x86.c 132 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <linux/srcu.h>
  40. #include <trace/events/kvm.h>
  41. #undef TRACE_INCLUDE_FILE
  42. #define CREATE_TRACE_POINTS
  43. #include "trace.h"
  44. #include <asm/debugreg.h>
  45. #include <asm/uaccess.h>
  46. #include <asm/msr.h>
  47. #include <asm/desc.h>
  48. #include <asm/mtrr.h>
  49. #include <asm/mce.h>
  50. #define MAX_IO_MSRS 256
  51. #define CR0_RESERVED_BITS \
  52. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  53. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  54. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  55. #define CR4_RESERVED_BITS \
  56. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  57. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  58. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  59. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  60. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  61. #define KVM_MAX_MCE_BANKS 32
  62. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  63. /* EFER defaults:
  64. * - enable syscall per default because its emulated by KVM
  65. * - enable LME and LMA per default on 64 bit KVM
  66. */
  67. #ifdef CONFIG_X86_64
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. #define KVM_NR_SHARED_MSRS 16
  82. struct kvm_shared_msrs_global {
  83. int nr;
  84. u32 msrs[KVM_NR_SHARED_MSRS];
  85. };
  86. struct kvm_shared_msrs {
  87. struct user_return_notifier urn;
  88. bool registered;
  89. struct kvm_shared_msr_values {
  90. u64 host;
  91. u64 curr;
  92. } values[KVM_NR_SHARED_MSRS];
  93. };
  94. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  95. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  96. struct kvm_stats_debugfs_item debugfs_entries[] = {
  97. { "pf_fixed", VCPU_STAT(pf_fixed) },
  98. { "pf_guest", VCPU_STAT(pf_guest) },
  99. { "tlb_flush", VCPU_STAT(tlb_flush) },
  100. { "invlpg", VCPU_STAT(invlpg) },
  101. { "exits", VCPU_STAT(exits) },
  102. { "io_exits", VCPU_STAT(io_exits) },
  103. { "mmio_exits", VCPU_STAT(mmio_exits) },
  104. { "signal_exits", VCPU_STAT(signal_exits) },
  105. { "irq_window", VCPU_STAT(irq_window_exits) },
  106. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  107. { "halt_exits", VCPU_STAT(halt_exits) },
  108. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  109. { "hypercalls", VCPU_STAT(hypercalls) },
  110. { "request_irq", VCPU_STAT(request_irq_exits) },
  111. { "irq_exits", VCPU_STAT(irq_exits) },
  112. { "host_state_reload", VCPU_STAT(host_state_reload) },
  113. { "efer_reload", VCPU_STAT(efer_reload) },
  114. { "fpu_reload", VCPU_STAT(fpu_reload) },
  115. { "insn_emulation", VCPU_STAT(insn_emulation) },
  116. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  117. { "irq_injections", VCPU_STAT(irq_injections) },
  118. { "nmi_injections", VCPU_STAT(nmi_injections) },
  119. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  120. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  121. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  122. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  123. { "mmu_flooded", VM_STAT(mmu_flooded) },
  124. { "mmu_recycled", VM_STAT(mmu_recycled) },
  125. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  126. { "mmu_unsync", VM_STAT(mmu_unsync) },
  127. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  128. { "largepages", VM_STAT(lpages) },
  129. { NULL }
  130. };
  131. static void kvm_on_user_return(struct user_return_notifier *urn)
  132. {
  133. unsigned slot;
  134. struct kvm_shared_msrs *locals
  135. = container_of(urn, struct kvm_shared_msrs, urn);
  136. struct kvm_shared_msr_values *values;
  137. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  138. values = &locals->values[slot];
  139. if (values->host != values->curr) {
  140. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  141. values->curr = values->host;
  142. }
  143. }
  144. locals->registered = false;
  145. user_return_notifier_unregister(urn);
  146. }
  147. static void shared_msr_update(unsigned slot, u32 msr)
  148. {
  149. struct kvm_shared_msrs *smsr;
  150. u64 value;
  151. smsr = &__get_cpu_var(shared_msrs);
  152. /* only read, and nobody should modify it at this time,
  153. * so don't need lock */
  154. if (slot >= shared_msrs_global.nr) {
  155. printk(KERN_ERR "kvm: invalid MSR slot!");
  156. return;
  157. }
  158. rdmsrl_safe(msr, &value);
  159. smsr->values[slot].host = value;
  160. smsr->values[slot].curr = value;
  161. }
  162. void kvm_define_shared_msr(unsigned slot, u32 msr)
  163. {
  164. if (slot >= shared_msrs_global.nr)
  165. shared_msrs_global.nr = slot + 1;
  166. shared_msrs_global.msrs[slot] = msr;
  167. /* we need ensured the shared_msr_global have been updated */
  168. smp_wmb();
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  171. static void kvm_shared_msr_cpu_online(void)
  172. {
  173. unsigned i;
  174. for (i = 0; i < shared_msrs_global.nr; ++i)
  175. shared_msr_update(i, shared_msrs_global.msrs[i]);
  176. }
  177. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  178. {
  179. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  180. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  181. return;
  182. smsr->values[slot].curr = value;
  183. wrmsrl(shared_msrs_global.msrs[slot], value);
  184. if (!smsr->registered) {
  185. smsr->urn.on_user_return = kvm_on_user_return;
  186. user_return_notifier_register(&smsr->urn);
  187. smsr->registered = true;
  188. }
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  191. static void drop_user_return_notifiers(void *ignore)
  192. {
  193. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  194. if (smsr->registered)
  195. kvm_on_user_return(&smsr->urn);
  196. }
  197. unsigned long segment_base(u16 selector)
  198. {
  199. struct descriptor_table gdt;
  200. struct desc_struct *d;
  201. unsigned long table_base;
  202. unsigned long v;
  203. if (selector == 0)
  204. return 0;
  205. kvm_get_gdt(&gdt);
  206. table_base = gdt.base;
  207. if (selector & 4) { /* from ldt */
  208. u16 ldt_selector = kvm_read_ldt();
  209. table_base = segment_base(ldt_selector);
  210. }
  211. d = (struct desc_struct *)(table_base + (selector & ~7));
  212. v = get_desc_base(d);
  213. #ifdef CONFIG_X86_64
  214. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  215. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  216. #endif
  217. return v;
  218. }
  219. EXPORT_SYMBOL_GPL(segment_base);
  220. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  221. {
  222. if (irqchip_in_kernel(vcpu->kvm))
  223. return vcpu->arch.apic_base;
  224. else
  225. return vcpu->arch.apic_base;
  226. }
  227. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  228. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  229. {
  230. /* TODO: reserve bits check */
  231. if (irqchip_in_kernel(vcpu->kvm))
  232. kvm_lapic_set_base(vcpu, data);
  233. else
  234. vcpu->arch.apic_base = data;
  235. }
  236. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  237. #define EXCPT_BENIGN 0
  238. #define EXCPT_CONTRIBUTORY 1
  239. #define EXCPT_PF 2
  240. static int exception_class(int vector)
  241. {
  242. switch (vector) {
  243. case PF_VECTOR:
  244. return EXCPT_PF;
  245. case DE_VECTOR:
  246. case TS_VECTOR:
  247. case NP_VECTOR:
  248. case SS_VECTOR:
  249. case GP_VECTOR:
  250. return EXCPT_CONTRIBUTORY;
  251. default:
  252. break;
  253. }
  254. return EXCPT_BENIGN;
  255. }
  256. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  257. unsigned nr, bool has_error, u32 error_code)
  258. {
  259. u32 prev_nr;
  260. int class1, class2;
  261. if (!vcpu->arch.exception.pending) {
  262. queue:
  263. vcpu->arch.exception.pending = true;
  264. vcpu->arch.exception.has_error_code = has_error;
  265. vcpu->arch.exception.nr = nr;
  266. vcpu->arch.exception.error_code = error_code;
  267. return;
  268. }
  269. /* to check exception */
  270. prev_nr = vcpu->arch.exception.nr;
  271. if (prev_nr == DF_VECTOR) {
  272. /* triple fault -> shutdown */
  273. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  274. return;
  275. }
  276. class1 = exception_class(prev_nr);
  277. class2 = exception_class(nr);
  278. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  279. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  280. /* generate double fault per SDM Table 5-5 */
  281. vcpu->arch.exception.pending = true;
  282. vcpu->arch.exception.has_error_code = true;
  283. vcpu->arch.exception.nr = DF_VECTOR;
  284. vcpu->arch.exception.error_code = 0;
  285. } else
  286. /* replace previous exception with a new one in a hope
  287. that instruction re-execution will regenerate lost
  288. exception */
  289. goto queue;
  290. }
  291. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  296. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  297. u32 error_code)
  298. {
  299. ++vcpu->stat.pf_guest;
  300. vcpu->arch.cr2 = addr;
  301. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  302. }
  303. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  304. {
  305. vcpu->arch.nmi_pending = 1;
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  308. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  309. {
  310. kvm_multiple_exception(vcpu, nr, true, error_code);
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  313. /*
  314. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  315. * a #GP and return false.
  316. */
  317. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  318. {
  319. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  320. return true;
  321. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  322. return false;
  323. }
  324. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  325. /*
  326. * Load the pae pdptrs. Return true is they are all valid.
  327. */
  328. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  329. {
  330. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  331. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  332. int i;
  333. int ret;
  334. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  335. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  336. offset * sizeof(u64), sizeof(pdpte));
  337. if (ret < 0) {
  338. ret = 0;
  339. goto out;
  340. }
  341. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  342. if (is_present_gpte(pdpte[i]) &&
  343. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  344. ret = 0;
  345. goto out;
  346. }
  347. }
  348. ret = 1;
  349. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  350. __set_bit(VCPU_EXREG_PDPTR,
  351. (unsigned long *)&vcpu->arch.regs_avail);
  352. __set_bit(VCPU_EXREG_PDPTR,
  353. (unsigned long *)&vcpu->arch.regs_dirty);
  354. out:
  355. return ret;
  356. }
  357. EXPORT_SYMBOL_GPL(load_pdptrs);
  358. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  359. {
  360. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  361. bool changed = true;
  362. int r;
  363. if (is_long_mode(vcpu) || !is_pae(vcpu))
  364. return false;
  365. if (!test_bit(VCPU_EXREG_PDPTR,
  366. (unsigned long *)&vcpu->arch.regs_avail))
  367. return true;
  368. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  369. if (r < 0)
  370. goto out;
  371. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  372. out:
  373. return changed;
  374. }
  375. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  376. {
  377. if (cr0 & CR0_RESERVED_BITS) {
  378. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  379. cr0, vcpu->arch.cr0);
  380. kvm_inject_gp(vcpu, 0);
  381. return;
  382. }
  383. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  384. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  385. kvm_inject_gp(vcpu, 0);
  386. return;
  387. }
  388. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  389. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  390. "and a clear PE flag\n");
  391. kvm_inject_gp(vcpu, 0);
  392. return;
  393. }
  394. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  395. #ifdef CONFIG_X86_64
  396. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  397. int cs_db, cs_l;
  398. if (!is_pae(vcpu)) {
  399. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  400. "in long mode while PAE is disabled\n");
  401. kvm_inject_gp(vcpu, 0);
  402. return;
  403. }
  404. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  405. if (cs_l) {
  406. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  407. "in long mode while CS.L == 1\n");
  408. kvm_inject_gp(vcpu, 0);
  409. return;
  410. }
  411. } else
  412. #endif
  413. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  414. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  415. "reserved bits\n");
  416. kvm_inject_gp(vcpu, 0);
  417. return;
  418. }
  419. }
  420. kvm_x86_ops->set_cr0(vcpu, cr0);
  421. vcpu->arch.cr0 = cr0;
  422. kvm_mmu_reset_context(vcpu);
  423. return;
  424. }
  425. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  426. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  427. {
  428. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  429. }
  430. EXPORT_SYMBOL_GPL(kvm_lmsw);
  431. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  432. {
  433. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  434. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  435. if (cr4 & CR4_RESERVED_BITS) {
  436. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  437. kvm_inject_gp(vcpu, 0);
  438. return;
  439. }
  440. if (is_long_mode(vcpu)) {
  441. if (!(cr4 & X86_CR4_PAE)) {
  442. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  443. "in long mode\n");
  444. kvm_inject_gp(vcpu, 0);
  445. return;
  446. }
  447. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  448. && ((cr4 ^ old_cr4) & pdptr_bits)
  449. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  450. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  451. kvm_inject_gp(vcpu, 0);
  452. return;
  453. }
  454. if (cr4 & X86_CR4_VMXE) {
  455. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  456. kvm_inject_gp(vcpu, 0);
  457. return;
  458. }
  459. kvm_x86_ops->set_cr4(vcpu, cr4);
  460. vcpu->arch.cr4 = cr4;
  461. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  462. kvm_mmu_reset_context(vcpu);
  463. }
  464. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  465. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  466. {
  467. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  468. kvm_mmu_sync_roots(vcpu);
  469. kvm_mmu_flush_tlb(vcpu);
  470. return;
  471. }
  472. if (is_long_mode(vcpu)) {
  473. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  474. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  475. kvm_inject_gp(vcpu, 0);
  476. return;
  477. }
  478. } else {
  479. if (is_pae(vcpu)) {
  480. if (cr3 & CR3_PAE_RESERVED_BITS) {
  481. printk(KERN_DEBUG
  482. "set_cr3: #GP, reserved bits\n");
  483. kvm_inject_gp(vcpu, 0);
  484. return;
  485. }
  486. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  487. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  488. "reserved bits\n");
  489. kvm_inject_gp(vcpu, 0);
  490. return;
  491. }
  492. }
  493. /*
  494. * We don't check reserved bits in nonpae mode, because
  495. * this isn't enforced, and VMware depends on this.
  496. */
  497. }
  498. /*
  499. * Does the new cr3 value map to physical memory? (Note, we
  500. * catch an invalid cr3 even in real-mode, because it would
  501. * cause trouble later on when we turn on paging anyway.)
  502. *
  503. * A real CPU would silently accept an invalid cr3 and would
  504. * attempt to use it - with largely undefined (and often hard
  505. * to debug) behavior on the guest side.
  506. */
  507. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  508. kvm_inject_gp(vcpu, 0);
  509. else {
  510. vcpu->arch.cr3 = cr3;
  511. vcpu->arch.mmu.new_cr3(vcpu);
  512. }
  513. }
  514. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  515. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  516. {
  517. if (cr8 & CR8_RESERVED_BITS) {
  518. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  519. kvm_inject_gp(vcpu, 0);
  520. return;
  521. }
  522. if (irqchip_in_kernel(vcpu->kvm))
  523. kvm_lapic_set_tpr(vcpu, cr8);
  524. else
  525. vcpu->arch.cr8 = cr8;
  526. }
  527. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  528. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  529. {
  530. if (irqchip_in_kernel(vcpu->kvm))
  531. return kvm_lapic_get_cr8(vcpu);
  532. else
  533. return vcpu->arch.cr8;
  534. }
  535. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  536. static inline u32 bit(int bitno)
  537. {
  538. return 1 << (bitno & 31);
  539. }
  540. /*
  541. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  542. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  543. *
  544. * This list is modified at module load time to reflect the
  545. * capabilities of the host cpu. This capabilities test skips MSRs that are
  546. * kvm-specific. Those are put in the beginning of the list.
  547. */
  548. #define KVM_SAVE_MSRS_BEGIN 2
  549. static u32 msrs_to_save[] = {
  550. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  551. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  552. MSR_K6_STAR,
  553. #ifdef CONFIG_X86_64
  554. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  555. #endif
  556. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  557. };
  558. static unsigned num_msrs_to_save;
  559. static u32 emulated_msrs[] = {
  560. MSR_IA32_MISC_ENABLE,
  561. };
  562. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  563. {
  564. if (efer & efer_reserved_bits) {
  565. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  566. efer);
  567. kvm_inject_gp(vcpu, 0);
  568. return;
  569. }
  570. if (is_paging(vcpu)
  571. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  572. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  573. kvm_inject_gp(vcpu, 0);
  574. return;
  575. }
  576. if (efer & EFER_FFXSR) {
  577. struct kvm_cpuid_entry2 *feat;
  578. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  579. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  580. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  581. kvm_inject_gp(vcpu, 0);
  582. return;
  583. }
  584. }
  585. if (efer & EFER_SVME) {
  586. struct kvm_cpuid_entry2 *feat;
  587. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  588. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  589. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  590. kvm_inject_gp(vcpu, 0);
  591. return;
  592. }
  593. }
  594. kvm_x86_ops->set_efer(vcpu, efer);
  595. efer &= ~EFER_LMA;
  596. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  597. vcpu->arch.shadow_efer = efer;
  598. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  599. kvm_mmu_reset_context(vcpu);
  600. }
  601. void kvm_enable_efer_bits(u64 mask)
  602. {
  603. efer_reserved_bits &= ~mask;
  604. }
  605. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  606. /*
  607. * Writes msr value into into the appropriate "register".
  608. * Returns 0 on success, non-0 otherwise.
  609. * Assumes vcpu_load() was already called.
  610. */
  611. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  612. {
  613. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  614. }
  615. /*
  616. * Adapt set_msr() to msr_io()'s calling convention
  617. */
  618. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  619. {
  620. return kvm_set_msr(vcpu, index, *data);
  621. }
  622. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  623. {
  624. static int version;
  625. struct pvclock_wall_clock wc;
  626. struct timespec boot;
  627. if (!wall_clock)
  628. return;
  629. version++;
  630. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  631. /*
  632. * The guest calculates current wall clock time by adding
  633. * system time (updated by kvm_write_guest_time below) to the
  634. * wall clock specified here. guest system time equals host
  635. * system time for us, thus we must fill in host boot time here.
