skbuff.h 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/compiler.h>
  17. #include <linux/time.h>
  18. #include <linux/cache.h>
  19. #include <asm/atomic.h>
  20. #include <asm/types.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/net.h>
  23. #include <linux/textsearch.h>
  24. #include <net/checksum.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/dmaengine.h>
  27. #include <linux/hrtimer.h>
  28. #define HAVE_ALLOC_SKB /* For the drivers to know */
  29. #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
  30. /* Don't change this without changing skb_csum_unnecessary! */
  31. #define CHECKSUM_NONE 0
  32. #define CHECKSUM_UNNECESSARY 1
  33. #define CHECKSUM_COMPLETE 2
  34. #define CHECKSUM_PARTIAL 3
  35. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  36. ~(SMP_CACHE_BYTES - 1))
  37. #define SKB_WITH_OVERHEAD(X) \
  38. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  39. #define SKB_MAX_ORDER(X, ORDER) \
  40. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  41. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  42. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  43. /* A. Checksumming of received packets by device.
  44. *
  45. * NONE: device failed to checksum this packet.
  46. * skb->csum is undefined.
  47. *
  48. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  49. * skb->csum is undefined.
  50. * It is bad option, but, unfortunately, many of vendors do this.
  51. * Apparently with secret goal to sell you new device, when you
  52. * will add new protocol to your host. F.e. IPv6. 8)
  53. *
  54. * COMPLETE: the most generic way. Device supplied checksum of _all_
  55. * the packet as seen by netif_rx in skb->csum.
  56. * NOTE: Even if device supports only some protocols, but
  57. * is able to produce some skb->csum, it MUST use COMPLETE,
  58. * not UNNECESSARY.
  59. *
  60. * PARTIAL: identical to the case for output below. This may occur
  61. * on a packet received directly from another Linux OS, e.g.,
  62. * a virtualised Linux kernel on the same host. The packet can
  63. * be treated in the same way as UNNECESSARY except that on
  64. * output (i.e., forwarding) the checksum must be filled in
  65. * by the OS or the hardware.
  66. *
  67. * B. Checksumming on output.
  68. *
  69. * NONE: skb is checksummed by protocol or csum is not required.
  70. *
  71. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  72. * from skb->csum_start to the end and to record the checksum
  73. * at skb->csum_start + skb->csum_offset.
  74. *
  75. * Device must show its capabilities in dev->features, set
  76. * at device setup time.
  77. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  78. * everything.
  79. * NETIF_F_NO_CSUM - loopback or reliable single hop media.
  80. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  81. * TCP/UDP over IPv4. Sigh. Vendors like this
  82. * way by an unknown reason. Though, see comment above
  83. * about CHECKSUM_UNNECESSARY. 8)
  84. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  85. *
  86. * Any questions? No questions, good. --ANK
  87. */
  88. struct net_device;
  89. struct scatterlist;
  90. struct pipe_inode_info;
  91. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  92. struct nf_conntrack {
  93. atomic_t use;
  94. };
  95. #endif
  96. #ifdef CONFIG_BRIDGE_NETFILTER
  97. struct nf_bridge_info {
  98. atomic_t use;
  99. struct net_device *physindev;
  100. struct net_device *physoutdev;
  101. unsigned int mask;
  102. unsigned long data[32 / sizeof(unsigned long)];
  103. };
  104. #endif
  105. struct sk_buff_head {
  106. /* These two members must be first. */
  107. struct sk_buff *next;
  108. struct sk_buff *prev;
  109. __u32 qlen;
  110. spinlock_t lock;
  111. };
  112. struct sk_buff;
  113. /* To allow 64K frame to be packed as single skb without frag_list */
  114. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
  115. typedef struct skb_frag_struct skb_frag_t;
  116. struct skb_frag_struct {
  117. struct page *page;
  118. __u32 page_offset;
  119. __u32 size;
  120. };
  121. /* This data is invariant across clones and lives at
  122. * the end of the header data, ie. at skb->end.
  123. */
  124. struct skb_shared_info {
  125. atomic_t dataref;
  126. unsigned short nr_frags;
  127. unsigned short gso_size;
  128. /* Warning: this field is not always filled in (UFO)! */
  129. unsigned short gso_segs;
  130. unsigned short gso_type;
  131. __be32 ip6_frag_id;
  132. struct sk_buff *frag_list;
  133. skb_frag_t frags[MAX_SKB_FRAGS];
  134. };
  135. /* We divide dataref into two halves. The higher 16 bits hold references
  136. * to the payload part of skb->data. The lower 16 bits hold references to
  137. * the entire skb->data. A clone of a headerless skb holds the length of
  138. * the header in skb->hdr_len.
  139. *
  140. * All users must obey the rule that the skb->data reference count must be
  141. * greater than or equal to the payload reference count.
  142. *
  143. * Holding a reference to the payload part means that the user does not
  144. * care about modifications to the header part of skb->data.
