. }
  1849. /*
  1850. * bio is the err-ptr
  1851. */
  1852. return PTR_ERR(bio);
  1853. }
  1854. EXPORT_SYMBOL(blk_rq_map_user);
  1855. /**
  1856. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1857. * @q: request queue where request should be inserted
  1858. * @rq: request to map data to
  1859. * @iov: pointer to the iovec
  1860. * @iov_count: number of elements in the iovec
  1861. *
  1862. * Description:
  1863. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1864. * a kernel bounce buffer is used.
  1865. *
  1866. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1867. * still in process context.
  1868. *
  1869. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1870. * before being submitted to the device, as pages mapped may be out of
  1871. * reach. It's the callers responsibility to make sure this happens. The
  1872. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1873. * unmapping.
  1874. */
  1875. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1876. struct sg_iovec *iov, int iov_count)
  1877. {
  1878. struct bio *bio;
  1879. if (!iov || iov_count <= 0)
  1880. return -EINVAL;
  1881. /* we don't allow misaligned data like bio_map_user() does. If the
  1882. * user is using sg, they're expected to know the alignment constraints
  1883. * and respect them accordingly */
  1884. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1885. if (IS_ERR(bio))
  1886. return PTR_ERR(bio);
  1887. rq->bio = rq->biotail = bio;
  1888. blk_rq_bio_prep(q, rq, bio);
  1889. rq->buffer = rq->data = NULL;
  1890. rq->data_len = bio->bi_size;
  1891. return 0;
  1892. }
  1893. EXPORT_SYMBOL(blk_rq_map_user_iov);
  1894. /**
  1895. * blk_rq_unmap_user - unmap a request with user data
  1896. * @bio: bio to be unmapped
  1897. * @ulen: length of user buffer
  1898. *
  1899. * Description:
  1900. * Unmap a bio previously mapped by blk_rq_map_user().
  1901. */
  1902. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  1903. {
  1904. int ret = 0;
  1905. if (bio) {
  1906. if (bio_flagged(bio, BIO_USER_MAPPED))
  1907. bio_unmap_user(bio);
  1908. else
  1909. ret = bio_uncopy_user(bio);
  1910. }
  1911. return 0;
  1912. }
  1913. EXPORT_SYMBOL(blk_rq_unmap_user);
  1914. /**
  1915. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  1916. * @q: request queue where request should be inserted
  1917. * @rq: request to fill
  1918. * @kbuf: the kernel buffer
  1919. * @len: length of user data
  1920. * @gfp_mask: memory allocation flags
  1921. */
  1922. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  1923. unsigned int len, gfp_t gfp_mask)
  1924. {
  1925. struct bio *bio;
  1926. if (len > (q->max_sectors << 9))
  1927. return -EINVAL;
  1928. if (!len || !kbuf)
  1929. return -EINVAL;
  1930. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  1931. if (IS_ERR(bio))
  1932. return PTR_ERR(bio);
  1933. if (rq_data_dir(rq) == WRITE)
  1934. bio->bi_rw |= (1 << BIO_RW);
  1935. rq->bio = rq->biotail = bio;
  1936. blk_rq_bio_prep(q, rq, bio);
  1937. rq->buffer = rq->data = NULL;
  1938. rq->data_len = len;
  1939. return 0;
  1940. }
  1941. EXPORT_SYMBOL(blk_rq_map_kern);
  1942. /**
  1943. * blk_execute_rq_nowait - insert a request into queue for execution
  1944. * @q: queue to insert the request in
  1945. * @bd_disk: matching gendisk
  1946. * @rq: request to insert
  1947. * @at_head: insert request at head or tail of queue
  1948. * @done: I/O completion handler
  1949. *
  1950. * Description:
  1951. * Insert a fully prepared request at the back of the io scheduler queue
  1952. * for execution. Don't wait for completion.
  1953. */
  1954. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  1955. struct request *rq, int at_head,
  1956. void (*done)(struct request *))
  1957. {
  1958. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1959. rq->rq_disk = bd_disk;
  1960. rq->flags |= REQ_NOMERGE;
  1961. rq->end_io = done;
  1962. elv_add_request(q, rq, where, 1);
  1963. generic_unplug_device(q);
  1964. }
  1965. /**
  1966. * blk_execute_rq - insert a request into queue for execution
  1967. * @q: queue to insert the request in
  1968. * @bd_disk: matching gendisk
  1969. * @rq: request to insert
  1970. * @at_head: insert request at head or tail of queue
  1971. *
  1972. * Description:
  1973. * Insert a fully prepared request at the back of the io scheduler queue
  1974. * for execution and wait for completion.
  1975. */
  1976. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  1977. struct request *rq, int at_head)
  1978. {
  1979. DECLARE_COMPLETION(wait);
  1980. char sense[SCSI_SENSE_BUFFERSIZE];
  1981. int err = 0;
  1982. /*
  1983. * we need an extra reference to the request, so we can look at
  1984. * it after io completion
  1985. */
  1986. rq->ref_count++;
  1987. if (!rq->sense) {
  1988. memset(sense, 0, sizeof(sense));
  1989. rq->sense = sense;
  1990. rq->sense_len = 0;
  1991. }
  1992. rq->waiting = &wait;
  1993. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  1994. wait_for_completion(&wait);
  1995. rq->waiting = NULL;
  1996. if (rq->errors)
  1997. err = -EIO;
  1998. return err;
  1999. }
  2000. EXPORT_SYMBOL(blk_execute_rq);
  2001. /**
  2002. * blkdev_issue_flush - queue a flush
  2003. * @bdev: blockdev to issue flush for
  2004. * @error_sector: error sector
  2005. *
  2006. * Description:
  2007. * Issue a flush for the block device in question. Caller can supply
  2008. * room for storing the error offset in case of a flush error, if they
  2009. * wish to. Caller must run wait_for_completion() on its own.
