core.c 173 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <asm/switch_to.h>
  76. #include <asm/tlb.h>
  77. #include <asm/irq_regs.h>
  78. #include <asm/mutex.h>
  79. #ifdef CONFIG_PARAVIRT
  80. #include <asm/paravirt.h>
  81. #endif
  82. #include "sched.h"
  83. #include "../workqueue_internal.h"
  84. #include "../smpboot.h"
  85. #define CREATE_TRACE_POINTS
  86. #include <trace/events/sched.h>
  87. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  88. {
  89. unsigned long delta;
  90. ktime_t soft, hard, now;
  91. for (;;) {
  92. if (hrtimer_active(period_timer))
  93. break;
  94. now = hrtimer_cb_get_time(period_timer);
  95. hrtimer_forward(period_timer, now, period);
  96. soft = hrtimer_get_softexpires(period_timer);
  97. hard = hrtimer_get_expires(period_timer);
  98. delta = ktime_to_ns(ktime_sub(hard, soft));
  99. __hrtimer_start_range_ns(period_timer, soft, delta,
  100. HRTIMER_MODE_ABS_PINNED, 0);
  101. }
  102. }
  103. DEFINE_MUTEX(sched_domains_mutex);
  104. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  105. static void update_rq_clock_task(struct rq *rq, s64 delta);
  106. void update_rq_clock(struct rq *rq)
  107. {
  108. s64 delta;
  109. if (rq->skip_clock_update > 0)
  110. return;
  111. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  112. rq->clock += delta;
  113. update_rq_clock_task(rq, delta);
  114. }
  115. /*
  116. * Debugging: various feature bits
  117. */
  118. #define SCHED_FEAT(name, enabled) \
  119. (1UL << __SCHED_FEAT_##name) * enabled |
  120. const_debug unsigned int sysctl_sched_features =
  121. #include "features.h"
  122. 0;
  123. #undef SCHED_FEAT
  124. #ifdef CONFIG_SCHED_DEBUG
  125. #define SCHED_FEAT(name, enabled) \
  126. #name ,
  127. static const char * const sched_feat_names[] = {
  128. #include "features.h"
  129. };
  130. #undef SCHED_FEAT
  131. static int sched_feat_show(struct seq_file *m, void *v)
  132. {
  133. int i;
  134. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  135. if (!(sysctl_sched_features & (1UL << i)))
  136. seq_puts(m, "NO_");
  137. seq_printf(m, "%s ", sched_feat_names[i]);
  138. }
  139. seq_puts(m, "\n");
  140. return 0;
  141. }
  142. #ifdef HAVE_JUMP_LABEL
  143. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  144. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  145. #define SCHED_FEAT(name, enabled) \
  146. jump_label_key__##enabled ,
  147. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  148. #include "features.h"
  149. };
  150. #undef SCHED_FEAT
  151. static void sched_feat_disable(int i)
  152. {
  153. if (static_key_enabled(&sched_feat_keys[i]))
  154. static_key_slow_dec(&sched_feat_keys[i]);
  155. }
  156. static void sched_feat_enable(int i)
  157. {
  158. if (!static_key_enabled(&sched_feat_keys[i]))
  159. static_key_slow_inc(&sched_feat_keys[i]);
  160. }
  161. #else
  162. static void sched_feat_disable(int i) { };
  163. static void sched_feat_enable(int i) { };
  164. #endif /* HAVE_JUMP_LABEL */
  165. static int sched_feat_set(char *cmp)
  166. {
  167. int i;
  168. int neg = 0;
  169. if (strncmp(cmp, "NO_", 3) == 0) {
  170. neg = 1;
  171. cmp += 3;
  172. }
  173. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  174. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  175. if (neg) {
  176. sysctl_sched_features &= ~(1UL << i);
  177. sched_feat_disable(i);
  178. } else {
  179. sysctl_sched_features |= (1UL << i);
  180. sched_feat_enable(i);
  181. }
  182. break;
  183. }
  184. }
  185. return i;
  186. }
  187. static ssize_t
  188. sched_feat_write(struct file *filp, const char __user *ubuf,
  189. size_t cnt, loff_t *ppos)
  190. {
  191. char buf[64];
  192. char *cmp;
  193. int i;
  194. if (cnt > 63)
  195. cnt = 63;
  196. if (copy_from_user(&buf, ubuf, cnt))
  197. return -EFAULT;
  198. buf[cnt] = 0;
  199. cmp = strstrip(buf);
  200. i = sched_feat_set(cmp);
  201. if (i == __SCHED_FEAT_NR)
  202. return -EINVAL;
  203. *ppos += cnt;
  204. return cnt;
  205. }
  206. static int sched_feat_open(struct inode *inode, struct file *filp)
  207. {
  208. return single_open(filp, sched_feat_show, NULL);
  209. }
  210. static const struct file_operations sched_feat_fops = {
  211. .open = sched_feat_open,
  212. .write = sched_feat_write,
  213. .read = seq_read,
  214. .llseek = seq_lseek,
  215. .release = single_release,
  216. };
  217. static __init int sched_init_debug(void)
  218. {
  219. debugfs_create_file("sched_features", 0644, NULL, NULL,
  220. &sched_feat_fops);
  221. return 0;
  222. }
  223. late_initcall(sched_init_debug);
  224. #endif /* CONFIG_SCHED_DEBUG */
  225. /*
  226. * Number of tasks to iterate in a single balance run.