  145. */
  146. #define SKB_DATAREF_SHIFT 16
  147. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  148. enum {
  149. SKB_FCLONE_UNAVAILABLE,
  150. SKB_FCLONE_ORIG,
  151. SKB_FCLONE_CLONE,
  152. };
  153. enum {
  154. SKB_GSO_TCPV4 = 1 << 0,
  155. SKB_GSO_UDP = 1 << 1,
  156. /* This indicates the skb is from an untrusted source. */
  157. SKB_GSO_DODGY = 1 << 2,
  158. /* This indicates the tcp segment has CWR set. */
  159. SKB_GSO_TCP_ECN = 1 << 3,
  160. SKB_GSO_TCPV6 = 1 << 4,
  161. };
  162. #if BITS_PER_LONG > 32
  163. #define NET_SKBUFF_DATA_USES_OFFSET 1
  164. #endif
  165. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  166. typedef unsigned int sk_buff_data_t;
  167. #else
  168. typedef unsigned char *sk_buff_data_t;
  169. #endif
  170. /**
  171. * struct sk_buff - socket buffer
  172. * @next: Next buffer in list
  173. * @prev: Previous buffer in list
  174. * @sk: Socket we are owned by
  175. * @tstamp: Time we arrived
  176. * @dev: Device we arrived on/are leaving by
  177. * @transport_header: Transport layer header
  178. * @network_header: Network layer header
  179. * @mac_header: Link layer header
  180. * @dst: destination entry
  181. * @sp: the security path, used for xfrm
  182. * @cb: Control buffer. Free for use by every layer. Put private vars here
  183. * @len: Length of actual data
  184. * @data_len: Data length
  185. * @mac_len: Length of link layer header
  186. * @hdr_len: writable header length of cloned skb
  187. * @csum: Checksum (must include start/offset pair)
  188. * @csum_start: Offset from skb->head where checksumming should start
  189. * @csum_offset: Offset from csum_start where checksum should be stored
  190. * @local_df: allow local fragmentation
  191. * @cloned: Head may be cloned (check refcnt to be sure)
  192. * @nohdr: Payload reference only, must not modify header
  193. * @pkt_type: Packet class
  194. * @fclone: skbuff clone status
  195. * @ip_summed: Driver fed us an IP checksum
  196. * @priority: Packet queueing priority
  197. * @users: User count - see {datagram,tcp}.c
  198. * @protocol: Packet protocol from driver
  199. * @truesize: Buffer size
  200. * @head: Head of buffer
  201. * @data: Data head pointer
  202. * @tail: Tail pointer
  203. * @end: End pointer
  204. * @destructor: Destruct function
  205. * @mark: Generic packet mark
  206. * @nfct: Associated connection, if any
  207. * @ipvs_property: skbuff is owned by ipvs
  208. * @peeked: this packet has been seen already, so stats have been
  209. * done for it, don't do them again
  210. * @nf_trace: netfilter packet trace flag
  211. * @nfctinfo: Relationship of this skb to the connection
  212. * @nfct_reasm: netfilter conntrack re-assembly pointer
  213. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  214. * @iif: ifindex of device we arrived on
  215. * @queue_mapping: Queue mapping for multiqueue devices
  216. * @tc_index: Traffic control index
  217. * @tc_verd: traffic control verdict
  218. * @ndisc_nodetype: router type (from link layer)
  219. * @do_not_encrypt: set to prevent encryption of this frame
  220. * @dma_cookie: a cookie to one of several possible DMA operations
  221. * done by skb DMA functions
  222. * @secmark: security marking
  223. * @vlan_tci: vlan tag control information
  224. */
  225. struct sk_buff {
  226. /* These two members must be first. */
  227. struct sk_buff *next;
  228. struct sk_buff *prev;
  229. struct sock *sk;
  230. ktime_t tstamp;
  231. struct net_device *dev;
  232. union {
  233. struct dst_entry *dst;
  234. struct rtable *rtable;
  235. };
  236. struct sec_path *sp;
  237. /*
  238. * This is the control buffer. It is free to use for every
  239. * layer. Please put your private variables there. If you
  240. * want to keep them across layers you have to do a skb_clone()
  241. * first. This is owned by whoever has the skb queued ATM.
  242. */
  243. char cb[48];
  244. unsigned int len,
  245. data_len;
  246. __u16 mac_len,
  247. hdr_len;
  248. union {
  249. __wsum csum;
  250. struct {
  251. __u16 csum_start;
  252. __u16 csum_offset;
  253. };
  254. };
  255. __u32 priority;
  256. __u8 local_df:1,
  257. cloned:1,
  258. ip_summed:2,
  259. nohdr:1,
  260. nfctinfo:3;
  261. __u8 pkt_type:3,
  262. fclone:2,
  263. ipvs_property:1,
  264. peeked:1,
  265. nf_trace:1;
  266. __be16 protocol;
  267. void (*destructor)(struct sk_buff *skb);
  268. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  269. struct nf_conntrack *nfct;
  270. struct sk_buff *nfct_reasm;
  271. #endif
  272. #ifdef CONFIG_BRIDGE_NETFILTER
  273. struct nf_bridge_info *nf_bridge;
  274. #endif
  275. int iif;
  276. __u16 queue_mapping;
  277. #ifdef CONFIG_NET_SCHED
  278. __u16 tc_index; /* traffic control index */
  279. #ifdef CONFIG_NET_CLS_ACT
  280. __u16 tc_verd; /* traffic control verdict */
  281. #endif
  282. #endif
  283. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  284. __u8 ndisc_nodetype:2;
  285. #endif
  286. #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
  287. __u8 do_not_encrypt:1;
  288. #endif
  289. /* 0/13/14 bit hole */
  290. #ifdef CONFIG_NET_DMA
  291. dma_cookie_t dma_cookie;
  292. #endif
  293. #ifdef CONFIG_NETWORK_SECMARK
  294. __u32 secmark;
  295. #endif
  296. __u32 mark;
  297. __u16 vlan_tci;
  298. sk_buff_data_t transport_header;
  299. sk_buff_data_t network_header;
  300. sk_buff_data_t mac_header;
  301. /* These elements must be at the end, see alloc_skb() for details. */
  302. sk_buff_data_t tail;
  303. sk_buff_data_t end;
  304. unsigned char *head,
  305. *data;
  306. unsigned int truesize;
  307. atomic_t users;
  308. };
  309. #ifdef __KERNEL__
  310. /*
  311. * Handling routines are only of interest to the kernel
  312. */
  313. #include <linux/slab.h>
  314. #include <asm/system.h>
  315. extern void kfree_skb(struct sk_buff *skb);
  316. extern void __kfree_skb(struct sk_buff *skb);
  317. extern struct sk_buff *__alloc_skb(unsigned int size,
  318. gfp_t priority, int fclone, int node);
  319. static inline struct sk_buff *alloc_skb(unsigned int size,
  320. gfp_t priority)
  321. {
  322. return __alloc_skb(size, priority, 0, -1);
  323. }
  324. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  325. gfp_t priority)
  326. {
  327. return __alloc_skb(size, priority, 1, -1);
  328. }
  329. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  330. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  331. gfp_t priority);
  332. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  333. gfp_t priority);
  334. extern struct sk_buff *pskb_copy(struct sk_buff *skb,
