sched.c 213 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. /*
  75. * Convert user-nice values [ -20 ... 0 ... 19 ]
  76. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  77. * and back.
  78. */
  79. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  80. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  81. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  82. /*
  83. * 'User priority' is the nice value converted to something we
  84. * can work with better when scaling various scheduler parameters,
  85. * it's a [ 0 ... 39 ] range.
  86. */
  87. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  88. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  89. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  90. /*
  91. * Helpers for converting nanosecond timing to jiffy resolution
  92. */
  93. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  94. #define NICE_0_LOAD SCHED_LOAD_SCALE
  95. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  96. /*
  97. * These are the 'tuning knobs' of the scheduler:
  98. *
  99. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define DEF_TIMESLICE (100 * HZ / 1000)
  103. /*
  104. * single value that denotes runtime == period, ie unlimited time.
  105. */
  106. #define RUNTIME_INF ((u64)~0ULL)
  107. #ifdef CONFIG_SMP
  108. /*
  109. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  110. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  111. */
  112. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  113. {
  114. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  115. }
  116. /*
  117. * Each time a sched group cpu_power is changed,
  118. * we must compute its reciprocal value
  119. */
  120. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  121. {
  122. sg->__cpu_power += val;
  123. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  124. }
  125. #endif
  126. static inline int rt_policy(int policy)
  127. {
  128. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  129. return 1;
  130. return 0;
  131. }
  132. static inline int task_has_rt_policy(struct task_struct *p)
  133. {
  134. return rt_policy(p->policy);
  135. }
  136. /*
  137. * This is the priority-queue data structure of the RT scheduling class:
  138. */
  139. struct rt_prio_array {
  140. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  141. struct list_head queue[MAX_RT_PRIO];
  142. };
  143. struct rt_bandwidth {
  144. /* nests inside the rq lock: */
  145. spinlock_t rt_runtime_lock;
  146. ktime_t rt_period;
  147. u64 rt_runtime;
  148. struct hrtimer rt_period_timer;
  149. };
  150. static struct rt_bandwidth def_rt_bandwidth;
  151. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  152. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  153. {
  154. struct rt_bandwidth *rt_b =
  155. container_of(timer, struct rt_bandwidth, rt_period_timer);
  156. ktime_t now;
  157. int overrun;
  158. int idle = 0;
  159. for (;;) {
  160. now = hrtimer_cb_get_time(timer);
  161. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  162. if (!overrun)
  163. break;
  164. idle = do_sched_rt_period_timer(rt_b, overrun);
  165. }
  166. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  167. }
  168. static
  169. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  170. {
  171. rt_b->rt_period = ns_to_ktime(period);
  172. rt_b->rt_runtime = runtime;
  173. spin_lock_init(&rt_b->rt_runtime_lock);
  174. hrtimer_init(&rt_b->rt_period_timer,
  175. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  176. rt_b->rt_period_timer.function = sched_rt_period_timer;
  177. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  178. }
  179. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  180. {
  181. ktime_t now;
  182. if (rt_b->rt_runtime == RUNTIME_INF)
  183. return;
  184. if (hrtimer_active(&rt_b->rt_period_timer))
  185. return;
  186. spin_lock(&rt_b->rt_runtime_lock);
  187. for (;;) {
  188. if (hrtimer_active(&rt_b->rt_period_timer))
  189. break;
  190. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  191. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  192. hrtimer_start(&rt_b->rt_period_timer,
  193. rt_b->rt_period_timer.expires,
  194. HRTIMER_MODE_ABS);
  195. }
  196. spin_unlock(&rt_b->rt_runtime_lock);
  197. }
  198. #ifdef CONFIG_RT_GROUP_SCHED
  199. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  200. {
  201. hrtimer_cancel(&rt_b->rt_period_timer);
  202. }
  203. #endif
  204. /*
  205. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  206. * detach_destroy_domains and partition_sched_domains.
  207. */
  208. static DEFINE_MUTEX(sched_domains_mutex);
  209. #ifdef CONFIG_GROUP_SCHED
  210. #include <linux/cgroup.h>
  211. struct cfs_rq;
  212. static LIST_HEAD(task_groups);
  213. /* task group related information */
  214. struct task_group {
  215. #ifdef CONFIG_CGROUP_SCHED
  216. struct cgroup_subsys_state css;
  217. #endif
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. /* schedulable entities of this group on each cpu */
  220. struct sched_entity **se;
  221. /* runqueue "owned" by this group on each cpu */
  222. struct cfs_rq **cfs_rq;
  223. unsigned long shares;
  224. #endif
  225. #ifdef CONFIG_RT_GROUP_SCHED
  226. struct sched_rt_entity **rt_se;
  227. struct rt_rq **rt_rq;
  228. struct rt_bandwidth rt_bandwidth;
  229. #endif
  230. struct rcu_head rcu;
  231. struct list_head list;
  232. struct task_group *parent;
  233. struct list_head siblings;
  234. struct list_head children;
  235. };
  236. #ifdef CONFIG_USER_SCHED
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  248. #endif
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  252. #endif
  253. #else
  254. #define root_task_group init_task_group
  255. #endif
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_USER_SCHED
  262. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  263. #else
  264. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  265. #endif
  266. /*
  267. * A weight of 0 or 1 can cause arithmetics problems.
  268. * A weight of a cfs_rq is the sum of weights of which entities
  269. * are queued on this cfs_rq, so a weight of a entity should not be
  270. * too large, so as the shares value of a task group.
  271. * (The default weight is 1024 - so there's no practical
  272. * limitation from this.)
  273. */
  274. #define MIN_SHARES 2
  275. #define MAX_SHARES (1UL << 18)
  276. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  277. #endif
  278. /* Default task group.
  279. * Every task in system belong to this group at bootup.
  280. */
  281. struct task_group init_task_group;
  282. /* return group to which a task belongs */
  283. static inline struct task_group *task_group(struct task_struct *p)
  284. {
  285. struct task_group *tg;
  286. #ifdef CONFIG_USER_SCHED
  287. tg = p->user->tg;
  288. #elif defined(CONFIG_CGROUP_SCHED)
  289. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  290. struct task_group, css);
  291. #else
  292. tg = &init_task_group;
  293. #endif
  294. return tg;
  295. }
  296. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  297. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  298. {
  299. #ifdef CONFIG_FAIR_GROUP_SCHED
  300. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  301. p->se.parent = task_group(p)->se[cpu];
  302. #endif
  303. #ifdef CONFIG_RT_GROUP_SCHED
  304. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  305. p->rt.parent = task_group(p)->rt_se[cpu];
  306. #endif
  307. }
  308. #else
  309. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  310. #endif /* CONFIG_GROUP_SCHED */
  311. /* CFS-related fields in a runqueue */
  312. struct cfs_rq {
  313. struct load_weight load;
  314. unsigned long nr_running;
  315. u64 exec_clock;
  316. u64 min_vruntime;
  317. struct rb_root tasks_timeline;
  318. struct rb_node *rb_leftmost;
  319. struct list_head tasks;
  320. struct list_head *balance_iterator;
  321. /*
  322. * 'curr' points to currently running entity on this cfs_rq.
  323. * It is set to NULL otherwise (i.e when none are currently running).
  324. */
  325. struct sched_entity *curr, *next;
  326. unsigned long nr_spread_over;
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  329. /*
  330. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  331. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  332. * (like users, containers etc.)
  333. *
  334. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  335. * list is used during load balance.
  336. */
  337. struct list_head leaf_cfs_rq_list;
  338. struct task_group *tg; /* group that "owns" this runqueue */
  339. #endif
  340. };
  341. /* Real-Time classes' related field in a runqueue: */
  342. struct rt_rq {
  343. struct rt_prio_array active;
  344. unsigned long rt_nr_running;
  345. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  346. int highest_prio; /* highest queued rt task prio */
  347. #endif
  348. #ifdef CONFIG_SMP
  349. unsigned long rt_nr_migratory;
  350. int overloaded;
  351. #endif
  352. int rt_throttled;
  353. u64 rt_time;
  354. u64 rt_runtime;
  355. /* Nests inside the rq lock: */
  356. spinlock_t rt_runtime_lock;
  357. #ifdef CONFIG_RT_GROUP_SCHED
  358. unsigned long rt_nr_boosted;
  359. struct rq *rq;
  360. struct list_head leaf_rt_rq_list;
  361. struct task_group *tg;
  362. struct sched_rt_entity *rt_se;
  363. #endif
  364. };
  365. #ifdef CONFIG_SMP
  366. /*
  367. * We add the notion of a root-domain which will be used to define per-domain
  368. * variables. Each exclusive cpuset essentially defines an island domain by
  369. * fully partitioning the member cpus from any other cpuset. Whenever a new
  370. * exclusive cpuset is created, we also create and attach a new root-domain
  371. * object.
  372. *
  373. */
  374. struct root_domain {
  375. atomic_t refcount;
  376. cpumask_t span;
  377. cpumask_t online;
  378. /*
  379. * The "RT overload" flag: it gets set if a CPU has more than
  380. * one runnable RT task.
  381. */
  382. cpumask_t rto_mask;
  383. atomic_t rto_count;
  384. };
  385. /*
  386. * By default the system creates a single root-domain with all cpus as
  387. * members (mimicking the global state we have today).
  388. */
  389. static struct root_domain def_root_domain;
  390. #endif
  391. /*
  392. * This is the main, per-CPU runqueue data structure.
  393. *
  394. * Locking rule: those places that want to lock multiple runqueues
  395. * (such as the load balancing or the thread migration code), lock
  396. * acquire operations must be ordered by ascending &runqueue.
  397. */
  398. struct rq {
  399. /* runqueue lock: */
  400. spinlock_t lock;
  401. /*
  402. * nr_running and cpu_load should be in the same cacheline because
  403. * remote CPUs use both these fields when doing load calculation.
  404. */
  405. unsigned long nr_running;
  406. #define CPU_LOAD_IDX_MAX 5
  407. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  408. unsigned char idle_at_tick;
  409. #ifdef CONFIG_NO_HZ
  410. unsigned long last_tick_seen;
  411. unsigned char in_nohz_recently;
  412. #endif
  413. /* capture load from *all* tasks on this cpu: */
  414. struct load_weight load;
  415. unsigned long nr_load_updates;
  416. u64 nr_switches;
  417. struct cfs_rq cfs;
  418. struct rt_rq rt;
  419. #ifdef CONFIG_FAIR_GROUP_SCHED
  420. /* list of leaf cfs_rq on this cpu: */
  421. struct list_head leaf_cfs_rq_list;
  422. #endif
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. struct list_head leaf_rt_rq_list;
  425. #endif
  426. /*
  427. * This is part of a global counter where only the total sum
  428. * over all CPUs matters. A task can increase this counter on
  429. * one CPU and if it got migrated afterwards it may decrease
  430. * it on another CPU. Always updated under the runqueue lock:
  431. */
  432. unsigned long nr_uninterruptible;
  433. struct task_struct *curr, *idle;
  434. unsigned long next_balance;
  435. struct mm_struct *prev_mm;
  436. u64 clock;
  437. atomic_t nr_iowait;
  438. #ifdef CONFIG_SMP
  439. struct root_domain *rd;
  440. struct sched_domain *sd;
  441. /* For active balancing */
  442. int active_balance;
  443. int push_cpu;
  444. /* cpu of this runqueue: */
  445. int cpu;
  446. struct task_struct *migration_thread;
  447. struct list_head migration_queue;
  448. #endif
  449. #ifdef CONFIG_SCHED_HRTICK
  450. unsigned long hrtick_flags;
  451. ktime_t hrtick_expire;
  452. struct hrtimer hrtick_timer;
  453. #endif
  454. #ifdef CONFIG_SCHEDSTATS
  455. /* latency stats */
  456. struct sched_info rq_sched_info;
  457. /* sys_sched_yield() stats */
  458. unsigned int yld_exp_empty;
  459. unsigned int yld_act_empty;
  460. unsigned int yld_both_empty;
  461. unsigned int yld_count;
  462. /* schedule() stats */
  463. unsigned int sched_switch;
  464. unsigned int sched_count;
  465. unsigned int sched_goidle;
  466. /* try_to_wake_up() stats */
  467. unsigned int ttwu_count;
  468. unsigned int ttwu_local;
  469. /* BKL stats */
  470. unsigned int bkl_count;
  471. #endif
  472. struct lock_class_key rq_lock_key;
  473. };
  474. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  475. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  476. {
  477. rq->curr->sched_class->check_preempt_curr(rq, p);
  478. }
  479. static inline int cpu_of(struct rq *rq)
  480. {
  481. #ifdef CONFIG_SMP
  482. return rq->cpu;
  483. #else
  484. return 0;
  485. #endif
  486. }
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. static inline void update_rq_clock(struct rq *rq)
  501. {
  502. rq->clock = sched_clock_cpu(cpu_of(rq));
  503. }
  504. /*
  505. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  506. */
  507. #ifdef CONFIG_SCHED_DEBUG
  508. # define const_debug __read_mostly
  509. #else
  510. # define const_debug static const
  511. #endif
  512. /*
  513. * Debugging: various feature bits
  514. */
  515. #define SCHED_FEAT(name, enabled) \
  516. __SCHED_FEAT_##name ,
  517. enum {
  518. #include "sched_features.h"
  519. };
  520. #undef SCHED_FEAT
  521. #define SCHED_FEAT(name, enabled) \
  522. (1UL << __SCHED_FEAT_##name) * enabled |
  523. const_debug unsigned int sysctl_sched_features =
  524. #include "sched_features.h"
  525. 0;
  526. #undef SCHED_FEAT
  527. #ifdef CONFIG_SCHED_DEBUG
  528. #define SCHED_FEAT(name, enabled) \
  529. #name ,
  530. static __read_mostly char *sched_feat_names[] = {
  531. #include "sched_features.h"
  532. NULL
  533. };
  534. #undef SCHED_FEAT
  535. static int sched_feat_open(struct inode *inode, struct file *filp)
  536. {
  537. filp->private_data = inode->i_private;
  538. return 0;
  539. }
  540. static ssize_t
  541. sched_feat_read(struct file *filp, char __user *ubuf,
  542. size_t cnt, loff_t *ppos)
  543. {
  544. char *buf;
  545. int r = 0;
  546. int len = 0;
  547. int i;
  548. for (i = 0; sched_feat_names[i]; i++) {
  549. len += strlen(sched_feat_names[i]);
  550. len += 4;
  551. }
  552. buf = kmalloc(len + 2, GFP_KERNEL);
  553. if (!buf)
  554. return -ENOMEM;
  555. for (i = 0; sched_feat_names[i]; i++) {
  556. if (sysctl_sched_features & (1UL << i))
  557. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  558. else
  559. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  560. }
  561. r += sprintf(buf + r, "\n");
  562. WARN_ON(r >= len + 2);
  563. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  564. kfree(buf);
  565. return r;
  566. }
  567. static ssize_t
  568. sched_feat_write(struct file *filp, const char __user *ubuf,
  569. size_t cnt, loff_t *ppos)
  570. {
  571. char buf[64];
  572. char *cmp = buf;
  573. int neg = 0;
  574. int i;
  575. if (cnt > 63)
  576. cnt = 63;
  577. if (copy_from_user(&buf, ubuf, cnt))
  578. return -EFAULT;
  579. buf[cnt] = 0;
  580. if (strncmp(buf, "NO_", 3) == 0) {
  581. neg = 1;
  582. cmp += 3;
  583. }
  584. for (i = 0; sched_feat_names[i]; i++) {
  585. int len = strlen(sched_feat_names[i]);
  586. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  587. if (neg)
  588. sysctl_sched_features &= ~(1UL << i);
  589. else
  590. sysctl_sched_features |= (1UL << i);
  591. break;
  592. }
  593. }
  594. if (!sched_feat_names[i])
  595. return -EINVAL;
  596. filp->f_pos += cnt;
  597. return cnt;
  598. }
  599. static struct file_operations sched_feat_fops = {
  600. .open = sched_feat_open,
  601. .read = sched_feat_read,
  602. .write = sched_feat_write,
  603. };
  604. static __init int sched_init_debug(void)
  605. {
  606. debugfs_create_file("sched_features", 0644, NULL, NULL,
  607. &sched_feat_fops);
  608. return 0;
  609. }
  610. late_initcall(sched_init_debug);
  611. #endif
  612. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  613. /*
  614. * Number of tasks to iterate in a single balance run.
  615. * Limited because this is done with IRQs disabled.
  616. */
  617. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  618. /*
  619. * period over which we measure -rt task cpu usage in us.
  620. * default: 1s
  621. */
  622. unsigned int sysctl_sched_rt_period = 1000000;
  623. static __read_mostly int scheduler_running;
  624. /*
  625. * part of the period that we allow rt tasks to run in us.
  626. * default: 0.95s
  627. */
  628. int sysctl_sched_rt_runtime = 950000;
  629. static inline u64 global_rt_period(void)
  630. {
  631. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  632. }
  633. static inline u64 global_rt_runtime(void)
  634. {
  635. if (sysctl_sched_rt_period < 0)
  636. return RUNTIME_INF;
  637. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  638. }
  639. unsigned long long time_sync_thresh = 100000;
  640. static DEFINE_PER_CPU(unsigned long long, time_offset);
  641. static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
  642. /*
  643. * Global lock which we take every now and then to synchronize
  644. * the CPUs time. This method is not warp-safe, but it's good
  645. * enough to synchronize slowly diverging time sources and thus
  646. * it's good enough for tracing:
  647. */
  648. static DEFINE_SPINLOCK(time_sync_lock);
  649. static unsigned long long prev_global_time;
  650. static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
  651. {
  652. /*
  653. * We want this inlined, to not get tracer function calls
  654. * in this critical section:
  655. */
  656. spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
  657. __raw_spin_lock(&time_sync_lock.raw_lock);
  658. if (time < prev_global_time) {
  659. per_cpu(time_offset, cpu) += prev_global_time - time;
  660. time = prev_global_time;
  661. } else {
  662. prev_global_time = time;
  663. }
  664. __raw_spin_unlock(&time_sync_lock.raw_lock);
  665. spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
  666. return time;
  667. }
  668. static unsigned long long __cpu_clock(int cpu)
  669. {
  670. unsigned long long now;
  671. /*
  672. * Only call sched_clock() if the scheduler has already been
  673. * initialized (some code might call cpu_clock() very early):
  674. */
  675. if (unlikely(!scheduler_running))
  676. return 0;
  677. now = sched_clock_cpu(cpu);
  678. return now;
  679. }
  680. /*
  681. * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
  682. * clock constructed from sched_clock():
  683. */
  684. unsigned long long cpu_clock(int cpu)
  685. {
  686. unsigned long long prev_cpu_time, time, delta_time;
  687. unsigned long flags;
  688. local_irq_save(flags);
  689. prev_cpu_time = per_cpu(prev_cpu_time, cpu);
  690. time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
  691. delta_time = time-prev_cpu_time;
  692. if (unlikely(delta_time > time_sync_thresh)) {
  693. time = __sync_cpu_clock(time, cpu);
  694. per_cpu(prev_cpu_time, cpu) = time;
  695. }
  696. local_irq_restore(flags);
  697. return time;
  698. }
  699. EXPORT_SYMBOL_GPL(cpu_clock);
  700. #ifndef prepare_arch_switch
  701. # define prepare_arch_switch(next) do { } while (0)
  702. #endif
  703. #ifndef finish_arch_switch
  704. # define finish_arch_switch(prev) do { } while (0)
  705. #endif
  706. static inline int task_current(struct rq *rq, struct task_struct *p)
  707. {
  708. return rq->curr == p;
  709. }
  710. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. return task_current(rq, p);
  714. }
  715. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  716. {
  717. }
  718. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  719. {
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline int task_running(struct rq *rq, struct task_struct *p)
  734. {
  735. #ifdef CONFIG_SMP
  736. return p->oncpu;
  737. #else
  738. return task_current(rq, p);
  739. #endif
  740. }
  741. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  742. {
  743. #ifdef CONFIG_SMP
  744. /*
  745. * We can optimise this out completely for !SMP, because the
  746. * SMP rebalancing from interrupt is the only thing that cares
  747. * here.
  748. */
  749. next->oncpu = 1;
  750. #endif
  751. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  752. spin_unlock_irq(&rq->lock);
  753. #else
  754. spin_unlock(&rq->lock);
  755. #endif
  756. }
  757. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  758. {
  759. #ifdef CONFIG_SMP
  760. /*
  761. * After ->oncpu is cleared, the task can be moved to a different CPU.
  762. * We must ensure this doesn't happen until the switch is completely
  763. * finished.
  764. */
  765. smp_wmb();
  766. prev->oncpu = 0;
  767. #endif
  768. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  769. local_irq_enable();
  770. #endif
  771. }
  772. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. for (;;) {
  781. struct rq *rq = task_rq(p);
  782. spin_lock(&rq->lock);
  783. if (likely(rq == task_rq(p)))
  784. return rq;
  785. spin_unlock(&rq->lock);
  786. }
  787. }
  788. /*
  789. * task_rq_lock - lock the runqueue a given task resides on and disable
  790. * interrupts. Note the ordering: we can safely lookup the task_rq without
  791. * explicitly disabling preemption.
  792. */
  793. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  794. __acquires(rq->lock)
  795. {
  796. struct rq *rq;
  797. for (;;) {
  798. local_irq_save(*flags);
  799. rq = task_rq(p);
  800. spin_lock(&rq->lock);
  801. if (likely(rq == task_rq(p)))
  802. return rq;
  803. spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. static void __resched_task(struct task_struct *p, int tif_bit);
  829. static inline void resched_task(struct task_struct *p)
  830. {
  831. __resched_task(p, TIF_NEED_RESCHED);
  832. }
  833. #ifdef CONFIG_SCHED_HRTICK
  834. /*
  835. * Use HR-timers to deliver accurate preemption points.
  836. *
  837. * Its all a bit involved since we cannot program an hrt while holding the
  838. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  839. * reschedule event.
  840. *
  841. * When we get rescheduled we reprogram the hrtick_timer outside of the
  842. * rq->lock.
  843. */
  844. static inline void resched_hrt(struct task_struct *p)
  845. {
  846. __resched_task(p, TIF_HRTICK_RESCHED);
  847. }
  848. static inline void resched_rq(struct rq *rq)
  849. {
  850. unsigned long flags;
  851. spin_lock_irqsave(&rq->lock, flags);
  852. resched_task(rq->curr);
  853. spin_unlock_irqrestore(&rq->lock, flags);
  854. }
  855. enum {
  856. HRTICK_SET, /* re-programm hrtick_timer */
  857. HRTICK_RESET, /* not a new slice */
  858. HRTICK_BLOCK, /* stop hrtick operations */
  859. };
  860. /*
  861. * Use hrtick when:
  862. * - enabled by features
  863. * - hrtimer is actually high res
  864. */
  865. static inline int hrtick_enabled(struct rq *rq)
  866. {
  867. if (!sched_feat(HRTICK))
  868. return 0;
  869. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  870. return 0;
  871. return hrtimer_is_hres_active(&rq->hrtick_timer);
  872. }
  873. /*
  874. * Called to set the hrtick timer state.
  875. *
  876. * called with rq->lock held and irqs disabled
  877. */
  878. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  879. {
  880. assert_spin_locked(&rq->lock);
  881. /*
  882. * preempt at: now + delay
  883. */
  884. rq->hrtick_expire =
  885. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  886. /*
  887. * indicate we need to program the timer
  888. */
  889. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  890. if (reset)
  891. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  892. /*
  893. * New slices are called from the schedule path and don't need a
  894. * forced reschedule.
  895. */
  896. if (reset)
  897. resched_hrt(rq->curr);
  898. }
  899. static void hrtick_clear(struct rq *rq)
  900. {
  901. if (hrtimer_active(&rq->hrtick_timer))
  902. hrtimer_cancel(&rq->hrtick_timer);
  903. }
  904. /*
  905. * Update the timer from the possible pending state.
  906. */
  907. static void hrtick_set(struct rq *rq)
  908. {
  909. ktime_t time;
  910. int set, reset;
  911. unsigned long flags;
  912. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  913. spin_lock_irqsave(&rq->lock, flags);
  914. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  915. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  916. time = rq->hrtick_expire;
  917. clear_thread_flag(TIF_HRTICK_RESCHED);
  918. spin_unlock_irqrestore(&rq->lock, flags);
  919. if (set) {
  920. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  921. if (reset && !hrtimer_active(&rq->hrtick_timer))
  922. resched_rq(rq);
  923. } else
  924. hrtick_clear(rq);
  925. }
  926. /*
  927. * High-resolution timer tick.
  928. * Runs from hardirq context with interrupts disabled.
  929. */
  930. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  931. {
  932. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  933. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  934. spin_lock(&rq->lock);
  935. update_rq_clock(rq);
  936. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  937. spin_unlock(&rq->lock);
  938. return HRTIMER_NORESTART;
  939. }
  940. static void hotplug_hrtick_disable(int cpu)
  941. {
  942. struct rq *rq = cpu_rq(cpu);
  943. unsigned long flags;
  944. spin_lock_irqsave(&rq->lock, flags);
  945. rq->hrtick_flags = 0;
  946. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  947. spin_unlock_irqrestore(&rq->lock, flags);
  948. hrtick_clear(rq);
  949. }
  950. static void hotplug_hrtick_enable(int cpu)
  951. {
  952. struct rq *rq = cpu_rq(cpu);
  953. unsigned long flags;
  954. spin_lock_irqsave(&rq->lock, flags);
  955. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  956. spin_unlock_irqrestore(&rq->lock, flags);
  957. }
  958. static int
  959. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  960. {
  961. int cpu = (int)(long)hcpu;
  962. switch (action) {
  963. case CPU_UP_CANCELED:
  964. case CPU_UP_CANCELED_FROZEN:
  965. case CPU_DOWN_PREPARE:
  966. case CPU_DOWN_PREPARE_FROZEN:
  967. case CPU_DEAD:
  968. case CPU_DEAD_FROZEN:
  969. hotplug_hrtick_disable(cpu);
  970. return NOTIFY_OK;
  971. case CPU_UP_PREPARE:
  972. case CPU_UP_PREPARE_FROZEN:
  973. case CPU_DOWN_FAILED:
  974. case CPU_DOWN_FAILED_FROZEN:
  975. case CPU_ONLINE:
  976. case CPU_ONLINE_FROZEN:
  977. hotplug_hrtick_enable(cpu);
  978. return NOTIFY_OK;
  979. }
  980. return NOTIFY_DONE;
  981. }
  982. static void init_hrtick(void)
  983. {
  984. hotcpu_notifier(hotplug_hrtick, 0);
  985. }
  986. static void init_rq_hrtick(struct rq *rq)
  987. {
  988. rq->hrtick_flags = 0;
  989. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  990. rq->hrtick_timer.function = hrtick;
  991. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  992. }
  993. void hrtick_resched(void)
  994. {
  995. struct rq *rq;
  996. unsigned long flags;
  997. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  998. return;
  999. local_irq_save(flags);
  1000. rq = cpu_rq(smp_processor_id());
  1001. hrtick_set(rq);
  1002. local_irq_restore(flags);
  1003. }
  1004. #else
  1005. static inline void hrtick_clear(struct rq *rq)
  1006. {
  1007. }
  1008. static inline void hrtick_set(struct rq *rq)
  1009. {
  1010. }
  1011. static inline void init_rq_hrtick(struct rq *rq)
  1012. {
  1013. }
  1014. void hrtick_resched(void)
  1015. {
  1016. }
  1017. static inline void init_hrtick(void)
  1018. {
  1019. }
  1020. #endif
  1021. /*
  1022. * resched_task - mark a task 'to be rescheduled now'.
  1023. *
  1024. * On UP this means the setting of the need_resched flag, on SMP it
  1025. * might also involve a cross-CPU call to trigger the scheduler on
  1026. * the target CPU.
  1027. */
  1028. #ifdef CONFIG_SMP
  1029. #ifndef tsk_is_polling
  1030. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1031. #endif
  1032. static void __resched_task(struct task_struct *p, int tif_bit)
  1033. {
  1034. int cpu;
  1035. assert_spin_locked(&task_rq(p)->lock);
  1036. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1037. return;
  1038. set_tsk_thread_flag(p, tif_bit);
  1039. cpu = task_cpu(p);
  1040. if (cpu == smp_processor_id())
  1041. return;
  1042. /* NEED_RESCHED must be visible before we test polling */
  1043. smp_mb();
  1044. if (!tsk_is_polling(p))
  1045. smp_send_reschedule(cpu);
  1046. }
  1047. static void resched_cpu(int cpu)
  1048. {
  1049. struct rq *rq = cpu_rq(cpu);
  1050. unsigned long flags;
  1051. if (!spin_trylock_irqsave(&rq->lock, flags))
  1052. return;
  1053. resched_task(cpu_curr(cpu));
  1054. spin_unlock_irqrestore(&rq->lock, flags);
  1055. }
  1056. #ifdef CONFIG_NO_HZ
  1057. /*
  1058. * When add_timer_on() enqueues a timer into the timer wheel of an
  1059. * idle CPU then this timer might expire before the next timer event
  1060. * which is scheduled to wake up that CPU. In case of a completely
  1061. * idle system the next event might even be infinite time into the
  1062. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1063. * leaves the inner idle loop so the newly added timer is taken into
  1064. * account when the CPU goes back to idle and evaluates the timer
  1065. * wheel for the next timer event.
  1066. */
  1067. void wake_up_idle_cpu(int cpu)
  1068. {
  1069. struct rq *rq = cpu_rq(cpu);
  1070. if (cpu == smp_processor_id())
  1071. return;
  1072. /*
  1073. * This is safe, as this function is called with the timer
  1074. * wheel base lock of (cpu) held. When the CPU is on the way
  1075. * to idle and has not yet set rq->curr to idle then it will
  1076. * be serialized on the timer wheel base lock and take the new
  1077. * timer into account automatically.
  1078. */
  1079. if (rq->curr != rq->idle)
  1080. return;
  1081. /*
  1082. * We can set TIF_RESCHED on the idle task of the other CPU
  1083. * lockless. The worst case is that the other CPU runs the
  1084. * idle task through an additional NOOP schedule()
  1085. */
  1086. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1087. /* NEED_RESCHED must be visible before we test polling */
  1088. smp_mb();
  1089. if (!tsk_is_polling(rq->idle))
  1090. smp_send_reschedule(cpu);
  1091. }
  1092. #endif
  1093. #else
  1094. static void __resched_task(struct task_struct *p, int tif_bit)
  1095. {
  1096. assert_spin_locked(&task_rq(p)->lock);
  1097. set_tsk_thread_flag(p, tif_bit);
  1098. }
  1099. #endif
  1100. #if BITS_PER_LONG == 32
  1101. # define WMULT_CONST (~0UL)
  1102. #else
  1103. # define WMULT_CONST (1UL << 32)
  1104. #endif
  1105. #define WMULT_SHIFT 32
  1106. /*
  1107. * Shift right and round:
  1108. */
  1109. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1110. static unsigned long
  1111. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1112. struct load_weight *lw)
  1113. {
  1114. u64 tmp;
  1115. if (!lw->inv_weight) {
  1116. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1117. lw->inv_weight = 1;
  1118. else
  1119. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1120. / (lw->weight+1);
  1121. }
  1122. tmp = (u64)delta_exec * weight;
  1123. /*
  1124. * Check whether we'd overflow the 64-bit multiplication:
  1125. */
  1126. if (unlikely(tmp > WMULT_CONST))
  1127. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1128. WMULT_SHIFT/2);
  1129. else
  1130. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1131. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1132. }
  1133. static inline unsigned long
  1134. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  1135. {
  1136. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  1137. }
  1138. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1139. {
  1140. lw->weight += inc;
  1141. lw->inv_weight = 0;
  1142. }
  1143. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1144. {
  1145. lw->weight -= dec;
  1146. lw->inv_weight = 0;
  1147. }
  1148. /*
  1149. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1150. * of tasks with abnormal "nice" values across CPUs the contribution that
  1151. * each task makes to its run queue's load is weighted according to its
  1152. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1153. * scaled version of the new time slice allocation that they receive on time
  1154. * slice expiry etc.
