hw.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "debug.h"
  26. #include "ath9k.h"
  27. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  28. MODULE_AUTHOR("Atheros Communications");
  29. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31. MODULE_LICENSE("Dual BSD/GPL");
  32. static int __init ath9k_init(void)
  33. {
  34. return 0;
  35. }
  36. module_init(ath9k_init);
  37. static void __exit ath9k_exit(void)
  38. {
  39. return;
  40. }
  41. module_exit(ath9k_exit);
  42. /* Private hardware callbacks */
  43. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  46. }
  47. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  48. {
  49. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  50. }
  51. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  52. struct ath9k_channel *chan)
  53. {
  54. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  55. }
  56. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  57. {
  58. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  59. return;
  60. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  61. }
  62. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  63. {
  64. /* You will not have this callback if using the old ANI */
  65. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  66. return;
  67. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  68. }
  69. /********************/
  70. /* Helper Functions */
  71. /********************/
  72. #ifdef CONFIG_ATH9K_DEBUGFS
  73. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  74. {
  75. struct ath_softc *sc = common->priv;
  76. if (sync_cause)
  77. sc->debug.stats.istats.sync_cause_all++;
  78. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  79. sc->debug.stats.istats.sync_rtc_irq++;
  80. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  81. sc->debug.stats.istats.sync_mac_irq++;
  82. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  83. sc->debug.stats.istats.eeprom_illegal_access++;
  84. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  85. sc->debug.stats.istats.apb_timeout++;
  86. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  87. sc->debug.stats.istats.pci_mode_conflict++;
  88. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  89. sc->debug.stats.istats.host1_fatal++;
  90. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  91. sc->debug.stats.istats.host1_perr++;
  92. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  93. sc->debug.stats.istats.trcv_fifo_perr++;
  94. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  95. sc->debug.stats.istats.radm_cpl_ep++;
  96. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  97. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  98. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  99. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  100. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  101. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  102. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  103. sc->debug.stats.istats.radm_cpl_timeout++;
  104. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  105. sc->debug.stats.istats.local_timeout++;
  106. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  107. sc->debug.stats.istats.pm_access++;
  108. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  109. sc->debug.stats.istats.mac_awake++;
  110. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  111. sc->debug.stats.istats.mac_asleep++;
  112. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  113. sc->debug.stats.istats.mac_sleep_access++;
  114. }
  115. #endif
  116. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  117. {
  118. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  119. struct ath_common *common = ath9k_hw_common(ah);
  120. unsigned int clockrate;
  121. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  122. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  123. clockrate = 117;
  124. else if (!ah->curchan) /* should really check for CCK instead */
  125. clockrate = ATH9K_CLOCK_RATE_CCK;
  126. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  127. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  128. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  129. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  130. else
  131. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  132. if (conf_is_ht40(conf))
  133. clockrate *= 2;
  134. if (ah->curchan) {
  135. if (IS_CHAN_HALF_RATE(ah->curchan))
  136. clockrate /= 2;
  137. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  138. clockrate /= 4;
  139. }
  140. common->clockrate = clockrate;
  141. }
  142. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  143. {
  144. struct ath_common *common = ath9k_hw_common(ah);
  145. return usecs * common->clockrate;
  146. }
  147. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  148. {
  149. int i;
  150. BUG_ON(timeout < AH_TIME_QUANTUM);
  151. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  152. if ((REG_READ(ah, reg) & mask) == val)
  153. return true;
  154. udelay(AH_TIME_QUANTUM);
  155. }
  156. ath_dbg(ath9k_hw_common(ah), ANY,
  157. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  158. timeout, reg, REG_READ(ah, reg), mask, val);
  159. return false;
  160. }
  161. EXPORT_SYMBOL(ath9k_hw_wait);
  162. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  163. int hw_delay)
  164. {
  165. if (IS_CHAN_B(chan))
  166. hw_delay = (4 * hw_delay) / 22;
  167. else
  168. hw_delay /= 10;
  169. if (IS_CHAN_HALF_RATE(chan))
  170. hw_delay *= 2;
  171. else if (IS_CHAN_QUARTER_RATE(chan))
  172. hw_delay *= 4;
  173. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  174. }
  175. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  176. int column, unsigned int *writecnt)
  177. {
  178. int r;
  179. ENABLE_REGWRITE_BUFFER(ah);
  180. for (r = 0; r < array->ia_rows; r++) {
  181. REG_WRITE(ah, INI_RA(array, r, 0),
  182. INI_RA(array, r, column));
  183. DO_DELAY(*writecnt);
  184. }
  185. REGWRITE_BUFFER_FLUSH(ah);
  186. }
  187. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  188. {
  189. u32 retval;
  190. int i;
  191. for (i = 0, retval = 0; i < n; i++) {
  192. retval = (retval << 1) | (val & 1);
  193. val >>= 1;
  194. }
  195. return retval;
  196. }
  197. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  198. u8 phy, int kbps,
  199. u32 frameLen, u16 rateix,
  200. bool shortPreamble)
  201. {
  202. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  203. if (kbps == 0)
  204. return 0;
  205. switch (phy) {
  206. case WLAN_RC_PHY_CCK:
  207. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  208. if (shortPreamble)
  209. phyTime >>= 1;
  210. numBits = frameLen << 3;
  211. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  212. break;
  213. case WLAN_RC_PHY_OFDM:
  214. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  215. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  216. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  217. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  218. txTime = OFDM_SIFS_TIME_QUARTER
  219. + OFDM_PREAMBLE_TIME_QUARTER
  220. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  221. } else if (ah->curchan &&
  222. IS_CHAN_HALF_RATE(ah->curchan)) {
  223. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  224. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  225. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  226. txTime = OFDM_SIFS_TIME_HALF +
  227. OFDM_PREAMBLE_TIME_HALF
  228. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  229. } else {
  230. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  231. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  232. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  233. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  234. + (numSymbols * OFDM_SYMBOL_TIME);
  235. }
  236. break;
  237. default:
  238. ath_err(ath9k_hw_common(ah),
  239. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  240. txTime = 0;
  241. break;
  242. }
  243. return txTime;
  244. }
  245. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  246. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  247. struct ath9k_channel *chan,
  248. struct chan_centers *centers)
  249. {
  250. int8_t extoff;
  251. if (!IS_CHAN_HT40(chan)) {
  252. centers->ctl_center = centers->ext_center =
  253. centers->synth_center = chan->channel;
  254. return;
  255. }
  256. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  257. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  258. centers->synth_center =
  259. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  260. extoff = 1;
  261. } else {
  262. centers->synth_center =
  263. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  264. extoff = -1;
  265. }
  266. centers->ctl_center =
  267. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. /* 25 MHz spacing is supported by hw but not on upper layers */
  269. centers->ext_center =
  270. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  271. }
  272. /******************/
  273. /* Chip Revisions */
  274. /******************/
  275. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  276. {
  277. u32 val;
  278. switch (ah->hw_version.devid) {
  279. case AR5416_AR9100_DEVID:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  281. break;
  282. case AR9300_DEVID_AR9330:
  283. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  284. if (ah->get_mac_revision) {
  285. ah->hw_version.macRev = ah->get_mac_revision();
  286. } else {
  287. val = REG_READ(ah, AR_SREV);
  288. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  289. }
  290. return;
  291. case AR9300_DEVID_AR9340:
  292. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  293. val = REG_READ(ah, AR_SREV);
  294. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  295. return;
  296. case AR9300_DEVID_QCA955X:
  297. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  298. return;
  299. }
  300. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  301. if (val == 0xFF) {
  302. val = REG_READ(ah, AR_SREV);
  303. ah->hw_version.macVersion =
  304. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  305. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  306. if (AR_SREV_9462(ah))
  307. ah->is_pciexpress = true;
  308. else
  309. ah->is_pciexpress = (val &
  310. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  311. } else {
  312. if (!AR_SREV_9100(ah))
  313. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  314. ah->hw_version.macRev = val & AR_SREV_REVISION;
  315. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  316. ah->is_pciexpress = true;
  317. }
  318. }
  319. /************************************/
  320. /* HW Attach, Detach, Init Routines */
  321. /************************************/
  322. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  323. {
  324. if (!AR_SREV_5416(ah))
  325. return;
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  332. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  333. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  334. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  335. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  336. }
  337. /* This should work for all families including legacy */
  338. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  339. {
  340. struct ath_common *common = ath9k_hw_common(ah);
  341. u32 regAddr[2] = { AR_STA_ID0 };
  342. u32 regHold[2];
  343. static const u32 patternData[4] = {
  344. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  345. };
  346. int i, j, loop_max;
  347. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  348. loop_max = 2;
  349. regAddr[1] = AR_PHY_BASE + (8 << 2);
  350. } else
  351. loop_max = 1;
  352. for (i = 0; i < loop_max; i++) {
  353. u32 addr = regAddr[i];
  354. u32 wrData, rdData;
  355. regHold[i] = REG_READ(ah, addr);
  356. for (j = 0; j < 0x100; j++) {
  357. wrData = (j << 16) | j;
  358. REG_WRITE(ah, addr, wrData);
  359. rdData = REG_READ(ah, addr);
  360. if (rdData != wrData) {
  361. ath_err(common,
  362. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  363. addr, wrData, rdData);
  364. return false;
  365. }
  366. }
  367. for (j = 0; j < 4; j++) {
  368. wrData = patternData[j];
  369. REG_WRITE(ah, addr, wrData);
  370. rdData = REG_READ(ah, addr);
  371. if (wrData != rdData) {
  372. ath_err(common,
  373. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  374. addr, wrData, rdData);
  375. return false;
  376. }
  377. }
  378. REG_WRITE(ah, regAddr[i], regHold[i]);
  379. }
  380. udelay(100);
  381. return true;
  382. }
  383. static void ath9k_hw_init_config(struct ath_hw *ah)
  384. {
  385. int i;
  386. ah->config.dma_beacon_response_time = 1;
  387. ah->config.sw_beacon_response_time = 6;
  388. ah->config.additional_swba_backoff = 0;
  389. ah->config.ack_6mb = 0x0;
  390. ah->config.cwm_ignore_extcca = 0;
  391. ah->config.pcie_clock_req = 0;
  392. ah->config.pcie_waen = 0;
  393. ah->config.analog_shiftreg = 1;
  394. ah->config.enable_ani = true;
  395. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  396. ah->config.spurchans[i][0] = AR_NO_SPUR;
  397. ah->config.spurchans[i][1] = AR_NO_SPUR;
  398. }
  399. ah->config.rx_intr_mitigation = true;
  400. ah->config.pcieSerDesWrite = true;
  401. /*
  402. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  403. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  404. * This means we use it for all AR5416 devices, and the few
  405. * minor PCI AR9280 devices out there.