  335. gfp_t gfp_mask);
  336. extern int pskb_expand_head(struct sk_buff *skb,
  337. int nhead, int ntail,
  338. gfp_t gfp_mask);
  339. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  340. unsigned int headroom);
  341. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  342. int newheadroom, int newtailroom,
  343. gfp_t priority);
  344. extern int skb_to_sgvec(struct sk_buff *skb,
  345. struct scatterlist *sg, int offset,
  346. int len);
  347. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  348. struct sk_buff **trailer);
  349. extern int skb_pad(struct sk_buff *skb, int pad);
  350. #define dev_kfree_skb(a) kfree_skb(a)
  351. extern void skb_over_panic(struct sk_buff *skb, int len,
  352. void *here);
  353. extern void skb_under_panic(struct sk_buff *skb, int len,
  354. void *here);
  355. extern void skb_truesize_bug(struct sk_buff *skb);
  356. static inline void skb_truesize_check(struct sk_buff *skb)
  357. {
  358. int len = sizeof(struct sk_buff) + skb->len;
  359. if (unlikely((int)skb->truesize < len))
  360. skb_truesize_bug(skb);
  361. }
  362. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  363. int getfrag(void *from, char *to, int offset,
  364. int len,int odd, struct sk_buff *skb),
  365. void *from, int length);
  366. struct skb_seq_state
  367. {
  368. __u32 lower_offset;
  369. __u32 upper_offset;
  370. __u32 frag_idx;
  371. __u32 stepped_offset;
  372. struct sk_buff *root_skb;
  373. struct sk_buff *cur_skb;
  374. __u8 *frag_data;
  375. };
  376. extern void skb_prepare_seq_read(struct sk_buff *skb,
  377. unsigned int from, unsigned int to,
  378. struct skb_seq_state *st);
  379. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  380. struct skb_seq_state *st);
  381. extern void skb_abort_seq_read(struct skb_seq_state *st);
  382. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  383. unsigned int to, struct ts_config *config,
  384. struct ts_state *state);
  385. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  386. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  387. {
  388. return skb->head + skb->end;
  389. }
  390. #else
  391. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  392. {
  393. return skb->end;
  394. }
  395. #endif
  396. /* Internal */
  397. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  398. /**
  399. * skb_queue_empty - check if a queue is empty
  400. * @list: queue head
  401. *
  402. * Returns true if the queue is empty, false otherwise.
  403. */
  404. static inline int skb_queue_empty(const struct sk_buff_head *list)
  405. {
  406. return list->next == (struct sk_buff *)list;
  407. }
  408. /**
  409. * skb_get - reference buffer
  410. * @skb: buffer to reference
  411. *
  412. * Makes another reference to a socket buffer and returns a pointer
  413. * to the buffer.
  414. */
  415. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  416. {
  417. atomic_inc(&skb->users);
  418. return skb;
  419. }
  420. /*
  421. * If users == 1, we are the only owner and are can avoid redundant
  422. * atomic change.
  423. */
  424. /**
  425. * skb_cloned - is the buffer a clone
  426. * @skb: buffer to check
  427. *
  428. * Returns true if the buffer was generated with skb_clone() and is
  429. * one of multiple shared copies of the buffer. Cloned buffers are
  430. * shared data so must not be written to under normal circumstances.
  431. */
  432. static inline int skb_cloned(const struct sk_buff *skb)
  433. {
  434. return skb->cloned &&
  435. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  436. }
  437. /**
  438. * skb_header_cloned - is the header a clone
  439. * @skb: buffer to check
  440. *
  441. * Returns true if modifying the header part of the buffer requires
  442. * the data to be copied.
  443. */
  444. static inline int skb_header_cloned(const struct sk_buff *skb)
  445. {
  446. int dataref;
  447. if (!skb->cloned)
  448. return 0;
  449. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  450. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  451. return dataref != 1;
  452. }
  453. /**
  454. * skb_header_release - release reference to header
  455. * @skb: buffer to operate on
  456. *
  457. * Drop a reference to the header part of the buffer. This is done
  458. * by acquiring a payload reference. You must not read from the header
  459. * part of skb->data after this.
  460. */
  461. static inline void skb_header_release(struct sk_buff *skb)
  462. {
  463. BUG_ON(skb->nohdr);
  464. skb->nohdr = 1;
  465. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  466. }
  467. /**
  468. * skb_shared - is the buffer shared
  469. * @skb: buffer to check
  470. *
  471. * Returns true if more than one person has a reference to this
  472. * buffer.
  473. */
  474. static inline int skb_shared(const struct sk_buff *skb)
  475. {
  476. return atomic_read(&skb->users) != 1;
  477. }
  478. /**
  479. * skb_share_check - check if buffer is shared and if so clone it
  480. * @skb: buffer to check
  481. * @pri: priority for memory allocation
  482. *
  483. * If the buffer is shared the buffer is cloned and the old copy
  484. * drops a reference. A new clone with a single reference is returned.
  485. * If the buffer is not shared the original buffer is returned. When
  486. * being called from interrupt status or with spinlocks held pri must
  487. * be GFP_ATOMIC.
  488. *
  489. * NULL is returned on a memory allocation failure.
  490. */
  491. static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
  492. gfp_t pri)
  493. {
  494. might_sleep_if(pri & __GFP_WAIT);
  495. if (skb_shared(skb)) {
  496. struct sk_buff *nskb = skb_clone(skb, pri);
  497. kfree_skb(skb);
  498. skb = nskb;
  499. }
  500. return skb;
  501. }
  502. /*
  503. * Copy shared buffers into a new sk_buff. We effectively do COW on
  504. * packets to handle cases where we have a local reader and forward
  505. * and a couple of other messy ones. The normal one is tcpdumping
  506. * a packet thats being forwarded.
  507. */
  508. /**
  509. * skb_unshare - make a copy of a shared buffer
  510. * @skb: buffer to check
  511. * @pri: priority for memory allocation
  512. *
  513. * If the socket buffer is a clone then this function creates a new
  514. * copy of the data, drops a reference count on the old copy and returns
  515. * the new copy with the reference count at 1. If the buffer is not a clone
  516. * the original buffer is returned. When called with a spinlock held or
  517. * from interrupt state @pri must be %GFP_ATOMIC
  518. *
  519. * %NULL is returned on a memory allocation failure.