  227. * Limited because this is done with IRQs disabled.
  228. */
  229. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  230. /*
  231. * period over which we average the RT time consumption, measured
  232. * in ms.
  233. *
  234. * default: 1s
  235. */
  236. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  237. /*
  238. * period over which we measure -rt task cpu usage in us.
  239. * default: 1s
  240. */
  241. unsigned int sysctl_sched_rt_period = 1000000;
  242. __read_mostly int scheduler_running;
  243. /*
  244. * part of the period that we allow rt tasks to run in us.
  245. * default: 0.95s
  246. */
  247. int sysctl_sched_rt_runtime = 950000;
  248. /*
  249. * __task_rq_lock - lock the rq @p resides on.
  250. */
  251. static inline struct rq *__task_rq_lock(struct task_struct *p)
  252. __acquires(rq->lock)
  253. {
  254. struct rq *rq;
  255. lockdep_assert_held(&p->pi_lock);
  256. for (;;) {
  257. rq = task_rq(p);
  258. raw_spin_lock(&rq->lock);
  259. if (likely(rq == task_rq(p)))
  260. return rq;
  261. raw_spin_unlock(&rq->lock);
  262. }
  263. }
  264. /*
  265. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  266. */
  267. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  268. __acquires(p->pi_lock)
  269. __acquires(rq->lock)
  270. {
  271. struct rq *rq;
  272. for (;;) {
  273. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  274. rq = task_rq(p);
  275. raw_spin_lock(&rq->lock);
  276. if (likely(rq == task_rq(p)))
  277. return rq;
  278. raw_spin_unlock(&rq->lock);
  279. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  280. }
  281. }
  282. static void __task_rq_unlock(struct rq *rq)
  283. __releases(rq->lock)
  284. {
  285. raw_spin_unlock(&rq->lock);
  286. }
  287. static inline void
  288. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  289. __releases(rq->lock)
  290. __releases(p->pi_lock)
  291. {
  292. raw_spin_unlock(&rq->lock);
  293. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  294. }
  295. /*
  296. * this_rq_lock - lock this runqueue and disable interrupts.
  297. */
  298. static struct rq *this_rq_lock(void)
  299. __acquires(rq->lock)
  300. {
  301. struct rq *rq;
  302. local_irq_disable();
  303. rq = this_rq();
  304. raw_spin_lock(&rq->lock);
  305. return rq;
  306. }
  307. #ifdef CONFIG_SCHED_HRTICK
  308. /*
  309. * Use HR-timers to deliver accurate preemption points.
  310. */
  311. static void hrtick_clear(struct rq *rq)
  312. {
  313. if (hrtimer_active(&rq->hrtick_timer))
  314. hrtimer_cancel(&rq->hrtick_timer);
  315. }
  316. /*
  317. * High-resolution timer tick.
  318. * Runs from hardirq context with interrupts disabled.
  319. */
  320. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  321. {
  322. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  323. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  324. raw_spin_lock(&rq->lock);
  325. update_rq_clock(rq);
  326. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  327. raw_spin_unlock(&rq->lock);
  328. return HRTIMER_NORESTART;
  329. }
  330. #ifdef CONFIG_SMP
  331. static int __hrtick_restart(struct rq *rq)
  332. {
  333. struct hrtimer *timer = &rq->hrtick_timer;
  334. ktime_t time = hrtimer_get_softexpires(timer);
  335. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  336. }
  337. /*
  338. * called from hardirq (IPI) context
  339. */
  340. static void __hrtick_start(void *arg)
  341. {
  342. struct rq *rq = arg;
  343. raw_spin_lock(&rq->lock);
  344. __hrtick_restart(rq);
  345. rq->hrtick_csd_pending = 0;
  346. raw_spin_unlock(&rq->lock);
  347. }
  348. /*
  349. * Called to set the hrtick timer state.
  350. *
  351. * called with rq->lock held and irqs disabled
  352. */
  353. void hrtick_start(struct rq *rq, u64 delay)
  354. {
  355. struct hrtimer *timer = &rq->hrtick_timer;
  356. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  357. hrtimer_set_expires(timer, time);
  358. if (rq == this_rq()) {
  359. __hrtick_restart(rq);
  360. } else if (!rq->hrtick_csd_pending) {
  361. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  362. rq->hrtick_csd_pending = 1;
  363. }
  364. }
  365. static int
  366. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  367. {
  368. int cpu = (int)(long)hcpu;
  369. switch (action) {
  370. case CPU_UP_CANCELED:
  371. case CPU_UP_CANCELED_FROZEN:
  372. case CPU_DOWN_PREPARE:
  373. case CPU_DOWN_PREPARE_FROZEN:
  374. case CPU_DEAD:
  375. case CPU_DEAD_FROZEN:
  376. hrtick_clear(cpu_rq(cpu));
  377. return NOTIFY_OK;
  378. }
  379. return NOTIFY_DONE;
  380. }
  381. static __init void init_hrtick(void)
  382. {
  383. hotcpu_notifier(hotplug_hrtick, 0);
  384. }
  385. #else
  386. /*
  387. * Called to set the hrtick timer state.