  636. */
  637. getboottime(&boot);
  638. wc.sec = boot.tv_sec;
  639. wc.nsec = boot.tv_nsec;
  640. wc.version = version;
  641. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  642. version++;
  643. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  644. }
  645. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  646. {
  647. uint32_t quotient, remainder;
  648. /* Don't try to replace with do_div(), this one calculates
  649. * "(dividend << 32) / divisor" */
  650. __asm__ ( "divl %4"
  651. : "=a" (quotient), "=d" (remainder)
  652. : "0" (0), "1" (dividend), "r" (divisor) );
  653. return quotient;
  654. }
  655. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  656. {
  657. uint64_t nsecs = 1000000000LL;
  658. int32_t shift = 0;
  659. uint64_t tps64;
  660. uint32_t tps32;
  661. tps64 = tsc_khz * 1000LL;
  662. while (tps64 > nsecs*2) {
  663. tps64 >>= 1;
  664. shift--;
  665. }
  666. tps32 = (uint32_t)tps64;
  667. while (tps32 <= (uint32_t)nsecs) {
  668. tps32 <<= 1;
  669. shift++;
  670. }
  671. hv_clock->tsc_shift = shift;
  672. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  673. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  674. __func__, tsc_khz, hv_clock->tsc_shift,
  675. hv_clock->tsc_to_system_mul);
  676. }
  677. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  678. static void kvm_write_guest_time(struct kvm_vcpu *v)
  679. {
  680. struct timespec ts;
  681. unsigned long flags;
  682. struct kvm_vcpu_arch *vcpu = &v->arch;
  683. void *shared_kaddr;
  684. unsigned long this_tsc_khz;
  685. if ((!vcpu->time_page))
  686. return;
  687. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  688. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  689. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  690. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  691. }
  692. put_cpu_var(cpu_tsc_khz);
  693. /* Keep irq disabled to prevent changes to the clock */
  694. local_irq_save(flags);
  695. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  696. ktime_get_ts(&ts);
  697. monotonic_to_bootbased(&ts);
  698. local_irq_restore(flags);
  699. /* With all the info we got, fill in the values */
  700. vcpu->hv_clock.system_time = ts.tv_nsec +
  701. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  702. /*
  703. * The interface expects us to write an even number signaling that the
  704. * update is finished. Since the guest won't see the intermediate
  705. * state, we just increase by 2 at the end.
  706. */
  707. vcpu->hv_clock.version += 2;
  708. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  709. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  710. sizeof(vcpu->hv_clock));
  711. kunmap_atomic(shared_kaddr, KM_USER0);
  712. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  713. }
  714. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  715. {
  716. struct kvm_vcpu_arch *vcpu = &v->arch;
  717. if (!vcpu->time_page)
  718. return 0;
  719. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  720. return 1;
  721. }
  722. static bool msr_mtrr_valid(unsigned msr)
  723. {
  724. switch (msr) {
  725. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  726. case MSR_MTRRfix64K_00000:
  727. case MSR_MTRRfix16K_80000:
  728. case MSR_MTRRfix16K_A0000:
  729. case MSR_MTRRfix4K_C0000:
  730. case MSR_MTRRfix4K_C8000:
  731. case MSR_MTRRfix4K_D0000:
  732. case MSR_MTRRfix4K_D8000:
  733. case MSR_MTRRfix4K_E0000:
  734. case MSR_MTRRfix4K_E8000:
  735. case MSR_MTRRfix4K_F0000:
  736. case MSR_MTRRfix4K_F8000:
  737. case MSR_MTRRdefType:
  738. case MSR_IA32_CR_PAT:
  739. return true;
  740. case 0x2f8:
  741. return true;
  742. }
  743. return false;
  744. }
  745. static bool valid_pat_type(unsigned t)
  746. {
  747. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  748. }
  749. static bool valid_mtrr_type(unsigned t)
  750. {
  751. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  752. }
  753. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  754. {
  755. int i;
  756. if (!msr_mtrr_valid(msr))
  757. return false;
  758. if (msr == MSR_IA32_CR_PAT) {
  759. for (i = 0; i < 8; i++)
  760. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  761. return false;
  762. return true;
  763. } else if (msr == MSR_MTRRdefType) {
  764. if (data & ~0xcff)
  765. return false;
  766. return valid_mtrr_type(data & 0xff);
  767. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  768. for (i = 0; i < 8 ; i++)
  769. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  770. return false;
  771. return true;
  772. }
  773. /* variable MTRRs */
  774. return valid_mtrr_type(data & 0xff);
  775. }
  776. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  777. {
  778. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  779. if (!mtrr_valid(vcpu, msr, data))
  780. return 1;
  781. if (msr == MSR_MTRRdefType) {
  782. vcpu->arch.mtrr_state.def_type = data;
  783. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  784. } else if (msr == MSR_MTRRfix64K_00000)
  785. p[0] = data;
  786. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  787. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  788. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  789. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  790. else if (msr == MSR_IA32_CR_PAT)
  791. vcpu->arch.pat = data;
  792. else { /* Variable MTRRs */
  793. int idx, is_mtrr_mask;
  794. u64 *pt;
  795. idx = (msr - 0x200) / 2;
  796. is_mtrr_mask = msr - 0x200 - 2 * idx;
  797. if (!is_mtrr_mask)
  798. pt =
  799. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  800. else
  801. pt =
  802. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  803. *pt = data;
  804. }
  805. kvm_mmu_reset_context(vcpu);
  806. return 0;
  807. }
  808. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  809. {
  810. u64 mcg_cap = vcpu->arch.mcg_cap;
  811. unsigned bank_num = mcg_cap & 0xff;
  812. switch (msr) {
  813. case MSR_IA32_MCG_STATUS:
  814. vcpu->arch.mcg_status = data;
  815. break;
  816. case MSR_IA32_MCG_CTL:
  817. if (!(mcg_cap & MCG_CTL_P))
  818. return 1;
  819. if (data != 0 && data != ~(u64)0)
  820. return -1;
  821. vcpu->arch.mcg_ctl = data;
  822. break;
  823. default:
  824. if (msr >= MSR_IA32_MC0_CTL &&
  825. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  826. u32 offset = msr - MSR_IA32_MC0_CTL;
  827. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  828. if ((offset & 0x3) == 0 &&
  829. data != 0 && data != ~(u64)0)
  830. return -1;
  831. vcpu->arch.mce_banks[offset] = data;
  832. break;
  833. }
  834. return 1;
  835. }
  836. return 0;
  837. }
  838. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  839. {
  840. struct kvm *kvm = vcpu->kvm;
  841. int lm = is_long_mode(vcpu);
  842. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  843. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  844. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  845. : kvm->arch.xen_hvm_config.blob_size_32;
  846. u32 page_num = data & ~PAGE_MASK;
  847. u64 page_addr = data & PAGE_MASK;
  848. u8 *page;
  849. int r;
  850. r = -E2BIG;
  851. if (page_num >= blob_size)
  852. goto out;
  853. r = -ENOMEM;
  854. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  855. if (!page)
  856. goto out;
  857. r = -EFAULT;
  858. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  859. goto out_free;
  860. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  861. goto out_free;
  862. r = 0;
  863. out_free:
  864. kfree(page);
  865. out:
  866. return r;
  867. }
  868. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  869. {
  870. switch (msr) {
  871. case MSR_EFER:
  872. set_efer(vcpu, data);
  873. break;
  874. case MSR_K7_HWCR:
  875. data &= ~(u64)0x40; /* ignore flush filter disable */
  876. if (data != 0) {
  877. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  878. data);
  879. return 1;
  880. }
  881. break;
  882. case MSR_FAM10H_MMIO_CONF_BASE:
  883. if (data != 0) {
  884. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  885. "0x%llx\n", data);
  886. return 1;
  887. }
  888. break;
  889. case MSR_AMD64_NB_CFG:
  890. break;
  891. case MSR_IA32_DEBUGCTLMSR:
  892. if (!data) {
  893. /* We support the non-activated case already */
  894. break;
  895. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  896. /* Values other than LBR and BTF are vendor-specific,
  897. thus reserved and should throw a #GP */
  898. return 1;
  899. }
  900. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  901. __func__, data);
  902. break;
  903. case MSR_IA32_UCODE_REV:
  904. case MSR_IA32_UCODE_WRITE:
  905. case MSR_VM_HSAVE_PA:
  906. case MSR_AMD64_PATCH_LOADER:
  907. break;
  908. case 0x200 ... 0x2ff:
  909. return set_msr_mtrr(vcpu, msr, data);
  910. case MSR_IA32_APICBASE:
  911. kvm_set_apic_base(vcpu, data);
  912. break;
  913. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  914. return kvm_x2apic_msr_write(vcpu, msr, data);
  915. case MSR_IA32_MISC_ENABLE:
  916. vcpu->arch.ia32_misc_enable_msr = data;
  917. break;
  918. case MSR_KVM_WALL_CLOCK:
  919. vcpu->kvm->arch.wall_clock = data;
  920. kvm_write_wall_clock(vcpu->kvm, data);
  921. break;
  922. case MSR_KVM_SYSTEM_TIME: {
  923. if (vcpu->arch.time_page) {
  924. kvm_release_page_dirty(vcpu->arch.time_page);
  925. vcpu->arch.time_page = NULL;
  926. }
  927. vcpu->arch.time = data;
  928. /* we verify if the enable bit is set... */
  929. if (!(data & 1))
  930. break;
  931. /* ...but clean it before doing the actual write */
  932. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  933. vcpu->arch.time_page =
  934. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  935. if (is_error_page(vcpu->arch.time_page)) {
  936. kvm_release_page_clean(vcpu->arch.time_page);
  937. vcpu->arch.time_page = NULL;
  938. }
  939. kvm_request_guest_time_update(vcpu);
  940. break;
  941. }
  942. case MSR_IA32_MCG_CTL:
  943. case MSR_IA32_MCG_STATUS:
  944. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  945. return set_msr_mce(vcpu, msr, data);
  946. /* Performance counters are not protected by a CPUID bit,
  947. * so we should check all of them in the generic path for the sake of
  948. * cross vendor migration.
  949. * Writing a zero into the event select MSRs disables them,
  950. * which we perfectly emulate ;-). Any other value should be at least
  951. * reported, some guests depend on them.
  952. */
  953. case MSR_P6_EVNTSEL0:
  954. case MSR_P6_EVNTSEL1:
  955. case MSR_K7_EVNTSEL0:
  956. case MSR_K7_EVNTSEL1:
  957. case MSR_K7_EVNTSEL2:
  958. case MSR_K7_EVNTSEL3:
  959. if (data != 0)
  960. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  961. "0x%x data 0x%llx\n", msr, data);
  962. break;
  963. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  964. * so we ignore writes to make it happy.
  965. */
  966. case MSR_P6_PERFCTR0:
  967. case MSR_P6_PERFCTR1:
  968. case MSR_K7_PERFCTR0:
  969. case MSR_K7_PERFCTR1:
  970. case MSR_K7_PERFCTR2:
  971. case MSR_K7_PERFCTR3:
  972. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  973. "0x%x data 0x%llx\n", msr, data);
  974. break;
  975. default:
  976. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  977. return xen_hvm_config(vcpu, data);
  978. if (!ignore_msrs) {
  979. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  980. msr, data);
  981. return 1;
  982. } else {
  983. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  984. msr, data);
  985. break;
  986. }
  987. }
  988. return 0;
  989. }
  990. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  991. /*
  992. * Reads an msr value (of 'msr_index') into 'pdata'.
  993. * Returns 0 on success, non-0 otherwise.
  994. * Assumes vcpu_load() was already called.
  995. */
  996. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  997. {
  998. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  999. }
  1000. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1001. {
  1002. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1003. if (!msr_mtrr_valid(msr))
  1004. return 1;
  1005. if (msr == MSR_MTRRdefType)
  1006. *pdata = vcpu->arch.mtrr_state.def_type +
  1007. (vcpu->arch.mtrr_state.enabled << 10);
  1008. else if (msr == MSR_MTRRfix64K_00000)
  1009. *pdata = p[0];
  1010. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1011. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1012. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1013. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1014. else if (msr == MSR_IA32_CR_PAT)
  1015. *pdata = vcpu->arch.pat;
  1016. else { /* Variable MTRRs */
  1017. int idx, is_mtrr_mask;
  1018. u64 *pt;
  1019. idx = (msr - 0x200) / 2;
  1020. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1021. if (!is_mtrr_mask)
  1022. pt =
  1023. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1024. else
  1025. pt =
  1026. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1027. *pdata = *pt;
  1028. }
  1029. return 0;
  1030. }
  1031. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1032. {
  1033. u64 data;
  1034. u64 mcg_cap = vcpu->arch.mcg_cap;
  1035. unsigned bank_num = mcg_cap & 0xff;
  1036. switch (msr) {
  1037. case MSR_IA32_P5_MC_ADDR:
  1038. case MSR_IA32_P5_MC_TYPE:
  1039. data = 0;
  1040. break;
  1041. case MSR_IA32_MCG_CAP:
  1042. data = vcpu->arch.mcg_cap;
  1043. break;
  1044. case MSR_IA32_MCG_CTL:
  1045. if (!(mcg_cap & MCG_CTL_P))
  1046. return 1;
  1047. data = vcpu->arch.mcg_ctl;
  1048. break;
  1049. case MSR_IA32_MCG_STATUS:
  1050. data = vcpu->arch.mcg_status;
  1051. break;
  1052. default:
  1053. if (msr >= MSR_IA32_MC0_CTL &&
  1054. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1055. u32 offset = msr - MSR_IA32_MC0_CTL;
  1056. data = vcpu->arch.mce_banks[offset];
  1057. break;
  1058. }
  1059. return 1;
  1060. }
  1061. *pdata = data;
  1062. return 0;
  1063. }
  1064. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1065. {
  1066. u64 data;
  1067. switch (msr) {
  1068. case MSR_IA32_PLATFORM_ID:
  1069. case MSR_IA32_UCODE_REV:
  1070. case MSR_IA32_EBL_CR_POWERON:
  1071. case MSR_IA32_DEBUGCTLMSR:
  1072. case MSR_IA32_LASTBRANCHFROMIP:
  1073. case MSR_IA32_LASTBRANCHTOIP:
  1074. case MSR_IA32_LASTINTFROMIP:
  1075. case MSR_IA32_LASTINTTOIP:
  1076. case MSR_K8_SYSCFG:
  1077. case MSR_K7_HWCR:
  1078. case MSR_VM_HSAVE_PA:
  1079. case MSR_P6_PERFCTR0:
  1080. case MSR_P6_PERFCTR1:
  1081. case MSR_P6_EVNTSEL0:
  1082. case MSR_P6_EVNTSEL1:
  1083. case MSR_K7_EVNTSEL0:
  1084. case MSR_K7_PERFCTR0:
  1085. case MSR_K8_INT_PENDING_MSG:
  1086. case MSR_AMD64_NB_CFG:
  1087. case MSR_FAM10H_MMIO_CONF_BASE:
  1088. data = 0;
  1089. break;
  1090. case MSR_MTRRcap:
  1091. data = 0x500 | KVM_NR_VAR_MTRR;
  1092. break;
  1093. case 0x200 ... 0x2ff:
  1094. return get_msr_mtrr(vcpu, msr, pdata);
  1095. case 0xcd: /* fsb frequency */
  1096. data = 3;
  1097. break;
  1098. case MSR_IA32_APICBASE:
  1099. data = kvm_get_apic_base(vcpu);
  1100. break;
  1101. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1102. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1103. break;
  1104. case MSR_IA32_MISC_ENABLE:
  1105. data = vcpu->arch.ia32_misc_enable_msr;
  1106. break;
  1107. case MSR_IA32_PERF_STATUS:
  1108. /* TSC increment by tick */
  1109. data = 1000ULL;
  1110. /* CPU multiplier */
  1111. data |= (((uint64_t)4ULL) << 40);
  1112. break;
  1113. case MSR_EFER:
  1114. data = vcpu->arch.shadow_efer;
  1115. break;
  1116. case MSR_KVM_WALL_CLOCK:
  1117. data = vcpu->kvm->arch.wall_clock;
  1118. break;
  1119. case MSR_KVM_SYSTEM_TIME:
  1120. data = vcpu->arch.time;
  1121. break;
  1122. case MSR_IA32_P5_MC_ADDR:
  1123. case MSR_IA32_P5_MC_TYPE:
  1124. case MSR_IA32_MCG_CAP:
  1125. case MSR_IA32_MCG_CTL:
  1126. case MSR_IA32_MCG_STATUS:
  1127. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1128. return get_msr_mce(vcpu, msr, pdata);
  1129. default:
  1130. if (!ignore_msrs) {
  1131. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1132. return 1;
  1133. } else {
  1134. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1135. data = 0;
  1136. }
  1137. break;
  1138. }
  1139. *pdata = data;
  1140. return 0;
  1141. }
  1142. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1143. /*
  1144. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1145. *
  1146. * @return number of msrs set successfully.
  1147. */
  1148. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1149. struct kvm_msr_entry *entries,
  1150. int (*do_msr)(struct kvm_vcpu *vcpu,
  1151. unsigned index, u64 *data))
  1152. {
  1153. int i, idx;
  1154. vcpu_load(vcpu);
  1155. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1156. for (i = 0; i < msrs->nmsrs; ++i)
  1157. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1158. break;
  1159. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1160. vcpu_put(vcpu);
  1161. return i;
  1162. }
  1163. /*
  1164. * Read or write a bunch of msrs. Parameters are user addresses.
  1165. *
  1166. * @return number of msrs set successfully.