  520. */
  521. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  522. gfp_t pri)
  523. {
  524. might_sleep_if(pri & __GFP_WAIT);
  525. if (skb_cloned(skb)) {
  526. struct sk_buff *nskb = skb_copy(skb, pri);
  527. kfree_skb(skb); /* Free our shared copy */
  528. skb = nskb;
  529. }
  530. return skb;
  531. }
  532. /**
  533. * skb_peek
  534. * @list_: list to peek at
  535. *
  536. * Peek an &sk_buff. Unlike most other operations you _MUST_
  537. * be careful with this one. A peek leaves the buffer on the
  538. * list and someone else may run off with it. You must hold
  539. * the appropriate locks or have a private queue to do this.
  540. *
  541. * Returns %NULL for an empty list or a pointer to the head element.
  542. * The reference count is not incremented and the reference is therefore
  543. * volatile. Use with caution.
  544. */
  545. static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
  546. {
  547. struct sk_buff *list = ((struct sk_buff *)list_)->next;
  548. if (list == (struct sk_buff *)list_)
  549. list = NULL;
  550. return list;
  551. }
  552. /**
  553. * skb_peek_tail
  554. * @list_: list to peek at
  555. *
  556. * Peek an &sk_buff. Unlike most other operations you _MUST_
  557. * be careful with this one. A peek leaves the buffer on the
  558. * list and someone else may run off with it. You must hold
  559. * the appropriate locks or have a private queue to do this.
  560. *
  561. * Returns %NULL for an empty list or a pointer to the tail element.
  562. * The reference count is not incremented and the reference is therefore
  563. * volatile. Use with caution.
  564. */
  565. static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
  566. {
  567. struct sk_buff *list = ((struct sk_buff *)list_)->prev;
  568. if (list == (struct sk_buff *)list_)
  569. list = NULL;
  570. return list;
  571. }
  572. /**
  573. * skb_queue_len - get queue length
  574. * @list_: list to measure
  575. *
  576. * Return the length of an &sk_buff queue.
  577. */
  578. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  579. {
  580. return list_->qlen;
  581. }
  582. /*
  583. * This function creates a split out lock class for each invocation;
  584. * this is needed for now since a whole lot of users of the skb-queue
  585. * infrastructure in drivers have different locking usage (in hardirq)
  586. * than the networking core (in softirq only). In the long run either the
  587. * network layer or drivers should need annotation to consolidate the
  588. * main types of usage into 3 classes.
  589. */
  590. static inline void skb_queue_head_init(struct sk_buff_head *list)
  591. {
  592. spin_lock_init(&list->lock);
  593. list->prev = list->next = (struct sk_buff *)list;
  594. list->qlen = 0;
  595. }
  596. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  597. struct lock_class_key *class)
  598. {
  599. skb_queue_head_init(list);
  600. lockdep_set_class(&list->lock, class);
  601. }
  602. /*
  603. * Insert an sk_buff on a list.
  604. *
  605. * The "__skb_xxxx()" functions are the non-atomic ones that
  606. * can only be called with interrupts disabled.
  607. */
  608. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  609. static inline void __skb_insert(struct sk_buff *newsk,
  610. struct sk_buff *prev, struct sk_buff *next,
  611. struct sk_buff_head *list)
  612. {
  613. newsk->next = next;
  614. newsk->prev = prev;
  615. next->prev = prev->next = newsk;
  616. list->qlen++;
  617. }
  618. /**
  619. * __skb_queue_after - queue a buffer at the list head
  620. * @list: list to use
  621. * @prev: place after this buffer
  622. * @newsk: buffer to queue
  623. *
  624. * Queue a buffer int the middle of a list. This function takes no locks
  625. * and you must therefore hold required locks before calling it.
  626. *
  627. * A buffer cannot be placed on two lists at the same time.
  628. */
  629. static inline void __skb_queue_after(struct sk_buff_head *list,
  630. struct sk_buff *prev,
  631. struct sk_buff *newsk)
  632. {
  633. __skb_insert(newsk, prev, prev->next, list);
  634. }
  635. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  636. struct sk_buff_head *list);
  637. static inline void __skb_queue_before(struct sk_buff_head *list,
  638. struct sk_buff *next,
  639. struct sk_buff *newsk)
  640. {
  641. __skb_insert(newsk, next->prev, next, list);
  642. }
  643. /**
  644. * __skb_queue_head - queue a buffer at the list head
  645. * @list: list to use
  646. * @newsk: buffer to queue
  647. *
  648. * Queue a buffer at the start of a list. This function takes no locks
  649. * and you must therefore hold required locks before calling it.
  650. *
  651. * A buffer cannot be placed on two lists at the same time.
  652. */
  653. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  654. static inline void __skb_queue_head(struct sk_buff_head *list,
  655. struct sk_buff *newsk)
  656. {
  657. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  658. }
  659. /**
  660. * __skb_queue_tail - queue a buffer at the list tail
  661. * @list: list to use
  662. * @newsk: buffer to queue
  663. *
  664. * Queue a buffer at the end of a list. This function takes no locks
  665. * and you must therefore hold required locks before calling it.
  666. *
  667. * A buffer cannot be placed on two lists at the same time.
  668. */
  669. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  670. static inline void __skb_queue_tail(struct sk_buff_head *list,
  671. struct sk_buff *newsk)
  672. {
  673. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  674. }
  675. /*
  676. * remove sk_buff from list. _Must_ be called atomically, and with
  677. * the list known..
  678. */
  679. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  680. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  681. {
  682. struct sk_buff *next, *prev;
  683. list->qlen--;
  684. next = skb->next;
  685. prev = skb->prev;
  686. skb->next = skb->prev = NULL;
  687. next->prev = prev;
  688. prev->next = next;
  689. }
  690. /**
  691. * __skb_dequeue - remove from the head of the queue
  692. * @list: list to dequeue from
  693. *
  694. * Remove the head of the list. This function does not take any locks
  695. * so must be used with appropriate locks held only. The head item is
  696. * returned or %NULL if the list is empty.
  697. */
  698. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  699. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  700. {
  701. struct sk_buff *skb = skb_peek(list);
  702. if (skb)
  703. __skb_unlink(skb, list);
  704. return skb;
  705. }
  706. /**
  707. * __skb_dequeue_tail - remove from the tail of the queue
  708. * @list: list to dequeue from
  709. *
  710. * Remove the tail of the list. This function does not take any locks
  711. * so must be used with appropriate locks held only. The tail item is
  712. * returned or %NULL if the list is empty.