  2010. */
  2011. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2012. {
  2013. request_queue_t *q;
  2014. if (bdev->bd_disk == NULL)
  2015. return -ENXIO;
  2016. q = bdev_get_queue(bdev);
  2017. if (!q)
  2018. return -ENXIO;
  2019. if (!q->issue_flush_fn)
  2020. return -EOPNOTSUPP;
  2021. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2022. }
  2023. EXPORT_SYMBOL(blkdev_issue_flush);
  2024. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2025. {
  2026. int rw = rq_data_dir(rq);
  2027. if (!blk_fs_request(rq) || !rq->rq_disk)
  2028. return;
  2029. if (rw == READ) {
  2030. __disk_stat_add(rq->rq_disk, read_sectors, nr_sectors);
  2031. if (!new_io)
  2032. __disk_stat_inc(rq->rq_disk, read_merges);
  2033. } else if (rw == WRITE) {
  2034. __disk_stat_add(rq->rq_disk, write_sectors, nr_sectors);
  2035. if (!new_io)
  2036. __disk_stat_inc(rq->rq_disk, write_merges);
  2037. }
  2038. if (new_io) {
  2039. disk_round_stats(rq->rq_disk);
  2040. rq->rq_disk->in_flight++;
  2041. }
  2042. }
  2043. /*
  2044. * add-request adds a request to the linked list.
  2045. * queue lock is held and interrupts disabled, as we muck with the
  2046. * request queue list.
  2047. */
  2048. static inline void add_request(request_queue_t * q, struct request * req)
  2049. {
  2050. drive_stat_acct(req, req->nr_sectors, 1);
  2051. if (q->activity_fn)
  2052. q->activity_fn(q->activity_data, rq_data_dir(req));
  2053. /*
  2054. * elevator indicated where it wants this request to be
  2055. * inserted at elevator_merge time
  2056. */
  2057. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2058. }
  2059. /*
  2060. * disk_round_stats() - Round off the performance stats on a struct
  2061. * disk_stats.
  2062. *
  2063. * The average IO queue length and utilisation statistics are maintained
  2064. * by observing the current state of the queue length and the amount of
  2065. * time it has been in this state for.
  2066. *
  2067. * Normally, that accounting is done on IO completion, but that can result
  2068. * in more than a second's worth of IO being accounted for within any one
  2069. * second, leading to >100% utilisation. To deal with that, we call this
  2070. * function to do a round-off before returning the results when reading
  2071. * /proc/diskstats. This accounts immediately for all queue usage up to
  2072. * the current jiffies and restarts the counters again.
  2073. */
  2074. void disk_round_stats(struct gendisk *disk)
  2075. {
  2076. unsigned long now = jiffies;
  2077. if (now == disk->stamp)
  2078. return;
  2079. if (disk->in_flight) {
  2080. __disk_stat_add(disk, time_in_queue,
  2081. disk->in_flight * (now - disk->stamp));
  2082. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2083. }
  2084. disk->stamp = now;
  2085. }
  2086. /*
  2087. * queue lock must be held
  2088. */
  2089. static void __blk_put_request(request_queue_t *q, struct request *req)
  2090. {
  2091. struct request_list *rl = req->rl;
  2092. if (unlikely(!q))
  2093. return;
  2094. if (unlikely(--req->ref_count))
  2095. return;
  2096. elv_completed_request(q, req);
  2097. req->rq_status = RQ_INACTIVE;
  2098. req->rl = NULL;
  2099. /*
  2100. * Request may not have originated from ll_rw_blk. if not,
  2101. * it didn't come out of our reserved rq pools
  2102. */
  2103. if (rl) {
  2104. int rw = rq_data_dir(req);
  2105. int priv = req->flags & REQ_ELVPRIV;
  2106. BUG_ON(!list_empty(&req->queuelist));
  2107. blk_free_request(q, req);
  2108. freed_request(q, rw, priv);
  2109. }
  2110. }
  2111. void blk_put_request(struct request *req)
  2112. {
  2113. unsigned long flags;
  2114. request_queue_t *q = req->q;
  2115. /*
  2116. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2117. * following if (q) test.
  2118. */
  2119. if (q) {
  2120. spin_lock_irqsave(q->queue_lock, flags);
  2121. __blk_put_request(q, req);
  2122. spin_unlock_irqrestore(q->queue_lock, flags);
  2123. }
  2124. }
  2125. EXPORT_SYMBOL(blk_put_request);
  2126. /**
  2127. * blk_end_sync_rq - executes a completion event on a request
  2128. * @rq: request to complete
  2129. */
  2130. void blk_end_sync_rq(struct request *rq)
  2131. {
  2132. struct completion *waiting = rq->waiting;
  2133. rq->waiting = NULL;
  2134. __blk_put_request(rq->q, rq);
  2135. /*
  2136. * complete last, if this is a stack request the process (and thus
  2137. * the rq pointer) could be invalid right after this complete()
  2138. */
  2139. complete(waiting);
  2140. }
  2141. EXPORT_SYMBOL(blk_end_sync_rq);
  2142. /**
  2143. * blk_congestion_wait - wait for a queue to become uncongested
  2144. * @rw: READ or WRITE
  2145. * @timeout: timeout in jiffies
  2146. *
  2147. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2148. * If no queues are congested then just wait for the next request to be
  2149. * returned.