  1155. */
  1156. #define WEIGHT_IDLEPRIO 2
  1157. #define WMULT_IDLEPRIO (1 << 31)
  1158. /*
  1159. * Nice levels are multiplicative, with a gentle 10% change for every
  1160. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1161. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1162. * that remained on nice 0.
  1163. *
  1164. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1165. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1166. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1167. * If a task goes up by ~10% and another task goes down by ~10% then
  1168. * the relative distance between them is ~25%.)
  1169. */
  1170. static const int prio_to_weight[40] = {
  1171. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1172. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1173. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1174. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1175. /* 0 */ 1024, 820, 655, 526, 423,
  1176. /* 5 */ 335, 272, 215, 172, 137,
  1177. /* 10 */ 110, 87, 70, 56, 45,
  1178. /* 15 */ 36, 29, 23, 18, 15,
  1179. };
  1180. /*
  1181. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1182. *
  1183. * In cases where the weight does not change often, we can use the
  1184. * precalculated inverse to speed up arithmetics by turning divisions
  1185. * into multiplications:
  1186. */
  1187. static const u32 prio_to_wmult[40] = {
  1188. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1189. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1190. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1191. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1192. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1193. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1194. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1195. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1196. };
  1197. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1198. /*
  1199. * runqueue iterator, to support SMP load-balancing between different
  1200. * scheduling classes, without having to expose their internal data
  1201. * structures to the load-balancing proper:
  1202. */
  1203. struct rq_iterator {
  1204. void *arg;
  1205. struct task_struct *(*start)(void *);
  1206. struct task_struct *(*next)(void *);
  1207. };
  1208. #ifdef CONFIG_SMP
  1209. static unsigned long
  1210. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1211. unsigned long max_load_move, struct sched_domain *sd,
  1212. enum cpu_idle_type idle, int *all_pinned,
  1213. int *this_best_prio, struct rq_iterator *iterator);
  1214. static int
  1215. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1216. struct sched_domain *sd, enum cpu_idle_type idle,
  1217. struct rq_iterator *iterator);
  1218. #endif
  1219. #ifdef CONFIG_CGROUP_CPUACCT
  1220. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1221. #else
  1222. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1223. #endif
  1224. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1225. {
  1226. update_load_add(&rq->load, load);
  1227. }
  1228. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1229. {
  1230. update_load_sub(&rq->load, load);
  1231. }
  1232. #ifdef CONFIG_SMP
  1233. static unsigned long source_load(int cpu, int type);
  1234. static unsigned long target_load(int cpu, int type);
  1235. static unsigned long cpu_avg_load_per_task(int cpu);
  1236. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1237. #else /* CONFIG_SMP */
  1238. #ifdef CONFIG_FAIR_GROUP_SCHED
  1239. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1240. {
  1241. }
  1242. #endif
  1243. #endif /* CONFIG_SMP */
  1244. #include "sched_stats.h"
  1245. #include "sched_idletask.c"
  1246. #include "sched_fair.c"
  1247. #include "sched_rt.c"
  1248. #ifdef CONFIG_SCHED_DEBUG
  1249. # include "sched_debug.c"
  1250. #endif
  1251. #define sched_class_highest (&rt_sched_class)
  1252. static inline void inc_load(struct rq *rq, const struct task_struct *p)
  1253. {
  1254. update_load_add(&rq->load, p->se.load.weight);
  1255. }
  1256. static inline void dec_load(struct rq *rq, const struct task_struct *p)
  1257. {
  1258. update_load_sub(&rq->load, p->se.load.weight);
  1259. }
  1260. static void inc_nr_running(struct task_struct *p, struct rq *rq)
  1261. {
  1262. rq->nr_running++;
  1263. inc_load(rq, p);
  1264. }
  1265. static void dec_nr_running(struct task_struct *p, struct rq *rq)
  1266. {
  1267. rq->nr_running--;
  1268. dec_load(rq, p);
  1269. }
  1270. static void set_load_weight(struct task_struct *p)
  1271. {
  1272. if (task_has_rt_policy(p)) {
  1273. p->se.load.weight = prio_to_weight[0] * 2;
  1274. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1275. return;
  1276. }
  1277. /*
  1278. * SCHED_IDLE tasks get minimal weight:
  1279. */
  1280. if (p->policy == SCHED_IDLE) {
  1281. p->se.load.weight = WEIGHT_IDLEPRIO;
  1282. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1283. return;
  1284. }
  1285. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1286. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1287. }
  1288. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1289. {
  1290. sched_info_queued(p);
  1291. p->sched_class->enqueue_task(rq, p, wakeup);
  1292. p->se.on_rq = 1;
  1293. }
  1294. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1295. {
  1296. p->sched_class->dequeue_task(rq, p, sleep);
  1297. p->se.on_rq = 0;
  1298. }
  1299. /*
  1300. * __normal_prio - return the priority that is based on the static prio
  1301. */
  1302. static inline int __normal_prio(struct task_struct *p)
  1303. {
  1304. return p->static_prio;
  1305. }
  1306. /*
  1307. * Calculate the expected normal priority: i.e. priority
  1308. * without taking RT-inheritance into account. Might be
  1309. * boosted by interactivity modifiers. Changes upon fork,
  1310. * setprio syscalls, and whenever the interactivity
  1311. * estimator recalculates.
  1312. */
  1313. static inline int normal_prio(struct task_struct *p)
  1314. {
  1315. int prio;
  1316. if (task_has_rt_policy(p))
  1317. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1318. else
  1319. prio = __normal_prio(p);
  1320. return prio;
  1321. }
  1322. /*
  1323. * Calculate the current priority, i.e. the priority
  1324. * taken into account by the scheduler. This value might
  1325. * be boosted by RT tasks, or might be boosted by
  1326. * interactivity modifiers. Will be RT if the task got
  1327. * RT-boosted. If not then it returns p->normal_prio.
  1328. */
  1329. static int effective_prio(struct task_struct *p)
  1330. {
  1331. p->normal_prio = normal_prio(p);
  1332. /*
  1333. * If we are RT tasks or we were boosted to RT priority,
  1334. * keep the priority unchanged. Otherwise, update priority
  1335. * to the normal priority:
  1336. */
  1337. if (!rt_prio(p->prio))
  1338. return p->normal_prio;
  1339. return p->prio;
  1340. }
  1341. /*
  1342. * activate_task - move a task to the runqueue.
  1343. */
  1344. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1345. {
  1346. if (task_contributes_to_load(p))
  1347. rq->nr_uninterruptible--;
  1348. enqueue_task(rq, p, wakeup);
  1349. inc_nr_running(p, rq);
  1350. }
  1351. /*
  1352. * deactivate_task - remove a task from the runqueue.
  1353. */
  1354. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1355. {
  1356. if (task_contributes_to_load(p))
  1357. rq->nr_uninterruptible++;
  1358. dequeue_task(rq, p, sleep);
  1359. dec_nr_running(p, rq);
  1360. }
  1361. /**
  1362. * task_curr - is this task currently executing on a CPU?
  1363. * @p: the task in question.
  1364. */
  1365. inline int task_curr(const struct task_struct *p)
  1366. {
  1367. return cpu_curr(task_cpu(p)) == p;
  1368. }
  1369. /* Used instead of source_load when we know the type == 0 */
  1370. unsigned long weighted_cpuload(const int cpu)
  1371. {
  1372. return cpu_rq(cpu)->load.weight;
  1373. }
  1374. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1375. {
  1376. set_task_rq(p, cpu);
  1377. #ifdef CONFIG_SMP
  1378. /*
  1379. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1380. * successfuly executed on another CPU. We must ensure that updates of
  1381. * per-task data have been completed by this moment.
  1382. */
  1383. smp_wmb();
  1384. task_thread_info(p)->cpu = cpu;
  1385. #endif
  1386. }
  1387. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1388. const struct sched_class *prev_class,
  1389. int oldprio, int running)
  1390. {
  1391. if (prev_class != p->sched_class) {
  1392. if (prev_class->switched_from)
  1393. prev_class->switched_from(rq, p, running);
  1394. p->sched_class->switched_to(rq, p, running);
  1395. } else
  1396. p->sched_class->prio_changed(rq, p, oldprio, running);
  1397. }
  1398. #ifdef CONFIG_SMP
  1399. /*
  1400. * Is this task likely cache-hot:
  1401. */
  1402. static int
  1403. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1404. {
  1405. s64 delta;
  1406. /*
  1407. * Buddy candidates are cache hot:
  1408. */
  1409. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1410. return 1;
  1411. if (p->sched_class != &fair_sched_class)
  1412. return 0;
  1413. if (sysctl_sched_migration_cost == -1)
  1414. return 1;
  1415. if (sysctl_sched_migration_cost == 0)
  1416. return 0;
  1417. delta = now - p->se.exec_start;
  1418. return delta < (s64)sysctl_sched_migration_cost;
  1419. }
  1420. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1421. {
  1422. int old_cpu = task_cpu(p);
  1423. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1424. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1425. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1426. u64 clock_offset;
  1427. clock_offset = old_rq->clock - new_rq->clock;
  1428. #ifdef CONFIG_SCHEDSTATS
  1429. if (p->se.wait_start)
  1430. p->se.wait_start -= clock_offset;
  1431. if (p->se.sleep_start)
  1432. p->se.sleep_start -= clock_offset;
  1433. if (p->se.block_start)
  1434. p->se.block_start -= clock_offset;
  1435. if (old_cpu != new_cpu) {
  1436. schedstat_inc(p, se.nr_migrations);
  1437. if (task_hot(p, old_rq->clock, NULL))
  1438. schedstat_inc(p, se.nr_forced2_migrations);
  1439. }
  1440. #endif
  1441. p->se.vruntime -= old_cfsrq->min_vruntime -
  1442. new_cfsrq->min_vruntime;
  1443. __set_task_cpu(p, new_cpu);
  1444. }
  1445. struct migration_req {
  1446. struct list_head list;
  1447. struct task_struct *task;
  1448. int dest_cpu;
  1449. struct completion done;
  1450. };
  1451. /*
  1452. * The task's runqueue lock must be held.
  1453. * Returns true if you have to wait for migration thread.
  1454. */
  1455. static int
  1456. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1457. {
  1458. struct rq *rq = task_rq(p);
  1459. /*
  1460. * If the task is not on a runqueue (and not running), then
  1461. * it is sufficient to simply update the task's cpu field.
  1462. */
  1463. if (!p->se.on_rq && !task_running(rq, p)) {
  1464. set_task_cpu(p, dest_cpu);
  1465. return 0;
  1466. }
  1467. init_completion(&req->done);
  1468. req->task = p;
  1469. req->dest_cpu = dest_cpu;
  1470. list_add(&req->list, &rq->migration_queue);
  1471. return 1;
  1472. }
  1473. /*
  1474. * wait_task_inactive - wait for a thread to unschedule.
  1475. *
  1476. * The caller must ensure that the task *will* unschedule sometime soon,
  1477. * else this function might spin for a *long* time. This function can't
  1478. * be called with interrupts off, or it may introduce deadlock with
  1479. * smp_call_function() if an IPI is sent by the same process we are
  1480. * waiting to become inactive.
  1481. */
  1482. void wait_task_inactive(struct task_struct *p)
  1483. {
  1484. unsigned long flags;
  1485. int running, on_rq;
  1486. struct rq *rq;
  1487. for (;;) {
  1488. /*
  1489. * We do the initial early heuristics without holding
  1490. * any task-queue locks at all. We'll only try to get
  1491. * the runqueue lock when things look like they will
  1492. * work out!
  1493. */
  1494. rq = task_rq(p);
  1495. /*
  1496. * If the task is actively running on another CPU
  1497. * still, just relax and busy-wait without holding
  1498. * any locks.
  1499. *
  1500. * NOTE! Since we don't hold any locks, it's not
  1501. * even sure that "rq" stays as the right runqueue!
  1502. * But we don't care, since "task_running()" will
  1503. * return false if the runqueue has changed and p
  1504. * is actually now running somewhere else!
  1505. */
  1506. while (task_running(rq, p))
  1507. cpu_relax();
  1508. /*
  1509. * Ok, time to look more closely! We need the rq
  1510. * lock now, to be *sure*. If we're wrong, we'll
  1511. * just go back and repeat.
  1512. */
  1513. rq = task_rq_lock(p, &flags);
  1514. running = task_running(rq, p);
  1515. on_rq = p->se.on_rq;
  1516. task_rq_unlock(rq, &flags);
  1517. /*
  1518. * Was it really running after all now that we
  1519. * checked with the proper locks actually held?
  1520. *
  1521. * Oops. Go back and try again..
  1522. */
  1523. if (unlikely(running)) {
  1524. cpu_relax();
  1525. continue;
  1526. }
  1527. /*
  1528. * It's not enough that it's not actively running,
  1529. * it must be off the runqueue _entirely_, and not
  1530. * preempted!
  1531. *
  1532. * So if it wa still runnable (but just not actively
  1533. * running right now), it's preempted, and we should
  1534. * yield - it could be a while.
  1535. */
  1536. if (unlikely(on_rq)) {
  1537. schedule_timeout_uninterruptible(1);
  1538. continue;
  1539. }
  1540. /*
  1541. * Ahh, all good. It wasn't running, and it wasn't
  1542. * runnable, which means that it will never become
  1543. * running in the future either. We're all done!
  1544. */
  1545. break;
  1546. }
  1547. }
  1548. /***
  1549. * kick_process - kick a running thread to enter/exit the kernel
  1550. * @p: the to-be-kicked thread
  1551. *
  1552. * Cause a process which is running on another CPU to enter
  1553. * kernel-mode, without any delay. (to get signals handled.)
  1554. *
  1555. * NOTE: this function doesnt have to take the runqueue lock,
  1556. * because all it wants to ensure is that the remote task enters
  1557. * the kernel. If the IPI races and the task has been migrated
  1558. * to another CPU then no harm is done and the purpose has been
  1559. * achieved as well.
  1560. */
  1561. void kick_process(struct task_struct *p)
  1562. {
  1563. int cpu;
  1564. preempt_disable();
  1565. cpu = task_cpu(p);
  1566. if ((cpu != smp_processor_id()) && task_curr(p))
  1567. smp_send_reschedule(cpu);
  1568. preempt_enable();
  1569. }
  1570. /*
  1571. * Return a low guess at the load of a migration-source cpu weighted
  1572. * according to the scheduling class and "nice" value.
  1573. *
  1574. * We want to under-estimate the load of migration sources, to
  1575. * balance conservatively.
  1576. */
  1577. static unsigned long source_load(int cpu, int type)
  1578. {
  1579. struct rq *rq = cpu_rq(cpu);
  1580. unsigned long total = weighted_cpuload(cpu);
  1581. if (type == 0)
  1582. return total;
  1583. return min(rq->cpu_load[type-1], total);
  1584. }
  1585. /*
  1586. * Return a high guess at the load of a migration-target cpu weighted
  1587. * according to the scheduling class and "nice" value.
  1588. */
  1589. static unsigned long target_load(int cpu, int type)
  1590. {
  1591. struct rq *rq = cpu_rq(cpu);
  1592. unsigned long total = weighted_cpuload(cpu);
  1593. if (type == 0)
  1594. return total;
  1595. return max(rq->cpu_load[type-1], total);
  1596. }
  1597. /*
  1598. * Return the average load per task on the cpu's run queue
  1599. */
  1600. static unsigned long cpu_avg_load_per_task(int cpu)
  1601. {
  1602. struct rq *rq = cpu_rq(cpu);
  1603. unsigned long total = weighted_cpuload(cpu);
  1604. unsigned long n = rq->nr_running;
  1605. return n ? total / n : SCHED_LOAD_SCALE;
  1606. }
  1607. /*
  1608. * find_idlest_group finds and returns the least busy CPU group within the
  1609. * domain.
  1610. */
  1611. static struct sched_group *
  1612. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1613. {
  1614. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1615. unsigned long min_load = ULONG_MAX, this_load = 0;
  1616. int load_idx = sd->forkexec_idx;
  1617. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1618. do {
  1619. unsigned long load, avg_load;
  1620. int local_group;
  1621. int i;
  1622. /* Skip over this group if it has no CPUs allowed */
  1623. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1624. continue;
  1625. local_group = cpu_isset(this_cpu, group->cpumask);
  1626. /* Tally up the load of all CPUs in the group */
  1627. avg_load = 0;
  1628. for_each_cpu_mask(i, group->cpumask) {
  1629. /* Bias balancing toward cpus of our domain */
  1630. if (local_group)
  1631. load = source_load(i, load_idx);
  1632. else
  1633. load = target_load(i, load_idx);
  1634. avg_load += load;
  1635. }
  1636. /* Adjust by relative CPU power of the group */
  1637. avg_load = sg_div_cpu_power(group,
  1638. avg_load * SCHED_LOAD_SCALE);
  1639. if (local_group) {
  1640. this_load = avg_load;
  1641. this = group;
  1642. } else if (avg_load < min_load) {
  1643. min_load = avg_load;
  1644. idlest = group;
  1645. }
  1646. } while (group = group->next, group != sd->groups);
  1647. if (!idlest || 100*this_load < imbalance*min_load)
  1648. return NULL;
  1649. return idlest;
  1650. }
  1651. /*
  1652. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1653. */
  1654. static int
  1655. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1656. cpumask_t *tmp)
  1657. {
  1658. unsigned long load, min_load = ULONG_MAX;
  1659. int idlest = -1;
  1660. int i;
  1661. /* Traverse only the allowed CPUs */
  1662. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1663. for_each_cpu_mask(i, *tmp) {
  1664. load = weighted_cpuload(i);
  1665. if (load < min_load || (load == min_load && i == this_cpu)) {
  1666. min_load = load;
  1667. idlest = i;
  1668. }
  1669. }
  1670. return idlest;
  1671. }
  1672. /*
  1673. * sched_balance_self: balance the current task (running on cpu) in domains
  1674. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1675. * SD_BALANCE_EXEC.
  1676. *
  1677. * Balance, ie. select the least loaded group.
  1678. *
  1679. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1680. *
  1681. * preempt must be disabled.
  1682. */
  1683. static int sched_balance_self(int cpu, int flag)
  1684. {
  1685. struct task_struct *t = current;
  1686. struct sched_domain *tmp, *sd = NULL;
  1687. for_each_domain(cpu, tmp) {
  1688. /*
  1689. * If power savings logic is enabled for a domain, stop there.
  1690. */
  1691. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1692. break;
  1693. if (tmp->flags & flag)
  1694. sd = tmp;
  1695. }
  1696. while (sd) {
  1697. cpumask_t span, tmpmask;
  1698. struct sched_group *group;
  1699. int new_cpu, weight;
  1700. if (!(sd->flags & flag)) {
  1701. sd = sd->child;
  1702. continue;
  1703. }
  1704. span = sd->span;
  1705. group = find_idlest_group(sd, t, cpu);
  1706. if (!group) {
  1707. sd = sd->child;
  1708. continue;
  1709. }
  1710. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1711. if (new_cpu == -1 || new_cpu == cpu) {
  1712. /* Now try balancing at a lower domain level of cpu */
  1713. sd = sd->child;
  1714. continue;
  1715. }
  1716. /* Now try balancing at a lower domain level of new_cpu */
  1717. cpu = new_cpu;
  1718. sd = NULL;
  1719. weight = cpus_weight(span);
  1720. for_each_domain(cpu, tmp) {
  1721. if (weight <= cpus_weight(tmp->span))
  1722. break;
  1723. if (tmp->flags & flag)
  1724. sd = tmp;
  1725. }
  1726. /* while loop will break here if sd == NULL */
  1727. }
  1728. return cpu;
  1729. }
  1730. #endif /* CONFIG_SMP */
  1731. /***
  1732. * try_to_wake_up - wake up a thread
  1733. * @p: the to-be-woken-up thread
  1734. * @state: the mask of task states that can be woken
  1735. * @sync: do a synchronous wakeup?
  1736. *
  1737. * Put it on the run-queue if it's not already there. The "current"
  1738. * thread is always on the run-queue (except when the actual
  1739. * re-schedule is in progress), and as such you're allowed to do
  1740. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1741. * runnable without the overhead of this.
  1742. *
  1743. * returns failure only if the task is already active.
  1744. */
  1745. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1746. {
  1747. int cpu, orig_cpu, this_cpu, success = 0;
  1748. unsigned long flags;
  1749. long old_state;
  1750. struct rq *rq;
  1751. if (!sched_feat(SYNC_WAKEUPS))
  1752. sync = 0;
  1753. smp_wmb();
  1754. rq = task_rq_lock(p, &flags);
  1755. old_state = p->state;
  1756. if (!(old_state & state))
  1757. goto out;
  1758. if (p->se.on_rq)
  1759. goto out_running;
  1760. cpu = task_cpu(p);
  1761. orig_cpu = cpu;
  1762. this_cpu = smp_processor_id();
  1763. #ifdef CONFIG_SMP
  1764. if (unlikely(task_running(rq, p)))
  1765. goto out_activate;
  1766. cpu = p->sched_class->select_task_rq(p, sync);
  1767. if (cpu != orig_cpu) {
  1768. set_task_cpu(p, cpu);
  1769. task_rq_unlock(rq, &flags);
  1770. /* might preempt at this point */
  1771. rq = task_rq_lock(p, &flags);
  1772. old_state = p->state;
  1773. if (!(old_state & state))
  1774. goto out;
  1775. if (p->se.on_rq)
  1776. goto out_running;
  1777. this_cpu = smp_processor_id();
  1778. cpu = task_cpu(p);
  1779. }
  1780. #ifdef CONFIG_SCHEDSTATS
  1781. schedstat_inc(rq, ttwu_count);
  1782. if (cpu == this_cpu)
  1783. schedstat_inc(rq, ttwu_local);
  1784. else {
  1785. struct sched_domain *sd;
  1786. for_each_domain(this_cpu, sd) {
  1787. if (cpu_isset(cpu, sd->span)) {
  1788. schedstat_inc(sd, ttwu_wake_remote);
  1789. break;
  1790. }
  1791. }
  1792. }
  1793. #endif
  1794. out_activate:
  1795. #endif /* CONFIG_SMP */
  1796. schedstat_inc(p, se.nr_wakeups);
  1797. if (sync)
  1798. schedstat_inc(p, se.nr_wakeups_sync);
  1799. if (orig_cpu != cpu)
  1800. schedstat_inc(p, se.nr_wakeups_migrate);
  1801. if (cpu == this_cpu)
  1802. schedstat_inc(p, se.nr_wakeups_local);
  1803. else
  1804. schedstat_inc(p, se.nr_wakeups_remote);
  1805. update_rq_clock(rq);
  1806. activate_task(rq, p, 1);
  1807. success = 1;
  1808. out_running:
  1809. check_preempt_curr(rq, p);
  1810. p->state = TASK_RUNNING;
  1811. #ifdef CONFIG_SMP
  1812. if (p->sched_class->task_wake_up)
  1813. p->sched_class->task_wake_up(rq, p);
  1814. #endif
  1815. out:
  1816. task_rq_unlock(rq, &flags);
  1817. return success;
  1818. }
  1819. int wake_up_process(struct task_struct *p)
  1820. {
  1821. return try_to_wake_up(p, TASK_ALL, 0);
  1822. }
  1823. EXPORT_SYMBOL(wake_up_process);
  1824. int wake_up_state(struct task_struct *p, unsigned int state)
  1825. {
  1826. return try_to_wake_up(p, state, 0);
  1827. }
  1828. /*
  1829. * Perform scheduler related setup for a newly forked process p.
  1830. * p is forked by current.
  1831. *
  1832. * __sched_fork() is basic setup used by init_idle() too:
  1833. */
  1834. static void __sched_fork(struct task_struct *p)
  1835. {
  1836. p->se.exec_start = 0;
  1837. p->se.sum_exec_runtime = 0;
  1838. p->se.prev_sum_exec_runtime = 0;
  1839. p->se.last_wakeup = 0;
  1840. p->se.avg_overlap = 0;
  1841. #ifdef CONFIG_SCHEDSTATS
  1842. p->se.wait_start = 0;
  1843. p->se.sum_sleep_runtime = 0;
  1844. p->se.sleep_start = 0;
  1845. p->se.block_start = 0;
  1846. p->se.sleep_max = 0;
  1847. p->se.block_max = 0;
  1848. p->se.exec_max = 0;
  1849. p->se.slice_max = 0;
  1850. p->se.wait_max = 0;
  1851. #endif
  1852. INIT_LIST_HEAD(&p->rt.run_list);
  1853. p->se.on_rq = 0;
  1854. INIT_LIST_HEAD(&p->se.group_node);
  1855. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1856. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1857. #endif
  1858. /*
  1859. * We mark the process as running here, but have not actually
  1860. * inserted it onto the runqueue yet. This guarantees that
  1861. * nobody will actually run it, and a signal or other external
  1862. * event cannot wake it up and insert it on the runqueue either.
  1863. */
  1864. p->state = TASK_RUNNING;
  1865. }
  1866. /*
  1867. * fork()/clone()-time setup:
  1868. */
  1869. void sched_fork(struct task_struct *p, int clone_flags)
  1870. {
  1871. int cpu = get_cpu();
  1872. __sched_fork(p);
  1873. #ifdef CONFIG_SMP
  1874. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1875. #endif
  1876. set_task_cpu(p, cpu);
  1877. /*
  1878. * Make sure we do not leak PI boosting priority to the child:
  1879. */
  1880. p->prio = current->normal_prio;
  1881. if (!rt_prio(p->prio))
  1882. p->sched_class = &fair_sched_class;
  1883. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1884. if (likely(sched_info_on()))
  1885. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1886. #endif
  1887. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1888. p->oncpu = 0;
  1889. #endif
  1890. #ifdef CONFIG_PREEMPT
  1891. /* Want to start with kernel preemption disabled. */
  1892. task_thread_info(p)->preempt_count = 1;
  1893. #endif
  1894. put_cpu();
  1895. }
  1896. /*
  1897. * wake_up_new_task - wake up a newly created task for the first time.
  1898. *
  1899. * This function will do some initial scheduler statistics housekeeping
  1900. * that must be done for every newly created context, then puts the task
  1901. * on the runqueue and wakes it.
  1902. */
  1903. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1904. {
  1905. unsigned long flags;
  1906. struct rq *rq;
  1907. rq = task_rq_lock(p, &flags);
  1908. BUG_ON(p->state != TASK_RUNNING);
  1909. update_rq_clock(rq);
  1910. p->prio = effective_prio(p);
  1911. if (!p->sched_class->task_new || !current->se.on_rq) {
  1912. activate_task(rq, p, 0);
  1913. } else {
  1914. /*
  1915. * Let the scheduling class do new task startup
  1916. * management (if any):
  1917. */
  1918. p->sched_class->task_new(rq, p);
  1919. inc_nr_running(p, rq);
  1920. }
  1921. check_preempt_curr(rq, p);
  1922. #ifdef CONFIG_SMP
  1923. if (p->sched_class->task_wake_up)
  1924. p->sched_class->task_wake_up(rq, p);
  1925. #endif
  1926. task_rq_unlock(rq, &flags);
  1927. }
  1928. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1929. /**
  1930. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  1931. * @notifier: notifier struct to register
  1932. */
  1933. void preempt_notifier_register(struct preempt_notifier *notifier)
  1934. {
  1935. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1936. }
  1937. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1938. /**
  1939. * preempt_notifier_unregister - no longer interested in preemption notifications
  1940. * @notifier: notifier struct to unregister
  1941. *
  1942. * This is safe to call from within a preemption notifier.
  1943. */
  1944. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1945. {
  1946. hlist_del(&notifier->link);
  1947. }
  1948. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1949. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1950. {
  1951. struct preempt_notifier *notifier;
  1952. struct hlist_node *node;
  1953. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1954. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1955. }
  1956. static void
  1957. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1958. struct task_struct *next)
  1959. {
  1960. struct preempt_notifier *notifier;
  1961. struct hlist_node *node;
  1962. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  1963. notifier->ops->sched_out(notifier, next);
  1964. }
  1965. #else
  1966. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1967. {
  1968. }
  1969. static void
  1970. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1971. struct task_struct *next)
  1972. {
  1973. }
  1974. #endif
  1975. /**
  1976. * prepare_task_switch - prepare to switch tasks
  1977. * @rq: the runqueue preparing to switch
  1978. * @prev: the current task that is being switched out
  1979. * @next: the task we are going to switch to.
  1980. *
  1981. * This is called with the rq lock held and interrupts off. It must
  1982. * be paired with a subsequent finish_task_switch after the context
  1983. * switch.
  1984. *
  1985. * prepare_task_switch sets up locking and calls architecture specific
  1986. * hooks.
  1987. */
  1988. static inline void
  1989. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1990. struct task_struct *next)
  1991. {
  1992. fire_sched_out_preempt_notifiers(prev, next);
  1993. prepare_lock_switch(rq, next);
  1994. prepare_arch_switch(next);
  1995. }
  1996. /**
  1997. * finish_task_switch - clean up after a task-switch
  1998. * @rq: runqueue associated with task-switch
  1999. * @prev: the thread we just switched away from.
  2000. *
  2001. * finish_task_switch must be called after the context switch, paired
  2002. * with a prepare_task_switch call before the context switch.
  2003. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2004. * and do any other architecture-specific cleanup actions.
  2005. *
  2006. * Note that we may have delayed dropping an mm in context_switch(). If
  2007. * so, we finish that here outside of the runqueue lock. (Doing it
  2008. * with the lock held can cause deadlocks; see schedule() for
  2009. * details.)
  2010. */
  2011. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2012. __releases(rq->lock)
  2013. {
  2014. struct mm_struct *mm = rq->prev_mm;
  2015. long prev_state;
  2016. rq->prev_mm = NULL;
  2017. /*
  2018. * A task struct has one reference for the use as "current".
  2019. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2020. * schedule one last time. The schedule call will never return, and
  2021. * the scheduled task must drop that reference.
  2022. * The test for TASK_DEAD must occur while the runqueue locks are
  2023. * still held, otherwise prev could be scheduled on another cpu, die
  2024. * there before we look at prev->state, and then the reference would
  2025. * be dropped twice.
  2026. * Manfred Spraul <manfred@colorfullife.com>
  2027. */
  2028. prev_state = prev->state;
  2029. finish_arch_switch(prev);
  2030. finish_lock_switch(rq, prev);
  2031. #ifdef CONFIG_SMP
  2032. if (current->sched_class->post_schedule)
  2033. current->sched_class->post_schedule(rq);
  2034. #endif
  2035. fire_sched_in_preempt_notifiers(current);
  2036. if (mm)
  2037. mmdrop(mm);
  2038. if (unlikely(prev_state == TASK_DEAD)) {
  2039. /*
  2040. * Remove function-return probe instances associated with this
  2041. * task and put them back on the free list.
  2042. */
  2043. kprobe_flush_task(prev);
  2044. put_task_struct(prev);
  2045. }
  2046. }
  2047. /**
  2048. * schedule_tail - first thing a freshly forked thread must call.
  2049. * @prev: the thread we just switched away from.
  2050. */
  2051. asmlinkage void schedule_tail(struct task_struct *prev)
  2052. __releases(rq->lock)
  2053. {
  2054. struct rq *rq = this_rq();
  2055. finish_task_switch(rq, prev);
  2056. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2057. /* In this case, finish_task_switch does not reenable preemption */
  2058. preempt_enable();
  2059. #endif
  2060. if (current->set_child_tid)
  2061. put_user(task_pid_vnr(current), current->set_child_tid);
  2062. }
  2063. /*
  2064. * context_switch - switch to the new MM and the new
  2065. * thread's register state.
  2066. */
  2067. static inline void
  2068. context_switch(struct rq *rq, struct task_struct *prev,
  2069. struct task_struct *next)
  2070. {
  2071. struct mm_struct *mm, *oldmm;
  2072. prepare_task_switch(rq, prev, next);
  2073. mm = next->mm;
  2074. oldmm = prev->active_mm;
  2075. /*
  2076. * For paravirt, this is coupled with an exit in switch_to to
  2077. * combine the page table reload and the switch backend into
  2078. * one hypercall.