  713. */
  714. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  715. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  716. {
  717. struct sk_buff *skb = skb_peek_tail(list);
  718. if (skb)
  719. __skb_unlink(skb, list);
  720. return skb;
  721. }
  722. static inline int skb_is_nonlinear(const struct sk_buff *skb)
  723. {
  724. return skb->data_len;
  725. }
  726. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  727. {
  728. return skb->len - skb->data_len;
  729. }
  730. static inline int skb_pagelen(const struct sk_buff *skb)
  731. {
  732. int i, len = 0;
  733. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  734. len += skb_shinfo(skb)->frags[i].size;
  735. return len + skb_headlen(skb);
  736. }
  737. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  738. struct page *page, int off, int size)
  739. {
  740. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  741. frag->page = page;
  742. frag->page_offset = off;
  743. frag->size = size;
  744. skb_shinfo(skb)->nr_frags = i + 1;
  745. }
  746. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  747. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
  748. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  749. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  750. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  751. {
  752. return skb->head + skb->tail;
  753. }
  754. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  755. {
  756. skb->tail = skb->data - skb->head;
  757. }
  758. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  759. {
  760. skb_reset_tail_pointer(skb);
  761. skb->tail += offset;
  762. }
  763. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  764. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  765. {
  766. return skb->tail;
  767. }
  768. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  769. {
  770. skb->tail = skb->data;
  771. }
  772. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  773. {
  774. skb->tail = skb->data + offset;
  775. }
  776. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  777. /*
  778. * Add data to an sk_buff
  779. */
  780. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  781. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  782. {
  783. unsigned char *tmp = skb_tail_pointer(skb);
  784. SKB_LINEAR_ASSERT(skb);
  785. skb->tail += len;
  786. skb->len += len;
  787. return tmp;
  788. }
  789. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  790. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  791. {
  792. skb->data -= len;
  793. skb->len += len;
  794. return skb->data;
  795. }
  796. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  797. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  798. {
  799. skb->len -= len;
  800. BUG_ON(skb->len < skb->data_len);
  801. return skb->data += len;
  802. }
  803. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  804. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  805. {
  806. if (len > skb_headlen(skb) &&
  807. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  808. return NULL;
  809. skb->len -= len;
  810. return skb->data += len;
  811. }
  812. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  813. {
  814. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  815. }
  816. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  817. {
  818. if (likely(len <= skb_headlen(skb)))
  819. return 1;
  820. if (unlikely(len > skb->len))
  821. return 0;
  822. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  823. }
  824. /**
  825. * skb_headroom - bytes at buffer head
  826. * @skb: buffer to check
  827. *
  828. * Return the number of bytes of free space at the head of an &sk_buff.
  829. */
  830. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  831. {
  832. return skb->data - skb->head;
  833. }
  834. /**
  835. * skb_tailroom - bytes at buffer end
  836. * @skb: buffer to check
  837. *
  838. * Return the number of bytes of free space at the tail of an sk_buff
  839. */
  840. static inline int skb_tailroom(const struct sk_buff *skb)
  841. {
  842. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  843. }
  844. /**
  845. * skb_reserve - adjust headroom
  846. * @skb: buffer to alter
  847. * @len: bytes to move
  848. *
  849. * Increase the headroom of an empty &sk_buff by reducing the tail
  850. * room. This is only allowed for an empty buffer.
  851. */
  852. static inline void skb_reserve(struct sk_buff *skb, int len)
  853. {
  854. skb->data += len;
  855. skb->tail += len;
  856. }
  857. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  858. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  859. {
  860. return skb->head + skb->transport_header;
  861. }
  862. static inline void skb_reset_transport_header(struct sk_buff *skb)
  863. {
  864. skb->transport_header = skb->data - skb->head;
  865. }
  866. static inline void skb_set_transport_header(struct sk_buff *skb,
  867. const int offset)
  868. {
  869. skb_reset_transport_header(skb);
  870. skb->transport_header += offset;
  871. }
  872. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  873. {
  874. return skb->head + skb->network_header;
  875. }
  876. static inline void skb_reset_network_header(struct sk_buff *skb)
  877. {
  878. skb->network_header = skb->data - skb->head;
  879. }
  880. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  881. {
  882. skb_reset_network_header(skb);
  883. skb->network_header += offset;
  884. }
  885. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  886. {
  887. return skb->head + skb->mac_header;
  888. }
  889. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  890. {
  891. return skb->mac_header != ~0U;
  892. }
  893. static inline void skb_reset_mac_header(struct sk_buff *skb)
  894. {
  895. skb->mac_header = skb->data - skb->head;
  896. }
  897. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  898. {
  899. skb_reset_mac_header(skb);
  900. skb->mac_header += offset;
  901. }
  902. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  903. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  904. {
  905. return skb->transport_header;
  906. }
  907. static inline void skb_reset_transport_header(struct sk_buff *skb)
  908. {
  909. skb->transport_header = skb->data;
  910. }
  911. static inline void skb_set_transport_header(struct sk_buff *skb,
  912. const int offset)
  913. {
  914. skb->transport_header = skb->data + offset;
  915. }
  916. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  917. {
  918. return skb->network_header;
  919. }
  920. static inline void skb_reset_network_header(struct sk_buff *skb)
  921. {
  922. skb->network_header = skb->data;
  923. }
  924. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  925. {
  926. skb->network_header = skb->data + offset;
  927. }
  928. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  929. {
  930. return skb->mac_header;
  931. }
  932. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  933. {
  934. return skb->mac_header != NULL;
  935. }
  936. static inline void skb_reset_mac_header(struct sk_buff *skb)
  937. {
  938. skb->mac_header = skb->data;
  939. }
  940. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  941. {
  942. skb->mac_header = skb->data + offset;
  943. }
  944. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  945. static inline int skb_transport_offset(const struct sk_buff *skb)
  946. {
  947. return skb_transport_header(skb) - skb->data;
  948. }
  949. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  950. {
  951. return skb->transport_header - skb->network_header;
  952. }
  953. static inline int skb_network_offset(const struct sk_buff *skb)
  954. {
  955. return skb_network_header(skb) - skb->data;
  956. }
  957. /*
  958. * CPUs often take a performance hit when accessing unaligned memory
  959. * locations. The actual performance hit varies, it can be small if the
  960. * hardware handles it or large if we have to take an exception and fix it
  961. * in software.