  2150. */
  2151. long blk_congestion_wait(int rw, long timeout)
  2152. {
  2153. long ret;
  2154. DEFINE_WAIT(wait);
  2155. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2156. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2157. ret = io_schedule_timeout(timeout);
  2158. finish_wait(wqh, &wait);
  2159. return ret;
  2160. }
  2161. EXPORT_SYMBOL(blk_congestion_wait);
  2162. /*
  2163. * Has to be called with the request spinlock acquired
  2164. */
  2165. static int attempt_merge(request_queue_t *q, struct request *req,
  2166. struct request *next)
  2167. {
  2168. if (!rq_mergeable(req) || !rq_mergeable(next))
  2169. return 0;
  2170. /*
  2171. * not contigious
  2172. */
  2173. if (req->sector + req->nr_sectors != next->sector)
  2174. return 0;
  2175. if (rq_data_dir(req) != rq_data_dir(next)
  2176. || req->rq_disk != next->rq_disk
  2177. || next->waiting || next->special)
  2178. return 0;
  2179. /*
  2180. * If we are allowed to merge, then append bio list
  2181. * from next to rq and release next. merge_requests_fn
  2182. * will have updated segment counts, update sector
  2183. * counts here.
  2184. */
  2185. if (!q->merge_requests_fn(q, req, next))
  2186. return 0;
  2187. /*
  2188. * At this point we have either done a back merge
  2189. * or front merge. We need the smaller start_time of
  2190. * the merged requests to be the current request
  2191. * for accounting purposes.
  2192. */
  2193. if (time_after(req->start_time, next->start_time))
  2194. req->start_time = next->start_time;
  2195. req->biotail->bi_next = next->bio;
  2196. req->biotail = next->biotail;
  2197. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2198. elv_merge_requests(q, req, next);
  2199. if (req->rq_disk) {
  2200. disk_round_stats(req->rq_disk);
  2201. req->rq_disk->in_flight--;
  2202. }
  2203. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2204. __blk_put_request(q, next);
  2205. return 1;
  2206. }
  2207. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2208. {
  2209. struct request *next = elv_latter_request(q, rq);
  2210. if (next)
  2211. return attempt_merge(q, rq, next);
  2212. return 0;
  2213. }
  2214. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2215. {
  2216. struct request *prev = elv_former_request(q, rq);
  2217. if (prev)
  2218. return attempt_merge(q, prev, rq);
  2219. return 0;
  2220. }
  2221. /**
  2222. * blk_attempt_remerge - attempt to remerge active head with next request
  2223. * @q: The &request_queue_t belonging to the device
  2224. * @rq: The head request (usually)
  2225. *
  2226. * Description:
  2227. * For head-active devices, the queue can easily be unplugged so quickly
  2228. * that proper merging is not done on the front request. This may hurt
  2229. * performance greatly for some devices. The block layer cannot safely
  2230. * do merging on that first request for these queues, but the driver can
  2231. * call this function and make it happen any way. Only the driver knows
  2232. * when it is safe to do so.
  2233. **/
  2234. void blk_attempt_remerge(request_queue_t *q, struct request *rq)
  2235. {
  2236. unsigned long flags;
  2237. spin_lock_irqsave(q->queue_lock, flags);
  2238. attempt_back_merge(q, rq);
  2239. spin_unlock_irqrestore(q->queue_lock, flags);
  2240. }
  2241. EXPORT_SYMBOL(blk_attempt_remerge);
  2242. static int __make_request(request_queue_t *q, struct bio *bio)
  2243. {
  2244. struct request *req;
  2245. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2246. unsigned short prio;
  2247. sector_t sector;
  2248. sector = bio->bi_sector;
  2249. nr_sectors = bio_sectors(bio);
  2250. cur_nr_sectors = bio_cur_sectors(bio);
  2251. prio = bio_prio(bio);
  2252. rw = bio_data_dir(bio);
  2253. sync = bio_sync(bio);
  2254. /*
  2255. * low level driver can indicate that it wants pages above a
  2256. * certain limit bounced to low memory (ie for highmem, or even
  2257. * ISA dma in theory)
  2258. */
  2259. blk_queue_bounce(q, &bio);
  2260. spin_lock_prefetch(q->queue_lock);
  2261. barrier = bio_barrier(bio);
  2262. if (unlikely(barrier) && (q->ordered == QUEUE_ORDERED_NONE)) {
  2263. err = -EOPNOTSUPP;
  2264. goto end_io;
  2265. }
  2266. spin_lock_irq(q->queue_lock);
  2267. if (unlikely(barrier) || elv_queue_empty(q))
  2268. goto get_rq;
  2269. el_ret = elv_merge(q, &req, bio);
  2270. switch (el_ret) {
  2271. case ELEVATOR_BACK_MERGE:
  2272. BUG_ON(!rq_mergeable(req));
  2273. if (!q->back_merge_fn(q, req, bio))
  2274. break;
  2275. req->biotail->bi_next = bio;
  2276. req->biotail = bio;
  2277. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2278. req->ioprio = ioprio_best(req->ioprio, prio);
  2279. drive_stat_acct(req, nr_sectors, 0);
  2280. if (!attempt_back_merge(q, req))
  2281. elv_merged_request(q, req);
  2282. goto out;
  2283. case ELEVATOR_FRONT_MERGE:
  2284. BUG_ON(!rq_mergeable(req));
  2285. if (!q->front_merge_fn(q, req, bio))
  2286. break;
  2287. bio->bi_next = req->bio;
  2288. req->bio = bio;
  2289. /*
  2290. * may not be valid. if the low level driver said
  2291. * it didn't need a bounce buffer then it better
  2292. * not touch req->buffer either...