  1167. */
  1168. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1169. int (*do_msr)(struct kvm_vcpu *vcpu,
  1170. unsigned index, u64 *data),
  1171. int writeback)
  1172. {
  1173. struct kvm_msrs msrs;
  1174. struct kvm_msr_entry *entries;
  1175. int r, n;
  1176. unsigned size;
  1177. r = -EFAULT;
  1178. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1179. goto out;
  1180. r = -E2BIG;
  1181. if (msrs.nmsrs >= MAX_IO_MSRS)
  1182. goto out;
  1183. r = -ENOMEM;
  1184. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1185. entries = vmalloc(size);
  1186. if (!entries)
  1187. goto out;
  1188. r = -EFAULT;
  1189. if (copy_from_user(entries, user_msrs->entries, size))
  1190. goto out_free;
  1191. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1192. if (r < 0)
  1193. goto out_free;
  1194. r = -EFAULT;
  1195. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1196. goto out_free;
  1197. r = n;
  1198. out_free:
  1199. vfree(entries);
  1200. out:
  1201. return r;
  1202. }
  1203. int kvm_dev_ioctl_check_extension(long ext)
  1204. {
  1205. int r;
  1206. switch (ext) {
  1207. case KVM_CAP_IRQCHIP:
  1208. case KVM_CAP_HLT:
  1209. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1210. case KVM_CAP_SET_TSS_ADDR:
  1211. case KVM_CAP_EXT_CPUID:
  1212. case KVM_CAP_CLOCKSOURCE:
  1213. case KVM_CAP_PIT:
  1214. case KVM_CAP_NOP_IO_DELAY:
  1215. case KVM_CAP_MP_STATE:
  1216. case KVM_CAP_SYNC_MMU:
  1217. case KVM_CAP_REINJECT_CONTROL:
  1218. case KVM_CAP_IRQ_INJECT_STATUS:
  1219. case KVM_CAP_ASSIGN_DEV_IRQ:
  1220. case KVM_CAP_IRQFD:
  1221. case KVM_CAP_IOEVENTFD:
  1222. case KVM_CAP_PIT2:
  1223. case KVM_CAP_PIT_STATE2:
  1224. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1225. case KVM_CAP_XEN_HVM:
  1226. case KVM_CAP_ADJUST_CLOCK:
  1227. case KVM_CAP_VCPU_EVENTS:
  1228. r = 1;
  1229. break;
  1230. case KVM_CAP_COALESCED_MMIO:
  1231. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1232. break;
  1233. case KVM_CAP_VAPIC:
  1234. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1235. break;
  1236. case KVM_CAP_NR_VCPUS:
  1237. r = KVM_MAX_VCPUS;
  1238. break;
  1239. case KVM_CAP_NR_MEMSLOTS:
  1240. r = KVM_MEMORY_SLOTS;
  1241. break;
  1242. case KVM_CAP_PV_MMU: /* obsolete */
  1243. r = 0;
  1244. break;
  1245. case KVM_CAP_IOMMU:
  1246. r = iommu_found();
  1247. break;
  1248. case KVM_CAP_MCE:
  1249. r = KVM_MAX_MCE_BANKS;
  1250. break;
  1251. default:
  1252. r = 0;
  1253. break;
  1254. }
  1255. return r;
  1256. }
  1257. long kvm_arch_dev_ioctl(struct file *filp,
  1258. unsigned int ioctl, unsigned long arg)
  1259. {
  1260. void __user *argp = (void __user *)arg;
  1261. long r;
  1262. switch (ioctl) {
  1263. case KVM_GET_MSR_INDEX_LIST: {
  1264. struct kvm_msr_list __user *user_msr_list = argp;
  1265. struct kvm_msr_list msr_list;
  1266. unsigned n;
  1267. r = -EFAULT;
  1268. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1269. goto out;
  1270. n = msr_list.nmsrs;
  1271. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1272. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1273. goto out;
  1274. r = -E2BIG;
  1275. if (n < msr_list.nmsrs)
  1276. goto out;
  1277. r = -EFAULT;
  1278. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1279. num_msrs_to_save * sizeof(u32)))
  1280. goto out;
  1281. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1282. &emulated_msrs,
  1283. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1284. goto out;
  1285. r = 0;
  1286. break;
  1287. }
  1288. case KVM_GET_SUPPORTED_CPUID: {
  1289. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1290. struct kvm_cpuid2 cpuid;
  1291. r = -EFAULT;
  1292. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1293. goto out;
  1294. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1295. cpuid_arg->entries);
  1296. if (r)
  1297. goto out;
  1298. r = -EFAULT;
  1299. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1300. goto out;
  1301. r = 0;
  1302. break;
  1303. }
  1304. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1305. u64 mce_cap;
  1306. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1307. r = -EFAULT;
  1308. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1309. goto out;
  1310. r = 0;
  1311. break;
  1312. }
  1313. default:
  1314. r = -EINVAL;
  1315. }
  1316. out:
  1317. return r;
  1318. }
  1319. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1320. {
  1321. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1322. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1323. unsigned long khz = cpufreq_quick_get(cpu);
  1324. if (!khz)
  1325. khz = tsc_khz;
  1326. per_cpu(cpu_tsc_khz, cpu) = khz;
  1327. }
  1328. kvm_request_guest_time_update(vcpu);
  1329. }
  1330. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1331. {
  1332. kvm_x86_ops->vcpu_put(vcpu);
  1333. kvm_put_guest_fpu(vcpu);
  1334. }
  1335. static int is_efer_nx(void)
  1336. {
  1337. unsigned long long efer = 0;
  1338. rdmsrl_safe(MSR_EFER, &efer);
  1339. return efer & EFER_NX;
  1340. }
  1341. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1342. {
  1343. int i;
  1344. struct kvm_cpuid_entry2 *e, *entry;
  1345. entry = NULL;
  1346. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1347. e = &vcpu->arch.cpuid_entries[i];
  1348. if (e->function == 0x80000001) {
  1349. entry = e;
  1350. break;
  1351. }
  1352. }
  1353. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1354. entry->edx &= ~(1 << 20);
  1355. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1356. }
  1357. }
  1358. /* when an old userspace process fills a new kernel module */
  1359. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1360. struct kvm_cpuid *cpuid,
  1361. struct kvm_cpuid_entry __user *entries)
  1362. {
  1363. int r, i;
  1364. struct kvm_cpuid_entry *cpuid_entries;
  1365. r = -E2BIG;
  1366. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1367. goto out;
  1368. r = -ENOMEM;
  1369. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1370. if (!cpuid_entries)
  1371. goto out;
  1372. r = -EFAULT;
  1373. if (copy_from_user(cpuid_entries, entries,
  1374. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1375. goto out_free;
  1376. for (i = 0; i < cpuid->nent; i++) {
  1377. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1378. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1379. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1380. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1381. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1382. vcpu->arch.cpuid_entries[i].index = 0;
  1383. vcpu->arch.cpuid_entries[i].flags = 0;
  1384. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1385. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1386. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1387. }
  1388. vcpu->arch.cpuid_nent = cpuid->nent;
  1389. cpuid_fix_nx_cap(vcpu);
  1390. r = 0;
  1391. kvm_apic_set_version(vcpu);
  1392. kvm_x86_ops->cpuid_update(vcpu);
  1393. out_free:
  1394. vfree(cpuid_entries);
  1395. out:
  1396. return r;
  1397. }
  1398. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1399. struct kvm_cpuid2 *cpuid,
  1400. struct kvm_cpuid_entry2 __user *entries)
  1401. {
  1402. int r;
  1403. r = -E2BIG;
  1404. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1405. goto out;
  1406. r = -EFAULT;
  1407. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1408. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1409. goto out;
  1410. vcpu->arch.cpuid_nent = cpuid->nent;
  1411. kvm_apic_set_version(vcpu);
  1412. kvm_x86_ops->cpuid_update(vcpu);
  1413. return 0;
  1414. out:
  1415. return r;
  1416. }
  1417. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1418. struct kvm_cpuid2 *cpuid,
  1419. struct kvm_cpuid_entry2 __user *entries)
  1420. {
  1421. int r;
  1422. r = -E2BIG;
  1423. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1424. goto out;
  1425. r = -EFAULT;
  1426. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1427. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1428. goto out;
  1429. return 0;
  1430. out:
  1431. cpuid->nent = vcpu->arch.cpuid_nent;
  1432. return r;
  1433. }
  1434. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1435. u32 index)
  1436. {
  1437. entry->function = function;
  1438. entry->index = index;
  1439. cpuid_count(entry->function, entry->index,
  1440. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1441. entry->flags = 0;
  1442. }
  1443. #define F(x) bit(X86_FEATURE_##x)
  1444. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1445. u32 index, int *nent, int maxnent)
  1446. {
  1447. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1448. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1449. #ifdef CONFIG_X86_64
  1450. unsigned f_lm = F(LM);
  1451. #else
  1452. unsigned f_lm = 0;
  1453. #endif
  1454. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1455. /* cpuid 1.edx */
  1456. const u32 kvm_supported_word0_x86_features =
  1457. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1458. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1459. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1460. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1461. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1462. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1463. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1464. 0 /* HTT, TM, Reserved, PBE */;
  1465. /* cpuid 0x80000001.edx */
  1466. const u32 kvm_supported_word1_x86_features =
  1467. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1468. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1469. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1470. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1471. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1472. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1473. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1474. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1475. /* cpuid 1.ecx */
  1476. const u32 kvm_supported_word4_x86_features =
  1477. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1478. 0 /* DS-CPL, VMX, SMX, EST */ |
  1479. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1480. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1481. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1482. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1483. 0 /* Reserved, XSAVE, OSXSAVE */;
  1484. /* cpuid 0x80000001.ecx */
  1485. const u32 kvm_supported_word6_x86_features =
  1486. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1487. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1488. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1489. 0 /* SKINIT */ | 0 /* WDT */;
  1490. /* all calls to cpuid_count() should be made on the same cpu */
  1491. get_cpu();
  1492. do_cpuid_1_ent(entry, function, index);
  1493. ++*nent;
  1494. switch (function) {
  1495. case 0:
  1496. entry->eax = min(entry->eax, (u32)0xb);
  1497. break;
  1498. case 1:
  1499. entry->edx &= kvm_supported_word0_x86_features;
  1500. entry->ecx &= kvm_supported_word4_x86_features;
  1501. /* we support x2apic emulation even if host does not support
  1502. * it since we emulate x2apic in software */
  1503. entry->ecx |= F(X2APIC);
  1504. break;
  1505. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1506. * may return different values. This forces us to get_cpu() before
  1507. * issuing the first command, and also to emulate this annoying behavior
  1508. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1509. case 2: {
  1510. int t, times = entry->eax & 0xff;
  1511. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1512. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1513. for (t = 1; t < times && *nent < maxnent; ++t) {
  1514. do_cpuid_1_ent(&entry[t], function, 0);
  1515. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1516. ++*nent;
  1517. }
  1518. break;
  1519. }
  1520. /* function 4 and 0xb have additional index. */
  1521. case 4: {
  1522. int i, cache_type;
  1523. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1524. /* read more entries until cache_type is zero */
  1525. for (i = 1; *nent < maxnent; ++i) {
  1526. cache_type = entry[i - 1].eax & 0x1f;
  1527. if (!cache_type)
  1528. break;
  1529. do_cpuid_1_ent(&entry[i], function, i);
  1530. entry[i].flags |=
  1531. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1532. ++*nent;
  1533. }
  1534. break;
  1535. }
  1536. case 0xb: {
  1537. int i, level_type;
  1538. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1539. /* read more entries until level_type is zero */
  1540. for (i = 1; *nent < maxnent; ++i) {
  1541. level_type = entry[i - 1].ecx & 0xff00;
  1542. if (!level_type)
  1543. break;
  1544. do_cpuid_1_ent(&entry[i], function, i);
  1545. entry[i].flags |=
  1546. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1547. ++*nent;
  1548. }
  1549. break;
  1550. }
  1551. case 0x80000000:
  1552. entry->eax = min(entry->eax, 0x8000001a);
  1553. break;
  1554. case 0x80000001:
  1555. entry->edx &= kvm_supported_word1_x86_features;
  1556. entry->ecx &= kvm_supported_word6_x86_features;
  1557. break;
  1558. }
  1559. put_cpu();
  1560. }
  1561. #undef F
  1562. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1563. struct kvm_cpuid_entry2 __user *entries)
  1564. {
  1565. struct kvm_cpuid_entry2 *cpuid_entries;
  1566. int limit, nent = 0, r = -E2BIG;
  1567. u32 func;
  1568. if (cpuid->nent < 1)
  1569. goto out;
  1570. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1571. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1572. r = -ENOMEM;
  1573. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1574. if (!cpuid_entries)
  1575. goto out;
  1576. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1577. limit = cpuid_entries[0].eax;
  1578. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1579. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1580. &nent, cpuid->nent);
  1581. r = -E2BIG;
  1582. if (nent >= cpuid->nent)
  1583. goto out_free;
  1584. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1585. limit = cpuid_entries[nent - 1].eax;
  1586. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1587. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1588. &nent, cpuid->nent);
  1589. r = -E2BIG;
  1590. if (nent >= cpuid->nent)
  1591. goto out_free;
  1592. r = -EFAULT;
  1593. if (copy_to_user(entries, cpuid_entries,
  1594. nent * sizeof(struct kvm_cpuid_entry2)))
  1595. goto out_free;
  1596. cpuid->nent = nent;
  1597. r = 0;
  1598. out_free:
  1599. vfree(cpuid_entries);
  1600. out:
  1601. return r;
  1602. }
  1603. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1604. struct kvm_lapic_state *s)
  1605. {
  1606. vcpu_load(vcpu);
  1607. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1608. vcpu_put(vcpu);
  1609. return 0;
  1610. }
  1611. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1612. struct kvm_lapic_state *s)
  1613. {
  1614. vcpu_load(vcpu);
  1615. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1616. kvm_apic_post_state_restore(vcpu);
  1617. update_cr8_intercept(vcpu);
  1618. vcpu_put(vcpu);
  1619. return 0;
  1620. }
  1621. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1622. struct kvm_interrupt *irq)
  1623. {
  1624. if (irq->irq < 0 || irq->irq >= 256)
  1625. return -EINVAL;
  1626. if (irqchip_in_kernel(vcpu->kvm))
  1627. return -ENXIO;
  1628. vcpu_load(vcpu);
  1629. kvm_queue_interrupt(vcpu, irq->irq, false);
  1630. vcpu_put(vcpu);
  1631. return 0;
  1632. }
  1633. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1634. {
  1635. vcpu_load(vcpu);
  1636. kvm_inject_nmi(vcpu);
  1637. vcpu_put(vcpu);
  1638. return 0;
  1639. }
  1640. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1641. struct kvm_tpr_access_ctl *tac)
  1642. {
  1643. if (tac->flags)
  1644. return -EINVAL;
  1645. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1646. return 0;
  1647. }
  1648. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1649. u64 mcg_cap)
  1650. {
  1651. int r;
  1652. unsigned bank_num = mcg_cap & 0xff, bank;
  1653. r = -EINVAL;
  1654. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1655. goto out;
  1656. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1657. goto out;
  1658. r = 0;
  1659. vcpu->arch.mcg_cap = mcg_cap;
  1660. /* Init IA32_MCG_CTL to all 1s */
  1661. if (mcg_cap & MCG_CTL_P)
  1662. vcpu->arch.mcg_ctl = ~(u64)0;
  1663. /* Init IA32_MCi_CTL to all 1s */
  1664. for (bank = 0; bank < bank_num; bank++)
  1665. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1666. out:
  1667. return r;
  1668. }
  1669. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1670. struct kvm_x86_mce *mce)
  1671. {
  1672. u64 mcg_cap = vcpu->arch.mcg_cap;
  1673. unsigned bank_num = mcg_cap & 0xff;
  1674. u64 *banks = vcpu->arch.mce_banks;
  1675. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1676. return -EINVAL;
  1677. /*
  1678. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1679. * reporting is disabled
  1680. */
  1681. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1682. vcpu->arch.mcg_ctl != ~(u64)0)
  1683. return 0;
  1684. banks += 4 * mce->bank;
  1685. /*
  1686. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1687. * reporting is disabled for the bank
  1688. */
  1689. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1690. return 0;
  1691. if (mce->status & MCI_STATUS_UC) {
  1692. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1693. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  1694. printk(KERN_DEBUG "kvm: set_mce: "
  1695. "injects mce exception while "