  406. *
  407. * Serialization is required because these devices do not handle
  408. * well the case of two concurrent reads/writes due to the latency
  409. * involved. During one read/write another read/write can be issued
  410. * on another CPU while the previous read/write may still be working
  411. * on our hardware, if we hit this case the hardware poops in a loop.
  412. * We prevent this by serializing reads and writes.
  413. *
  414. * This issue is not present on PCI-Express devices or pre-AR5416
  415. * devices (legacy, 802.11abg).
  416. */
  417. if (num_possible_cpus() > 1)
  418. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  419. }
  420. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  421. {
  422. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  423. regulatory->country_code = CTRY_DEFAULT;
  424. regulatory->power_limit = MAX_RATE_POWER;
  425. ah->hw_version.magic = AR5416_MAGIC;
  426. ah->hw_version.subvendorid = 0;
  427. ah->atim_window = 0;
  428. ah->sta_id1_defaults =
  429. AR_STA_ID1_CRPT_MIC_ENABLE |
  430. AR_STA_ID1_MCAST_KSRCH;
  431. if (AR_SREV_9100(ah))
  432. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  433. ah->slottime = ATH9K_SLOT_TIME_9;
  434. ah->globaltxtimeout = (u32) -1;
  435. ah->power_mode = ATH9K_PM_UNDEFINED;
  436. ah->htc_reset_init = true;
  437. }
  438. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  439. {
  440. struct ath_common *common = ath9k_hw_common(ah);
  441. u32 sum;
  442. int i;
  443. u16 eeval;
  444. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  445. sum = 0;
  446. for (i = 0; i < 3; i++) {
  447. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  448. sum += eeval;
  449. common->macaddr[2 * i] = eeval >> 8;
  450. common->macaddr[2 * i + 1] = eeval & 0xff;
  451. }
  452. if (sum == 0 || sum == 0xffff * 3)
  453. return -EADDRNOTAVAIL;
  454. return 0;
  455. }
  456. static int ath9k_hw_post_init(struct ath_hw *ah)
  457. {
  458. struct ath_common *common = ath9k_hw_common(ah);
  459. int ecode;
  460. if (common->bus_ops->ath_bus_type != ATH_USB) {
  461. if (!ath9k_hw_chip_test(ah))
  462. return -ENODEV;
  463. }
  464. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  465. ecode = ar9002_hw_rf_claim(ah);
  466. if (ecode != 0)
  467. return ecode;
  468. }
  469. ecode = ath9k_hw_eeprom_init(ah);
  470. if (ecode != 0)
  471. return ecode;
  472. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  473. ah->eep_ops->get_eeprom_ver(ah),
  474. ah->eep_ops->get_eeprom_rev(ah));
  475. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  476. if (ecode) {
  477. ath_err(ath9k_hw_common(ah),
  478. "Failed allocating banks for external radio\n");
  479. ath9k_hw_rf_free_ext_banks(ah);
  480. return ecode;
  481. }
  482. if (ah->config.enable_ani) {
  483. ath9k_hw_ani_setup(ah);
  484. ath9k_hw_ani_init(ah);
  485. }
  486. return 0;
  487. }
  488. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  489. {
  490. if (AR_SREV_9300_20_OR_LATER(ah))
  491. ar9003_hw_attach_ops(ah);
  492. else
  493. ar9002_hw_attach_ops(ah);
  494. }
  495. /* Called for all hardware families */
  496. static int __ath9k_hw_init(struct ath_hw *ah)
  497. {
  498. struct ath_common *common = ath9k_hw_common(ah);
  499. int r = 0;
  500. ath9k_hw_read_revisions(ah);
  501. /*
  502. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  503. * We need to do this to avoid RMW of this register. We cannot
  504. * read the reg when chip is asleep.
  505. */
  506. ah->WARegVal = REG_READ(ah, AR_WA);
  507. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  508. AR_WA_ASPM_TIMER_BASED_DISABLE);
  509. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  510. ath_err(common, "Couldn't reset chip\n");
  511. return -EIO;
  512. }
  513. if (AR_SREV_9462(ah))
  514. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  515. ath9k_hw_init_defaults(ah);
  516. ath9k_hw_init_config(ah);
  517. ath9k_hw_attach_ops(ah);
  518. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  519. ath_err(common, "Couldn't wakeup chip\n");
  520. return -EIO;
  521. }
  522. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  523. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  524. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  525. !ah->is_pciexpress)) {
  526. ah->config.serialize_regmode =
  527. SER_REG_MODE_ON;
  528. } else {
  529. ah->config.serialize_regmode =
  530. SER_REG_MODE_OFF;
  531. }
  532. }
  533. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  534. ah->config.serialize_regmode);
  535. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  536. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  537. else
  538. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  539. switch (ah->hw_version.macVersion) {
  540. case AR_SREV_VERSION_5416_PCI:
  541. case AR_SREV_VERSION_5416_PCIE:
  542. case AR_SREV_VERSION_9160:
  543. case AR_SREV_VERSION_9100:
  544. case AR_SREV_VERSION_9280:
  545. case AR_SREV_VERSION_9285:
  546. case AR_SREV_VERSION_9287:
  547. case AR_SREV_VERSION_9271:
  548. case AR_SREV_VERSION_9300:
  549. case AR_SREV_VERSION_9330:
  550. case AR_SREV_VERSION_9485:
  551. case AR_SREV_VERSION_9340:
  552. case AR_SREV_VERSION_9462:
  553. case AR_SREV_VERSION_9550:
  554. break;
  555. default:
  556. ath_err(common,
  557. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  558. ah->hw_version.macVersion, ah->hw_version.macRev);
  559. return -EOPNOTSUPP;
  560. }
  561. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  562. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  563. ah->is_pciexpress = false;
  564. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  565. ath9k_hw_init_cal_settings(ah);
  566. ah->ani_function = ATH9K_ANI_ALL;
  567. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  568. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  569. if (!AR_SREV_9300_20_OR_LATER(ah))
  570. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  571. ath9k_hw_init_mode_regs(ah);
  572. if (!ah->is_pciexpress)
  573. ath9k_hw_disablepcie(ah);
  574. r = ath9k_hw_post_init(ah);
  575. if (r)
  576. return r;
  577. ath9k_hw_init_mode_gain_regs(ah);
  578. r = ath9k_hw_fill_cap_info(ah);
  579. if (r)
  580. return r;
  581. r = ath9k_hw_init_macaddr(ah);
  582. if (r) {
  583. ath_err(common, "Failed to initialize MAC address\n");
  584. return r;
  585. }
  586. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  587. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  588. else
  589. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  590. if (AR_SREV_9330(ah))
  591. ah->bb_watchdog_timeout_ms = 85;
  592. else
  593. ah->bb_watchdog_timeout_ms = 25;
  594. common->state = ATH_HW_INITIALIZED;
  595. return 0;
  596. }
  597. int ath9k_hw_init(struct ath_hw *ah)
  598. {
  599. int ret;
  600. struct ath_common *common = ath9k_hw_common(ah);
  601. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  602. switch (ah->hw_version.devid) {
  603. case AR5416_DEVID_PCI:
  604. case AR5416_DEVID_PCIE:
  605. case AR5416_AR9100_DEVID:
  606. case AR9160_DEVID_PCI:
  607. case AR9280_DEVID_PCI:
  608. case AR9280_DEVID_PCIE:
  609. case AR9285_DEVID_PCIE:
  610. case AR9287_DEVID_PCI:
  611. case AR9287_DEVID_PCIE:
  612. case AR2427_DEVID_PCIE:
  613. case AR9300_DEVID_PCIE:
  614. case AR9300_DEVID_AR9485_PCIE:
  615. case AR9300_DEVID_AR9330:
  616. case AR9300_DEVID_AR9340:
  617. case AR9300_DEVID_QCA955X:
  618. case AR9300_DEVID_AR9580:
  619. case AR9300_DEVID_AR9462:
  620. case AR9485_DEVID_AR1111:
  621. break;
  622. default:
  623. if (common->bus_ops->ath_bus_type == ATH_USB)
  624. break;
  625. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  626. ah->hw_version.devid);
  627. return -EOPNOTSUPP;
  628. }
  629. ret = __ath9k_hw_init(ah);
  630. if (ret) {
  631. ath_err(common,
  632. "Unable to initialize hardware; initialization status: %d\n",
  633. ret);
  634. return ret;
  635. }
  636. return 0;
  637. }
  638. EXPORT_SYMBOL(ath9k_hw_init);
  639. static void ath9k_hw_init_qos(struct ath_hw *ah)
  640. {
  641. ENABLE_REGWRITE_BUFFER(ah);
  642. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  643. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  644. REG_WRITE(ah, AR_QOS_NO_ACK,
  645. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  646. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  647. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  648. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  649. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  650. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  651. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  652. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  653. REGWRITE_BUFFER_FLUSH(ah);
  654. }
  655. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  656. {
  657. struct ath_common *common = ath9k_hw_common(ah);
  658. int i = 0;
  659. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  660. udelay(100);
  661. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  662. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  663. udelay(100);
  664. if (WARN_ON_ONCE(i >= 100)) {
  665. ath_err(common, "PLL4 meaurement not done\n");
  666. break;
  667. }
  668. i++;
  669. }
  670. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  671. }
  672. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  673. static void ath9k_hw_init_pll(struct ath_hw *ah,
  674. struct ath9k_channel *chan)
  675. {
  676. u32 pll;
  677. if (AR_SREV_9485(ah)) {
  678. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  679. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  680. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  681. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  682. AR_CH0_DPLL2_KD, 0x40);
  683. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  684. AR_CH0_DPLL2_KI, 0x4);
  685. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  686. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  687. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  688. AR_CH0_BB_DPLL1_NINI, 0x58);
  689. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  690. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  691. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  692. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  693. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  694. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  695. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  696. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  697. /* program BB PLL phase_shift to 0x6 */
  698. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  699. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  700. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  701. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  702. udelay(1000);
  703. } else if (AR_SREV_9330(ah)) {
  704. u32 ddr_dpll2, pll_control2, kd;
  705. if (ah->is_clk_25mhz) {
  706. ddr_dpll2 = 0x18e82f01;
  707. pll_control2 = 0xe04a3d;
  708. kd = 0x1d;
  709. } else {
  710. ddr_dpll2 = 0x19e82f01;
  711. pll_control2 = 0x886666;
  712. kd = 0x3d;
  713. }
  714. /* program DDR PLL ki and kd value */
  715. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  716. /* program DDR PLL phase_shift */
