at32ap7000.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. /*
  2. * Copyright (C) 2005-2006 Atmel Corporation
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/init.h>
  10. #include <linux/platform_device.h>
  11. #include <asm/io.h>
  12. #include <asm/arch/at32ap7000.h>
  13. #include <asm/arch/board.h>
  14. #include <asm/arch/portmux.h>
  15. #include <asm/arch/sm.h>
  16. #include "clock.h"
  17. #include "pio.h"
  18. #include "sm.h"
  19. #define PBMEM(base) \
  20. { \
  21. .start = base, \
  22. .end = base + 0x3ff, \
  23. .flags = IORESOURCE_MEM, \
  24. }
  25. #define IRQ(num) \
  26. { \
  27. .start = num, \
  28. .end = num, \
  29. .flags = IORESOURCE_IRQ, \
  30. }
  31. #define NAMED_IRQ(num, _name) \
  32. { \
  33. .start = num, \
  34. .end = num, \
  35. .name = _name, \
  36. .flags = IORESOURCE_IRQ, \
  37. }
  38. #define DEFINE_DEV(_name, _id) \
  39. static struct platform_device _name##_id##_device = { \
  40. .name = #_name, \
  41. .id = _id, \
  42. .resource = _name##_id##_resource, \
  43. .num_resources = ARRAY_SIZE(_name##_id##_resource), \
  44. }
  45. #define DEFINE_DEV_DATA(_name, _id) \
  46. static struct platform_device _name##_id##_device = { \
  47. .name = #_name, \
  48. .id = _id, \
  49. .dev = { \
  50. .platform_data = &_name##_id##_data, \
  51. }, \
  52. .resource = _name##_id##_resource, \
  53. .num_resources = ARRAY_SIZE(_name##_id##_resource), \
  54. }
  55. #define select_peripheral(pin, periph, flags) \
  56. at32_select_periph(GPIO_PIN_##pin, GPIO_##periph, flags)
  57. #define DEV_CLK(_name, devname, bus, _index) \
  58. static struct clk devname##_##_name = { \
  59. .name = #_name, \
  60. .dev = &devname##_device.dev, \
  61. .parent = &bus##_clk, \
  62. .mode = bus##_clk_mode, \
  63. .get_rate = bus##_clk_get_rate, \
  64. .index = _index, \
  65. }
  66. unsigned long at32ap7000_osc_rates[3] = {
  67. [0] = 32768,
  68. /* FIXME: these are ATSTK1002-specific */
  69. [1] = 20000000,
  70. [2] = 12000000,
  71. };
  72. static unsigned long osc_get_rate(struct clk *clk)
  73. {
  74. return at32ap7000_osc_rates[clk->index];
  75. }
  76. static unsigned long pll_get_rate(struct clk *clk, unsigned long control)
  77. {
  78. unsigned long div, mul, rate;
  79. if (!(control & SM_BIT(PLLEN)))
  80. return 0;
  81. div = SM_BFEXT(PLLDIV, control) + 1;
  82. mul = SM_BFEXT(PLLMUL, control) + 1;
  83. rate = clk->parent->get_rate(clk->parent);
  84. rate = (rate + div / 2) / div;
  85. rate *= mul;
  86. return rate;
  87. }
  88. static unsigned long pll0_get_rate(struct clk *clk)
  89. {
  90. u32 control;
  91. control = sm_readl(&system_manager, PM_PLL0);
  92. return pll_get_rate(clk, control);
  93. }
  94. static unsigned long pll1_get_rate(struct clk *clk)
  95. {
  96. u32 control;
  97. control = sm_readl(&system_manager, PM_PLL1);
  98. return pll_get_rate(clk, control);
  99. }
  100. /*
  101. * The AT32AP7000 has five primary clock sources: One 32kHz
  102. * oscillator, two crystal oscillators and two PLLs.
  103. */
  104. static struct clk osc32k = {
  105. .name = "osc32k",
  106. .get_rate = osc_get_rate,
  107. .users = 1,
  108. .index = 0,
  109. };
  110. static struct clk osc0 = {
  111. .name = "osc0",
  112. .get_rate = osc_get_rate,
  113. .users = 1,
  114. .index = 1,
  115. };
  116. static struct clk osc1 = {
  117. .name = "osc1",
  118. .get_rate = osc_get_rate,
  119. .index = 2,
  120. };
  121. static struct clk pll0 = {
  122. .name = "pll0",
  123. .get_rate = pll0_get_rate,
  124. .parent = &osc0,
  125. };
  126. static struct clk pll1 = {
  127. .name = "pll1",
  128. .get_rate = pll1_get_rate,
  129. .parent = &osc0,
  130. };
  131. /*
  132. * The main clock can be either osc0 or pll0. The boot loader may
  133. * have chosen one for us, so we don't really know which one until we
  134. * have a look at the SM.
