init.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/string.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/mm.h>
  15. #include <linux/hugetlb.h>
  16. #include <linux/slab.h>
  17. #include <linux/initrd.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <asm/head.h>
  26. #include <asm/system.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/oplib.h>
  31. #include <asm/iommu.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/dma.h>
  37. #include <asm/starfire.h>
  38. #include <asm/tlb.h>
  39. #include <asm/spitfire.h>
  40. #include <asm/sections.h>
  41. #include <asm/tsb.h>
  42. #include <asm/hypervisor.h>
  43. extern void device_scan(void);
  44. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  45. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  46. #define KPTE_BITMAP_BYTES \
  47. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  48. unsigned long kern_linear_pte_xor[2] __read_mostly;
  49. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  50. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  51. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  52. */
  53. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  54. /* A special kernel TSB for 4MB and 256MB linear mappings. */
  55. struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  56. #define MAX_BANKS 32
  57. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  58. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  59. static int pavail_ents __initdata;
  60. static int pavail_rescan_ents __initdata;
  61. static int cmp_p64(const void *a, const void *b)
  62. {
  63. const struct linux_prom64_registers *x = a, *y = b;
  64. if (x->phys_addr > y->phys_addr)
  65. return 1;
  66. if (x->phys_addr < y->phys_addr)
  67. return -1;
  68. return 0;
  69. }
  70. static void __init read_obp_memory(const char *property,
  71. struct linux_prom64_registers *regs,
  72. int *num_ents)
  73. {
  74. int node = prom_finddevice("/memory");
  75. int prop_size = prom_getproplen(node, property);
  76. int ents, ret, i;
  77. ents = prop_size / sizeof(struct linux_prom64_registers);
  78. if (ents > MAX_BANKS) {
  79. prom_printf("The machine has more %s property entries than "
  80. "this kernel can support (%d).\n",
  81. property, MAX_BANKS);
  82. prom_halt();
  83. }
  84. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  85. if (ret == -1) {
  86. prom_printf("Couldn't get %s property from /memory.\n");
  87. prom_halt();
  88. }
  89. *num_ents = ents;
  90. /* Sanitize what we got from the firmware, by page aligning
  91. * everything.
  92. */
  93. for (i = 0; i < ents; i++) {
  94. unsigned long base, size;
  95. base = regs[i].phys_addr;
  96. size = regs[i].reg_size;
  97. size &= PAGE_MASK;
  98. if (base & ~PAGE_MASK) {
  99. unsigned long new_base = PAGE_ALIGN(base);
  100. size -= new_base - base;
  101. if ((long) size < 0L)
  102. size = 0UL;
  103. base = new_base;
  104. }
  105. regs[i].phys_addr = base;
  106. regs[i].reg_size = size;
  107. }
  108. sort(regs, ents, sizeof(struct linux_prom64_registers),
  109. cmp_p64, NULL);
  110. }
  111. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  112. /* Kernel physical address base and size in bytes. */
  113. unsigned long kern_base __read_mostly;
  114. unsigned long kern_size __read_mostly;
  115. /* get_new_mmu_context() uses "cache + 1". */
  116. DEFINE_SPINLOCK(ctx_alloc_lock);
  117. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  118. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  119. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  120. /* References to special section boundaries */
  121. extern char _start[], _end[];
  122. /* Initial ramdisk setup */
  123. extern unsigned long sparc_ramdisk_image64;
  124. extern unsigned int sparc_ramdisk_image;
  125. extern unsigned int sparc_ramdisk_size;
  126. struct page *mem_map_zero __read_mostly;
  127. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  128. unsigned long sparc64_kern_pri_context __read_mostly;
  129. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  130. unsigned long sparc64_kern_sec_context __read_mostly;
  131. int bigkernel = 0;
  132. kmem_cache_t *pgtable_cache __read_mostly;
  133. static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
  134. {
  135. clear_page(addr);
  136. }
  137. void pgtable_cache_init(void)
  138. {
  139. pgtable_cache = kmem_cache_create("pgtable_cache",
  140. PAGE_SIZE, PAGE_SIZE,
  141. SLAB_HWCACHE_ALIGN |
  142. SLAB_MUST_HWCACHE_ALIGN,
  143. zero_ctor,
  144. NULL);
  145. if (!pgtable_cache) {
  146. prom_printf("pgtable_cache_init(): Could not create!\n");
  147. prom_halt();
  148. }
  149. }
  150. #ifdef CONFIG_DEBUG_DCFLUSH
  151. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  152. #ifdef CONFIG_SMP
  153. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  154. #endif
  155. #endif
  156. inline void flush_dcache_page_impl(struct page *page)
  157. {
  158. BUG_ON(tlb_type == hypervisor);
  159. #ifdef CONFIG_DEBUG_DCFLUSH
  160. atomic_inc(&dcpage_flushes);
  161. #endif
  162. #ifdef DCACHE_ALIASING_POSSIBLE
  163. __flush_dcache_page(page_address(page),
  164. ((tlb_type == spitfire) &&
  165. page_mapping(page) != NULL));
  166. #else
  167. if (page_mapping(page) != NULL &&
  168. tlb_type == spitfire)
  169. __flush_icache_page(__pa(page_address(page)));
  170. #endif
  171. }
  172. #define PG_dcache_dirty PG_arch_1
  173. #define PG_dcache_cpu_shift 24UL
  174. #define PG_dcache_cpu_mask (256UL - 1UL)
  175. #if NR_CPUS > 256
  176. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  177. #endif
  178. #define dcache_dirty_cpu(page) \
  179. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  180. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  181. {
  182. unsigned long mask = this_cpu;
  183. unsigned long non_cpu_bits;
  184. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  185. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  186. __asm__ __volatile__("1:\n\t"
  187. "ldx [%2], %%g7\n\t"
  188. "and %%g7, %1, %%g1\n\t"
  189. "or %%g1, %0, %%g1\n\t"
  190. "casx [%2], %%g7, %%g1\n\t"
  191. "cmp %%g7, %%g1\n\t"
  192. "membar #StoreLoad | #StoreStore\n\t"
  193. "bne,pn %%xcc, 1b\n\t"
  194. " nop"
  195. : /* no outputs */
  196. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  197. : "g1", "g7");
  198. }
  199. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  200. {
  201. unsigned long mask = (1UL << PG_dcache_dirty);
  202. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  203. "1:\n\t"
  204. "ldx [%2], %%g7\n\t"
  205. "srlx %%g7, %4, %%g1\n\t"
  206. "and %%g1, %3, %%g1\n\t"
  207. "cmp %%g1, %0\n\t"
  208. "bne,pn %%icc, 2f\n\t"
  209. " andn %%g7, %1, %%g1\n\t"
  210. "casx [%2], %%g7, %%g1\n\t"
  211. "cmp %%g7, %%g1\n\t"
  212. "membar #StoreLoad | #StoreStore\n\t"
  213. "bne,pn %%xcc, 1b\n\t"
  214. " nop\n"
  215. "2:"
  216. : /* no outputs */
  217. : "r" (cpu), "r" (mask), "r" (&page->flags),
  218. "i" (PG_dcache_cpu_mask),
  219. "i" (PG_dcache_cpu_shift)
  220. : "g1", "g7");
  221. }
  222. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  223. {
  224. unsigned long tsb_addr = (unsigned long) ent;
  225. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  226. tsb_addr = __pa(tsb_addr);
  227. __tsb_insert(tsb_addr, tag, pte);
  228. }
  229. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  230. unsigned long _PAGE_SZBITS __read_mostly;
  231. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  232. {
  233. struct mm_struct *mm;
  234. struct tsb *tsb;
  235. unsigned long tag, flags;
  236. if (tlb_type != hypervisor) {
  237. unsigned long pfn = pte_pfn(pte);
  238. unsigned long pg_flags;
  239. struct page *page;
  240. if (pfn_valid(pfn) &&
  241. (page = pfn_to_page(pfn), page_mapping(page)) &&
  242. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  243. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  244. PG_dcache_cpu_mask);
  245. int this_cpu = get_cpu();
  246. /* This is just to optimize away some function calls
  247. * in the SMP case.