  717. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  718. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  719. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  720. udelay(1000);
  721. /* program refdiv, nint, frac to RTC register */
  722. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  723. /* program BB PLL kd and ki value */
  724. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  725. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  726. /* program BB PLL phase_shift */
  727. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  728. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  729. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  730. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  731. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  732. udelay(1000);
  733. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  734. udelay(100);
  735. if (ah->is_clk_25mhz) {
  736. pll2_divint = 0x54;
  737. pll2_divfrac = 0x1eb85;
  738. refdiv = 3;
  739. } else {
  740. if (AR_SREV_9340(ah)) {
  741. pll2_divint = 88;
  742. pll2_divfrac = 0;
  743. refdiv = 5;
  744. } else {
  745. pll2_divint = 0x11;
  746. pll2_divfrac = 0x26666;
  747. refdiv = 1;
  748. }
  749. }
  750. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  751. regval |= (0x1 << 16);
  752. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  753. udelay(100);
  754. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  755. (pll2_divint << 18) | pll2_divfrac);
  756. udelay(100);
  757. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  758. if (AR_SREV_9340(ah))
  759. regval = (regval & 0x80071fff) | (0x1 << 30) |
  760. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  761. else
  762. regval = (regval & 0x80071fff) | (0x3 << 30) |
  763. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  764. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  765. REG_WRITE(ah, AR_PHY_PLL_MODE,
  766. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  767. udelay(1000);
  768. }
  769. pll = ath9k_hw_compute_pll_control(ah, chan);
  770. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  771. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  772. AR_SREV_9550(ah))
  773. udelay(1000);
  774. /* Switch the core clock for ar9271 to 117Mhz */
  775. if (AR_SREV_9271(ah)) {
  776. udelay(500);
  777. REG_WRITE(ah, 0x50040, 0x304);
  778. }
  779. udelay(RTC_PLL_SETTLE_DELAY);
  780. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  781. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  782. if (ah->is_clk_25mhz) {
  783. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  784. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  785. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  786. } else {
  787. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  788. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  789. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  790. }
  791. udelay(100);
  792. }
  793. }
  794. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  795. enum nl80211_iftype opmode)
  796. {
  797. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  798. u32 imr_reg = AR_IMR_TXERR |
  799. AR_IMR_TXURN |
  800. AR_IMR_RXERR |
  801. AR_IMR_RXORN |
  802. AR_IMR_BCNMISC;
  803. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  804. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  805. if (AR_SREV_9300_20_OR_LATER(ah)) {
  806. imr_reg |= AR_IMR_RXOK_HP;
  807. if (ah->config.rx_intr_mitigation)
  808. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  809. else
  810. imr_reg |= AR_IMR_RXOK_LP;
  811. } else {
  812. if (ah->config.rx_intr_mitigation)
  813. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  814. else
  815. imr_reg |= AR_IMR_RXOK;
  816. }
  817. if (ah->config.tx_intr_mitigation)
  818. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  819. else
  820. imr_reg |= AR_IMR_TXOK;
  821. ENABLE_REGWRITE_BUFFER(ah);
  822. REG_WRITE(ah, AR_IMR, imr_reg);
  823. ah->imrs2_reg |= AR_IMR_S2_GTT;
  824. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  825. if (!AR_SREV_9100(ah)) {
  826. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  827. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  828. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  829. }
  830. REGWRITE_BUFFER_FLUSH(ah);
  831. if (AR_SREV_9300_20_OR_LATER(ah)) {
  832. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  833. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  834. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  835. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  836. }
  837. }
  838. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  839. {
  840. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  841. val = min(val, (u32) 0xFFFF);
  842. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  843. }
  844. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  845. {
  846. u32 val = ath9k_hw_mac_to_clks(ah, us);
  847. val = min(val, (u32) 0xFFFF);
  848. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  849. }
  850. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  851. {
  852. u32 val = ath9k_hw_mac_to_clks(ah, us);
  853. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  854. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  855. }
  856. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  857. {
  858. u32 val = ath9k_hw_mac_to_clks(ah, us);
  859. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  860. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  861. }
  862. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  863. {
  864. if (tu > 0xFFFF) {
  865. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  866. tu);
  867. ah->globaltxtimeout = (u32) -1;
  868. return false;
  869. } else {
  870. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  871. ah->globaltxtimeout = tu;
  872. return true;
  873. }
  874. }
  875. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  876. {
  877. struct ath_common *common = ath9k_hw_common(ah);
  878. struct ieee80211_conf *conf = &common->hw->conf;
  879. const struct ath9k_channel *chan = ah->curchan;
  880. int acktimeout, ctstimeout, ack_offset = 0;
  881. int slottime;
  882. int sifstime;
  883. int rx_lat = 0, tx_lat = 0, eifs = 0;
  884. u32 reg;
  885. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  886. ah->misc_mode);
  887. if (!chan)
  888. return;
  889. if (ah->misc_mode != 0)
  890. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  891. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  892. rx_lat = 41;
  893. else
  894. rx_lat = 37;
  895. tx_lat = 54;
  896. if (IS_CHAN_5GHZ(chan))
  897. sifstime = 16;
  898. else
  899. sifstime = 10;
  900. if (IS_CHAN_HALF_RATE(chan)) {
  901. eifs = 175;
  902. rx_lat *= 2;
  903. tx_lat *= 2;
  904. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  905. tx_lat += 11;
  906. sifstime *= 2;
  907. ack_offset = 16;
  908. slottime = 13;
  909. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  910. eifs = 340;
  911. rx_lat = (rx_lat * 4) - 1;
  912. tx_lat *= 4;
  913. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  914. tx_lat += 22;
  915. sifstime *= 4;
  916. ack_offset = 32;
  917. slottime = 21;
  918. } else {
  919. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  920. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  921. reg = AR_USEC_ASYNC_FIFO;
  922. } else {
  923. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  924. common->clockrate;
  925. reg = REG_READ(ah, AR_USEC);
  926. }
  927. rx_lat = MS(reg, AR_USEC_RX_LAT);
  928. tx_lat = MS(reg, AR_USEC_TX_LAT);
  929. slottime = ah->slottime;
  930. }
  931. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  932. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  933. ctstimeout = acktimeout;
  934. /*
  935. * Workaround for early ACK timeouts, add an offset to match the
  936. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  937. * This was initially only meant to work around an issue with delayed
  938. * BA frames in some implementations, but it has been found to fix ACK
  939. * timeout issues in other cases as well.
  940. */
  941. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  942. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  943. acktimeout += 64 - sifstime - ah->slottime;
  944. ctstimeout += 48 - sifstime - ah->slottime;
  945. }
  946. ath9k_hw_set_sifs_time(ah, sifstime);
  947. ath9k_hw_setslottime(ah, slottime);
  948. ath9k_hw_set_ack_timeout(ah, acktimeout);
  949. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  950. if (ah->globaltxtimeout != (u32) -1)
  951. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  952. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  953. REG_RMW(ah, AR_USEC,
  954. (common->clockrate - 1) |
  955. SM(rx_lat, AR_USEC_RX_LAT) |
  956. SM(tx_lat, AR_USEC_TX_LAT),
  957. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  958. }
  959. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  960. void ath9k_hw_deinit(struct ath_hw *ah)
  961. {
  962. struct ath_common *common = ath9k_hw_common(ah);
  963. if (common->state < ATH_HW_INITIALIZED)
  964. goto free_hw;
  965. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  966. free_hw:
  967. ath9k_hw_rf_free_ext_banks(ah);
  968. }
  969. EXPORT_SYMBOL(ath9k_hw_deinit);
  970. /*******/
  971. /* INI */
  972. /*******/
  973. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  974. {
  975. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  976. if (IS_CHAN_B(chan))
  977. ctl |= CTL_11B;
  978. else if (IS_CHAN_G(chan))
  979. ctl |= CTL_11G;
  980. else
  981. ctl |= CTL_11A;
  982. return ctl;
  983. }
  984. /****************************************/
  985. /* Reset and Channel Switching Routines */
  986. /****************************************/
  987. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  988. {
  989. struct ath_common *common = ath9k_hw_common(ah);
  990. ENABLE_REGWRITE_BUFFER(ah);
  991. /*
  992. * set AHB_MODE not to do cacheline prefetches
  993. */
  994. if (!AR_SREV_9300_20_OR_LATER(ah))
  995. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  996. /*
  997. * let mac dma reads be in 128 byte chunks
  998. */
  999. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  1000. REGWRITE_BUFFER_FLUSH(ah);
  1001. /*
  1002. * Restore TX Trigger Level to its pre-reset value.
  1003. * The initial value depends on whether aggregation is enabled, and is
  1004. * adjusted whenever underruns are detected.
  1005. */
  1006. if (!AR_SREV_9300_20_OR_LATER(ah))
  1007. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1008. ENABLE_REGWRITE_BUFFER(ah);
  1009. /*
  1010. * let mac dma writes be in 128 byte chunks
  1011. */
  1012. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1013. /*
  1014. * Setup receive FIFO threshold to hold off TX activities
  1015. */
  1016. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1017. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1018. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1019. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1020. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1021. ah->caps.rx_status_len);
  1022. }
  1023. /*
  1024. * reduce the number of usable entries in PCU TXBUF to avoid
  1025. * wrap around issues.
  1026. */
  1027. if (AR_SREV_9285(ah)) {
  1028. /* For AR9285 the number of Fifos are reduced to half.