  135. */
  136. static struct clk *main_clock;
  137. /*
  138. * Synchronous clocks are generated from the main clock. The clocks
  139. * must satisfy the constraint
  140. * fCPU >= fHSB >= fPB
  141. * i.e. each clock must not be faster than its parent.
  142. */
  143. static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift)
  144. {
  145. return main_clock->get_rate(main_clock) >> shift;
  146. };
  147. static void cpu_clk_mode(struct clk *clk, int enabled)
  148. {
  149. struct at32_sm *sm = &system_manager;
  150. unsigned long flags;
  151. u32 mask;
  152. spin_lock_irqsave(&sm->lock, flags);
  153. mask = sm_readl(sm, PM_CPU_MASK);
  154. if (enabled)
  155. mask |= 1 << clk->index;
  156. else
  157. mask &= ~(1 << clk->index);
  158. sm_writel(sm, PM_CPU_MASK, mask);
  159. spin_unlock_irqrestore(&sm->lock, flags);
  160. }
  161. static unsigned long cpu_clk_get_rate(struct clk *clk)
  162. {
  163. unsigned long cksel, shift = 0;
  164. cksel = sm_readl(&system_manager, PM_CKSEL);
  165. if (cksel & SM_BIT(CPUDIV))
  166. shift = SM_BFEXT(CPUSEL, cksel) + 1;
  167. return bus_clk_get_rate(clk, shift);
  168. }
  169. static void hsb_clk_mode(struct clk *clk, int enabled)
  170. {
  171. struct at32_sm *sm = &system_manager;
  172. unsigned long flags;
  173. u32 mask;
  174. spin_lock_irqsave(&sm->lock, flags);
  175. mask = sm_readl(sm, PM_HSB_MASK);
  176. if (enabled)
  177. mask |= 1 << clk->index;
  178. else
  179. mask &= ~(1 << clk->index);
  180. sm_writel(sm, PM_HSB_MASK, mask);
  181. spin_unlock_irqrestore(&sm->lock, flags);
  182. }
  183. static unsigned long hsb_clk_get_rate(struct clk *clk)
  184. {
  185. unsigned long cksel, shift = 0;
  186. cksel = sm_readl(&system_manager, PM_CKSEL);
  187. if (cksel & SM_BIT(HSBDIV))
  188. shift = SM_BFEXT(HSBSEL, cksel) + 1;
  189. return bus_clk_get_rate(clk, shift);
  190. }
  191. static void pba_clk_mode(struct clk *clk, int enabled)
  192. {
  193. struct at32_sm *sm = &system_manager;
  194. unsigned long flags;
  195. u32 mask;
  196. spin_lock_irqsave(&sm->lock, flags);
  197. mask = sm_readl(sm, PM_PBA_MASK);
  198. if (enabled)
  199. mask |= 1 << clk->index;
  200. else
  201. mask &= ~(1 << clk->index);
  202. sm_writel(sm, PM_PBA_MASK, mask);
  203. spin_unlock_irqrestore(&sm->lock, flags);
  204. }
  205. static unsigned long pba_clk_get_rate(struct clk *clk)
  206. {
  207. unsigned long cksel, shift = 0;
  208. cksel = sm_readl(&system_manager, PM_CKSEL);
  209. if (cksel & SM_BIT(PBADIV))
  210. shift = SM_BFEXT(PBASEL, cksel) + 1;
  211. return bus_clk_get_rate(clk, shift);
  212. }
  213. static void pbb_clk_mode(struct clk *clk, int enabled)
  214. {
  215. struct at32_sm *sm = &system_manager;
  216. unsigned long flags;
  217. u32 mask;
  218. spin_lock_irqsave(&sm->lock, flags);
  219. mask = sm_readl(sm, PM_PBB_MASK);
  220. if (enabled)
  221. mask |= 1 << clk->index;
  222. else
  223. mask &= ~(1 << clk->index);
  224. sm_writel(sm, PM_PBB_MASK, mask);
  225. spin_unlock_irqrestore(&sm->lock, flags);
  226. }
  227. static unsigned long pbb_clk_get_rate(struct clk *clk)
  228. {
  229. unsigned long cksel, shift = 0;
  230. cksel = sm_readl(&system_manager, PM_CKSEL);
  231. if (cksel & SM_BIT(PBBDIV))
  232. shift = SM_BFEXT(PBBSEL, cksel) + 1;
  233. return bus_clk_get_rate(clk, shift);
  234. }
  235. static struct clk cpu_clk = {
  236. .name = "cpu",
  237. .get_rate = cpu_clk_get_rate,
  238. .users = 1,
  239. };
  240. static struct clk hsb_clk = {
  241. .name = "hsb",
  242. .parent = &cpu_clk,
  243. .get_rate = hsb_clk_get_rate,
  244. };
  245. static struct clk pba_clk = {
  246. .name = "pba",
  247. .parent = &hsb_clk,
  248. .mode = hsb_clk_mode,