  248. */
  249. if (cpu == this_cpu)
  250. flush_dcache_page_impl(page);
  251. else
  252. smp_flush_dcache_page_impl(page, cpu);
  253. clear_dcache_dirty_cpu(page, cpu);
  254. put_cpu();
  255. }
  256. }
  257. mm = vma->vm_mm;
  258. spin_lock_irqsave(&mm->context.lock, flags);
  259. tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
  260. (mm->context.tsb_nentries - 1UL)];
  261. tag = (address >> 22UL);
  262. tsb_insert(tsb, tag, pte_val(pte));
  263. spin_unlock_irqrestore(&mm->context.lock, flags);
  264. }
  265. void flush_dcache_page(struct page *page)
  266. {
  267. struct address_space *mapping;
  268. int this_cpu;
  269. if (tlb_type == hypervisor)
  270. return;
  271. /* Do not bother with the expensive D-cache flush if it
  272. * is merely the zero page. The 'bigcore' testcase in GDB
  273. * causes this case to run millions of times.
  274. */
  275. if (page == ZERO_PAGE(0))
  276. return;
  277. this_cpu = get_cpu();
  278. mapping = page_mapping(page);
  279. if (mapping && !mapping_mapped(mapping)) {
  280. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  281. if (dirty) {
  282. int dirty_cpu = dcache_dirty_cpu(page);
  283. if (dirty_cpu == this_cpu)
  284. goto out;
  285. smp_flush_dcache_page_impl(page, dirty_cpu);
  286. }
  287. set_dcache_dirty(page, this_cpu);
  288. } else {
  289. /* We could delay the flush for the !page_mapping
  290. * case too. But that case is for exec env/arg
  291. * pages and those are %99 certainly going to get
  292. * faulted into the tlb (and thus flushed) anyways.
  293. */
  294. flush_dcache_page_impl(page);
  295. }
  296. out:
  297. put_cpu();
  298. }
  299. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  300. {
  301. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  302. if (tlb_type == spitfire) {
  303. unsigned long kaddr;
  304. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  305. __flush_icache_page(__get_phys(kaddr));
  306. }
  307. }
  308. void show_mem(void)
  309. {
  310. printk("Mem-info:\n");
  311. show_free_areas();
  312. printk("Free swap: %6ldkB\n",
  313. nr_swap_pages << (PAGE_SHIFT-10));
  314. printk("%ld pages of RAM\n", num_physpages);
  315. printk("%d free pages\n", nr_free_pages());
  316. }
  317. void mmu_info(struct seq_file *m)
  318. {
  319. if (tlb_type == cheetah)
  320. seq_printf(m, "MMU Type\t: Cheetah\n");
  321. else if (tlb_type == cheetah_plus)
  322. seq_printf(m, "MMU Type\t: Cheetah+\n");
  323. else if (tlb_type == spitfire)
  324. seq_printf(m, "MMU Type\t: Spitfire\n");
  325. else if (tlb_type == hypervisor)
  326. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  327. else
  328. seq_printf(m, "MMU Type\t: ???\n");
  329. #ifdef CONFIG_DEBUG_DCFLUSH
  330. seq_printf(m, "DCPageFlushes\t: %d\n",
  331. atomic_read(&dcpage_flushes));
  332. #ifdef CONFIG_SMP
  333. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  334. atomic_read(&dcpage_flushes_xcall));
  335. #endif /* CONFIG_SMP */
  336. #endif /* CONFIG_DEBUG_DCFLUSH */
  337. }
  338. struct linux_prom_translation {
  339. unsigned long virt;
  340. unsigned long size;
  341. unsigned long data;
  342. };
  343. /* Exported for kernel TLB miss handling in ktlb.S */
  344. struct linux_prom_translation prom_trans[512] __read_mostly;
  345. unsigned int prom_trans_ents __read_mostly;
  346. /* Exported for SMP bootup purposes. */
  347. unsigned long kern_locked_tte_data;
  348. /* The obp translations are saved based on 8k pagesize, since obp can
  349. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  350. * HI_OBP_ADDRESS range are handled in ktlb.S.
