spi-tegra.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. /*
  2. * Driver for Nvidia TEGRA spi controller.
  3. *
  4. * Copyright (C) 2010 Google, Inc.
  5. *
  6. * Author:
  7. * Erik Gilling <konkers@android.com>
  8. *
  9. * This software is licensed under the terms of the GNU General Public
  10. * License version 2, as published by the Free Software Foundation, and
  11. * may be copied, distributed, and modified under those terms.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/err.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/io.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmapool.h>
  27. #include <linux/clk.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/delay.h>
  30. #include <linux/spi/spi.h>
  31. #include <linux/dmaengine.h>
  32. #include <mach/dma.h>
  33. #define SLINK_COMMAND 0x000
  34. #define SLINK_BIT_LENGTH(x) (((x) & 0x1f) << 0)
  35. #define SLINK_WORD_SIZE(x) (((x) & 0x1f) << 5)
  36. #define SLINK_BOTH_EN (1 << 10)
  37. #define SLINK_CS_SW (1 << 11)
  38. #define SLINK_CS_VALUE (1 << 12)
  39. #define SLINK_CS_POLARITY (1 << 13)
  40. #define SLINK_IDLE_SDA_DRIVE_LOW (0 << 16)
  41. #define SLINK_IDLE_SDA_DRIVE_HIGH (1 << 16)
  42. #define SLINK_IDLE_SDA_PULL_LOW (2 << 16)
  43. #define SLINK_IDLE_SDA_PULL_HIGH (3 << 16)
  44. #define SLINK_IDLE_SDA_MASK (3 << 16)
  45. #define SLINK_CS_POLARITY1 (1 << 20)
  46. #define SLINK_CK_SDA (1 << 21)
  47. #define SLINK_CS_POLARITY2 (1 << 22)
  48. #define SLINK_CS_POLARITY3 (1 << 23)
  49. #define SLINK_IDLE_SCLK_DRIVE_LOW (0 << 24)
  50. #define SLINK_IDLE_SCLK_DRIVE_HIGH (1 << 24)
  51. #define SLINK_IDLE_SCLK_PULL_LOW (2 << 24)
  52. #define SLINK_IDLE_SCLK_PULL_HIGH (3 << 24)
  53. #define SLINK_IDLE_SCLK_MASK (3 << 24)
  54. #define SLINK_M_S (1 << 28)
  55. #define SLINK_WAIT (1 << 29)
  56. #define SLINK_GO (1 << 30)
  57. #define SLINK_ENB (1 << 31)
  58. #define SLINK_COMMAND2 0x004
  59. #define SLINK_LSBFE (1 << 0)
  60. #define SLINK_SSOE (1 << 1)
  61. #define SLINK_SPIE (1 << 4)
  62. #define SLINK_BIDIROE (1 << 6)
  63. #define SLINK_MODFEN (1 << 7)
  64. #define SLINK_INT_SIZE(x) (((x) & 0x1f) << 8)
  65. #define SLINK_CS_ACTIVE_BETWEEN (1 << 17)
  66. #define SLINK_SS_EN_CS(x) (((x) & 0x3) << 18)
  67. #define SLINK_SS_SETUP(x) (((x) & 0x3) << 20)
  68. #define SLINK_FIFO_REFILLS_0 (0 << 22)
  69. #define SLINK_FIFO_REFILLS_1 (1 << 22)
  70. #define SLINK_FIFO_REFILLS_2 (2 << 22)
  71. #define SLINK_FIFO_REFILLS_3 (3 << 22)
  72. #define SLINK_FIFO_REFILLS_MASK (3 << 22)
  73. #define SLINK_WAIT_PACK_INT(x) (((x) & 0x7) << 26)
  74. #define SLINK_SPC0 (1 << 29)
  75. #define SLINK_TXEN (1 << 30)
  76. #define SLINK_RXEN (1 << 31)
  77. #define SLINK_STATUS 0x008