  2079. */
  2080. arch_enter_lazy_cpu_mode();
  2081. if (unlikely(!mm)) {
  2082. next->active_mm = oldmm;
  2083. atomic_inc(&oldmm->mm_count);
  2084. enter_lazy_tlb(oldmm, next);
  2085. } else
  2086. switch_mm(oldmm, mm, next);
  2087. if (unlikely(!prev->mm)) {
  2088. prev->active_mm = NULL;
  2089. rq->prev_mm = oldmm;
  2090. }
  2091. /*
  2092. * Since the runqueue lock will be released by the next
  2093. * task (which is an invalid locking op but in the case
  2094. * of the scheduler it's an obvious special-case), so we
  2095. * do an early lockdep release here:
  2096. */
  2097. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2098. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2099. #endif
  2100. /* Here we just switch the register state and the stack. */
  2101. switch_to(prev, next, prev);
  2102. barrier();
  2103. /*
  2104. * this_rq must be evaluated again because prev may have moved
  2105. * CPUs since it called schedule(), thus the 'rq' on its stack
  2106. * frame will be invalid.
  2107. */
  2108. finish_task_switch(this_rq(), prev);
  2109. }
  2110. /*
  2111. * nr_running, nr_uninterruptible and nr_context_switches:
  2112. *
  2113. * externally visible scheduler statistics: current number of runnable
  2114. * threads, current number of uninterruptible-sleeping threads, total
  2115. * number of context switches performed since bootup.
  2116. */
  2117. unsigned long nr_running(void)
  2118. {
  2119. unsigned long i, sum = 0;
  2120. for_each_online_cpu(i)
  2121. sum += cpu_rq(i)->nr_running;
  2122. return sum;
  2123. }
  2124. unsigned long nr_uninterruptible(void)
  2125. {
  2126. unsigned long i, sum = 0;
  2127. for_each_possible_cpu(i)
  2128. sum += cpu_rq(i)->nr_uninterruptible;
  2129. /*
  2130. * Since we read the counters lockless, it might be slightly
  2131. * inaccurate. Do not allow it to go below zero though:
  2132. */
  2133. if (unlikely((long)sum < 0))
  2134. sum = 0;
  2135. return sum;
  2136. }
  2137. unsigned long long nr_context_switches(void)
  2138. {
  2139. int i;
  2140. unsigned long long sum = 0;
  2141. for_each_possible_cpu(i)
  2142. sum += cpu_rq(i)->nr_switches;
  2143. return sum;
  2144. }
  2145. unsigned long nr_iowait(void)
  2146. {
  2147. unsigned long i, sum = 0;
  2148. for_each_possible_cpu(i)
  2149. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2150. return sum;
  2151. }
  2152. unsigned long nr_active(void)
  2153. {
  2154. unsigned long i, running = 0, uninterruptible = 0;
  2155. for_each_online_cpu(i) {
  2156. running += cpu_rq(i)->nr_running;
  2157. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2158. }
  2159. if (unlikely((long)uninterruptible < 0))
  2160. uninterruptible = 0;
  2161. return running + uninterruptible;
  2162. }
  2163. /*
  2164. * Update rq->cpu_load[] statistics. This function is usually called every
  2165. * scheduler tick (TICK_NSEC).
  2166. */
  2167. static void update_cpu_load(struct rq *this_rq)
  2168. {
  2169. unsigned long this_load = this_rq->load.weight;
  2170. int i, scale;
  2171. this_rq->nr_load_updates++;
  2172. /* Update our load: */
  2173. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2174. unsigned long old_load, new_load;
  2175. /* scale is effectively 1 << i now, and >> i divides by scale */
  2176. old_load = this_rq->cpu_load[i];
  2177. new_load = this_load;
  2178. /*
  2179. * Round up the averaging division if load is increasing. This
  2180. * prevents us from getting stuck on 9 if the load is 10, for
  2181. * example.
  2182. */
  2183. if (new_load > old_load)
  2184. new_load += scale-1;
  2185. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2186. }
  2187. }
  2188. #ifdef CONFIG_SMP
  2189. /*
  2190. * double_rq_lock - safely lock two runqueues
  2191. *
  2192. * Note this does not disable interrupts like task_rq_lock,
  2193. * you need to do so manually before calling.
  2194. */
  2195. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2196. __acquires(rq1->lock)
  2197. __acquires(rq2->lock)
  2198. {
  2199. BUG_ON(!irqs_disabled());
  2200. if (rq1 == rq2) {
  2201. spin_lock(&rq1->lock);
  2202. __acquire(rq2->lock); /* Fake it out ;) */
  2203. } else {
  2204. if (rq1 < rq2) {
  2205. spin_lock(&rq1->lock);
  2206. spin_lock(&rq2->lock);
  2207. } else {
  2208. spin_lock(&rq2->lock);
  2209. spin_lock(&rq1->lock);
  2210. }
  2211. }
  2212. update_rq_clock(rq1);
  2213. update_rq_clock(rq2);
  2214. }
  2215. /*
  2216. * double_rq_unlock - safely unlock two runqueues
  2217. *
  2218. * Note this does not restore interrupts like task_rq_unlock,
  2219. * you need to do so manually after calling.
  2220. */
  2221. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2222. __releases(rq1->lock)
  2223. __releases(rq2->lock)
  2224. {
  2225. spin_unlock(&rq1->lock);
  2226. if (rq1 != rq2)
  2227. spin_unlock(&rq2->lock);
  2228. else
  2229. __release(rq2->lock);
  2230. }
  2231. /*
  2232. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2233. */
  2234. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2235. __releases(this_rq->lock)
  2236. __acquires(busiest->lock)
  2237. __acquires(this_rq->lock)
  2238. {
  2239. int ret = 0;
  2240. if (unlikely(!irqs_disabled())) {
  2241. /* printk() doesn't work good under rq->lock */
  2242. spin_unlock(&this_rq->lock);
  2243. BUG_ON(1);
  2244. }
  2245. if (unlikely(!spin_trylock(&busiest->lock))) {
  2246. if (busiest < this_rq) {
  2247. spin_unlock(&this_rq->lock);
  2248. spin_lock(&busiest->lock);
  2249. spin_lock(&this_rq->lock);
  2250. ret = 1;
  2251. } else
  2252. spin_lock(&busiest->lock);
  2253. }
  2254. return ret;
  2255. }
  2256. /*
  2257. * If dest_cpu is allowed for this process, migrate the task to it.
  2258. * This is accomplished by forcing the cpu_allowed mask to only
  2259. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2260. * the cpu_allowed mask is restored.
  2261. */
  2262. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2263. {
  2264. struct migration_req req;
  2265. unsigned long flags;
  2266. struct rq *rq;
  2267. rq = task_rq_lock(p, &flags);
  2268. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2269. || unlikely(cpu_is_offline(dest_cpu)))
  2270. goto out;
  2271. /* force the process onto the specified CPU */
  2272. if (migrate_task(p, dest_cpu, &req)) {
  2273. /* Need to wait for migration thread (might exit: take ref). */
  2274. struct task_struct *mt = rq->migration_thread;
  2275. get_task_struct(mt);
  2276. task_rq_unlock(rq, &flags);
  2277. wake_up_process(mt);
  2278. put_task_struct(mt);
  2279. wait_for_completion(&req.done);
  2280. return;
  2281. }
  2282. out:
  2283. task_rq_unlock(rq, &flags);
  2284. }
  2285. /*
  2286. * sched_exec - execve() is a valuable balancing opportunity, because at
  2287. * this point the task has the smallest effective memory and cache footprint.
  2288. */
  2289. void sched_exec(void)
  2290. {
  2291. int new_cpu, this_cpu = get_cpu();
  2292. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2293. put_cpu();
  2294. if (new_cpu != this_cpu)
  2295. sched_migrate_task(current, new_cpu);
  2296. }
  2297. /*
  2298. * pull_task - move a task from a remote runqueue to the local runqueue.
  2299. * Both runqueues must be locked.
  2300. */
  2301. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2302. struct rq *this_rq, int this_cpu)
  2303. {
  2304. deactivate_task(src_rq, p, 0);
  2305. set_task_cpu(p, this_cpu);
  2306. activate_task(this_rq, p, 0);
  2307. /*
  2308. * Note that idle threads have a prio of MAX_PRIO, for this test
  2309. * to be always true for them.
  2310. */
  2311. check_preempt_curr(this_rq, p);
  2312. }
  2313. /*
  2314. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2315. */
  2316. static
  2317. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2318. struct sched_domain *sd, enum cpu_idle_type idle,
  2319. int *all_pinned)
  2320. {
  2321. /*
  2322. * We do not migrate tasks that are:
  2323. * 1) running (obviously), or
  2324. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2325. * 3) are cache-hot on their current CPU.
  2326. */
  2327. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2328. schedstat_inc(p, se.nr_failed_migrations_affine);
  2329. return 0;
  2330. }
  2331. *all_pinned = 0;
  2332. if (task_running(rq, p)) {
  2333. schedstat_inc(p, se.nr_failed_migrations_running);
  2334. return 0;
  2335. }
  2336. /*
  2337. * Aggressive migration if:
  2338. * 1) task is cache cold, or
  2339. * 2) too many balance attempts have failed.
  2340. */
  2341. if (!task_hot(p, rq->clock, sd) ||
  2342. sd->nr_balance_failed > sd->cache_nice_tries) {
  2343. #ifdef CONFIG_SCHEDSTATS
  2344. if (task_hot(p, rq->clock, sd)) {
  2345. schedstat_inc(sd, lb_hot_gained[idle]);
  2346. schedstat_inc(p, se.nr_forced_migrations);
  2347. }
  2348. #endif
  2349. return 1;
  2350. }
  2351. if (task_hot(p, rq->clock, sd)) {
  2352. schedstat_inc(p, se.nr_failed_migrations_hot);
  2353. return 0;
  2354. }
  2355. return 1;
  2356. }
  2357. static unsigned long
  2358. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2359. unsigned long max_load_move, struct sched_domain *sd,
  2360. enum cpu_idle_type idle, int *all_pinned,
  2361. int *this_best_prio, struct rq_iterator *iterator)
  2362. {
  2363. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2364. struct task_struct *p;
  2365. long rem_load_move = max_load_move;
  2366. if (max_load_move == 0)
  2367. goto out;
  2368. pinned = 1;
  2369. /*
  2370. * Start the load-balancing iterator:
  2371. */
  2372. p = iterator->start(iterator->arg);
  2373. next:
  2374. if (!p || loops++ > sysctl_sched_nr_migrate)
  2375. goto out;
  2376. /*
  2377. * To help distribute high priority tasks across CPUs we don't
  2378. * skip a task if it will be the highest priority task (i.e. smallest
  2379. * prio value) on its new queue regardless of its load weight
  2380. */
  2381. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2382. SCHED_LOAD_SCALE_FUZZ;
  2383. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2384. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2385. p = iterator->next(iterator->arg);
  2386. goto next;
  2387. }
  2388. pull_task(busiest, p, this_rq, this_cpu);
  2389. pulled++;
  2390. rem_load_move -= p->se.load.weight;
  2391. /*
  2392. * We only want to steal up to the prescribed amount of weighted load.
  2393. */
  2394. if (rem_load_move > 0) {
  2395. if (p->prio < *this_best_prio)
  2396. *this_best_prio = p->prio;
  2397. p = iterator->next(iterator->arg);
  2398. goto next;
  2399. }
  2400. out:
  2401. /*
  2402. * Right now, this is one of only two places pull_task() is called,
  2403. * so we can safely collect pull_task() stats here rather than
  2404. * inside pull_task().
  2405. */
  2406. schedstat_add(sd, lb_gained[idle], pulled);
  2407. if (all_pinned)
  2408. *all_pinned = pinned;
  2409. return max_load_move - rem_load_move;
  2410. }
  2411. /*
  2412. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2413. * this_rq, as part of a balancing operation within domain "sd".
  2414. * Returns 1 if successful and 0 otherwise.
  2415. *
  2416. * Called with both runqueues locked.
  2417. */
  2418. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2419. unsigned long max_load_move,
  2420. struct sched_domain *sd, enum cpu_idle_type idle,
  2421. int *all_pinned)
  2422. {
  2423. const struct sched_class *class = sched_class_highest;
  2424. unsigned long total_load_moved = 0;
  2425. int this_best_prio = this_rq->curr->prio;
  2426. do {
  2427. total_load_moved +=
  2428. class->load_balance(this_rq, this_cpu, busiest,
  2429. max_load_move - total_load_moved,
  2430. sd, idle, all_pinned, &this_best_prio);
  2431. class = class->next;
  2432. } while (class && max_load_move > total_load_moved);
  2433. return total_load_moved > 0;
  2434. }
  2435. static int
  2436. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2437. struct sched_domain *sd, enum cpu_idle_type idle,
  2438. struct rq_iterator *iterator)
  2439. {
  2440. struct task_struct *p = iterator->start(iterator->arg);
  2441. int pinned = 0;
  2442. while (p) {
  2443. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2444. pull_task(busiest, p, this_rq, this_cpu);
  2445. /*
  2446. * Right now, this is only the second place pull_task()
  2447. * is called, so we can safely collect pull_task()
  2448. * stats here rather than inside pull_task().
  2449. */
  2450. schedstat_inc(sd, lb_gained[idle]);
  2451. return 1;
  2452. }
  2453. p = iterator->next(iterator->arg);
  2454. }
  2455. return 0;
  2456. }
  2457. /*
  2458. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2459. * part of active balancing operations within "domain".
  2460. * Returns 1 if successful and 0 otherwise.
  2461. *
  2462. * Called with both runqueues locked.
  2463. */
  2464. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2465. struct sched_domain *sd, enum cpu_idle_type idle)
  2466. {
  2467. const struct sched_class *class;
  2468. for (class = sched_class_highest; class; class = class->next)
  2469. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2470. return 1;
  2471. return 0;
  2472. }
  2473. /*
  2474. * find_busiest_group finds and returns the busiest CPU group within the
  2475. * domain. It calculates and returns the amount of weighted load which
  2476. * should be moved to restore balance via the imbalance parameter.
  2477. */
  2478. static struct sched_group *
  2479. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2480. unsigned long *imbalance, enum cpu_idle_type idle,
  2481. int *sd_idle, const cpumask_t *cpus, int *balance)
  2482. {
  2483. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2484. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2485. unsigned long max_pull;
  2486. unsigned long busiest_load_per_task, busiest_nr_running;
  2487. unsigned long this_load_per_task, this_nr_running;
  2488. int load_idx, group_imb = 0;
  2489. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2490. int power_savings_balance = 1;
  2491. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2492. unsigned long min_nr_running = ULONG_MAX;
  2493. struct sched_group *group_min = NULL, *group_leader = NULL;
  2494. #endif
  2495. max_load = this_load = total_load = total_pwr = 0;
  2496. busiest_load_per_task = busiest_nr_running = 0;
  2497. this_load_per_task = this_nr_running = 0;
  2498. if (idle == CPU_NOT_IDLE)
  2499. load_idx = sd->busy_idx;
  2500. else if (idle == CPU_NEWLY_IDLE)
  2501. load_idx = sd->newidle_idx;
  2502. else
  2503. load_idx = sd->idle_idx;
  2504. do {
  2505. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2506. int local_group;
  2507. int i;
  2508. int __group_imb = 0;
  2509. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2510. unsigned long sum_nr_running, sum_weighted_load;
  2511. local_group = cpu_isset(this_cpu, group->cpumask);
  2512. if (local_group)
  2513. balance_cpu = first_cpu(group->cpumask);
  2514. /* Tally up the load of all CPUs in the group */
  2515. sum_weighted_load = sum_nr_running = avg_load = 0;
  2516. max_cpu_load = 0;
  2517. min_cpu_load = ~0UL;
  2518. for_each_cpu_mask(i, group->cpumask) {
  2519. struct rq *rq;
  2520. if (!cpu_isset(i, *cpus))
  2521. continue;
  2522. rq = cpu_rq(i);
  2523. if (*sd_idle && rq->nr_running)
  2524. *sd_idle = 0;
  2525. /* Bias balancing toward cpus of our domain */
  2526. if (local_group) {
  2527. if (idle_cpu(i) && !first_idle_cpu) {
  2528. first_idle_cpu = 1;
  2529. balance_cpu = i;
  2530. }
  2531. load = target_load(i, load_idx);
  2532. } else {
  2533. load = source_load(i, load_idx);
  2534. if (load > max_cpu_load)
  2535. max_cpu_load = load;
  2536. if (min_cpu_load > load)
  2537. min_cpu_load = load;
  2538. }
  2539. avg_load += load;
  2540. sum_nr_running += rq->nr_running;
  2541. sum_weighted_load += weighted_cpuload(i);
  2542. }
  2543. /*
  2544. * First idle cpu or the first cpu(busiest) in this sched group
  2545. * is eligible for doing load balancing at this and above
  2546. * domains. In the newly idle case, we will allow all the cpu's
  2547. * to do the newly idle load balance.
  2548. */
  2549. if (idle != CPU_NEWLY_IDLE && local_group &&
  2550. balance_cpu != this_cpu && balance) {
  2551. *balance = 0;
  2552. goto ret;
  2553. }
  2554. total_load += avg_load;
  2555. total_pwr += group->__cpu_power;
  2556. /* Adjust by relative CPU power of the group */
  2557. avg_load = sg_div_cpu_power(group,
  2558. avg_load * SCHED_LOAD_SCALE);
  2559. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2560. __group_imb = 1;
  2561. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2562. if (local_group) {
  2563. this_load = avg_load;
  2564. this = group;
  2565. this_nr_running = sum_nr_running;
  2566. this_load_per_task = sum_weighted_load;
  2567. } else if (avg_load > max_load &&
  2568. (sum_nr_running > group_capacity || __group_imb)) {
  2569. max_load = avg_load;
  2570. busiest = group;
  2571. busiest_nr_running = sum_nr_running;
  2572. busiest_load_per_task = sum_weighted_load;
  2573. group_imb = __group_imb;
  2574. }
  2575. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2576. /*
  2577. * Busy processors will not participate in power savings
  2578. * balance.
  2579. */
  2580. if (idle == CPU_NOT_IDLE ||
  2581. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2582. goto group_next;
  2583. /*
  2584. * If the local group is idle or completely loaded
  2585. * no need to do power savings balance at this domain
  2586. */
  2587. if (local_group && (this_nr_running >= group_capacity ||
  2588. !this_nr_running))
  2589. power_savings_balance = 0;
  2590. /*
  2591. * If a group is already running at full capacity or idle,
  2592. * don't include that group in power savings calculations
  2593. */
  2594. if (!power_savings_balance || sum_nr_running >= group_capacity
  2595. || !sum_nr_running)
  2596. goto group_next;
  2597. /*
  2598. * Calculate the group which has the least non-idle load.
  2599. * This is the group from where we need to pick up the load
  2600. * for saving power
  2601. */
  2602. if ((sum_nr_running < min_nr_running) ||
  2603. (sum_nr_running == min_nr_running &&
  2604. first_cpu(group->cpumask) <
  2605. first_cpu(group_min->cpumask))) {
  2606. group_min = group;
  2607. min_nr_running = sum_nr_running;
  2608. min_load_per_task = sum_weighted_load /
  2609. sum_nr_running;
  2610. }
  2611. /*
  2612. * Calculate the group which is almost near its
  2613. * capacity but still has some space to pick up some load
  2614. * from other group and save more power
  2615. */
  2616. if (sum_nr_running <= group_capacity - 1) {
  2617. if (sum_nr_running > leader_nr_running ||
  2618. (sum_nr_running == leader_nr_running &&
  2619. first_cpu(group->cpumask) >
  2620. first_cpu(group_leader->cpumask))) {
  2621. group_leader = group;
  2622. leader_nr_running = sum_nr_running;
  2623. }
  2624. }
  2625. group_next:
  2626. #endif
  2627. group = group->next;
  2628. } while (group != sd->groups);
  2629. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2630. goto out_balanced;
  2631. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2632. if (this_load >= avg_load ||
  2633. 100*max_load <= sd->imbalance_pct*this_load)
  2634. goto out_balanced;
  2635. busiest_load_per_task /= busiest_nr_running;
  2636. if (group_imb)
  2637. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2638. /*
  2639. * We're trying to get all the cpus to the average_load, so we don't
  2640. * want to push ourselves above the average load, nor do we wish to
  2641. * reduce the max loaded cpu below the average load, as either of these
  2642. * actions would just result in more rebalancing later, and ping-pong
  2643. * tasks around. Thus we look for the minimum possible imbalance.
  2644. * Negative imbalances (*we* are more loaded than anyone else) will
  2645. * be counted as no imbalance for these purposes -- we can't fix that
  2646. * by pulling tasks to us. Be careful of negative numbers as they'll
  2647. * appear as very large values with unsigned longs.
  2648. */
  2649. if (max_load <= busiest_load_per_task)
  2650. goto out_balanced;
  2651. /*
  2652. * In the presence of smp nice balancing, certain scenarios can have
  2653. * max load less than avg load(as we skip the groups at or below
  2654. * its cpu_power, while calculating max_load..)
  2655. */
  2656. if (max_load < avg_load) {
  2657. *imbalance = 0;
  2658. goto small_imbalance;
  2659. }
  2660. /* Don't want to pull so many tasks that a group would go idle */
  2661. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2662. /* How much load to actually move to equalise the imbalance */
  2663. *imbalance = min(max_pull * busiest->__cpu_power,
  2664. (avg_load - this_load) * this->__cpu_power)
  2665. / SCHED_LOAD_SCALE;
  2666. /*
  2667. * if *imbalance is less than the average load per runnable task
  2668. * there is no gaurantee that any tasks will be moved so we'll have
  2669. * a think about bumping its value to force at least one task to be
  2670. * moved
  2671. */
  2672. if (*imbalance < busiest_load_per_task) {
  2673. unsigned long tmp, pwr_now, pwr_move;
  2674. unsigned int imbn;
  2675. small_imbalance:
  2676. pwr_move = pwr_now = 0;
  2677. imbn = 2;
  2678. if (this_nr_running) {
  2679. this_load_per_task /= this_nr_running;
  2680. if (busiest_load_per_task > this_load_per_task)
  2681. imbn = 1;
  2682. } else
  2683. this_load_per_task = SCHED_LOAD_SCALE;
  2684. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2685. busiest_load_per_task * imbn) {
  2686. *imbalance = busiest_load_per_task;
  2687. return busiest;
  2688. }
  2689. /*
  2690. * OK, we don't have enough imbalance to justify moving tasks,
  2691. * however we may be able to increase total CPU power used by
  2692. * moving them.
  2693. */
  2694. pwr_now += busiest->__cpu_power *
  2695. min(busiest_load_per_task, max_load);
  2696. pwr_now += this->__cpu_power *
  2697. min(this_load_per_task, this_load);
  2698. pwr_now /= SCHED_LOAD_SCALE;
  2699. /* Amount of load we'd subtract */
  2700. tmp = sg_div_cpu_power(busiest,
  2701. busiest_load_per_task * SCHED_LOAD_SCALE);
  2702. if (max_load > tmp)
  2703. pwr_move += busiest->__cpu_power *
  2704. min(busiest_load_per_task, max_load - tmp);
  2705. /* Amount of load we'd add */
  2706. if (max_load * busiest->__cpu_power <
  2707. busiest_load_per_task * SCHED_LOAD_SCALE)
  2708. tmp = sg_div_cpu_power(this,
  2709. max_load * busiest->__cpu_power);
  2710. else
  2711. tmp = sg_div_cpu_power(this,
  2712. busiest_load_per_task * SCHED_LOAD_SCALE);
  2713. pwr_move += this->__cpu_power *
  2714. min(this_load_per_task, this_load + tmp);
  2715. pwr_move /= SCHED_LOAD_SCALE;
  2716. /* Move if we gain throughput */
  2717. if (pwr_move > pwr_now)
  2718. *imbalance = busiest_load_per_task;
  2719. }
  2720. return busiest;
  2721. out_balanced:
  2722. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2723. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2724. goto ret;
  2725. if (this == group_leader && group_leader != group_min) {
  2726. *imbalance = min_load_per_task;
  2727. return group_min;
  2728. }
  2729. #endif
  2730. ret:
  2731. *imbalance = 0;
  2732. return NULL;
  2733. }
  2734. /*
  2735. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2736. */
  2737. static struct rq *
  2738. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2739. unsigned long imbalance, const cpumask_t *cpus)
  2740. {
  2741. struct rq *busiest = NULL, *rq;
  2742. unsigned long max_load = 0;
  2743. int i;
  2744. for_each_cpu_mask(i, group->cpumask) {
  2745. unsigned long wl;
  2746. if (!cpu_isset(i, *cpus))
  2747. continue;
  2748. rq = cpu_rq(i);
  2749. wl = weighted_cpuload(i);
  2750. if (rq->nr_running == 1 && wl > imbalance)
  2751. continue;
  2752. if (wl > max_load) {
  2753. max_load = wl;
  2754. busiest = rq;
  2755. }
  2756. }
  2757. return busiest;
  2758. }
  2759. /*
  2760. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2761. * so long as it is large enough.
  2762. */
  2763. #define MAX_PINNED_INTERVAL 512
  2764. /*
  2765. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2766. * tasks if there is an imbalance.
  2767. */
  2768. static int load_balance(int this_cpu, struct rq *this_rq,
  2769. struct sched_domain *sd, enum cpu_idle_type idle,
  2770. int *balance, cpumask_t *cpus)
  2771. {
  2772. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2773. struct sched_group *group;
  2774. unsigned long imbalance;
  2775. struct rq *busiest;
  2776. unsigned long flags;
  2777. cpus_setall(*cpus);
  2778. /*
  2779. * When power savings policy is enabled for the parent domain, idle
  2780. * sibling can pick up load irrespective of busy siblings. In this case,
  2781. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2782. * portraying it as CPU_NOT_IDLE.
  2783. */
  2784. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2785. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2786. sd_idle = 1;
  2787. schedstat_inc(sd, lb_count[idle]);
  2788. redo:
  2789. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2790. cpus, balance);
  2791. if (*balance == 0)
  2792. goto out_balanced;
  2793. if (!group) {
  2794. schedstat_inc(sd, lb_nobusyg[idle]);
  2795. goto out_balanced;
  2796. }
  2797. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2798. if (!busiest) {
  2799. schedstat_inc(sd, lb_nobusyq[idle]);
  2800. goto out_balanced;
  2801. }
  2802. BUG_ON(busiest == this_rq);
  2803. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2804. ld_moved = 0;
  2805. if (busiest->nr_running > 1) {
  2806. /*
  2807. * Attempt to move tasks. If find_busiest_group has found
  2808. * an imbalance but busiest->nr_running <= 1, the group is
  2809. * still unbalanced. ld_moved simply stays zero, so it is
  2810. * correctly treated as an imbalance.
  2811. */
  2812. local_irq_save(flags);
  2813. double_rq_lock(this_rq, busiest);
  2814. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2815. imbalance, sd, idle, &all_pinned);
  2816. double_rq_unlock(this_rq, busiest);
  2817. local_irq_restore(flags);
  2818. /*
  2819. * some other cpu did the load balance for us.
  2820. */
  2821. if (ld_moved && this_cpu != smp_processor_id())
  2822. resched_cpu(this_cpu);
  2823. /* All tasks on this runqueue were pinned by CPU affinity */
  2824. if (unlikely(all_pinned)) {
  2825. cpu_clear(cpu_of(busiest), *cpus);
  2826. if (!cpus_empty(*cpus))
  2827. goto redo;
  2828. goto out_balanced;
  2829. }
  2830. }
  2831. if (!ld_moved) {
  2832. schedstat_inc(sd, lb_failed[idle]);
  2833. sd->nr_balance_failed++;
  2834. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2835. spin_lock_irqsave(&busiest->lock, flags);
  2836. /* don't kick the migration_thread, if the curr
  2837. * task on busiest cpu can't be moved to this_cpu
  2838. */
  2839. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2840. spin_unlock_irqrestore(&busiest->lock, flags);
  2841. all_pinned = 1;
  2842. goto out_one_pinned;
  2843. }
  2844. if (!busiest->active_balance) {
  2845. busiest->active_balance = 1;
  2846. busiest->push_cpu = this_cpu;
  2847. active_balance = 1;
  2848. }
  2849. spin_unlock_irqrestore(&busiest->lock, flags);
  2850. if (active_balance)
  2851. wake_up_process(busiest->migration_thread);
  2852. /*
  2853. * We've kicked active balancing, reset the failure
  2854. * counter.
  2855. */
  2856. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2857. }
  2858. } else
  2859. sd->nr_balance_failed = 0;
  2860. if (likely(!active_balance)) {
  2861. /* We were unbalanced, so reset the balancing interval */
  2862. sd->balance_interval = sd->min_interval;
  2863. } else {
  2864. /*
  2865. * If we've begun active balancing, start to back off. This
  2866. * case may not be covered by the all_pinned logic if there
  2867. * is only 1 task on the busy runqueue (because we don't call
  2868. * move_tasks).
  2869. */
  2870. if (sd->balance_interval < sd->max_interval)
  2871. sd->balance_interval *= 2;
  2872. }
  2873. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2874. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2875. return -1;
  2876. return ld_moved;
  2877. out_balanced:
  2878. schedstat_inc(sd, lb_balanced[idle]);
  2879. sd->nr_balance_failed = 0;
  2880. out_one_pinned:
  2881. /* tune up the balancing interval */
  2882. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2883. (sd->balance_interval < sd->max_interval))
  2884. sd->balance_interval *= 2;
  2885. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2886. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2887. return -1;
  2888. return 0;
  2889. }
  2890. /*
  2891. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2892. * tasks if there is an imbalance.
  2893. *
  2894. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2895. * this_rq is locked.
  2896. */
  2897. static int
  2898. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  2899. cpumask_t *cpus)
  2900. {
  2901. struct sched_group *group;
  2902. struct rq *busiest = NULL;
  2903. unsigned long imbalance;
  2904. int ld_moved = 0;
  2905. int sd_idle = 0;
  2906. int all_pinned = 0;
  2907. cpus_setall(*cpus);
  2908. /*
  2909. * When power savings policy is enabled for the parent domain, idle
  2910. * sibling can pick up load irrespective of busy siblings. In this case,
  2911. * let the state of idle sibling percolate up as IDLE, instead of
  2912. * portraying it as CPU_NOT_IDLE.
  2913. */
  2914. if (sd->flags & SD_SHARE_CPUPOWER &&
  2915. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2916. sd_idle = 1;
  2917. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  2918. redo:
  2919. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2920. &sd_idle, cpus, NULL);
  2921. if (!group) {
  2922. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2923. goto out_balanced;
  2924. }
  2925. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  2926. if (!busiest) {
  2927. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2928. goto out_balanced;
  2929. }
  2930. BUG_ON(busiest == this_rq);
  2931. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2932. ld_moved = 0;
  2933. if (busiest->nr_running > 1) {
  2934. /* Attempt to move tasks */
  2935. double_lock_balance(this_rq, busiest);
  2936. /* this_rq->clock is already updated */
  2937. update_rq_clock(busiest);
  2938. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2939. imbalance, sd, CPU_NEWLY_IDLE,
  2940. &all_pinned);
  2941. spin_unlock(&busiest->lock);
  2942. if (unlikely(all_pinned)) {
  2943. cpu_clear(cpu_of(busiest), *cpus);
  2944. if (!cpus_empty(*cpus))
  2945. goto redo;
  2946. }
  2947. }
  2948. if (!ld_moved) {
  2949. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2950. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2951. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2952. return -1;
  2953. } else
  2954. sd->nr_balance_failed = 0;
  2955. return ld_moved;
  2956. out_balanced:
  2957. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2958. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2959. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2960. return -1;
  2961. sd->nr_balance_failed = 0;
  2962. return 0;
  2963. }
  2964. /*
  2965. * idle_balance is called by schedule() if this_cpu is about to become
  2966. * idle. Attempts to pull tasks from other CPUs.