  388. *
  389. * called with rq->lock held and irqs disabled
  390. */
  391. void hrtick_start(struct rq *rq, u64 delay)
  392. {
  393. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  394. HRTIMER_MODE_REL_PINNED, 0);
  395. }
  396. static inline void init_hrtick(void)
  397. {
  398. }
  399. #endif /* CONFIG_SMP */
  400. static void init_rq_hrtick(struct rq *rq)
  401. {
  402. #ifdef CONFIG_SMP
  403. rq->hrtick_csd_pending = 0;
  404. rq->hrtick_csd.flags = 0;
  405. rq->hrtick_csd.func = __hrtick_start;
  406. rq->hrtick_csd.info = rq;
  407. #endif
  408. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  409. rq->hrtick_timer.function = hrtick;
  410. }
  411. #else /* CONFIG_SCHED_HRTICK */
  412. static inline void hrtick_clear(struct rq *rq)
  413. {
  414. }
  415. static inline void init_rq_hrtick(struct rq *rq)
  416. {
  417. }
  418. static inline void init_hrtick(void)
  419. {
  420. }
  421. #endif /* CONFIG_SCHED_HRTICK */
  422. /*
  423. * resched_task - mark a task 'to be rescheduled now'.
  424. *
  425. * On UP this means the setting of the need_resched flag, on SMP it
  426. * might also involve a cross-CPU call to trigger the scheduler on
  427. * the target CPU.
  428. */
  429. void resched_task(struct task_struct *p)
  430. {
  431. int cpu;
  432. lockdep_assert_held(&task_rq(p)->lock);
  433. if (test_tsk_need_resched(p))
  434. return;
  435. set_tsk_need_resched(p);
  436. cpu = task_cpu(p);
  437. if (cpu == smp_processor_id()) {
  438. set_preempt_need_resched();
  439. return;
  440. }
  441. /* NEED_RESCHED must be visible before we test polling */
  442. smp_mb();
  443. if (!tsk_is_polling(p))
  444. smp_send_reschedule(cpu);
  445. }
  446. void resched_cpu(int cpu)
  447. {
  448. struct rq *rq = cpu_rq(cpu);
  449. unsigned long flags;
  450. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  451. return;
  452. resched_task(cpu_curr(cpu));
  453. raw_spin_unlock_irqrestore(&rq->lock, flags);
  454. }
  455. #ifdef CONFIG_SMP
  456. #ifdef CONFIG_NO_HZ_COMMON
  457. /*
  458. * In the semi idle case, use the nearest busy cpu for migrating timers
  459. * from an idle cpu. This is good for power-savings.
  460. *
  461. * We don't do similar optimization for completely idle system, as
  462. * selecting an idle cpu will add more delays to the timers than intended
  463. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  464. */
  465. int get_nohz_timer_target(void)
  466. {
  467. int cpu = smp_processor_id();
  468. int i;
  469. struct sched_domain *sd;
  470. rcu_read_lock();
  471. for_each_domain(cpu, sd) {
  472. for_each_cpu(i, sched_domain_span(sd)) {
  473. if (!idle_cpu(i)) {
  474. cpu = i;
  475. goto unlock;
  476. }
  477. }
  478. }
  479. unlock:
  480. rcu_read_unlock();
  481. return cpu;
  482. }
  483. /*
  484. * When add_timer_on() enqueues a timer into the timer wheel of an
  485. * idle CPU then this timer might expire before the next timer event
  486. * which is scheduled to wake up that CPU. In case of a completely
  487. * idle system the next event might even be infinite time into the
  488. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  489. * leaves the inner idle loop so the newly added timer is taken into
  490. * account when the CPU goes back to idle and evaluates the timer
  491. * wheel for the next timer event.
  492. */
  493. static void wake_up_idle_cpu(int cpu)
  494. {
  495. struct rq *rq = cpu_rq(cpu);
  496. if (cpu == smp_processor_id())
  497. return;
  498. /*
  499. * This is safe, as this function is called with the timer
  500. * wheel base lock of (cpu) held. When the CPU is on the way
  501. * to idle and has not yet set rq->curr to idle then it will
  502. * be serialized on the timer wheel base lock and take the new
  503. * timer into account automatically.