  1029. * So set the usable tx buf size also to half to
  1030. * avoid data/delimiter underruns
  1031. */
  1032. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1033. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1034. } else if (!AR_SREV_9271(ah)) {
  1035. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1036. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1037. }
  1038. REGWRITE_BUFFER_FLUSH(ah);
  1039. if (AR_SREV_9300_20_OR_LATER(ah))
  1040. ath9k_hw_reset_txstatus_ring(ah);
  1041. }
  1042. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1043. {
  1044. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1045. u32 set = AR_STA_ID1_KSRCH_MODE;
  1046. switch (opmode) {
  1047. case NL80211_IFTYPE_ADHOC:
  1048. case NL80211_IFTYPE_MESH_POINT:
  1049. set |= AR_STA_ID1_ADHOC;
  1050. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1051. break;
  1052. case NL80211_IFTYPE_AP:
  1053. set |= AR_STA_ID1_STA_AP;
  1054. /* fall through */
  1055. case NL80211_IFTYPE_STATION:
  1056. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1057. break;
  1058. default:
  1059. if (!ah->is_monitoring)
  1060. set = 0;
  1061. break;
  1062. }
  1063. REG_RMW(ah, AR_STA_ID1, set, mask);
  1064. }
  1065. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1066. u32 *coef_mantissa, u32 *coef_exponent)
  1067. {
  1068. u32 coef_exp, coef_man;
  1069. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1070. if ((coef_scaled >> coef_exp) & 0x1)
  1071. break;
  1072. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1073. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1074. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1075. *coef_exponent = coef_exp - 16;
  1076. }
  1077. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1078. {
  1079. u32 rst_flags;
  1080. u32 tmpReg;
  1081. if (AR_SREV_9100(ah)) {
  1082. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1083. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1084. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1085. }
  1086. ENABLE_REGWRITE_BUFFER(ah);
  1087. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1088. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1089. udelay(10);
  1090. }
  1091. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1092. AR_RTC_FORCE_WAKE_ON_INT);
  1093. if (AR_SREV_9100(ah)) {
  1094. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1095. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1096. } else {
  1097. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1098. if (tmpReg &
  1099. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1100. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1101. u32 val;
  1102. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1103. val = AR_RC_HOSTIF;
  1104. if (!AR_SREV_9300_20_OR_LATER(ah))
  1105. val |= AR_RC_AHB;
  1106. REG_WRITE(ah, AR_RC, val);
  1107. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1108. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1109. rst_flags = AR_RTC_RC_MAC_WARM;
  1110. if (type == ATH9K_RESET_COLD)
  1111. rst_flags |= AR_RTC_RC_MAC_COLD;
  1112. }
  1113. if (AR_SREV_9330(ah)) {
  1114. int npend = 0;
  1115. int i;
  1116. /* AR9330 WAR:
  1117. * call external reset function to reset WMAC if:
  1118. * - doing a cold reset
  1119. * - we have pending frames in the TX queues
  1120. */
  1121. for (i = 0; i < AR_NUM_QCU; i++) {
  1122. npend = ath9k_hw_numtxpending(ah, i);
  1123. if (npend)
  1124. break;
  1125. }
  1126. if (ah->external_reset &&
  1127. (npend || type == ATH9K_RESET_COLD)) {
  1128. int reset_err = 0;
  1129. ath_dbg(ath9k_hw_common(ah), RESET,
  1130. "reset MAC via external reset\n");
  1131. reset_err = ah->external_reset();
  1132. if (reset_err) {
  1133. ath_err(ath9k_hw_common(ah),
  1134. "External reset failed, err=%d\n",
  1135. reset_err);
  1136. return false;
  1137. }
  1138. REG_WRITE(ah, AR_RTC_RESET, 1);
  1139. }
  1140. }
  1141. if (ath9k_hw_mci_is_enabled(ah))
  1142. ar9003_mci_check_gpm_offset(ah);
  1143. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1144. REGWRITE_BUFFER_FLUSH(ah);
  1145. udelay(50);
  1146. REG_WRITE(ah, AR_RTC_RC, 0);
  1147. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1148. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1149. return false;
  1150. }
  1151. if (!AR_SREV_9100(ah))
  1152. REG_WRITE(ah, AR_RC, 0);
  1153. if (AR_SREV_9100(ah))
  1154. udelay(50);
  1155. return true;
  1156. }
  1157. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1158. {
  1159. ENABLE_REGWRITE_BUFFER(ah);
  1160. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1161. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1162. udelay(10);
  1163. }
  1164. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1165. AR_RTC_FORCE_WAKE_ON_INT);
  1166. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1167. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1168. REG_WRITE(ah, AR_RTC_RESET, 0);
  1169. REGWRITE_BUFFER_FLUSH(ah);
  1170. if (!AR_SREV_9300_20_OR_LATER(ah))
  1171. udelay(2);
  1172. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1173. REG_WRITE(ah, AR_RC, 0);
  1174. REG_WRITE(ah, AR_RTC_RESET, 1);
  1175. if (!ath9k_hw_wait(ah,
  1176. AR_RTC_STATUS,
  1177. AR_RTC_STATUS_M,
  1178. AR_RTC_STATUS_ON,
  1179. AH_WAIT_TIMEOUT)) {
  1180. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1181. return false;
  1182. }
  1183. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1184. }
  1185. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1186. {
  1187. bool ret = false;
  1188. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1189. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1190. udelay(10);
  1191. }
  1192. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1193. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1194. switch (type) {
  1195. case ATH9K_RESET_POWER_ON:
  1196. ret = ath9k_hw_set_reset_power_on(ah);
  1197. break;
  1198. case ATH9K_RESET_WARM:
  1199. case ATH9K_RESET_COLD:
  1200. ret = ath9k_hw_set_reset(ah, type);
  1201. break;
  1202. default:
  1203. break;
  1204. }
  1205. return ret;
  1206. }
  1207. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1208. struct ath9k_channel *chan)
  1209. {
  1210. int reset_type = ATH9K_RESET_WARM;
  1211. if (AR_SREV_9280(ah)) {
  1212. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1213. reset_type = ATH9K_RESET_POWER_ON;
  1214. else
  1215. reset_type = ATH9K_RESET_COLD;
  1216. }
  1217. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1218. return false;
  1219. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1220. return false;
  1221. ah->chip_fullsleep = false;
  1222. if (AR_SREV_9330(ah))
  1223. ar9003_hw_internal_regulator_apply(ah);
  1224. ath9k_hw_init_pll(ah, chan);
  1225. ath9k_hw_set_rfmode(ah, chan);
  1226. return true;
  1227. }
  1228. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1229. struct ath9k_channel *chan)
  1230. {
  1231. struct ath_common *common = ath9k_hw_common(ah);
  1232. u32 qnum;
  1233. int r;
  1234. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1235. bool band_switch, mode_diff;
  1236. u8 ini_reloaded;
  1237. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1238. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1239. CHANNEL_5GHZ));
  1240. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1241. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1242. if (ath9k_hw_numtxpending(ah, qnum)) {
  1243. ath_dbg(common, QUEUE,
  1244. "Transmit frames pending on queue %d\n", qnum);
  1245. return false;
  1246. }
  1247. }
  1248. if (!ath9k_hw_rfbus_req(ah)) {
  1249. ath_err(common, "Could not kill baseband RX\n");
  1250. return false;
  1251. }
  1252. if (edma && (band_switch || mode_diff)) {
  1253. ath9k_hw_mark_phy_inactive(ah);
  1254. udelay(5);
  1255. ath9k_hw_init_pll(ah, NULL);
  1256. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1257. ath_err(common, "Failed to do fast channel change\n");
  1258. return false;
  1259. }
  1260. }
  1261. ath9k_hw_set_channel_regs(ah, chan);
  1262. r = ath9k_hw_rf_set_freq(ah, chan);
  1263. if (r) {
  1264. ath_err(common, "Failed to set channel\n");
  1265. return false;
  1266. }
  1267. ath9k_hw_set_clockrate(ah);
  1268. ath9k_hw_apply_txpower(ah, chan, false);
  1269. ath9k_hw_rfbus_done(ah);
  1270. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1271. ath9k_hw_set_delta_slope(ah, chan);
  1272. ath9k_hw_spur_mitigate_freq(ah, chan);
  1273. if (edma && (band_switch || mode_diff)) {
  1274. ah->ah_flags |= AH_FASTCC;
  1275. if (band_switch || ini_reloaded)
  1276. ah->eep_ops->set_board_values(ah, chan);
  1277. ath9k_hw_init_bb(ah, chan);
  1278. if (band_switch || ini_reloaded)
  1279. ath9k_hw_init_cal(ah, chan);
  1280. ah->ah_flags &= ~AH_FASTCC;
  1281. }
  1282. return true;
  1283. }
  1284. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1285. {
  1286. u32 gpio_mask = ah->gpio_mask;
  1287. int i;
  1288. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1289. if (!(gpio_mask & 1))
  1290. continue;
  1291. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1292. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1293. }
  1294. }
  1295. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1296. int *hang_state, int *hang_pos)
  1297. {
  1298. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1299. u32 chain_state, dcs_pos, i;
  1300. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1301. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1302. for (i = 0; i < 3; i++) {
  1303. if (chain_state == dcu_chain_state[i]) {
  1304. *hang_state = chain_state;
  1305. *hang_pos = dcs_pos;
  1306. return true;
  1307. }
  1308. }
  1309. }
  1310. return false;
  1311. }
  1312. #define DCU_COMPLETE_STATE 1
  1313. #define DCU_COMPLETE_STATE_MASK 0x3
  1314. #define NUM_STATUS_READS 50
  1315. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1316. {
  1317. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1318. u32 i, hang_pos, hang_state, num_state = 6;
  1319. comp_state = REG_READ(ah, AR_DMADBG_6);
  1320. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1321. ath_dbg(ath9k_hw_common(ah), RESET,
  1322. "MAC Hang signature not found at DCU complete\n");
  1323. return false;
  1324. }
  1325. chain_state = REG_READ(ah, dcs_reg);
  1326. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1327. goto hang_check_iter;
  1328. dcs_reg = AR_DMADBG_5;
  1329. num_state = 4;
  1330. chain_state = REG_READ(ah, dcs_reg);
  1331. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1332. goto hang_check_iter;
  1333. ath_dbg(ath9k_hw_common(ah), RESET,
  1334. "MAC Hang signature 1 not found\n");
  1335. return false;
  1336. hang_check_iter:
  1337. ath_dbg(ath9k_hw_common(ah), RESET,
  1338. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1339. chain_state, comp_state, hang_state, hang_pos);
  1340. for (i = 0; i < NUM_STATUS_READS; i++) {
  1341. chain_state = REG_READ(ah, dcs_reg);
  1342. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1343. comp_state = REG_READ(ah, AR_DMADBG_6);
  1344. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1345. DCU_COMPLETE_STATE) ||
  1346. (chain_state != hang_state))
  1347. return false;
  1348. }
  1349. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1350. return true;
  1351. }
  1352. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1353. {
  1354. int count = 50;
  1355. u32 reg;
  1356. if (AR_SREV_9300(ah))
  1357. return !ath9k_hw_detect_mac_hang(ah);
  1358. if (AR_SREV_9285_12_OR_LATER(ah))
  1359. return true;
  1360. do {
  1361. reg = REG_READ(ah, AR_OBS_BUS_1);
  1362. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1363. continue;
  1364. switch (reg & 0x7E000B00) {
  1365. case 0x1E000000:
  1366. case 0x52000B00:
  1367. case 0x18000B00:
  1368. continue;
  1369. default:
  1370. return true;
  1371. }
  1372. } while (count-- > 0);
  1373. return false;
  1374. }
  1375. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1376. /*
  1377. * Fast channel change:
  1378. * (Change synthesizer based on channel freq without resetting chip)
  1379. *
  1380. * Don't do FCC when
  1381. * - Flag is not set
  1382. * - Chip is just coming out of full sleep
  1383. * - Channel to be set is same as current channel
  1384. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1385. */
  1386. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1387. {
  1388. struct ath_common *common = ath9k_hw_common(ah);
  1389. int ret;
  1390. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1391. goto fail;
  1392. if (ah->chip_fullsleep)
  1393. goto fail;
  1394. if (!ah->curchan)
  1395. goto fail;
  1396. if (chan->channel == ah->curchan->channel)
  1397. goto fail;
  1398. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1399. (CHANNEL_HALF | CHANNEL_QUARTER))
  1400. goto fail;
  1401. if ((chan->channelFlags & CHANNEL_ALL) !=
  1402. (ah->curchan->channelFlags & CHANNEL_ALL))
  1403. goto fail;
  1404. if (!ath9k_hw_check_alive(ah))
  1405. goto fail;
  1406. /*
  1407. * For AR9462, make sure that calibration data for
  1408. * re-using are present.