  2293. */
  2294. req->buffer = bio_data(bio);
  2295. req->current_nr_sectors = cur_nr_sectors;
  2296. req->hard_cur_sectors = cur_nr_sectors;
  2297. req->sector = req->hard_sector = sector;
  2298. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2299. req->ioprio = ioprio_best(req->ioprio, prio);
  2300. drive_stat_acct(req, nr_sectors, 0);
  2301. if (!attempt_front_merge(q, req))
  2302. elv_merged_request(q, req);
  2303. goto out;
  2304. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2305. default:
  2306. ;
  2307. }
  2308. get_rq:
  2309. /*
  2310. * Grab a free request. This is might sleep but can not fail.
  2311. * Returns with the queue unlocked.
  2312. */
  2313. req = get_request_wait(q, rw, bio);
  2314. /*
  2315. * After dropping the lock and possibly sleeping here, our request
  2316. * may now be mergeable after it had proven unmergeable (above).
  2317. * We don't worry about that case for efficiency. It won't happen
  2318. * often, and the elevators are able to handle it.
  2319. */
  2320. req->flags |= REQ_CMD;
  2321. /*
  2322. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2323. */
  2324. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2325. req->flags |= REQ_FAILFAST;
  2326. /*
  2327. * REQ_BARRIER implies no merging, but lets make it explicit
  2328. */
  2329. if (unlikely(barrier))
  2330. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2331. req->errors = 0;
  2332. req->hard_sector = req->sector = sector;
  2333. req->hard_nr_sectors = req->nr_sectors = nr_sectors;
  2334. req->current_nr_sectors = req->hard_cur_sectors = cur_nr_sectors;
  2335. req->nr_phys_segments = bio_phys_segments(q, bio);
  2336. req->nr_hw_segments = bio_hw_segments(q, bio);
  2337. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2338. req->waiting = NULL;
  2339. req->bio = req->biotail = bio;
  2340. req->ioprio = prio;
  2341. req->rq_disk = bio->bi_bdev->bd_disk;
  2342. req->start_time = jiffies;
  2343. spin_lock_irq(q->queue_lock);
  2344. if (elv_queue_empty(q))
  2345. blk_plug_device(q);
  2346. add_request(q, req);
  2347. out:
  2348. if (sync)
  2349. __generic_unplug_device(q);
  2350. spin_unlock_irq(q->queue_lock);
  2351. return 0;
  2352. end_io:
  2353. bio_endio(bio, nr_sectors << 9, err);
  2354. return 0;
  2355. }
  2356. /*
  2357. * If bio->bi_dev is a partition, remap the location
  2358. */
  2359. static inline void blk_partition_remap(struct bio *bio)
  2360. {
  2361. struct block_device *bdev = bio->bi_bdev;
  2362. if (bdev != bdev->bd_contains) {
  2363. struct hd_struct *p = bdev->bd_part;
  2364. switch (bio_data_dir(bio)) {
  2365. case READ:
  2366. p->read_sectors += bio_sectors(bio);
  2367. p->reads++;
  2368. break;
  2369. case WRITE:
  2370. p->write_sectors += bio_sectors(bio);
  2371. p->writes++;
  2372. break;
  2373. }
  2374. bio->bi_sector += p->start_sect;
  2375. bio->bi_bdev = bdev->bd_contains;
  2376. }
  2377. }
  2378. static void handle_bad_sector(struct bio *bio)
  2379. {
  2380. char b[BDEVNAME_SIZE];
  2381. printk(KERN_INFO "attempt to access beyond end of device\n");
  2382. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2383. bdevname(bio->bi_bdev, b),
  2384. bio->bi_rw,
  2385. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2386. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2387. set_bit(BIO_EOF, &bio->bi_flags);
  2388. }
  2389. /**
  2390. * generic_make_request: hand a buffer to its device driver for I/O
  2391. * @bio: The bio describing the location in memory and on the device.
  2392. *
  2393. * generic_make_request() is used to make I/O requests of block
  2394. * devices. It is passed a &struct bio, which describes the I/O that needs
  2395. * to be done.
  2396. *
  2397. * generic_make_request() does not return any status. The
  2398. * success/failure status of the request, along with notification of
  2399. * completion, is delivered asynchronously through the bio->bi_end_io
  2400. * function described (one day) else where.
  2401. *
  2402. * The caller of generic_make_request must make sure that bi_io_vec
  2403. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2404. * set to describe the device address, and the
  2405. * bi_end_io and optionally bi_private are set to describe how
  2406. * completion notification should be signaled.
  2407. *
  2408. * generic_make_request and the drivers it calls may use bi_next if this
  2409. * bio happens to be merged with someone else, and may change bi_dev and
  2410. * bi_sector for remaps as it sees fit. So the values of these fields
  2411. * should NOT be depended on after the call to generic_make_request.
  2412. */
  2413. void generic_make_request(struct bio *bio)
  2414. {
  2415. request_queue_t *q;
  2416. sector_t maxsector;
  2417. int ret, nr_sectors = bio_sectors(bio);
  2418. might_sleep();
  2419. /* Test device or partition size, when known. */
  2420. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2421. if (maxsector) {
  2422. sector_t sector = bio->bi_sector;
  2423. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2424. /*
  2425. * This may well happen - the kernel calls bread()
  2426. * without checking the size of the device, e.g., when
  2427. * mounting a device.
  2428. */
  2429. handle_bad_sector(bio);
  2430. goto end_io;
  2431. }
  2432. }
  2433. /*
  2434. * Resolve the mapping until finished. (drivers are
  2435. * still free to implement/resolve their own stacking
  2436. * by explicitly returning 0)
  2437. *
  2438. * NOTE: we don't repeat the blk_size check for each new device.
  2439. * Stacking drivers are expected to know what they are doing.