  351. */
  352. static inline int in_obp_range(unsigned long vaddr)
  353. {
  354. return (vaddr >= LOW_OBP_ADDRESS &&
  355. vaddr < HI_OBP_ADDRESS);
  356. }
  357. static int cmp_ptrans(const void *a, const void *b)
  358. {
  359. const struct linux_prom_translation *x = a, *y = b;
  360. if (x->virt > y->virt)
  361. return 1;
  362. if (x->virt < y->virt)
  363. return -1;
  364. return 0;
  365. }
  366. /* Read OBP translations property into 'prom_trans[]'. */
  367. static void __init read_obp_translations(void)
  368. {
  369. int n, node, ents, first, last, i;
  370. node = prom_finddevice("/virtual-memory");
  371. n = prom_getproplen(node, "translations");
  372. if (unlikely(n == 0 || n == -1)) {
  373. prom_printf("prom_mappings: Couldn't get size.\n");
  374. prom_halt();
  375. }
  376. if (unlikely(n > sizeof(prom_trans))) {
  377. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  378. prom_halt();
  379. }
  380. if ((n = prom_getproperty(node, "translations",
  381. (char *)&prom_trans[0],
  382. sizeof(prom_trans))) == -1) {
  383. prom_printf("prom_mappings: Couldn't get property.\n");
  384. prom_halt();
  385. }
  386. n = n / sizeof(struct linux_prom_translation);
  387. ents = n;
  388. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  389. cmp_ptrans, NULL);
  390. /* Now kick out all the non-OBP entries. */
  391. for (i = 0; i < ents; i++) {
  392. if (in_obp_range(prom_trans[i].virt))
  393. break;
  394. }
  395. first = i;
  396. for (; i < ents; i++) {
  397. if (!in_obp_range(prom_trans[i].virt))
  398. break;
  399. }
  400. last = i;
  401. for (i = 0; i < (last - first); i++) {
  402. struct linux_prom_translation *src = &prom_trans[i + first];
  403. struct linux_prom_translation *dest = &prom_trans[i];
  404. *dest = *src;
  405. }
  406. for (; i < ents; i++) {
  407. struct linux_prom_translation *dest = &prom_trans[i];
  408. dest->virt = dest->size = dest->data = 0x0UL;
  409. }
  410. prom_trans_ents = last - first;
  411. if (tlb_type == spitfire) {
  412. /* Clear diag TTE bits. */
  413. for (i = 0; i < prom_trans_ents; i++)
  414. prom_trans[i].data &= ~0x0003fe0000000000UL;
  415. }
  416. }
  417. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  418. unsigned long pte,
  419. unsigned long mmu)
  420. {
  421. register unsigned long func asm("%o5");
  422. register unsigned long arg0 asm("%o0");
  423. register unsigned long arg1 asm("%o1");
  424. register unsigned long arg2 asm("%o2");
  425. register unsigned long arg3 asm("%o3");
  426. func = HV_FAST_MMU_MAP_PERM_ADDR;
  427. arg0 = vaddr;
  428. arg1 = 0;
  429. arg2 = pte;
  430. arg3 = mmu;
  431. __asm__ __volatile__("ta 0x80"
  432. : "=&r" (func), "=&r" (arg0),
  433. "=&r" (arg1), "=&r" (arg2),
  434. "=&r" (arg3)
  435. : "0" (func), "1" (arg0), "2" (arg1),
  436. "3" (arg2), "4" (arg3));
  437. if (arg0 != 0) {
  438. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  439. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  440. prom_halt();
  441. }
  442. }
  443. static unsigned long kern_large_tte(unsigned long paddr);
  444. static void __init remap_kernel(void)
  445. {
  446. unsigned long phys_page, tte_vaddr, tte_data;
  447. int tlb_ent = sparc64_highest_locked_tlbent();
  448. tte_vaddr = (unsigned long) KERNBASE;
  449. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  450. tte_data = kern_large_tte(phys_page);
  451. kern_locked_tte_data = tte_data;
  452. /* Now lock us into the TLBs via Hypervisor or OBP. */
  453. if (tlb_type == hypervisor) {
  454. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  455. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  456. if (bigkernel) {
  457. tte_vaddr += 0x400000;
  458. tte_data += 0x400000;
  459. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  460. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  461. }
  462. } else {
  463. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  464. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  465. if (bigkernel) {
  466. tlb_ent -= 1;
  467. prom_dtlb_load(tlb_ent,
  468. tte_data + 0x400000,
  469. tte_vaddr + 0x400000);
  470. prom_itlb_load(tlb_ent,
  471. tte_data + 0x400000,
  472. tte_vaddr + 0x400000);
  473. }
  474. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  475. }
  476. if (tlb_type == cheetah_plus) {
  477. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  478. CTX_CHEETAH_PLUS_NUC);
  479. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  480. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  481. }
  482. }
  483. static void __init inherit_prom_mappings(void)
  484. {
  485. read_obp_translations();
  486. /* Now fixup OBP's idea about where we really are mapped. */
  487. prom_printf("Remapping the kernel... ");
  488. remap_kernel();
  489. prom_printf("done.\n");
  490. }
  491. void prom_world(int enter)
  492. {
  493. if (!enter)
  494. set_fs((mm_segment_t) { get_thread_current_ds() });
  495. __asm__ __volatile__("flushw");
  496. }
  497. #ifdef DCACHE_ALIASING_POSSIBLE
  498. void __flush_dcache_range(unsigned long start, unsigned long end)
  499. {
  500. unsigned long va;
  501. if (tlb_type == spitfire) {
  502. int n = 0;
  503. for (va = start; va < end; va += 32) {
  504. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  505. if (++n >= 512)
  506. break;
  507. }
  508. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  509. start = __pa(start);
  510. end = __pa(end);
  511. for (va = start; va < end; va += 32)
  512. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  513. "membar #Sync"
  514. : /* no outputs */
  515. : "r" (va),
  516. "i" (ASI_DCACHE_INVALIDATE));
  517. }
  518. }
  519. #endif /* DCACHE_ALIASING_POSSIBLE */
  520. /* Caller does TLB context flushing on local CPU if necessary.
  521. * The caller also ensures that CTX_VALID(mm->context) is false.
  522. *
  523. * We must be careful about boundary cases so that we never
  524. * let the user have CTX 0 (nucleus) or we ever use a CTX
  525. * version of zero (and thus NO_CONTEXT would not be caught
  526. * by version mis-match tests in mmu_context.h).
  527. *
  528. * Always invoked with interrupts disabled.
  529. */
  530. void get_new_mmu_context(struct mm_struct *mm)
  531. {
  532. unsigned long ctx, new_ctx;
  533. unsigned long orig_pgsz_bits;
  534. unsigned long flags;
  535. int new_version;
  536. spin_lock_irqsave(&ctx_alloc_lock, flags);
  537. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  538. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  539. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  540. new_version = 0;
  541. if (new_ctx >= (1 << CTX_NR_BITS)) {
  542. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  543. if (new_ctx >= ctx) {
  544. int i;
  545. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  546. CTX_FIRST_VERSION;
  547. if (new_ctx == 1)
  548. new_ctx = CTX_FIRST_VERSION;
  549. /* Don't call memset, for 16 entries that's just
  550. * plain silly...