  504. */
  505. if (rq->curr != rq->idle)
  506. return;
  507. /*
  508. * We can set TIF_RESCHED on the idle task of the other CPU
  509. * lockless. The worst case is that the other CPU runs the
  510. * idle task through an additional NOOP schedule()
  511. */
  512. set_tsk_need_resched(rq->idle);
  513. /* NEED_RESCHED must be visible before we test polling */
  514. smp_mb();
  515. if (!tsk_is_polling(rq->idle))
  516. smp_send_reschedule(cpu);
  517. }
  518. static bool wake_up_full_nohz_cpu(int cpu)
  519. {
  520. if (tick_nohz_full_cpu(cpu)) {
  521. if (cpu != smp_processor_id() ||
  522. tick_nohz_tick_stopped())
  523. smp_send_reschedule(cpu);
  524. return true;
  525. }
  526. return false;
  527. }
  528. void wake_up_nohz_cpu(int cpu)
  529. {
  530. if (!wake_up_full_nohz_cpu(cpu))
  531. wake_up_idle_cpu(cpu);
  532. }
  533. static inline bool got_nohz_idle_kick(void)
  534. {
  535. int cpu = smp_processor_id();
  536. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  537. return false;
  538. if (idle_cpu(cpu) && !need_resched())
  539. return true;
  540. /*
  541. * We can't run Idle Load Balance on this CPU for this time so we
  542. * cancel it and clear NOHZ_BALANCE_KICK
  543. */
  544. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  545. return false;
  546. }
  547. #else /* CONFIG_NO_HZ_COMMON */
  548. static inline bool got_nohz_idle_kick(void)
  549. {
  550. return false;
  551. }
  552. #endif /* CONFIG_NO_HZ_COMMON */
  553. #ifdef CONFIG_NO_HZ_FULL
  554. bool sched_can_stop_tick(void)
  555. {
  556. struct rq *rq;
  557. rq = this_rq();
  558. /* Make sure rq->nr_running update is visible after the IPI */
  559. smp_rmb();
  560. /* More than one running task need preemption */
  561. if (rq->nr_running > 1)
  562. return false;
  563. return true;
  564. }
  565. #endif /* CONFIG_NO_HZ_FULL */
  566. void sched_avg_update(struct rq *rq)
  567. {
  568. s64 period = sched_avg_period();
  569. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  570. /*
  571. * Inline assembly required to prevent the compiler
  572. * optimising this loop into a divmod call.
  573. * See __iter_div_u64_rem() for another example of this.
  574. */
  575. asm("" : "+rm" (rq->age_stamp));
  576. rq->age_stamp += period;
  577. rq->rt_avg /= 2;
  578. }
  579. }
  580. #endif /* CONFIG_SMP */
  581. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  582. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  583. /*
  584. * Iterate task_group tree rooted at *from, calling @down when first entering a
  585. * node and @up when leaving it for the final time.
  586. *
  587. * Caller must hold rcu_lock or sufficient equivalent.
  588. */
  589. int walk_tg_tree_from(struct task_group *from,
  590. tg_visitor down, tg_visitor up, void *data)
  591. {
  592. struct task_group *parent, *child;
  593. int ret;
  594. parent = from;
  595. down:
  596. ret = (*down)(parent, data);
  597. if (ret)
  598. goto out;
  599. list_for_each_entry_rcu(child, &parent->children, siblings) {
  600. parent = child;
  601. goto down;
  602. up:
  603. continue;
  604. }
  605. ret = (*up)(parent, data);
  606. if (ret || parent == from)
  607. goto out;
  608. child = parent;
  609. parent = parent->parent;
  610. if (parent)
  611. goto up;
  612. out:
  613. return ret;
  614. }
  615. int tg_nop(struct task_group *tg, void *data)
  616. {
  617. return 0;
  618. }
  619. #endif
  620. static void set_load_weight(struct task_struct *p)
  621. {
  622. int prio = p->static_prio - MAX_RT_PRIO;
  623. struct load_weight *load = &p->se.load;
  624. /*
  625. * SCHED_IDLE tasks get minimal weight:
  626. */
  627. if (p->policy == SCHED_IDLE) {
  628. load->weight = scale_load(WEIGHT_IDLEPRIO);
  629. load->inv_weight = WMULT_IDLEPRIO;
  630. return;
  631. }
  632. load->weight = scale_load(prio_to_weight[prio]);
  633. load->inv_weight = prio_to_wmult[prio];
  634. }
  635. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  636. {
  637. update_rq_clock(rq);
  638. sched_info_queued(rq, p);
  639. p->sched_class->enqueue_task(rq, p, flags);
  640. }
  641. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  642. {
  643. update_rq_clock(rq);
  644. sched_info_dequeued(rq, p);
  645. p->sched_class->dequeue_task(rq, p, flags);
  646. }
  647. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  648. {
  649. if (task_contributes_to_load(p))
  650. rq->nr_uninterruptible--;
  651. enqueue_task(rq, p, flags);
  652. }
  653. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  654. {
  655. if (task_contributes_to_load(p))
  656. rq->nr_uninterruptible++;
  657. dequeue_task(rq, p, flags);
  658. }
  659. static void update_rq_clock_task(struct rq *rq, s64 delta)
  660. {
  661. /*
  662. * In theory, the compile should just see 0 here, and optimize out the call
  663. * to sched_rt_avg_update. But I don't trust it...
  664. */
  665. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  666. s64 steal = 0, irq_delta = 0;
  667. #endif
  668. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  669. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  670. /*
  671. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  672. * this case when a previous update_rq_clock() happened inside a
  673. * {soft,}irq region.
  674. *
  675. * When this happens, we stop ->clock_task and only update the
  676. * prev_irq_time stamp to account for the part that fit, so that a next
  677. * update will consume the rest. This ensures ->clock_task is
  678. * monotonic.
  679. *
  680. * It does however cause some slight miss-attribution of {soft,}irq
  681. * time, a more accurate solution would be to update the irq_time using
  682. * the current rq->clock timestamp, except that would require using
  683. * atomic ops.