  2440. */
  2441. do {
  2442. char b[BDEVNAME_SIZE];
  2443. q = bdev_get_queue(bio->bi_bdev);
  2444. if (!q) {
  2445. printk(KERN_ERR
  2446. "generic_make_request: Trying to access "
  2447. "nonexistent block-device %s (%Lu)\n",
  2448. bdevname(bio->bi_bdev, b),
  2449. (long long) bio->bi_sector);
  2450. end_io:
  2451. bio_endio(bio, bio->bi_size, -EIO);
  2452. break;
  2453. }
  2454. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2455. printk("bio too big device %s (%u > %u)\n",
  2456. bdevname(bio->bi_bdev, b),
  2457. bio_sectors(bio),
  2458. q->max_hw_sectors);
  2459. goto end_io;
  2460. }
  2461. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2462. goto end_io;
  2463. /*
  2464. * If this device has partitions, remap block n
  2465. * of partition p to block n+start(p) of the disk.
  2466. */
  2467. blk_partition_remap(bio);
  2468. ret = q->make_request_fn(q, bio);
  2469. } while (ret);
  2470. }
  2471. EXPORT_SYMBOL(generic_make_request);
  2472. /**
  2473. * submit_bio: submit a bio to the block device layer for I/O
  2474. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2475. * @bio: The &struct bio which describes the I/O
  2476. *
  2477. * submit_bio() is very similar in purpose to generic_make_request(), and
  2478. * uses that function to do most of the work. Both are fairly rough
  2479. * interfaces, @bio must be presetup and ready for I/O.
  2480. *
  2481. */
  2482. void submit_bio(int rw, struct bio *bio)
  2483. {
  2484. int count = bio_sectors(bio);
  2485. BIO_BUG_ON(!bio->bi_size);
  2486. BIO_BUG_ON(!bio->bi_io_vec);
  2487. bio->bi_rw |= rw;
  2488. if (rw & WRITE)
  2489. mod_page_state(pgpgout, count);
  2490. else
  2491. mod_page_state(pgpgin, count);
  2492. if (unlikely(block_dump)) {
  2493. char b[BDEVNAME_SIZE];
  2494. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2495. current->comm, current->pid,
  2496. (rw & WRITE) ? "WRITE" : "READ",
  2497. (unsigned long long)bio->bi_sector,
  2498. bdevname(bio->bi_bdev,b));
  2499. }
  2500. generic_make_request(bio);
  2501. }
  2502. EXPORT_SYMBOL(submit_bio);
  2503. static void blk_recalc_rq_segments(struct request *rq)
  2504. {
  2505. struct bio *bio, *prevbio = NULL;
  2506. int nr_phys_segs, nr_hw_segs;
  2507. unsigned int phys_size, hw_size;
  2508. request_queue_t *q = rq->q;
  2509. if (!rq->bio)
  2510. return;
  2511. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2512. rq_for_each_bio(bio, rq) {
  2513. /* Force bio hw/phys segs to be recalculated. */
  2514. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2515. nr_phys_segs += bio_phys_segments(q, bio);
  2516. nr_hw_segs += bio_hw_segments(q, bio);
  2517. if (prevbio) {
  2518. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2519. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2520. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2521. pseg <= q->max_segment_size) {
  2522. nr_phys_segs--;
  2523. phys_size += prevbio->bi_size + bio->bi_size;
  2524. } else
  2525. phys_size = 0;
  2526. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2527. hseg <= q->max_segment_size) {
  2528. nr_hw_segs--;
  2529. hw_size += prevbio->bi_size + bio->bi_size;
  2530. } else
  2531. hw_size = 0;
  2532. }
  2533. prevbio = bio;
  2534. }
  2535. rq->nr_phys_segments = nr_phys_segs;
  2536. rq->nr_hw_segments = nr_hw_segs;
  2537. }
  2538. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2539. {
  2540. if (blk_fs_request(rq)) {
  2541. rq->hard_sector += nsect;
  2542. rq->hard_nr_sectors -= nsect;
  2543. /*
  2544. * Move the I/O submission pointers ahead if required.