  2967. */
  2968. static void idle_balance(int this_cpu, struct rq *this_rq)
  2969. {
  2970. struct sched_domain *sd;
  2971. int pulled_task = -1;
  2972. unsigned long next_balance = jiffies + HZ;
  2973. cpumask_t tmpmask;
  2974. for_each_domain(this_cpu, sd) {
  2975. unsigned long interval;
  2976. if (!(sd->flags & SD_LOAD_BALANCE))
  2977. continue;
  2978. if (sd->flags & SD_BALANCE_NEWIDLE)
  2979. /* If we've pulled tasks over stop searching: */
  2980. pulled_task = load_balance_newidle(this_cpu, this_rq,
  2981. sd, &tmpmask);
  2982. interval = msecs_to_jiffies(sd->balance_interval);
  2983. if (time_after(next_balance, sd->last_balance + interval))
  2984. next_balance = sd->last_balance + interval;
  2985. if (pulled_task)
  2986. break;
  2987. }
  2988. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2989. /*
  2990. * We are going idle. next_balance may be set based on
  2991. * a busy processor. So reset next_balance.
  2992. */
  2993. this_rq->next_balance = next_balance;
  2994. }
  2995. }
  2996. /*
  2997. * active_load_balance is run by migration threads. It pushes running tasks
  2998. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2999. * running on each physical CPU where possible, and avoids physical /
  3000. * logical imbalances.
  3001. *
  3002. * Called with busiest_rq locked.
  3003. */
  3004. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3005. {
  3006. int target_cpu = busiest_rq->push_cpu;
  3007. struct sched_domain *sd;
  3008. struct rq *target_rq;
  3009. /* Is there any task to move? */
  3010. if (busiest_rq->nr_running <= 1)
  3011. return;
  3012. target_rq = cpu_rq(target_cpu);
  3013. /*
  3014. * This condition is "impossible", if it occurs
  3015. * we need to fix it. Originally reported by
  3016. * Bjorn Helgaas on a 128-cpu setup.
  3017. */
  3018. BUG_ON(busiest_rq == target_rq);
  3019. /* move a task from busiest_rq to target_rq */
  3020. double_lock_balance(busiest_rq, target_rq);
  3021. update_rq_clock(busiest_rq);
  3022. update_rq_clock(target_rq);
  3023. /* Search for an sd spanning us and the target CPU. */
  3024. for_each_domain(target_cpu, sd) {
  3025. if ((sd->flags & SD_LOAD_BALANCE) &&
  3026. cpu_isset(busiest_cpu, sd->span))
  3027. break;
  3028. }
  3029. if (likely(sd)) {
  3030. schedstat_inc(sd, alb_count);
  3031. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3032. sd, CPU_IDLE))
  3033. schedstat_inc(sd, alb_pushed);
  3034. else
  3035. schedstat_inc(sd, alb_failed);
  3036. }
  3037. spin_unlock(&target_rq->lock);
  3038. }
  3039. #ifdef CONFIG_NO_HZ
  3040. static struct {
  3041. atomic_t load_balancer;
  3042. cpumask_t cpu_mask;
  3043. } nohz ____cacheline_aligned = {
  3044. .load_balancer = ATOMIC_INIT(-1),
  3045. .cpu_mask = CPU_MASK_NONE,
  3046. };
  3047. /*
  3048. * This routine will try to nominate the ilb (idle load balancing)
  3049. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3050. * load balancing on behalf of all those cpus. If all the cpus in the system
  3051. * go into this tickless mode, then there will be no ilb owner (as there is
  3052. * no need for one) and all the cpus will sleep till the next wakeup event
  3053. * arrives...
  3054. *
  3055. * For the ilb owner, tick is not stopped. And this tick will be used
  3056. * for idle load balancing. ilb owner will still be part of
  3057. * nohz.cpu_mask..
  3058. *
  3059. * While stopping the tick, this cpu will become the ilb owner if there
  3060. * is no other owner. And will be the owner till that cpu becomes busy
  3061. * or if all cpus in the system stop their ticks at which point
  3062. * there is no need for ilb owner.
  3063. *
  3064. * When the ilb owner becomes busy, it nominates another owner, during the
  3065. * next busy scheduler_tick()
  3066. */
  3067. int select_nohz_load_balancer(int stop_tick)
  3068. {
  3069. int cpu = smp_processor_id();
  3070. if (stop_tick) {
  3071. cpu_set(cpu, nohz.cpu_mask);
  3072. cpu_rq(cpu)->in_nohz_recently = 1;
  3073. /*
  3074. * If we are going offline and still the leader, give up!
  3075. */
  3076. if (cpu_is_offline(cpu) &&
  3077. atomic_read(&nohz.load_balancer) == cpu) {
  3078. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3079. BUG();
  3080. return 0;
  3081. }
  3082. /* time for ilb owner also to sleep */
  3083. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3084. if (atomic_read(&nohz.load_balancer) == cpu)
  3085. atomic_set(&nohz.load_balancer, -1);
  3086. return 0;
  3087. }
  3088. if (atomic_read(&nohz.load_balancer) == -1) {
  3089. /* make me the ilb owner */
  3090. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3091. return 1;
  3092. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3093. return 1;
  3094. } else {
  3095. if (!cpu_isset(cpu, nohz.cpu_mask))
  3096. return 0;
  3097. cpu_clear(cpu, nohz.cpu_mask);
  3098. if (atomic_read(&nohz.load_balancer) == cpu)
  3099. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3100. BUG();
  3101. }
  3102. return 0;
  3103. }
  3104. #endif
  3105. static DEFINE_SPINLOCK(balancing);
  3106. /*
  3107. * It checks each scheduling domain to see if it is due to be balanced,
  3108. * and initiates a balancing operation if so.
  3109. *
  3110. * Balancing parameters are set up in arch_init_sched_domains.
  3111. */
  3112. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3113. {
  3114. int balance = 1;
  3115. struct rq *rq = cpu_rq(cpu);
  3116. unsigned long interval;
  3117. struct sched_domain *sd;
  3118. /* Earliest time when we have to do rebalance again */
  3119. unsigned long next_balance = jiffies + 60*HZ;
  3120. int update_next_balance = 0;
  3121. cpumask_t tmp;
  3122. for_each_domain(cpu, sd) {
  3123. if (!(sd->flags & SD_LOAD_BALANCE))
  3124. continue;
  3125. interval = sd->balance_interval;
  3126. if (idle != CPU_IDLE)
  3127. interval *= sd->busy_factor;
  3128. /* scale ms to jiffies */
  3129. interval = msecs_to_jiffies(interval);
  3130. if (unlikely(!interval))
  3131. interval = 1;
  3132. if (interval > HZ*NR_CPUS/10)
  3133. interval = HZ*NR_CPUS/10;
  3134. if (sd->flags & SD_SERIALIZE) {
  3135. if (!spin_trylock(&balancing))
  3136. goto out;
  3137. }
  3138. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3139. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3140. /*
  3141. * We've pulled tasks over so either we're no
  3142. * longer idle, or one of our SMT siblings is
  3143. * not idle.
  3144. */
  3145. idle = CPU_NOT_IDLE;
  3146. }
  3147. sd->last_balance = jiffies;
  3148. }
  3149. if (sd->flags & SD_SERIALIZE)
  3150. spin_unlock(&balancing);
  3151. out:
  3152. if (time_after(next_balance, sd->last_balance + interval)) {
  3153. next_balance = sd->last_balance + interval;
  3154. update_next_balance = 1;
  3155. }
  3156. /*
  3157. * Stop the load balance at this level. There is another
  3158. * CPU in our sched group which is doing load balancing more
  3159. * actively.
  3160. */
  3161. if (!balance)
  3162. break;
  3163. }
  3164. /*
  3165. * next_balance will be updated only when there is a need.
  3166. * When the cpu is attached to null domain for ex, it will not be
  3167. * updated.
  3168. */
  3169. if (likely(update_next_balance))
  3170. rq->next_balance = next_balance;
  3171. }
  3172. /*
  3173. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3174. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3175. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3176. */
  3177. static void run_rebalance_domains(struct softirq_action *h)
  3178. {
  3179. int this_cpu = smp_processor_id();
  3180. struct rq *this_rq = cpu_rq(this_cpu);
  3181. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3182. CPU_IDLE : CPU_NOT_IDLE;
  3183. rebalance_domains(this_cpu, idle);
  3184. #ifdef CONFIG_NO_HZ
  3185. /*
  3186. * If this cpu is the owner for idle load balancing, then do the
  3187. * balancing on behalf of the other idle cpus whose ticks are
  3188. * stopped.
  3189. */
  3190. if (this_rq->idle_at_tick &&
  3191. atomic_read(&nohz.load_balancer) == this_cpu) {
  3192. cpumask_t cpus = nohz.cpu_mask;
  3193. struct rq *rq;
  3194. int balance_cpu;
  3195. cpu_clear(this_cpu, cpus);
  3196. for_each_cpu_mask(balance_cpu, cpus) {
  3197. /*
  3198. * If this cpu gets work to do, stop the load balancing
  3199. * work being done for other cpus. Next load
  3200. * balancing owner will pick it up.
  3201. */
  3202. if (need_resched())
  3203. break;
  3204. rebalance_domains(balance_cpu, CPU_IDLE);
  3205. rq = cpu_rq(balance_cpu);
  3206. if (time_after(this_rq->next_balance, rq->next_balance))
  3207. this_rq->next_balance = rq->next_balance;
  3208. }
  3209. }
  3210. #endif
  3211. }
  3212. /*
  3213. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3214. *
  3215. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3216. * idle load balancing owner or decide to stop the periodic load balancing,
  3217. * if the whole system is idle.
  3218. */
  3219. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3220. {
  3221. #ifdef CONFIG_NO_HZ
  3222. /*
  3223. * If we were in the nohz mode recently and busy at the current
  3224. * scheduler tick, then check if we need to nominate new idle
  3225. * load balancer.
  3226. */
  3227. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3228. rq->in_nohz_recently = 0;
  3229. if (atomic_read(&nohz.load_balancer) == cpu) {
  3230. cpu_clear(cpu, nohz.cpu_mask);
  3231. atomic_set(&nohz.load_balancer, -1);
  3232. }
  3233. if (atomic_read(&nohz.load_balancer) == -1) {
  3234. /*
  3235. * simple selection for now: Nominate the
  3236. * first cpu in the nohz list to be the next
  3237. * ilb owner.
  3238. *
  3239. * TBD: Traverse the sched domains and nominate
  3240. * the nearest cpu in the nohz.cpu_mask.
  3241. */
  3242. int ilb = first_cpu(nohz.cpu_mask);
  3243. if (ilb < nr_cpu_ids)
  3244. resched_cpu(ilb);
  3245. }
  3246. }
  3247. /*
  3248. * If this cpu is idle and doing idle load balancing for all the
  3249. * cpus with ticks stopped, is it time for that to stop?
  3250. */
  3251. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3252. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3253. resched_cpu(cpu);
  3254. return;
  3255. }
  3256. /*
  3257. * If this cpu is idle and the idle load balancing is done by
  3258. * someone else, then no need raise the SCHED_SOFTIRQ
  3259. */
  3260. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3261. cpu_isset(cpu, nohz.cpu_mask))
  3262. return;
  3263. #endif
  3264. if (time_after_eq(jiffies, rq->next_balance))
  3265. raise_softirq(SCHED_SOFTIRQ);
  3266. }
  3267. #else /* CONFIG_SMP */
  3268. /*
  3269. * on UP we do not need to balance between CPUs:
  3270. */
  3271. static inline void idle_balance(int cpu, struct rq *rq)
  3272. {
  3273. }
  3274. #endif
  3275. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3276. EXPORT_PER_CPU_SYMBOL(kstat);
  3277. /*
  3278. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3279. * that have not yet been banked in case the task is currently running.
  3280. */
  3281. unsigned long long task_sched_runtime(struct task_struct *p)
  3282. {
  3283. unsigned long flags;
  3284. u64 ns, delta_exec;
  3285. struct rq *rq;
  3286. rq = task_rq_lock(p, &flags);
  3287. ns = p->se.sum_exec_runtime;
  3288. if (task_current(rq, p)) {
  3289. update_rq_clock(rq);
  3290. delta_exec = rq->clock - p->se.exec_start;
  3291. if ((s64)delta_exec > 0)
  3292. ns += delta_exec;
  3293. }
  3294. task_rq_unlock(rq, &flags);
  3295. return ns;
  3296. }
  3297. /*
  3298. * Account user cpu time to a process.
  3299. * @p: the process that the cpu time gets accounted to
  3300. * @cputime: the cpu time spent in user space since the last update
  3301. */
  3302. void account_user_time(struct task_struct *p, cputime_t cputime)
  3303. {
  3304. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3305. cputime64_t tmp;
  3306. p->utime = cputime_add(p->utime, cputime);
  3307. /* Add user time to cpustat. */
  3308. tmp = cputime_to_cputime64(cputime);
  3309. if (TASK_NICE(p) > 0)
  3310. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3311. else
  3312. cpustat->user = cputime64_add(cpustat->user, tmp);
  3313. }
  3314. /*
  3315. * Account guest cpu time to a process.
  3316. * @p: the process that the cpu time gets accounted to
  3317. * @cputime: the cpu time spent in virtual machine since the last update
  3318. */
  3319. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3320. {
  3321. cputime64_t tmp;
  3322. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3323. tmp = cputime_to_cputime64(cputime);
  3324. p->utime = cputime_add(p->utime, cputime);
  3325. p->gtime = cputime_add(p->gtime, cputime);
  3326. cpustat->user = cputime64_add(cpustat->user, tmp);
  3327. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3328. }
  3329. /*
  3330. * Account scaled user cpu time to a process.
  3331. * @p: the process that the cpu time gets accounted to
  3332. * @cputime: the cpu time spent in user space since the last update
  3333. */
  3334. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3335. {
  3336. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3337. }
  3338. /*
  3339. * Account system cpu time to a process.
  3340. * @p: the process that the cpu time gets accounted to
  3341. * @hardirq_offset: the offset to subtract from hardirq_count()
  3342. * @cputime: the cpu time spent in kernel space since the last update
  3343. */
  3344. void account_system_time(struct task_struct *p, int hardirq_offset,
  3345. cputime_t cputime)
  3346. {
  3347. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3348. struct rq *rq = this_rq();
  3349. cputime64_t tmp;
  3350. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3351. account_guest_time(p, cputime);
  3352. return;
  3353. }
  3354. p->stime = cputime_add(p->stime, cputime);
  3355. /* Add system time to cpustat. */
  3356. tmp = cputime_to_cputime64(cputime);
  3357. if (hardirq_count() - hardirq_offset)
  3358. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3359. else if (softirq_count())
  3360. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3361. else if (p != rq->idle)
  3362. cpustat->system = cputime64_add(cpustat->system, tmp);
  3363. else if (atomic_read(&rq->nr_iowait) > 0)
  3364. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3365. else
  3366. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3367. /* Account for system time used */
  3368. acct_update_integrals(p);
  3369. }
  3370. /*
  3371. * Account scaled system cpu time to a process.
  3372. * @p: the process that the cpu time gets accounted to
  3373. * @hardirq_offset: the offset to subtract from hardirq_count()
  3374. * @cputime: the cpu time spent in kernel space since the last update
  3375. */
  3376. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3377. {
  3378. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3379. }
  3380. /*
  3381. * Account for involuntary wait time.
  3382. * @p: the process from which the cpu time has been stolen
  3383. * @steal: the cpu time spent in involuntary wait
  3384. */
  3385. void account_steal_time(struct task_struct *p, cputime_t steal)
  3386. {
  3387. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3388. cputime64_t tmp = cputime_to_cputime64(steal);
  3389. struct rq *rq = this_rq();
  3390. if (p == rq->idle) {
  3391. p->stime = cputime_add(p->stime, steal);
  3392. if (atomic_read(&rq->nr_iowait) > 0)
  3393. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3394. else
  3395. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3396. } else
  3397. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3398. }
  3399. /*
  3400. * This function gets called by the timer code, with HZ frequency.
  3401. * We call it with interrupts disabled.
  3402. *
  3403. * It also gets called by the fork code, when changing the parent's
  3404. * timeslices.
  3405. */
  3406. void scheduler_tick(void)
  3407. {
  3408. int cpu = smp_processor_id();
  3409. struct rq *rq = cpu_rq(cpu);
  3410. struct task_struct *curr = rq->curr;
  3411. sched_clock_tick();
  3412. spin_lock(&rq->lock);
  3413. update_rq_clock(rq);
  3414. update_cpu_load(rq);
  3415. curr->sched_class->task_tick(rq, curr, 0);
  3416. spin_unlock(&rq->lock);
  3417. #ifdef CONFIG_SMP
  3418. rq->idle_at_tick = idle_cpu(cpu);
  3419. trigger_load_balance(rq, cpu);
  3420. #endif
  3421. }
  3422. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3423. void __kprobes add_preempt_count(int val)
  3424. {
  3425. /*
  3426. * Underflow?
  3427. */
  3428. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3429. return;
  3430. preempt_count() += val;
  3431. /*
  3432. * Spinlock count overflowing soon?
  3433. */
  3434. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3435. PREEMPT_MASK - 10);
  3436. }
  3437. EXPORT_SYMBOL(add_preempt_count);
  3438. void __kprobes sub_preempt_count(int val)
  3439. {
  3440. /*
  3441. * Underflow?
  3442. */
  3443. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3444. return;
  3445. /*
  3446. * Is the spinlock portion underflowing?
  3447. */
  3448. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3449. !(preempt_count() & PREEMPT_MASK)))
  3450. return;
  3451. preempt_count() -= val;
  3452. }
  3453. EXPORT_SYMBOL(sub_preempt_count);
  3454. #endif
  3455. /*
  3456. * Print scheduling while atomic bug:
  3457. */
  3458. static noinline void __schedule_bug(struct task_struct *prev)
  3459. {
  3460. struct pt_regs *regs = get_irq_regs();
  3461. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3462. prev->comm, prev->pid, preempt_count());
  3463. debug_show_held_locks(prev);
  3464. if (irqs_disabled())
  3465. print_irqtrace_events(prev);
  3466. if (regs)
  3467. show_regs(regs);
  3468. else
  3469. dump_stack();
  3470. }
  3471. /*
  3472. * Various schedule()-time debugging checks and statistics:
  3473. */
  3474. static inline void schedule_debug(struct task_struct *prev)
  3475. {
  3476. /*
  3477. * Test if we are atomic. Since do_exit() needs to call into
  3478. * schedule() atomically, we ignore that path for now.
  3479. * Otherwise, whine if we are scheduling when we should not be.
  3480. */
  3481. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3482. __schedule_bug(prev);
  3483. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3484. schedstat_inc(this_rq(), sched_count);
  3485. #ifdef CONFIG_SCHEDSTATS
  3486. if (unlikely(prev->lock_depth >= 0)) {
  3487. schedstat_inc(this_rq(), bkl_count);
  3488. schedstat_inc(prev, sched_info.bkl_count);
  3489. }
  3490. #endif
  3491. }
  3492. /*
  3493. * Pick up the highest-prio task:
  3494. */
  3495. static inline struct task_struct *
  3496. pick_next_task(struct rq *rq, struct task_struct *prev)
  3497. {
  3498. const struct sched_class *class;
  3499. struct task_struct *p;
  3500. /*
  3501. * Optimization: we know that if all tasks are in
  3502. * the fair class we can call that function directly:
  3503. */
  3504. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3505. p = fair_sched_class.pick_next_task(rq);
  3506. if (likely(p))
  3507. return p;
  3508. }
  3509. class = sched_class_highest;
  3510. for ( ; ; ) {
  3511. p = class->pick_next_task(rq);
  3512. if (p)
  3513. return p;
  3514. /*
  3515. * Will never be NULL as the idle class always
  3516. * returns a non-NULL p:
  3517. */
  3518. class = class->next;
  3519. }
  3520. }
  3521. /*
  3522. * schedule() is the main scheduler function.
  3523. */
  3524. asmlinkage void __sched schedule(void)
  3525. {
  3526. struct task_struct *prev, *next;
  3527. unsigned long *switch_count;
  3528. struct rq *rq;
  3529. int cpu;
  3530. need_resched:
  3531. preempt_disable();
  3532. cpu = smp_processor_id();
  3533. rq = cpu_rq(cpu);
  3534. rcu_qsctr_inc(cpu);
  3535. prev = rq->curr;
  3536. switch_count = &prev->nivcsw;
  3537. release_kernel_lock(prev);
  3538. need_resched_nonpreemptible:
  3539. schedule_debug(prev);
  3540. hrtick_clear(rq);
  3541. /*
  3542. * Do the rq-clock update outside the rq lock:
  3543. */
  3544. local_irq_disable();
  3545. update_rq_clock(rq);
  3546. spin_lock(&rq->lock);
  3547. clear_tsk_need_resched(prev);
  3548. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3549. if (unlikely(signal_pending_state(prev->state, prev)))
  3550. prev->state = TASK_RUNNING;
  3551. else
  3552. deactivate_task(rq, prev, 1);
  3553. switch_count = &prev->nvcsw;
  3554. }
  3555. #ifdef CONFIG_SMP
  3556. if (prev->sched_class->pre_schedule)
  3557. prev->sched_class->pre_schedule(rq, prev);
  3558. #endif
  3559. if (unlikely(!rq->nr_running))
  3560. idle_balance(cpu, rq);
  3561. prev->sched_class->put_prev_task(rq, prev);
  3562. next = pick_next_task(rq, prev);
  3563. if (likely(prev != next)) {
  3564. sched_info_switch(prev, next);
  3565. rq->nr_switches++;
  3566. rq->curr = next;
  3567. ++*switch_count;
  3568. context_switch(rq, prev, next); /* unlocks the rq */
  3569. /*
  3570. * the context switch might have flipped the stack from under
  3571. * us, hence refresh the local variables.
  3572. */
  3573. cpu = smp_processor_id();
  3574. rq = cpu_rq(cpu);
  3575. } else
  3576. spin_unlock_irq(&rq->lock);
  3577. hrtick_set(rq);
  3578. if (unlikely(reacquire_kernel_lock(current) < 0))
  3579. goto need_resched_nonpreemptible;
  3580. preempt_enable_no_resched();
  3581. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3582. goto need_resched;
  3583. }
  3584. EXPORT_SYMBOL(schedule);
  3585. #ifdef CONFIG_PREEMPT
  3586. /*
  3587. * this is the entry point to schedule() from in-kernel preemption
  3588. * off of preempt_enable. Kernel preemptions off return from interrupt
  3589. * occur there and call schedule directly.
  3590. */
  3591. asmlinkage void __sched preempt_schedule(void)
  3592. {
  3593. struct thread_info *ti = current_thread_info();
  3594. /*
  3595. * If there is a non-zero preempt_count or interrupts are disabled,
  3596. * we do not want to preempt the current task. Just return..
  3597. */
  3598. if (likely(ti->preempt_count || irqs_disabled()))
  3599. return;
  3600. do {
  3601. add_preempt_count(PREEMPT_ACTIVE);
  3602. schedule();
  3603. sub_preempt_count(PREEMPT_ACTIVE);
  3604. /*
  3605. * Check again in case we missed a preemption opportunity
  3606. * between schedule and now.
  3607. */
  3608. barrier();
  3609. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3610. }
  3611. EXPORT_SYMBOL(preempt_schedule);
  3612. /*
  3613. * this is the entry point to schedule() from kernel preemption
  3614. * off of irq context.
  3615. * Note, that this is called and return with irqs disabled. This will
  3616. * protect us against recursive calling from irq.
  3617. */
  3618. asmlinkage void __sched preempt_schedule_irq(void)
  3619. {
  3620. struct thread_info *ti = current_thread_info();
  3621. /* Catch callers which need to be fixed */
  3622. BUG_ON(ti->preempt_count || !irqs_disabled());
  3623. do {
  3624. add_preempt_count(PREEMPT_ACTIVE);
  3625. local_irq_enable();
  3626. schedule();
  3627. local_irq_disable();
  3628. sub_preempt_count(PREEMPT_ACTIVE);
  3629. /*
  3630. * Check again in case we missed a preemption opportunity
  3631. * between schedule and now.
  3632. */
  3633. barrier();
  3634. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3635. }
  3636. #endif /* CONFIG_PREEMPT */
  3637. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3638. void *key)
  3639. {
  3640. return try_to_wake_up(curr->private, mode, sync);
  3641. }
  3642. EXPORT_SYMBOL(default_wake_function);
  3643. /*
  3644. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3645. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3646. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3647. *
  3648. * There are circumstances in which we can try to wake a task which has already
  3649. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3650. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3651. */
  3652. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3653. int nr_exclusive, int sync, void *key)
  3654. {
  3655. wait_queue_t *curr, *next;
  3656. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3657. unsigned flags = curr->flags;
  3658. if (curr->func(curr, mode, sync, key) &&
  3659. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3660. break;
  3661. }
  3662. }
  3663. /**
  3664. * __wake_up - wake up threads blocked on a waitqueue.
  3665. * @q: the waitqueue
  3666. * @mode: which threads
  3667. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3668. * @key: is directly passed to the wakeup function
  3669. */
  3670. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3671. int nr_exclusive, void *key)
  3672. {
  3673. unsigned long flags;
  3674. spin_lock_irqsave(&q->lock, flags);
  3675. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3676. spin_unlock_irqrestore(&q->lock, flags);
  3677. }
  3678. EXPORT_SYMBOL(__wake_up);
  3679. /*
  3680. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3681. */
  3682. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3683. {
  3684. __wake_up_common(q, mode, 1, 0, NULL);
  3685. }
  3686. /**
  3687. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3688. * @q: the waitqueue
  3689. * @mode: which threads
  3690. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3691. *
  3692. * The sync wakeup differs that the waker knows that it will schedule
  3693. * away soon, so while the target thread will be woken up, it will not
  3694. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3695. * with each other. This can prevent needless bouncing between CPUs.
  3696. *
  3697. * On UP it can prevent extra preemption.
  3698. */
  3699. void
  3700. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3701. {
  3702. unsigned long flags;
  3703. int sync = 1;
  3704. if (unlikely(!q))
  3705. return;
  3706. if (unlikely(!nr_exclusive))
  3707. sync = 0;
  3708. spin_lock_irqsave(&q->lock, flags);
  3709. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3710. spin_unlock_irqrestore(&q->lock, flags);
  3711. }
  3712. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3713. void complete(struct completion *x)
  3714. {
  3715. unsigned long flags;
  3716. spin_lock_irqsave(&x->wait.lock, flags);
  3717. x->done++;
  3718. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3719. spin_unlock_irqrestore(&x->wait.lock, flags);
  3720. }
  3721. EXPORT_SYMBOL(complete);
  3722. void complete_all(struct completion *x)
  3723. {
  3724. unsigned long flags;
  3725. spin_lock_irqsave(&x->wait.lock, flags);
  3726. x->done += UINT_MAX/2;
  3727. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3728. spin_unlock_irqrestore(&x->wait.lock, flags);
  3729. }
  3730. EXPORT_SYMBOL(complete_all);
  3731. static inline long __sched
  3732. do_wait_for_common(struct completion *x, long timeout, int state)
  3733. {
  3734. if (!x->done) {
  3735. DECLARE_WAITQUEUE(wait, current);
  3736. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3737. __add_wait_queue_tail(&x->wait, &wait);
  3738. do {
  3739. if ((state == TASK_INTERRUPTIBLE &&
  3740. signal_pending(current)) ||
  3741. (state == TASK_KILLABLE &&
  3742. fatal_signal_pending(current))) {
  3743. __remove_wait_queue(&x->wait, &wait);
  3744. return -ERESTARTSYS;
  3745. }
  3746. __set_current_state(state);
  3747. spin_unlock_irq(&x->wait.lock);
  3748. timeout = schedule_timeout(timeout);
  3749. spin_lock_irq(&x->wait.lock);
  3750. if (!timeout) {
  3751. __remove_wait_queue(&x->wait, &wait);
  3752. return timeout;
  3753. }
  3754. } while (!x->done);
  3755. __remove_wait_queue(&x->wait, &wait);
  3756. }
  3757. x->done--;
  3758. return timeout;
  3759. }
  3760. static long __sched
  3761. wait_for_common(struct completion *x, long timeout, int state)
  3762. {
  3763. might_sleep();
  3764. spin_lock_irq(&x->wait.lock);
  3765. timeout = do_wait_for_common(x, timeout, state);
  3766. spin_unlock_irq(&x->wait.lock);
  3767. return timeout;
  3768. }
  3769. void __sched wait_for_completion(struct completion *x)
  3770. {
  3771. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3772. }
  3773. EXPORT_SYMBOL(wait_for_completion);
  3774. unsigned long __sched
  3775. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3776. {
  3777. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3778. }
  3779. EXPORT_SYMBOL(wait_for_completion_timeout);
  3780. int __sched wait_for_completion_interruptible(struct completion *x)
  3781. {
  3782. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3783. if (t == -ERESTARTSYS)
  3784. return t;
  3785. return 0;
  3786. }
  3787. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3788. unsigned long __sched
  3789. wait_for_completion_interruptible_timeout(struct completion *x,
  3790. unsigned long timeout)
  3791. {
  3792. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3793. }
  3794. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3795. int __sched wait_for_completion_killable(struct completion *x)
  3796. {
  3797. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3798. if (t == -ERESTARTSYS)
  3799. return t;
  3800. return 0;
  3801. }
  3802. EXPORT_SYMBOL(wait_for_completion_killable);
  3803. static long __sched
  3804. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3805. {
  3806. unsigned long flags;
  3807. wait_queue_t wait;
  3808. init_waitqueue_entry(&wait, current);
  3809. __set_current_state(state);
  3810. spin_lock_irqsave(&q->lock, flags);
  3811. __add_wait_queue(q, &wait);
  3812. spin_unlock(&q->lock);
  3813. timeout = schedule_timeout(timeout);
  3814. spin_lock_irq(&q->lock);
  3815. __remove_wait_queue(q, &wait);
  3816. spin_unlock_irqrestore(&q->lock, flags);
  3817. return timeout;
  3818. }
  3819. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3820. {
  3821. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3822. }
  3823. EXPORT_SYMBOL(interruptible_sleep_on);
  3824. long __sched
  3825. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3826. {
  3827. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3828. }
  3829. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3830. void __sched sleep_on(wait_queue_head_t *q)
  3831. {
  3832. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3833. }
  3834. EXPORT_SYMBOL(sleep_on);
  3835. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3836. {
  3837. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3838. }
  3839. EXPORT_SYMBOL(sleep_on_timeout);
  3840. #ifdef CONFIG_RT_MUTEXES
  3841. /*
  3842. * rt_mutex_setprio - set the current priority of a task
  3843. * @p: task
  3844. * @prio: prio value (kernel-internal form)
  3845. *
  3846. * This function changes the 'effective' priority of a task. It does
  3847. * not touch ->normal_prio like __setscheduler().
  3848. *
  3849. * Used by the rt_mutex code to implement priority inheritance logic.
  3850. */
  3851. void rt_mutex_setprio(struct task_struct *p, int prio)
  3852. {
  3853. unsigned long flags;
  3854. int oldprio, on_rq, running;
  3855. struct rq *rq;
  3856. const struct sched_class *prev_class = p->sched_class;
  3857. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3858. rq = task_rq_lock(p, &flags);
  3859. update_rq_clock(rq);
  3860. oldprio = p->prio;
  3861. on_rq = p->se.on_rq;
  3862. running = task_current(rq, p);
  3863. if (on_rq)
  3864. dequeue_task(rq, p, 0);
  3865. if (running)
  3866. p->sched_class->put_prev_task(rq, p);
  3867. if (rt_prio(prio))
  3868. p->sched_class = &rt_sched_class;
  3869. else
  3870. p->sched_class = &fair_sched_class;
  3871. p->prio = prio;
  3872. if (running)
  3873. p->sched_class->set_curr_task(rq);
  3874. if (on_rq) {
  3875. enqueue_task(rq, p, 0);
  3876. check_class_changed(rq, p, prev_class, oldprio, running);
  3877. }
  3878. task_rq_unlock(rq, &flags);
  3879. }
  3880. #endif
  3881. void set_user_nice(struct task_struct *p, long nice)
  3882. {
  3883. int old_prio, delta, on_rq;
  3884. unsigned long flags;
  3885. struct rq *rq;
  3886. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3887. return;
  3888. /*
  3889. * We have to be careful, if called from sys_setpriority(),
  3890. * the task might be in the middle of scheduling on another CPU.