  684. */
  685. if (irq_delta > delta)
  686. irq_delta = delta;
  687. rq->prev_irq_time += irq_delta;
  688. delta -= irq_delta;
  689. #endif
  690. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  691. if (static_key_false((&paravirt_steal_rq_enabled))) {
  692. u64 st;
  693. steal = paravirt_steal_clock(cpu_of(rq));
  694. steal -= rq->prev_steal_time_rq;
  695. if (unlikely(steal > delta))
  696. steal = delta;
  697. st = steal_ticks(steal);
  698. steal = st * TICK_NSEC;
  699. rq->prev_steal_time_rq += steal;
  700. delta -= steal;
  701. }
  702. #endif
  703. rq->clock_task += delta;
  704. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  705. if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
  706. sched_rt_avg_update(rq, irq_delta + steal);
  707. #endif
  708. }
  709. void sched_set_stop_task(int cpu, struct task_struct *stop)
  710. {
  711. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  712. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  713. if (stop) {
  714. /*
  715. * Make it appear like a SCHED_FIFO task, its something
  716. * userspace knows about and won't get confused about.
  717. *
  718. * Also, it will make PI more or less work without too
  719. * much confusion -- but then, stop work should not
  720. * rely on PI working anyway.
  721. */
  722. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  723. stop->sched_class = &stop_sched_class;
  724. }
  725. cpu_rq(cpu)->stop = stop;
  726. if (old_stop) {
  727. /*
  728. * Reset it back to a normal scheduling class so that
  729. * it can die in pieces.
  730. */
  731. old_stop->sched_class = &rt_sched_class;
  732. }
  733. }
  734. /*
  735. * __normal_prio - return the priority that is based on the static prio
  736. */
  737. static inline int __normal_prio(struct task_struct *p)
  738. {
  739. return p->static_prio;
  740. }
  741. /*
  742. * Calculate the expected normal priority: i.e. priority
  743. * without taking RT-inheritance into account. Might be
  744. * boosted by interactivity modifiers. Changes upon fork,
  745. * setprio syscalls, and whenever the interactivity
  746. * estimator recalculates.
  747. */
  748. static inline int normal_prio(struct task_struct *p)
  749. {
  750. int prio;
  751. if (task_has_rt_policy(p))
  752. prio = MAX_RT_PRIO-1 - p->rt_priority;
  753. else
  754. prio = __normal_prio(p);
  755. return prio;
  756. }
  757. /*
  758. * Calculate the current priority, i.e. the priority
  759. * taken into account by the scheduler. This value might
  760. * be boosted by RT tasks, or might be boosted by
  761. * interactivity modifiers. Will be RT if the task got
  762. * RT-boosted. If not then it returns p->normal_prio.
  763. */
  764. static int effective_prio(struct task_struct *p)
  765. {
  766. p->normal_prio = normal_prio(p);
  767. /*
  768. * If we are RT tasks or we were boosted to RT priority,
  769. * keep the priority unchanged. Otherwise, update priority
  770. * to the normal priority:
  771. */
  772. if (!rt_prio(p->prio))
  773. return p->normal_prio;
  774. return p->prio;
  775. }
  776. /**
  777. * task_curr - is this task currently executing on a CPU?
  778. * @p: the task in question.
  779. *
  780. * Return: 1 if the task is currently executing. 0 otherwise.
  781. */
  782. inline int task_curr(const struct task_struct *p)
  783. {
  784. return cpu_curr(task_cpu(p)) == p;
  785. }
  786. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  787. const struct sched_class *prev_class,
  788. int oldprio)
  789. {
  790. if (prev_class != p->sched_class) {
  791. if (prev_class->switched_from)
  792. prev_class->switched_from(rq, p);
  793. p->sched_class->switched_to(rq, p);
  794. } else if (oldprio != p->prio)
  795. p->sched_class->prio_changed(rq, p, oldprio);
  796. }
  797. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  798. {
  799. const struct sched_class *class;
  800. if (p->sched_class == rq->curr->sched_class) {
  801. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  802. } else {
  803. for_each_class(class) {
  804. if (class == rq->curr->sched_class)
  805. break;
  806. if (class == p->sched_class) {
  807. resched_task(rq->curr);
  808. break;
  809. }
  810. }
  811. }
  812. /*
  813. * A queue event has occurred, and we're going to schedule. In
  814. * this case, we can save a useless back to back clock update.
  815. */
  816. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  817. rq->skip_clock_update = 1;
  818. }
  819. #ifdef CONFIG_SMP
  820. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  821. {
  822. #ifdef CONFIG_SCHED_DEBUG
  823. /*
  824. * We should never call set_task_cpu() on a blocked task,
  825. * ttwu() will sort out the placement.
  826. */
  827. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  828. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  829. #ifdef CONFIG_LOCKDEP
  830. /*
  831. * The caller should hold either p->pi_lock or rq->lock, when changing
  832. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  833. *
  834. * sched_move_task() holds both and thus holding either pins the cgroup,
  835. * see task_group().
  836. *
  837. * Furthermore, all task_rq users should acquire both locks, see
  838. * task_rq_lock().