  1409. */
  1410. if (AR_SREV_9462(ah) && (ah->caldata &&
  1411. (!ah->caldata->done_txiqcal_once ||
  1412. !ah->caldata->done_txclcal_once ||
  1413. !ah->caldata->rtt_done)))
  1414. goto fail;
  1415. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1416. ah->curchan->channel, chan->channel);
  1417. ret = ath9k_hw_channel_change(ah, chan);
  1418. if (!ret)
  1419. goto fail;
  1420. ath9k_hw_loadnf(ah, ah->curchan);
  1421. ath9k_hw_start_nfcal(ah, true);
  1422. if (ath9k_hw_mci_is_enabled(ah))
  1423. ar9003_mci_2g5g_switch(ah, false);
  1424. if (AR_SREV_9271(ah))
  1425. ar9002_hw_load_ani_reg(ah, chan);
  1426. return 0;
  1427. fail:
  1428. return -EINVAL;
  1429. }
  1430. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1431. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1432. {
  1433. struct ath_common *common = ath9k_hw_common(ah);
  1434. u32 saveLedState;
  1435. u32 saveDefAntenna;
  1436. u32 macStaId1;
  1437. u64 tsf = 0;
  1438. int i, r;
  1439. bool start_mci_reset = false;
  1440. bool save_fullsleep = ah->chip_fullsleep;
  1441. if (ath9k_hw_mci_is_enabled(ah)) {
  1442. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1443. if (start_mci_reset)
  1444. return 0;
  1445. }
  1446. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1447. return -EIO;
  1448. if (ah->curchan && !ah->chip_fullsleep)
  1449. ath9k_hw_getnf(ah, ah->curchan);
  1450. ah->caldata = caldata;
  1451. if (caldata &&
  1452. (chan->channel != caldata->channel ||
  1453. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1454. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1455. /* Operating channel changed, reset channel calibration data */
  1456. memset(caldata, 0, sizeof(*caldata));
  1457. ath9k_init_nfcal_hist_buffer(ah, chan);
  1458. } else if (caldata) {
  1459. caldata->paprd_packet_sent = false;
  1460. }
  1461. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1462. if (fastcc) {
  1463. r = ath9k_hw_do_fastcc(ah, chan);
  1464. if (!r)
  1465. return r;
  1466. }
  1467. if (ath9k_hw_mci_is_enabled(ah))
  1468. ar9003_mci_stop_bt(ah, save_fullsleep);
  1469. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1470. if (saveDefAntenna == 0)
  1471. saveDefAntenna = 1;
  1472. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1473. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1474. if (AR_SREV_9100(ah) ||
  1475. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1476. tsf = ath9k_hw_gettsf64(ah);
  1477. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1478. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1479. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1480. ath9k_hw_mark_phy_inactive(ah);
  1481. ah->paprd_table_write_done = false;
  1482. /* Only required on the first reset */
  1483. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1484. REG_WRITE(ah,
  1485. AR9271_RESET_POWER_DOWN_CONTROL,
  1486. AR9271_RADIO_RF_RST);
  1487. udelay(50);
  1488. }
  1489. if (!ath9k_hw_chip_reset(ah, chan)) {
  1490. ath_err(common, "Chip reset failed\n");
  1491. return -EINVAL;
  1492. }
  1493. /* Only required on the first reset */
  1494. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1495. ah->htc_reset_init = false;
  1496. REG_WRITE(ah,
  1497. AR9271_RESET_POWER_DOWN_CONTROL,
  1498. AR9271_GATE_MAC_CTL);
  1499. udelay(50);
  1500. }
  1501. /* Restore TSF */
  1502. if (tsf)
  1503. ath9k_hw_settsf64(ah, tsf);
  1504. if (AR_SREV_9280_20_OR_LATER(ah))
  1505. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1506. if (!AR_SREV_9300_20_OR_LATER(ah))
  1507. ar9002_hw_enable_async_fifo(ah);
  1508. r = ath9k_hw_process_ini(ah, chan);
  1509. if (r)
  1510. return r;
  1511. if (ath9k_hw_mci_is_enabled(ah))
  1512. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1513. /*
  1514. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1515. * right after the chip reset. When that happens, write a new
  1516. * value after the initvals have been applied, with an offset
  1517. * based on measured time difference
  1518. */
  1519. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1520. tsf += 1500;
  1521. ath9k_hw_settsf64(ah, tsf);
  1522. }
  1523. /* Setup MFP options for CCMP */
  1524. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1525. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1526. * frames when constructing CCMP AAD. */
  1527. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1528. 0xc7ff);
  1529. ah->sw_mgmt_crypto = false;
  1530. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1531. /* Disable hardware crypto for management frames */
  1532. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1533. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1534. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1535. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1536. ah->sw_mgmt_crypto = true;
  1537. } else
  1538. ah->sw_mgmt_crypto = true;
  1539. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1540. ath9k_hw_set_delta_slope(ah, chan);
  1541. ath9k_hw_spur_mitigate_freq(ah, chan);
  1542. ah->eep_ops->set_board_values(ah, chan);
  1543. ENABLE_REGWRITE_BUFFER(ah);
  1544. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1545. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1546. | macStaId1
  1547. | AR_STA_ID1_RTS_USE_DEF
  1548. | (ah->config.
  1549. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1550. | ah->sta_id1_defaults);
  1551. ath_hw_setbssidmask(common);
  1552. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1553. ath9k_hw_write_associd(ah);
  1554. REG_WRITE(ah, AR_ISR, ~0);
  1555. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1556. REGWRITE_BUFFER_FLUSH(ah);
  1557. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1558. r = ath9k_hw_rf_set_freq(ah, chan);
  1559. if (r)
  1560. return r;
  1561. ath9k_hw_set_clockrate(ah);
  1562. ENABLE_REGWRITE_BUFFER(ah);
  1563. for (i = 0; i < AR_NUM_DCU; i++)
  1564. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1565. REGWRITE_BUFFER_FLUSH(ah);
  1566. ah->intr_txqs = 0;
  1567. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1568. ath9k_hw_resettxqueue(ah, i);
  1569. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1570. ath9k_hw_ani_cache_ini_regs(ah);
  1571. ath9k_hw_init_qos(ah);
  1572. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1573. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1574. ath9k_hw_init_global_settings(ah);
  1575. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1576. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1577. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1578. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1579. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1580. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1581. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1582. }
  1583. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1584. ath9k_hw_set_dma(ah);
  1585. if (!ath9k_hw_mci_is_enabled(ah))
  1586. REG_WRITE(ah, AR_OBS, 8);
  1587. if (ah->config.rx_intr_mitigation) {
  1588. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1589. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1590. }
  1591. if (ah->config.tx_intr_mitigation) {
  1592. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1593. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1594. }
  1595. ath9k_hw_init_bb(ah, chan);
  1596. if (caldata) {
  1597. caldata->done_txiqcal_once = false;
  1598. caldata->done_txclcal_once = false;
  1599. }
  1600. if (!ath9k_hw_init_cal(ah, chan))
  1601. return -EIO;
  1602. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1603. return -EIO;
  1604. ENABLE_REGWRITE_BUFFER(ah);
  1605. ath9k_hw_restore_chainmask(ah);
  1606. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1607. REGWRITE_BUFFER_FLUSH(ah);
  1608. /*
  1609. * For big endian systems turn on swapping for descriptors
  1610. */
  1611. if (AR_SREV_9100(ah)) {
  1612. u32 mask;
  1613. mask = REG_READ(ah, AR_CFG);
  1614. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1615. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1616. mask);
  1617. } else {
  1618. mask =
  1619. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1620. REG_WRITE(ah, AR_CFG, mask);
  1621. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1622. REG_READ(ah, AR_CFG));
  1623. }
  1624. } else {
  1625. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1626. /* Configure AR9271 target WLAN */
  1627. if (AR_SREV_9271(ah))
  1628. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1629. else
  1630. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1631. }
  1632. #ifdef __BIG_ENDIAN
  1633. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1634. AR_SREV_9550(ah))
  1635. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1636. else
  1637. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1638. #endif
  1639. }
  1640. if (ath9k_hw_btcoex_is_enabled(ah))
  1641. ath9k_hw_btcoex_enable(ah);
  1642. if (ath9k_hw_mci_is_enabled(ah))
  1643. ar9003_mci_check_bt(ah);
  1644. ath9k_hw_loadnf(ah, chan);
  1645. ath9k_hw_start_nfcal(ah, true);
  1646. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1647. ar9003_hw_bb_watchdog_config(ah);
  1648. ar9003_hw_disable_phy_restart(ah);
  1649. }
  1650. ath9k_hw_apply_gpio_override(ah);
  1651. return 0;
  1652. }
  1653. EXPORT_SYMBOL(ath9k_hw_reset);
  1654. /******************************/
  1655. /* Power Management (Chipset) */
  1656. /******************************/
  1657. /*
  1658. * Notify Power Mgt is disabled in self-generated frames.