  3891. */
  3892. rq = task_rq_lock(p, &flags);
  3893. update_rq_clock(rq);
  3894. /*
  3895. * The RT priorities are set via sched_setscheduler(), but we still
  3896. * allow the 'normal' nice value to be set - but as expected
  3897. * it wont have any effect on scheduling until the task is
  3898. * SCHED_FIFO/SCHED_RR:
  3899. */
  3900. if (task_has_rt_policy(p)) {
  3901. p->static_prio = NICE_TO_PRIO(nice);
  3902. goto out_unlock;
  3903. }
  3904. on_rq = p->se.on_rq;
  3905. if (on_rq) {
  3906. dequeue_task(rq, p, 0);
  3907. dec_load(rq, p);
  3908. }
  3909. p->static_prio = NICE_TO_PRIO(nice);
  3910. set_load_weight(p);
  3911. old_prio = p->prio;
  3912. p->prio = effective_prio(p);
  3913. delta = p->prio - old_prio;
  3914. if (on_rq) {
  3915. enqueue_task(rq, p, 0);
  3916. inc_load(rq, p);
  3917. /*
  3918. * If the task increased its priority or is running and
  3919. * lowered its priority, then reschedule its CPU:
  3920. */
  3921. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3922. resched_task(rq->curr);
  3923. }
  3924. out_unlock:
  3925. task_rq_unlock(rq, &flags);
  3926. }
  3927. EXPORT_SYMBOL(set_user_nice);
  3928. /*
  3929. * can_nice - check if a task can reduce its nice value
  3930. * @p: task
  3931. * @nice: nice value
  3932. */
  3933. int can_nice(const struct task_struct *p, const int nice)
  3934. {
  3935. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3936. int nice_rlim = 20 - nice;
  3937. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3938. capable(CAP_SYS_NICE));
  3939. }
  3940. #ifdef __ARCH_WANT_SYS_NICE
  3941. /*
  3942. * sys_nice - change the priority of the current process.
  3943. * @increment: priority increment
  3944. *
  3945. * sys_setpriority is a more generic, but much slower function that
  3946. * does similar things.
  3947. */
  3948. asmlinkage long sys_nice(int increment)
  3949. {
  3950. long nice, retval;
  3951. /*
  3952. * Setpriority might change our priority at the same moment.
  3953. * We don't have to worry. Conceptually one call occurs first
  3954. * and we have a single winner.
  3955. */
  3956. if (increment < -40)
  3957. increment = -40;
  3958. if (increment > 40)
  3959. increment = 40;
  3960. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3961. if (nice < -20)
  3962. nice = -20;
  3963. if (nice > 19)
  3964. nice = 19;
  3965. if (increment < 0 && !can_nice(current, nice))
  3966. return -EPERM;
  3967. retval = security_task_setnice(current, nice);
  3968. if (retval)
  3969. return retval;
  3970. set_user_nice(current, nice);
  3971. return 0;
  3972. }
  3973. #endif
  3974. /**
  3975. * task_prio - return the priority value of a given task.
  3976. * @p: the task in question.
  3977. *
  3978. * This is the priority value as seen by users in /proc.
  3979. * RT tasks are offset by -200. Normal tasks are centered
  3980. * around 0, value goes from -16 to +15.
  3981. */
  3982. int task_prio(const struct task_struct *p)
  3983. {
  3984. return p->prio - MAX_RT_PRIO;
  3985. }
  3986. /**
  3987. * task_nice - return the nice value of a given task.
  3988. * @p: the task in question.
  3989. */
  3990. int task_nice(const struct task_struct *p)
  3991. {
  3992. return TASK_NICE(p);
  3993. }
  3994. EXPORT_SYMBOL(task_nice);
  3995. /**
  3996. * idle_cpu - is a given cpu idle currently?
  3997. * @cpu: the processor in question.
  3998. */
  3999. int idle_cpu(int cpu)
  4000. {
  4001. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4002. }
  4003. /**
  4004. * idle_task - return the idle task for a given cpu.
  4005. * @cpu: the processor in question.
  4006. */
  4007. struct task_struct *idle_task(int cpu)
  4008. {
  4009. return cpu_rq(cpu)->idle;
  4010. }
  4011. /**
  4012. * find_process_by_pid - find a process with a matching PID value.
  4013. * @pid: the pid in question.
  4014. */
  4015. static struct task_struct *find_process_by_pid(pid_t pid)
  4016. {
  4017. return pid ? find_task_by_vpid(pid) : current;
  4018. }
  4019. /* Actually do priority change: must hold rq lock. */
  4020. static void
  4021. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4022. {
  4023. BUG_ON(p->se.on_rq);
  4024. p->policy = policy;
  4025. switch (p->policy) {
  4026. case SCHED_NORMAL:
  4027. case SCHED_BATCH:
  4028. case SCHED_IDLE:
  4029. p->sched_class = &fair_sched_class;
  4030. break;
  4031. case SCHED_FIFO:
  4032. case SCHED_RR:
  4033. p->sched_class = &rt_sched_class;
  4034. break;
  4035. }
  4036. p->rt_priority = prio;
  4037. p->normal_prio = normal_prio(p);
  4038. /* we are holding p->pi_lock already */
  4039. p->prio = rt_mutex_getprio(p);
  4040. set_load_weight(p);
  4041. }
  4042. /**
  4043. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4044. * @p: the task in question.
  4045. * @policy: new policy.
  4046. * @param: structure containing the new RT priority.
  4047. *
  4048. * NOTE that the task may be already dead.
  4049. */
  4050. int sched_setscheduler(struct task_struct *p, int policy,
  4051. struct sched_param *param)
  4052. {
  4053. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4054. unsigned long flags;
  4055. const struct sched_class *prev_class = p->sched_class;
  4056. struct rq *rq;
  4057. /* may grab non-irq protected spin_locks */
  4058. BUG_ON(in_interrupt());
  4059. recheck:
  4060. /* double check policy once rq lock held */
  4061. if (policy < 0)
  4062. policy = oldpolicy = p->policy;
  4063. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4064. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4065. policy != SCHED_IDLE)
  4066. return -EINVAL;
  4067. /*
  4068. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4069. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4070. * SCHED_BATCH and SCHED_IDLE is 0.
  4071. */
  4072. if (param->sched_priority < 0 ||
  4073. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4074. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4075. return -EINVAL;
  4076. if (rt_policy(policy) != (param->sched_priority != 0))
  4077. return -EINVAL;
  4078. /*
  4079. * Allow unprivileged RT tasks to decrease priority:
  4080. */
  4081. if (!capable(CAP_SYS_NICE)) {
  4082. if (rt_policy(policy)) {
  4083. unsigned long rlim_rtprio;
  4084. if (!lock_task_sighand(p, &flags))
  4085. return -ESRCH;
  4086. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4087. unlock_task_sighand(p, &flags);
  4088. /* can't set/change the rt policy */
  4089. if (policy != p->policy && !rlim_rtprio)
  4090. return -EPERM;
  4091. /* can't increase priority */
  4092. if (param->sched_priority > p->rt_priority &&
  4093. param->sched_priority > rlim_rtprio)
  4094. return -EPERM;
  4095. }
  4096. /*
  4097. * Like positive nice levels, dont allow tasks to
  4098. * move out of SCHED_IDLE either:
  4099. */
  4100. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4101. return -EPERM;
  4102. /* can't change other user's priorities */
  4103. if ((current->euid != p->euid) &&
  4104. (current->euid != p->uid))
  4105. return -EPERM;
  4106. }
  4107. #ifdef CONFIG_RT_GROUP_SCHED
  4108. /*
  4109. * Do not allow realtime tasks into groups that have no runtime
  4110. * assigned.
  4111. */
  4112. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4113. return -EPERM;
  4114. #endif
  4115. retval = security_task_setscheduler(p, policy, param);
  4116. if (retval)
  4117. return retval;
  4118. /*
  4119. * make sure no PI-waiters arrive (or leave) while we are
  4120. * changing the priority of the task:
  4121. */
  4122. spin_lock_irqsave(&p->pi_lock, flags);
  4123. /*
  4124. * To be able to change p->policy safely, the apropriate
  4125. * runqueue lock must be held.
  4126. */
  4127. rq = __task_rq_lock(p);
  4128. /* recheck policy now with rq lock held */
  4129. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4130. policy = oldpolicy = -1;
  4131. __task_rq_unlock(rq);
  4132. spin_unlock_irqrestore(&p->pi_lock, flags);
  4133. goto recheck;
  4134. }
  4135. update_rq_clock(rq);
  4136. on_rq = p->se.on_rq;
  4137. running = task_current(rq, p);
  4138. if (on_rq)
  4139. deactivate_task(rq, p, 0);
  4140. if (running)
  4141. p->sched_class->put_prev_task(rq, p);
  4142. oldprio = p->prio;
  4143. __setscheduler(rq, p, policy, param->sched_priority);
  4144. if (running)
  4145. p->sched_class->set_curr_task(rq);
  4146. if (on_rq) {
  4147. activate_task(rq, p, 0);
  4148. check_class_changed(rq, p, prev_class, oldprio, running);
  4149. }
  4150. __task_rq_unlock(rq);
  4151. spin_unlock_irqrestore(&p->pi_lock, flags);
  4152. rt_mutex_adjust_pi(p);
  4153. return 0;
  4154. }
  4155. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4156. static int
  4157. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4158. {
  4159. struct sched_param lparam;
  4160. struct task_struct *p;
  4161. int retval;
  4162. if (!param || pid < 0)
  4163. return -EINVAL;
  4164. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4165. return -EFAULT;
  4166. rcu_read_lock();
  4167. retval = -ESRCH;
  4168. p = find_process_by_pid(pid);
  4169. if (p != NULL)
  4170. retval = sched_setscheduler(p, policy, &lparam);
  4171. rcu_read_unlock();
  4172. return retval;
  4173. }
  4174. /**
  4175. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4176. * @pid: the pid in question.
  4177. * @policy: new policy.
  4178. * @param: structure containing the new RT priority.
  4179. */
  4180. asmlinkage long
  4181. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4182. {
  4183. /* negative values for policy are not valid */
  4184. if (policy < 0)
  4185. return -EINVAL;
  4186. return do_sched_setscheduler(pid, policy, param);
  4187. }
  4188. /**
  4189. * sys_sched_setparam - set/change the RT priority of a thread
  4190. * @pid: the pid in question.
  4191. * @param: structure containing the new RT priority.
  4192. */
  4193. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4194. {
  4195. return do_sched_setscheduler(pid, -1, param);
  4196. }
  4197. /**
  4198. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4199. * @pid: the pid in question.
  4200. */
  4201. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4202. {
  4203. struct task_struct *p;
  4204. int retval;
  4205. if (pid < 0)
  4206. return -EINVAL;
  4207. retval = -ESRCH;
  4208. read_lock(&tasklist_lock);
  4209. p = find_process_by_pid(pid);
  4210. if (p) {
  4211. retval = security_task_getscheduler(p);
  4212. if (!retval)
  4213. retval = p->policy;
  4214. }
  4215. read_unlock(&tasklist_lock);
  4216. return retval;
  4217. }
  4218. /**
  4219. * sys_sched_getscheduler - get the RT priority of a thread
  4220. * @pid: the pid in question.
  4221. * @param: structure containing the RT priority.
  4222. */
  4223. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4224. {
  4225. struct sched_param lp;
  4226. struct task_struct *p;
  4227. int retval;
  4228. if (!param || pid < 0)
  4229. return -EINVAL;
  4230. read_lock(&tasklist_lock);
  4231. p = find_process_by_pid(pid);
  4232. retval = -ESRCH;
  4233. if (!p)
  4234. goto out_unlock;
  4235. retval = security_task_getscheduler(p);
  4236. if (retval)
  4237. goto out_unlock;
  4238. lp.sched_priority = p->rt_priority;
  4239. read_unlock(&tasklist_lock);
  4240. /*
  4241. * This one might sleep, we cannot do it with a spinlock held ...
  4242. */
  4243. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4244. return retval;
  4245. out_unlock:
  4246. read_unlock(&tasklist_lock);
  4247. return retval;
  4248. }
  4249. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4250. {
  4251. cpumask_t cpus_allowed;
  4252. cpumask_t new_mask = *in_mask;
  4253. struct task_struct *p;
  4254. int retval;
  4255. get_online_cpus();
  4256. read_lock(&tasklist_lock);
  4257. p = find_process_by_pid(pid);
  4258. if (!p) {
  4259. read_unlock(&tasklist_lock);
  4260. put_online_cpus();
  4261. return -ESRCH;
  4262. }
  4263. /*
  4264. * It is not safe to call set_cpus_allowed with the
  4265. * tasklist_lock held. We will bump the task_struct's
  4266. * usage count and then drop tasklist_lock.
  4267. */
  4268. get_task_struct(p);
  4269. read_unlock(&tasklist_lock);
  4270. retval = -EPERM;
  4271. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4272. !capable(CAP_SYS_NICE))
  4273. goto out_unlock;
  4274. retval = security_task_setscheduler(p, 0, NULL);
  4275. if (retval)
  4276. goto out_unlock;
  4277. cpuset_cpus_allowed(p, &cpus_allowed);
  4278. cpus_and(new_mask, new_mask, cpus_allowed);
  4279. again:
  4280. retval = set_cpus_allowed_ptr(p, &new_mask);
  4281. if (!retval) {
  4282. cpuset_cpus_allowed(p, &cpus_allowed);
  4283. if (!cpus_subset(new_mask, cpus_allowed)) {
  4284. /*
  4285. * We must have raced with a concurrent cpuset
  4286. * update. Just reset the cpus_allowed to the
  4287. * cpuset's cpus_allowed
  4288. */
  4289. new_mask = cpus_allowed;
  4290. goto again;
  4291. }
  4292. }
  4293. out_unlock:
  4294. put_task_struct(p);
  4295. put_online_cpus();
  4296. return retval;
  4297. }
  4298. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4299. cpumask_t *new_mask)
  4300. {
  4301. if (len < sizeof(cpumask_t)) {
  4302. memset(new_mask, 0, sizeof(cpumask_t));
  4303. } else if (len > sizeof(cpumask_t)) {
  4304. len = sizeof(cpumask_t);
  4305. }
  4306. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4307. }
  4308. /**
  4309. * sys_sched_setaffinity - set the cpu affinity of a process
  4310. * @pid: pid of the process
  4311. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4312. * @user_mask_ptr: user-space pointer to the new cpu mask
  4313. */
  4314. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4315. unsigned long __user *user_mask_ptr)
  4316. {
  4317. cpumask_t new_mask;
  4318. int retval;
  4319. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4320. if (retval)
  4321. return retval;
  4322. return sched_setaffinity(pid, &new_mask);
  4323. }
  4324. /*
  4325. * Represents all cpu's present in the system
  4326. * In systems capable of hotplug, this map could dynamically grow
  4327. * as new cpu's are detected in the system via any platform specific
  4328. * method, such as ACPI for e.g.
  4329. */
  4330. cpumask_t cpu_present_map __read_mostly;
  4331. EXPORT_SYMBOL(cpu_present_map);
  4332. #ifndef CONFIG_SMP
  4333. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  4334. EXPORT_SYMBOL(cpu_online_map);
  4335. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  4336. EXPORT_SYMBOL(cpu_possible_map);
  4337. #endif
  4338. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4339. {
  4340. struct task_struct *p;
  4341. int retval;
  4342. get_online_cpus();
  4343. read_lock(&tasklist_lock);
  4344. retval = -ESRCH;
  4345. p = find_process_by_pid(pid);
  4346. if (!p)
  4347. goto out_unlock;
  4348. retval = security_task_getscheduler(p);
  4349. if (retval)
  4350. goto out_unlock;
  4351. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4352. out_unlock:
  4353. read_unlock(&tasklist_lock);
  4354. put_online_cpus();
  4355. return retval;
  4356. }
  4357. /**
  4358. * sys_sched_getaffinity - get the cpu affinity of a process
  4359. * @pid: pid of the process
  4360. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4361. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4362. */
  4363. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4364. unsigned long __user *user_mask_ptr)
  4365. {
  4366. int ret;
  4367. cpumask_t mask;
  4368. if (len < sizeof(cpumask_t))
  4369. return -EINVAL;
  4370. ret = sched_getaffinity(pid, &mask);
  4371. if (ret < 0)
  4372. return ret;
  4373. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4374. return -EFAULT;
  4375. return sizeof(cpumask_t);
  4376. }
  4377. /**
  4378. * sys_sched_yield - yield the current processor to other threads.
  4379. *
  4380. * This function yields the current CPU to other tasks. If there are no
  4381. * other threads running on this CPU then this function will return.
  4382. */
  4383. asmlinkage long sys_sched_yield(void)
  4384. {
  4385. struct rq *rq = this_rq_lock();
  4386. schedstat_inc(rq, yld_count);
  4387. current->sched_class->yield_task(rq);
  4388. /*
  4389. * Since we are going to call schedule() anyway, there's
  4390. * no need to preempt or enable interrupts:
  4391. */
  4392. __release(rq->lock);
  4393. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4394. _raw_spin_unlock(&rq->lock);
  4395. preempt_enable_no_resched();
  4396. schedule();
  4397. return 0;
  4398. }
  4399. static void __cond_resched(void)
  4400. {
  4401. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4402. __might_sleep(__FILE__, __LINE__);
  4403. #endif
  4404. /*
  4405. * The BKS might be reacquired before we have dropped
  4406. * PREEMPT_ACTIVE, which could trigger a second
  4407. * cond_resched() call.
  4408. */
  4409. do {
  4410. add_preempt_count(PREEMPT_ACTIVE);
  4411. schedule();
  4412. sub_preempt_count(PREEMPT_ACTIVE);
  4413. } while (need_resched());
  4414. }
  4415. int __sched _cond_resched(void)
  4416. {
  4417. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4418. system_state == SYSTEM_RUNNING) {
  4419. __cond_resched();
  4420. return 1;
  4421. }
  4422. return 0;
  4423. }
  4424. EXPORT_SYMBOL(_cond_resched);
  4425. /*
  4426. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4427. * call schedule, and on return reacquire the lock.
  4428. *
  4429. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4430. * operations here to prevent schedule() from being called twice (once via
  4431. * spin_unlock(), once by hand).
  4432. */
  4433. int cond_resched_lock(spinlock_t *lock)
  4434. {
  4435. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4436. int ret = 0;
  4437. if (spin_needbreak(lock) || resched) {
  4438. spin_unlock(lock);
  4439. if (resched && need_resched())
  4440. __cond_resched();
  4441. else
  4442. cpu_relax();
  4443. ret = 1;
  4444. spin_lock(lock);
  4445. }
  4446. return ret;
  4447. }
  4448. EXPORT_SYMBOL(cond_resched_lock);
  4449. int __sched cond_resched_softirq(void)
  4450. {
  4451. BUG_ON(!in_softirq());
  4452. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4453. local_bh_enable();
  4454. __cond_resched();
  4455. local_bh_disable();
  4456. return 1;
  4457. }
  4458. return 0;
  4459. }
  4460. EXPORT_SYMBOL(cond_resched_softirq);
  4461. /**
  4462. * yield - yield the current processor to other threads.
  4463. *
  4464. * This is a shortcut for kernel-space yielding - it marks the
  4465. * thread runnable and calls sys_sched_yield().
  4466. */
  4467. void __sched yield(void)
  4468. {
  4469. set_current_state(TASK_RUNNING);
  4470. sys_sched_yield();
  4471. }
  4472. EXPORT_SYMBOL(yield);
  4473. /*
  4474. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4475. * that process accounting knows that this is a task in IO wait state.
  4476. *
  4477. * But don't do that if it is a deliberate, throttling IO wait (this task
  4478. * has set its backing_dev_info: the queue against which it should throttle)
  4479. */
  4480. void __sched io_schedule(void)
  4481. {
  4482. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4483. delayacct_blkio_start();
  4484. atomic_inc(&rq->nr_iowait);
  4485. schedule();
  4486. atomic_dec(&rq->nr_iowait);
  4487. delayacct_blkio_end();
  4488. }
  4489. EXPORT_SYMBOL(io_schedule);
  4490. long __sched io_schedule_timeout(long timeout)
  4491. {
  4492. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4493. long ret;
  4494. delayacct_blkio_start();
  4495. atomic_inc(&rq->nr_iowait);
  4496. ret = schedule_timeout(timeout);
  4497. atomic_dec(&rq->nr_iowait);
  4498. delayacct_blkio_end();
  4499. return ret;
  4500. }
  4501. /**
  4502. * sys_sched_get_priority_max - return maximum RT priority.
  4503. * @policy: scheduling class.
  4504. *
  4505. * this syscall returns the maximum rt_priority that can be used
  4506. * by a given scheduling class.
  4507. */
  4508. asmlinkage long sys_sched_get_priority_max(int policy)
  4509. {
  4510. int ret = -EINVAL;
  4511. switch (policy) {
  4512. case SCHED_FIFO:
  4513. case SCHED_RR:
  4514. ret = MAX_USER_RT_PRIO-1;
  4515. break;
  4516. case SCHED_NORMAL:
  4517. case SCHED_BATCH:
  4518. case SCHED_IDLE:
  4519. ret = 0;
  4520. break;
  4521. }
  4522. return ret;
  4523. }
  4524. /**
  4525. * sys_sched_get_priority_min - return minimum RT priority.
  4526. * @policy: scheduling class.
  4527. *
  4528. * this syscall returns the minimum rt_priority that can be used
  4529. * by a given scheduling class.
  4530. */
  4531. asmlinkage long sys_sched_get_priority_min(int policy)
  4532. {
  4533. int ret = -EINVAL;
  4534. switch (policy) {
  4535. case SCHED_FIFO:
  4536. case SCHED_RR:
  4537. ret = 1;
  4538. break;
  4539. case SCHED_NORMAL:
  4540. case SCHED_BATCH:
  4541. case SCHED_IDLE:
  4542. ret = 0;
  4543. }
  4544. return ret;
  4545. }
  4546. /**
  4547. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4548. * @pid: pid of the process.
  4549. * @interval: userspace pointer to the timeslice value.
  4550. *
  4551. * this syscall writes the default timeslice value of a given process
  4552. * into the user-space timespec buffer. A value of '0' means infinity.
  4553. */
  4554. asmlinkage
  4555. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4556. {
  4557. struct task_struct *p;
  4558. unsigned int time_slice;
  4559. int retval;
  4560. struct timespec t;
  4561. if (pid < 0)
  4562. return -EINVAL;
  4563. retval = -ESRCH;
  4564. read_lock(&tasklist_lock);
  4565. p = find_process_by_pid(pid);
  4566. if (!p)
  4567. goto out_unlock;
  4568. retval = security_task_getscheduler(p);
  4569. if (retval)
  4570. goto out_unlock;
  4571. /*
  4572. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4573. * tasks that are on an otherwise idle runqueue:
  4574. */
  4575. time_slice = 0;
  4576. if (p->policy == SCHED_RR) {
  4577. time_slice = DEF_TIMESLICE;
  4578. } else if (p->policy != SCHED_FIFO) {
  4579. struct sched_entity *se = &p->se;
  4580. unsigned long flags;
  4581. struct rq *rq;
  4582. rq = task_rq_lock(p, &flags);
  4583. if (rq->cfs.load.weight)
  4584. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4585. task_rq_unlock(rq, &flags);
  4586. }
  4587. read_unlock(&tasklist_lock);
  4588. jiffies_to_timespec(time_slice, &t);
  4589. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4590. return retval;
  4591. out_unlock:
  4592. read_unlock(&tasklist_lock);
  4593. return retval;
  4594. }
  4595. static const char stat_nam[] = "RSDTtZX";
  4596. void sched_show_task(struct task_struct *p)
  4597. {
  4598. unsigned long free = 0;
  4599. unsigned state;
  4600. state = p->state ? __ffs(p->state) + 1 : 0;
  4601. printk(KERN_INFO "%-13.13s %c", p->comm,
  4602. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4603. #if BITS_PER_LONG == 32
  4604. if (state == TASK_RUNNING)
  4605. printk(KERN_CONT " running ");
  4606. else
  4607. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4608. #else
  4609. if (state == TASK_RUNNING)
  4610. printk(KERN_CONT " running task ");
  4611. else
  4612. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4613. #endif
  4614. #ifdef CONFIG_DEBUG_STACK_USAGE
  4615. {
  4616. unsigned long *n = end_of_stack(p);
  4617. while (!*n)
  4618. n++;
  4619. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4620. }
  4621. #endif
  4622. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4623. task_pid_nr(p), task_pid_nr(p->real_parent));
  4624. show_stack(p, NULL);
  4625. }
  4626. void show_state_filter(unsigned long state_filter)
  4627. {
  4628. struct task_struct *g, *p;
  4629. #if BITS_PER_LONG == 32
  4630. printk(KERN_INFO
  4631. " task PC stack pid father\n");
  4632. #else
  4633. printk(KERN_INFO
  4634. " task PC stack pid father\n");
  4635. #endif
  4636. read_lock(&tasklist_lock);
  4637. do_each_thread(g, p) {
  4638. /*
  4639. * reset the NMI-timeout, listing all files on a slow
  4640. * console might take alot of time:
  4641. */
  4642. touch_nmi_watchdog();
  4643. if (!state_filter || (p->state & state_filter))
  4644. sched_show_task(p);
  4645. } while_each_thread(g, p);
  4646. touch_all_softlockup_watchdogs();
  4647. #ifdef CONFIG_SCHED_DEBUG
  4648. sysrq_sched_debug_show();
  4649. #endif
  4650. read_unlock(&tasklist_lock);
  4651. /*
  4652. * Only show locks if all tasks are dumped:
  4653. */
  4654. if (state_filter == -1)
  4655. debug_show_all_locks();
  4656. }
  4657. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4658. {
  4659. idle->sched_class = &idle_sched_class;
  4660. }
  4661. /**
  4662. * init_idle - set up an idle thread for a given CPU
  4663. * @idle: task in question
  4664. * @cpu: cpu the idle task belongs to
  4665. *
  4666. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4667. * flag, to make booting more robust.
  4668. */
  4669. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4670. {
  4671. struct rq *rq = cpu_rq(cpu);
  4672. unsigned long flags;
  4673. __sched_fork(idle);
  4674. idle->se.exec_start = sched_clock();
  4675. idle->prio = idle->normal_prio = MAX_PRIO;
  4676. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4677. __set_task_cpu(idle, cpu);
  4678. spin_lock_irqsave(&rq->lock, flags);
  4679. rq->curr = rq->idle = idle;
  4680. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4681. idle->oncpu = 1;
  4682. #endif
  4683. spin_unlock_irqrestore(&rq->lock, flags);
  4684. /* Set the preempt count _outside_ the spinlocks! */
  4685. #if defined(CONFIG_PREEMPT)
  4686. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4687. #else
  4688. task_thread_info(idle)->preempt_count = 0;
  4689. #endif
  4690. /*
  4691. * The idle tasks have their own, simple scheduling class:
  4692. */
  4693. idle->sched_class = &idle_sched_class;
  4694. }
  4695. /*
  4696. * In a system that switches off the HZ timer nohz_cpu_mask
  4697. * indicates which cpus entered this state. This is used
  4698. * in the rcu update to wait only for active cpus. For system
  4699. * which do not switch off the HZ timer nohz_cpu_mask should
  4700. * always be CPU_MASK_NONE.
  4701. */
  4702. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4703. /*
  4704. * Increase the granularity value when there are more CPUs,
  4705. * because with more CPUs the 'effective latency' as visible
  4706. * to users decreases. But the relationship is not linear,
  4707. * so pick a second-best guess by going with the log2 of the
  4708. * number of CPUs.
  4709. *
  4710. * This idea comes from the SD scheduler of Con Kolivas:
  4711. */
  4712. static inline void sched_init_granularity(void)
  4713. {
  4714. unsigned int factor = 1 + ilog2(num_online_cpus());
  4715. const unsigned long limit = 200000000;
  4716. sysctl_sched_min_granularity *= factor;
  4717. if (sysctl_sched_min_granularity > limit)
  4718. sysctl_sched_min_granularity = limit;
  4719. sysctl_sched_latency *= factor;
  4720. if (sysctl_sched_latency > limit)
  4721. sysctl_sched_latency = limit;
  4722. sysctl_sched_wakeup_granularity *= factor;
  4723. }
  4724. #ifdef CONFIG_SMP
  4725. /*
  4726. * This is how migration works:
  4727. *
  4728. * 1) we queue a struct migration_req structure in the source CPU's
  4729. * runqueue and wake up that CPU's migration thread.
  4730. * 2) we down() the locked semaphore => thread blocks.
  4731. * 3) migration thread wakes up (implicitly it forces the migrated
  4732. * thread off the CPU)
  4733. * 4) it gets the migration request and checks whether the migrated
  4734. * task is still in the wrong runqueue.
  4735. * 5) if it's in the wrong runqueue then the migration thread removes
  4736. * it and puts it into the right queue.
  4737. * 6) migration thread up()s the semaphore.
  4738. * 7) we wake up and the migration is done.
  4739. */
  4740. /*
  4741. * Change a given task's CPU affinity. Migrate the thread to a
  4742. * proper CPU and schedule it away if the CPU it's executing on
  4743. * is removed from the allowed bitmask.
  4744. *
  4745. * NOTE: the caller must have a valid reference to the task, the
  4746. * task must not exit() & deallocate itself prematurely. The
  4747. * call is not atomic; no spinlocks may be held.
  4748. */
  4749. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4750. {
  4751. struct migration_req req;
  4752. unsigned long flags;
  4753. struct rq *rq;
  4754. int ret = 0;
  4755. rq = task_rq_lock(p, &flags);
  4756. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4757. ret = -EINVAL;
  4758. goto out;
  4759. }
  4760. if (p->sched_class->set_cpus_allowed)
  4761. p->sched_class->set_cpus_allowed(p, new_mask);
  4762. else {
  4763. p->cpus_allowed = *new_mask;
  4764. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4765. }
  4766. /* Can the task run on the task's current CPU? If so, we're done */
  4767. if (cpu_isset(task_cpu(p), *new_mask))
  4768. goto out;
  4769. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4770. /* Need help from migration thread: drop lock and wait. */
  4771. task_rq_unlock(rq, &flags);
  4772. wake_up_process(rq->migration_thread);
  4773. wait_for_completion(&req.done);
  4774. tlb_migrate_finish(p->mm);
  4775. return 0;
  4776. }
  4777. out:
  4778. task_rq_unlock(rq, &flags);
  4779. return ret;
  4780. }
  4781. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4782. /*
  4783. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4784. * this because either it can't run here any more (set_cpus_allowed()
  4785. * away from this CPU, or CPU going down), or because we're
  4786. * attempting to rebalance this task on exec (sched_exec).
  4787. *
  4788. * So we race with normal scheduler movements, but that's OK, as long
  4789. * as the task is no longer on this CPU.
  4790. *
  4791. * Returns non-zero if task was successfully migrated.
  4792. */
  4793. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4794. {
  4795. struct rq *rq_dest, *rq_src;
  4796. int ret = 0, on_rq;
  4797. if (unlikely(cpu_is_offline(dest_cpu)))
  4798. return ret;
  4799. rq_src = cpu_rq(src_cpu);
  4800. rq_dest = cpu_rq(dest_cpu);
  4801. double_rq_lock(rq_src, rq_dest);
  4802. /* Already moved. */
  4803. if (task_cpu(p) != src_cpu)
  4804. goto out;
  4805. /* Affinity changed (again). */
  4806. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4807. goto out;
  4808. on_rq = p->se.on_rq;
  4809. if (on_rq)
  4810. deactivate_task(rq_src, p, 0);
  4811. set_task_cpu(p, dest_cpu);
  4812. if (on_rq) {
  4813. activate_task(rq_dest, p, 0);
  4814. check_preempt_curr(rq_dest, p);
  4815. }
  4816. ret = 1;
  4817. out:
  4818. double_rq_unlock(rq_src, rq_dest);
  4819. return ret;
  4820. }
  4821. /*
  4822. * migration_thread - this is a highprio system thread that performs
  4823. * thread migration by bumping thread off CPU then 'pushing' onto
  4824. * another runqueue.