  551. */
  552. mmu_context_bmap[0] = 3;
  553. mmu_context_bmap[1] = 0;
  554. mmu_context_bmap[2] = 0;
  555. mmu_context_bmap[3] = 0;
  556. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  557. mmu_context_bmap[i + 0] = 0;
  558. mmu_context_bmap[i + 1] = 0;
  559. mmu_context_bmap[i + 2] = 0;
  560. mmu_context_bmap[i + 3] = 0;
  561. }
  562. new_version = 1;
  563. goto out;
  564. }
  565. }
  566. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  567. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  568. out:
  569. tlb_context_cache = new_ctx;
  570. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  571. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  572. if (unlikely(new_version))
  573. smp_new_mmu_context_version();
  574. }
  575. void sparc_ultra_dump_itlb(void)
  576. {
  577. int slot;
  578. if (tlb_type == spitfire) {
  579. printk ("Contents of itlb: ");
  580. for (slot = 0; slot < 14; slot++) printk (" ");
  581. printk ("%2x:%016lx,%016lx\n",
  582. 0,
  583. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  584. for (slot = 1; slot < 64; slot+=3) {
  585. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  586. slot,
  587. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  588. slot+1,
  589. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  590. slot+2,
  591. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  592. }
  593. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  594. printk ("Contents of itlb0:\n");
  595. for (slot = 0; slot < 16; slot+=2) {
  596. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  597. slot,
  598. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  599. slot+1,
  600. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  601. }
  602. printk ("Contents of itlb2:\n");
  603. for (slot = 0; slot < 128; slot+=2) {
  604. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  605. slot,
  606. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  607. slot+1,
  608. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  609. }
  610. }
  611. }
  612. void sparc_ultra_dump_dtlb(void)
  613. {
  614. int slot;
  615. if (tlb_type == spitfire) {
  616. printk ("Contents of dtlb: ");
  617. for (slot = 0; slot < 14; slot++) printk (" ");
  618. printk ("%2x:%016lx,%016lx\n", 0,
  619. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  620. for (slot = 1; slot < 64; slot+=3) {
  621. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  622. slot,
  623. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  624. slot+1,
  625. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  626. slot+2,
  627. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  628. }
  629. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  630. printk ("Contents of dtlb0:\n");
  631. for (slot = 0; slot < 16; slot+=2) {
  632. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  633. slot,
  634. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  635. slot+1,
  636. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  637. }
  638. printk ("Contents of dtlb2:\n");
  639. for (slot = 0; slot < 512; slot+=2) {
  640. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  641. slot,
  642. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  643. slot+1,
  644. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  645. }
  646. if (tlb_type == cheetah_plus) {
  647. printk ("Contents of dtlb3:\n");
  648. for (slot = 0; slot < 512; slot+=2) {
  649. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  650. slot,
  651. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  652. slot+1,
  653. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  654. }
  655. }
  656. }
  657. }
  658. extern unsigned long cmdline_memory_size;
  659. /* Find a free area for the bootmem map, avoiding the kernel image
  660. * and the initial ramdisk.
  661. */
  662. static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
  663. unsigned long end_pfn)
  664. {
  665. unsigned long avoid_start, avoid_end, bootmap_size;
  666. int i;
  667. bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
  668. bootmap_size = ALIGN(bootmap_size, sizeof(long));
  669. avoid_start = avoid_end = 0;
  670. #ifdef CONFIG_BLK_DEV_INITRD
  671. avoid_start = initrd_start;
  672. avoid_end = PAGE_ALIGN(initrd_end);
  673. #endif
  674. #ifdef CONFIG_DEBUG_BOOTMEM
  675. prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
  676. kern_base, PAGE_ALIGN(kern_base + kern_size),
  677. avoid_start, avoid_end);
  678. #endif
  679. for (i = 0; i < pavail_ents; i++) {
  680. unsigned long start, end;
  681. start = pavail[i].phys_addr;
  682. end = start + pavail[i].reg_size;
  683. while (start < end) {
  684. if (start >= kern_base &&
  685. start < PAGE_ALIGN(kern_base + kern_size)) {
  686. start = PAGE_ALIGN(kern_base + kern_size);
  687. continue;
  688. }
  689. if (start >= avoid_start && start < avoid_end) {
  690. start = avoid_end;
  691. continue;
  692. }
  693. if ((end - start) < bootmap_size)
  694. break;
  695. if (start < kern_base &&
  696. (start + bootmap_size) > kern_base) {
  697. start = PAGE_ALIGN(kern_base + kern_size);
  698. continue;
  699. }
  700. if (start < avoid_start &&
  701. (start + bootmap_size) > avoid_start) {
  702. start = avoid_end;
  703. continue;
  704. }
  705. /* OK, it doesn't overlap anything, use it. */
  706. #ifdef CONFIG_DEBUG_BOOTMEM
  707. prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
  708. start >> PAGE_SHIFT, start);
  709. #endif
  710. return start >> PAGE_SHIFT;
  711. }
  712. }
  713. prom_printf("Cannot find free area for bootmap, aborting.\n");
  714. prom_halt();
  715. }
  716. static unsigned long __init bootmem_init(unsigned long *pages_avail,
  717. unsigned long phys_base)
  718. {
  719. unsigned long bootmap_size, end_pfn;
  720. unsigned long end_of_phys_memory = 0UL;
  721. unsigned long bootmap_pfn, bytes_avail, size;
  722. int i;
  723. #ifdef CONFIG_DEBUG_BOOTMEM
  724. prom_printf("bootmem_init: Scan pavail, ");
  725. #endif
  726. bytes_avail = 0UL;
  727. for (i = 0; i < pavail_ents; i++) {
  728. end_of_phys_memory = pavail[i].phys_addr +
  729. pavail[i].reg_size;
  730. bytes_avail += pavail[i].reg_size;
  731. if (cmdline_memory_size) {
  732. if (bytes_avail > cmdline_memory_size) {
  733. unsigned long slack = bytes_avail - cmdline_memory_size;
  734. bytes_avail -= slack;
  735. end_of_phys_memory -= slack;
  736. pavail[i].reg_size -= slack;
  737. if ((long)pavail[i].reg_size <= 0L) {
  738. pavail[i].phys_addr = 0xdeadbeefUL;
  739. pavail[i].reg_size = 0UL;
  740. pavail_ents = i;
  741. } else {
  742. pavail[i+1].reg_size = 0Ul;
  743. pavail[i+1].phys_addr = 0xdeadbeefUL;
  744. pavail_ents = i + 1;
  745. }
  746. break;
  747. }
  748. }
  749. }
  750. *pages_avail = bytes_avail >> PAGE_SHIFT;
  751. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  752. #ifdef CONFIG_BLK_DEV_INITRD
  753. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  754. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  755. unsigned long ramdisk_image = sparc_ramdisk_image ?