  962. *
  963. * Since an ethernet header is 14 bytes network drivers often end up with
  964. * the IP header at an unaligned offset. The IP header can be aligned by
  965. * shifting the start of the packet by 2 bytes. Drivers should do this
  966. * with:
  967. *
  968. * skb_reserve(NET_IP_ALIGN);
  969. *
  970. * The downside to this alignment of the IP header is that the DMA is now
  971. * unaligned. On some architectures the cost of an unaligned DMA is high
  972. * and this cost outweighs the gains made by aligning the IP header.
  973. *
  974. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  975. * to be overridden.
  976. */
  977. #ifndef NET_IP_ALIGN
  978. #define NET_IP_ALIGN 2
  979. #endif
  980. /*
  981. * The networking layer reserves some headroom in skb data (via
  982. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  983. * the header has to grow. In the default case, if the header has to grow
  984. * 16 bytes or less we avoid the reallocation.
  985. *
  986. * Unfortunately this headroom changes the DMA alignment of the resulting
  987. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  988. * on some architectures. An architecture can override this value,
  989. * perhaps setting it to a cacheline in size (since that will maintain
  990. * cacheline alignment of the DMA). It must be a power of 2.
  991. *
  992. * Various parts of the networking layer expect at least 16 bytes of
  993. * headroom, you should not reduce this.
  994. */
  995. #ifndef NET_SKB_PAD
  996. #define NET_SKB_PAD 16
  997. #endif
  998. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  999. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1000. {
  1001. if (unlikely(skb->data_len)) {
  1002. WARN_ON(1);
  1003. return;
  1004. }
  1005. skb->len = len;
  1006. skb_set_tail_pointer(skb, len);
  1007. }
  1008. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1009. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1010. {
  1011. if (skb->data_len)
  1012. return ___pskb_trim(skb, len);
  1013. __skb_trim(skb, len);
  1014. return 0;
  1015. }
  1016. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1017. {
  1018. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1019. }
  1020. /**
  1021. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1022. * @skb: buffer to alter
  1023. * @len: new length
  1024. *
  1025. * This is identical to pskb_trim except that the caller knows that
  1026. * the skb is not cloned so we should never get an error due to out-
  1027. * of-memory.
  1028. */
  1029. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1030. {
  1031. int err = pskb_trim(skb, len);
  1032. BUG_ON(err);
  1033. }
  1034. /**
  1035. * skb_orphan - orphan a buffer
  1036. * @skb: buffer to orphan
  1037. *
  1038. * If a buffer currently has an owner then we call the owner's
  1039. * destructor function and make the @skb unowned. The buffer continues
  1040. * to exist but is no longer charged to its former owner.
  1041. */
  1042. static inline void skb_orphan(struct sk_buff *skb)
  1043. {
  1044. if (skb->destructor)
  1045. skb->destructor(skb);
  1046. skb->destructor = NULL;
  1047. skb->sk = NULL;
  1048. }
  1049. /**
  1050. * __skb_queue_purge - empty a list
  1051. * @list: list to empty
  1052. *
  1053. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1054. * the list and one reference dropped. This function does not take the
  1055. * list lock and the caller must hold the relevant locks to use it.
  1056. */
  1057. extern void skb_queue_purge(struct sk_buff_head *list);
  1058. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1059. {
  1060. struct sk_buff *skb;
  1061. while ((skb = __skb_dequeue(list)) != NULL)
  1062. kfree_skb(skb);
  1063. }
  1064. /**
  1065. * __dev_alloc_skb - allocate an skbuff for receiving
  1066. * @length: length to allocate
  1067. * @gfp_mask: get_free_pages mask, passed to alloc_skb
  1068. *
  1069. * Allocate a new &sk_buff and assign it a usage count of one. The
  1070. * buffer has unspecified headroom built in. Users should allocate
  1071. * the headroom they think they need without accounting for the
  1072. * built in space. The built in space is used for optimisations.
  1073. *
  1074. * %NULL is returned if there is no free memory.
  1075. */
  1076. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1077. gfp_t gfp_mask)
  1078. {
  1079. struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
  1080. if (likely(skb))
  1081. skb_reserve(skb, NET_SKB_PAD);
  1082. return skb;
  1083. }
  1084. extern struct sk_buff *dev_alloc_skb(unsigned int length);
  1085. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1086. unsigned int length, gfp_t gfp_mask);
  1087. /**
  1088. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1089. * @dev: network device to receive on
  1090. * @length: length to allocate
  1091. *
  1092. * Allocate a new &sk_buff and assign it a usage count of one. The
  1093. * buffer has unspecified headroom built in. Users should allocate
  1094. * the headroom they think they need without accounting for the
  1095. * built in space. The built in space is used for optimisations.
  1096. *
  1097. * %NULL is returned if there is no free memory. Although this function
  1098. * allocates memory it can be called from an interrupt.
  1099. */
  1100. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1101. unsigned int length)
  1102. {
  1103. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1104. }
  1105. /**
  1106. * skb_clone_writable - is the header of a clone writable
  1107. * @skb: buffer to check
  1108. * @len: length up to which to write
  1109. *
  1110. * Returns true if modifying the header part of the cloned buffer
  1111. * does not requires the data to be copied.
  1112. */
  1113. static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
  1114. {
  1115. return !skb_header_cloned(skb) &&
  1116. skb_headroom(skb) + len <= skb->hdr_len;
  1117. }
  1118. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1119. int cloned)
  1120. {
  1121. int delta = 0;
  1122. if (headroom < NET_SKB_PAD)
  1123. headroom = NET_SKB_PAD;
  1124. if (headroom > skb_headroom(skb))
  1125. delta = headroom - skb_headroom(skb);
  1126. if (delta || cloned)
  1127. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1128. GFP_ATOMIC);
  1129. return 0;
  1130. }
  1131. /**
  1132. * skb_cow - copy header of skb when it is required
  1133. * @skb: buffer to cow
  1134. * @headroom: needed headroom
  1135. *
  1136. * If the skb passed lacks sufficient headroom or its data part
  1137. * is shared, data is reallocated. If reallocation fails, an error
  1138. * is returned and original skb is not changed.
  1139. *
  1140. * The result is skb with writable area skb->head...skb->tail
  1141. * and at least @headroom of space at head.