  839. */
  840. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  841. lockdep_is_held(&task_rq(p)->lock)));
  842. #endif
  843. #endif
  844. trace_sched_migrate_task(p, new_cpu);
  845. if (task_cpu(p) != new_cpu) {
  846. if (p->sched_class->migrate_task_rq)
  847. p->sched_class->migrate_task_rq(p, new_cpu);
  848. p->se.nr_migrations++;
  849. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  850. }
  851. __set_task_cpu(p, new_cpu);
  852. }
  853. static void __migrate_swap_task(struct task_struct *p, int cpu)
  854. {
  855. if (p->on_rq) {
  856. struct rq *src_rq, *dst_rq;
  857. src_rq = task_rq(p);
  858. dst_rq = cpu_rq(cpu);
  859. deactivate_task(src_rq, p, 0);
  860. set_task_cpu(p, cpu);
  861. activate_task(dst_rq, p, 0);
  862. check_preempt_curr(dst_rq, p, 0);
  863. } else {
  864. /*
  865. * Task isn't running anymore; make it appear like we migrated
  866. * it before it went to sleep. This means on wakeup we make the
  867. * previous cpu our targer instead of where it really is.
  868. */
  869. p->wake_cpu = cpu;
  870. }
  871. }
  872. struct migration_swap_arg {
  873. struct task_struct *src_task, *dst_task;
  874. int src_cpu, dst_cpu;
  875. };
  876. static int migrate_swap_stop(void *data)
  877. {
  878. struct migration_swap_arg *arg = data;
  879. struct rq *src_rq, *dst_rq;
  880. int ret = -EAGAIN;
  881. src_rq = cpu_rq(arg->src_cpu);
  882. dst_rq = cpu_rq(arg->dst_cpu);
  883. double_raw_lock(&arg->src_task->pi_lock,
  884. &arg->dst_task->pi_lock);
  885. double_rq_lock(src_rq, dst_rq);
  886. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  887. goto unlock;
  888. if (task_cpu(arg->src_task) != arg->src_cpu)
  889. goto unlock;
  890. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  891. goto unlock;
  892. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  893. goto unlock;
  894. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  895. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  896. ret = 0;
  897. unlock:
  898. double_rq_unlock(src_rq, dst_rq);
  899. raw_spin_unlock(&arg->dst_task->pi_lock);
  900. raw_spin_unlock(&arg->src_task->pi_lock);
  901. return ret;
  902. }
  903. /*
  904. * Cross migrate two tasks
  905. */
  906. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  907. {
  908. struct migration_swap_arg arg;
  909. int ret = -EINVAL;
  910. arg = (struct migration_swap_arg){
  911. .src_task = cur,
  912. .src_cpu = task_cpu(cur),
  913. .dst_task = p,
  914. .dst_cpu = task_cpu(p),
  915. };
  916. if (arg.src_cpu == arg.dst_cpu)
  917. goto out;
  918. /*
  919. * These three tests are all lockless; this is OK since all of them
  920. * will be re-checked with proper locks held further down the line.
  921. */
  922. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  923. goto out;
  924. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  925. goto out;
  926. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  927. goto out;
  928. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  929. out:
  930. return ret;
  931. }
  932. struct migration_arg {
  933. struct task_struct *task;
  934. int dest_cpu;
  935. };
  936. static int migration_cpu_stop(void *data);
  937. /*
  938. * wait_task_inactive - wait for a thread to unschedule.
  939. *
  940. * If @match_state is nonzero, it's the @p->state value just checked and
  941. * not expected to change. If it changes, i.e. @p might have woken up,
  942. * then return zero. When we succeed in waiting for @p to be off its CPU,
  943. * we return a positive number (its total switch count). If a second call
  944. * a short while later returns the same number, the caller can be sure that
  945. * @p has remained unscheduled the whole time.
  946. *
  947. * The caller must ensure that the task *will* unschedule sometime soon,
  948. * else this function might spin for a *long* time. This function can't
  949. * be called with interrupts off, or it may introduce deadlock with
  950. * smp_call_function() if an IPI is sent by the same process we are
  951. * waiting to become inactive.
  952. */
  953. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  954. {
  955. unsigned long flags;
  956. int running, on_rq;
  957. unsigned long ncsw;
  958. struct rq *rq;
  959. for (;;) {
  960. /*
  961. * We do the initial early heuristics without holding
  962. * any task-queue locks at all. We'll only try to get
  963. * the runqueue lock when things look like they will
  964. * work out!
  965. */
  966. rq = task_rq(p);
  967. /*
  968. * If the task is actively running on another CPU
  969. * still, just relax and busy-wait without holding
  970. * any locks.
  971. *
  972. * NOTE! Since we don't hold any locks, it's not
  973. * even sure that "rq" stays as the right runqueue!
  974. * But we don't care, since "task_running()" will
  975. * return false if the runqueue has changed and p
  976. * is actually now running somewhere else!
  977. */
  978. while (task_running(rq, p)) {
  979. if (match_state && unlikely(p->state != match_state))
  980. return 0;
  981. cpu_relax();
  982. }
  983. /*
  984. * Ok, time to look more closely! We need the rq
  985. * lock now, to be *sure*. If we're wrong, we'll
  986. * just go back and repeat.
  987. */
  988. rq = task_rq_lock(p, &flags);
  989. trace_sched_wait_task(p);
  990. running = task_running(rq, p);
  991. on_rq = p->on_rq;
  992. ncsw = 0;
  993. if (!match_state || p->state == match_state)
  994. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  995. task_rq_unlock(rq, p, &flags);
  996. /*
  997. * If it changed from the expected state, bail out now.