  2545. */
  2546. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2547. (rq->sector <= rq->hard_sector)) {
  2548. rq->sector = rq->hard_sector;
  2549. rq->nr_sectors = rq->hard_nr_sectors;
  2550. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2551. rq->current_nr_sectors = rq->hard_cur_sectors;
  2552. rq->buffer = bio_data(rq->bio);
  2553. }
  2554. /*
  2555. * if total number of sectors is less than the first segment
  2556. * size, something has gone terribly wrong
  2557. */
  2558. if (rq->nr_sectors < rq->current_nr_sectors) {
  2559. printk("blk: request botched\n");
  2560. rq->nr_sectors = rq->current_nr_sectors;
  2561. }
  2562. }
  2563. }
  2564. static int __end_that_request_first(struct request *req, int uptodate,
  2565. int nr_bytes)
  2566. {
  2567. int total_bytes, bio_nbytes, error, next_idx = 0;
  2568. struct bio *bio;
  2569. /*
  2570. * extend uptodate bool to allow < 0 value to be direct io error
  2571. */
  2572. error = 0;
  2573. if (end_io_error(uptodate))
  2574. error = !uptodate ? -EIO : uptodate;
  2575. /*
  2576. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2577. * sense key with us all the way through
  2578. */
  2579. if (!blk_pc_request(req))
  2580. req->errors = 0;
  2581. if (!uptodate) {
  2582. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2583. printk("end_request: I/O error, dev %s, sector %llu\n",
  2584. req->rq_disk ? req->rq_disk->disk_name : "?",
  2585. (unsigned long long)req->sector);
  2586. }
  2587. total_bytes = bio_nbytes = 0;
  2588. while ((bio = req->bio) != NULL) {
  2589. int nbytes;
  2590. if (nr_bytes >= bio->bi_size) {
  2591. req->bio = bio->bi_next;
  2592. nbytes = bio->bi_size;
  2593. bio_endio(bio, nbytes, error);
  2594. next_idx = 0;
  2595. bio_nbytes = 0;
  2596. } else {
  2597. int idx = bio->bi_idx + next_idx;
  2598. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2599. blk_dump_rq_flags(req, "__end_that");
  2600. printk("%s: bio idx %d >= vcnt %d\n",
  2601. __FUNCTION__,
  2602. bio->bi_idx, bio->bi_vcnt);
  2603. break;
  2604. }
  2605. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2606. BIO_BUG_ON(nbytes > bio->bi_size);
  2607. /*
  2608. * not a complete bvec done
  2609. */
  2610. if (unlikely(nbytes > nr_bytes)) {
  2611. bio_nbytes += nr_bytes;
  2612. total_bytes += nr_bytes;
  2613. break;
  2614. }
  2615. /*
  2616. * advance to the next vector
  2617. */
  2618. next_idx++;
  2619. bio_nbytes += nbytes;
  2620. }
  2621. total_bytes += nbytes;
  2622. nr_bytes -= nbytes;
  2623. if ((bio = req->bio)) {
  2624. /*
  2625. * end more in this run, or just return 'not-done'
  2626. */
  2627. if (unlikely(nr_bytes <= 0))
  2628. break;
  2629. }
  2630. }
  2631. /*
  2632. * completely done
  2633. */
  2634. if (!req->bio)
  2635. return 0;
  2636. /*
  2637. * if the request wasn't completed, update state
  2638. */
  2639. if (bio_nbytes) {
  2640. bio_endio(bio, bio_nbytes, error);
  2641. bio->bi_idx += next_idx;
  2642. bio_iovec(bio)->bv_offset += nr_bytes;
  2643. bio_iovec(bio)->bv_len -= nr_bytes;
  2644. }
  2645. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2646. blk_recalc_rq_segments(req);
  2647. return 1;
  2648. }
  2649. /**
  2650. * end_that_request_first - end I/O on a request
  2651. * @req: the request being processed
  2652. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2653. * @nr_sectors: number of sectors to end I/O on
  2654. *
  2655. * Description:
  2656. * Ends I/O on a number of sectors attached to @req, and sets it up
  2657. * for the next range of segments (if any) in the cluster.
  2658. *
  2659. * Return:
  2660. * 0 - we are done with this request, call end_that_request_last()
  2661. * 1 - still buffers pending for this request
  2662. **/
  2663. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2664. {
  2665. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2666. }
  2667. EXPORT_SYMBOL(end_that_request_first);
  2668. /**
  2669. * end_that_request_chunk - end I/O on a request
  2670. * @req: the request being processed
  2671. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2672. * @nr_bytes: number of bytes to complete
  2673. *
  2674. * Description:
  2675. * Ends I/O on a number of bytes attached to @req, and sets it up
  2676. * for the next range of segments (if any). Like end_that_request_first(),
  2677. * but deals with bytes instead of sectors.
  2678. *
  2679. * Return:
  2680. * 0 - we are done with this request, call end_that_request_last()
  2681. * 1 - still buffers pending for this request
  2682. **/
  2683. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2684. {
  2685. return __end_that_request_first(req, uptodate, nr_bytes);
  2686. }
  2687. EXPORT_SYMBOL(end_that_request_chunk);
  2688. /*
  2689. * queue lock must be held
  2690. */
  2691. void end_that_request_last(struct request *req)
  2692. {
  2693. struct gendisk *disk = req->rq_disk;
  2694. if (unlikely(laptop_mode) && blk_fs_request(req))
  2695. laptop_io_completion();
  2696. if (disk && blk_fs_request(req)) {
  2697. unsigned long duration = jiffies - req->start_time;
  2698. switch (rq_data_dir(req)) {
  2699. case WRITE:
  2700. __disk_stat_inc(disk, writes);
  2701. __disk_stat_add(disk, write_ticks, duration);
  2702. break;
  2703. case READ:
  2704. __disk_stat_inc(disk, reads);
  2705. __disk_stat_add(disk, read_ticks, duration);
  2706. break;
  2707. }
  2708. disk_round_stats(disk);
  2709. disk->in_flight--;
  2710. }
  2711. if (req->end_io)
  2712. req->end_io(req);
  2713. else
  2714. __blk_put_request(req->q, req);
  2715. }
  2716. EXPORT_SYMBOL(end_that_request_last);
  2717. void end_request(struct request *req, int uptodate)
  2718. {
  2719. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2720. add_disk_randomness(req->rq_disk);
  2721. blkdev_dequeue_request(req);
  2722. end_that_request_last(req);
  2723. }
  2724. }