  1696. "previous one is in progress!\n");
  1697. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1698. return 0;
  1699. }
  1700. if (banks[1] & MCI_STATUS_VAL)
  1701. mce->status |= MCI_STATUS_OVER;
  1702. banks[2] = mce->addr;
  1703. banks[3] = mce->misc;
  1704. vcpu->arch.mcg_status = mce->mcg_status;
  1705. banks[1] = mce->status;
  1706. kvm_queue_exception(vcpu, MC_VECTOR);
  1707. } else if (!(banks[1] & MCI_STATUS_VAL)
  1708. || !(banks[1] & MCI_STATUS_UC)) {
  1709. if (banks[1] & MCI_STATUS_VAL)
  1710. mce->status |= MCI_STATUS_OVER;
  1711. banks[2] = mce->addr;
  1712. banks[3] = mce->misc;
  1713. banks[1] = mce->status;
  1714. } else
  1715. banks[1] |= MCI_STATUS_OVER;
  1716. return 0;
  1717. }
  1718. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1719. struct kvm_vcpu_events *events)
  1720. {
  1721. vcpu_load(vcpu);
  1722. events->exception.injected = vcpu->arch.exception.pending;
  1723. events->exception.nr = vcpu->arch.exception.nr;
  1724. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1725. events->exception.error_code = vcpu->arch.exception.error_code;
  1726. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1727. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1728. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1729. events->nmi.injected = vcpu->arch.nmi_injected;
  1730. events->nmi.pending = vcpu->arch.nmi_pending;
  1731. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1732. events->sipi_vector = vcpu->arch.sipi_vector;
  1733. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  1734. | KVM_VCPUEVENT_VALID_SIPI_VECTOR);
  1735. vcpu_put(vcpu);
  1736. }
  1737. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1738. struct kvm_vcpu_events *events)
  1739. {
  1740. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  1741. | KVM_VCPUEVENT_VALID_SIPI_VECTOR))
  1742. return -EINVAL;
  1743. vcpu_load(vcpu);
  1744. vcpu->arch.exception.pending = events->exception.injected;
  1745. vcpu->arch.exception.nr = events->exception.nr;
  1746. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1747. vcpu->arch.exception.error_code = events->exception.error_code;
  1748. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1749. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1750. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1751. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1752. kvm_pic_clear_isr_ack(vcpu->kvm);
  1753. vcpu->arch.nmi_injected = events->nmi.injected;
  1754. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  1755. vcpu->arch.nmi_pending = events->nmi.pending;
  1756. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1757. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  1758. vcpu->arch.sipi_vector = events->sipi_vector;
  1759. vcpu_put(vcpu);
  1760. return 0;
  1761. }
  1762. long kvm_arch_vcpu_ioctl(struct file *filp,
  1763. unsigned int ioctl, unsigned long arg)
  1764. {
  1765. struct kvm_vcpu *vcpu = filp->private_data;
  1766. void __user *argp = (void __user *)arg;
  1767. int r;
  1768. struct kvm_lapic_state *lapic = NULL;
  1769. switch (ioctl) {
  1770. case KVM_GET_LAPIC: {
  1771. r = -EINVAL;
  1772. if (!vcpu->arch.apic)
  1773. goto out;
  1774. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1775. r = -ENOMEM;
  1776. if (!lapic)
  1777. goto out;
  1778. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1779. if (r)
  1780. goto out;
  1781. r = -EFAULT;
  1782. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1783. goto out;
  1784. r = 0;
  1785. break;
  1786. }
  1787. case KVM_SET_LAPIC: {
  1788. r = -EINVAL;
  1789. if (!vcpu->arch.apic)
  1790. goto out;
  1791. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1792. r = -ENOMEM;
  1793. if (!lapic)
  1794. goto out;
  1795. r = -EFAULT;
  1796. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1797. goto out;
  1798. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1799. if (r)
  1800. goto out;
  1801. r = 0;
  1802. break;
  1803. }
  1804. case KVM_INTERRUPT: {
  1805. struct kvm_interrupt irq;
  1806. r = -EFAULT;
  1807. if (copy_from_user(&irq, argp, sizeof irq))
  1808. goto out;
  1809. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1810. if (r)
  1811. goto out;
  1812. r = 0;
  1813. break;
  1814. }
  1815. case KVM_NMI: {
  1816. r = kvm_vcpu_ioctl_nmi(vcpu);
  1817. if (r)
  1818. goto out;
  1819. r = 0;
  1820. break;
  1821. }
  1822. case KVM_SET_CPUID: {
  1823. struct kvm_cpuid __user *cpuid_arg = argp;
  1824. struct kvm_cpuid cpuid;
  1825. r = -EFAULT;
  1826. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1827. goto out;
  1828. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1829. if (r)
  1830. goto out;
  1831. break;
  1832. }
  1833. case KVM_SET_CPUID2: {
  1834. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1835. struct kvm_cpuid2 cpuid;
  1836. r = -EFAULT;
  1837. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1838. goto out;
  1839. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1840. cpuid_arg->entries);
  1841. if (r)
  1842. goto out;
  1843. break;
  1844. }
  1845. case KVM_GET_CPUID2: {
  1846. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1847. struct kvm_cpuid2 cpuid;
  1848. r = -EFAULT;
  1849. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1850. goto out;
  1851. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1852. cpuid_arg->entries);
  1853. if (r)
  1854. goto out;
  1855. r = -EFAULT;
  1856. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1857. goto out;
  1858. r = 0;
  1859. break;
  1860. }
  1861. case KVM_GET_MSRS:
  1862. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1863. break;
  1864. case KVM_SET_MSRS:
  1865. r = msr_io(vcpu, argp, do_set_msr, 0);
  1866. break;
  1867. case KVM_TPR_ACCESS_REPORTING: {
  1868. struct kvm_tpr_access_ctl tac;
  1869. r = -EFAULT;
  1870. if (copy_from_user(&tac, argp, sizeof tac))
  1871. goto out;
  1872. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1873. if (r)
  1874. goto out;
  1875. r = -EFAULT;
  1876. if (copy_to_user(argp, &tac, sizeof tac))
  1877. goto out;
  1878. r = 0;
  1879. break;
  1880. };
  1881. case KVM_SET_VAPIC_ADDR: {
  1882. struct kvm_vapic_addr va;
  1883. r = -EINVAL;
  1884. if (!irqchip_in_kernel(vcpu->kvm))
  1885. goto out;
  1886. r = -EFAULT;
  1887. if (copy_from_user(&va, argp, sizeof va))
  1888. goto out;
  1889. r = 0;
  1890. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1891. break;
  1892. }
  1893. case KVM_X86_SETUP_MCE: {
  1894. u64 mcg_cap;
  1895. r = -EFAULT;
  1896. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1897. goto out;
  1898. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1899. break;
  1900. }
  1901. case KVM_X86_SET_MCE: {
  1902. struct kvm_x86_mce mce;
  1903. r = -EFAULT;
  1904. if (copy_from_user(&mce, argp, sizeof mce))
  1905. goto out;
  1906. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1907. break;
  1908. }
  1909. case KVM_GET_VCPU_EVENTS: {
  1910. struct kvm_vcpu_events events;
  1911. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  1912. r = -EFAULT;
  1913. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  1914. break;
  1915. r = 0;
  1916. break;
  1917. }
  1918. case KVM_SET_VCPU_EVENTS: {
  1919. struct kvm_vcpu_events events;
  1920. r = -EFAULT;
  1921. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  1922. break;
  1923. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  1924. break;
  1925. }
  1926. default:
  1927. r = -EINVAL;
  1928. }
  1929. out:
  1930. kfree(lapic);
  1931. return r;
  1932. }
  1933. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1934. {
  1935. int ret;
  1936. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1937. return -1;
  1938. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1939. return ret;
  1940. }
  1941. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1942. u64 ident_addr)
  1943. {
  1944. kvm->arch.ept_identity_map_addr = ident_addr;
  1945. return 0;
  1946. }
  1947. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1948. u32 kvm_nr_mmu_pages)
  1949. {
  1950. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1951. return -EINVAL;
  1952. mutex_lock(&kvm->slots_lock);
  1953. spin_lock(&kvm->mmu_lock);
  1954. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1955. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1956. spin_unlock(&kvm->mmu_lock);
  1957. mutex_unlock(&kvm->slots_lock);
  1958. return 0;
  1959. }
  1960. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1961. {
  1962. return kvm->arch.n_alloc_mmu_pages;
  1963. }
  1964. gfn_t unalias_gfn_instantiation(struct kvm *kvm, gfn_t gfn)
  1965. {
  1966. int i;
  1967. struct kvm_mem_alias *alias;
  1968. struct kvm_mem_aliases *aliases;
  1969. aliases = rcu_dereference(kvm->arch.aliases);
  1970. for (i = 0; i < aliases->naliases; ++i) {
  1971. alias = &aliases->aliases[i];
  1972. if (alias->flags & KVM_ALIAS_INVALID)
  1973. continue;
  1974. if (gfn >= alias->base_gfn
  1975. && gfn < alias->base_gfn + alias->npages)
  1976. return alias->target_gfn + gfn - alias->base_gfn;
  1977. }
  1978. return gfn;
  1979. }
  1980. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1981. {
  1982. int i;
  1983. struct kvm_mem_alias *alias;
  1984. struct kvm_mem_aliases *aliases;
  1985. aliases = rcu_dereference(kvm->arch.aliases);
  1986. for (i = 0; i < aliases->naliases; ++i) {
  1987. alias = &aliases->aliases[i];
  1988. if (gfn >= alias->base_gfn
  1989. && gfn < alias->base_gfn + alias->npages)
  1990. return alias->target_gfn + gfn - alias->base_gfn;
  1991. }
  1992. return gfn;
  1993. }
  1994. /*
  1995. * Set a new alias region. Aliases map a portion of physical memory into
  1996. * another portion. This is useful for memory windows, for example the PC
  1997. * VGA region.
  1998. */
  1999. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  2000. struct kvm_memory_alias *alias)
  2001. {
  2002. int r, n;
  2003. struct kvm_mem_alias *p;
  2004. struct kvm_mem_aliases *aliases, *old_aliases;
  2005. r = -EINVAL;
  2006. /* General sanity checks */
  2007. if (alias->memory_size & (PAGE_SIZE - 1))
  2008. goto out;
  2009. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  2010. goto out;
  2011. if (alias->slot >= KVM_ALIAS_SLOTS)
  2012. goto out;
  2013. if (alias->guest_phys_addr + alias->memory_size
  2014. < alias->guest_phys_addr)
  2015. goto out;
  2016. if (alias->target_phys_addr + alias->memory_size
  2017. < alias->target_phys_addr)
  2018. goto out;
  2019. r = -ENOMEM;
  2020. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2021. if (!aliases)
  2022. goto out;
  2023. mutex_lock(&kvm->slots_lock);
  2024. /* invalidate any gfn reference in case of deletion/shrinking */
  2025. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2026. aliases->aliases[alias->slot].flags |= KVM_ALIAS_INVALID;
  2027. old_aliases = kvm->arch.aliases;
  2028. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2029. synchronize_srcu_expedited(&kvm->srcu);
  2030. kvm_mmu_zap_all(kvm);
  2031. kfree(old_aliases);
  2032. r = -ENOMEM;
  2033. aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  2034. if (!aliases)
  2035. goto out_unlock;
  2036. memcpy(aliases, kvm->arch.aliases, sizeof(struct kvm_mem_aliases));
  2037. p = &aliases->aliases[alias->slot];
  2038. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  2039. p->npages = alias->memory_size >> PAGE_SHIFT;
  2040. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  2041. p->flags &= ~(KVM_ALIAS_INVALID);
  2042. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  2043. if (aliases->aliases[n - 1].npages)
  2044. break;
  2045. aliases->naliases = n;
  2046. old_aliases = kvm->arch.aliases;
  2047. rcu_assign_pointer(kvm->arch.aliases, aliases);
  2048. synchronize_srcu_expedited(&kvm->srcu);
  2049. kfree(old_aliases);
  2050. r = 0;
  2051. out_unlock:
  2052. mutex_unlock(&kvm->slots_lock);
  2053. out:
  2054. return r;
  2055. }
  2056. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2057. {
  2058. int r;
  2059. r = 0;
  2060. switch (chip->chip_id) {
  2061. case KVM_IRQCHIP_PIC_MASTER:
  2062. memcpy(&chip->chip.pic,
  2063. &pic_irqchip(kvm)->pics[0],
  2064. sizeof(struct kvm_pic_state));
  2065. break;
  2066. case KVM_IRQCHIP_PIC_SLAVE:
  2067. memcpy(&chip->chip.pic,
  2068. &pic_irqchip(kvm)->pics[1],
  2069. sizeof(struct kvm_pic_state));
  2070. break;
  2071. case KVM_IRQCHIP_IOAPIC:
  2072. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2073. break;
  2074. default:
  2075. r = -EINVAL;
  2076. break;
  2077. }
  2078. return r;
  2079. }
  2080. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2081. {
  2082. int r;
  2083. r = 0;
  2084. switch (chip->chip_id) {
  2085. case KVM_IRQCHIP_PIC_MASTER:
  2086. spin_lock(&pic_irqchip(kvm)->lock);
  2087. memcpy(&pic_irqchip(kvm)->pics[0],
  2088. &chip->chip.pic,
  2089. sizeof(struct kvm_pic_state));
  2090. spin_unlock(&pic_irqchip(kvm)->lock);
  2091. break;
  2092. case KVM_IRQCHIP_PIC_SLAVE:
  2093. spin_lock(&pic_irqchip(kvm)->lock);
  2094. memcpy(&pic_irqchip(kvm)->pics[1],
  2095. &chip->chip.pic,
  2096. sizeof(struct kvm_pic_state));
  2097. spin_unlock(&pic_irqchip(kvm)->lock);
  2098. break;
  2099. case KVM_IRQCHIP_IOAPIC:
  2100. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2101. break;
  2102. default:
  2103. r = -EINVAL;
  2104. break;
  2105. }
  2106. kvm_pic_update_irq(pic_irqchip(kvm));
  2107. return r;
  2108. }
  2109. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2110. {
  2111. int r = 0;
  2112. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2113. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2114. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2115. return r;
  2116. }
  2117. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2118. {
  2119. int r = 0;
  2120. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2121. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2122. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2123. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2124. return r;
  2125. }
  2126. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2127. {
  2128. int r = 0;
  2129. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2130. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2131. sizeof(ps->channels));
  2132. ps->flags = kvm->arch.vpit->pit_state.flags;
  2133. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2134. return r;
  2135. }
  2136. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2137. {
  2138. int r = 0, start = 0;
  2139. u32 prev_legacy, cur_legacy;
  2140. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2141. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2142. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2143. if (!prev_legacy && cur_legacy)
  2144. start = 1;
  2145. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2146. sizeof(kvm->arch.vpit->pit_state.channels));
  2147. kvm->arch.vpit->pit_state.flags = ps->flags;
  2148. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2149. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2150. return r;
  2151. }
  2152. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2153. struct kvm_reinject_control *control)
  2154. {
  2155. if (!kvm->arch.vpit)
  2156. return -ENXIO;
  2157. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2158. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2159. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2160. return 0;
  2161. }
  2162. /*
  2163. * Get (and clear) the dirty memory log for a memory slot.
  2164. */
  2165. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2166. struct kvm_dirty_log *log)
  2167. {
  2168. int r, n, i;
  2169. struct kvm_memory_slot *memslot;
  2170. unsigned long is_dirty = 0;
  2171. unsigned long *dirty_bitmap = NULL;
  2172. mutex_lock(&kvm->slots_lock);
  2173. r = -EINVAL;
  2174. if (log->slot >= KVM_MEMORY_SLOTS)
  2175. goto out;
  2176. memslot = &kvm->memslots->memslots[log->slot];
  2177. r = -ENOENT;
  2178. if (!memslot->dirty_bitmap)
  2179. goto out;
  2180. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2181. r = -ENOMEM;
  2182. dirty_bitmap = vmalloc(n);
  2183. if (!dirty_bitmap)
  2184. goto out;
  2185. memset(dirty_bitmap, 0, n);
  2186. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2187. is_dirty = memslot->dirty_bitmap[i];
  2188. /* If nothing is dirty, don't bother messing with page tables. */
  2189. if (is_dirty) {
  2190. struct kvm_memslots *slots, *old_slots;
  2191. spin_lock(&kvm->mmu_lock);
  2192. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2193. spin_unlock(&kvm->mmu_lock);
  2194. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2195. if (!slots)
  2196. goto out_free;
  2197. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2198. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2199. old_slots = kvm->memslots;
  2200. rcu_assign_pointer(kvm->memslots, slots);
  2201. synchronize_srcu_expedited(&kvm->srcu);
  2202. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2203. kfree(old_slots);
  2204. }
  2205. r = 0;
  2206. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2207. r = -EFAULT;
  2208. out_free:
  2209. vfree(dirty_bitmap);
  2210. out:
  2211. mutex_unlock(&kvm->slots_lock);
  2212. return r;
  2213. }
  2214. long kvm_arch_vm_ioctl(struct file *filp,
  2215. unsigned int ioctl, unsigned long arg)
  2216. {
  2217. struct kvm *kvm = filp->private_data;
  2218. void __user *argp = (void __user *)arg;
  2219. int r = -ENOTTY;
  2220. /*
  2221. * This union makes it completely explicit to gcc-3.x
  2222. * that these two variables' stack usage should be
  2223. * combined, not added together.