  1659. * If requested, force chip to sleep.
  1660. */
  1661. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1662. {
  1663. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1664. if (AR_SREV_9462(ah)) {
  1665. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1666. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1667. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1668. /* xxx Required for WLAN only case ? */
  1669. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1670. udelay(100);
  1671. }
  1672. /*
  1673. * Clear the RTC force wake bit to allow the
  1674. * mac to go to sleep.
  1675. */
  1676. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1677. if (ath9k_hw_mci_is_enabled(ah))
  1678. udelay(100);
  1679. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1680. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1681. /* Shutdown chip. Active low */
  1682. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1683. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1684. udelay(2);
  1685. }
  1686. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1687. if (AR_SREV_9300_20_OR_LATER(ah))
  1688. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1689. }
  1690. /*
  1691. * Notify Power Management is enabled in self-generating
  1692. * frames. If request, set power mode of chip to
  1693. * auto/normal. Duration in units of 128us (1/8 TU).
  1694. */
  1695. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1696. {
  1697. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1698. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1699. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1700. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1701. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1702. AR_RTC_FORCE_WAKE_ON_INT);
  1703. } else {
  1704. /* When chip goes into network sleep, it could be waken
  1705. * up by MCI_INT interrupt caused by BT's HW messages
  1706. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1707. * rate (~100us). This will cause chip to leave and
  1708. * re-enter network sleep mode frequently, which in
  1709. * consequence will have WLAN MCI HW to generate lots of
  1710. * SYS_WAKING and SYS_SLEEPING messages which will make
  1711. * BT CPU to busy to process.
  1712. */
  1713. if (ath9k_hw_mci_is_enabled(ah))
  1714. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1715. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1716. /*
  1717. * Clear the RTC force wake bit to allow the
  1718. * mac to go to sleep.
  1719. */
  1720. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1721. if (ath9k_hw_mci_is_enabled(ah))
  1722. udelay(30);
  1723. }
  1724. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1725. if (AR_SREV_9300_20_OR_LATER(ah))
  1726. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1727. }
  1728. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1729. {
  1730. u32 val;
  1731. int i;
  1732. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1733. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1734. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1735. udelay(10);
  1736. }
  1737. if ((REG_READ(ah, AR_RTC_STATUS) &
  1738. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1739. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1740. return false;
  1741. }
  1742. if (!AR_SREV_9300_20_OR_LATER(ah))
  1743. ath9k_hw_init_pll(ah, NULL);
  1744. }
  1745. if (AR_SREV_9100(ah))
  1746. REG_SET_BIT(ah, AR_RTC_RESET,
  1747. AR_RTC_RESET_EN);
  1748. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1749. AR_RTC_FORCE_WAKE_EN);
  1750. udelay(50);
  1751. if (ath9k_hw_mci_is_enabled(ah))
  1752. ar9003_mci_set_power_awake(ah);
  1753. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1754. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1755. if (val == AR_RTC_STATUS_ON)
  1756. break;
  1757. udelay(50);
  1758. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1759. AR_RTC_FORCE_WAKE_EN);
  1760. }
  1761. if (i == 0) {
  1762. ath_err(ath9k_hw_common(ah),
  1763. "Failed to wakeup in %uus\n",
  1764. POWER_UP_TIME / 20);
  1765. return false;
  1766. }
  1767. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1768. return true;
  1769. }
  1770. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1771. {
  1772. struct ath_common *common = ath9k_hw_common(ah);
  1773. int status = true;
  1774. static const char *modes[] = {
  1775. "AWAKE",
  1776. "FULL-SLEEP",
  1777. "NETWORK SLEEP",
  1778. "UNDEFINED"
  1779. };
  1780. if (ah->power_mode == mode)
  1781. return status;
  1782. ath_dbg(common, RESET, "%s -> %s\n",
  1783. modes[ah->power_mode], modes[mode]);
  1784. switch (mode) {
  1785. case ATH9K_PM_AWAKE:
  1786. status = ath9k_hw_set_power_awake(ah);
  1787. break;
  1788. case ATH9K_PM_FULL_SLEEP:
  1789. if (ath9k_hw_mci_is_enabled(ah))
  1790. ar9003_mci_set_full_sleep(ah);
  1791. ath9k_set_power_sleep(ah);
  1792. ah->chip_fullsleep = true;
  1793. break;
  1794. case ATH9K_PM_NETWORK_SLEEP:
  1795. ath9k_set_power_network_sleep(ah);
  1796. break;
  1797. default:
  1798. ath_err(common, "Unknown power mode %u\n", mode);
  1799. return false;
  1800. }
  1801. ah->power_mode = mode;
  1802. /*
  1803. * XXX: If this warning never comes up after a while then
  1804. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1805. * ath9k_hw_setpower() return type void.
  1806. */
  1807. if (!(ah->ah_flags & AH_UNPLUGGED))
  1808. ATH_DBG_WARN_ON_ONCE(!status);
  1809. return status;
  1810. }
  1811. EXPORT_SYMBOL(ath9k_hw_setpower);
  1812. /*******************/
  1813. /* Beacon Handling */
  1814. /*******************/
  1815. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1816. {
  1817. int flags = 0;
  1818. ENABLE_REGWRITE_BUFFER(ah);
  1819. switch (ah->opmode) {
  1820. case NL80211_IFTYPE_ADHOC:
  1821. case NL80211_IFTYPE_MESH_POINT:
  1822. REG_SET_BIT(ah, AR_TXCFG,
  1823. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1824. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1825. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1826. flags |= AR_NDP_TIMER_EN;
  1827. case NL80211_IFTYPE_AP:
  1828. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1829. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1830. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1831. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1832. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1833. flags |=
  1834. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1835. break;
  1836. default:
  1837. ath_dbg(ath9k_hw_common(ah), BEACON,
  1838. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1839. return;
  1840. break;
  1841. }
  1842. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1843. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1844. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1845. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1846. REGWRITE_BUFFER_FLUSH(ah);
  1847. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1848. }
  1849. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1850. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1851. const struct ath9k_beacon_state *bs)
  1852. {
  1853. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1854. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1855. struct ath_common *common = ath9k_hw_common(ah);
  1856. ENABLE_REGWRITE_BUFFER(ah);
  1857. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1858. REG_WRITE(ah, AR_BEACON_PERIOD,
  1859. TU_TO_USEC(bs->bs_intval));
  1860. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1861. TU_TO_USEC(bs->bs_intval));
  1862. REGWRITE_BUFFER_FLUSH(ah);
  1863. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1864. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1865. beaconintval = bs->bs_intval;
  1866. if (bs->bs_sleepduration > beaconintval)
  1867. beaconintval = bs->bs_sleepduration;
  1868. dtimperiod = bs->bs_dtimperiod;
  1869. if (bs->bs_sleepduration > dtimperiod)
  1870. dtimperiod = bs->bs_sleepduration;
  1871. if (beaconintval == dtimperiod)
  1872. nextTbtt = bs->bs_nextdtim;
  1873. else
  1874. nextTbtt = bs->bs_nexttbtt;
  1875. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1876. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1877. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1878. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1879. ENABLE_REGWRITE_BUFFER(ah);
  1880. REG_WRITE(ah, AR_NEXT_DTIM,
  1881. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1882. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1883. REG_WRITE(ah, AR_SLEEP1,
  1884. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1885. | AR_SLEEP1_ASSUME_DTIM);
  1886. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1887. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1888. else
  1889. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1890. REG_WRITE(ah, AR_SLEEP2,
  1891. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1892. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1893. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1894. REGWRITE_BUFFER_FLUSH(ah);
  1895. REG_SET_BIT(ah, AR_TIMER_MODE,
  1896. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1897. AR_DTIM_TIMER_EN);
  1898. /* TSF Out of Range Threshold */
  1899. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1900. }
  1901. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1902. /*******************/
  1903. /* HW Capabilities */
  1904. /*******************/
  1905. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1906. {
  1907. eeprom_chainmask &= chip_chainmask;
  1908. if (eeprom_chainmask)
  1909. return eeprom_chainmask;
  1910. else
  1911. return chip_chainmask;
  1912. }
  1913. /**
  1914. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1915. * @ah: the atheros hardware data structure
  1916. *
  1917. * We enable DFS support upstream on chipsets which have passed a series
  1918. * of tests. The testing requirements are going to be documented. Desired
  1919. * test requirements are documented at:
  1920. *
  1921. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1922. *
  1923. * Once a new chipset gets properly tested an individual commit can be used
  1924. * to document the testing for DFS for that chipset.
  1925. */
  1926. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1927. {
  1928. switch (ah->hw_version.macVersion) {
  1929. /* AR9580 will likely be our first target to get testing on */
  1930. case AR_SREV_VERSION_9580:
  1931. default:
  1932. return false;
  1933. }
  1934. }
  1935. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1936. {
  1937. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1938. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1939. struct ath_common *common = ath9k_hw_common(ah);
  1940. unsigned int chip_chainmask;
  1941. u16 eeval;
  1942. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1943. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1944. regulatory->current_rd = eeval;
  1945. if (ah->opmode != NL80211_IFTYPE_AP &&
  1946. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1947. if (regulatory->current_rd == 0x64 ||
  1948. regulatory->current_rd == 0x65)
  1949. regulatory->current_rd += 5;
  1950. else if (regulatory->current_rd == 0x41)
  1951. regulatory->current_rd = 0x43;
  1952. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1953. regulatory->current_rd);
  1954. }
  1955. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1956. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1957. ath_err(common,
  1958. "no band has been marked as supported in EEPROM\n");
  1959. return -EINVAL;
  1960. }
  1961. if (eeval & AR5416_OPFLAGS_11A)
  1962. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1963. if (eeval & AR5416_OPFLAGS_11G)
  1964. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1965. if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
  1966. chip_chainmask = 1;
  1967. else if (AR_SREV_9462(ah))
  1968. chip_chainmask = 3;
  1969. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1970. chip_chainmask = 7;
  1971. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1972. chip_chainmask = 3;
  1973. else
  1974. chip_chainmask = 7;
  1975. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1976. /*
  1977. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1978. * the EEPROM.