  998. */
  999. if (unlikely(!ncsw))
  1000. break;
  1001. /*
  1002. * Was it really running after all now that we
  1003. * checked with the proper locks actually held?
  1004. *
  1005. * Oops. Go back and try again..
  1006. */
  1007. if (unlikely(running)) {
  1008. cpu_relax();
  1009. continue;
  1010. }
  1011. /*
  1012. * It's not enough that it's not actively running,
  1013. * it must be off the runqueue _entirely_, and not
  1014. * preempted!
  1015. *
  1016. * So if it was still runnable (but just not actively
  1017. * running right now), it's preempted, and we should
  1018. * yield - it could be a while.
  1019. */
  1020. if (unlikely(on_rq)) {
  1021. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1022. set_current_state(TASK_UNINTERRUPTIBLE);
  1023. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1024. continue;
  1025. }
  1026. /*
  1027. * Ahh, all good. It wasn't running, and it wasn't
  1028. * runnable, which means that it will never become
  1029. * running in the future either. We're all done!
  1030. */
  1031. break;
  1032. }
  1033. return ncsw;
  1034. }
  1035. /***
  1036. * kick_process - kick a running thread to enter/exit the kernel
  1037. * @p: the to-be-kicked thread
  1038. *
  1039. * Cause a process which is running on another CPU to enter
  1040. * kernel-mode, without any delay. (to get signals handled.)
  1041. *
  1042. * NOTE: this function doesn't have to take the runqueue lock,
  1043. * because all it wants to ensure is that the remote task enters
  1044. * the kernel. If the IPI races and the task has been migrated
  1045. * to another CPU then no harm is done and the purpose has been
  1046. * achieved as well.
  1047. */
  1048. void kick_process(struct task_struct *p)
  1049. {
  1050. int cpu;
  1051. preempt_disable();
  1052. cpu = task_cpu(p);
  1053. if ((cpu != smp_processor_id()) && task_curr(p))
  1054. smp_send_reschedule(cpu);
  1055. preempt_enable();
  1056. }
  1057. EXPORT_SYMBOL_GPL(kick_process);
  1058. #endif /* CONFIG_SMP */
  1059. #ifdef CONFIG_SMP
  1060. /*
  1061. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1062. */
  1063. static int select_fallback_rq(int cpu, struct task_struct *p)
  1064. {
  1065. int nid = cpu_to_node(cpu);
  1066. const struct cpumask *nodemask = NULL;
  1067. enum { cpuset, possible, fail } state = cpuset;
  1068. int dest_cpu;
  1069. /*
  1070. * If the node that the cpu is on has been offlined, cpu_to_node()
  1071. * will return -1. There is no cpu on the node, and we should
  1072. * select the cpu on the other node.
  1073. */
  1074. if (nid != -1) {
  1075. nodemask = cpumask_of_node(nid);
  1076. /* Look for allowed, online CPU in same node. */
  1077. for_each_cpu(dest_cpu, nodemask) {
  1078. if (!cpu_online(dest_cpu))
  1079. continue;
  1080. if (!cpu_active(dest_cpu))
  1081. continue;
  1082. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1083. return dest_cpu;
  1084. }
  1085. }
  1086. for (;;) {
  1087. /* Any allowed, online CPU? */
  1088. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1089. if (!cpu_online(dest_cpu))
  1090. continue;
  1091. if (!cpu_active(dest_cpu))
  1092. continue;
  1093. goto out;
  1094. }
  1095. switch (state) {
  1096. case cpuset:
  1097. /* No more Mr. Nice Guy. */
  1098. cpuset_cpus_allowed_fallback(p);
  1099. state = possible;
  1100. break;
  1101. case possible:
  1102. do_set_cpus_allowed(p, cpu_possible_mask);
  1103. state = fail;
  1104. break;
  1105. case fail:
  1106. BUG();
  1107. break;
  1108. }
  1109. }
  1110. out:
  1111. if (state != cpuset) {
  1112. /*
  1113. * Don't tell them about moving exiting tasks or
  1114. * kernel threads (both mm NULL), since they never
  1115. * leave kernel.
  1116. */
  1117. if (p->mm && printk_ratelimit()) {
  1118. printk_sched("process %d (%s) no longer affine to cpu%d\n",
  1119. task_pid_nr(p), p->comm, cpu);
  1120. }
  1121. }
  1122. return dest_cpu;
  1123. }
  1124. /*
  1125. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1126. */
  1127. static inline
  1128. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1129. {
  1130. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1131. /*
  1132. * In order not to call set_task_cpu() on a blocking task we need
  1133. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1134. * cpu.
  1135. *
  1136. * Since this is common to all placement strategies, this lives here.