  249. .get_rate = pba_clk_get_rate,
  250. .index = 1,
  251. };
  252. static struct clk pbb_clk = {
  253. .name = "pbb",
  254. .parent = &hsb_clk,
  255. .mode = hsb_clk_mode,
  256. .get_rate = pbb_clk_get_rate,
  257. .users = 1,
  258. .index = 2,
  259. };
  260. /* --------------------------------------------------------------------
  261. * Generic Clock operations
  262. * -------------------------------------------------------------------- */
  263. static void genclk_mode(struct clk *clk, int enabled)
  264. {
  265. u32 control;
  266. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  267. if (enabled)
  268. control |= SM_BIT(CEN);
  269. else
  270. control &= ~SM_BIT(CEN);
  271. sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control);
  272. }
  273. static unsigned long genclk_get_rate(struct clk *clk)
  274. {
  275. u32 control;
  276. unsigned long div = 1;
  277. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  278. if (control & SM_BIT(DIVEN))
  279. div = 2 * (SM_BFEXT(DIV, control) + 1);
  280. return clk->parent->get_rate(clk->parent) / div;
  281. }
  282. static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply)
  283. {
  284. u32 control;
  285. unsigned long parent_rate, actual_rate, div;
  286. parent_rate = clk->parent->get_rate(clk->parent);
  287. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  288. if (rate > 3 * parent_rate / 4) {
  289. actual_rate = parent_rate;
  290. control &= ~SM_BIT(DIVEN);
  291. } else {
  292. div = (parent_rate + rate) / (2 * rate) - 1;
  293. control = SM_BFINS(DIV, div, control) | SM_BIT(DIVEN);
  294. actual_rate = parent_rate / (2 * (div + 1));
  295. }
  296. printk("clk %s: new rate %lu (actual rate %lu)\n",
  297. clk->name, rate, actual_rate);
  298. if (apply)
  299. sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index,
  300. control);
  301. return actual_rate;
  302. }
  303. int genclk_set_parent(struct clk *clk, struct clk *parent)
  304. {
  305. u32 control;
  306. printk("clk %s: new parent %s (was %s)\n",
  307. clk->name, parent->name, clk->parent->name);
  308. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  309. if (parent == &osc1 || parent == &pll1)
  310. control |= SM_BIT(OSCSEL);
  311. else if (parent == &osc0 || parent == &pll0)
  312. control &= ~SM_BIT(OSCSEL);
  313. else
  314. return -EINVAL;
  315. if (parent == &pll0 || parent == &pll1)
  316. control |= SM_BIT(PLLSEL);
  317. else
  318. control &= ~SM_BIT(PLLSEL);
  319. sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control);
  320. clk->parent = parent;
  321. return 0;
  322. }
  323. static void __init genclk_init_parent(struct clk *clk)
  324. {
  325. u32 control;
  326. struct clk *parent;
  327. BUG_ON(clk->index > 7);
  328. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  329. if (control & SM_BIT(OSCSEL))
  330. parent = (control & SM_BIT(PLLSEL)) ? &pll1 : &osc1;
  331. else
  332. parent = (control & SM_BIT(PLLSEL)) ? &pll0 : &osc0;
  333. clk->parent = parent;
  334. }
  335. /* --------------------------------------------------------------------
  336. * System peripherals
  337. * -------------------------------------------------------------------- */
  338. static struct resource sm_resource[] = {
  339. PBMEM(0xfff00000),
  340. NAMED_IRQ(19, "eim"),
  341. NAMED_IRQ(20, "pm"),
  342. NAMED_IRQ(21, "rtc"),
  343. };
  344. struct platform_device at32_sm_device = {
  345. .name = "sm",
  346. .id = 0,
  347. .resource = sm_resource,
  348. .num_resources = ARRAY_SIZE(sm_resource),
  349. };
  350. DEV_CLK(pclk, at32_sm, pbb, 0);
  351. static struct resource intc0_resource[] = {
  352. PBMEM(0xfff00400),
  353. };
  354. struct platform_device at32_intc0_device = {