  1979. */
  1980. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1981. !(eeval & AR5416_OPFLAGS_11A) &&
  1982. !(AR_SREV_9271(ah)))
  1983. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1984. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1985. else if (AR_SREV_9100(ah))
  1986. pCap->rx_chainmask = 0x7;
  1987. else
  1988. /* Use rx_chainmask from EEPROM. */
  1989. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1990. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1991. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1992. ah->txchainmask = pCap->tx_chainmask;
  1993. ah->rxchainmask = pCap->rx_chainmask;
  1994. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1995. /* enable key search for every frame in an aggregate */
  1996. if (AR_SREV_9300_20_OR_LATER(ah))
  1997. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1998. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1999. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2000. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2001. else
  2002. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2003. if (AR_SREV_9271(ah))
  2004. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2005. else if (AR_DEVID_7010(ah))
  2006. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2007. else if (AR_SREV_9300_20_OR_LATER(ah))
  2008. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2009. else if (AR_SREV_9287_11_OR_LATER(ah))
  2010. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2011. else if (AR_SREV_9285_12_OR_LATER(ah))
  2012. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2013. else if (AR_SREV_9280_20_OR_LATER(ah))
  2014. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2015. else
  2016. pCap->num_gpio_pins = AR_NUM_GPIO;
  2017. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2018. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2019. else
  2020. pCap->rts_aggr_limit = (8 * 1024);
  2021. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2022. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2023. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2024. ah->rfkill_gpio =
  2025. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2026. ah->rfkill_polarity =
  2027. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2028. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2029. }
  2030. #endif
  2031. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2032. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2033. else
  2034. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2035. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2036. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2037. else
  2038. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2039. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2040. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2041. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
  2042. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2043. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2044. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2045. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2046. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2047. pCap->txs_len = sizeof(struct ar9003_txs);
  2048. } else {
  2049. pCap->tx_desc_len = sizeof(struct ath_desc);
  2050. if (AR_SREV_9280_20(ah))
  2051. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2052. }
  2053. if (AR_SREV_9300_20_OR_LATER(ah))
  2054. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2055. if (AR_SREV_9300_20_OR_LATER(ah))
  2056. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2057. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2058. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2059. if (AR_SREV_9285(ah))
  2060. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2061. ant_div_ctl1 =
  2062. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2063. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2064. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2065. }
  2066. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2067. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2068. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2069. }
  2070. if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
  2071. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2072. /*
  2073. * enable the diversity-combining algorithm only when
  2074. * both enable_lna_div and enable_fast_div are set
  2075. * Table for Diversity
  2076. * ant_div_alt_lnaconf bit 0-1
  2077. * ant_div_main_lnaconf bit 2-3
  2078. * ant_div_alt_gaintb bit 4
  2079. * ant_div_main_gaintb bit 5
  2080. * enable_ant_div_lnadiv bit 6
  2081. * enable_ant_fast_div bit 7
  2082. */
  2083. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2084. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2085. }
  2086. if (AR_SREV_9485_10(ah)) {
  2087. pCap->pcie_lcr_extsync_en = true;
  2088. pCap->pcie_lcr_offset = 0x80;
  2089. }
  2090. if (ath9k_hw_dfs_tested(ah))
  2091. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2092. tx_chainmask = pCap->tx_chainmask;
  2093. rx_chainmask = pCap->rx_chainmask;
  2094. while (tx_chainmask || rx_chainmask) {
  2095. if (tx_chainmask & BIT(0))
  2096. pCap->max_txchains++;
  2097. if (rx_chainmask & BIT(0))
  2098. pCap->max_rxchains++;
  2099. tx_chainmask >>= 1;
  2100. rx_chainmask >>= 1;
  2101. }
  2102. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2103. ah->enabled_cals |= TX_IQ_CAL;
  2104. if (AR_SREV_9485_OR_LATER(ah))
  2105. ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
  2106. }
  2107. if (AR_SREV_9462(ah)) {
  2108. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2109. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2110. if (AR_SREV_9462_20(ah))
  2111. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2112. }
  2113. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2114. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
  2115. ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
  2116. if (AR_SREV_9280(ah))
  2117. pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
  2118. }
  2119. return 0;
  2120. }
  2121. /****************************/
  2122. /* GPIO / RFKILL / Antennae */
  2123. /****************************/
  2124. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2125. u32 gpio, u32 type)
  2126. {
  2127. int addr;
  2128. u32 gpio_shift, tmp;
  2129. if (gpio > 11)
  2130. addr = AR_GPIO_OUTPUT_MUX3;
  2131. else if (gpio > 5)
  2132. addr = AR_GPIO_OUTPUT_MUX2;
  2133. else
  2134. addr = AR_GPIO_OUTPUT_MUX1;
  2135. gpio_shift = (gpio % 6) * 5;
  2136. if (AR_SREV_9280_20_OR_LATER(ah)
  2137. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2138. REG_RMW(ah, addr, (type << gpio_shift),
  2139. (0x1f << gpio_shift));
  2140. } else {
  2141. tmp = REG_READ(ah, addr);
  2142. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2143. tmp &= ~(0x1f << gpio_shift);
  2144. tmp |= (type << gpio_shift);
  2145. REG_WRITE(ah, addr, tmp);
  2146. }
  2147. }
  2148. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2149. {
  2150. u32 gpio_shift;
  2151. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2152. if (AR_DEVID_7010(ah)) {
  2153. gpio_shift = gpio;
  2154. REG_RMW(ah, AR7010_GPIO_OE,
  2155. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2156. (AR7010_GPIO_OE_MASK << gpio_shift));
  2157. return;
  2158. }
  2159. gpio_shift = gpio << 1;
  2160. REG_RMW(ah,
  2161. AR_GPIO_OE_OUT,
  2162. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2163. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2164. }
  2165. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2166. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2167. {
  2168. #define MS_REG_READ(x, y) \
  2169. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2170. if (gpio >= ah->caps.num_gpio_pins)
  2171. return 0xffffffff;
  2172. if (AR_DEVID_7010(ah)) {
  2173. u32 val;
  2174. val = REG_READ(ah, AR7010_GPIO_IN);
  2175. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2176. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2177. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2178. AR_GPIO_BIT(gpio)) != 0;
  2179. else if (AR_SREV_9271(ah))
  2180. return MS_REG_READ(AR9271, gpio) != 0;
  2181. else if (AR_SREV_9287_11_OR_LATER(ah))
  2182. return MS_REG_READ(AR9287, gpio) != 0;
  2183. else if (AR_SREV_9285_12_OR_LATER(ah))
  2184. return MS_REG_READ(AR9285, gpio) != 0;
  2185. else if (AR_SREV_9280_20_OR_LATER(ah))
  2186. return MS_REG_READ(AR928X, gpio) != 0;
  2187. else
  2188. return MS_REG_READ(AR, gpio) != 0;
  2189. }
  2190. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2191. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2192. u32 ah_signal_type)
  2193. {
  2194. u32 gpio_shift;
  2195. if (AR_DEVID_7010(ah)) {
  2196. gpio_shift = gpio;
  2197. REG_RMW(ah, AR7010_GPIO_OE,
  2198. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2199. (AR7010_GPIO_OE_MASK << gpio_shift));
  2200. return;
  2201. }
  2202. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2203. gpio_shift = 2 * gpio;
  2204. REG_RMW(ah,
  2205. AR_GPIO_OE_OUT,
  2206. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2207. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2208. }
  2209. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2210. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2211. {
  2212. if (AR_DEVID_7010(ah)) {
  2213. val = val ? 0 : 1;
  2214. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2215. AR_GPIO_BIT(gpio));
  2216. return;
  2217. }
  2218. if (AR_SREV_9271(ah))
  2219. val = ~val;
  2220. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2221. AR_GPIO_BIT(gpio));
  2222. }
  2223. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2224. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2225. {
  2226. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2227. }
  2228. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2229. /*********************/
  2230. /* General Operation */
  2231. /*********************/
  2232. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2233. {
  2234. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2235. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2236. if (phybits & AR_PHY_ERR_RADAR)
  2237. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2238. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2239. bits |= ATH9K_RX_FILTER_PHYERR;
  2240. return bits;
  2241. }
  2242. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2243. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2244. {
  2245. u32 phybits;
  2246. ENABLE_REGWRITE_BUFFER(ah);
  2247. if (AR_SREV_9462(ah))
  2248. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2249. REG_WRITE(ah, AR_RX_FILTER, bits);
  2250. phybits = 0;
  2251. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2252. phybits |= AR_PHY_ERR_RADAR;
  2253. if (bits & ATH9K_RX_FILTER_PHYERR)
  2254. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2255. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2256. if (phybits)
  2257. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2258. else
  2259. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2260. REGWRITE_BUFFER_FLUSH(ah);
  2261. }
  2262. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2263. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2264. {
  2265. if (ath9k_hw_mci_is_enabled(ah))
  2266. ar9003_mci_bt_gain_ctrl(ah);
  2267. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2268. return false;
  2269. ath9k_hw_init_pll(ah, NULL);
  2270. ah->htc_reset_init = true;
  2271. return true;
  2272. }
  2273. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2274. bool ath9k_hw_disable(struct ath_hw *ah)
  2275. {
  2276. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2277. return false;
  2278. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2279. return false;
  2280. ath9k_hw_init_pll(ah, NULL);
  2281. return true;
  2282. }
  2283. EXPORT_SYMBOL(ath9k_hw_disable);
  2284. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2285. {
  2286. enum eeprom_param gain_param;
  2287. if (IS_CHAN_2GHZ(chan))
  2288. gain_param = EEP_ANTENNA_GAIN_2G;
  2289. else
  2290. gain_param = EEP_ANTENNA_GAIN_5G;
  2291. return ah->eep_ops->get_eeprom(ah, gain_param);
  2292. }
  2293. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2294. bool test)
  2295. {
  2296. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2297. struct ieee80211_channel *channel;
  2298. int chan_pwr, new_pwr, max_gain;
  2299. int ant_gain, ant_reduction = 0;
  2300. if (!chan)
  2301. return;
  2302. channel = chan->chan;
  2303. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2304. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2305. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2306. ant_gain = get_antenna_gain(ah, chan);