  2224. */
  2225. union {
  2226. struct kvm_pit_state ps;
  2227. struct kvm_pit_state2 ps2;
  2228. struct kvm_memory_alias alias;
  2229. struct kvm_pit_config pit_config;
  2230. } u;
  2231. switch (ioctl) {
  2232. case KVM_SET_TSS_ADDR:
  2233. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2234. if (r < 0)
  2235. goto out;
  2236. break;
  2237. case KVM_SET_IDENTITY_MAP_ADDR: {
  2238. u64 ident_addr;
  2239. r = -EFAULT;
  2240. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2241. goto out;
  2242. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2243. if (r < 0)
  2244. goto out;
  2245. break;
  2246. }
  2247. case KVM_SET_MEMORY_REGION: {
  2248. struct kvm_memory_region kvm_mem;
  2249. struct kvm_userspace_memory_region kvm_userspace_mem;
  2250. r = -EFAULT;
  2251. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2252. goto out;
  2253. kvm_userspace_mem.slot = kvm_mem.slot;
  2254. kvm_userspace_mem.flags = kvm_mem.flags;
  2255. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2256. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2257. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2258. if (r)
  2259. goto out;
  2260. break;
  2261. }
  2262. case KVM_SET_NR_MMU_PAGES:
  2263. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2264. if (r)
  2265. goto out;
  2266. break;
  2267. case KVM_GET_NR_MMU_PAGES:
  2268. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2269. break;
  2270. case KVM_SET_MEMORY_ALIAS:
  2271. r = -EFAULT;
  2272. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2273. goto out;
  2274. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2275. if (r)
  2276. goto out;
  2277. break;
  2278. case KVM_CREATE_IRQCHIP: {
  2279. struct kvm_pic *vpic;
  2280. mutex_lock(&kvm->lock);
  2281. r = -EEXIST;
  2282. if (kvm->arch.vpic)
  2283. goto create_irqchip_unlock;
  2284. r = -ENOMEM;
  2285. vpic = kvm_create_pic(kvm);
  2286. if (vpic) {
  2287. r = kvm_ioapic_init(kvm);
  2288. if (r) {
  2289. kfree(vpic);
  2290. goto create_irqchip_unlock;
  2291. }
  2292. } else
  2293. goto create_irqchip_unlock;
  2294. smp_wmb();
  2295. kvm->arch.vpic = vpic;
  2296. smp_wmb();
  2297. r = kvm_setup_default_irq_routing(kvm);
  2298. if (r) {
  2299. mutex_lock(&kvm->irq_lock);
  2300. kfree(kvm->arch.vpic);
  2301. kfree(kvm->arch.vioapic);
  2302. kvm->arch.vpic = NULL;
  2303. kvm->arch.vioapic = NULL;
  2304. mutex_unlock(&kvm->irq_lock);
  2305. }
  2306. create_irqchip_unlock:
  2307. mutex_unlock(&kvm->lock);
  2308. break;
  2309. }
  2310. case KVM_CREATE_PIT:
  2311. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2312. goto create_pit;
  2313. case KVM_CREATE_PIT2:
  2314. r = -EFAULT;
  2315. if (copy_from_user(&u.pit_config, argp,
  2316. sizeof(struct kvm_pit_config)))
  2317. goto out;
  2318. create_pit:
  2319. mutex_lock(&kvm->slots_lock);
  2320. r = -EEXIST;
  2321. if (kvm->arch.vpit)
  2322. goto create_pit_unlock;
  2323. r = -ENOMEM;
  2324. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2325. if (kvm->arch.vpit)
  2326. r = 0;
  2327. create_pit_unlock:
  2328. mutex_unlock(&kvm->slots_lock);
  2329. break;
  2330. case KVM_IRQ_LINE_STATUS:
  2331. case KVM_IRQ_LINE: {
  2332. struct kvm_irq_level irq_event;
  2333. r = -EFAULT;
  2334. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2335. goto out;
  2336. if (irqchip_in_kernel(kvm)) {
  2337. __s32 status;
  2338. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2339. irq_event.irq, irq_event.level);
  2340. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2341. irq_event.status = status;
  2342. if (copy_to_user(argp, &irq_event,
  2343. sizeof irq_event))
  2344. goto out;
  2345. }
  2346. r = 0;
  2347. }
  2348. break;
  2349. }
  2350. case KVM_GET_IRQCHIP: {
  2351. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2352. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2353. r = -ENOMEM;
  2354. if (!chip)
  2355. goto out;
  2356. r = -EFAULT;
  2357. if (copy_from_user(chip, argp, sizeof *chip))
  2358. goto get_irqchip_out;
  2359. r = -ENXIO;
  2360. if (!irqchip_in_kernel(kvm))
  2361. goto get_irqchip_out;
  2362. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2363. if (r)
  2364. goto get_irqchip_out;
  2365. r = -EFAULT;
  2366. if (copy_to_user(argp, chip, sizeof *chip))
  2367. goto get_irqchip_out;
  2368. r = 0;
  2369. get_irqchip_out:
  2370. kfree(chip);
  2371. if (r)
  2372. goto out;
  2373. break;
  2374. }
  2375. case KVM_SET_IRQCHIP: {
  2376. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2377. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2378. r = -ENOMEM;
  2379. if (!chip)
  2380. goto out;
  2381. r = -EFAULT;
  2382. if (copy_from_user(chip, argp, sizeof *chip))
  2383. goto set_irqchip_out;
  2384. r = -ENXIO;
  2385. if (!irqchip_in_kernel(kvm))
  2386. goto set_irqchip_out;
  2387. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2388. if (r)
  2389. goto set_irqchip_out;
  2390. r = 0;
  2391. set_irqchip_out:
  2392. kfree(chip);
  2393. if (r)
  2394. goto out;
  2395. break;
  2396. }
  2397. case KVM_GET_PIT: {
  2398. r = -EFAULT;
  2399. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2400. goto out;
  2401. r = -ENXIO;
  2402. if (!kvm->arch.vpit)
  2403. goto out;
  2404. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2405. if (r)
  2406. goto out;
  2407. r = -EFAULT;
  2408. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2409. goto out;
  2410. r = 0;
  2411. break;
  2412. }
  2413. case KVM_SET_PIT: {
  2414. r = -EFAULT;
  2415. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2416. goto out;
  2417. r = -ENXIO;
  2418. if (!kvm->arch.vpit)
  2419. goto out;
  2420. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2421. if (r)
  2422. goto out;
  2423. r = 0;
  2424. break;
  2425. }
  2426. case KVM_GET_PIT2: {
  2427. r = -ENXIO;
  2428. if (!kvm->arch.vpit)
  2429. goto out;
  2430. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2431. if (r)
  2432. goto out;
  2433. r = -EFAULT;
  2434. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2435. goto out;
  2436. r = 0;
  2437. break;
  2438. }
  2439. case KVM_SET_PIT2: {
  2440. r = -EFAULT;
  2441. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2442. goto out;
  2443. r = -ENXIO;
  2444. if (!kvm->arch.vpit)
  2445. goto out;
  2446. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2447. if (r)
  2448. goto out;
  2449. r = 0;
  2450. break;
  2451. }
  2452. case KVM_REINJECT_CONTROL: {
  2453. struct kvm_reinject_control control;
  2454. r = -EFAULT;
  2455. if (copy_from_user(&control, argp, sizeof(control)))
  2456. goto out;
  2457. r = kvm_vm_ioctl_reinject(kvm, &control);
  2458. if (r)
  2459. goto out;
  2460. r = 0;
  2461. break;
  2462. }
  2463. case KVM_XEN_HVM_CONFIG: {
  2464. r = -EFAULT;
  2465. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2466. sizeof(struct kvm_xen_hvm_config)))
  2467. goto out;
  2468. r = -EINVAL;
  2469. if (kvm->arch.xen_hvm_config.flags)
  2470. goto out;
  2471. r = 0;
  2472. break;
  2473. }
  2474. case KVM_SET_CLOCK: {
  2475. struct timespec now;
  2476. struct kvm_clock_data user_ns;
  2477. u64 now_ns;
  2478. s64 delta;
  2479. r = -EFAULT;
  2480. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2481. goto out;
  2482. r = -EINVAL;
  2483. if (user_ns.flags)
  2484. goto out;
  2485. r = 0;
  2486. ktime_get_ts(&now);
  2487. now_ns = timespec_to_ns(&now);
  2488. delta = user_ns.clock - now_ns;
  2489. kvm->arch.kvmclock_offset = delta;
  2490. break;
  2491. }
  2492. case KVM_GET_CLOCK: {
  2493. struct timespec now;
  2494. struct kvm_clock_data user_ns;
  2495. u64 now_ns;
  2496. ktime_get_ts(&now);
  2497. now_ns = timespec_to_ns(&now);
  2498. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2499. user_ns.flags = 0;
  2500. r = -EFAULT;
  2501. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2502. goto out;
  2503. r = 0;
  2504. break;
  2505. }
  2506. default:
  2507. ;
  2508. }
  2509. out:
  2510. return r;
  2511. }
  2512. static void kvm_init_msr_list(void)
  2513. {
  2514. u32 dummy[2];
  2515. unsigned i, j;
  2516. /* skip the first msrs in the list. KVM-specific */
  2517. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2518. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2519. continue;
  2520. if (j < i)
  2521. msrs_to_save[j] = msrs_to_save[i];
  2522. j++;
  2523. }
  2524. num_msrs_to_save = j;
  2525. }
  2526. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2527. const void *v)
  2528. {
  2529. if (vcpu->arch.apic &&
  2530. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2531. return 0;
  2532. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2533. }
  2534. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2535. {
  2536. if (vcpu->arch.apic &&
  2537. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2538. return 0;
  2539. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  2540. }
  2541. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2542. struct kvm_vcpu *vcpu)
  2543. {
  2544. void *data = val;
  2545. int r = X86EMUL_CONTINUE;
  2546. while (bytes) {
  2547. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2548. unsigned offset = addr & (PAGE_SIZE-1);
  2549. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2550. int ret;
  2551. if (gpa == UNMAPPED_GVA) {
  2552. r = X86EMUL_PROPAGATE_FAULT;
  2553. goto out;
  2554. }
  2555. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2556. if (ret < 0) {
  2557. r = X86EMUL_UNHANDLEABLE;
  2558. goto out;
  2559. }
  2560. bytes -= toread;
  2561. data += toread;
  2562. addr += toread;
  2563. }
  2564. out:
  2565. return r;
  2566. }
  2567. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2568. struct kvm_vcpu *vcpu)
  2569. {
  2570. void *data = val;
  2571. int r = X86EMUL_CONTINUE;
  2572. while (bytes) {
  2573. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2574. unsigned offset = addr & (PAGE_SIZE-1);
  2575. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2576. int ret;
  2577. if (gpa == UNMAPPED_GVA) {
  2578. r = X86EMUL_PROPAGATE_FAULT;
  2579. goto out;
  2580. }
  2581. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2582. if (ret < 0) {
  2583. r = X86EMUL_UNHANDLEABLE;
  2584. goto out;
  2585. }
  2586. bytes -= towrite;
  2587. data += towrite;
  2588. addr += towrite;
  2589. }
  2590. out:
  2591. return r;
  2592. }
  2593. static int emulator_read_emulated(unsigned long addr,
  2594. void *val,
  2595. unsigned int bytes,
  2596. struct kvm_vcpu *vcpu)
  2597. {
  2598. gpa_t gpa;
  2599. if (vcpu->mmio_read_completed) {
  2600. memcpy(val, vcpu->mmio_data, bytes);
  2601. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2602. vcpu->mmio_phys_addr, *(u64 *)val);
  2603. vcpu->mmio_read_completed = 0;
  2604. return X86EMUL_CONTINUE;
  2605. }
  2606. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2607. /* For APIC access vmexit */
  2608. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2609. goto mmio;
  2610. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2611. == X86EMUL_CONTINUE)
  2612. return X86EMUL_CONTINUE;
  2613. if (gpa == UNMAPPED_GVA)
  2614. return X86EMUL_PROPAGATE_FAULT;
  2615. mmio:
  2616. /*
  2617. * Is this MMIO handled locally?
  2618. */
  2619. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2620. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2621. return X86EMUL_CONTINUE;
  2622. }
  2623. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2624. vcpu->mmio_needed = 1;
  2625. vcpu->mmio_phys_addr = gpa;
  2626. vcpu->mmio_size = bytes;
  2627. vcpu->mmio_is_write = 0;
  2628. return X86EMUL_UNHANDLEABLE;
  2629. }
  2630. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2631. const void *val, int bytes)
  2632. {
  2633. int ret;
  2634. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2635. if (ret < 0)
  2636. return 0;
  2637. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2638. return 1;
  2639. }
  2640. static int emulator_write_emulated_onepage(unsigned long addr,
  2641. const void *val,
  2642. unsigned int bytes,
  2643. struct kvm_vcpu *vcpu)
  2644. {
  2645. gpa_t gpa;
  2646. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2647. if (gpa == UNMAPPED_GVA) {
  2648. kvm_inject_page_fault(vcpu, addr, 2);
  2649. return X86EMUL_PROPAGATE_FAULT;
  2650. }
  2651. /* For APIC access vmexit */
  2652. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2653. goto mmio;
  2654. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2655. return X86EMUL_CONTINUE;
  2656. mmio:
  2657. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2658. /*
  2659. * Is this MMIO handled locally?
  2660. */
  2661. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2662. return X86EMUL_CONTINUE;
  2663. vcpu->mmio_needed = 1;
  2664. vcpu->mmio_phys_addr = gpa;
  2665. vcpu->mmio_size = bytes;
  2666. vcpu->mmio_is_write = 1;
  2667. memcpy(vcpu->mmio_data, val, bytes);
  2668. return X86EMUL_CONTINUE;
  2669. }
  2670. int emulator_write_emulated(unsigned long addr,
  2671. const void *val,
  2672. unsigned int bytes,
  2673. struct kvm_vcpu *vcpu)
  2674. {
  2675. /* Crossing a page boundary? */
  2676. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2677. int rc, now;
  2678. now = -addr & ~PAGE_MASK;
  2679. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2680. if (rc != X86EMUL_CONTINUE)
  2681. return rc;
  2682. addr += now;
  2683. val += now;
  2684. bytes -= now;
  2685. }
  2686. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2687. }
  2688. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2689. static int emulator_cmpxchg_emulated(unsigned long addr,
  2690. const void *old,
  2691. const void *new,
  2692. unsigned int bytes,
  2693. struct kvm_vcpu *vcpu)
  2694. {
  2695. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2696. #ifndef CONFIG_X86_64
  2697. /* guests cmpxchg8b have to be emulated atomically */
  2698. if (bytes == 8) {
  2699. gpa_t gpa;
  2700. struct page *page;
  2701. char *kaddr;
  2702. u64 val;
  2703. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2704. if (gpa == UNMAPPED_GVA ||
  2705. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2706. goto emul_write;
  2707. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2708. goto emul_write;
  2709. val = *(u64 *)new;
  2710. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2711. kaddr = kmap_atomic(page, KM_USER0);
  2712. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2713. kunmap_atomic(kaddr, KM_USER0);
  2714. kvm_release_page_dirty(page);
  2715. }
  2716. emul_write:
  2717. #endif
  2718. return emulator_write_emulated(addr, new, bytes, vcpu);
  2719. }
  2720. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2721. {
  2722. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2723. }
  2724. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2725. {
  2726. kvm_mmu_invlpg(vcpu, address);
  2727. return X86EMUL_CONTINUE;
  2728. }
  2729. int emulate_clts(struct kvm_vcpu *vcpu)
  2730. {
  2731. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2732. return X86EMUL_CONTINUE;
  2733. }
  2734. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2735. {
  2736. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2737. switch (dr) {
  2738. case 0 ... 3:
  2739. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2740. return X86EMUL_CONTINUE;
  2741. default:
  2742. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2743. return X86EMUL_UNHANDLEABLE;
  2744. }
  2745. }
  2746. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2747. {
  2748. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2749. int exception;
  2750. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2751. if (exception) {
  2752. /* FIXME: better handling */
  2753. return X86EMUL_UNHANDLEABLE;
  2754. }
  2755. return X86EMUL_CONTINUE;
  2756. }
  2757. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2758. {
  2759. u8 opcodes[4];
  2760. unsigned long rip = kvm_rip_read(vcpu);
  2761. unsigned long rip_linear;
  2762. if (!printk_ratelimit())
  2763. return;
  2764. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2765. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2766. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2767. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2768. }
  2769. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2770. static struct x86_emulate_ops emulate_ops = {
  2771. .read_std = kvm_read_guest_virt,
  2772. .read_emulated = emulator_read_emulated,
  2773. .write_emulated = emulator_write_emulated,
  2774. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2775. };
  2776. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2777. {
  2778. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2779. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2780. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2781. vcpu->arch.regs_dirty = ~0;
  2782. }
  2783. int emulate_instruction(struct kvm_vcpu *vcpu,
  2784. unsigned long cr2,
  2785. u16 error_code,
  2786. int emulation_type)
  2787. {
  2788. int r, shadow_mask;
  2789. struct decode_cache *c;
  2790. struct kvm_run *run = vcpu->run;
  2791. kvm_clear_exception_queue(vcpu);
  2792. vcpu->arch.mmio_fault_cr2 = cr2;
  2793. /*
  2794. * TODO: fix emulate.c to use guest_read/write_register
  2795. * instead of direct ->regs accesses, can save hundred cycles
  2796. * on Intel for instructions that don't read/change RSP, for
  2797. * for example.
  2798. */
  2799. cache_all_regs(vcpu);
  2800. vcpu->mmio_is_write = 0;
  2801. vcpu->arch.pio.string = 0;
  2802. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2803. int cs_db, cs_l;
  2804. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2805. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2806. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2807. vcpu->arch.emulate_ctxt.mode =
  2808. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2809. ? X86EMUL_MODE_REAL : cs_l
  2810. ? X86EMUL_MODE_PROT64 : cs_db
  2811. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2812. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2813. /* Only allow emulation of specific instructions on #UD
  2814. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2815. c = &vcpu->arch.emulate_ctxt.decode;
  2816. if (emulation_type & EMULTYPE_TRAP_UD) {
  2817. if (!c->twobyte)
  2818. return EMULATE_FAIL;
  2819. switch (c->b) {
  2820. case 0x01: /* VMMCALL */
  2821. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2822. return EMULATE_FAIL;
  2823. break;
  2824. case 0x34: /* sysenter */
  2825. case 0x35: /* sysexit */
  2826. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2827. return EMULATE_FAIL;
  2828. break;
  2829. case 0x05: /* syscall */
  2830. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2831. return EMULATE_FAIL;
  2832. break;
  2833. default:
  2834. return EMULATE_FAIL;
  2835. }
  2836. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2837. return EMULATE_FAIL;
  2838. }
  2839. ++vcpu->stat.insn_emulation;
  2840. if (r) {
  2841. ++vcpu->stat.insn_emulation_fail;
  2842. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2843. return EMULATE_DONE;
  2844. return EMULATE_FAIL;
  2845. }
  2846. }
  2847. if (emulation_type & EMULTYPE_SKIP) {
  2848. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2849. return EMULATE_DONE;
  2850. }
  2851. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2852. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2853. if (r == 0)
  2854. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2855. if (vcpu->arch.pio.string)
  2856. return EMULATE_DO_MMIO;
  2857. if ((r || vcpu->mmio_is_write) && run) {
  2858. run->exit_reason = KVM_EXIT_MMIO;
  2859. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2860. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2861. run->mmio.len = vcpu->mmio_size;
  2862. run->mmio.is_write = vcpu->mmio_is_write;
  2863. }
  2864. if (r) {
  2865. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2866. return EMULATE_DONE;
  2867. if (!vcpu->mmio_needed) {
  2868. kvm_report_emulation_failure(vcpu, "mmio");
  2869. return EMULATE_FAIL;
  2870. }
  2871. return EMULATE_DO_MMIO;
  2872. }
  2873. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2874. if (vcpu->mmio_is_write) {
  2875. vcpu->mmio_needed = 0;
  2876. return EMULATE_DO_MMIO;
  2877. }
  2878. return EMULATE_DONE;
  2879. }
  2880. EXPORT_SYMBOL_GPL(emulate_instruction);
  2881. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2882. {
  2883. void *p = vcpu->arch.pio_data;
  2884. gva_t q = vcpu->arch.pio.guest_gva;
  2885. unsigned bytes;
  2886. int ret;
  2887. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2888. if (vcpu->arch.pio.in)
  2889. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2890. else
  2891. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2892. return ret;
  2893. }
  2894. int complete_pio(struct kvm_vcpu *vcpu)
  2895. {
  2896. struct kvm_pio_request *io = &vcpu->arch.pio;
  2897. long delta;
  2898. int r;
  2899. unsigned long val;
  2900. if (!io->string) {
  2901. if (io->in) {
  2902. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2903. memcpy(&val, vcpu->arch.pio_data, io->size);
  2904. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2905. }
  2906. } else {
  2907. if (io->in) {
  2908. r = pio_copy_data(vcpu);
  2909. if (r)
  2910. return r;
  2911. }
  2912. delta = 1;
  2913. if (io->rep) {
  2914. delta *= io->cur_count;
  2915. /*
  2916. * The size of the register should really depend on
  2917. * current address size.