  78. #define SLINK_COUNT(val) (((val) >> 0) & 0x1f)
  79. #define SLINK_WORD(val) (((val) >> 5) & 0x1f)
  80. #define SLINK_BLK_CNT(val) (((val) >> 0) & 0xffff)
  81. #define SLINK_MODF (1 << 16)
  82. #define SLINK_RX_UNF (1 << 18)
  83. #define SLINK_TX_OVF (1 << 19)
  84. #define SLINK_TX_FULL (1 << 20)
  85. #define SLINK_TX_EMPTY (1 << 21)
  86. #define SLINK_RX_FULL (1 << 22)
  87. #define SLINK_RX_EMPTY (1 << 23)
  88. #define SLINK_TX_UNF (1 << 24)
  89. #define SLINK_RX_OVF (1 << 25)
  90. #define SLINK_TX_FLUSH (1 << 26)
  91. #define SLINK_RX_FLUSH (1 << 27)
  92. #define SLINK_SCLK (1 << 28)
  93. #define SLINK_ERR (1 << 29)
  94. #define SLINK_RDY (1 << 30)
  95. #define SLINK_BSY (1 << 31)
  96. #define SLINK_MAS_DATA 0x010
  97. #define SLINK_SLAVE_DATA 0x014
  98. #define SLINK_DMA_CTL 0x018
  99. #define SLINK_DMA_BLOCK_SIZE(x) (((x) & 0xffff) << 0)
  100. #define SLINK_TX_TRIG_1 (0 << 16)
  101. #define SLINK_TX_TRIG_4 (1 << 16)
  102. #define SLINK_TX_TRIG_8 (2 << 16)
  103. #define SLINK_TX_TRIG_16 (3 << 16)
  104. #define SLINK_TX_TRIG_MASK (3 << 16)
  105. #define SLINK_RX_TRIG_1 (0 << 18)
  106. #define SLINK_RX_TRIG_4 (1 << 18)
  107. #define SLINK_RX_TRIG_8 (2 << 18)
  108. #define SLINK_RX_TRIG_16 (3 << 18)
  109. #define SLINK_RX_TRIG_MASK (3 << 18)
  110. #define SLINK_PACKED (1 << 20)
  111. #define SLINK_PACK_SIZE_4 (0 << 21)
  112. #define SLINK_PACK_SIZE_8 (1 << 21)
  113. #define SLINK_PACK_SIZE_16 (2 << 21)
  114. #define SLINK_PACK_SIZE_32 (3 << 21)
  115. #define SLINK_PACK_SIZE_MASK (3 << 21)
  116. #define SLINK_IE_TXC (1 << 26)
  117. #define SLINK_IE_RXC (1 << 27)
  118. #define SLINK_DMA_EN (1 << 31)
  119. #define SLINK_STATUS2 0x01c
  120. #define SLINK_TX_FIFO_EMPTY_COUNT(val) (((val) & 0x3f) >> 0)
  121. #define SLINK_RX_FIFO_FULL_COUNT(val) (((val) & 0x3f) >> 16)
  122. #define SLINK_TX_FIFO 0x100
  123. #define SLINK_RX_FIFO 0x180
  124. static const unsigned long spi_tegra_req_sels[] = {
  125. TEGRA_DMA_REQ_SEL_SL2B1,
  126. TEGRA_DMA_REQ_SEL_SL2B2,
  127. TEGRA_DMA_REQ_SEL_SL2B3,
  128. TEGRA_DMA_REQ_SEL_SL2B4,
  129. };
  130. #define BB_LEN 32
  131. struct spi_tegra_data {
  132. struct spi_master *master;
  133. struct platform_device *pdev;
  134. spinlock_t lock;
  135. struct clk *clk;
  136. void __iomem *base;
  137. unsigned long phys;
  138. u32 cur_speed;
  139. struct list_head queue;
  140. struct spi_transfer *cur;
  141. unsigned cur_pos;
  142. unsigned cur_len;
  143. unsigned cur_bytes_per_word;
  144. /* The tegra spi controller has a bug which causes the first word
  145. * in PIO transactions to be garbage. Since packed DMA transactions
  146. * require transfers to be 4 byte aligned we need a bounce buffer
  147. * for the generic case.