  4825. */
  4826. static int migration_thread(void *data)
  4827. {
  4828. int cpu = (long)data;
  4829. struct rq *rq;
  4830. rq = cpu_rq(cpu);
  4831. BUG_ON(rq->migration_thread != current);
  4832. set_current_state(TASK_INTERRUPTIBLE);
  4833. while (!kthread_should_stop()) {
  4834. struct migration_req *req;
  4835. struct list_head *head;
  4836. spin_lock_irq(&rq->lock);
  4837. if (cpu_is_offline(cpu)) {
  4838. spin_unlock_irq(&rq->lock);
  4839. goto wait_to_die;
  4840. }
  4841. if (rq->active_balance) {
  4842. active_load_balance(rq, cpu);
  4843. rq->active_balance = 0;
  4844. }
  4845. head = &rq->migration_queue;
  4846. if (list_empty(head)) {
  4847. spin_unlock_irq(&rq->lock);
  4848. schedule();
  4849. set_current_state(TASK_INTERRUPTIBLE);
  4850. continue;
  4851. }
  4852. req = list_entry(head->next, struct migration_req, list);
  4853. list_del_init(head->next);
  4854. spin_unlock(&rq->lock);
  4855. __migrate_task(req->task, cpu, req->dest_cpu);
  4856. local_irq_enable();
  4857. complete(&req->done);
  4858. }
  4859. __set_current_state(TASK_RUNNING);
  4860. return 0;
  4861. wait_to_die:
  4862. /* Wait for kthread_stop */
  4863. set_current_state(TASK_INTERRUPTIBLE);
  4864. while (!kthread_should_stop()) {
  4865. schedule();
  4866. set_current_state(TASK_INTERRUPTIBLE);
  4867. }
  4868. __set_current_state(TASK_RUNNING);
  4869. return 0;
  4870. }
  4871. #ifdef CONFIG_HOTPLUG_CPU
  4872. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4873. {
  4874. int ret;
  4875. local_irq_disable();
  4876. ret = __migrate_task(p, src_cpu, dest_cpu);
  4877. local_irq_enable();
  4878. return ret;
  4879. }
  4880. /*
  4881. * Figure out where task on dead CPU should go, use force if necessary.
  4882. * NOTE: interrupts should be disabled by the caller
  4883. */
  4884. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4885. {
  4886. unsigned long flags;
  4887. cpumask_t mask;
  4888. struct rq *rq;
  4889. int dest_cpu;
  4890. do {
  4891. /* On same node? */
  4892. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4893. cpus_and(mask, mask, p->cpus_allowed);
  4894. dest_cpu = any_online_cpu(mask);
  4895. /* On any allowed CPU? */
  4896. if (dest_cpu >= nr_cpu_ids)
  4897. dest_cpu = any_online_cpu(p->cpus_allowed);
  4898. /* No more Mr. Nice Guy. */
  4899. if (dest_cpu >= nr_cpu_ids) {
  4900. cpumask_t cpus_allowed;
  4901. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  4902. /*
  4903. * Try to stay on the same cpuset, where the
  4904. * current cpuset may be a subset of all cpus.
  4905. * The cpuset_cpus_allowed_locked() variant of
  4906. * cpuset_cpus_allowed() will not block. It must be
  4907. * called within calls to cpuset_lock/cpuset_unlock.
  4908. */
  4909. rq = task_rq_lock(p, &flags);
  4910. p->cpus_allowed = cpus_allowed;
  4911. dest_cpu = any_online_cpu(p->cpus_allowed);
  4912. task_rq_unlock(rq, &flags);
  4913. /*
  4914. * Don't tell them about moving exiting tasks or
  4915. * kernel threads (both mm NULL), since they never
  4916. * leave kernel.
  4917. */
  4918. if (p->mm && printk_ratelimit()) {
  4919. printk(KERN_INFO "process %d (%s) no "
  4920. "longer affine to cpu%d\n",
  4921. task_pid_nr(p), p->comm, dead_cpu);
  4922. }
  4923. }
  4924. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  4925. }
  4926. /*
  4927. * While a dead CPU has no uninterruptible tasks queued at this point,
  4928. * it might still have a nonzero ->nr_uninterruptible counter, because
  4929. * for performance reasons the counter is not stricly tracking tasks to
  4930. * their home CPUs. So we just add the counter to another CPU's counter,
  4931. * to keep the global sum constant after CPU-down:
  4932. */
  4933. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4934. {
  4935. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  4936. unsigned long flags;
  4937. local_irq_save(flags);
  4938. double_rq_lock(rq_src, rq_dest);
  4939. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4940. rq_src->nr_uninterruptible = 0;
  4941. double_rq_unlock(rq_src, rq_dest);
  4942. local_irq_restore(flags);
  4943. }
  4944. /* Run through task list and migrate tasks from the dead cpu. */
  4945. static void migrate_live_tasks(int src_cpu)
  4946. {
  4947. struct task_struct *p, *t;
  4948. read_lock(&tasklist_lock);
  4949. do_each_thread(t, p) {
  4950. if (p == current)
  4951. continue;
  4952. if (task_cpu(p) == src_cpu)
  4953. move_task_off_dead_cpu(src_cpu, p);
  4954. } while_each_thread(t, p);
  4955. read_unlock(&tasklist_lock);
  4956. }
  4957. /*
  4958. * Schedules idle task to be the next runnable task on current CPU.
  4959. * It does so by boosting its priority to highest possible.
  4960. * Used by CPU offline code.
  4961. */
  4962. void sched_idle_next(void)
  4963. {
  4964. int this_cpu = smp_processor_id();
  4965. struct rq *rq = cpu_rq(this_cpu);
  4966. struct task_struct *p = rq->idle;
  4967. unsigned long flags;
  4968. /* cpu has to be offline */
  4969. BUG_ON(cpu_online(this_cpu));
  4970. /*
  4971. * Strictly not necessary since rest of the CPUs are stopped by now
  4972. * and interrupts disabled on the current cpu.
  4973. */
  4974. spin_lock_irqsave(&rq->lock, flags);
  4975. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4976. update_rq_clock(rq);
  4977. activate_task(rq, p, 0);
  4978. spin_unlock_irqrestore(&rq->lock, flags);
  4979. }
  4980. /*
  4981. * Ensures that the idle task is using init_mm right before its cpu goes
  4982. * offline.
  4983. */
  4984. void idle_task_exit(void)
  4985. {
  4986. struct mm_struct *mm = current->active_mm;
  4987. BUG_ON(cpu_online(smp_processor_id()));
  4988. if (mm != &init_mm)
  4989. switch_mm(mm, &init_mm, current);
  4990. mmdrop(mm);
  4991. }
  4992. /* called under rq->lock with disabled interrupts */
  4993. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4994. {
  4995. struct rq *rq = cpu_rq(dead_cpu);
  4996. /* Must be exiting, otherwise would be on tasklist. */
  4997. BUG_ON(!p->exit_state);
  4998. /* Cannot have done final schedule yet: would have vanished. */
  4999. BUG_ON(p->state == TASK_DEAD);
  5000. get_task_struct(p);
  5001. /*
  5002. * Drop lock around migration; if someone else moves it,
  5003. * that's OK. No task can be added to this CPU, so iteration is
  5004. * fine.
  5005. */
  5006. spin_unlock_irq(&rq->lock);
  5007. move_task_off_dead_cpu(dead_cpu, p);
  5008. spin_lock_irq(&rq->lock);
  5009. put_task_struct(p);
  5010. }
  5011. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5012. static void migrate_dead_tasks(unsigned int dead_cpu)
  5013. {
  5014. struct rq *rq = cpu_rq(dead_cpu);
  5015. struct task_struct *next;
  5016. for ( ; ; ) {
  5017. if (!rq->nr_running)
  5018. break;
  5019. update_rq_clock(rq);
  5020. next = pick_next_task(rq, rq->curr);
  5021. if (!next)
  5022. break;
  5023. migrate_dead(dead_cpu, next);
  5024. }
  5025. }
  5026. #endif /* CONFIG_HOTPLUG_CPU */
  5027. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5028. static struct ctl_table sd_ctl_dir[] = {
  5029. {
  5030. .procname = "sched_domain",
  5031. .mode = 0555,
  5032. },
  5033. {0, },
  5034. };
  5035. static struct ctl_table sd_ctl_root[] = {
  5036. {
  5037. .ctl_name = CTL_KERN,
  5038. .procname = "kernel",
  5039. .mode = 0555,
  5040. .child = sd_ctl_dir,
  5041. },
  5042. {0, },
  5043. };
  5044. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5045. {
  5046. struct ctl_table *entry =
  5047. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5048. return entry;
  5049. }
  5050. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5051. {
  5052. struct ctl_table *entry;
  5053. /*
  5054. * In the intermediate directories, both the child directory and
  5055. * procname are dynamically allocated and could fail but the mode
  5056. * will always be set. In the lowest directory the names are
  5057. * static strings and all have proc handlers.
  5058. */
  5059. for (entry = *tablep; entry->mode; entry++) {
  5060. if (entry->child)
  5061. sd_free_ctl_entry(&entry->child);
  5062. if (entry->proc_handler == NULL)
  5063. kfree(entry->procname);
  5064. }
  5065. kfree(*tablep);
  5066. *tablep = NULL;
  5067. }
  5068. static void
  5069. set_table_entry(struct ctl_table *entry,
  5070. const char *procname, void *data, int maxlen,
  5071. mode_t mode, proc_handler *proc_handler)
  5072. {
  5073. entry->procname = procname;
  5074. entry->data = data;
  5075. entry->maxlen = maxlen;
  5076. entry->mode = mode;
  5077. entry->proc_handler = proc_handler;
  5078. }
  5079. static struct ctl_table *
  5080. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5081. {
  5082. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5083. if (table == NULL)
  5084. return NULL;
  5085. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5086. sizeof(long), 0644, proc_doulongvec_minmax);
  5087. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5088. sizeof(long), 0644, proc_doulongvec_minmax);
  5089. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5090. sizeof(int), 0644, proc_dointvec_minmax);
  5091. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5092. sizeof(int), 0644, proc_dointvec_minmax);
  5093. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5094. sizeof(int), 0644, proc_dointvec_minmax);
  5095. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5096. sizeof(int), 0644, proc_dointvec_minmax);
  5097. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5098. sizeof(int), 0644, proc_dointvec_minmax);
  5099. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5100. sizeof(int), 0644, proc_dointvec_minmax);
  5101. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5102. sizeof(int), 0644, proc_dointvec_minmax);
  5103. set_table_entry(&table[9], "cache_nice_tries",
  5104. &sd->cache_nice_tries,
  5105. sizeof(int), 0644, proc_dointvec_minmax);
  5106. set_table_entry(&table[10], "flags", &sd->flags,
  5107. sizeof(int), 0644, proc_dointvec_minmax);
  5108. /* &table[11] is terminator */
  5109. return table;
  5110. }
  5111. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5112. {
  5113. struct ctl_table *entry, *table;
  5114. struct sched_domain *sd;
  5115. int domain_num = 0, i;
  5116. char buf[32];
  5117. for_each_domain(cpu, sd)
  5118. domain_num++;
  5119. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5120. if (table == NULL)
  5121. return NULL;
  5122. i = 0;
  5123. for_each_domain(cpu, sd) {
  5124. snprintf(buf, 32, "domain%d", i);
  5125. entry->procname = kstrdup(buf, GFP_KERNEL);
  5126. entry->mode = 0555;
  5127. entry->child = sd_alloc_ctl_domain_table(sd);
  5128. entry++;
  5129. i++;
  5130. }
  5131. return table;
  5132. }
  5133. static struct ctl_table_header *sd_sysctl_header;
  5134. static void register_sched_domain_sysctl(void)
  5135. {
  5136. int i, cpu_num = num_online_cpus();
  5137. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5138. char buf[32];
  5139. WARN_ON(sd_ctl_dir[0].child);
  5140. sd_ctl_dir[0].child = entry;
  5141. if (entry == NULL)
  5142. return;
  5143. for_each_online_cpu(i) {
  5144. snprintf(buf, 32, "cpu%d", i);
  5145. entry->procname = kstrdup(buf, GFP_KERNEL);
  5146. entry->mode = 0555;
  5147. entry->child = sd_alloc_ctl_cpu_table(i);
  5148. entry++;
  5149. }
  5150. WARN_ON(sd_sysctl_header);
  5151. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5152. }
  5153. /* may be called multiple times per register */
  5154. static void unregister_sched_domain_sysctl(void)
  5155. {
  5156. if (sd_sysctl_header)
  5157. unregister_sysctl_table(sd_sysctl_header);
  5158. sd_sysctl_header = NULL;
  5159. if (sd_ctl_dir[0].child)
  5160. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5161. }
  5162. #else
  5163. static void register_sched_domain_sysctl(void)
  5164. {
  5165. }
  5166. static void unregister_sched_domain_sysctl(void)
  5167. {
  5168. }
  5169. #endif
  5170. /*
  5171. * migration_call - callback that gets triggered when a CPU is added.
  5172. * Here we can start up the necessary migration thread for the new CPU.
  5173. */
  5174. static int __cpuinit
  5175. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5176. {
  5177. struct task_struct *p;
  5178. int cpu = (long)hcpu;
  5179. unsigned long flags;
  5180. struct rq *rq;
  5181. switch (action) {
  5182. case CPU_UP_PREPARE:
  5183. case CPU_UP_PREPARE_FROZEN:
  5184. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5185. if (IS_ERR(p))
  5186. return NOTIFY_BAD;
  5187. kthread_bind(p, cpu);
  5188. /* Must be high prio: stop_machine expects to yield to it. */
  5189. rq = task_rq_lock(p, &flags);
  5190. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5191. task_rq_unlock(rq, &flags);
  5192. cpu_rq(cpu)->migration_thread = p;
  5193. break;
  5194. case CPU_ONLINE:
  5195. case CPU_ONLINE_FROZEN:
  5196. /* Strictly unnecessary, as first user will wake it. */
  5197. wake_up_process(cpu_rq(cpu)->migration_thread);
  5198. /* Update our root-domain */
  5199. rq = cpu_rq(cpu);
  5200. spin_lock_irqsave(&rq->lock, flags);
  5201. if (rq->rd) {
  5202. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5203. cpu_set(cpu, rq->rd->online);
  5204. }
  5205. spin_unlock_irqrestore(&rq->lock, flags);
  5206. break;
  5207. #ifdef CONFIG_HOTPLUG_CPU
  5208. case CPU_UP_CANCELED:
  5209. case CPU_UP_CANCELED_FROZEN:
  5210. if (!cpu_rq(cpu)->migration_thread)
  5211. break;
  5212. /* Unbind it from offline cpu so it can run. Fall thru. */
  5213. kthread_bind(cpu_rq(cpu)->migration_thread,
  5214. any_online_cpu(cpu_online_map));
  5215. kthread_stop(cpu_rq(cpu)->migration_thread);
  5216. cpu_rq(cpu)->migration_thread = NULL;
  5217. break;
  5218. case CPU_DEAD:
  5219. case CPU_DEAD_FROZEN:
  5220. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5221. migrate_live_tasks(cpu);
  5222. rq = cpu_rq(cpu);
  5223. kthread_stop(rq->migration_thread);
  5224. rq->migration_thread = NULL;
  5225. /* Idle task back to normal (off runqueue, low prio) */
  5226. spin_lock_irq(&rq->lock);
  5227. update_rq_clock(rq);
  5228. deactivate_task(rq, rq->idle, 0);
  5229. rq->idle->static_prio = MAX_PRIO;
  5230. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5231. rq->idle->sched_class = &idle_sched_class;
  5232. migrate_dead_tasks(cpu);
  5233. spin_unlock_irq(&rq->lock);
  5234. cpuset_unlock();
  5235. migrate_nr_uninterruptible(rq);
  5236. BUG_ON(rq->nr_running != 0);
  5237. /*
  5238. * No need to migrate the tasks: it was best-effort if
  5239. * they didn't take sched_hotcpu_mutex. Just wake up
  5240. * the requestors.
  5241. */
  5242. spin_lock_irq(&rq->lock);
  5243. while (!list_empty(&rq->migration_queue)) {
  5244. struct migration_req *req;
  5245. req = list_entry(rq->migration_queue.next,
  5246. struct migration_req, list);
  5247. list_del_init(&req->list);
  5248. complete(&req->done);
  5249. }
  5250. spin_unlock_irq(&rq->lock);
  5251. break;
  5252. case CPU_DYING:
  5253. case CPU_DYING_FROZEN:
  5254. /* Update our root-domain */
  5255. rq = cpu_rq(cpu);
  5256. spin_lock_irqsave(&rq->lock, flags);
  5257. if (rq->rd) {
  5258. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5259. cpu_clear(cpu, rq->rd->online);
  5260. }
  5261. spin_unlock_irqrestore(&rq->lock, flags);
  5262. break;
  5263. #endif
  5264. }
  5265. return NOTIFY_OK;
  5266. }
  5267. /* Register at highest priority so that task migration (migrate_all_tasks)
  5268. * happens before everything else.
  5269. */
  5270. static struct notifier_block __cpuinitdata migration_notifier = {
  5271. .notifier_call = migration_call,
  5272. .priority = 10
  5273. };
  5274. void __init migration_init(void)
  5275. {
  5276. void *cpu = (void *)(long)smp_processor_id();
  5277. int err;
  5278. /* Start one for the boot CPU: */
  5279. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5280. BUG_ON(err == NOTIFY_BAD);
  5281. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5282. register_cpu_notifier(&migration_notifier);
  5283. }
  5284. #endif
  5285. #ifdef CONFIG_SMP
  5286. #ifdef CONFIG_SCHED_DEBUG
  5287. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5288. cpumask_t *groupmask)
  5289. {
  5290. struct sched_group *group = sd->groups;
  5291. char str[256];
  5292. cpulist_scnprintf(str, sizeof(str), sd->span);
  5293. cpus_clear(*groupmask);
  5294. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5295. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5296. printk("does not load-balance\n");
  5297. if (sd->parent)
  5298. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5299. " has parent");
  5300. return -1;
  5301. }
  5302. printk(KERN_CONT "span %s\n", str);
  5303. if (!cpu_isset(cpu, sd->span)) {
  5304. printk(KERN_ERR "ERROR: domain->span does not contain "
  5305. "CPU%d\n", cpu);
  5306. }
  5307. if (!cpu_isset(cpu, group->cpumask)) {
  5308. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5309. " CPU%d\n", cpu);
  5310. }
  5311. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5312. do {
  5313. if (!group) {
  5314. printk("\n");
  5315. printk(KERN_ERR "ERROR: group is NULL\n");
  5316. break;
  5317. }
  5318. if (!group->__cpu_power) {
  5319. printk(KERN_CONT "\n");
  5320. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5321. "set\n");
  5322. break;
  5323. }
  5324. if (!cpus_weight(group->cpumask)) {
  5325. printk(KERN_CONT "\n");
  5326. printk(KERN_ERR "ERROR: empty group\n");
  5327. break;
  5328. }
  5329. if (cpus_intersects(*groupmask, group->cpumask)) {
  5330. printk(KERN_CONT "\n");
  5331. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5332. break;
  5333. }
  5334. cpus_or(*groupmask, *groupmask, group->cpumask);
  5335. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5336. printk(KERN_CONT " %s", str);
  5337. group = group->next;
  5338. } while (group != sd->groups);
  5339. printk(KERN_CONT "\n");
  5340. if (!cpus_equal(sd->span, *groupmask))
  5341. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5342. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5343. printk(KERN_ERR "ERROR: parent span is not a superset "
  5344. "of domain->span\n");
  5345. return 0;
  5346. }
  5347. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5348. {
  5349. cpumask_t *groupmask;
  5350. int level = 0;
  5351. if (!sd) {
  5352. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5353. return;
  5354. }
  5355. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5356. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5357. if (!groupmask) {
  5358. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5359. return;
  5360. }
  5361. for (;;) {
  5362. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5363. break;
  5364. level++;
  5365. sd = sd->parent;
  5366. if (!sd)
  5367. break;
  5368. }
  5369. kfree(groupmask);
  5370. }
  5371. #else
  5372. # define sched_domain_debug(sd, cpu) do { } while (0)
  5373. #endif
  5374. static int sd_degenerate(struct sched_domain *sd)
  5375. {
  5376. if (cpus_weight(sd->span) == 1)
  5377. return 1;
  5378. /* Following flags need at least 2 groups */
  5379. if (sd->flags & (SD_LOAD_BALANCE |
  5380. SD_BALANCE_NEWIDLE |
  5381. SD_BALANCE_FORK |
  5382. SD_BALANCE_EXEC |
  5383. SD_SHARE_CPUPOWER |
  5384. SD_SHARE_PKG_RESOURCES)) {
  5385. if (sd->groups != sd->groups->next)
  5386. return 0;
  5387. }
  5388. /* Following flags don't use groups */
  5389. if (sd->flags & (SD_WAKE_IDLE |
  5390. SD_WAKE_AFFINE |
  5391. SD_WAKE_BALANCE))
  5392. return 0;
  5393. return 1;
  5394. }
  5395. static int
  5396. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5397. {
  5398. unsigned long cflags = sd->flags, pflags = parent->flags;
  5399. if (sd_degenerate(parent))
  5400. return 1;
  5401. if (!cpus_equal(sd->span, parent->span))
  5402. return 0;
  5403. /* Does parent contain flags not in child? */
  5404. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5405. if (cflags & SD_WAKE_AFFINE)
  5406. pflags &= ~SD_WAKE_BALANCE;
  5407. /* Flags needing groups don't count if only 1 group in parent */
  5408. if (parent->groups == parent->groups->next) {
  5409. pflags &= ~(SD_LOAD_BALANCE |
  5410. SD_BALANCE_NEWIDLE |
  5411. SD_BALANCE_FORK |
  5412. SD_BALANCE_EXEC |
  5413. SD_SHARE_CPUPOWER |
  5414. SD_SHARE_PKG_RESOURCES);
  5415. }
  5416. if (~cflags & pflags)
  5417. return 0;
  5418. return 1;
  5419. }
  5420. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5421. {
  5422. unsigned long flags;
  5423. const struct sched_class *class;
  5424. spin_lock_irqsave(&rq->lock, flags);
  5425. if (rq->rd) {
  5426. struct root_domain *old_rd = rq->rd;
  5427. for (class = sched_class_highest; class; class = class->next) {
  5428. if (class->leave_domain)
  5429. class->leave_domain(rq);
  5430. }
  5431. cpu_clear(rq->cpu, old_rd->span);
  5432. cpu_clear(rq->cpu, old_rd->online);
  5433. if (atomic_dec_and_test(&old_rd->refcount))
  5434. kfree(old_rd);
  5435. }
  5436. atomic_inc(&rd->refcount);
  5437. rq->rd = rd;
  5438. cpu_set(rq->cpu, rd->span);
  5439. if (cpu_isset(rq->cpu, cpu_online_map))
  5440. cpu_set(rq->cpu, rd->online);
  5441. for (class = sched_class_highest; class; class = class->next) {
  5442. if (class->join_domain)
  5443. class->join_domain(rq);
  5444. }
  5445. spin_unlock_irqrestore(&rq->lock, flags);
  5446. }
  5447. static void init_rootdomain(struct root_domain *rd)
  5448. {
  5449. memset(rd, 0, sizeof(*rd));
  5450. cpus_clear(rd->span);
  5451. cpus_clear(rd->online);
  5452. }
  5453. static void init_defrootdomain(void)
  5454. {
  5455. init_rootdomain(&def_root_domain);
  5456. atomic_set(&def_root_domain.refcount, 1);
  5457. }
  5458. static struct root_domain *alloc_rootdomain(void)
  5459. {
  5460. struct root_domain *rd;
  5461. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5462. if (!rd)
  5463. return NULL;
  5464. init_rootdomain(rd);
  5465. return rd;
  5466. }
  5467. /*
  5468. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5469. * hold the hotplug lock.
  5470. */
  5471. static void
  5472. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5473. {
  5474. struct rq *rq = cpu_rq(cpu);
  5475. struct sched_domain *tmp;
  5476. /* Remove the sched domains which do not contribute to scheduling. */
  5477. for (tmp = sd; tmp; tmp = tmp->parent) {
  5478. struct sched_domain *parent = tmp->parent;
  5479. if (!parent)
  5480. break;
  5481. if (sd_parent_degenerate(tmp, parent)) {
  5482. tmp->parent = parent->parent;
  5483. if (parent->parent)
  5484. parent->parent->child = tmp;
  5485. }
  5486. }
  5487. if (sd && sd_degenerate(sd)) {
  5488. sd = sd->parent;
  5489. if (sd)
  5490. sd->child = NULL;
  5491. }
  5492. sched_domain_debug(sd, cpu);
  5493. rq_attach_root(rq, rd);
  5494. rcu_assign_pointer(rq->sd, sd);
  5495. }
  5496. /* cpus with isolated domains */
  5497. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5498. /* Setup the mask of cpus configured for isolated domains */
  5499. static int __init isolated_cpu_setup(char *str)
  5500. {
  5501. int ints[NR_CPUS], i;
  5502. str = get_options(str, ARRAY_SIZE(ints), ints);
  5503. cpus_clear(cpu_isolated_map);
  5504. for (i = 1; i <= ints[0]; i++)
  5505. if (ints[i] < NR_CPUS)
  5506. cpu_set(ints[i], cpu_isolated_map);
  5507. return 1;
  5508. }
  5509. __setup("isolcpus=", isolated_cpu_setup);
  5510. /*
  5511. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5512. * to a function which identifies what group(along with sched group) a CPU
  5513. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5514. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5515. *
  5516. * init_sched_build_groups will build a circular linked list of the groups
  5517. * covered by the given span, and will set each group's ->cpumask correctly,
  5518. * and ->cpu_power to 0.
  5519. */
  5520. static void
  5521. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5522. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5523. struct sched_group **sg,
  5524. cpumask_t *tmpmask),
  5525. cpumask_t *covered, cpumask_t *tmpmask)
  5526. {
  5527. struct sched_group *first = NULL, *last = NULL;
  5528. int i;
  5529. cpus_clear(*covered);
  5530. for_each_cpu_mask(i, *span) {
  5531. struct sched_group *sg;
  5532. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5533. int j;
  5534. if (cpu_isset(i, *covered))
  5535. continue;
  5536. cpus_clear(sg->cpumask);
  5537. sg->__cpu_power = 0;
  5538. for_each_cpu_mask(j, *span) {
  5539. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5540. continue;
  5541. cpu_set(j, *covered);
  5542. cpu_set(j, sg->cpumask);
  5543. }
  5544. if (!first)
  5545. first = sg;
  5546. if (last)
  5547. last->next = sg;
  5548. last = sg;
  5549. }
  5550. last->next = first;
  5551. }
  5552. #define SD_NODES_PER_DOMAIN 16
  5553. #ifdef CONFIG_NUMA
  5554. /**
  5555. * find_next_best_node - find the next node to include in a sched_domain
  5556. * @node: node whose sched_domain we're building
  5557. * @used_nodes: nodes already in the sched_domain
  5558. *
  5559. * Find the next node to include in a given scheduling domain. Simply
  5560. * finds the closest node not already in the @used_nodes map.
  5561. *
  5562. * Should use nodemask_t.
  5563. */
  5564. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5565. {
  5566. int i, n, val, min_val, best_node = 0;
  5567. min_val = INT_MAX;
  5568. for (i = 0; i < MAX_NUMNODES; i++) {
  5569. /* Start at @node */
  5570. n = (node + i) % MAX_NUMNODES;
  5571. if (!nr_cpus_node(n))
  5572. continue;
  5573. /* Skip already used nodes */
  5574. if (node_isset(n, *used_nodes))
  5575. continue;
  5576. /* Simple min distance search */
  5577. val = node_distance(node, n);
  5578. if (val < min_val) {
  5579. min_val = val;
  5580. best_node = n;
  5581. }
  5582. }
  5583. node_set(best_node, *used_nodes);
  5584. return best_node;
  5585. }
  5586. /**
  5587. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5588. * @node: node whose cpumask we're constructing
  5589. * @span: resulting cpumask
  5590. *
  5591. * Given a node, construct a good cpumask for its sched_domain to span. It
  5592. * should be one that prevents unnecessary balancing, but also spreads tasks
  5593. * out optimally.
  5594. */
  5595. static void sched_domain_node_span(int node, cpumask_t *span)
  5596. {
  5597. nodemask_t used_nodes;
  5598. node_to_cpumask_ptr(nodemask, node);
  5599. int i;
  5600. cpus_clear(*span);
  5601. nodes_clear(used_nodes);
  5602. cpus_or(*span, *span, *nodemask);
  5603. node_set(node, used_nodes);
  5604. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5605. int next_node = find_next_best_node(node, &used_nodes);
  5606. node_to_cpumask_ptr_next(nodemask, next_node);
  5607. cpus_or(*span, *span, *nodemask);
  5608. }
  5609. }
  5610. #endif
  5611. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5612. /*
  5613. * SMT sched-domains:
  5614. */
  5615. #ifdef CONFIG_SCHED_SMT
  5616. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5617. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5618. static int
  5619. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5620. cpumask_t *unused)
  5621. {
  5622. if (sg)
  5623. *sg = &per_cpu(sched_group_cpus, cpu);
  5624. return cpu;
  5625. }
  5626. #endif
  5627. /*
  5628. * multi-core sched-domains:
  5629. */
  5630. #ifdef CONFIG_SCHED_MC
  5631. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5632. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5633. #endif
  5634. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5635. static int
  5636. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5637. cpumask_t *mask)
  5638. {
  5639. int group;
  5640. *mask = per_cpu(cpu_sibling_map, cpu);
  5641. cpus_and(*mask, *mask, *cpu_map);
  5642. group = first_cpu(*mask);
  5643. if (sg)
  5644. *sg = &per_cpu(sched_group_core, group);
  5645. return group;
  5646. }
  5647. #elif defined(CONFIG_SCHED_MC)
  5648. static int
  5649. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5650. cpumask_t *unused)
  5651. {
  5652. if (sg)
  5653. *sg = &per_cpu(sched_group_core, cpu);
  5654. return cpu;
  5655. }
  5656. #endif
  5657. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5658. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5659. static int
  5660. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5661. cpumask_t *mask)
  5662. {
  5663. int group;
  5664. #ifdef CONFIG_SCHED_MC
  5665. *mask = cpu_coregroup_map(cpu);
  5666. cpus_and(*mask, *mask, *cpu_map);
  5667. group = first_cpu(*mask);
  5668. #elif defined(CONFIG_SCHED_SMT)
  5669. *mask = per_cpu(cpu_sibling_map, cpu);
  5670. cpus_and(*mask, *mask, *cpu_map);
  5671. group = first_cpu(*mask);
  5672. #else
  5673. group = cpu;
  5674. #endif
  5675. if (sg)
  5676. *sg = &per_cpu(sched_group_phys, group);
  5677. return group;
  5678. }
  5679. #ifdef CONFIG_NUMA
  5680. /*
  5681. * The init_sched_build_groups can't handle what we want to do with node
  5682. * groups, so roll our own. Now each node has its own list of groups which
  5683. * gets dynamically allocated.