  2918. */
  2919. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2920. val -= delta;
  2921. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2922. }
  2923. if (io->down)
  2924. delta = -delta;
  2925. delta *= io->size;
  2926. if (io->in) {
  2927. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2928. val += delta;
  2929. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2930. } else {
  2931. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2932. val += delta;
  2933. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2934. }
  2935. }
  2936. io->count -= io->cur_count;
  2937. io->cur_count = 0;
  2938. return 0;
  2939. }
  2940. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2941. {
  2942. /* TODO: String I/O for in kernel device */
  2943. int r;
  2944. if (vcpu->arch.pio.in)
  2945. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  2946. vcpu->arch.pio.size, pd);
  2947. else
  2948. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  2949. vcpu->arch.pio.port, vcpu->arch.pio.size,
  2950. pd);
  2951. return r;
  2952. }
  2953. static int pio_string_write(struct kvm_vcpu *vcpu)
  2954. {
  2955. struct kvm_pio_request *io = &vcpu->arch.pio;
  2956. void *pd = vcpu->arch.pio_data;
  2957. int i, r = 0;
  2958. for (i = 0; i < io->cur_count; i++) {
  2959. if (kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  2960. io->port, io->size, pd)) {
  2961. r = -EOPNOTSUPP;
  2962. break;
  2963. }
  2964. pd += io->size;
  2965. }
  2966. return r;
  2967. }
  2968. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2969. {
  2970. unsigned long val;
  2971. vcpu->run->exit_reason = KVM_EXIT_IO;
  2972. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2973. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2974. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2975. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2976. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2977. vcpu->arch.pio.in = in;
  2978. vcpu->arch.pio.string = 0;
  2979. vcpu->arch.pio.down = 0;
  2980. vcpu->arch.pio.rep = 0;
  2981. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2982. size, 1);
  2983. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2984. memcpy(vcpu->arch.pio_data, &val, 4);
  2985. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2986. complete_pio(vcpu);
  2987. return 1;
  2988. }
  2989. return 0;
  2990. }
  2991. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2992. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2993. int size, unsigned long count, int down,
  2994. gva_t address, int rep, unsigned port)
  2995. {
  2996. unsigned now, in_page;
  2997. int ret = 0;
  2998. vcpu->run->exit_reason = KVM_EXIT_IO;
  2999. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  3000. vcpu->run->io.size = vcpu->arch.pio.size = size;
  3001. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3002. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  3003. vcpu->run->io.port = vcpu->arch.pio.port = port;
  3004. vcpu->arch.pio.in = in;
  3005. vcpu->arch.pio.string = 1;
  3006. vcpu->arch.pio.down = down;
  3007. vcpu->arch.pio.rep = rep;
  3008. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  3009. size, count);
  3010. if (!count) {
  3011. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3012. return 1;
  3013. }
  3014. if (!down)
  3015. in_page = PAGE_SIZE - offset_in_page(address);
  3016. else
  3017. in_page = offset_in_page(address) + size;
  3018. now = min(count, (unsigned long)in_page / size);
  3019. if (!now)
  3020. now = 1;
  3021. if (down) {
  3022. /*
  3023. * String I/O in reverse. Yuck. Kill the guest, fix later.
  3024. */
  3025. pr_unimpl(vcpu, "guest string pio down\n");
  3026. kvm_inject_gp(vcpu, 0);
  3027. return 1;
  3028. }
  3029. vcpu->run->io.count = now;
  3030. vcpu->arch.pio.cur_count = now;
  3031. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  3032. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3033. vcpu->arch.pio.guest_gva = address;
  3034. if (!vcpu->arch.pio.in) {
  3035. /* string PIO write */
  3036. ret = pio_copy_data(vcpu);
  3037. if (ret == X86EMUL_PROPAGATE_FAULT) {
  3038. kvm_inject_gp(vcpu, 0);
  3039. return 1;
  3040. }
  3041. if (ret == 0 && !pio_string_write(vcpu)) {
  3042. complete_pio(vcpu);
  3043. if (vcpu->arch.pio.count == 0)
  3044. ret = 1;
  3045. }
  3046. }
  3047. /* no string PIO read support yet */
  3048. return ret;
  3049. }
  3050. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  3051. static void bounce_off(void *info)
  3052. {
  3053. /* nothing */
  3054. }
  3055. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3056. void *data)
  3057. {
  3058. struct cpufreq_freqs *freq = data;
  3059. struct kvm *kvm;
  3060. struct kvm_vcpu *vcpu;
  3061. int i, send_ipi = 0;
  3062. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3063. return 0;
  3064. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3065. return 0;
  3066. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  3067. spin_lock(&kvm_lock);
  3068. list_for_each_entry(kvm, &vm_list, vm_list) {
  3069. kvm_for_each_vcpu(i, vcpu, kvm) {
  3070. if (vcpu->cpu != freq->cpu)
  3071. continue;
  3072. if (!kvm_request_guest_time_update(vcpu))
  3073. continue;
  3074. if (vcpu->cpu != smp_processor_id())
  3075. send_ipi++;
  3076. }
  3077. }
  3078. spin_unlock(&kvm_lock);
  3079. if (freq->old < freq->new && send_ipi) {
  3080. /*
  3081. * We upscale the frequency. Must make the guest
  3082. * doesn't see old kvmclock values while running with
  3083. * the new frequency, otherwise we risk the guest sees
  3084. * time go backwards.
  3085. *
  3086. * In case we update the frequency for another cpu
  3087. * (which might be in guest context) send an interrupt
  3088. * to kick the cpu out of guest context. Next time
  3089. * guest context is entered kvmclock will be updated,
  3090. * so the guest will not see stale values.
  3091. */
  3092. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  3093. }
  3094. return 0;
  3095. }
  3096. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3097. .notifier_call = kvmclock_cpufreq_notifier
  3098. };
  3099. static void kvm_timer_init(void)
  3100. {
  3101. int cpu;
  3102. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  3103. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  3104. CPUFREQ_TRANSITION_NOTIFIER);
  3105. for_each_online_cpu(cpu) {
  3106. unsigned long khz = cpufreq_get(cpu);
  3107. if (!khz)
  3108. khz = tsc_khz;
  3109. per_cpu(cpu_tsc_khz, cpu) = khz;
  3110. }
  3111. } else {
  3112. for_each_possible_cpu(cpu)
  3113. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3114. }
  3115. }
  3116. int kvm_arch_init(void *opaque)
  3117. {
  3118. int r;
  3119. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3120. if (kvm_x86_ops) {
  3121. printk(KERN_ERR "kvm: already loaded the other module\n");
  3122. r = -EEXIST;
  3123. goto out;
  3124. }
  3125. if (!ops->cpu_has_kvm_support()) {
  3126. printk(KERN_ERR "kvm: no hardware support\n");
  3127. r = -EOPNOTSUPP;
  3128. goto out;
  3129. }
  3130. if (ops->disabled_by_bios()) {
  3131. printk(KERN_ERR "kvm: disabled by bios\n");
  3132. r = -EOPNOTSUPP;
  3133. goto out;
  3134. }
  3135. r = kvm_mmu_module_init();
  3136. if (r)
  3137. goto out;
  3138. kvm_init_msr_list();
  3139. kvm_x86_ops = ops;
  3140. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3141. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3142. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3143. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3144. kvm_timer_init();
  3145. return 0;
  3146. out:
  3147. return r;
  3148. }
  3149. void kvm_arch_exit(void)
  3150. {
  3151. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3152. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3153. CPUFREQ_TRANSITION_NOTIFIER);
  3154. kvm_x86_ops = NULL;
  3155. kvm_mmu_module_exit();
  3156. }
  3157. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3158. {
  3159. ++vcpu->stat.halt_exits;
  3160. if (irqchip_in_kernel(vcpu->kvm)) {
  3161. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3162. return 1;
  3163. } else {
  3164. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3165. return 0;
  3166. }
  3167. }
  3168. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3169. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3170. unsigned long a1)
  3171. {
  3172. if (is_long_mode(vcpu))
  3173. return a0;
  3174. else
  3175. return a0 | ((gpa_t)a1 << 32);
  3176. }
  3177. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3178. {
  3179. unsigned long nr, a0, a1, a2, a3, ret;
  3180. int r = 1;
  3181. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3182. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3183. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3184. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3185. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3186. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3187. if (!is_long_mode(vcpu)) {
  3188. nr &= 0xFFFFFFFF;
  3189. a0 &= 0xFFFFFFFF;
  3190. a1 &= 0xFFFFFFFF;
  3191. a2 &= 0xFFFFFFFF;
  3192. a3 &= 0xFFFFFFFF;
  3193. }
  3194. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3195. ret = -KVM_EPERM;
  3196. goto out;
  3197. }
  3198. switch (nr) {
  3199. case KVM_HC_VAPIC_POLL_IRQ:
  3200. ret = 0;
  3201. break;
  3202. case KVM_HC_MMU_OP:
  3203. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3204. break;
  3205. default:
  3206. ret = -KVM_ENOSYS;
  3207. break;
  3208. }
  3209. out:
  3210. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3211. ++vcpu->stat.hypercalls;
  3212. return r;
  3213. }
  3214. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3215. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3216. {
  3217. char instruction[3];
  3218. int ret = 0;
  3219. unsigned long rip = kvm_rip_read(vcpu);
  3220. /*
  3221. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3222. * to ensure that the updated hypercall appears atomically across all
  3223. * VCPUs.
  3224. */
  3225. kvm_mmu_zap_all(vcpu->kvm);
  3226. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3227. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3228. != X86EMUL_CONTINUE)
  3229. ret = -EFAULT;
  3230. return ret;
  3231. }
  3232. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3233. {
  3234. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3235. }
  3236. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3237. {
  3238. struct descriptor_table dt = { limit, base };
  3239. kvm_x86_ops->set_gdt(vcpu, &dt);
  3240. }
  3241. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3242. {
  3243. struct descriptor_table dt = { limit, base };
  3244. kvm_x86_ops->set_idt(vcpu, &dt);
  3245. }
  3246. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3247. unsigned long *rflags)
  3248. {
  3249. kvm_lmsw(vcpu, msw);
  3250. *rflags = kvm_get_rflags(vcpu);
  3251. }
  3252. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3253. {
  3254. unsigned long value;
  3255. switch (cr) {
  3256. case 0:
  3257. value = vcpu->arch.cr0;
  3258. break;
  3259. case 2:
  3260. value = vcpu->arch.cr2;
  3261. break;
  3262. case 3:
  3263. value = vcpu->arch.cr3;
  3264. break;
  3265. case 4:
  3266. value = kvm_read_cr4(vcpu);
  3267. break;
  3268. case 8:
  3269. value = kvm_get_cr8(vcpu);
  3270. break;
  3271. default:
  3272. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3273. return 0;
  3274. }
  3275. return value;
  3276. }
  3277. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3278. unsigned long *rflags)
  3279. {
  3280. switch (cr) {
  3281. case 0:
  3282. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3283. *rflags = kvm_get_rflags(vcpu);
  3284. break;
  3285. case 2:
  3286. vcpu->arch.cr2 = val;
  3287. break;
  3288. case 3:
  3289. kvm_set_cr3(vcpu, val);
  3290. break;
  3291. case 4:
  3292. kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3293. break;
  3294. case 8:
  3295. kvm_set_cr8(vcpu, val & 0xfUL);
  3296. break;
  3297. default:
  3298. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3299. }
  3300. }
  3301. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3302. {
  3303. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3304. int j, nent = vcpu->arch.cpuid_nent;
  3305. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3306. /* when no next entry is found, the current entry[i] is reselected */
  3307. for (j = i + 1; ; j = (j + 1) % nent) {
  3308. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3309. if (ej->function == e->function) {
  3310. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3311. return j;
  3312. }
  3313. }
  3314. return 0; /* silence gcc, even though control never reaches here */
  3315. }
  3316. /* find an entry with matching function, matching index (if needed), and that
  3317. * should be read next (if it's stateful) */
  3318. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3319. u32 function, u32 index)
  3320. {
  3321. if (e->function != function)
  3322. return 0;
  3323. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3324. return 0;
  3325. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3326. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3327. return 0;
  3328. return 1;
  3329. }
  3330. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3331. u32 function, u32 index)
  3332. {
  3333. int i;
  3334. struct kvm_cpuid_entry2 *best = NULL;
  3335. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3336. struct kvm_cpuid_entry2 *e;
  3337. e = &vcpu->arch.cpuid_entries[i];
  3338. if (is_matching_cpuid_entry(e, function, index)) {
  3339. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3340. move_to_next_stateful_cpuid_entry(vcpu, i);
  3341. best = e;
  3342. break;
  3343. }
  3344. /*
  3345. * Both basic or both extended?
  3346. */
  3347. if (((e->function ^ function) & 0x80000000) == 0)
  3348. if (!best || e->function > best->function)
  3349. best = e;
  3350. }
  3351. return best;
  3352. }
  3353. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  3354. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3355. {
  3356. struct kvm_cpuid_entry2 *best;
  3357. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3358. if (best)
  3359. return best->eax & 0xff;
  3360. return 36;
  3361. }
  3362. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3363. {
  3364. u32 function, index;
  3365. struct kvm_cpuid_entry2 *best;
  3366. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3367. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3368. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3369. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3370. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3371. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3372. best = kvm_find_cpuid_entry(vcpu, function, index);
  3373. if (best) {
  3374. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3375. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3376. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3377. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3378. }
  3379. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3380. trace_kvm_cpuid(function,
  3381. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3382. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3383. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3384. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3385. }
  3386. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3387. /*
  3388. * Check if userspace requested an interrupt window, and that the
  3389. * interrupt window is open.
  3390. *
  3391. * No need to exit to userspace if we already have an interrupt queued.
  3392. */
  3393. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3394. {
  3395. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3396. vcpu->run->request_interrupt_window &&
  3397. kvm_arch_interrupt_allowed(vcpu));
  3398. }
  3399. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3400. {
  3401. struct kvm_run *kvm_run = vcpu->run;
  3402. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3403. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3404. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3405. if (irqchip_in_kernel(vcpu->kvm))
  3406. kvm_run->ready_for_interrupt_injection = 1;
  3407. else
  3408. kvm_run->ready_for_interrupt_injection =
  3409. kvm_arch_interrupt_allowed(vcpu) &&
  3410. !kvm_cpu_has_interrupt(vcpu) &&
  3411. !kvm_event_needs_reinjection(vcpu);
  3412. }
  3413. static void vapic_enter(struct kvm_vcpu *vcpu)
  3414. {
  3415. struct kvm_lapic *apic = vcpu->arch.apic;
  3416. struct page *page;
  3417. if (!apic || !apic->vapic_addr)
  3418. return;
  3419. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3420. vcpu->arch.apic->vapic_page = page;
  3421. }
  3422. static void vapic_exit(struct kvm_vcpu *vcpu)
  3423. {
  3424. struct kvm_lapic *apic = vcpu->arch.apic;
  3425. int idx;
  3426. if (!apic || !apic->vapic_addr)
  3427. return;
  3428. idx = srcu_read_lock(&vcpu->kvm->srcu);
  3429. kvm_release_page_dirty(apic->vapic_page);
  3430. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3431. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  3432. }
  3433. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3434. {
  3435. int max_irr, tpr;
  3436. if (!kvm_x86_ops->update_cr8_intercept)
  3437. return;
  3438. if (!vcpu->arch.apic)
  3439. return;
  3440. if (!vcpu->arch.apic->vapic_addr)
  3441. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3442. else
  3443. max_irr = -1;
  3444. if (max_irr != -1)
  3445. max_irr >>= 4;
  3446. tpr = kvm_lapic_get_cr8(vcpu);
  3447. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3448. }
  3449. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3450. {
  3451. /* try to reinject previous events if any */
  3452. if (vcpu->arch.exception.pending) {
  3453. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3454. vcpu->arch.exception.has_error_code,
  3455. vcpu->arch.exception.error_code);
  3456. return;
  3457. }
  3458. if (vcpu->arch.nmi_injected) {
  3459. kvm_x86_ops->set_nmi(vcpu);
  3460. return;
  3461. }
  3462. if (vcpu->arch.interrupt.pending) {
  3463. kvm_x86_ops->set_irq(vcpu);
  3464. return;
  3465. }
  3466. /* try to inject new event if pending */
  3467. if (vcpu->arch.nmi_pending) {
  3468. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3469. vcpu->arch.nmi_pending = false;
  3470. vcpu->arch.nmi_injected = true;
  3471. kvm_x86_ops->set_nmi(vcpu);
  3472. }
  3473. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3474. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3475. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3476. false);
  3477. kvm_x86_ops->set_irq(vcpu);
  3478. }
  3479. }
  3480. }
  3481. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3482. {
  3483. int r;
  3484. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3485. vcpu->run->request_interrupt_window;
  3486. if (vcpu->requests)
  3487. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3488. kvm_mmu_unload(vcpu);
  3489. r = kvm_mmu_reload(vcpu);
  3490. if (unlikely(r))
  3491. goto out;
  3492. if (vcpu->requests) {
  3493. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3494. __kvm_migrate_timers(vcpu);
  3495. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3496. kvm_write_guest_time(vcpu);
  3497. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3498. kvm_mmu_sync_roots(vcpu);
  3499. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3500. kvm_x86_ops->tlb_flush(vcpu);
  3501. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3502. &vcpu->requests)) {
  3503. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3504. r = 0;
  3505. goto out;
  3506. }
  3507. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3508. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3509. r = 0;
  3510. goto out;
  3511. }
  3512. }
  3513. preempt_disable();
  3514. kvm_x86_ops->prepare_guest_switch(vcpu);
  3515. kvm_load_guest_fpu(vcpu);
  3516. local_irq_disable();
  3517. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3518. smp_mb__after_clear_bit();
  3519. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3520. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3521. local_irq_enable();
  3522. preempt_enable();
  3523. r = 1;
  3524. goto out;
  3525. }
  3526. inject_pending_event(vcpu);
  3527. /* enable NMI/IRQ window open exits if needed */
  3528. if (vcpu->arch.nmi_pending)
  3529. kvm_x86_ops->enable_nmi_window(vcpu);
  3530. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3531. kvm_x86_ops->enable_irq_window(vcpu);
  3532. if (kvm_lapic_enabled(vcpu)) {
  3533. update_cr8_intercept(vcpu);
  3534. kvm_lapic_sync_to_vapic(vcpu);
  3535. }
  3536. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3537. kvm_guest_enter();
  3538. if (unlikely(vcpu->arch.switch_db_regs)) {
  3539. set_debugreg(0, 7);
  3540. set_debugreg(vcpu->arch.eff_db[0], 0);
  3541. set_debugreg(vcpu->arch.eff_db[1], 1);
  3542. set_debugreg(vcpu->arch.eff_db[2], 2);
  3543. set_debugreg(vcpu->arch.eff_db[3], 3);
  3544. }
  3545. trace_kvm_entry(vcpu->vcpu_id);
  3546. kvm_x86_ops->run(vcpu);
  3547. /*
  3548. * If the guest has used debug registers, at least dr7
  3549. * will be disabled while returning to the host.