  355. .name = "intc",
  356. .id = 0,
  357. .resource = intc0_resource,
  358. .num_resources = ARRAY_SIZE(intc0_resource),
  359. };
  360. DEV_CLK(pclk, at32_intc0, pbb, 1);
  361. static struct clk ebi_clk = {
  362. .name = "ebi",
  363. .parent = &hsb_clk,
  364. .mode = hsb_clk_mode,
  365. .get_rate = hsb_clk_get_rate,
  366. .users = 1,
  367. };
  368. static struct clk hramc_clk = {
  369. .name = "hramc",
  370. .parent = &hsb_clk,
  371. .mode = hsb_clk_mode,
  372. .get_rate = hsb_clk_get_rate,
  373. .users = 1,
  374. };
  375. static struct resource smc0_resource[] = {
  376. PBMEM(0xfff03400),
  377. };
  378. DEFINE_DEV(smc, 0);
  379. DEV_CLK(pclk, smc0, pbb, 13);
  380. DEV_CLK(mck, smc0, hsb, 0);
  381. static struct platform_device pdc_device = {
  382. .name = "pdc",
  383. .id = 0,
  384. };
  385. DEV_CLK(hclk, pdc, hsb, 4);
  386. DEV_CLK(pclk, pdc, pba, 16);
  387. static struct clk pico_clk = {
  388. .name = "pico",
  389. .parent = &cpu_clk,
  390. .mode = cpu_clk_mode,
  391. .get_rate = cpu_clk_get_rate,
  392. .users = 1,
  393. };
  394. /* --------------------------------------------------------------------
  395. * PIO
  396. * -------------------------------------------------------------------- */
  397. static struct resource pio0_resource[] = {
  398. PBMEM(0xffe02800),
  399. IRQ(13),
  400. };
  401. DEFINE_DEV(pio, 0);
  402. DEV_CLK(mck, pio0, pba, 10);
  403. static struct resource pio1_resource[] = {
  404. PBMEM(0xffe02c00),
  405. IRQ(14),
  406. };
  407. DEFINE_DEV(pio, 1);
  408. DEV_CLK(mck, pio1, pba, 11);
  409. static struct resource pio2_resource[] = {
  410. PBMEM(0xffe03000),
  411. IRQ(15),
  412. };
  413. DEFINE_DEV(pio, 2);
  414. DEV_CLK(mck, pio2, pba, 12);
  415. static struct resource pio3_resource[] = {
  416. PBMEM(0xffe03400),
  417. IRQ(16),
  418. };
  419. DEFINE_DEV(pio, 3);
  420. DEV_CLK(mck, pio3, pba, 13);
  421. static struct resource pio4_resource[] = {
  422. PBMEM(0xffe03800),
  423. IRQ(17),
  424. };
  425. DEFINE_DEV(pio, 4);
  426. DEV_CLK(mck, pio4, pba, 14);
  427. void __init at32_add_system_devices(void)
  428. {
  429. system_manager.eim_first_irq = EIM_IRQ_BASE;
  430. platform_device_register(&at32_sm_device);
  431. platform_device_register(&at32_intc0_device);
  432. platform_device_register(&smc0_device);
  433. platform_device_register(&pdc_device);
  434. platform_device_register(&pio0_device);
  435. platform_device_register(&pio1_device);
  436. platform_device_register(&pio2_device);
  437. platform_device_register(&pio3_device);
  438. platform_device_register(&pio4_device);
  439. }
  440. /* --------------------------------------------------------------------
  441. * USART
  442. * -------------------------------------------------------------------- */
  443. static struct atmel_uart_data atmel_usart0_data = {
  444. .use_dma_tx = 1,
  445. .use_dma_rx = 1,
  446. };
  447. static struct resource atmel_usart0_resource[] = {
  448. PBMEM(0xffe00c00),
  449. IRQ(6),
  450. };
  451. DEFINE_DEV_DATA(atmel_usart, 0);
  452. DEV_CLK(usart, atmel_usart0, pba, 4);
  453. static struct atmel_uart_data atmel_usart1_data = {
  454. .use_dma_tx = 1,
  455. .use_dma_rx = 1,
  456. };
  457. static struct resource atmel_usart1_resource[] = {
  458. PBMEM(0xffe01000),
  459. IRQ(7),
  460. };
  461. DEFINE_DEV_DATA(atmel_usart, 1);
  462. DEV_CLK(usart, atmel_usart1, pba, 4);
  463. static struct atmel_uart_data atmel_usart2_data = {
  464. .use_dma_tx = 1,
  465. .use_dma_rx = 1,
  466. };
  467. static struct resource atmel_usart2_resource[] = {
  468. PBMEM(0xffe01400),
  469. IRQ(8),
  470. };
  471. DEFINE_DEV_DATA(atmel_usart, 2);
  472. DEV_CLK(usart, atmel_usart2, pba, 5);