  756. sparc_ramdisk_image : sparc_ramdisk_image64;
  757. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  758. ramdisk_image -= KERNBASE;
  759. initrd_start = ramdisk_image + phys_base;
  760. initrd_end = initrd_start + sparc_ramdisk_size;
  761. if (initrd_end > end_of_phys_memory) {
  762. printk(KERN_CRIT "initrd extends beyond end of memory "
  763. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  764. initrd_end, end_of_phys_memory);
  765. initrd_start = 0;
  766. initrd_end = 0;
  767. }
  768. }
  769. #endif
  770. /* Initialize the boot-time allocator. */
  771. max_pfn = max_low_pfn = end_pfn;
  772. min_low_pfn = (phys_base >> PAGE_SHIFT);
  773. bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
  774. #ifdef CONFIG_DEBUG_BOOTMEM
  775. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  776. min_low_pfn, bootmap_pfn, max_low_pfn);
  777. #endif
  778. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
  779. min_low_pfn, end_pfn);
  780. /* Now register the available physical memory with the
  781. * allocator.
  782. */
  783. for (i = 0; i < pavail_ents; i++) {
  784. #ifdef CONFIG_DEBUG_BOOTMEM
  785. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  786. i, pavail[i].phys_addr, pavail[i].reg_size);
  787. #endif
  788. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  789. }
  790. #ifdef CONFIG_BLK_DEV_INITRD
  791. if (initrd_start) {
  792. size = initrd_end - initrd_start;
  793. /* Resert the initrd image area. */
  794. #ifdef CONFIG_DEBUG_BOOTMEM
  795. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  796. initrd_start, initrd_end);
  797. #endif
  798. reserve_bootmem(initrd_start, size);
  799. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  800. initrd_start += PAGE_OFFSET;
  801. initrd_end += PAGE_OFFSET;
  802. }
  803. #endif
  804. /* Reserve the kernel text/data/bss. */
  805. #ifdef CONFIG_DEBUG_BOOTMEM
  806. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  807. #endif
  808. reserve_bootmem(kern_base, kern_size);
  809. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  810. /* Reserve the bootmem map. We do not account for it
  811. * in pages_avail because we will release that memory
  812. * in free_all_bootmem.
  813. */
  814. size = bootmap_size;
  815. #ifdef CONFIG_DEBUG_BOOTMEM
  816. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  817. (bootmap_pfn << PAGE_SHIFT), size);
  818. #endif
  819. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  820. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  821. for (i = 0; i < pavail_ents; i++) {
  822. unsigned long start_pfn, end_pfn;
  823. start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
  824. end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
  825. #ifdef CONFIG_DEBUG_BOOTMEM
  826. prom_printf("memory_present(0, %lx, %lx)\n",
  827. start_pfn, end_pfn);
  828. #endif
  829. memory_present(0, start_pfn, end_pfn);
  830. }
  831. sparse_init();
  832. return end_pfn;
  833. }
  834. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  835. static int pall_ents __initdata;
  836. #ifdef CONFIG_DEBUG_PAGEALLOC
  837. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  838. {
  839. unsigned long vstart = PAGE_OFFSET + pstart;
  840. unsigned long vend = PAGE_OFFSET + pend;
  841. unsigned long alloc_bytes = 0UL;
  842. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  843. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  844. vstart, vend);
  845. prom_halt();
  846. }
  847. while (vstart < vend) {
  848. unsigned long this_end, paddr = __pa(vstart);
  849. pgd_t *pgd = pgd_offset_k(vstart);
  850. pud_t *pud;
  851. pmd_t *pmd;
  852. pte_t *pte;
  853. pud = pud_offset(pgd, vstart);
  854. if (pud_none(*pud)) {
  855. pmd_t *new;
  856. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  857. alloc_bytes += PAGE_SIZE;
  858. pud_populate(&init_mm, pud, new);
  859. }
  860. pmd = pmd_offset(pud, vstart);
  861. if (!pmd_present(*pmd)) {
  862. pte_t *new;
  863. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  864. alloc_bytes += PAGE_SIZE;
  865. pmd_populate_kernel(&init_mm, pmd, new);
  866. }
  867. pte = pte_offset_kernel(pmd, vstart);
  868. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  869. if (this_end > vend)
  870. this_end = vend;
  871. while (vstart < this_end) {
  872. pte_val(*pte) = (paddr | pgprot_val(prot));
  873. vstart += PAGE_SIZE;
  874. paddr += PAGE_SIZE;
  875. pte++;
  876. }
  877. }
  878. return alloc_bytes;
  879. }
  880. extern unsigned int kvmap_linear_patch[1];
  881. #endif /* CONFIG_DEBUG_PAGEALLOC */
  882. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  883. {
  884. const unsigned long shift_256MB = 28;
  885. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  886. const unsigned long size_256MB = (1UL << shift_256MB);
  887. while (start < end) {
  888. long remains;
  889. remains = end - start;
  890. if (remains < size_256MB)
  891. break;
  892. if (start & mask_256MB) {
  893. start = (start + size_256MB) & ~mask_256MB;
  894. continue;
  895. }
  896. while (remains >= size_256MB) {
  897. unsigned long index = start >> shift_256MB;
  898. __set_bit(index, kpte_linear_bitmap);
  899. start += size_256MB;
  900. remains -= size_256MB;
  901. }
  902. }
  903. }
  904. static void __init kernel_physical_mapping_init(void)
  905. {
  906. unsigned long i;
  907. #ifdef CONFIG_DEBUG_PAGEALLOC
  908. unsigned long mem_alloced = 0UL;
  909. #endif
  910. read_obp_memory("reg", &pall[0], &pall_ents);
  911. for (i = 0; i < pall_ents; i++) {
  912. unsigned long phys_start, phys_end;
  913. phys_start = pall[i].phys_addr;
  914. phys_end = phys_start + pall[i].reg_size;
  915. mark_kpte_bitmap(phys_start, phys_end);
  916. #ifdef CONFIG_DEBUG_PAGEALLOC
  917. mem_alloced += kernel_map_range(phys_start, phys_end,
  918. PAGE_KERNEL);
  919. #endif
  920. }
  921. #ifdef CONFIG_DEBUG_PAGEALLOC
  922. printk("Allocated %ld bytes for kernel page tables.\n",
  923. mem_alloced);
  924. kvmap_linear_patch[0] = 0x01000000; /* nop */
  925. flushi(&kvmap_linear_patch[0]);
  926. __flush_tlb_all();
  927. #endif
  928. }
  929. #ifdef CONFIG_DEBUG_PAGEALLOC
  930. void kernel_map_pages(struct page *page, int numpages, int enable)
  931. {
  932. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  933. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  934. kernel_map_range(phys_start, phys_end,
  935. (enable ? PAGE_KERNEL : __pgprot(0)));
  936. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  937. PAGE_OFFSET + phys_end);
  938. /* we should perform an IPI and flush all tlbs,
  939. * but that can deadlock->flush only current cpu.