  2725. EXPORT_SYMBOL(end_request);
  2726. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2727. {
  2728. /* first three bits are identical in rq->flags and bio->bi_rw */
  2729. rq->flags |= (bio->bi_rw & 7);
  2730. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2731. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2732. rq->current_nr_sectors = bio_cur_sectors(bio);
  2733. rq->hard_cur_sectors = rq->current_nr_sectors;
  2734. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2735. rq->buffer = bio_data(bio);
  2736. rq->bio = rq->biotail = bio;
  2737. }
  2738. EXPORT_SYMBOL(blk_rq_bio_prep);
  2739. int kblockd_schedule_work(struct work_struct *work)
  2740. {
  2741. return queue_work(kblockd_workqueue, work);
  2742. }
  2743. EXPORT_SYMBOL(kblockd_schedule_work);
  2744. void kblockd_flush(void)
  2745. {
  2746. flush_workqueue(kblockd_workqueue);
  2747. }
  2748. EXPORT_SYMBOL(kblockd_flush);
  2749. int __init blk_dev_init(void)
  2750. {
  2751. kblockd_workqueue = create_workqueue("kblockd");
  2752. if (!kblockd_workqueue)
  2753. panic("Failed to create kblockd\n");
  2754. request_cachep = kmem_cache_create("blkdev_requests",
  2755. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2756. requestq_cachep = kmem_cache_create("blkdev_queue",
  2757. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2758. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2759. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2760. blk_max_low_pfn = max_low_pfn;
  2761. blk_max_pfn = max_pfn;
  2762. return 0;
  2763. }
  2764. /*
  2765. * IO Context helper functions
  2766. */
  2767. void put_io_context(struct io_context *ioc)
  2768. {
  2769. if (ioc == NULL)
  2770. return;
  2771. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2772. if (atomic_dec_and_test(&ioc->refcount)) {
  2773. if (ioc->aic && ioc->aic->dtor)
  2774. ioc->aic->dtor(ioc->aic);
  2775. if (ioc->cic && ioc->cic->dtor)
  2776. ioc->cic->dtor(ioc->cic);
  2777. kmem_cache_free(iocontext_cachep, ioc);
  2778. }
  2779. }
  2780. EXPORT_SYMBOL(put_io_context);
  2781. /* Called by the exitting task */
  2782. void exit_io_context(void)
  2783. {
  2784. unsigned long flags;
  2785. struct io_context *ioc;
  2786. local_irq_save(flags);
  2787. task_lock(current);
  2788. ioc = current->io_context;
  2789. current->io_context = NULL;
  2790. ioc->task = NULL;
  2791. task_unlock(current);
  2792. local_irq_restore(flags);
  2793. if (ioc->aic && ioc->aic->exit)
  2794. ioc->aic->exit(ioc->aic);
  2795. if (ioc->cic && ioc->cic->exit)
  2796. ioc->cic->exit(ioc->cic);
  2797. put_io_context(ioc);
  2798. }
  2799. /*
  2800. * If the current task has no IO context then create one and initialise it.
  2801. * Otherwise, return its existing IO context.
  2802. *
  2803. * This returned IO context doesn't have a specifically elevated refcount,
  2804. * but since the current task itself holds a reference, the context can be
  2805. * used in general code, so long as it stays within `current` context.
  2806. */
  2807. struct io_context *current_io_context(gfp_t gfp_flags)
  2808. {
  2809. struct task_struct *tsk = current;
  2810. struct io_context *ret;
  2811. ret = tsk->io_context;
  2812. if (likely(ret))
  2813. return ret;
  2814. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2815. if (ret) {
  2816. atomic_set(&ret->refcount, 1);
  2817. ret->task = current;
  2818. ret->set_ioprio = NULL;
  2819. ret->last_waited = jiffies; /* doesn't matter... */
  2820. ret->nr_batch_requests = 0; /* because this is 0 */
  2821. ret->aic = NULL;
  2822. ret->cic = NULL;
  2823. tsk->io_context = ret;
  2824. }
  2825. return ret;
  2826. }
  2827. EXPORT_SYMBOL(current_io_context);
  2828. /*
  2829. * If the current task has no IO context then create one and initialise it.
  2830. * If it does have a context, take a ref on it.
  2831. *
  2832. * This is always called in the context of the task which submitted the I/O.
  2833. */
  2834. struct io_context *get_io_context(gfp_t gfp_flags)
  2835. {
  2836. struct io_context *ret;
  2837. ret = current_io_context(gfp_flags);
  2838. if (likely(ret))
  2839. atomic_inc(&ret->refcount);
  2840. return ret;
  2841. }
  2842. EXPORT_SYMBOL(get_io_context);
  2843. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2844. {
  2845. struct io_context *src = *psrc;
  2846. struct io_context *dst = *pdst;
  2847. if (src) {
  2848. BUG_ON(atomic_read(&src->refcount) == 0);
  2849. atomic_inc(&src->refcount);
  2850. put_io_context(dst);
  2851. *pdst = src;
  2852. }
  2853. }
  2854. EXPORT_SYMBOL(copy_io_context);
  2855. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2856. {
  2857. struct io_context *temp;
  2858. temp = *ioc1;
  2859. *ioc1 = *ioc2;
  2860. *ioc2 = temp;
  2861. }
  2862. EXPORT_SYMBOL(swap_io_context);
  2863. /*
  2864. * sysfs parts below
  2865. */
  2866. struct queue_sysfs_entry {
  2867. struct attribute attr;
  2868. ssize_t (*show)(struct request_queue *, char *);
  2869. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2870. };
  2871. static ssize_t
  2872. queue_var_show(unsigned int var, char *page)
  2873. {
  2874. return sprintf(page, "%d\n", var);
  2875. }
  2876. static ssize_t
  2877. queue_var_store(unsigned long *var, const char *page, size_t count)
  2878. {
  2879. char *p = (char *) page;
  2880. *var = simple_strtoul(p, &p, 10);
  2881. return count;
  2882. }
  2883. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2884. {
  2885. return queue_var_show(q->nr_requests, (page));
  2886. }
  2887. static ssize_t
  2888. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2889. {
  2890. struct request_list *rl = &q->rq;
  2891. int ret = queue_var_store(&q->nr_requests, page, count);
  2892. if (q->nr_requests < BLKDEV_MIN_RQ)
  2893. q->nr_requests = BLKDEV_MIN_RQ;
  2894. blk_queue_congestion_threshold(q);
  2895. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2896. set_queue_congested(q, READ);