  473. static struct atmel_uart_data atmel_usart3_data = {
  474. .use_dma_tx = 1,
  475. .use_dma_rx = 1,
  476. };
  477. static struct resource atmel_usart3_resource[] = {
  478. PBMEM(0xffe01800),
  479. IRQ(9),
  480. };
  481. DEFINE_DEV_DATA(atmel_usart, 3);
  482. DEV_CLK(usart, atmel_usart3, pba, 6);
  483. static inline void configure_usart0_pins(void)
  484. {
  485. select_peripheral(PA(8), PERIPH_B, 0); /* RXD */
  486. select_peripheral(PA(9), PERIPH_B, 0); /* TXD */
  487. }
  488. static inline void configure_usart1_pins(void)
  489. {
  490. select_peripheral(PA(17), PERIPH_A, 0); /* RXD */
  491. select_peripheral(PA(18), PERIPH_A, 0); /* TXD */
  492. }
  493. static inline void configure_usart2_pins(void)
  494. {
  495. select_peripheral(PB(26), PERIPH_B, 0); /* RXD */
  496. select_peripheral(PB(27), PERIPH_B, 0); /* TXD */
  497. }
  498. static inline void configure_usart3_pins(void)
  499. {
  500. select_peripheral(PB(18), PERIPH_B, 0); /* RXD */
  501. select_peripheral(PB(17), PERIPH_B, 0); /* TXD */
  502. }
  503. static struct platform_device *__initdata at32_usarts[4];
  504. void __init at32_map_usart(unsigned int hw_id, unsigned int line)
  505. {
  506. struct platform_device *pdev;
  507. switch (hw_id) {
  508. case 0:
  509. pdev = &atmel_usart0_device;
  510. configure_usart0_pins();
  511. break;
  512. case 1:
  513. pdev = &atmel_usart1_device;
  514. configure_usart1_pins();
  515. break;
  516. case 2:
  517. pdev = &atmel_usart2_device;
  518. configure_usart2_pins();
  519. break;
  520. case 3:
  521. pdev = &atmel_usart3_device;
  522. configure_usart3_pins();
  523. break;
  524. default:
  525. return;
  526. }
  527. if (PXSEG(pdev->resource[0].start) == P4SEG) {
  528. /* Addresses in the P4 segment are permanently mapped 1:1 */
  529. struct atmel_uart_data *data = pdev->dev.platform_data;
  530. data->regs = (void __iomem *)pdev->resource[0].start;
  531. }
  532. pdev->id = line;
  533. at32_usarts[line] = pdev;
  534. }
  535. struct platform_device *__init at32_add_device_usart(unsigned int id)
  536. {
  537. platform_device_register(at32_usarts[id]);
  538. return at32_usarts[id];
  539. }
  540. struct platform_device *atmel_default_console_device;
  541. void __init at32_setup_serial_console(unsigned int usart_id)
  542. {
  543. atmel_default_console_device = at32_usarts[usart_id];
  544. }
  545. /* --------------------------------------------------------------------
  546. * Ethernet
  547. * -------------------------------------------------------------------- */
  548. static struct eth_platform_data macb0_data;
  549. static struct resource macb0_resource[] = {
  550. PBMEM(0xfff01800),
  551. IRQ(25),
  552. };
  553. DEFINE_DEV_DATA(macb, 0);
  554. DEV_CLK(hclk, macb0, hsb, 8);
  555. DEV_CLK(pclk, macb0, pbb, 6);
  556. static struct eth_platform_data macb1_data;
  557. static struct resource macb1_resource[] = {
  558. PBMEM(0xfff01c00),
  559. IRQ(26),
  560. };
  561. DEFINE_DEV_DATA(macb, 1);
  562. DEV_CLK(hclk, macb1, hsb, 9);
  563. DEV_CLK(pclk, macb1, pbb, 7);
  564. struct platform_device *__init
  565. at32_add_device_eth(unsigned int id, struct eth_platform_data *data)
  566. {
  567. struct platform_device *pdev;
  568. switch (id) {
  569. case 0:
  570. pdev = &macb0_device;
  571. select_peripheral(PC(3), PERIPH_A, 0); /* TXD0 */
  572. select_peripheral(PC(4), PERIPH_A, 0); /* TXD1 */
  573. select_peripheral(PC(7), PERIPH_A, 0); /* TXEN */
  574. select_peripheral(PC(8), PERIPH_A, 0); /* TXCK */
  575. select_peripheral(PC(9), PERIPH_A, 0); /* RXD0 */
  576. select_peripheral(PC(10), PERIPH_A, 0); /* RXD1 */
  577. select_peripheral(PC(13), PERIPH_A, 0); /* RXER */
  578. select_peripheral(PC(15), PERIPH_A, 0); /* RXDV */