  1142. */
  1143. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1144. {
  1145. return __skb_cow(skb, headroom, skb_cloned(skb));
  1146. }
  1147. /**
  1148. * skb_cow_head - skb_cow but only making the head writable
  1149. * @skb: buffer to cow
  1150. * @headroom: needed headroom
  1151. *
  1152. * This function is identical to skb_cow except that we replace the
  1153. * skb_cloned check by skb_header_cloned. It should be used when
  1154. * you only need to push on some header and do not need to modify
  1155. * the data.
  1156. */
  1157. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1158. {
  1159. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1160. }
  1161. /**
  1162. * skb_padto - pad an skbuff up to a minimal size
  1163. * @skb: buffer to pad
  1164. * @len: minimal length
  1165. *
  1166. * Pads up a buffer to ensure the trailing bytes exist and are
  1167. * blanked. If the buffer already contains sufficient data it
  1168. * is untouched. Otherwise it is extended. Returns zero on
  1169. * success. The skb is freed on error.
  1170. */
  1171. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1172. {
  1173. unsigned int size = skb->len;
  1174. if (likely(size >= len))
  1175. return 0;
  1176. return skb_pad(skb, len - size);
  1177. }
  1178. static inline int skb_add_data(struct sk_buff *skb,
  1179. char __user *from, int copy)
  1180. {
  1181. const int off = skb->len;
  1182. if (skb->ip_summed == CHECKSUM_NONE) {
  1183. int err = 0;
  1184. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1185. copy, 0, &err);
  1186. if (!err) {
  1187. skb->csum = csum_block_add(skb->csum, csum, off);
  1188. return 0;
  1189. }
  1190. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1191. return 0;
  1192. __skb_trim(skb, off);
  1193. return -EFAULT;
  1194. }
  1195. static inline int skb_can_coalesce(struct sk_buff *skb, int i,
  1196. struct page *page, int off)
  1197. {
  1198. if (i) {
  1199. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1200. return page == frag->page &&
  1201. off == frag->page_offset + frag->size;
  1202. }
  1203. return 0;
  1204. }
  1205. static inline int __skb_linearize(struct sk_buff *skb)
  1206. {
  1207. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1208. }
  1209. /**
  1210. * skb_linearize - convert paged skb to linear one
  1211. * @skb: buffer to linarize
  1212. *
  1213. * If there is no free memory -ENOMEM is returned, otherwise zero
  1214. * is returned and the old skb data released.
  1215. */
  1216. static inline int skb_linearize(struct sk_buff *skb)
  1217. {
  1218. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1219. }
  1220. /**
  1221. * skb_linearize_cow - make sure skb is linear and writable
  1222. * @skb: buffer to process
  1223. *
  1224. * If there is no free memory -ENOMEM is returned, otherwise zero
  1225. * is returned and the old skb data released.
  1226. */
  1227. static inline int skb_linearize_cow(struct sk_buff *skb)
  1228. {
  1229. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1230. __skb_linearize(skb) : 0;
  1231. }
  1232. /**
  1233. * skb_postpull_rcsum - update checksum for received skb after pull
  1234. * @skb: buffer to update
  1235. * @start: start of data before pull
  1236. * @len: length of data pulled
  1237. *
  1238. * After doing a pull on a received packet, you need to call this to
  1239. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1240. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1241. */
  1242. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1243. const void *start, unsigned int len)
  1244. {
  1245. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1246. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  1247. }
  1248. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  1249. /**
  1250. * pskb_trim_rcsum - trim received skb and update checksum
  1251. * @skb: buffer to trim
  1252. * @len: new length
  1253. *
  1254. * This is exactly the same as pskb_trim except that it ensures the
  1255. * checksum of received packets are still valid after the operation.
  1256. */
  1257. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  1258. {
  1259. if (likely(len >= skb->len))
  1260. return 0;
  1261. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1262. skb->ip_summed = CHECKSUM_NONE;
  1263. return __pskb_trim(skb, len);
  1264. }
  1265. #define skb_queue_walk(queue, skb) \
  1266. for (skb = (queue)->next; \
  1267. prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
  1268. skb = skb->next)
  1269. #define skb_queue_walk_safe(queue, skb, tmp) \
  1270. for (skb = (queue)->next, tmp = skb->next; \
  1271. skb != (struct sk_buff *)(queue); \
  1272. skb = tmp, tmp = skb->next)
  1273. #define skb_queue_reverse_walk(queue, skb) \
  1274. for (skb = (queue)->prev; \
  1275. prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
  1276. skb = skb->prev)
  1277. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  1278. int *peeked, int *err);
  1279. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  1280. int noblock, int *err);
  1281. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  1282. struct poll_table_struct *wait);
  1283. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  1284. int offset, struct iovec *to,
  1285. int size);
  1286. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  1287. int hlen,
  1288. struct iovec *iov);
  1289. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  1290. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  1291. unsigned int flags);
  1292. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  1293. int len, __wsum csum);
  1294. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  1295. void *to, int len);
  1296. extern int skb_store_bits(struct sk_buff *skb, int offset,
  1297. const void *from, int len);
  1298. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  1299. int offset, u8 *to, int len,
  1300. __wsum csum);
  1301. extern int skb_splice_bits(struct sk_buff *skb,
  1302. unsigned int offset,
  1303. struct pipe_inode_info *pipe,
  1304. unsigned int len,
  1305. unsigned int flags);
  1306. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  1307. extern void skb_split(struct sk_buff *skb,
  1308. struct sk_buff *skb1, const u32 len);
  1309. extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
  1310. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  1311. int len, void *buffer)
  1312. {
  1313. int hlen = skb_headlen(skb);
  1314. if (hlen - offset >= len)
  1315. return skb->data + offset;
  1316. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  1317. return NULL;
  1318. return buffer;
  1319. }
  1320. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  1321. void *to,
  1322. const unsigned int len)
  1323. {
  1324. memcpy(to, skb->data, len);
  1325. }
  1326. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  1327. const int offset, void *to,
  1328. const unsigned int len)
  1329. {
  1330. memcpy(to, skb->data + offset, len);
  1331. }
  1332. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  1333. const void *from,
  1334. const unsigned int len)
  1335. {
  1336. memcpy(skb->data, from, len);
  1337. }
  1338. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  1339. const int offset,
  1340. const void *from,
  1341. const unsigned int len)
  1342. {
  1343. memcpy(skb->data + offset, from, len);
  1344. }
  1345. extern void skb_init(void);
  1346. /**
  1347. * skb_get_timestamp - get timestamp from a skb
  1348. * @skb: skb to get stamp from
  1349. * @stamp: pointer to struct timeval to store stamp in
  1350. *
  1351. * Timestamps are stored in the skb as offsets to a base timestamp.