  148. */
  149. int dma_req_len;
  150. struct dma_chan *rx_dma;
  151. struct dma_slave_config sconfig;
  152. struct dma_async_tx_descriptor *rx_dma_desc;
  153. dma_cookie_t rx_cookie;
  154. u32 *rx_bb;
  155. dma_addr_t rx_bb_phys;
  156. };
  157. static void tegra_spi_rx_dma_complete(void *args);
  158. static inline unsigned long spi_tegra_readl(struct spi_tegra_data *tspi,
  159. unsigned long reg)
  160. {
  161. return readl(tspi->base + reg);
  162. }
  163. static inline void spi_tegra_writel(struct spi_tegra_data *tspi,
  164. unsigned long val,
  165. unsigned long reg)
  166. {
  167. writel(val, tspi->base + reg);
  168. }
  169. static void spi_tegra_go(struct spi_tegra_data *tspi)
  170. {
  171. unsigned long val;
  172. wmb();
  173. val = spi_tegra_readl(tspi, SLINK_DMA_CTL);
  174. val &= ~SLINK_DMA_BLOCK_SIZE(~0) & ~SLINK_DMA_EN;
  175. val |= SLINK_DMA_BLOCK_SIZE(tspi->dma_req_len / 4 - 1);
  176. spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
  177. tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma,
  178. tspi->rx_bb_phys, tspi->dma_req_len,
  179. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
  180. if (!tspi->rx_dma_desc) {
  181. dev_err(&tspi->pdev->dev, "dmaengine slave prep failed\n");
  182. return;
  183. }
  184. tspi->rx_dma_desc->callback = tegra_spi_rx_dma_complete;
  185. tspi->rx_dma_desc->callback_param = tspi;
  186. tspi->rx_cookie = dmaengine_submit(tspi->rx_dma_desc);
  187. dma_async_issue_pending(tspi->rx_dma);
  188. val |= SLINK_DMA_EN;
  189. spi_tegra_writel(tspi, val, SLINK_DMA_CTL);
  190. }
  191. static unsigned spi_tegra_fill_tx_fifo(struct spi_tegra_data *tspi,
  192. struct spi_transfer *t)
  193. {
  194. unsigned len = min(t->len - tspi->cur_pos, BB_LEN *
  195. tspi->cur_bytes_per_word);
  196. u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_pos;
  197. int i, j;
  198. unsigned long val;
  199. val = spi_tegra_readl(tspi, SLINK_COMMAND);
  200. val &= ~SLINK_WORD_SIZE(~0);
  201. val |= SLINK_WORD_SIZE(len / tspi->cur_bytes_per_word - 1);
  202. spi_tegra_writel(tspi, val, SLINK_COMMAND);
  203. for (i = 0; i < len; i += tspi->cur_bytes_per_word) {
  204. val = 0;
  205. for (j = 0; j < tspi->cur_bytes_per_word; j++)
  206. val |= tx_buf[i + j] << j * 8;
  207. spi_tegra_writel(tspi, val, SLINK_TX_FIFO);
  208. }
  209. tspi->dma_req_len = len / tspi->cur_bytes_per_word * 4;
  210. return len;
  211. }
  212. static unsigned spi_tegra_drain_rx_fifo(struct spi_tegra_data *tspi,
  213. struct spi_transfer *t)
  214. {
  215. unsigned len = tspi->cur_len;
  216. u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_pos;
  217. int i, j;
  218. unsigned long val;
  219. for (i = 0; i < len; i += tspi->cur_bytes_per_word) {
  220. val = tspi->rx_bb[i / tspi->cur_bytes_per_word];
  221. for (j = 0; j < tspi->cur_bytes_per_word; j++)
  222. rx_buf[i + j] = (val >> (j * 8)) & 0xff;
  223. }
  224. return len;
  225. }
  226. static void spi_tegra_start_transfer(struct spi_device *spi,
  227. struct spi_transfer *t)
  228. {
  229. struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
  230. u32 speed;
  231. u8 bits_per_word;
  232. unsigned long val;
  233. speed = t->speed_hz ? t->speed_hz : spi->max_speed_hz;
  234. bits_per_word = t->bits_per_word ? t->bits_per_word :
  235. spi->bits_per_word;
  236. tspi->cur_bytes_per_word = (bits_per_word - 1) / 8 + 1;
  237. if (speed != tspi->cur_speed)
  238. clk_set_rate(tspi->clk, speed);
  239. if (tspi->cur_speed == 0)
  240. clk_prepare_enable(tspi->clk);
  241. tspi->cur_speed = speed;
  242. val = spi_tegra_readl(tspi, SLINK_COMMAND2);
  243. val &= ~SLINK_SS_EN_CS(~0) | SLINK_RXEN | SLINK_TXEN;
  244. if (t->rx_buf)
  245. val |= SLINK_RXEN;
  246. if (t->tx_buf)
  247. val |= SLINK_TXEN;
  248. val |= SLINK_SS_EN_CS(spi->chip_select);
  249. val |= SLINK_SPIE;
  250. spi_tegra_writel(tspi, val, SLINK_COMMAND2);
  251. val = spi_tegra_readl(tspi, SLINK_COMMAND);
  252. val &= ~SLINK_BIT_LENGTH(~0);
  253. val |= SLINK_BIT_LENGTH(bits_per_word - 1);
  254. /* FIXME: should probably control CS manually so that we can be sure
  255. * it does not go low between transfer and to support delay_usecs
  256. * correctly.