  579. select_peripheral(PC(16), PERIPH_A, 0); /* MDC */
  580. select_peripheral(PC(17), PERIPH_A, 0); /* MDIO */
  581. if (!data->is_rmii) {
  582. select_peripheral(PC(0), PERIPH_A, 0); /* COL */
  583. select_peripheral(PC(1), PERIPH_A, 0); /* CRS */
  584. select_peripheral(PC(2), PERIPH_A, 0); /* TXER */
  585. select_peripheral(PC(5), PERIPH_A, 0); /* TXD2 */
  586. select_peripheral(PC(6), PERIPH_A, 0); /* TXD3 */
  587. select_peripheral(PC(11), PERIPH_A, 0); /* RXD2 */
  588. select_peripheral(PC(12), PERIPH_A, 0); /* RXD3 */
  589. select_peripheral(PC(14), PERIPH_A, 0); /* RXCK */
  590. select_peripheral(PC(18), PERIPH_A, 0); /* SPD */
  591. }
  592. break;
  593. case 1:
  594. pdev = &macb1_device;
  595. select_peripheral(PD(13), PERIPH_B, 0); /* TXD0 */
  596. select_peripheral(PD(14), PERIPH_B, 0); /* TXD1 */
  597. select_peripheral(PD(11), PERIPH_B, 0); /* TXEN */
  598. select_peripheral(PD(12), PERIPH_B, 0); /* TXCK */
  599. select_peripheral(PD(10), PERIPH_B, 0); /* RXD0 */
  600. select_peripheral(PD(6), PERIPH_B, 0); /* RXD1 */
  601. select_peripheral(PD(5), PERIPH_B, 0); /* RXER */
  602. select_peripheral(PD(4), PERIPH_B, 0); /* RXDV */
  603. select_peripheral(PD(3), PERIPH_B, 0); /* MDC */
  604. select_peripheral(PD(2), PERIPH_B, 0); /* MDIO */
  605. if (!data->is_rmii) {
  606. select_peripheral(PC(19), PERIPH_B, 0); /* COL */
  607. select_peripheral(PC(23), PERIPH_B, 0); /* CRS */
  608. select_peripheral(PC(26), PERIPH_B, 0); /* TXER */
  609. select_peripheral(PC(27), PERIPH_B, 0); /* TXD2 */
  610. select_peripheral(PC(28), PERIPH_B, 0); /* TXD3 */
  611. select_peripheral(PC(29), PERIPH_B, 0); /* RXD2 */
  612. select_peripheral(PC(30), PERIPH_B, 0); /* RXD3 */
  613. select_peripheral(PC(24), PERIPH_B, 0); /* RXCK */
  614. select_peripheral(PD(15), PERIPH_B, 0); /* SPD */
  615. }
  616. break;
  617. default:
  618. return NULL;
  619. }
  620. memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data));
  621. platform_device_register(pdev);
  622. return pdev;
  623. }
  624. /* --------------------------------------------------------------------
  625. * SPI
  626. * -------------------------------------------------------------------- */
  627. static struct resource atmel_spi0_resource[] = {
  628. PBMEM(0xffe00000),
  629. IRQ(3),
  630. };
  631. DEFINE_DEV(atmel_spi, 0);
  632. DEV_CLK(spi_clk, atmel_spi0, pba, 0);
  633. static struct resource atmel_spi1_resource[] = {
  634. PBMEM(0xffe00400),
  635. IRQ(4),
  636. };
  637. DEFINE_DEV(atmel_spi, 1);
  638. DEV_CLK(spi_clk, atmel_spi1, pba, 1);
  639. struct platform_device *__init at32_add_device_spi(unsigned int id)
  640. {
  641. struct platform_device *pdev;
  642. switch (id) {
  643. case 0:
  644. pdev = &atmel_spi0_device;
  645. select_peripheral(PA(0), PERIPH_A, 0); /* MISO */
  646. select_peripheral(PA(1), PERIPH_A, 0); /* MOSI */
  647. select_peripheral(PA(2), PERIPH_A, 0); /* SCK */
  648. /* NPCS[2:0] */
  649. at32_select_gpio(GPIO_PIN_PA(3),
  650. AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
  651. at32_select_gpio(GPIO_PIN_PA(4),
  652. AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
  653. at32_select_gpio(GPIO_PIN_PA(5),
  654. AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
  655. break;
  656. case 1:
  657. pdev = &atmel_spi1_device;
  658. select_peripheral(PB(0), PERIPH_B, 0); /* MISO */
  659. select_peripheral(PB(1), PERIPH_B, 0); /* MOSI */
  660. select_peripheral(PB(5), PERIPH_B, 0); /* SCK */
  661. /* NPCS[2:0] */
  662. at32_select_gpio(GPIO_PIN_PB(2),
  663. AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
  664. at32_select_gpio(GPIO_PIN_PB(3),
  665. AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