  3550. * If we don't have active breakpoints in the host, we don't
  3551. * care about the messed up debug address registers. But if
  3552. * we have some of them active, restore the old state.
  3553. */
  3554. if (hw_breakpoint_active())
  3555. hw_breakpoint_restore();
  3556. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3557. local_irq_enable();
  3558. ++vcpu->stat.exits;
  3559. /*
  3560. * We must have an instruction between local_irq_enable() and
  3561. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3562. * the interrupt shadow. The stat.exits increment will do nicely.
  3563. * But we need to prevent reordering, hence this barrier():
  3564. */
  3565. barrier();
  3566. kvm_guest_exit();
  3567. preempt_enable();
  3568. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3569. /*
  3570. * Profile KVM exit RIPs:
  3571. */
  3572. if (unlikely(prof_on == KVM_PROFILING)) {
  3573. unsigned long rip = kvm_rip_read(vcpu);
  3574. profile_hit(KVM_PROFILING, (void *)rip);
  3575. }
  3576. kvm_lapic_sync_from_vapic(vcpu);
  3577. r = kvm_x86_ops->handle_exit(vcpu);
  3578. out:
  3579. return r;
  3580. }
  3581. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3582. {
  3583. int r;
  3584. struct kvm *kvm = vcpu->kvm;
  3585. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3586. pr_debug("vcpu %d received sipi with vector # %x\n",
  3587. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3588. kvm_lapic_reset(vcpu);
  3589. r = kvm_arch_vcpu_reset(vcpu);
  3590. if (r)
  3591. return r;
  3592. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3593. }
  3594. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3595. vapic_enter(vcpu);
  3596. r = 1;
  3597. while (r > 0) {
  3598. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3599. r = vcpu_enter_guest(vcpu);
  3600. else {
  3601. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3602. kvm_vcpu_block(vcpu);
  3603. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3604. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3605. {
  3606. switch(vcpu->arch.mp_state) {
  3607. case KVM_MP_STATE_HALTED:
  3608. vcpu->arch.mp_state =
  3609. KVM_MP_STATE_RUNNABLE;
  3610. case KVM_MP_STATE_RUNNABLE:
  3611. break;
  3612. case KVM_MP_STATE_SIPI_RECEIVED:
  3613. default:
  3614. r = -EINTR;
  3615. break;
  3616. }
  3617. }
  3618. }
  3619. if (r <= 0)
  3620. break;
  3621. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3622. if (kvm_cpu_has_pending_timer(vcpu))
  3623. kvm_inject_pending_timer_irqs(vcpu);
  3624. if (dm_request_for_irq_injection(vcpu)) {
  3625. r = -EINTR;
  3626. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3627. ++vcpu->stat.request_irq_exits;
  3628. }
  3629. if (signal_pending(current)) {
  3630. r = -EINTR;
  3631. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3632. ++vcpu->stat.signal_exits;
  3633. }
  3634. if (need_resched()) {
  3635. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3636. kvm_resched(vcpu);
  3637. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  3638. }
  3639. }
  3640. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  3641. post_kvm_run_save(vcpu);
  3642. vapic_exit(vcpu);
  3643. return r;
  3644. }
  3645. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3646. {
  3647. int r;
  3648. sigset_t sigsaved;
  3649. vcpu_load(vcpu);
  3650. if (vcpu->sigset_active)
  3651. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3652. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3653. kvm_vcpu_block(vcpu);
  3654. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3655. r = -EAGAIN;
  3656. goto out;
  3657. }
  3658. /* re-sync apic's tpr */
  3659. if (!irqchip_in_kernel(vcpu->kvm))
  3660. kvm_set_cr8(vcpu, kvm_run->cr8);
  3661. if (vcpu->arch.pio.cur_count) {
  3662. r = complete_pio(vcpu);
  3663. if (r)
  3664. goto out;
  3665. }
  3666. if (vcpu->mmio_needed) {
  3667. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3668. vcpu->mmio_read_completed = 1;
  3669. vcpu->mmio_needed = 0;
  3670. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  3671. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3672. EMULTYPE_NO_DECODE);
  3673. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  3674. if (r == EMULATE_DO_MMIO) {
  3675. /*
  3676. * Read-modify-write. Back to userspace.
  3677. */
  3678. r = 0;
  3679. goto out;
  3680. }
  3681. }
  3682. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3683. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3684. kvm_run->hypercall.ret);
  3685. r = __vcpu_run(vcpu);
  3686. out:
  3687. if (vcpu->sigset_active)
  3688. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3689. vcpu_put(vcpu);
  3690. return r;
  3691. }
  3692. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3693. {
  3694. vcpu_load(vcpu);
  3695. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3696. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3697. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3698. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3699. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3700. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3701. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3702. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3703. #ifdef CONFIG_X86_64
  3704. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3705. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3706. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3707. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3708. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3709. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3710. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3711. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3712. #endif
  3713. regs->rip = kvm_rip_read(vcpu);
  3714. regs->rflags = kvm_get_rflags(vcpu);
  3715. vcpu_put(vcpu);
  3716. return 0;
  3717. }
  3718. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3719. {
  3720. vcpu_load(vcpu);
  3721. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3722. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3723. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3724. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3725. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3726. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3727. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3728. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3729. #ifdef CONFIG_X86_64
  3730. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3731. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3732. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3733. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3734. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3735. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3736. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3737. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3738. #endif
  3739. kvm_rip_write(vcpu, regs->rip);
  3740. kvm_set_rflags(vcpu, regs->rflags);
  3741. vcpu->arch.exception.pending = false;
  3742. vcpu_put(vcpu);
  3743. return 0;
  3744. }
  3745. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3746. struct kvm_segment *var, int seg)
  3747. {
  3748. kvm_x86_ops->get_segment(vcpu, var, seg);
  3749. }
  3750. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3751. {
  3752. struct kvm_segment cs;
  3753. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3754. *db = cs.db;
  3755. *l = cs.l;
  3756. }
  3757. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3758. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3759. struct kvm_sregs *sregs)
  3760. {
  3761. struct descriptor_table dt;
  3762. vcpu_load(vcpu);
  3763. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3764. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3765. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3766. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3767. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3768. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3769. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3770. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3771. kvm_x86_ops->get_idt(vcpu, &dt);
  3772. sregs->idt.limit = dt.limit;
  3773. sregs->idt.base = dt.base;
  3774. kvm_x86_ops->get_gdt(vcpu, &dt);
  3775. sregs->gdt.limit = dt.limit;
  3776. sregs->gdt.base = dt.base;
  3777. sregs->cr0 = vcpu->arch.cr0;
  3778. sregs->cr2 = vcpu->arch.cr2;
  3779. sregs->cr3 = vcpu->arch.cr3;
  3780. sregs->cr4 = kvm_read_cr4(vcpu);
  3781. sregs->cr8 = kvm_get_cr8(vcpu);
  3782. sregs->efer = vcpu->arch.shadow_efer;
  3783. sregs->apic_base = kvm_get_apic_base(vcpu);
  3784. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3785. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3786. set_bit(vcpu->arch.interrupt.nr,
  3787. (unsigned long *)sregs->interrupt_bitmap);
  3788. vcpu_put(vcpu);
  3789. return 0;
  3790. }
  3791. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3792. struct kvm_mp_state *mp_state)
  3793. {
  3794. vcpu_load(vcpu);
  3795. mp_state->mp_state = vcpu->arch.mp_state;
  3796. vcpu_put(vcpu);
  3797. return 0;
  3798. }
  3799. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3800. struct kvm_mp_state *mp_state)
  3801. {
  3802. vcpu_load(vcpu);
  3803. vcpu->arch.mp_state = mp_state->mp_state;
  3804. vcpu_put(vcpu);
  3805. return 0;
  3806. }
  3807. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3808. struct kvm_segment *var, int seg)
  3809. {
  3810. kvm_x86_ops->set_segment(vcpu, var, seg);
  3811. }
  3812. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3813. struct kvm_segment *kvm_desct)
  3814. {
  3815. kvm_desct->base = get_desc_base(seg_desc);
  3816. kvm_desct->limit = get_desc_limit(seg_desc);
  3817. if (seg_desc->g) {
  3818. kvm_desct->limit <<= 12;
  3819. kvm_desct->limit |= 0xfff;
  3820. }
  3821. kvm_desct->selector = selector;
  3822. kvm_desct->type = seg_desc->type;
  3823. kvm_desct->present = seg_desc->p;
  3824. kvm_desct->dpl = seg_desc->dpl;
  3825. kvm_desct->db = seg_desc->d;
  3826. kvm_desct->s = seg_desc->s;
  3827. kvm_desct->l = seg_desc->l;
  3828. kvm_desct->g = seg_desc->g;
  3829. kvm_desct->avl = seg_desc->avl;
  3830. if (!selector)
  3831. kvm_desct->unusable = 1;
  3832. else
  3833. kvm_desct->unusable = 0;
  3834. kvm_desct->padding = 0;
  3835. }
  3836. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3837. u16 selector,
  3838. struct descriptor_table *dtable)
  3839. {
  3840. if (selector & 1 << 2) {
  3841. struct kvm_segment kvm_seg;
  3842. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3843. if (kvm_seg.unusable)
  3844. dtable->limit = 0;
  3845. else
  3846. dtable->limit = kvm_seg.limit;
  3847. dtable->base = kvm_seg.base;
  3848. }
  3849. else
  3850. kvm_x86_ops->get_gdt(vcpu, dtable);
  3851. }
  3852. /* allowed just for 8 bytes segments */
  3853. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3854. struct desc_struct *seg_desc)
  3855. {
  3856. struct descriptor_table dtable;
  3857. u16 index = selector >> 3;
  3858. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3859. if (dtable.limit < index * 8 + 7) {
  3860. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3861. return 1;
  3862. }
  3863. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3864. }
  3865. /* allowed just for 8 bytes segments */
  3866. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3867. struct desc_struct *seg_desc)
  3868. {
  3869. struct descriptor_table dtable;
  3870. u16 index = selector >> 3;
  3871. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3872. if (dtable.limit < index * 8 + 7)
  3873. return 1;
  3874. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3875. }
  3876. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3877. struct desc_struct *seg_desc)
  3878. {
  3879. u32 base_addr = get_desc_base(seg_desc);
  3880. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3881. }
  3882. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3883. {
  3884. struct kvm_segment kvm_seg;
  3885. kvm_get_segment(vcpu, &kvm_seg, seg);
  3886. return kvm_seg.selector;
  3887. }
  3888. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3889. u16 selector,
  3890. struct kvm_segment *kvm_seg)
  3891. {
  3892. struct desc_struct seg_desc;
  3893. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3894. return 1;
  3895. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3896. return 0;
  3897. }
  3898. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3899. {
  3900. struct kvm_segment segvar = {
  3901. .base = selector << 4,
  3902. .limit = 0xffff,
  3903. .selector = selector,
  3904. .type = 3,
  3905. .present = 1,
  3906. .dpl = 3,
  3907. .db = 0,
  3908. .s = 1,
  3909. .l = 0,
  3910. .g = 0,
  3911. .avl = 0,
  3912. .unusable = 0,
  3913. };
  3914. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3915. return 0;
  3916. }
  3917. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3918. {
  3919. return (seg != VCPU_SREG_LDTR) &&
  3920. (seg != VCPU_SREG_TR) &&
  3921. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3922. }
  3923. static void kvm_check_segment_descriptor(struct kvm_vcpu *vcpu, int seg,
  3924. u16 selector)
  3925. {
  3926. /* NULL selector is not valid for CS and SS */
  3927. if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
  3928. if (!selector)
  3929. kvm_queue_exception_e(vcpu, TS_VECTOR, selector >> 3);
  3930. }
  3931. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3932. int type_bits, int seg)
  3933. {
  3934. struct kvm_segment kvm_seg;
  3935. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3936. return kvm_load_realmode_segment(vcpu, selector, seg);
  3937. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3938. return 1;
  3939. kvm_check_segment_descriptor(vcpu, seg, selector);
  3940. kvm_seg.type |= type_bits;
  3941. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3942. seg != VCPU_SREG_LDTR)
  3943. if (!kvm_seg.s)
  3944. kvm_seg.unusable = 1;
  3945. kvm_set_segment(vcpu, &kvm_seg, seg);
  3946. return 0;
  3947. }
  3948. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3949. struct tss_segment_32 *tss)
  3950. {
  3951. tss->cr3 = vcpu->arch.cr3;
  3952. tss->eip = kvm_rip_read(vcpu);
  3953. tss->eflags = kvm_get_rflags(vcpu);
  3954. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3955. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3956. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3957. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3958. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3959. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3960. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3961. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3962. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3963. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3964. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3965. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3966. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3967. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3968. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3969. }
  3970. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3971. struct tss_segment_32 *tss)
  3972. {
  3973. kvm_set_cr3(vcpu, tss->cr3);
  3974. kvm_rip_write(vcpu, tss->eip);
  3975. kvm_set_rflags(vcpu, tss->eflags | 2);
  3976. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3977. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3978. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3979. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3980. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3981. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3982. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3983. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3984. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3985. return 1;
  3986. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3987. return 1;
  3988. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3989. return 1;
  3990. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3991. return 1;
  3992. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3993. return 1;
  3994. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3995. return 1;
  3996. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3997. return 1;
  3998. return 0;
  3999. }
  4000. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  4001. struct tss_segment_16 *tss)
  4002. {
  4003. tss->ip = kvm_rip_read(vcpu);
  4004. tss->flag = kvm_get_rflags(vcpu);
  4005. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4006. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4007. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4008. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4009. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4010. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4011. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4012. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4013. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  4014. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  4015. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  4016. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  4017. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  4018. }
  4019. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  4020. struct tss_segment_16 *tss)
  4021. {
  4022. kvm_rip_write(vcpu, tss->ip);
  4023. kvm_set_rflags(vcpu, tss->flag | 2);
  4024. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  4025. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  4026. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  4027. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  4028. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  4029. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  4030. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  4031. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  4032. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  4033. return 1;
  4034. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  4035. return 1;
  4036. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  4037. return 1;
  4038. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  4039. return 1;
  4040. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  4041. return 1;
  4042. return 0;
  4043. }
  4044. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  4045. u16 old_tss_sel, u32 old_tss_base,
  4046. struct desc_struct *nseg_desc)
  4047. {
  4048. struct tss_segment_16 tss_segment_16;
  4049. int ret = 0;
  4050. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4051. sizeof tss_segment_16))
  4052. goto out;
  4053. save_state_to_tss16(vcpu, &tss_segment_16);
  4054. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  4055. sizeof tss_segment_16))
  4056. goto out;
  4057. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  4058. &tss_segment_16, sizeof tss_segment_16))
  4059. goto out;
  4060. if (old_tss_sel != 0xffff) {
  4061. tss_segment_16.prev_task_link = old_tss_sel;
  4062. if (kvm_write_guest(vcpu->kvm,
  4063. get_tss_base_addr(vcpu, nseg_desc),
  4064. &tss_segment_16.prev_task_link,
  4065. sizeof tss_segment_16.prev_task_link))
  4066. goto out;
  4067. }
  4068. if (load_state_from_tss16(vcpu, &tss_segment_16))
  4069. goto out;
  4070. ret = 1;
  4071. out:
  4072. return ret;
  4073. }
  4074. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  4075. u16 old_tss_sel, u32 old_tss_base,
  4076. struct desc_struct *nseg_desc)
  4077. {
  4078. struct tss_segment_32 tss_segment_32;
  4079. int ret = 0;
  4080. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4081. sizeof tss_segment_32))
  4082. goto out;
  4083. save_state_to_tss32(vcpu, &tss_segment_32);
  4084. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  4085. sizeof tss_segment_32))
  4086. goto out;
  4087. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  4088. &tss_segment_32, sizeof tss_segment_32))
  4089. goto out;
  4090. if (old_tss_sel != 0xffff) {
  4091. tss_segment_32.prev_task_link = old_tss_sel;
  4092. if (kvm_write_guest(vcpu->kvm,
  4093. get_tss_base_addr(vcpu, nseg_desc),
  4094. &tss_segment_32.prev_task_link,
  4095. sizeof tss_segment_32.prev_task_link))
  4096. goto out;
  4097. }
  4098. if (load_state_from_tss32(vcpu, &tss_segment_32))
  4099. goto out;
  4100. ret = 1;
  4101. out:
  4102. return ret;
  4103. }
  4104. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  4105. {
  4106. struct kvm_segment tr_seg;
  4107. struct desc_struct cseg_desc;
  4108. struct desc_struct nseg_desc;
  4109. int ret = 0;
  4110. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  4111. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  4112. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  4113. /* FIXME: Handle errors. Failure to read either TSS or their
  4114. * descriptors should generate a pagefault.