  940. */
  941. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  942. PAGE_OFFSET + phys_end);
  943. }
  944. #endif
  945. unsigned long __init find_ecache_flush_span(unsigned long size)
  946. {
  947. int i;
  948. for (i = 0; i < pavail_ents; i++) {
  949. if (pavail[i].reg_size >= size)
  950. return pavail[i].phys_addr;
  951. }
  952. return ~0UL;
  953. }
  954. static void __init tsb_phys_patch(void)
  955. {
  956. struct tsb_ldquad_phys_patch_entry *pquad;
  957. struct tsb_phys_patch_entry *p;
  958. pquad = &__tsb_ldquad_phys_patch;
  959. while (pquad < &__tsb_ldquad_phys_patch_end) {
  960. unsigned long addr = pquad->addr;
  961. if (tlb_type == hypervisor)
  962. *(unsigned int *) addr = pquad->sun4v_insn;
  963. else
  964. *(unsigned int *) addr = pquad->sun4u_insn;
  965. wmb();
  966. __asm__ __volatile__("flush %0"
  967. : /* no outputs */
  968. : "r" (addr));
  969. pquad++;
  970. }
  971. p = &__tsb_phys_patch;
  972. while (p < &__tsb_phys_patch_end) {
  973. unsigned long addr = p->addr;
  974. *(unsigned int *) addr = p->insn;
  975. wmb();
  976. __asm__ __volatile__("flush %0"
  977. : /* no outputs */
  978. : "r" (addr));
  979. p++;
  980. }
  981. }
  982. /* Don't mark as init, we give this to the Hypervisor. */
  983. static struct hv_tsb_descr ktsb_descr[2];
  984. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  985. static void __init sun4v_ktsb_init(void)
  986. {
  987. unsigned long ktsb_pa;
  988. /* First KTSB for PAGE_SIZE mappings. */
  989. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  990. switch (PAGE_SIZE) {
  991. case 8 * 1024:
  992. default:
  993. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  994. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  995. break;
  996. case 64 * 1024:
  997. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  998. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  999. break;
  1000. case 512 * 1024:
  1001. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1002. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1003. break;
  1004. case 4 * 1024 * 1024:
  1005. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1006. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1007. break;
  1008. };
  1009. ktsb_descr[0].assoc = 1;
  1010. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1011. ktsb_descr[0].ctx_idx = 0;
  1012. ktsb_descr[0].tsb_base = ktsb_pa;
  1013. ktsb_descr[0].resv = 0;
  1014. /* Second KTSB for 4MB/256MB mappings. */
  1015. ktsb_pa = (kern_base +
  1016. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1017. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1018. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1019. HV_PGSZ_MASK_256MB);
  1020. ktsb_descr[1].assoc = 1;
  1021. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1022. ktsb_descr[1].ctx_idx = 0;
  1023. ktsb_descr[1].tsb_base = ktsb_pa;
  1024. ktsb_descr[1].resv = 0;
  1025. }
  1026. void __cpuinit sun4v_ktsb_register(void)
  1027. {
  1028. register unsigned long func asm("%o5");
  1029. register unsigned long arg0 asm("%o0");
  1030. register unsigned long arg1 asm("%o1");
  1031. unsigned long pa;
  1032. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1033. func = HV_FAST_MMU_TSB_CTX0;
  1034. arg0 = 2;
  1035. arg1 = pa;
  1036. __asm__ __volatile__("ta %6"
  1037. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  1038. : "0" (func), "1" (arg0), "2" (arg1),
  1039. "i" (HV_FAST_TRAP));
  1040. }
  1041. /* paging_init() sets up the page tables */
  1042. extern void cheetah_ecache_flush_init(void);
  1043. extern void sun4v_patch_tlb_handlers(void);
  1044. static unsigned long last_valid_pfn;
  1045. pgd_t swapper_pg_dir[2048];
  1046. static void sun4u_pgprot_init(void);
  1047. static void sun4v_pgprot_init(void);
  1048. void __init paging_init(void)
  1049. {
  1050. unsigned long end_pfn, pages_avail, shift, phys_base;
  1051. unsigned long real_end, i;
  1052. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1053. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1054. /* Invalidate both kernel TSBs. */
  1055. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1056. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1057. if (tlb_type == hypervisor)
  1058. sun4v_pgprot_init();
  1059. else
  1060. sun4u_pgprot_init();
  1061. if (tlb_type == cheetah_plus ||
  1062. tlb_type == hypervisor)
  1063. tsb_phys_patch();
  1064. if (tlb_type == hypervisor) {
  1065. sun4v_patch_tlb_handlers();
  1066. sun4v_ktsb_init();
  1067. }
  1068. /* Find available physical memory... */
  1069. read_obp_memory("available", &pavail[0], &pavail_ents);
  1070. phys_base = 0xffffffffffffffffUL;
  1071. for (i = 0; i < pavail_ents; i++)
  1072. phys_base = min(phys_base, pavail[i].phys_addr);
  1073. set_bit(0, mmu_context_bmap);
  1074. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1075. real_end = (unsigned long)_end;
  1076. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1077. bigkernel = 1;
  1078. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1079. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1080. prom_halt();
  1081. }
  1082. /* Set kernel pgd to upper alias so physical page computations
  1083. * work.
  1084. */
  1085. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1086. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1087. /* Now can init the kernel/bad page tables. */
  1088. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1089. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1090. inherit_prom_mappings();
  1091. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1092. setup_tba();
  1093. __flush_tlb_all();
  1094. if (tlb_type == hypervisor)
  1095. sun4v_ktsb_register();
  1096. /* Setup bootmem... */
  1097. pages_avail = 0;
  1098. last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
  1099. max_mapnr = last_valid_pfn;
  1100. kernel_physical_mapping_init();
  1101. {
  1102. unsigned long zones_size[MAX_NR_ZONES];
  1103. unsigned long zholes_size[MAX_NR_ZONES];
  1104. int znum;
  1105. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1106. zones_size[znum] = zholes_size[znum] = 0;
  1107. zones_size[ZONE_DMA] = end_pfn;
  1108. zholes_size[ZONE_DMA] = end_pfn - pages_avail;
  1109. free_area_init_node(0, &contig_page_data, zones_size,
  1110. __pa(PAGE_OFFSET) >> PAGE_SHIFT,
  1111. zholes_size);
  1112. }
  1113. device_scan();
  1114. }
  1115. static void __init taint_real_pages(void)
  1116. {
  1117. int i;
  1118. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1119. /* Find changes discovered in the physmem available rescan and
  1120. * reserve the lost portions in the bootmem maps.