  666. at32_select_gpio(GPIO_PIN_PB(4),
  667. AT32_GPIOF_OUTPUT | AT32_GPIOF_HIGH);
  668. break;
  669. default:
  670. return NULL;
  671. }
  672. platform_device_register(pdev);
  673. return pdev;
  674. }
  675. /* --------------------------------------------------------------------
  676. * LCDC
  677. * -------------------------------------------------------------------- */
  678. static struct lcdc_platform_data lcdc0_data;
  679. static struct resource lcdc0_resource[] = {
  680. {
  681. .start = 0xff000000,
  682. .end = 0xff000fff,
  683. .flags = IORESOURCE_MEM,
  684. },
  685. IRQ(1),
  686. };
  687. DEFINE_DEV_DATA(lcdc, 0);
  688. DEV_CLK(hclk, lcdc0, hsb, 7);
  689. static struct clk lcdc0_pixclk = {
  690. .name = "pixclk",
  691. .dev = &lcdc0_device.dev,
  692. .mode = genclk_mode,
  693. .get_rate = genclk_get_rate,
  694. .set_rate = genclk_set_rate,
  695. .set_parent = genclk_set_parent,
  696. .index = 7,
  697. };
  698. struct platform_device *__init
  699. at32_add_device_lcdc(unsigned int id, struct lcdc_platform_data *data)
  700. {
  701. struct platform_device *pdev;
  702. switch (id) {
  703. case 0:
  704. pdev = &lcdc0_device;
  705. select_peripheral(PC(19), PERIPH_A, 0); /* CC */
  706. select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */
  707. select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */
  708. select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */
  709. select_peripheral(PC(23), PERIPH_A, 0); /* DVAL */
  710. select_peripheral(PC(24), PERIPH_A, 0); /* MODE */
  711. select_peripheral(PC(25), PERIPH_A, 0); /* PWR */
  712. select_peripheral(PC(26), PERIPH_A, 0); /* DATA0 */
  713. select_peripheral(PC(27), PERIPH_A, 0); /* DATA1 */
  714. select_peripheral(PC(28), PERIPH_A, 0); /* DATA2 */
  715. select_peripheral(PC(29), PERIPH_A, 0); /* DATA3 */
  716. select_peripheral(PC(30), PERIPH_A, 0); /* DATA4 */
  717. select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */
  718. select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */
  719. select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */
  720. select_peripheral(PD(2), PERIPH_A, 0); /* DATA8 */
  721. select_peripheral(PD(3), PERIPH_A, 0); /* DATA9 */
  722. select_peripheral(PD(4), PERIPH_A, 0); /* DATA10 */
  723. select_peripheral(PD(5), PERIPH_A, 0); /* DATA11 */
  724. select_peripheral(PD(6), PERIPH_A, 0); /* DATA12 */
  725. select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */
  726. select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */
  727. select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */
  728. select_peripheral(PD(10), PERIPH_A, 0); /* DATA16 */
  729. select_peripheral(PD(11), PERIPH_A, 0); /* DATA17 */
  730. select_peripheral(PD(12), PERIPH_A, 0); /* DATA18 */
  731. select_peripheral(PD(13), PERIPH_A, 0); /* DATA19 */
  732. select_peripheral(PD(14), PERIPH_A, 0); /* DATA20 */
  733. select_peripheral(PD(15), PERIPH_A, 0); /* DATA21 */
  734. select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */
  735. select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */
  736. clk_set_parent(&lcdc0_pixclk, &pll0);
  737. clk_set_rate(&lcdc0_pixclk, clk_get_rate(&pll0));
  738. break;
  739. default:
  740. return NULL;
  741. }
  742. memcpy(pdev->dev.platform_data, data,
  743. sizeof(struct lcdc_platform_data));
  744. platform_device_register(pdev);
  745. return pdev;
  746. }
  747. /* --------------------------------------------------------------------
  748. * GCLK
  749. * -------------------------------------------------------------------- */
  750. static struct clk gclk0 = {
  751. .name = "gclk0",
  752. .mode = genclk_mode,
  753. .get_rate = genclk_get_rate,