  2307. if (ant_gain > max_gain)
  2308. ant_reduction = ant_gain - max_gain;
  2309. ah->eep_ops->set_txpower(ah, chan,
  2310. ath9k_regd_get_ctl(reg, chan),
  2311. ant_reduction, new_pwr, test);
  2312. }
  2313. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2314. {
  2315. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2316. struct ath9k_channel *chan = ah->curchan;
  2317. struct ieee80211_channel *channel = chan->chan;
  2318. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2319. if (test)
  2320. channel->max_power = MAX_RATE_POWER / 2;
  2321. ath9k_hw_apply_txpower(ah, chan, test);
  2322. if (test)
  2323. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2324. }
  2325. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2326. void ath9k_hw_setopmode(struct ath_hw *ah)
  2327. {
  2328. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2329. }
  2330. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2331. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2332. {
  2333. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2334. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2335. }
  2336. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2337. void ath9k_hw_write_associd(struct ath_hw *ah)
  2338. {
  2339. struct ath_common *common = ath9k_hw_common(ah);
  2340. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2341. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2342. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2343. }
  2344. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2345. #define ATH9K_MAX_TSF_READ 10
  2346. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2347. {
  2348. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2349. int i;
  2350. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2351. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2352. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2353. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2354. if (tsf_upper2 == tsf_upper1)
  2355. break;
  2356. tsf_upper1 = tsf_upper2;
  2357. }
  2358. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2359. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2360. }
  2361. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2362. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2363. {
  2364. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2365. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2366. }
  2367. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2368. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2369. {
  2370. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2371. AH_TSF_WRITE_TIMEOUT))
  2372. ath_dbg(ath9k_hw_common(ah), RESET,
  2373. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2374. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2375. }
  2376. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2377. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2378. {
  2379. if (set)
  2380. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2381. else
  2382. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2383. }
  2384. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2385. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2386. {
  2387. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2388. u32 macmode;
  2389. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2390. macmode = AR_2040_JOINED_RX_CLEAR;
  2391. else
  2392. macmode = 0;
  2393. REG_WRITE(ah, AR_2040_MODE, macmode);
  2394. }
  2395. /* HW Generic timers configuration */
  2396. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2397. {
  2398. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2399. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2400. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2401. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2402. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2403. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2404. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2405. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2406. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2407. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2408. AR_NDP2_TIMER_MODE, 0x0002},
  2409. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2410. AR_NDP2_TIMER_MODE, 0x0004},
  2411. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2412. AR_NDP2_TIMER_MODE, 0x0008},
  2413. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2414. AR_NDP2_TIMER_MODE, 0x0010},
  2415. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2416. AR_NDP2_TIMER_MODE, 0x0020},
  2417. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2418. AR_NDP2_TIMER_MODE, 0x0040},
  2419. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2420. AR_NDP2_TIMER_MODE, 0x0080}
  2421. };
  2422. /* HW generic timer primitives */
  2423. /* compute and clear index of rightmost 1 */
  2424. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2425. {
  2426. u32 b;
  2427. b = *mask;
  2428. b &= (0-b);
  2429. *mask &= ~b;
  2430. b *= debruijn32;
  2431. b >>= 27;
  2432. return timer_table->gen_timer_index[b];
  2433. }
  2434. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2435. {
  2436. return REG_READ(ah, AR_TSF_L32);
  2437. }
  2438. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2439. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2440. void (*trigger)(void *),
  2441. void (*overflow)(void *),
  2442. void *arg,
  2443. u8 timer_index)
  2444. {
  2445. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2446. struct ath_gen_timer *timer;
  2447. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2448. if (timer == NULL) {
  2449. ath_err(ath9k_hw_common(ah),
  2450. "Failed to allocate memory for hw timer[%d]\n",
  2451. timer_index);
  2452. return NULL;
  2453. }
  2454. /* allocate a hardware generic timer slot */
  2455. timer_table->timers[timer_index] = timer;
  2456. timer->index = timer_index;
  2457. timer->trigger = trigger;
  2458. timer->overflow = overflow;
  2459. timer->arg = arg;
  2460. return timer;
  2461. }
  2462. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2463. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2464. struct ath_gen_timer *timer,
  2465. u32 trig_timeout,
  2466. u32 timer_period)
  2467. {
  2468. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2469. u32 tsf, timer_next;
  2470. BUG_ON(!timer_period);
  2471. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2472. tsf = ath9k_hw_gettsf32(ah);
  2473. timer_next = tsf + trig_timeout;
  2474. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2475. "current tsf %x period %x timer_next %x\n",
  2476. tsf, timer_period, timer_next);
  2477. /*
  2478. * Program generic timer registers
  2479. */
  2480. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2481. timer_next);
  2482. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2483. timer_period);
  2484. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2485. gen_tmr_configuration[timer->index].mode_mask);
  2486. if (AR_SREV_9462(ah)) {
  2487. /*
  2488. * Starting from AR9462, each generic timer can select which tsf
  2489. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2490. * 8 - 15 use tsf2.
  2491. */
  2492. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2493. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2494. (1 << timer->index));
  2495. else
  2496. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2497. (1 << timer->index));
  2498. }
  2499. /* Enable both trigger and thresh interrupt masks */
  2500. REG_SET_BIT(ah, AR_IMR_S5,
  2501. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2502. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2503. }
  2504. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2505. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2506. {
  2507. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2508. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2509. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2510. return;
  2511. }
  2512. /* Clear generic timer enable bits. */
  2513. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2514. gen_tmr_configuration[timer->index].mode_mask);
  2515. /* Disable both trigger and thresh interrupt masks */
  2516. REG_CLR_BIT(ah, AR_IMR_S5,
  2517. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2518. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2519. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2520. }
  2521. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2522. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2523. {
  2524. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2525. /* free the hardware generic timer slot */
  2526. timer_table->timers[timer->index] = NULL;
  2527. kfree(timer);
  2528. }
  2529. EXPORT_SYMBOL(ath_gen_timer_free);
  2530. /*
  2531. * Generic Timer Interrupts handling
  2532. */
  2533. void ath_gen_timer_isr(struct ath_hw *ah)
  2534. {
  2535. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2536. struct ath_gen_timer *timer;
  2537. struct ath_common *common = ath9k_hw_common(ah);
  2538. u32 trigger_mask, thresh_mask, index;
  2539. /* get hardware generic timer interrupt status */
  2540. trigger_mask = ah->intr_gen_timer_trigger;
  2541. thresh_mask = ah->intr_gen_timer_thresh;
  2542. trigger_mask &= timer_table->timer_mask.val;
  2543. thresh_mask &= timer_table->timer_mask.val;
  2544. trigger_mask &= ~thresh_mask;
  2545. while (thresh_mask) {
  2546. index = rightmost_index(timer_table, &thresh_mask);
  2547. timer = timer_table->timers[index];
  2548. BUG_ON(!timer);
  2549. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2550. index);
  2551. timer->overflow(timer->arg);
  2552. }
  2553. while (trigger_mask) {
  2554. index = rightmost_index(timer_table, &trigger_mask);
  2555. timer = timer_table->timers[index];
  2556. BUG_ON(!timer);
  2557. ath_dbg(common, HWTIMER,
  2558. "Gen timer[%d] trigger\n", index);
  2559. timer->trigger(timer->arg);
  2560. }
  2561. }
  2562. EXPORT_SYMBOL(ath_gen_timer_isr);
  2563. /********/
  2564. /* HTC */
  2565. /********/
  2566. static struct {
  2567. u32 version;
  2568. const char * name;
  2569. } ath_mac_bb_names[] = {
  2570. /* Devices with external radios */
  2571. { AR_SREV_VERSION_5416_PCI, "5416" },
  2572. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2573. { AR_SREV_VERSION_9100, "9100" },
  2574. { AR_SREV_VERSION_9160, "9160" },
  2575. /* Single-chip solutions */
  2576. { AR_SREV_VERSION_9280, "9280" },
  2577. { AR_SREV_VERSION_9285, "9285" },
  2578. { AR_SREV_VERSION_9287, "9287" },
  2579. { AR_SREV_VERSION_9271, "9271" },
  2580. { AR_SREV_VERSION_9300, "9300" },
  2581. { AR_SREV_VERSION_9330, "9330" },
  2582. { AR_SREV_VERSION_9340, "9340" },
  2583. { AR_SREV_VERSION_9485, "9485" },
  2584. { AR_SREV_VERSION_9462, "9462" },
  2585. { AR_SREV_VERSION_9550, "9550" },
  2586. };
  2587. /* For devices with external radios */
  2588. static struct {
  2589. u16 version;
  2590. const char * name;
  2591. } ath_rf_names[] = {
  2592. { 0, "5133" },
  2593. { AR_RAD5133_SREV_MAJOR, "5133" },
  2594. { AR_RAD5122_SREV_MAJOR, "5122" },
  2595. { AR_RAD2133_SREV_MAJOR, "2133" },
  2596. { AR_RAD2122_SREV_MAJOR, "2122" }
  2597. };
  2598. /*
  2599. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2600. */
  2601. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2602. {
  2603. int i;
  2604. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2605. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2606. return ath_mac_bb_names[i].name;
  2607. }
  2608. }
  2609. return "????";
  2610. }
  2611. /*
  2612. * Return the RF name. "????" is returned if the RF is unknown.
  2613. * Used for devices with external radios.
  2614. */
  2615. static const char *ath9k_hw_rf_name(u16 rf_version)
  2616. {
  2617. int i;
  2618. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2619. if (ath_rf_names[i].version == rf_version) {
  2620. return ath_rf_names[i].name;
  2621. }
  2622. }
  2623. return "????";
  2624. }
  2625. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2626. {
  2627. int used;
  2628. /* chipsets >= AR9280 are single-chip */
  2629. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2630. used = snprintf(hw_name, len,
  2631. "Atheros AR%s Rev:%x",
  2632. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2633. ah->hw_version.macRev);
  2634. }
  2635. else {
  2636. used = snprintf(hw_name, len,
  2637. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2638. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2639. ah->hw_version.macRev,
  2640. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2641. AR_RADIO_SREV_MAJOR)),
  2642. ah->hw_version.phyRev);
  2643. }
  2644. hw_name[used] = '\0';
  2645. }
  2646. EXPORT_SYMBOL(ath9k_hw_name);