  1352. * This function converts the offset back to a struct timeval and stores
  1353. * it in stamp.
  1354. */
  1355. static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
  1356. {
  1357. *stamp = ktime_to_timeval(skb->tstamp);
  1358. }
  1359. static inline void __net_timestamp(struct sk_buff *skb)
  1360. {
  1361. skb->tstamp = ktime_get_real();
  1362. }
  1363. static inline ktime_t net_timedelta(ktime_t t)
  1364. {
  1365. return ktime_sub(ktime_get_real(), t);
  1366. }
  1367. static inline ktime_t net_invalid_timestamp(void)
  1368. {
  1369. return ktime_set(0, 0);
  1370. }
  1371. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  1372. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  1373. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  1374. {
  1375. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  1376. }
  1377. /**
  1378. * skb_checksum_complete - Calculate checksum of an entire packet
  1379. * @skb: packet to process
  1380. *
  1381. * This function calculates the checksum over the entire packet plus
  1382. * the value of skb->csum. The latter can be used to supply the
  1383. * checksum of a pseudo header as used by TCP/UDP. It returns the
  1384. * checksum.
  1385. *
  1386. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  1387. * this function can be used to verify that checksum on received
  1388. * packets. In that case the function should return zero if the
  1389. * checksum is correct. In particular, this function will return zero
  1390. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  1391. * hardware has already verified the correctness of the checksum.
  1392. */
  1393. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  1394. {
  1395. return skb_csum_unnecessary(skb) ?
  1396. 0 : __skb_checksum_complete(skb);
  1397. }
  1398. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1399. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  1400. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  1401. {
  1402. if (nfct && atomic_dec_and_test(&nfct->use))
  1403. nf_conntrack_destroy(nfct);
  1404. }
  1405. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  1406. {
  1407. if (nfct)
  1408. atomic_inc(&nfct->use);
  1409. }
  1410. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  1411. {
  1412. if (skb)
  1413. atomic_inc(&skb->users);
  1414. }
  1415. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  1416. {
  1417. if (skb)
  1418. kfree_skb(skb);
  1419. }
  1420. #endif
  1421. #ifdef CONFIG_BRIDGE_NETFILTER
  1422. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  1423. {
  1424. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  1425. kfree(nf_bridge);
  1426. }
  1427. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  1428. {
  1429. if (nf_bridge)
  1430. atomic_inc(&nf_bridge->use);
  1431. }
  1432. #endif /* CONFIG_BRIDGE_NETFILTER */
  1433. static inline void nf_reset(struct sk_buff *skb)
  1434. {
  1435. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1436. nf_conntrack_put(skb->nfct);
  1437. skb->nfct = NULL;
  1438. nf_conntrack_put_reasm(skb->nfct_reasm);
  1439. skb->nfct_reasm = NULL;
  1440. #endif
  1441. #ifdef CONFIG_BRIDGE_NETFILTER
  1442. nf_bridge_put(skb->nf_bridge);
  1443. skb->nf_bridge = NULL;
  1444. #endif
  1445. }
  1446. /* Note: This doesn't put any conntrack and bridge info in dst. */
  1447. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1448. {
  1449. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1450. dst->nfct = src->nfct;
  1451. nf_conntrack_get(src->nfct);
  1452. dst->nfctinfo = src->nfctinfo;
  1453. dst->nfct_reasm = src->nfct_reasm;
  1454. nf_conntrack_get_reasm(src->nfct_reasm);
  1455. #endif
  1456. #ifdef CONFIG_BRIDGE_NETFILTER
  1457. dst->nf_bridge = src->nf_bridge;
  1458. nf_bridge_get(src->nf_bridge);
  1459. #endif
  1460. }
  1461. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  1462. {
  1463. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  1464. nf_conntrack_put(dst->nfct);
  1465. nf_conntrack_put_reasm(dst->nfct_reasm);
  1466. #endif
  1467. #ifdef CONFIG_BRIDGE_NETFILTER
  1468. nf_bridge_put(dst->nf_bridge);
  1469. #endif
  1470. __nf_copy(dst, src);
  1471. }
  1472. #ifdef CONFIG_NETWORK_SECMARK
  1473. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1474. {
  1475. to->secmark = from->secmark;
  1476. }
  1477. static inline void skb_init_secmark(struct sk_buff *skb)
  1478. {
  1479. skb->secmark = 0;
  1480. }
  1481. #else
  1482. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  1483. { }
  1484. static inline void skb_init_secmark(struct sk_buff *skb)
  1485. { }
  1486. #endif
  1487. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  1488. {
  1489. skb->queue_mapping = queue_mapping;
  1490. }
  1491. static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
  1492. {
  1493. return skb->queue_mapping;
  1494. }
  1495. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  1496. {
  1497. to->queue_mapping = from->queue_mapping;
  1498. }
  1499. static inline int skb_is_gso(const struct sk_buff *skb)
  1500. {
  1501. return skb_shinfo(skb)->gso_size;
  1502. }
  1503. static inline int skb_is_gso_v6(const struct sk_buff *skb)
  1504. {
  1505. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  1506. }
  1507. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  1508. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  1509. {
  1510. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  1511. * wanted then gso_type will be set. */
  1512. struct skb_shared_info *shinfo = skb_shinfo(skb);
  1513. if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
  1514. __skb_warn_lro_forwarding(skb);
  1515. return true;
  1516. }
  1517. return false;
  1518. }
  1519. static inline void skb_forward_csum(struct sk_buff *skb)
  1520. {
  1521. /* Unfortunately we don't support this one. Any brave souls? */
  1522. if (skb->ip_summed == CHECKSUM_COMPLETE)
  1523. skb->ip_summed = CHECKSUM_NONE;
  1524. }
  1525. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  1526. #endif /* __KERNEL__ */
  1527. #endif /* _LINUX_SKBUFF_H */