  257. */
  258. val &= ~SLINK_IDLE_SCLK_MASK & ~SLINK_CK_SDA & ~SLINK_CS_SW;
  259. if (spi->mode & SPI_CPHA)
  260. val |= SLINK_CK_SDA;
  261. if (spi->mode & SPI_CPOL)
  262. val |= SLINK_IDLE_SCLK_DRIVE_HIGH;
  263. else
  264. val |= SLINK_IDLE_SCLK_DRIVE_LOW;
  265. val |= SLINK_M_S;
  266. spi_tegra_writel(tspi, val, SLINK_COMMAND);
  267. spi_tegra_writel(tspi, SLINK_RX_FLUSH | SLINK_TX_FLUSH, SLINK_STATUS);
  268. tspi->cur = t;
  269. tspi->cur_pos = 0;
  270. tspi->cur_len = spi_tegra_fill_tx_fifo(tspi, t);
  271. spi_tegra_go(tspi);
  272. }
  273. static void spi_tegra_start_message(struct spi_device *spi,
  274. struct spi_message *m)
  275. {
  276. struct spi_transfer *t;
  277. m->actual_length = 0;
  278. m->status = 0;
  279. t = list_first_entry(&m->transfers, struct spi_transfer, transfer_list);
  280. spi_tegra_start_transfer(spi, t);
  281. }
  282. static void handle_spi_rx_dma_complete(struct spi_tegra_data *tspi)
  283. {
  284. unsigned long flags;
  285. struct spi_message *m;
  286. struct spi_device *spi;
  287. int timeout = 0;
  288. unsigned long val;
  289. /* the SPI controller may come back with both the BSY and RDY bits
  290. * set. In this case we need to wait for the BSY bit to clear so
  291. * that we are sure the DMA is finished. 1000 reads was empirically
  292. * determined to be long enough.
  293. */
  294. while (timeout++ < 1000) {
  295. if (!(spi_tegra_readl(tspi, SLINK_STATUS) & SLINK_BSY))
  296. break;
  297. }
  298. spin_lock_irqsave(&tspi->lock, flags);
  299. val = spi_tegra_readl(tspi, SLINK_STATUS);
  300. val |= SLINK_RDY;
  301. spi_tegra_writel(tspi, val, SLINK_STATUS);
  302. m = list_first_entry(&tspi->queue, struct spi_message, queue);
  303. if (timeout >= 1000)
  304. m->status = -EIO;
  305. spi = m->state;
  306. tspi->cur_pos += spi_tegra_drain_rx_fifo(tspi, tspi->cur);
  307. m->actual_length += tspi->cur_pos;
  308. if (tspi->cur_pos < tspi->cur->len) {
  309. tspi->cur_len = spi_tegra_fill_tx_fifo(tspi, tspi->cur);
  310. spi_tegra_go(tspi);
  311. } else if (!list_is_last(&tspi->cur->transfer_list,
  312. &m->transfers)) {
  313. tspi->cur = list_first_entry(&tspi->cur->transfer_list,
  314. struct spi_transfer,
  315. transfer_list);
  316. spi_tegra_start_transfer(spi, tspi->cur);
  317. } else {
  318. list_del(&m->queue);
  319. m->complete(m->context);
  320. if (!list_empty(&tspi->queue)) {
  321. m = list_first_entry(&tspi->queue, struct spi_message,
  322. queue);
  323. spi = m->state;
  324. spi_tegra_start_message(spi, m);
  325. } else {
  326. clk_disable_unprepare(tspi->clk);
  327. tspi->cur_speed = 0;
  328. }
  329. }
  330. spin_unlock_irqrestore(&tspi->lock, flags);
  331. }
  332. static void tegra_spi_rx_dma_complete(void *args)
  333. {
  334. struct spi_tegra_data *tspi = args;
  335. handle_spi_rx_dma_complete(tspi);
  336. }
  337. static int spi_tegra_setup(struct spi_device *spi)
  338. {
  339. struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
  340. unsigned long cs_bit;
  341. unsigned long val;
  342. unsigned long flags;
  343. dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
  344. spi->bits_per_word,