  2897. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2898. clear_queue_congested(q, READ);
  2899. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2900. set_queue_congested(q, WRITE);
  2901. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2902. clear_queue_congested(q, WRITE);
  2903. if (rl->count[READ] >= q->nr_requests) {
  2904. blk_set_queue_full(q, READ);
  2905. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2906. blk_clear_queue_full(q, READ);
  2907. wake_up(&rl->wait[READ]);
  2908. }
  2909. if (rl->count[WRITE] >= q->nr_requests) {
  2910. blk_set_queue_full(q, WRITE);
  2911. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2912. blk_clear_queue_full(q, WRITE);
  2913. wake_up(&rl->wait[WRITE]);
  2914. }
  2915. return ret;
  2916. }
  2917. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2918. {
  2919. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2920. return queue_var_show(ra_kb, (page));
  2921. }
  2922. static ssize_t
  2923. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  2924. {
  2925. unsigned long ra_kb;
  2926. ssize_t ret = queue_var_store(&ra_kb, page, count);
  2927. spin_lock_irq(q->queue_lock);
  2928. if (ra_kb > (q->max_sectors >> 1))
  2929. ra_kb = (q->max_sectors >> 1);
  2930. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  2931. spin_unlock_irq(q->queue_lock);
  2932. return ret;
  2933. }
  2934. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  2935. {
  2936. int max_sectors_kb = q->max_sectors >> 1;
  2937. return queue_var_show(max_sectors_kb, (page));
  2938. }
  2939. static ssize_t
  2940. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  2941. {
  2942. unsigned long max_sectors_kb,
  2943. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  2944. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  2945. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  2946. int ra_kb;
  2947. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  2948. return -EINVAL;
  2949. /*
  2950. * Take the queue lock to update the readahead and max_sectors
  2951. * values synchronously:
  2952. */
  2953. spin_lock_irq(q->queue_lock);
  2954. /*
  2955. * Trim readahead window as well, if necessary:
  2956. */
  2957. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2958. if (ra_kb > max_sectors_kb)
  2959. q->backing_dev_info.ra_pages =
  2960. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  2961. q->max_sectors = max_sectors_kb << 1;
  2962. spin_unlock_irq(q->queue_lock);
  2963. return ret;
  2964. }
  2965. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  2966. {
  2967. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  2968. return queue_var_show(max_hw_sectors_kb, (page));
  2969. }
  2970. static struct queue_sysfs_entry queue_requests_entry = {
  2971. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  2972. .show = queue_requests_show,
  2973. .store = queue_requests_store,
  2974. };
  2975. static struct queue_sysfs_entry queue_ra_entry = {
  2976. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  2977. .show = queue_ra_show,
  2978. .store = queue_ra_store,
  2979. };
  2980. static struct queue_sysfs_entry queue_max_sectors_entry = {
  2981. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  2982. .show = queue_max_sectors_show,
  2983. .store = queue_max_sectors_store,
  2984. };
  2985. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  2986. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  2987. .show = queue_max_hw_sectors_show,
  2988. };
  2989. static struct queue_sysfs_entry queue_iosched_entry = {
  2990. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  2991. .show = elv_iosched_show,
  2992. .store = elv_iosched_store,
  2993. };
  2994. static struct attribute *default_attrs[] = {
  2995. &queue_requests_entry.attr,
  2996. &queue_ra_entry.attr,
  2997. &queue_max_hw_sectors_entry.attr,
  2998. &queue_max_sectors_entry.attr,
  2999. &queue_iosched_entry.attr,
  3000. NULL,
  3001. };
  3002. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3003. static ssize_t
  3004. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3005. {
  3006. struct queue_sysfs_entry *entry = to_queue(attr);
  3007. struct request_queue *q;
  3008. q = container_of(kobj, struct request_queue, kobj);
  3009. if (!entry->show)
  3010. return -EIO;
  3011. return entry->show(q, page);
  3012. }
  3013. static ssize_t
  3014. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3015. const char *page, size_t length)
  3016. {
  3017. struct queue_sysfs_entry *entry = to_queue(attr);
  3018. struct request_queue *q;
  3019. q = container_of(kobj, struct request_queue, kobj);
  3020. if (!entry->store)
  3021. return -EIO;
  3022. return entry->store(q, page, length);
  3023. }
  3024. static struct sysfs_ops queue_sysfs_ops = {
  3025. .show = queue_attr_show,
  3026. .store = queue_attr_store,
  3027. };
  3028. static struct kobj_type queue_ktype = {
  3029. .sysfs_ops = &queue_sysfs_ops,
  3030. .default_attrs = default_attrs,
  3031. };
  3032. int blk_register_queue(struct gendisk *disk)
  3033. {
  3034. int ret;
  3035. request_queue_t *q = disk->queue;
  3036. if (!q || !q->request_fn)
  3037. return -ENXIO;
  3038. q->kobj.parent = kobject_get(&disk->kobj);
  3039. if (!q->kobj.parent)
  3040. return -EBUSY;
  3041. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3042. q->kobj.ktype = &queue_ktype;
  3043. ret = kobject_register(&q->kobj);
  3044. if (ret < 0)
  3045. return ret;
  3046. ret = elv_register_queue(q);
  3047. if (ret) {
  3048. kobject_unregister(&q->kobj);
  3049. return ret;
  3050. }
  3051. return 0;
  3052. }
  3053. void blk_unregister_queue(struct gendisk *disk)
  3054. {
  3055. request_queue_t *q = disk->queue;
  3056. if (q && q->request_fn) {
  3057. elv_unregister_queue(q);
  3058. kobject_unregister(&q->kobj);
  3059. kobject_put(&disk->kobj);
  3060. }
  3061. }