  5684. */
  5685. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5686. static struct sched_group ***sched_group_nodes_bycpu;
  5687. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5688. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5689. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5690. struct sched_group **sg, cpumask_t *nodemask)
  5691. {
  5692. int group;
  5693. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5694. cpus_and(*nodemask, *nodemask, *cpu_map);
  5695. group = first_cpu(*nodemask);
  5696. if (sg)
  5697. *sg = &per_cpu(sched_group_allnodes, group);
  5698. return group;
  5699. }
  5700. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5701. {
  5702. struct sched_group *sg = group_head;
  5703. int j;
  5704. if (!sg)
  5705. return;
  5706. do {
  5707. for_each_cpu_mask(j, sg->cpumask) {
  5708. struct sched_domain *sd;
  5709. sd = &per_cpu(phys_domains, j);
  5710. if (j != first_cpu(sd->groups->cpumask)) {
  5711. /*
  5712. * Only add "power" once for each
  5713. * physical package.
  5714. */
  5715. continue;
  5716. }
  5717. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5718. }
  5719. sg = sg->next;
  5720. } while (sg != group_head);
  5721. }
  5722. #endif
  5723. #ifdef CONFIG_NUMA
  5724. /* Free memory allocated for various sched_group structures */
  5725. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5726. {
  5727. int cpu, i;
  5728. for_each_cpu_mask(cpu, *cpu_map) {
  5729. struct sched_group **sched_group_nodes
  5730. = sched_group_nodes_bycpu[cpu];
  5731. if (!sched_group_nodes)
  5732. continue;
  5733. for (i = 0; i < MAX_NUMNODES; i++) {
  5734. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5735. *nodemask = node_to_cpumask(i);
  5736. cpus_and(*nodemask, *nodemask, *cpu_map);
  5737. if (cpus_empty(*nodemask))
  5738. continue;
  5739. if (sg == NULL)
  5740. continue;
  5741. sg = sg->next;
  5742. next_sg:
  5743. oldsg = sg;
  5744. sg = sg->next;
  5745. kfree(oldsg);
  5746. if (oldsg != sched_group_nodes[i])
  5747. goto next_sg;
  5748. }
  5749. kfree(sched_group_nodes);
  5750. sched_group_nodes_bycpu[cpu] = NULL;
  5751. }
  5752. }
  5753. #else
  5754. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5755. {
  5756. }
  5757. #endif
  5758. /*
  5759. * Initialize sched groups cpu_power.
  5760. *
  5761. * cpu_power indicates the capacity of sched group, which is used while
  5762. * distributing the load between different sched groups in a sched domain.
  5763. * Typically cpu_power for all the groups in a sched domain will be same unless
  5764. * there are asymmetries in the topology. If there are asymmetries, group
  5765. * having more cpu_power will pickup more load compared to the group having
  5766. * less cpu_power.
  5767. *
  5768. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5769. * the maximum number of tasks a group can handle in the presence of other idle
  5770. * or lightly loaded groups in the same sched domain.
  5771. */
  5772. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5773. {
  5774. struct sched_domain *child;
  5775. struct sched_group *group;
  5776. WARN_ON(!sd || !sd->groups);
  5777. if (cpu != first_cpu(sd->groups->cpumask))
  5778. return;
  5779. child = sd->child;
  5780. sd->groups->__cpu_power = 0;
  5781. /*
  5782. * For perf policy, if the groups in child domain share resources
  5783. * (for example cores sharing some portions of the cache hierarchy
  5784. * or SMT), then set this domain groups cpu_power such that each group
  5785. * can handle only one task, when there are other idle groups in the
  5786. * same sched domain.
  5787. */
  5788. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5789. (child->flags &
  5790. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5791. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5792. return;
  5793. }
  5794. /*
  5795. * add cpu_power of each child group to this groups cpu_power
  5796. */
  5797. group = child->groups;
  5798. do {
  5799. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5800. group = group->next;
  5801. } while (group != child->groups);
  5802. }
  5803. /*
  5804. * Initializers for schedule domains
  5805. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5806. */
  5807. #define SD_INIT(sd, type) sd_init_##type(sd)
  5808. #define SD_INIT_FUNC(type) \
  5809. static noinline void sd_init_##type(struct sched_domain *sd) \
  5810. { \
  5811. memset(sd, 0, sizeof(*sd)); \
  5812. *sd = SD_##type##_INIT; \
  5813. sd->level = SD_LV_##type; \
  5814. }
  5815. SD_INIT_FUNC(CPU)
  5816. #ifdef CONFIG_NUMA
  5817. SD_INIT_FUNC(ALLNODES)
  5818. SD_INIT_FUNC(NODE)
  5819. #endif
  5820. #ifdef CONFIG_SCHED_SMT
  5821. SD_INIT_FUNC(SIBLING)
  5822. #endif
  5823. #ifdef CONFIG_SCHED_MC
  5824. SD_INIT_FUNC(MC)
  5825. #endif
  5826. /*
  5827. * To minimize stack usage kmalloc room for cpumasks and share the
  5828. * space as the usage in build_sched_domains() dictates. Used only
  5829. * if the amount of space is significant.
  5830. */
  5831. struct allmasks {
  5832. cpumask_t tmpmask; /* make this one first */
  5833. union {
  5834. cpumask_t nodemask;
  5835. cpumask_t this_sibling_map;
  5836. cpumask_t this_core_map;
  5837. };
  5838. cpumask_t send_covered;
  5839. #ifdef CONFIG_NUMA
  5840. cpumask_t domainspan;
  5841. cpumask_t covered;
  5842. cpumask_t notcovered;
  5843. #endif
  5844. };
  5845. #if NR_CPUS > 128
  5846. #define SCHED_CPUMASK_ALLOC 1
  5847. #define SCHED_CPUMASK_FREE(v) kfree(v)
  5848. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  5849. #else
  5850. #define SCHED_CPUMASK_ALLOC 0
  5851. #define SCHED_CPUMASK_FREE(v)
  5852. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  5853. #endif
  5854. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  5855. ((unsigned long)(a) + offsetof(struct allmasks, v))
  5856. static int default_relax_domain_level = -1;
  5857. static int __init setup_relax_domain_level(char *str)
  5858. {
  5859. default_relax_domain_level = simple_strtoul(str, NULL, 0);
  5860. return 1;
  5861. }
  5862. __setup("relax_domain_level=", setup_relax_domain_level);
  5863. static void set_domain_attribute(struct sched_domain *sd,
  5864. struct sched_domain_attr *attr)
  5865. {
  5866. int request;
  5867. if (!attr || attr->relax_domain_level < 0) {
  5868. if (default_relax_domain_level < 0)
  5869. return;
  5870. else
  5871. request = default_relax_domain_level;
  5872. } else
  5873. request = attr->relax_domain_level;
  5874. if (request < sd->level) {
  5875. /* turn off idle balance on this domain */
  5876. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  5877. } else {
  5878. /* turn on idle balance on this domain */
  5879. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  5880. }
  5881. }
  5882. /*
  5883. * Build sched domains for a given set of cpus and attach the sched domains
  5884. * to the individual cpus
  5885. */
  5886. static int __build_sched_domains(const cpumask_t *cpu_map,
  5887. struct sched_domain_attr *attr)
  5888. {
  5889. int i;
  5890. struct root_domain *rd;
  5891. SCHED_CPUMASK_DECLARE(allmasks);
  5892. cpumask_t *tmpmask;
  5893. #ifdef CONFIG_NUMA
  5894. struct sched_group **sched_group_nodes = NULL;
  5895. int sd_allnodes = 0;
  5896. /*
  5897. * Allocate the per-node list of sched groups
  5898. */
  5899. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  5900. GFP_KERNEL);
  5901. if (!sched_group_nodes) {
  5902. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5903. return -ENOMEM;
  5904. }
  5905. #endif
  5906. rd = alloc_rootdomain();
  5907. if (!rd) {
  5908. printk(KERN_WARNING "Cannot alloc root domain\n");
  5909. #ifdef CONFIG_NUMA
  5910. kfree(sched_group_nodes);
  5911. #endif
  5912. return -ENOMEM;
  5913. }
  5914. #if SCHED_CPUMASK_ALLOC
  5915. /* get space for all scratch cpumask variables */
  5916. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  5917. if (!allmasks) {
  5918. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  5919. kfree(rd);
  5920. #ifdef CONFIG_NUMA
  5921. kfree(sched_group_nodes);
  5922. #endif
  5923. return -ENOMEM;
  5924. }
  5925. #endif
  5926. tmpmask = (cpumask_t *)allmasks;
  5927. #ifdef CONFIG_NUMA
  5928. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5929. #endif
  5930. /*
  5931. * Set up domains for cpus specified by the cpu_map.
  5932. */
  5933. for_each_cpu_mask(i, *cpu_map) {
  5934. struct sched_domain *sd = NULL, *p;
  5935. SCHED_CPUMASK_VAR(nodemask, allmasks);
  5936. *nodemask = node_to_cpumask(cpu_to_node(i));
  5937. cpus_and(*nodemask, *nodemask, *cpu_map);
  5938. #ifdef CONFIG_NUMA
  5939. if (cpus_weight(*cpu_map) >
  5940. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  5941. sd = &per_cpu(allnodes_domains, i);
  5942. SD_INIT(sd, ALLNODES);
  5943. set_domain_attribute(sd, attr);
  5944. sd->span = *cpu_map;
  5945. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  5946. p = sd;
  5947. sd_allnodes = 1;
  5948. } else
  5949. p = NULL;
  5950. sd = &per_cpu(node_domains, i);
  5951. SD_INIT(sd, NODE);
  5952. set_domain_attribute(sd, attr);
  5953. sched_domain_node_span(cpu_to_node(i), &sd->span);
  5954. sd->parent = p;
  5955. if (p)
  5956. p->child = sd;
  5957. cpus_and(sd->span, sd->span, *cpu_map);
  5958. #endif
  5959. p = sd;
  5960. sd = &per_cpu(phys_domains, i);
  5961. SD_INIT(sd, CPU);
  5962. set_domain_attribute(sd, attr);
  5963. sd->span = *nodemask;
  5964. sd->parent = p;
  5965. if (p)
  5966. p->child = sd;
  5967. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  5968. #ifdef CONFIG_SCHED_MC
  5969. p = sd;
  5970. sd = &per_cpu(core_domains, i);
  5971. SD_INIT(sd, MC);
  5972. set_domain_attribute(sd, attr);
  5973. sd->span = cpu_coregroup_map(i);
  5974. cpus_and(sd->span, sd->span, *cpu_map);
  5975. sd->parent = p;
  5976. p->child = sd;
  5977. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  5978. #endif
  5979. #ifdef CONFIG_SCHED_SMT
  5980. p = sd;
  5981. sd = &per_cpu(cpu_domains, i);
  5982. SD_INIT(sd, SIBLING);
  5983. set_domain_attribute(sd, attr);
  5984. sd->span = per_cpu(cpu_sibling_map, i);
  5985. cpus_and(sd->span, sd->span, *cpu_map);
  5986. sd->parent = p;
  5987. p->child = sd;
  5988. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  5989. #endif
  5990. }
  5991. #ifdef CONFIG_SCHED_SMT
  5992. /* Set up CPU (sibling) groups */
  5993. for_each_cpu_mask(i, *cpu_map) {
  5994. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  5995. SCHED_CPUMASK_VAR(send_covered, allmasks);
  5996. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  5997. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  5998. if (i != first_cpu(*this_sibling_map))
  5999. continue;
  6000. init_sched_build_groups(this_sibling_map, cpu_map,
  6001. &cpu_to_cpu_group,
  6002. send_covered, tmpmask);
  6003. }
  6004. #endif
  6005. #ifdef CONFIG_SCHED_MC
  6006. /* Set up multi-core groups */
  6007. for_each_cpu_mask(i, *cpu_map) {
  6008. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6009. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6010. *this_core_map = cpu_coregroup_map(i);
  6011. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6012. if (i != first_cpu(*this_core_map))
  6013. continue;
  6014. init_sched_build_groups(this_core_map, cpu_map,
  6015. &cpu_to_core_group,
  6016. send_covered, tmpmask);
  6017. }
  6018. #endif
  6019. /* Set up physical groups */
  6020. for (i = 0; i < MAX_NUMNODES; i++) {
  6021. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6022. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6023. *nodemask = node_to_cpumask(i);
  6024. cpus_and(*nodemask, *nodemask, *cpu_map);
  6025. if (cpus_empty(*nodemask))
  6026. continue;
  6027. init_sched_build_groups(nodemask, cpu_map,
  6028. &cpu_to_phys_group,
  6029. send_covered, tmpmask);
  6030. }
  6031. #ifdef CONFIG_NUMA
  6032. /* Set up node groups */
  6033. if (sd_allnodes) {
  6034. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6035. init_sched_build_groups(cpu_map, cpu_map,
  6036. &cpu_to_allnodes_group,
  6037. send_covered, tmpmask);
  6038. }
  6039. for (i = 0; i < MAX_NUMNODES; i++) {
  6040. /* Set up node groups */
  6041. struct sched_group *sg, *prev;
  6042. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6043. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6044. SCHED_CPUMASK_VAR(covered, allmasks);
  6045. int j;
  6046. *nodemask = node_to_cpumask(i);
  6047. cpus_clear(*covered);
  6048. cpus_and(*nodemask, *nodemask, *cpu_map);
  6049. if (cpus_empty(*nodemask)) {
  6050. sched_group_nodes[i] = NULL;
  6051. continue;
  6052. }
  6053. sched_domain_node_span(i, domainspan);
  6054. cpus_and(*domainspan, *domainspan, *cpu_map);
  6055. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6056. if (!sg) {
  6057. printk(KERN_WARNING "Can not alloc domain group for "
  6058. "node %d\n", i);
  6059. goto error;
  6060. }
  6061. sched_group_nodes[i] = sg;
  6062. for_each_cpu_mask(j, *nodemask) {
  6063. struct sched_domain *sd;
  6064. sd = &per_cpu(node_domains, j);
  6065. sd->groups = sg;
  6066. }
  6067. sg->__cpu_power = 0;
  6068. sg->cpumask = *nodemask;
  6069. sg->next = sg;
  6070. cpus_or(*covered, *covered, *nodemask);
  6071. prev = sg;
  6072. for (j = 0; j < MAX_NUMNODES; j++) {
  6073. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6074. int n = (i + j) % MAX_NUMNODES;
  6075. node_to_cpumask_ptr(pnodemask, n);
  6076. cpus_complement(*notcovered, *covered);
  6077. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6078. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6079. if (cpus_empty(*tmpmask))
  6080. break;
  6081. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6082. if (cpus_empty(*tmpmask))
  6083. continue;
  6084. sg = kmalloc_node(sizeof(struct sched_group),
  6085. GFP_KERNEL, i);
  6086. if (!sg) {
  6087. printk(KERN_WARNING
  6088. "Can not alloc domain group for node %d\n", j);
  6089. goto error;
  6090. }
  6091. sg->__cpu_power = 0;
  6092. sg->cpumask = *tmpmask;
  6093. sg->next = prev->next;
  6094. cpus_or(*covered, *covered, *tmpmask);
  6095. prev->next = sg;
  6096. prev = sg;
  6097. }
  6098. }
  6099. #endif
  6100. /* Calculate CPU power for physical packages and nodes */
  6101. #ifdef CONFIG_SCHED_SMT
  6102. for_each_cpu_mask(i, *cpu_map) {
  6103. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6104. init_sched_groups_power(i, sd);
  6105. }
  6106. #endif
  6107. #ifdef CONFIG_SCHED_MC
  6108. for_each_cpu_mask(i, *cpu_map) {
  6109. struct sched_domain *sd = &per_cpu(core_domains, i);
  6110. init_sched_groups_power(i, sd);
  6111. }
  6112. #endif
  6113. for_each_cpu_mask(i, *cpu_map) {
  6114. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6115. init_sched_groups_power(i, sd);
  6116. }
  6117. #ifdef CONFIG_NUMA
  6118. for (i = 0; i < MAX_NUMNODES; i++)
  6119. init_numa_sched_groups_power(sched_group_nodes[i]);
  6120. if (sd_allnodes) {
  6121. struct sched_group *sg;
  6122. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6123. tmpmask);
  6124. init_numa_sched_groups_power(sg);
  6125. }
  6126. #endif
  6127. /* Attach the domains */
  6128. for_each_cpu_mask(i, *cpu_map) {
  6129. struct sched_domain *sd;
  6130. #ifdef CONFIG_SCHED_SMT
  6131. sd = &per_cpu(cpu_domains, i);
  6132. #elif defined(CONFIG_SCHED_MC)
  6133. sd = &per_cpu(core_domains, i);
  6134. #else
  6135. sd = &per_cpu(phys_domains, i);
  6136. #endif
  6137. cpu_attach_domain(sd, rd, i);
  6138. }
  6139. SCHED_CPUMASK_FREE((void *)allmasks);
  6140. return 0;
  6141. #ifdef CONFIG_NUMA
  6142. error:
  6143. free_sched_groups(cpu_map, tmpmask);
  6144. SCHED_CPUMASK_FREE((void *)allmasks);
  6145. return -ENOMEM;
  6146. #endif
  6147. }
  6148. static int build_sched_domains(const cpumask_t *cpu_map)
  6149. {
  6150. return __build_sched_domains(cpu_map, NULL);
  6151. }
  6152. static cpumask_t *doms_cur; /* current sched domains */
  6153. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6154. static struct sched_domain_attr *dattr_cur;
  6155. /* attribues of custom domains in 'doms_cur' */
  6156. /*
  6157. * Special case: If a kmalloc of a doms_cur partition (array of
  6158. * cpumask_t) fails, then fallback to a single sched domain,
  6159. * as determined by the single cpumask_t fallback_doms.
  6160. */
  6161. static cpumask_t fallback_doms;
  6162. void __attribute__((weak)) arch_update_cpu_topology(void)
  6163. {
  6164. }
  6165. /*
  6166. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6167. * For now this just excludes isolated cpus, but could be used to
  6168. * exclude other special cases in the future.
  6169. */
  6170. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6171. {
  6172. int err;
  6173. arch_update_cpu_topology();
  6174. ndoms_cur = 1;
  6175. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6176. if (!doms_cur)
  6177. doms_cur = &fallback_doms;
  6178. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6179. dattr_cur = NULL;
  6180. err = build_sched_domains(doms_cur);
  6181. register_sched_domain_sysctl();
  6182. return err;
  6183. }
  6184. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6185. cpumask_t *tmpmask)
  6186. {
  6187. free_sched_groups(cpu_map, tmpmask);
  6188. }
  6189. /*
  6190. * Detach sched domains from a group of cpus specified in cpu_map
  6191. * These cpus will now be attached to the NULL domain
  6192. */
  6193. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6194. {
  6195. cpumask_t tmpmask;
  6196. int i;
  6197. unregister_sched_domain_sysctl();
  6198. for_each_cpu_mask(i, *cpu_map)
  6199. cpu_attach_domain(NULL, &def_root_domain, i);
  6200. synchronize_sched();
  6201. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6202. }
  6203. /* handle null as "default" */
  6204. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6205. struct sched_domain_attr *new, int idx_new)
  6206. {
  6207. struct sched_domain_attr tmp;
  6208. /* fast path */
  6209. if (!new && !cur)
  6210. return 1;
  6211. tmp = SD_ATTR_INIT;
  6212. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6213. new ? (new + idx_new) : &tmp,
  6214. sizeof(struct sched_domain_attr));
  6215. }
  6216. /*
  6217. * Partition sched domains as specified by the 'ndoms_new'
  6218. * cpumasks in the array doms_new[] of cpumasks. This compares
  6219. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6220. * It destroys each deleted domain and builds each new domain.
  6221. *
  6222. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6223. * The masks don't intersect (don't overlap.) We should setup one
  6224. * sched domain for each mask. CPUs not in any of the cpumasks will
  6225. * not be load balanced. If the same cpumask appears both in the
  6226. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6227. * it as it is.
  6228. *
  6229. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6230. * ownership of it and will kfree it when done with it. If the caller
  6231. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6232. * and partition_sched_domains() will fallback to the single partition
  6233. * 'fallback_doms'.
  6234. *
  6235. * Call with hotplug lock held
  6236. */
  6237. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6238. struct sched_domain_attr *dattr_new)
  6239. {
  6240. int i, j;
  6241. mutex_lock(&sched_domains_mutex);
  6242. /* always unregister in case we don't destroy any domains */
  6243. unregister_sched_domain_sysctl();
  6244. if (doms_new == NULL) {
  6245. ndoms_new = 1;
  6246. doms_new = &fallback_doms;
  6247. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6248. dattr_new = NULL;
  6249. }
  6250. /* Destroy deleted domains */
  6251. for (i = 0; i < ndoms_cur; i++) {
  6252. for (j = 0; j < ndoms_new; j++) {
  6253. if (cpus_equal(doms_cur[i], doms_new[j])
  6254. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6255. goto match1;
  6256. }
  6257. /* no match - a current sched domain not in new doms_new[] */
  6258. detach_destroy_domains(doms_cur + i);
  6259. match1:
  6260. ;
  6261. }
  6262. /* Build new domains */
  6263. for (i = 0; i < ndoms_new; i++) {
  6264. for (j = 0; j < ndoms_cur; j++) {
  6265. if (cpus_equal(doms_new[i], doms_cur[j])
  6266. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6267. goto match2;
  6268. }
  6269. /* no match - add a new doms_new */
  6270. __build_sched_domains(doms_new + i,
  6271. dattr_new ? dattr_new + i : NULL);
  6272. match2:
  6273. ;
  6274. }
  6275. /* Remember the new sched domains */
  6276. if (doms_cur != &fallback_doms)
  6277. kfree(doms_cur);
  6278. kfree(dattr_cur); /* kfree(NULL) is safe */
  6279. doms_cur = doms_new;
  6280. dattr_cur = dattr_new;
  6281. ndoms_cur = ndoms_new;
  6282. register_sched_domain_sysctl();
  6283. mutex_unlock(&sched_domains_mutex);
  6284. }
  6285. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6286. int arch_reinit_sched_domains(void)
  6287. {
  6288. int err;
  6289. get_online_cpus();
  6290. mutex_lock(&sched_domains_mutex);
  6291. detach_destroy_domains(&cpu_online_map);
  6292. err = arch_init_sched_domains(&cpu_online_map);
  6293. mutex_unlock(&sched_domains_mutex);
  6294. put_online_cpus();
  6295. return err;
  6296. }
  6297. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6298. {
  6299. int ret;
  6300. if (buf[0] != '0' && buf[0] != '1')
  6301. return -EINVAL;
  6302. if (smt)
  6303. sched_smt_power_savings = (buf[0] == '1');
  6304. else
  6305. sched_mc_power_savings = (buf[0] == '1');
  6306. ret = arch_reinit_sched_domains();
  6307. return ret ? ret : count;
  6308. }
  6309. #ifdef CONFIG_SCHED_MC
  6310. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6311. {
  6312. return sprintf(page, "%u\n", sched_mc_power_savings);
  6313. }
  6314. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6315. const char *buf, size_t count)
  6316. {
  6317. return sched_power_savings_store(buf, count, 0);
  6318. }
  6319. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6320. sched_mc_power_savings_store);
  6321. #endif
  6322. #ifdef CONFIG_SCHED_SMT
  6323. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6324. {
  6325. return sprintf(page, "%u\n", sched_smt_power_savings);
  6326. }
  6327. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6328. const char *buf, size_t count)
  6329. {
  6330. return sched_power_savings_store(buf, count, 1);
  6331. }
  6332. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6333. sched_smt_power_savings_store);
  6334. #endif
  6335. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6336. {
  6337. int err = 0;
  6338. #ifdef CONFIG_SCHED_SMT
  6339. if (smt_capable())
  6340. err = sysfs_create_file(&cls->kset.kobj,
  6341. &attr_sched_smt_power_savings.attr);
  6342. #endif
  6343. #ifdef CONFIG_SCHED_MC
  6344. if (!err && mc_capable())
  6345. err = sysfs_create_file(&cls->kset.kobj,
  6346. &attr_sched_mc_power_savings.attr);
  6347. #endif
  6348. return err;
  6349. }
  6350. #endif
  6351. /*
  6352. * Force a reinitialization of the sched domains hierarchy. The domains
  6353. * and groups cannot be updated in place without racing with the balancing
  6354. * code, so we temporarily attach all running cpus to the NULL domain
  6355. * which will prevent rebalancing while the sched domains are recalculated.
  6356. */
  6357. static int update_sched_domains(struct notifier_block *nfb,
  6358. unsigned long action, void *hcpu)
  6359. {
  6360. switch (action) {
  6361. case CPU_UP_PREPARE:
  6362. case CPU_UP_PREPARE_FROZEN:
  6363. case CPU_DOWN_PREPARE:
  6364. case CPU_DOWN_PREPARE_FROZEN:
  6365. detach_destroy_domains(&cpu_online_map);
  6366. return NOTIFY_OK;
  6367. case CPU_UP_CANCELED:
  6368. case CPU_UP_CANCELED_FROZEN:
  6369. case CPU_DOWN_FAILED:
  6370. case CPU_DOWN_FAILED_FROZEN:
  6371. case CPU_ONLINE:
  6372. case CPU_ONLINE_FROZEN:
  6373. case CPU_DEAD:
  6374. case CPU_DEAD_FROZEN:
  6375. /*
  6376. * Fall through and re-initialise the domains.
  6377. */
  6378. break;
  6379. default:
  6380. return NOTIFY_DONE;
  6381. }
  6382. /* The hotplug lock is already held by cpu_up/cpu_down */
  6383. arch_init_sched_domains(&cpu_online_map);
  6384. return NOTIFY_OK;
  6385. }
  6386. void __init sched_init_smp(void)
  6387. {
  6388. cpumask_t non_isolated_cpus;
  6389. #if defined(CONFIG_NUMA)
  6390. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6391. GFP_KERNEL);
  6392. BUG_ON(sched_group_nodes_bycpu == NULL);
  6393. #endif
  6394. get_online_cpus();
  6395. mutex_lock(&sched_domains_mutex);
  6396. arch_init_sched_domains(&cpu_online_map);
  6397. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6398. if (cpus_empty(non_isolated_cpus))
  6399. cpu_set(smp_processor_id(), non_isolated_cpus);
  6400. mutex_unlock(&sched_domains_mutex);
  6401. put_online_cpus();
  6402. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6403. hotcpu_notifier(update_sched_domains, 0);
  6404. init_hrtick();
  6405. /* Move init over to a non-isolated CPU */
  6406. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6407. BUG();
  6408. sched_init_granularity();
  6409. }
  6410. #else
  6411. void __init sched_init_smp(void)
  6412. {
  6413. sched_init_granularity();
  6414. }
  6415. #endif /* CONFIG_SMP */
  6416. int in_sched_functions(unsigned long addr)
  6417. {
  6418. return in_lock_functions(addr) ||
  6419. (addr >= (unsigned long)__sched_text_start
  6420. && addr < (unsigned long)__sched_text_end);
  6421. }
  6422. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6423. {
  6424. cfs_rq->tasks_timeline = RB_ROOT;
  6425. INIT_LIST_HEAD(&cfs_rq->tasks);
  6426. #ifdef CONFIG_FAIR_GROUP_SCHED
  6427. cfs_rq->rq = rq;
  6428. #endif
  6429. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6430. }
  6431. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6432. {
  6433. struct rt_prio_array *array;
  6434. int i;
  6435. array = &rt_rq->active;
  6436. for (i = 0; i < MAX_RT_PRIO; i++) {
  6437. INIT_LIST_HEAD(array->queue + i);
  6438. __clear_bit(i, array->bitmap);
  6439. }
  6440. /* delimiter for bitsearch: */
  6441. __set_bit(MAX_RT_PRIO, array->bitmap);
  6442. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6443. rt_rq->highest_prio = MAX_RT_PRIO;
  6444. #endif
  6445. #ifdef CONFIG_SMP
  6446. rt_rq->rt_nr_migratory = 0;
  6447. rt_rq->overloaded = 0;
  6448. #endif
  6449. rt_rq->rt_time = 0;
  6450. rt_rq->rt_throttled = 0;
  6451. rt_rq->rt_runtime = 0;
  6452. spin_lock_init(&rt_rq->rt_runtime_lock);
  6453. #ifdef CONFIG_RT_GROUP_SCHED
  6454. rt_rq->rt_nr_boosted = 0;
  6455. rt_rq->rq = rq;
  6456. #endif
  6457. }
  6458. #ifdef CONFIG_FAIR_GROUP_SCHED
  6459. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6460. struct sched_entity *se, int cpu, int add,
  6461. struct sched_entity *parent)
  6462. {
  6463. struct rq *rq = cpu_rq(cpu);
  6464. tg->cfs_rq[cpu] = cfs_rq;
  6465. init_cfs_rq(cfs_rq, rq);
  6466. cfs_rq->tg = tg;
  6467. if (add)
  6468. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6469. tg->se[cpu] = se;
  6470. /* se could be NULL for init_task_group */
  6471. if (!se)
  6472. return;
  6473. if (!parent)
  6474. se->cfs_rq = &rq->cfs;
  6475. else
  6476. se->cfs_rq = parent->my_q;
  6477. se->my_q = cfs_rq;
  6478. se->load.weight = tg->shares;
  6479. se->load.inv_weight = 0;
  6480. se->parent = parent;
  6481. }
  6482. #endif
  6483. #ifdef CONFIG_RT_GROUP_SCHED
  6484. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6485. struct sched_rt_entity *rt_se, int cpu, int add,
  6486. struct sched_rt_entity *parent)
  6487. {
  6488. struct rq *rq = cpu_rq(cpu);
  6489. tg->rt_rq[cpu] = rt_rq;
  6490. init_rt_rq(rt_rq, rq);
  6491. rt_rq->tg = tg;
  6492. rt_rq->rt_se = rt_se;
  6493. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6494. if (add)
  6495. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6496. tg->rt_se[cpu] = rt_se;
  6497. if (!rt_se)
  6498. return;
  6499. if (!parent)
  6500. rt_se->rt_rq = &rq->rt;
  6501. else
  6502. rt_se->rt_rq = parent->my_q;
  6503. rt_se->rt_rq = &rq->rt;
  6504. rt_se->my_q = rt_rq;
  6505. rt_se->parent = parent;
  6506. INIT_LIST_HEAD(&rt_se->run_list);
  6507. }
  6508. #endif
  6509. void __init sched_init(void)
  6510. {
  6511. int i, j;
  6512. unsigned long alloc_size = 0, ptr;
  6513. #ifdef CONFIG_FAIR_GROUP_SCHED
  6514. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6515. #endif
  6516. #ifdef CONFIG_RT_GROUP_SCHED
  6517. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6518. #endif
  6519. #ifdef CONFIG_USER_SCHED
  6520. alloc_size *= 2;
  6521. #endif
  6522. /*
  6523. * As sched_init() is called before page_alloc is setup,
  6524. * we use alloc_bootmem().
  6525. */
  6526. if (alloc_size) {
  6527. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6528. #ifdef CONFIG_FAIR_GROUP_SCHED
  6529. init_task_group.se = (struct sched_entity **)ptr;
  6530. ptr += nr_cpu_ids * sizeof(void **);
  6531. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6532. ptr += nr_cpu_ids * sizeof(void **);
  6533. #ifdef CONFIG_USER_SCHED
  6534. root_task_group.se = (struct sched_entity **)ptr;
  6535. ptr += nr_cpu_ids * sizeof(void **);
  6536. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6537. ptr += nr_cpu_ids * sizeof(void **);
  6538. #endif
  6539. #endif
  6540. #ifdef CONFIG_RT_GROUP_SCHED
  6541. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6542. ptr += nr_cpu_ids * sizeof(void **);
  6543. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6544. ptr += nr_cpu_ids * sizeof(void **);
  6545. #ifdef CONFIG_USER_SCHED
  6546. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6547. ptr += nr_cpu_ids * sizeof(void **);
  6548. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6549. ptr += nr_cpu_ids * sizeof(void **);
  6550. #endif
  6551. #endif
  6552. }
  6553. #ifdef CONFIG_SMP
  6554. init_defrootdomain();
  6555. #endif
  6556. init_rt_bandwidth(&def_rt_bandwidth,
  6557. global_rt_period(), global_rt_runtime());
  6558. #ifdef CONFIG_RT_GROUP_SCHED
  6559. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6560. global_rt_period(), global_rt_runtime());
  6561. #ifdef CONFIG_USER_SCHED
  6562. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6563. global_rt_period(), RUNTIME_INF);
  6564. #endif
  6565. #endif
  6566. #ifdef CONFIG_GROUP_SCHED
  6567. list_add(&init_task_group.list, &task_groups);
  6568. INIT_LIST_HEAD(&init_task_group.children);
  6569. #ifdef CONFIG_USER_SCHED
  6570. INIT_LIST_HEAD(&root_task_group.children);
  6571. init_task_group.parent = &root_task_group;
  6572. list_add(&init_task_group.siblings, &root_task_group.children);
  6573. #endif
  6574. #endif
  6575. for_each_possible_cpu(i) {
  6576. struct rq *rq;
  6577. rq = cpu_rq(i);
  6578. spin_lock_init(&rq->lock);
  6579. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6580. rq->nr_running = 0;
  6581. init_cfs_rq(&rq->cfs, rq);
  6582. init_rt_rq(&rq->rt, rq);
  6583. #ifdef CONFIG_FAIR_GROUP_SCHED
  6584. init_task_group.shares = init_task_group_load;
  6585. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6586. #ifdef CONFIG_CGROUP_SCHED
  6587. /*
  6588. * How much cpu bandwidth does init_task_group get?