  345. spi->mode & SPI_CPOL ? "" : "~",
  346. spi->mode & SPI_CPHA ? "" : "~",
  347. spi->max_speed_hz);
  348. switch (spi->chip_select) {
  349. case 0:
  350. cs_bit = SLINK_CS_POLARITY;
  351. break;
  352. case 1:
  353. cs_bit = SLINK_CS_POLARITY1;
  354. break;
  355. case 2:
  356. cs_bit = SLINK_CS_POLARITY2;
  357. break;
  358. case 4:
  359. cs_bit = SLINK_CS_POLARITY3;
  360. break;
  361. default:
  362. return -EINVAL;
  363. }
  364. spin_lock_irqsave(&tspi->lock, flags);
  365. val = spi_tegra_readl(tspi, SLINK_COMMAND);
  366. if (spi->mode & SPI_CS_HIGH)
  367. val |= cs_bit;
  368. else
  369. val &= ~cs_bit;
  370. spi_tegra_writel(tspi, val, SLINK_COMMAND);
  371. spin_unlock_irqrestore(&tspi->lock, flags);
  372. return 0;
  373. }
  374. static int spi_tegra_transfer(struct spi_device *spi, struct spi_message *m)
  375. {
  376. struct spi_tegra_data *tspi = spi_master_get_devdata(spi->master);
  377. struct spi_transfer *t;
  378. unsigned long flags;
  379. int was_empty;
  380. if (list_empty(&m->transfers) || !m->complete)
  381. return -EINVAL;
  382. list_for_each_entry(t, &m->transfers, transfer_list) {
  383. if (t->bits_per_word < 0 || t->bits_per_word > 32)
  384. return -EINVAL;
  385. if (t->len == 0)
  386. return -EINVAL;
  387. if (!t->rx_buf && !t->tx_buf)
  388. return -EINVAL;
  389. }
  390. m->state = spi;
  391. spin_lock_irqsave(&tspi->lock, flags);
  392. was_empty = list_empty(&tspi->queue);
  393. list_add_tail(&m->queue, &tspi->queue);
  394. if (was_empty)
  395. spi_tegra_start_message(spi, m);
  396. spin_unlock_irqrestore(&tspi->lock, flags);
  397. return 0;
  398. }
  399. static int __devinit spi_tegra_probe(struct platform_device *pdev)
  400. {
  401. struct spi_master *master;
  402. struct spi_tegra_data *tspi;
  403. struct resource *r;
  404. int ret;
  405. dma_cap_mask_t mask;
  406. master = spi_alloc_master(&pdev->dev, sizeof *tspi);
  407. if (master == NULL) {
  408. dev_err(&pdev->dev, "master allocation failed\n");
  409. return -ENOMEM;
  410. }
  411. /* the spi->mode bits understood by this driver: */
  412. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  413. master->bus_num = pdev->id;
  414. master->setup = spi_tegra_setup;
  415. master->transfer = spi_tegra_transfer;
  416. master->num_chipselect = 4;
  417. dev_set_drvdata(&pdev->dev, master);
  418. tspi = spi_master_get_devdata(master);
  419. tspi->master = master;
  420. tspi->pdev = pdev;
  421. spin_lock_init(&tspi->lock);
  422. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  423. if (r == NULL) {
  424. ret = -ENODEV;
  425. goto err0;
  426. }
  427. if (!request_mem_region(r->start, resource_size(r),
  428. dev_name(&pdev->dev))) {
  429. ret = -EBUSY;
  430. goto err0;
  431. }
  432. tspi->phys = r->start;
  433. tspi->base = ioremap(r->start, resource_size(r));
  434. if (!tspi->base) {
  435. dev_err(&pdev->dev, "can't ioremap iomem\n");
  436. ret = -ENOMEM;
  437. goto err1;
  438. }
  439. tspi->clk = clk_get(&pdev->dev, NULL);
  440. if (IS_ERR(tspi->clk)) {
  441. dev_err(&pdev->dev, "can not get clock\n");
  442. ret = PTR_ERR(tspi->clk);
  443. goto err2;
  444. }