  4115. */
  4116. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  4117. goto out;
  4118. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  4119. goto out;
  4120. if (reason != TASK_SWITCH_IRET) {
  4121. int cpl;
  4122. cpl = kvm_x86_ops->get_cpl(vcpu);
  4123. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4124. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4125. return 1;
  4126. }
  4127. }
  4128. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4129. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4130. return 1;
  4131. }
  4132. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4133. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4134. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4135. }
  4136. if (reason == TASK_SWITCH_IRET) {
  4137. u32 eflags = kvm_get_rflags(vcpu);
  4138. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4139. }
  4140. /* set back link to prev task only if NT bit is set in eflags
  4141. note that old_tss_sel is not used afetr this point */
  4142. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4143. old_tss_sel = 0xffff;
  4144. if (nseg_desc.type & 8)
  4145. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4146. old_tss_base, &nseg_desc);
  4147. else
  4148. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4149. old_tss_base, &nseg_desc);
  4150. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4151. u32 eflags = kvm_get_rflags(vcpu);
  4152. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4153. }
  4154. if (reason != TASK_SWITCH_IRET) {
  4155. nseg_desc.type |= (1 << 1);
  4156. save_guest_segment_descriptor(vcpu, tss_selector,
  4157. &nseg_desc);
  4158. }
  4159. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  4160. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4161. tr_seg.type = 11;
  4162. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4163. out:
  4164. return ret;
  4165. }
  4166. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4167. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4168. struct kvm_sregs *sregs)
  4169. {
  4170. int mmu_reset_needed = 0;
  4171. int pending_vec, max_bits;
  4172. struct descriptor_table dt;
  4173. vcpu_load(vcpu);
  4174. dt.limit = sregs->idt.limit;
  4175. dt.base = sregs->idt.base;
  4176. kvm_x86_ops->set_idt(vcpu, &dt);
  4177. dt.limit = sregs->gdt.limit;
  4178. dt.base = sregs->gdt.base;
  4179. kvm_x86_ops->set_gdt(vcpu, &dt);
  4180. vcpu->arch.cr2 = sregs->cr2;
  4181. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4182. vcpu->arch.cr3 = sregs->cr3;
  4183. kvm_set_cr8(vcpu, sregs->cr8);
  4184. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  4185. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4186. kvm_set_apic_base(vcpu, sregs->apic_base);
  4187. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  4188. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4189. vcpu->arch.cr0 = sregs->cr0;
  4190. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4191. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4192. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4193. load_pdptrs(vcpu, vcpu->arch.cr3);
  4194. mmu_reset_needed = 1;
  4195. }
  4196. if (mmu_reset_needed)
  4197. kvm_mmu_reset_context(vcpu);
  4198. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4199. pending_vec = find_first_bit(
  4200. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4201. if (pending_vec < max_bits) {
  4202. kvm_queue_interrupt(vcpu, pending_vec, false);
  4203. pr_debug("Set back pending irq %d\n", pending_vec);
  4204. if (irqchip_in_kernel(vcpu->kvm))
  4205. kvm_pic_clear_isr_ack(vcpu->kvm);
  4206. }
  4207. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4208. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4209. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4210. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4211. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4212. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4213. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4214. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4215. update_cr8_intercept(vcpu);
  4216. /* Older userspace won't unhalt the vcpu on reset. */
  4217. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4218. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4219. !(vcpu->arch.cr0 & X86_CR0_PE))
  4220. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4221. vcpu_put(vcpu);
  4222. return 0;
  4223. }
  4224. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4225. struct kvm_guest_debug *dbg)
  4226. {
  4227. unsigned long rflags;
  4228. int i, r;
  4229. vcpu_load(vcpu);
  4230. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4231. r = -EBUSY;
  4232. if (vcpu->arch.exception.pending)
  4233. goto unlock_out;
  4234. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4235. kvm_queue_exception(vcpu, DB_VECTOR);
  4236. else
  4237. kvm_queue_exception(vcpu, BP_VECTOR);
  4238. }
  4239. /*
  4240. * Read rflags as long as potentially injected trace flags are still
  4241. * filtered out.
  4242. */
  4243. rflags = kvm_get_rflags(vcpu);
  4244. vcpu->guest_debug = dbg->control;
  4245. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4246. vcpu->guest_debug = 0;
  4247. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4248. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4249. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4250. vcpu->arch.switch_db_regs =
  4251. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4252. } else {
  4253. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4254. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4255. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4256. }
  4257. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4258. vcpu->arch.singlestep_cs =
  4259. get_segment_selector(vcpu, VCPU_SREG_CS);
  4260. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4261. }
  4262. /*
  4263. * Trigger an rflags update that will inject or remove the trace
  4264. * flags.
  4265. */
  4266. kvm_set_rflags(vcpu, rflags);
  4267. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4268. r = 0;
  4269. unlock_out:
  4270. vcpu_put(vcpu);
  4271. return r;
  4272. }
  4273. /*
  4274. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4275. * we have asm/x86/processor.h
  4276. */
  4277. struct fxsave {
  4278. u16 cwd;
  4279. u16 swd;
  4280. u16 twd;
  4281. u16 fop;
  4282. u64 rip;
  4283. u64 rdp;
  4284. u32 mxcsr;
  4285. u32 mxcsr_mask;
  4286. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4287. #ifdef CONFIG_X86_64
  4288. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4289. #else
  4290. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4291. #endif
  4292. };
  4293. /*
  4294. * Translate a guest virtual address to a guest physical address.
  4295. */
  4296. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4297. struct kvm_translation *tr)
  4298. {
  4299. unsigned long vaddr = tr->linear_address;
  4300. gpa_t gpa;
  4301. int idx;
  4302. vcpu_load(vcpu);
  4303. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4304. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4305. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4306. tr->physical_address = gpa;
  4307. tr->valid = gpa != UNMAPPED_GVA;
  4308. tr->writeable = 1;
  4309. tr->usermode = 0;
  4310. vcpu_put(vcpu);
  4311. return 0;
  4312. }
  4313. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4314. {
  4315. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4316. vcpu_load(vcpu);
  4317. memcpy(fpu->fpr, fxsave->st_space, 128);
  4318. fpu->fcw = fxsave->cwd;
  4319. fpu->fsw = fxsave->swd;
  4320. fpu->ftwx = fxsave->twd;
  4321. fpu->last_opcode = fxsave->fop;
  4322. fpu->last_ip = fxsave->rip;
  4323. fpu->last_dp = fxsave->rdp;
  4324. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4325. vcpu_put(vcpu);
  4326. return 0;
  4327. }
  4328. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4329. {
  4330. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4331. vcpu_load(vcpu);
  4332. memcpy(fxsave->st_space, fpu->fpr, 128);
  4333. fxsave->cwd = fpu->fcw;
  4334. fxsave->swd = fpu->fsw;
  4335. fxsave->twd = fpu->ftwx;
  4336. fxsave->fop = fpu->last_opcode;
  4337. fxsave->rip = fpu->last_ip;
  4338. fxsave->rdp = fpu->last_dp;
  4339. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4340. vcpu_put(vcpu);
  4341. return 0;
  4342. }
  4343. void fx_init(struct kvm_vcpu *vcpu)
  4344. {
  4345. unsigned after_mxcsr_mask;
  4346. /*
  4347. * Touch the fpu the first time in non atomic context as if
  4348. * this is the first fpu instruction the exception handler
  4349. * will fire before the instruction returns and it'll have to
  4350. * allocate ram with GFP_KERNEL.
  4351. */
  4352. if (!used_math())
  4353. kvm_fx_save(&vcpu->arch.host_fx_image);
  4354. /* Initialize guest FPU by resetting ours and saving into guest's */
  4355. preempt_disable();
  4356. kvm_fx_save(&vcpu->arch.host_fx_image);
  4357. kvm_fx_finit();
  4358. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4359. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4360. preempt_enable();
  4361. vcpu->arch.cr0 |= X86_CR0_ET;
  4362. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4363. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4364. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4365. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4366. }
  4367. EXPORT_SYMBOL_GPL(fx_init);
  4368. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4369. {
  4370. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4371. return;
  4372. vcpu->guest_fpu_loaded = 1;
  4373. kvm_fx_save(&vcpu->arch.host_fx_image);
  4374. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4375. }
  4376. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4377. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4378. {
  4379. if (!vcpu->guest_fpu_loaded)
  4380. return;
  4381. vcpu->guest_fpu_loaded = 0;
  4382. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4383. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4384. ++vcpu->stat.fpu_reload;
  4385. }
  4386. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4387. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4388. {
  4389. if (vcpu->arch.time_page) {
  4390. kvm_release_page_dirty(vcpu->arch.time_page);
  4391. vcpu->arch.time_page = NULL;
  4392. }
  4393. kvm_x86_ops->vcpu_free(vcpu);
  4394. }
  4395. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4396. unsigned int id)
  4397. {
  4398. return kvm_x86_ops->vcpu_create(kvm, id);
  4399. }
  4400. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4401. {
  4402. int r;
  4403. /* We do fxsave: this must be aligned. */
  4404. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4405. vcpu->arch.mtrr_state.have_fixed = 1;
  4406. vcpu_load(vcpu);
  4407. r = kvm_arch_vcpu_reset(vcpu);
  4408. if (r == 0)
  4409. r = kvm_mmu_setup(vcpu);
  4410. vcpu_put(vcpu);
  4411. if (r < 0)
  4412. goto free_vcpu;
  4413. return 0;
  4414. free_vcpu:
  4415. kvm_x86_ops->vcpu_free(vcpu);
  4416. return r;
  4417. }
  4418. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4419. {
  4420. vcpu_load(vcpu);
  4421. kvm_mmu_unload(vcpu);
  4422. vcpu_put(vcpu);
  4423. kvm_x86_ops->vcpu_free(vcpu);
  4424. }
  4425. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4426. {
  4427. vcpu->arch.nmi_pending = false;
  4428. vcpu->arch.nmi_injected = false;
  4429. vcpu->arch.switch_db_regs = 0;
  4430. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4431. vcpu->arch.dr6 = DR6_FIXED_1;
  4432. vcpu->arch.dr7 = DR7_FIXED_1;
  4433. return kvm_x86_ops->vcpu_reset(vcpu);
  4434. }
  4435. int kvm_arch_hardware_enable(void *garbage)
  4436. {
  4437. /*
  4438. * Since this may be called from a hotplug notifcation,
  4439. * we can't get the CPU frequency directly.
  4440. */
  4441. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4442. int cpu = raw_smp_processor_id();
  4443. per_cpu(cpu_tsc_khz, cpu) = 0;
  4444. }
  4445. kvm_shared_msr_cpu_online();
  4446. return kvm_x86_ops->hardware_enable(garbage);
  4447. }
  4448. void kvm_arch_hardware_disable(void *garbage)
  4449. {
  4450. kvm_x86_ops->hardware_disable(garbage);
  4451. drop_user_return_notifiers(garbage);
  4452. }
  4453. int kvm_arch_hardware_setup(void)
  4454. {
  4455. return kvm_x86_ops->hardware_setup();
  4456. }
  4457. void kvm_arch_hardware_unsetup(void)
  4458. {
  4459. kvm_x86_ops->hardware_unsetup();
  4460. }
  4461. void kvm_arch_check_processor_compat(void *rtn)
  4462. {
  4463. kvm_x86_ops->check_processor_compatibility(rtn);
  4464. }
  4465. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4466. {
  4467. struct page *page;
  4468. struct kvm *kvm;
  4469. int r;
  4470. BUG_ON(vcpu->kvm == NULL);
  4471. kvm = vcpu->kvm;
  4472. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4473. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4474. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4475. else
  4476. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4477. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4478. if (!page) {
  4479. r = -ENOMEM;
  4480. goto fail;
  4481. }
  4482. vcpu->arch.pio_data = page_address(page);
  4483. r = kvm_mmu_create(vcpu);
  4484. if (r < 0)
  4485. goto fail_free_pio_data;
  4486. if (irqchip_in_kernel(kvm)) {
  4487. r = kvm_create_lapic(vcpu);
  4488. if (r < 0)
  4489. goto fail_mmu_destroy;
  4490. }
  4491. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4492. GFP_KERNEL);
  4493. if (!vcpu->arch.mce_banks) {
  4494. r = -ENOMEM;
  4495. goto fail_free_lapic;
  4496. }
  4497. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4498. return 0;
  4499. fail_free_lapic:
  4500. kvm_free_lapic(vcpu);
  4501. fail_mmu_destroy:
  4502. kvm_mmu_destroy(vcpu);
  4503. fail_free_pio_data:
  4504. free_page((unsigned long)vcpu->arch.pio_data);
  4505. fail:
  4506. return r;
  4507. }
  4508. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4509. {
  4510. int idx;
  4511. kfree(vcpu->arch.mce_banks);
  4512. kvm_free_lapic(vcpu);
  4513. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4514. kvm_mmu_destroy(vcpu);
  4515. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4516. free_page((unsigned long)vcpu->arch.pio_data);
  4517. }
  4518. struct kvm *kvm_arch_create_vm(void)
  4519. {
  4520. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4521. if (!kvm)
  4522. return ERR_PTR(-ENOMEM);
  4523. kvm->arch.aliases = kzalloc(sizeof(struct kvm_mem_aliases), GFP_KERNEL);
  4524. if (!kvm->arch.aliases) {
  4525. kfree(kvm);
  4526. return ERR_PTR(-ENOMEM);
  4527. }
  4528. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4529. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4530. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4531. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4532. rdtscll(kvm->arch.vm_init_tsc);
  4533. return kvm;
  4534. }
  4535. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4536. {
  4537. vcpu_load(vcpu);
  4538. kvm_mmu_unload(vcpu);
  4539. vcpu_put(vcpu);
  4540. }
  4541. static void kvm_free_vcpus(struct kvm *kvm)
  4542. {
  4543. unsigned int i;
  4544. struct kvm_vcpu *vcpu;
  4545. /*
  4546. * Unpin any mmu pages first.
  4547. */
  4548. kvm_for_each_vcpu(i, vcpu, kvm)
  4549. kvm_unload_vcpu_mmu(vcpu);
  4550. kvm_for_each_vcpu(i, vcpu, kvm)
  4551. kvm_arch_vcpu_free(vcpu);
  4552. mutex_lock(&kvm->lock);
  4553. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4554. kvm->vcpus[i] = NULL;
  4555. atomic_set(&kvm->online_vcpus, 0);
  4556. mutex_unlock(&kvm->lock);
  4557. }
  4558. void kvm_arch_sync_events(struct kvm *kvm)
  4559. {
  4560. kvm_free_all_assigned_devices(kvm);
  4561. }
  4562. void kvm_arch_destroy_vm(struct kvm *kvm)
  4563. {
  4564. kvm_iommu_unmap_guest(kvm);
  4565. kvm_free_pit(kvm);
  4566. kfree(kvm->arch.vpic);
  4567. kfree(kvm->arch.vioapic);
  4568. kvm_free_vcpus(kvm);
  4569. kvm_free_physmem(kvm);
  4570. if (kvm->arch.apic_access_page)
  4571. put_page(kvm->arch.apic_access_page);
  4572. if (kvm->arch.ept_identity_pagetable)
  4573. put_page(kvm->arch.ept_identity_pagetable);
  4574. kfree(kvm->arch.aliases);
  4575. kfree(kvm);
  4576. }
  4577. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  4578. struct kvm_memory_slot *memslot,
  4579. struct kvm_memory_slot old,
  4580. struct kvm_userspace_memory_region *mem,
  4581. int user_alloc)
  4582. {
  4583. int npages = memslot->npages;
  4584. /*To keep backward compatibility with older userspace,
  4585. *x86 needs to hanlde !user_alloc case.
  4586. */
  4587. if (!user_alloc) {
  4588. if (npages && !old.rmap) {
  4589. unsigned long userspace_addr;
  4590. down_write(&current->mm->mmap_sem);
  4591. userspace_addr = do_mmap(NULL, 0,
  4592. npages * PAGE_SIZE,
  4593. PROT_READ | PROT_WRITE,
  4594. MAP_PRIVATE | MAP_ANONYMOUS,
  4595. 0);
  4596. up_write(&current->mm->mmap_sem);
  4597. if (IS_ERR((void *)userspace_addr))
  4598. return PTR_ERR((void *)userspace_addr);
  4599. memslot->userspace_addr = userspace_addr;
  4600. }
  4601. }
  4602. return 0;
  4603. }
  4604. void kvm_arch_commit_memory_region(struct kvm *kvm,
  4605. struct kvm_userspace_memory_region *mem,
  4606. struct kvm_memory_slot old,
  4607. int user_alloc)
  4608. {
  4609. int npages = mem->memory_size >> PAGE_SHIFT;
  4610. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  4611. int ret;
  4612. down_write(&current->mm->mmap_sem);
  4613. ret = do_munmap(current->mm, old.userspace_addr,
  4614. old.npages * PAGE_SIZE);
  4615. up_write(&current->mm->mmap_sem);
  4616. if (ret < 0)
  4617. printk(KERN_WARNING
  4618. "kvm_vm_ioctl_set_memory_region: "
  4619. "failed to munmap memory\n");
  4620. }
  4621. spin_lock(&kvm->mmu_lock);
  4622. if (!kvm->arch.n_requested_mmu_pages) {
  4623. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4624. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4625. }
  4626. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4627. spin_unlock(&kvm->mmu_lock);
  4628. }
  4629. void kvm_arch_flush_shadow(struct kvm *kvm)
  4630. {
  4631. kvm_mmu_zap_all(kvm);
  4632. kvm_reload_remote_mmus(kvm);
  4633. }
  4634. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4635. {
  4636. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4637. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4638. || vcpu->arch.nmi_pending ||
  4639. (kvm_arch_interrupt_allowed(vcpu) &&
  4640. kvm_cpu_has_interrupt(vcpu));
  4641. }
  4642. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4643. {
  4644. int me;
  4645. int cpu = vcpu->cpu;
  4646. if (waitqueue_active(&vcpu->wq)) {
  4647. wake_up_interruptible(&vcpu->wq);
  4648. ++vcpu->stat.halt_wakeup;
  4649. }
  4650. me = get_cpu();
  4651. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4652. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4653. smp_send_reschedule(cpu);
  4654. put_cpu();
  4655. }
  4656. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4657. {
  4658. return kvm_x86_ops->interrupt_allowed(vcpu);
  4659. }
  4660. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4661. {
  4662. unsigned long rflags;
  4663. rflags = kvm_x86_ops->get_rflags(vcpu);
  4664. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4665. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4666. return rflags;
  4667. }
  4668. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4669. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4670. {
  4671. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4672. vcpu->arch.singlestep_cs ==
  4673. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4674. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4675. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4676. kvm_x86_ops->set_rflags(vcpu, rflags);
  4677. }
  4678. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4679. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4680. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4681. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4682. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4683. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4684. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4685. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4686. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4687. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4688. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4689. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);