  6589. *
  6590. * In case of task-groups formed thr' the cgroup filesystem, it
  6591. * gets 100% of the cpu resources in the system. This overall
  6592. * system cpu resource is divided among the tasks of
  6593. * init_task_group and its child task-groups in a fair manner,
  6594. * based on each entity's (task or task-group's) weight
  6595. * (se->load.weight).
  6596. *
  6597. * In other words, if init_task_group has 10 tasks of weight
  6598. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6599. * then A0's share of the cpu resource is:
  6600. *
  6601. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6602. *
  6603. * We achieve this by letting init_task_group's tasks sit
  6604. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6605. */
  6606. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6607. #elif defined CONFIG_USER_SCHED
  6608. root_task_group.shares = NICE_0_LOAD;
  6609. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6610. /*
  6611. * In case of task-groups formed thr' the user id of tasks,
  6612. * init_task_group represents tasks belonging to root user.
  6613. * Hence it forms a sibling of all subsequent groups formed.
  6614. * In this case, init_task_group gets only a fraction of overall
  6615. * system cpu resource, based on the weight assigned to root
  6616. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6617. * by letting tasks of init_task_group sit in a separate cfs_rq
  6618. * (init_cfs_rq) and having one entity represent this group of
  6619. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6620. */
  6621. init_tg_cfs_entry(&init_task_group,
  6622. &per_cpu(init_cfs_rq, i),
  6623. &per_cpu(init_sched_entity, i), i, 1,
  6624. root_task_group.se[i]);
  6625. #endif
  6626. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6627. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6628. #ifdef CONFIG_RT_GROUP_SCHED
  6629. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6630. #ifdef CONFIG_CGROUP_SCHED
  6631. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6632. #elif defined CONFIG_USER_SCHED
  6633. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6634. init_tg_rt_entry(&init_task_group,
  6635. &per_cpu(init_rt_rq, i),
  6636. &per_cpu(init_sched_rt_entity, i), i, 1,
  6637. root_task_group.rt_se[i]);
  6638. #endif
  6639. #endif
  6640. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6641. rq->cpu_load[j] = 0;
  6642. #ifdef CONFIG_SMP
  6643. rq->sd = NULL;
  6644. rq->rd = NULL;
  6645. rq->active_balance = 0;
  6646. rq->next_balance = jiffies;
  6647. rq->push_cpu = 0;
  6648. rq->cpu = i;
  6649. rq->migration_thread = NULL;
  6650. INIT_LIST_HEAD(&rq->migration_queue);
  6651. rq_attach_root(rq, &def_root_domain);
  6652. #endif
  6653. init_rq_hrtick(rq);
  6654. atomic_set(&rq->nr_iowait, 0);
  6655. }
  6656. set_load_weight(&init_task);
  6657. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6658. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6659. #endif
  6660. #ifdef CONFIG_SMP
  6661. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6662. #endif
  6663. #ifdef CONFIG_RT_MUTEXES
  6664. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6665. #endif
  6666. /*
  6667. * The boot idle thread does lazy MMU switching as well:
  6668. */
  6669. atomic_inc(&init_mm.mm_count);
  6670. enter_lazy_tlb(&init_mm, current);
  6671. /*
  6672. * Make us the idle thread. Technically, schedule() should not be
  6673. * called from this thread, however somewhere below it might be,
  6674. * but because we are the idle thread, we just pick up running again
  6675. * when this runqueue becomes "idle".
  6676. */
  6677. init_idle(current, smp_processor_id());
  6678. /*
  6679. * During early bootup we pretend to be a normal task:
  6680. */
  6681. current->sched_class = &fair_sched_class;
  6682. scheduler_running = 1;
  6683. }
  6684. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6685. void __might_sleep(char *file, int line)
  6686. {
  6687. #ifdef in_atomic
  6688. static unsigned long prev_jiffy; /* ratelimiting */
  6689. if ((in_atomic() || irqs_disabled()) &&
  6690. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6691. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6692. return;
  6693. prev_jiffy = jiffies;
  6694. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6695. " context at %s:%d\n", file, line);
  6696. printk("in_atomic():%d, irqs_disabled():%d\n",
  6697. in_atomic(), irqs_disabled());
  6698. debug_show_held_locks(current);
  6699. if (irqs_disabled())
  6700. print_irqtrace_events(current);
  6701. dump_stack();
  6702. }
  6703. #endif
  6704. }
  6705. EXPORT_SYMBOL(__might_sleep);
  6706. #endif
  6707. #ifdef CONFIG_MAGIC_SYSRQ
  6708. static void normalize_task(struct rq *rq, struct task_struct *p)
  6709. {
  6710. int on_rq;
  6711. update_rq_clock(rq);
  6712. on_rq = p->se.on_rq;
  6713. if (on_rq)
  6714. deactivate_task(rq, p, 0);
  6715. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6716. if (on_rq) {
  6717. activate_task(rq, p, 0);
  6718. resched_task(rq->curr);
  6719. }
  6720. }
  6721. void normalize_rt_tasks(void)
  6722. {
  6723. struct task_struct *g, *p;
  6724. unsigned long flags;
  6725. struct rq *rq;
  6726. read_lock_irqsave(&tasklist_lock, flags);
  6727. do_each_thread(g, p) {
  6728. /*
  6729. * Only normalize user tasks:
  6730. */
  6731. if (!p->mm)
  6732. continue;
  6733. p->se.exec_start = 0;
  6734. #ifdef CONFIG_SCHEDSTATS
  6735. p->se.wait_start = 0;
  6736. p->se.sleep_start = 0;
  6737. p->se.block_start = 0;
  6738. #endif
  6739. if (!rt_task(p)) {
  6740. /*
  6741. * Renice negative nice level userspace
  6742. * tasks back to 0:
  6743. */
  6744. if (TASK_NICE(p) < 0 && p->mm)
  6745. set_user_nice(p, 0);
  6746. continue;
  6747. }
  6748. spin_lock(&p->pi_lock);
  6749. rq = __task_rq_lock(p);
  6750. normalize_task(rq, p);
  6751. __task_rq_unlock(rq);
  6752. spin_unlock(&p->pi_lock);
  6753. } while_each_thread(g, p);
  6754. read_unlock_irqrestore(&tasklist_lock, flags);
  6755. }
  6756. #endif /* CONFIG_MAGIC_SYSRQ */
  6757. #ifdef CONFIG_IA64
  6758. /*
  6759. * These functions are only useful for the IA64 MCA handling.
  6760. *
  6761. * They can only be called when the whole system has been
  6762. * stopped - every CPU needs to be quiescent, and no scheduling
  6763. * activity can take place. Using them for anything else would
  6764. * be a serious bug, and as a result, they aren't even visible
  6765. * under any other configuration.
  6766. */
  6767. /**
  6768. * curr_task - return the current task for a given cpu.
  6769. * @cpu: the processor in question.
  6770. *
  6771. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6772. */
  6773. struct task_struct *curr_task(int cpu)
  6774. {
  6775. return cpu_curr(cpu);
  6776. }
  6777. /**
  6778. * set_curr_task - set the current task for a given cpu.
  6779. * @cpu: the processor in question.
  6780. * @p: the task pointer to set.
  6781. *
  6782. * Description: This function must only be used when non-maskable interrupts
  6783. * are serviced on a separate stack. It allows the architecture to switch the
  6784. * notion of the current task on a cpu in a non-blocking manner. This function
  6785. * must be called with all CPU's synchronized, and interrupts disabled, the
  6786. * and caller must save the original value of the current task (see
  6787. * curr_task() above) and restore that value before reenabling interrupts and
  6788. * re-starting the system.
  6789. *
  6790. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6791. */
  6792. void set_curr_task(int cpu, struct task_struct *p)
  6793. {
  6794. cpu_curr(cpu) = p;
  6795. }
  6796. #endif
  6797. #ifdef CONFIG_FAIR_GROUP_SCHED
  6798. static void free_fair_sched_group(struct task_group *tg)
  6799. {
  6800. int i;
  6801. for_each_possible_cpu(i) {
  6802. if (tg->cfs_rq)
  6803. kfree(tg->cfs_rq[i]);
  6804. if (tg->se)
  6805. kfree(tg->se[i]);
  6806. }
  6807. kfree(tg->cfs_rq);
  6808. kfree(tg->se);
  6809. }
  6810. static
  6811. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6812. {
  6813. struct cfs_rq *cfs_rq;
  6814. struct sched_entity *se, *parent_se;
  6815. struct rq *rq;
  6816. int i;
  6817. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6818. if (!tg->cfs_rq)
  6819. goto err;
  6820. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6821. if (!tg->se)
  6822. goto err;
  6823. tg->shares = NICE_0_LOAD;
  6824. for_each_possible_cpu(i) {
  6825. rq = cpu_rq(i);
  6826. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  6827. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6828. if (!cfs_rq)
  6829. goto err;
  6830. se = kmalloc_node(sizeof(struct sched_entity),
  6831. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6832. if (!se)
  6833. goto err;
  6834. parent_se = parent ? parent->se[i] : NULL;
  6835. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  6836. }
  6837. return 1;
  6838. err:
  6839. return 0;
  6840. }
  6841. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6842. {
  6843. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6844. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6845. }
  6846. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6847. {
  6848. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6849. }
  6850. #else
  6851. static inline void free_fair_sched_group(struct task_group *tg)
  6852. {
  6853. }
  6854. static inline
  6855. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6856. {
  6857. return 1;
  6858. }
  6859. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6860. {
  6861. }
  6862. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6863. {
  6864. }
  6865. #endif
  6866. #ifdef CONFIG_RT_GROUP_SCHED
  6867. static void free_rt_sched_group(struct task_group *tg)
  6868. {
  6869. int i;
  6870. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6871. for_each_possible_cpu(i) {
  6872. if (tg->rt_rq)
  6873. kfree(tg->rt_rq[i]);
  6874. if (tg->rt_se)
  6875. kfree(tg->rt_se[i]);
  6876. }
  6877. kfree(tg->rt_rq);
  6878. kfree(tg->rt_se);
  6879. }
  6880. static
  6881. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6882. {
  6883. struct rt_rq *rt_rq;
  6884. struct sched_rt_entity *rt_se, *parent_se;
  6885. struct rq *rq;
  6886. int i;
  6887. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6888. if (!tg->rt_rq)
  6889. goto err;
  6890. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6891. if (!tg->rt_se)
  6892. goto err;
  6893. init_rt_bandwidth(&tg->rt_bandwidth,
  6894. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6895. for_each_possible_cpu(i) {
  6896. rq = cpu_rq(i);
  6897. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  6898. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6899. if (!rt_rq)
  6900. goto err;
  6901. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  6902. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  6903. if (!rt_se)
  6904. goto err;
  6905. parent_se = parent ? parent->rt_se[i] : NULL;
  6906. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  6907. }
  6908. return 1;
  6909. err:
  6910. return 0;
  6911. }
  6912. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6913. {
  6914. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6915. &cpu_rq(cpu)->leaf_rt_rq_list);
  6916. }
  6917. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6918. {
  6919. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6920. }
  6921. #else
  6922. static inline void free_rt_sched_group(struct task_group *tg)
  6923. {
  6924. }
  6925. static inline
  6926. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6927. {
  6928. return 1;
  6929. }
  6930. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6931. {
  6932. }
  6933. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6934. {
  6935. }
  6936. #endif
  6937. #ifdef CONFIG_GROUP_SCHED
  6938. static void free_sched_group(struct task_group *tg)
  6939. {
  6940. free_fair_sched_group(tg);
  6941. free_rt_sched_group(tg);
  6942. kfree(tg);
  6943. }
  6944. /* allocate runqueue etc for a new task group */
  6945. struct task_group *sched_create_group(struct task_group *parent)
  6946. {
  6947. struct task_group *tg;
  6948. unsigned long flags;
  6949. int i;
  6950. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6951. if (!tg)
  6952. return ERR_PTR(-ENOMEM);
  6953. if (!alloc_fair_sched_group(tg, parent))
  6954. goto err;
  6955. if (!alloc_rt_sched_group(tg, parent))
  6956. goto err;
  6957. spin_lock_irqsave(&task_group_lock, flags);
  6958. for_each_possible_cpu(i) {
  6959. register_fair_sched_group(tg, i);
  6960. register_rt_sched_group(tg, i);
  6961. }
  6962. list_add_rcu(&tg->list, &task_groups);
  6963. WARN_ON(!parent); /* root should already exist */
  6964. tg->parent = parent;
  6965. list_add_rcu(&tg->siblings, &parent->children);
  6966. INIT_LIST_HEAD(&tg->children);
  6967. spin_unlock_irqrestore(&task_group_lock, flags);
  6968. return tg;
  6969. err:
  6970. free_sched_group(tg);
  6971. return ERR_PTR(-ENOMEM);
  6972. }
  6973. /* rcu callback to free various structures associated with a task group */
  6974. static void free_sched_group_rcu(struct rcu_head *rhp)
  6975. {
  6976. /* now it should be safe to free those cfs_rqs */
  6977. free_sched_group(container_of(rhp, struct task_group, rcu));
  6978. }
  6979. /* Destroy runqueue etc associated with a task group */
  6980. void sched_destroy_group(struct task_group *tg)
  6981. {
  6982. unsigned long flags;
  6983. int i;
  6984. spin_lock_irqsave(&task_group_lock, flags);
  6985. for_each_possible_cpu(i) {
  6986. unregister_fair_sched_group(tg, i);
  6987. unregister_rt_sched_group(tg, i);
  6988. }
  6989. list_del_rcu(&tg->list);
  6990. list_del_rcu(&tg->siblings);
  6991. spin_unlock_irqrestore(&task_group_lock, flags);
  6992. /* wait for possible concurrent references to cfs_rqs complete */
  6993. call_rcu(&tg->rcu, free_sched_group_rcu);
  6994. }
  6995. /* change task's runqueue when it moves between groups.
  6996. * The caller of this function should have put the task in its new group
  6997. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6998. * reflect its new group.
  6999. */
  7000. void sched_move_task(struct task_struct *tsk)
  7001. {
  7002. int on_rq, running;
  7003. unsigned long flags;
  7004. struct rq *rq;
  7005. rq = task_rq_lock(tsk, &flags);
  7006. update_rq_clock(rq);
  7007. running = task_current(rq, tsk);
  7008. on_rq = tsk->se.on_rq;
  7009. if (on_rq)
  7010. dequeue_task(rq, tsk, 0);
  7011. if (unlikely(running))
  7012. tsk->sched_class->put_prev_task(rq, tsk);
  7013. set_task_rq(tsk, task_cpu(tsk));
  7014. #ifdef CONFIG_FAIR_GROUP_SCHED
  7015. if (tsk->sched_class->moved_group)
  7016. tsk->sched_class->moved_group(tsk);
  7017. #endif
  7018. if (unlikely(running))
  7019. tsk->sched_class->set_curr_task(rq);
  7020. if (on_rq)
  7021. enqueue_task(rq, tsk, 0);
  7022. task_rq_unlock(rq, &flags);
  7023. }
  7024. #endif
  7025. #ifdef CONFIG_FAIR_GROUP_SCHED
  7026. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7027. {
  7028. struct cfs_rq *cfs_rq = se->cfs_rq;
  7029. struct rq *rq = cfs_rq->rq;
  7030. int on_rq;
  7031. spin_lock_irq(&rq->lock);
  7032. on_rq = se->on_rq;
  7033. if (on_rq)
  7034. dequeue_entity(cfs_rq, se, 0);
  7035. se->load.weight = shares;
  7036. se->load.inv_weight = 0;
  7037. if (on_rq)
  7038. enqueue_entity(cfs_rq, se, 0);
  7039. spin_unlock_irq(&rq->lock);
  7040. }
  7041. static DEFINE_MUTEX(shares_mutex);
  7042. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7043. {
  7044. int i;
  7045. unsigned long flags;
  7046. /*
  7047. * We can't change the weight of the root cgroup.
  7048. */
  7049. if (!tg->se[0])
  7050. return -EINVAL;
  7051. if (shares < MIN_SHARES)
  7052. shares = MIN_SHARES;
  7053. else if (shares > MAX_SHARES)
  7054. shares = MAX_SHARES;
  7055. mutex_lock(&shares_mutex);
  7056. if (tg->shares == shares)
  7057. goto done;
  7058. spin_lock_irqsave(&task_group_lock, flags);
  7059. for_each_possible_cpu(i)
  7060. unregister_fair_sched_group(tg, i);
  7061. list_del_rcu(&tg->siblings);
  7062. spin_unlock_irqrestore(&task_group_lock, flags);
  7063. /* wait for any ongoing reference to this group to finish */
  7064. synchronize_sched();
  7065. /*
  7066. * Now we are free to modify the group's share on each cpu
  7067. * w/o tripping rebalance_share or load_balance_fair.
  7068. */
  7069. tg->shares = shares;
  7070. for_each_possible_cpu(i)
  7071. set_se_shares(tg->se[i], shares);
  7072. /*
  7073. * Enable load balance activity on this group, by inserting it back on
  7074. * each cpu's rq->leaf_cfs_rq_list.
  7075. */
  7076. spin_lock_irqsave(&task_group_lock, flags);
  7077. for_each_possible_cpu(i)
  7078. register_fair_sched_group(tg, i);
  7079. list_add_rcu(&tg->siblings, &tg->parent->children);
  7080. spin_unlock_irqrestore(&task_group_lock, flags);
  7081. done:
  7082. mutex_unlock(&shares_mutex);
  7083. return 0;
  7084. }
  7085. unsigned long sched_group_shares(struct task_group *tg)
  7086. {
  7087. return tg->shares;
  7088. }
  7089. #endif
  7090. #ifdef CONFIG_RT_GROUP_SCHED
  7091. /*
  7092. * Ensure that the real time constraints are schedulable.
  7093. */
  7094. static DEFINE_MUTEX(rt_constraints_mutex);
  7095. static unsigned long to_ratio(u64 period, u64 runtime)
  7096. {
  7097. if (runtime == RUNTIME_INF)
  7098. return 1ULL << 16;
  7099. return div64_u64(runtime << 16, period);
  7100. }
  7101. #ifdef CONFIG_CGROUP_SCHED
  7102. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7103. {
  7104. struct task_group *tgi, *parent = tg->parent;
  7105. unsigned long total = 0;
  7106. if (!parent) {
  7107. if (global_rt_period() < period)
  7108. return 0;
  7109. return to_ratio(period, runtime) <
  7110. to_ratio(global_rt_period(), global_rt_runtime());
  7111. }
  7112. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7113. return 0;
  7114. rcu_read_lock();
  7115. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7116. if (tgi == tg)
  7117. continue;
  7118. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7119. tgi->rt_bandwidth.rt_runtime);
  7120. }
  7121. rcu_read_unlock();
  7122. return total + to_ratio(period, runtime) <
  7123. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7124. parent->rt_bandwidth.rt_runtime);
  7125. }
  7126. #elif defined CONFIG_USER_SCHED
  7127. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7128. {
  7129. struct task_group *tgi;
  7130. unsigned long total = 0;
  7131. unsigned long global_ratio =
  7132. to_ratio(global_rt_period(), global_rt_runtime());
  7133. rcu_read_lock();
  7134. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7135. if (tgi == tg)
  7136. continue;
  7137. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7138. tgi->rt_bandwidth.rt_runtime);
  7139. }
  7140. rcu_read_unlock();
  7141. return total + to_ratio(period, runtime) < global_ratio;
  7142. }
  7143. #endif
  7144. /* Must be called with tasklist_lock held */
  7145. static inline int tg_has_rt_tasks(struct task_group *tg)
  7146. {
  7147. struct task_struct *g, *p;
  7148. do_each_thread(g, p) {
  7149. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7150. return 1;
  7151. } while_each_thread(g, p);
  7152. return 0;
  7153. }
  7154. static int tg_set_bandwidth(struct task_group *tg,
  7155. u64 rt_period, u64 rt_runtime)
  7156. {
  7157. int i, err = 0;
  7158. mutex_lock(&rt_constraints_mutex);
  7159. read_lock(&tasklist_lock);
  7160. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7161. err = -EBUSY;
  7162. goto unlock;
  7163. }
  7164. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7165. err = -EINVAL;
  7166. goto unlock;
  7167. }
  7168. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7169. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7170. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7171. for_each_possible_cpu(i) {
  7172. struct rt_rq *rt_rq = tg->rt_rq[i];
  7173. spin_lock(&rt_rq->rt_runtime_lock);
  7174. rt_rq->rt_runtime = rt_runtime;
  7175. spin_unlock(&rt_rq->rt_runtime_lock);
  7176. }
  7177. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7178. unlock:
  7179. read_unlock(&tasklist_lock);
  7180. mutex_unlock(&rt_constraints_mutex);
  7181. return err;
  7182. }
  7183. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7184. {
  7185. u64 rt_runtime, rt_period;
  7186. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7187. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7188. if (rt_runtime_us < 0)
  7189. rt_runtime = RUNTIME_INF;
  7190. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7191. }
  7192. long sched_group_rt_runtime(struct task_group *tg)
  7193. {
  7194. u64 rt_runtime_us;
  7195. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7196. return -1;
  7197. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7198. do_div(rt_runtime_us, NSEC_PER_USEC);
  7199. return rt_runtime_us;
  7200. }
  7201. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7202. {
  7203. u64 rt_runtime, rt_period;
  7204. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7205. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7206. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7207. }
  7208. long sched_group_rt_period(struct task_group *tg)
  7209. {
  7210. u64 rt_period_us;
  7211. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7212. do_div(rt_period_us, NSEC_PER_USEC);
  7213. return rt_period_us;
  7214. }
  7215. static int sched_rt_global_constraints(void)
  7216. {
  7217. int ret = 0;
  7218. mutex_lock(&rt_constraints_mutex);
  7219. if (!__rt_schedulable(NULL, 1, 0))
  7220. ret = -EINVAL;
  7221. mutex_unlock(&rt_constraints_mutex);
  7222. return ret;
  7223. }
  7224. #else
  7225. static int sched_rt_global_constraints(void)
  7226. {
  7227. unsigned long flags;
  7228. int i;
  7229. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7230. for_each_possible_cpu(i) {
  7231. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7232. spin_lock(&rt_rq->rt_runtime_lock);
  7233. rt_rq->rt_runtime = global_rt_runtime();
  7234. spin_unlock(&rt_rq->rt_runtime_lock);
  7235. }
  7236. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7237. return 0;
  7238. }
  7239. #endif
  7240. int sched_rt_handler(struct ctl_table *table, int write,
  7241. struct file *filp, void __user *buffer, size_t *lenp,
  7242. loff_t *ppos)
  7243. {
  7244. int ret;
  7245. int old_period, old_runtime;
  7246. static DEFINE_MUTEX(mutex);
  7247. mutex_lock(&mutex);
  7248. old_period = sysctl_sched_rt_period;
  7249. old_runtime = sysctl_sched_rt_runtime;
  7250. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7251. if (!ret && write) {
  7252. ret = sched_rt_global_constraints();
  7253. if (ret) {
  7254. sysctl_sched_rt_period = old_period;
  7255. sysctl_sched_rt_runtime = old_runtime;
  7256. } else {
  7257. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7258. def_rt_bandwidth.rt_period =
  7259. ns_to_ktime(global_rt_period());
  7260. }
  7261. }
  7262. mutex_unlock(&mutex);
  7263. return ret;
  7264. }
  7265. #ifdef CONFIG_CGROUP_SCHED
  7266. /* return corresponding task_group object of a cgroup */
  7267. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7268. {
  7269. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7270. struct task_group, css);
  7271. }
  7272. static struct cgroup_subsys_state *
  7273. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7274. {
  7275. struct task_group *tg, *parent;
  7276. if (!cgrp->parent) {
  7277. /* This is early initialization for the top cgroup */
  7278. init_task_group.css.cgroup = cgrp;
  7279. return &init_task_group.css;
  7280. }
  7281. parent = cgroup_tg(cgrp->parent);
  7282. tg = sched_create_group(parent);
  7283. if (IS_ERR(tg))
  7284. return ERR_PTR(-ENOMEM);
  7285. /* Bind the cgroup to task_group object we just created */
  7286. tg->css.cgroup = cgrp;
  7287. return &tg->css;
  7288. }
  7289. static void
  7290. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7291. {
  7292. struct task_group *tg = cgroup_tg(cgrp);
  7293. sched_destroy_group(tg);
  7294. }
  7295. static int
  7296. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7297. struct task_struct *tsk)
  7298. {
  7299. #ifdef CONFIG_RT_GROUP_SCHED
  7300. /* Don't accept realtime tasks when there is no way for them to run */
  7301. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7302. return -EINVAL;
  7303. #else
  7304. /* We don't support RT-tasks being in separate groups */
  7305. if (tsk->sched_class != &fair_sched_class)
  7306. return -EINVAL;
  7307. #endif
  7308. return 0;
  7309. }
  7310. static void
  7311. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7312. struct cgroup *old_cont, struct task_struct *tsk)
  7313. {
  7314. sched_move_task(tsk);
  7315. }
  7316. #ifdef CONFIG_FAIR_GROUP_SCHED
  7317. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7318. u64 shareval)
  7319. {
  7320. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7321. }
  7322. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7323. {
  7324. struct task_group *tg = cgroup_tg(cgrp);
  7325. return (u64) tg->shares;
  7326. }
  7327. #endif
  7328. #ifdef CONFIG_RT_GROUP_SCHED
  7329. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7330. s64 val)
  7331. {
  7332. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7333. }
  7334. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7335. {
  7336. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7337. }
  7338. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7339. u64 rt_period_us)
  7340. {
  7341. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7342. }
  7343. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7344. {
  7345. return sched_group_rt_period(cgroup_tg(cgrp));
  7346. }
  7347. #endif
  7348. static struct cftype cpu_files[] = {
  7349. #ifdef CONFIG_FAIR_GROUP_SCHED
  7350. {
  7351. .name = "shares",
  7352. .read_u64 = cpu_shares_read_u64,
  7353. .write_u64 = cpu_shares_write_u64,
  7354. },
  7355. #endif
  7356. #ifdef CONFIG_RT_GROUP_SCHED
  7357. {
  7358. .name = "rt_runtime_us",
  7359. .read_s64 = cpu_rt_runtime_read,
  7360. .write_s64 = cpu_rt_runtime_write,
  7361. },
  7362. {
  7363. .name = "rt_period_us",
  7364. .read_u64 = cpu_rt_period_read_uint,
  7365. .write_u64 = cpu_rt_period_write_uint,
  7366. },
  7367. #endif
  7368. };
  7369. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7370. {
  7371. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7372. }
  7373. struct cgroup_subsys cpu_cgroup_subsys = {
  7374. .name = "cpu",
  7375. .create = cpu_cgroup_create,
  7376. .destroy = cpu_cgroup_destroy,
  7377. .can_attach = cpu_cgroup_can_attach,
  7378. .attach = cpu_cgroup_attach,
  7379. .populate = cpu_cgroup_populate,
  7380. .subsys_id = cpu_cgroup_subsys_id,
  7381. .early_init = 1,
  7382. };
  7383. #endif /* CONFIG_CGROUP_SCHED */
  7384. #ifdef CONFIG_CGROUP_CPUACCT
  7385. /*
  7386. * CPU accounting code for task groups.
  7387. *
  7388. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7389. * (balbir@in.ibm.com).
  7390. */
  7391. /* track cpu usage of a group of tasks */
  7392. struct cpuacct {
  7393. struct cgroup_subsys_state css;
  7394. /* cpuusage holds pointer to a u64-type object on every cpu */
  7395. u64 *cpuusage;
  7396. };
  7397. struct cgroup_subsys cpuacct_subsys;
  7398. /* return cpu accounting group corresponding to this container */
  7399. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7400. {
  7401. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7402. struct cpuacct, css);
  7403. }
  7404. /* return cpu accounting group to which this task belongs */
  7405. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7406. {
  7407. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7408. struct cpuacct, css);
  7409. }
  7410. /* create a new cpu accounting group */
  7411. static struct cgroup_subsys_state *cpuacct_create(
  7412. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7413. {
  7414. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7415. if (!ca)
  7416. return ERR_PTR(-ENOMEM);
  7417. ca->cpuusage = alloc_percpu(u64);
  7418. if (!ca->cpuusage) {
  7419. kfree(ca);
  7420. return ERR_PTR(-ENOMEM);
  7421. }
  7422. return &ca->css;
  7423. }
  7424. /* destroy an existing cpu accounting group */
  7425. static void
  7426. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7427. {
  7428. struct cpuacct *ca = cgroup_ca(cgrp);
  7429. free_percpu(ca->cpuusage);
  7430. kfree(ca);
  7431. }
  7432. /* return total cpu usage (in nanoseconds) of a group */
  7433. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7434. {
  7435. struct cpuacct *ca = cgroup_ca(cgrp);
  7436. u64 totalcpuusage = 0;
  7437. int i;
  7438. for_each_possible_cpu(i) {
  7439. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7440. /*
  7441. * Take rq->lock to make 64-bit addition safe on 32-bit
  7442. * platforms.
  7443. */
  7444. spin_lock_irq(&cpu_rq(i)->lock);
  7445. totalcpuusage += *cpuusage;
  7446. spin_unlock_irq(&cpu_rq(i)->lock);
  7447. }
  7448. return totalcpuusage;
  7449. }
  7450. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7451. u64 reset)
  7452. {
  7453. struct cpuacct *ca = cgroup_ca(cgrp);
  7454. int err = 0;
  7455. int i;
  7456. if (reset) {
  7457. err = -EINVAL;
  7458. goto out;
  7459. }
  7460. for_each_possible_cpu(i) {
  7461. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7462. spin_lock_irq(&cpu_rq(i)->lock);
  7463. *cpuusage = 0;
  7464. spin_unlock_irq(&cpu_rq(i)->lock);
  7465. }
  7466. out:
  7467. return err;
  7468. }
  7469. static struct cftype files[] = {
  7470. {
  7471. .name = "usage",
  7472. .read_u64 = cpuusage_read,
  7473. .write_u64 = cpuusage_write,
  7474. },
  7475. };
  7476. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7477. {
  7478. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7479. }
  7480. /*
  7481. * charge this task's execution time to its accounting group.
  7482. *
  7483. * called with rq->lock held.
  7484. */
  7485. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7486. {
  7487. struct cpuacct *ca;
  7488. if (!cpuacct_subsys.active)
  7489. return;
  7490. ca = task_ca(tsk);
  7491. if (ca) {
  7492. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7493. *cpuusage += cputime;
  7494. }
  7495. }
  7496. struct cgroup_subsys cpuacct_subsys = {
  7497. .name = "cpuacct",
  7498. .create = cpuacct_create,
  7499. .destroy = cpuacct_destroy,
  7500. .populate = cpuacct_populate,
  7501. .subsys_id = cpuacct_subsys_id,
  7502. };
  7503. #endif /* CONFIG_CGROUP_CPUACCT */