  445. INIT_LIST_HEAD(&tspi->queue);
  446. dma_cap_zero(mask);
  447. dma_cap_set(DMA_SLAVE, mask);
  448. tspi->rx_dma = dma_request_channel(mask, NULL, NULL);
  449. if (!tspi->rx_dma) {
  450. dev_err(&pdev->dev, "can not allocate rx dma channel\n");
  451. ret = -ENODEV;
  452. goto err3;
  453. }
  454. tspi->rx_bb = dma_alloc_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
  455. &tspi->rx_bb_phys, GFP_KERNEL);
  456. if (!tspi->rx_bb) {
  457. dev_err(&pdev->dev, "can not allocate rx bounce buffer\n");
  458. ret = -ENOMEM;
  459. goto err4;
  460. }
  461. /* Dmaengine Dma slave config */
  462. tspi->sconfig.src_addr = tspi->phys + SLINK_RX_FIFO;
  463. tspi->sconfig.dst_addr = tspi->phys + SLINK_RX_FIFO;
  464. tspi->sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  465. tspi->sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  466. tspi->sconfig.slave_id = spi_tegra_req_sels[pdev->id];
  467. tspi->sconfig.src_maxburst = 1;
  468. tspi->sconfig.dst_maxburst = 1;
  469. ret = dmaengine_device_control(tspi->rx_dma,
  470. DMA_SLAVE_CONFIG, (unsigned long) &tspi->sconfig);
  471. if (ret < 0) {
  472. dev_err(&pdev->dev, "can not do slave configure for dma %d\n",
  473. ret);
  474. goto err4;
  475. }
  476. master->dev.of_node = pdev->dev.of_node;
  477. ret = spi_register_master(master);
  478. if (ret < 0)
  479. goto err5;
  480. return ret;
  481. err5:
  482. dma_free_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
  483. tspi->rx_bb, tspi->rx_bb_phys);
  484. err4:
  485. dma_release_channel(tspi->rx_dma);
  486. err3:
  487. clk_put(tspi->clk);
  488. err2:
  489. iounmap(tspi->base);
  490. err1:
  491. release_mem_region(r->start, resource_size(r));
  492. err0:
  493. spi_master_put(master);
  494. return ret;
  495. }
  496. static int __devexit spi_tegra_remove(struct platform_device *pdev)
  497. {
  498. struct spi_master *master;
  499. struct spi_tegra_data *tspi;
  500. struct resource *r;
  501. master = dev_get_drvdata(&pdev->dev);
  502. tspi = spi_master_get_devdata(master);
  503. spi_unregister_master(master);
  504. dma_release_channel(tspi->rx_dma);
  505. dma_free_coherent(&pdev->dev, sizeof(u32) * BB_LEN,
  506. tspi->rx_bb, tspi->rx_bb_phys);
  507. clk_put(tspi->clk);
  508. iounmap(tspi->base);
  509. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  510. release_mem_region(r->start, resource_size(r));
  511. return 0;
  512. }
  513. MODULE_ALIAS("platform:spi_tegra");
  514. #ifdef CONFIG_OF
  515. static struct of_device_id spi_tegra_of_match_table[] __devinitdata = {
  516. { .compatible = "nvidia,tegra20-spi", },
  517. {}
  518. };
  519. MODULE_DEVICE_TABLE(of, spi_tegra_of_match_table);
  520. #else /* CONFIG_OF */
  521. #define spi_tegra_of_match_table NULL
  522. #endif /* CONFIG_OF */
  523. static struct platform_driver spi_tegra_driver = {
  524. .driver = {
  525. .name = "spi_tegra",
  526. .owner = THIS_MODULE,
  527. .of_match_table = spi_tegra_of_match_table,
  528. },
  529. .probe = spi_tegra_probe,
  530. .remove = __devexit_p(spi_tegra_remove),
  531. };
  532. module_platform_driver(spi_tegra_driver);
  533. MODULE_LICENSE("GPL");