  754. .set_rate = genclk_set_rate,
  755. .set_parent = genclk_set_parent,
  756. .index = 0,
  757. };
  758. static struct clk gclk1 = {
  759. .name = "gclk1",
  760. .mode = genclk_mode,
  761. .get_rate = genclk_get_rate,
  762. .set_rate = genclk_set_rate,
  763. .set_parent = genclk_set_parent,
  764. .index = 1,
  765. };
  766. static struct clk gclk2 = {
  767. .name = "gclk2",
  768. .mode = genclk_mode,
  769. .get_rate = genclk_get_rate,
  770. .set_rate = genclk_set_rate,
  771. .set_parent = genclk_set_parent,
  772. .index = 2,
  773. };
  774. static struct clk gclk3 = {
  775. .name = "gclk3",
  776. .mode = genclk_mode,
  777. .get_rate = genclk_get_rate,
  778. .set_rate = genclk_set_rate,
  779. .set_parent = genclk_set_parent,
  780. .index = 3,
  781. };
  782. static struct clk gclk4 = {
  783. .name = "gclk4",
  784. .mode = genclk_mode,
  785. .get_rate = genclk_get_rate,
  786. .set_rate = genclk_set_rate,
  787. .set_parent = genclk_set_parent,
  788. .index = 4,
  789. };
  790. struct clk *at32_clock_list[] = {
  791. &osc32k,
  792. &osc0,
  793. &osc1,
  794. &pll0,
  795. &pll1,
  796. &cpu_clk,
  797. &hsb_clk,
  798. &pba_clk,
  799. &pbb_clk,
  800. &at32_sm_pclk,
  801. &at32_intc0_pclk,
  802. &ebi_clk,
  803. &hramc_clk,
  804. &smc0_pclk,
  805. &smc0_mck,
  806. &pdc_hclk,
  807. &pdc_pclk,
  808. &pico_clk,
  809. &pio0_mck,
  810. &pio1_mck,
  811. &pio2_mck,
  812. &pio3_mck,
  813. &pio4_mck,
  814. &atmel_usart0_usart,
  815. &atmel_usart1_usart,
  816. &atmel_usart2_usart,
  817. &atmel_usart3_usart,
  818. &macb0_hclk,
  819. &macb0_pclk,
  820. &macb1_hclk,
  821. &macb1_pclk,
  822. &atmel_spi0_spi_clk,
  823. &atmel_spi1_spi_clk,
  824. &lcdc0_hclk,
  825. &lcdc0_pixclk,
  826. &gclk0,
  827. &gclk1,
  828. &gclk2,
  829. &gclk3,
  830. &gclk4,
  831. };
  832. unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list);
  833. void __init at32_portmux_init(void)
  834. {
  835. at32_init_pio(&pio0_device);
  836. at32_init_pio(&pio1_device);
  837. at32_init_pio(&pio2_device);
  838. at32_init_pio(&pio3_device);
  839. at32_init_pio(&pio4_device);
  840. }
  841. void __init at32_clock_init(void)
  842. {
  843. struct at32_sm *sm = &system_manager;
  844. u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0;
  845. int i;
  846. if (sm_readl(sm, PM_MCCTRL) & SM_BIT(PLLSEL))
  847. main_clock = &pll0;
  848. else
  849. main_clock = &osc0;
  850. if (sm_readl(sm, PM_PLL0) & SM_BIT(PLLOSC))
  851. pll0.parent = &osc1;
  852. if (sm_readl(sm, PM_PLL1) & SM_BIT(PLLOSC))
  853. pll1.parent = &osc1;
  854. genclk_init_parent(&gclk0);
  855. genclk_init_parent(&gclk1);
  856. genclk_init_parent(&gclk2);
  857. genclk_init_parent(&gclk3);
  858. genclk_init_parent(&gclk4);
  859. genclk_init_parent(&lcdc0_pixclk);
  860. /*
  861. * Turn on all clocks that have at least one user already, and
  862. * turn off everything else. We only do this for module
  863. * clocks, and even though it isn't particularly pretty to
  864. * check the address of the mode function, it should do the
  865. * trick...
  866. */
  867. for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) {
  868. struct clk *clk = at32_clock_list[i];
  869. if (clk->mode == &cpu_clk_mode)
  870. cpu_mask |= 1 << clk->index;
  871. else if (clk->mode == &hsb_clk_mode)
  872. hsb_mask |= 1 << clk->index;
  873. else if (clk->mode == &pba_clk_mode)
  874. pba_mask |= 1 << clk->index;
  875. else if (clk->mode == &pbb_clk_mode)
  876. pbb_mask |= 1 << clk->index;
  877. }
  878. sm_writel(sm, PM_CPU_MASK, cpu_mask);
  879. sm_writel(sm, PM_HSB_MASK, hsb_mask);
  880. sm_writel(sm, PM_PBA_MASK, pba_mask);
  881. sm_writel(sm, PM_PBB_MASK, pbb_mask);
  882. }