  1121. */
  1122. for (i = 0; i < pavail_ents; i++) {
  1123. unsigned long old_start, old_end;
  1124. old_start = pavail[i].phys_addr;
  1125. old_end = old_start +
  1126. pavail[i].reg_size;
  1127. while (old_start < old_end) {
  1128. int n;
  1129. for (n = 0; pavail_rescan_ents; n++) {
  1130. unsigned long new_start, new_end;
  1131. new_start = pavail_rescan[n].phys_addr;
  1132. new_end = new_start +
  1133. pavail_rescan[n].reg_size;
  1134. if (new_start <= old_start &&
  1135. new_end >= (old_start + PAGE_SIZE)) {
  1136. set_bit(old_start >> 22,
  1137. sparc64_valid_addr_bitmap);
  1138. goto do_next_page;
  1139. }
  1140. }
  1141. reserve_bootmem(old_start, PAGE_SIZE);
  1142. do_next_page:
  1143. old_start += PAGE_SIZE;
  1144. }
  1145. }
  1146. }
  1147. void __init mem_init(void)
  1148. {
  1149. unsigned long codepages, datapages, initpages;
  1150. unsigned long addr, last;
  1151. int i;
  1152. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1153. i += 1;
  1154. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1155. if (sparc64_valid_addr_bitmap == NULL) {
  1156. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1157. prom_halt();
  1158. }
  1159. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1160. addr = PAGE_OFFSET + kern_base;
  1161. last = PAGE_ALIGN(kern_size) + addr;
  1162. while (addr < last) {
  1163. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1164. addr += PAGE_SIZE;
  1165. }
  1166. taint_real_pages();
  1167. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1168. #ifdef CONFIG_DEBUG_BOOTMEM
  1169. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1170. #endif
  1171. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1172. /*
  1173. * Set up the zero page, mark it reserved, so that page count
  1174. * is not manipulated when freeing the page from user ptes.
  1175. */
  1176. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1177. if (mem_map_zero == NULL) {
  1178. prom_printf("paging_init: Cannot alloc zero page.\n");
  1179. prom_halt();
  1180. }
  1181. SetPageReserved(mem_map_zero);
  1182. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1183. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1184. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1185. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1186. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1187. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1188. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1189. nr_free_pages() << (PAGE_SHIFT-10),
  1190. codepages << (PAGE_SHIFT-10),
  1191. datapages << (PAGE_SHIFT-10),
  1192. initpages << (PAGE_SHIFT-10),
  1193. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1194. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1195. cheetah_ecache_flush_init();
  1196. }
  1197. void free_initmem(void)
  1198. {
  1199. unsigned long addr, initend;
  1200. /*
  1201. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1202. */
  1203. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1204. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1205. for (; addr < initend; addr += PAGE_SIZE) {
  1206. unsigned long page;
  1207. struct page *p;
  1208. page = (addr +
  1209. ((unsigned long) __va(kern_base)) -
  1210. ((unsigned long) KERNBASE));
  1211. memset((void *)addr, 0xcc, PAGE_SIZE);
  1212. p = virt_to_page(page);
  1213. ClearPageReserved(p);
  1214. set_page_count(p, 1);
  1215. __free_page(p);
  1216. num_physpages++;
  1217. totalram_pages++;
  1218. }
  1219. }
  1220. #ifdef CONFIG_BLK_DEV_INITRD
  1221. void free_initrd_mem(unsigned long start, unsigned long end)
  1222. {
  1223. if (start < end)
  1224. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1225. for (; start < end; start += PAGE_SIZE) {
  1226. struct page *p = virt_to_page(start);
  1227. ClearPageReserved(p);
  1228. set_page_count(p, 1);
  1229. __free_page(p);
  1230. num_physpages++;
  1231. totalram_pages++;
  1232. }
  1233. }
  1234. #endif
  1235. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1236. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1237. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1238. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1239. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1240. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1241. pgprot_t PAGE_KERNEL __read_mostly;
  1242. EXPORT_SYMBOL(PAGE_KERNEL);
  1243. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1244. pgprot_t PAGE_COPY __read_mostly;
  1245. pgprot_t PAGE_SHARED __read_mostly;
  1246. EXPORT_SYMBOL(PAGE_SHARED);
  1247. pgprot_t PAGE_EXEC __read_mostly;
  1248. unsigned long pg_iobits __read_mostly;
  1249. unsigned long _PAGE_IE __read_mostly;
  1250. unsigned long _PAGE_E __read_mostly;
  1251. EXPORT_SYMBOL(_PAGE_E);
  1252. unsigned long _PAGE_CACHE __read_mostly;
  1253. EXPORT_SYMBOL(_PAGE_CACHE);
  1254. static void prot_init_common(unsigned long page_none,
  1255. unsigned long page_shared,
  1256. unsigned long page_copy,
  1257. unsigned long page_readonly,
  1258. unsigned long page_exec_bit)
  1259. {
  1260. PAGE_COPY = __pgprot(page_copy);
  1261. PAGE_SHARED = __pgprot(page_shared);
  1262. protection_map[0x0] = __pgprot(page_none);
  1263. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1264. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1265. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1266. protection_map[0x4] = __pgprot(page_readonly);
  1267. protection_map[0x5] = __pgprot(page_readonly);
  1268. protection_map[0x6] = __pgprot(page_copy);
  1269. protection_map[0x7] = __pgprot(page_copy);
  1270. protection_map[0x8] = __pgprot(page_none);
  1271. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1272. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1273. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1274. protection_map[0xc] = __pgprot(page_readonly);
  1275. protection_map[0xd] = __pgprot(page_readonly);
  1276. protection_map[0xe] = __pgprot(page_shared);
  1277. protection_map[0xf] = __pgprot(page_shared);
  1278. }
  1279. static void __init sun4u_pgprot_init(void)
  1280. {
  1281. unsigned long page_none, page_shared, page_copy, page_readonly;
  1282. unsigned long page_exec_bit;
  1283. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1284. _PAGE_CACHE_4U | _PAGE_P_4U |
  1285. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1286. _PAGE_EXEC_4U);
  1287. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1288. _PAGE_CACHE_4U | _PAGE_P_4U |
  1289. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1290. _PAGE_EXEC_4U | _PAGE_L_4U);
  1291. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1292. _PAGE_IE = _PAGE_IE_4U;
  1293. _PAGE_E = _PAGE_E_4U;
  1294. _PAGE_CACHE = _PAGE_CACHE_4U;
  1295. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1296. __ACCESS_BITS_4U | _PAGE_E_4U);
  1297. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1298. 0xfffff80000000000;
  1299. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1300. _PAGE_P_4U | _PAGE_W_4U);
  1301. /* XXX Should use 256MB on Panther. XXX */
  1302. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1303. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1304. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1305. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1306. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1307. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1308. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1309. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1310. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1311. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1312. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1313. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1314. page_exec_bit = _PAGE_EXEC_4U;
  1315. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1316. page_exec_bit);
  1317. }
  1318. static void __init sun4v_pgprot_init(void)
  1319. {
  1320. unsigned long page_none, page_shared, page_copy, page_readonly;
  1321. unsigned long page_exec_bit;
  1322. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1323. _PAGE_CACHE_4V | _PAGE_P_4V |
  1324. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1325. _PAGE_EXEC_4V);
  1326. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1327. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1328. _PAGE_IE = _PAGE_IE_4V;
  1329. _PAGE_E = _PAGE_E_4V;
  1330. _PAGE_CACHE = _PAGE_CACHE_4V;
  1331. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1332. 0xfffff80000000000;
  1333. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1334. _PAGE_P_4V | _PAGE_W_4V);
  1335. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1336. 0xfffff80000000000;
  1337. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1338. _PAGE_P_4V | _PAGE_W_4V);
  1339. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1340. __ACCESS_BITS_4V | _PAGE_E_4V);
  1341. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1342. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1343. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1344. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1345. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1346. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1347. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1348. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1349. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1350. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1351. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1352. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1353. page_exec_bit = _PAGE_EXEC_4V;
  1354. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1355. page_exec_bit);
  1356. }
  1357. unsigned long pte_sz_bits(unsigned long sz)
  1358. {
  1359. if (tlb_type == hypervisor) {
  1360. switch (sz) {
  1361. case 8 * 1024:
  1362. default:
  1363. return _PAGE_SZ8K_4V;
  1364. case 64 * 1024:
  1365. return _PAGE_SZ64K_4V;
  1366. case 512 * 1024:
  1367. return _PAGE_SZ512K_4V;
  1368. case 4 * 1024 * 1024:
  1369. return _PAGE_SZ4MB_4V;
  1370. };
  1371. } else {
  1372. switch (sz) {
  1373. case 8 * 1024:
  1374. default:
  1375. return _PAGE_SZ8K_4U;
  1376. case 64 * 1024:
  1377. return _PAGE_SZ64K_4U;
  1378. case 512 * 1024:
  1379. return _PAGE_SZ512K_4U;
  1380. case 4 * 1024 * 1024:
  1381. return _PAGE_SZ4MB_4U;
  1382. };
  1383. }
  1384. }
  1385. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1386. {
  1387. pte_t pte;
  1388. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1389. pte_val(pte) |= (((unsigned long)space) << 32);
  1390. pte_val(pte) |= pte_sz_bits(page_size);
  1391. return pte;
  1392. }
  1393. static unsigned long kern_large_tte(unsigned long paddr)
  1394. {
  1395. unsigned long val;
  1396. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1397. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1398. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1399. if (tlb_type == hypervisor)
  1400. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1401. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1402. _PAGE_EXEC_4V | _PAGE_W_4V);
  1403. return val | paddr;
  1404. }
  1405. /*
  1406. * Translate PROM's mapping we capture at boot time into physical address.
  1407. * The second parameter is only set from prom_callback() invocations.
  1408. */
  1409. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1410. {
  1411. unsigned long mask;
  1412. int i;
  1413. mask = _PAGE_PADDR_4U;
  1414. if (tlb_type == hypervisor)
  1415. mask = _PAGE_PADDR_4V;
  1416. for (i = 0; i < prom_trans_ents; i++) {
  1417. struct linux_prom_translation *p = &prom_trans[i];
  1418. if (promva >= p->virt &&
  1419. promva < (p->virt + p->size)) {
  1420. unsigned long base = p->data & mask;
  1421. if (error)
  1422. *error = 0;
  1423. return base + (promva & (8192 - 1));
  1424. }
  1425. }
  1426. if (error)
  1427. *error = 1;
  1428. return 0UL;
  1429. }
  1430. /* XXX We should kill off this ugly thing at so me point. XXX */
  1431. unsigned long sun4u_get_pte(unsigned long addr)
  1432. {
  1433. pgd_t *pgdp;
  1434. pud_t *pudp;
  1435. pmd_t *pmdp;
  1436. pte_t *ptep;
  1437. unsigned long mask = _PAGE_PADDR_4U;
  1438. if (tlb_type == hypervisor)
  1439. mask = _PAGE_PADDR_4V;
  1440. if (addr >= PAGE_OFFSET)
  1441. return addr & mask;
  1442. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1443. return prom_virt_to_phys(addr, NULL);
  1444. pgdp = pgd_offset_k(addr);
  1445. pudp = pud_offset(pgdp, addr);
  1446. pmdp = pmd_offset(pudp, addr);
  1447. ptep = pte_offset_kernel(pmdp, addr);
  1448. return pte_val(*ptep) & mask;
  1449. }
  1450. /* If not locked, zap it. */
  1451. void __flush_tlb_all(void)
  1452. {
  1453. unsigned long pstate;
  1454. int i;
  1455. __asm__ __volatile__("flushw\n\t"
  1456. "rdpr %%pstate, %0\n\t"
  1457. "wrpr %0, %1, %%pstate"
  1458. : "=r" (pstate)
  1459. : "i" (PSTATE_IE));
  1460. if (tlb_type == spitfire) {
  1461. for (i = 0; i < 64; i++) {
  1462. /* Spitfire Errata #32 workaround */
  1463. /* NOTE: Always runs on spitfire, so no
  1464. * cheetah+ page size encodings.
  1465. */
  1466. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1467. "flush %%g6"
  1468. : /* No outputs */
  1469. : "r" (0),
  1470. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1471. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1472. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1473. "membar #Sync"
  1474. : /* no outputs */
  1475. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1476. spitfire_put_dtlb_data(i, 0x0UL);
  1477. }
  1478. /* Spitfire Errata #32 workaround */
  1479. /* NOTE: Always runs on spitfire, so no
  1480. * cheetah+ page size encodings.
  1481. */
  1482. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1483. "flush %%g6"
  1484. : /* No outputs */
  1485. : "r" (0),
  1486. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1487. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1488. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1489. "membar #Sync"
  1490. : /* no outputs */
  1491. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1492. spitfire_put_itlb_data(i, 0x0UL);
  1493. }
  1494. }
  1495. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1496. cheetah_flush_dtlb_all();
  1497. cheetah_flush_itlb_all();
  1498. }
  1499. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1500. : : "r" (pstate));
  1501. }