  1137. *
  1138. * [ this allows ->select_task() to simply return task_cpu(p) and
  1139. * not worry about this generic constraint ]
  1140. */
  1141. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1142. !cpu_online(cpu)))
  1143. cpu = select_fallback_rq(task_cpu(p), p);
  1144. return cpu;
  1145. }
  1146. static void update_avg(u64 *avg, u64 sample)
  1147. {
  1148. s64 diff = sample - *avg;
  1149. *avg += diff >> 3;
  1150. }
  1151. #endif
  1152. static void
  1153. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1154. {
  1155. #ifdef CONFIG_SCHEDSTATS
  1156. struct rq *rq = this_rq();
  1157. #ifdef CONFIG_SMP
  1158. int this_cpu = smp_processor_id();
  1159. if (cpu == this_cpu) {
  1160. schedstat_inc(rq, ttwu_local);
  1161. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1162. } else {
  1163. struct sched_domain *sd;
  1164. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1165. rcu_read_lock();
  1166. for_each_domain(this_cpu, sd) {
  1167. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1168. schedstat_inc(sd, ttwu_wake_remote);
  1169. break;
  1170. }
  1171. }
  1172. rcu_read_unlock();
  1173. }
  1174. if (wake_flags & WF_MIGRATED)
  1175. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1176. #endif /* CONFIG_SMP */
  1177. schedstat_inc(rq, ttwu_count);
  1178. schedstat_inc(p, se.statistics.nr_wakeups);
  1179. if (wake_flags & WF_SYNC)
  1180. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1181. #endif /* CONFIG_SCHEDSTATS */
  1182. }
  1183. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1184. {
  1185. activate_task(rq, p, en_flags);
  1186. p->on_rq = 1;
  1187. /* if a worker is waking up, notify workqueue */
  1188. if (p->flags & PF_WQ_WORKER)
  1189. wq_worker_waking_up(p, cpu_of(rq));
  1190. }
  1191. /*
  1192. * Mark the task runnable and perform wakeup-preemption.
  1193. */
  1194. static void
  1195. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1196. {
  1197. check_preempt_curr(rq, p, wake_flags);
  1198. trace_sched_wakeup(p, true);
  1199. p->state = TASK_RUNNING;
  1200. #ifdef CONFIG_SMP
  1201. if (p->sched_class->task_woken)
  1202. p->sched_class->task_woken(rq, p);
  1203. if (rq->idle_stamp) {
  1204. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1205. u64 max = 2*rq->max_idle_balance_cost;
  1206. update_avg(&rq->avg_idle, delta);
  1207. if (rq->avg_idle > max)
  1208. rq->avg_idle = max;
  1209. rq->idle_stamp = 0;
  1210. }
  1211. #endif
  1212. }
  1213. static void
  1214. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1215. {
  1216. #ifdef CONFIG_SMP
  1217. if (p->sched_contributes_to_load)
  1218. rq->nr_uninterruptible--;
  1219. #endif
  1220. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1221. ttwu_do_wakeup(rq, p, wake_flags);
  1222. }
  1223. /*
  1224. * Called in case the task @p isn't fully descheduled from its runqueue,
  1225. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1226. * since all we need to do is flip p->state to TASK_RUNNING, since
  1227. * the task is still ->on_rq.
  1228. */
  1229. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1230. {
  1231. struct rq *rq;
  1232. int ret = 0;
  1233. rq = __task_rq_lock(p);
  1234. if (p->on_rq) {
  1235. /* check_preempt_curr() may use rq clock */
  1236. update_rq_clock(rq);
  1237. ttwu_do_wakeup(rq, p, wake_flags);
  1238. ret = 1;
  1239. }
  1240. __task_rq_unlock(rq);
  1241. return ret;
  1242. }
  1243. #ifdef CONFIG_SMP
  1244. static void sched_ttwu_pending(void)
  1245. {
  1246. struct rq *rq = this_rq();
  1247. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1248. struct task_struct *p;
  1249. raw_spin_lock(&rq->lock);
  1250. while (llist) {
  1251. p = llist_entry(llist, struct task_struct, wake_entry);
  1252. llist = llist_next(llist);
  1253. ttwu_do_activate(rq, p, 0);
  1254. }
  1255. raw_spin_unlock(&rq->lock);
  1256. }
  1257. void scheduler_ipi(void)
  1258. {
  1259. /*
  1260. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1261. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1262. * this IPI.
  1263. */
  1264. if (tif_need_resched())
  1265. set_preempt_need_resched();
  1266. if (llist_empty(&this_rq()->wake_list)
  1267. && !tick_nohz_full_cpu(smp_processor_id())
  1268. && !got_nohz_idle_kick())
  1269. return;
  1270. /*
  1271. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1272. * traditionally all their work was done from the interrupt return
  1273. * path. Now that we actually do some work, we need to make sure
  1274. * we do call them.
  1275. *
  1276. * Some archs already do call them, luckily irq_enter/exit nest
  1277. * properly.
  1278. *
  1279. * Arguably we should visit all archs and update all handlers,
  1280. * however a fair share of IPIs are still resched only so this would
  1281. * somewhat pessimize the simple resched case.
  1282. */
  1283. irq_enter();
  1284. tick_nohz_full_check();
  1285. sched_ttwu_pending();
  1286. /*
  1287. * Check if someone kicked us for doing the nohz idle load balance.
  1288. */
  1289. if (unlikely(got_nohz_idle_kick())) {
  1290. this_rq()->idle_balance = 1;
  1291. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1292. }
  1293. irq_exit();
  1294. }
  1295. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1296. {
  1297. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
  1298. smp_send_reschedule(cpu);
  1299. }
  1300. bool cpus_share_cache(int this_cpu, int that_cpu)
  1301. {
  1302. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1303. }
  1304. #endif /* CONFIG_SMP */
  1305. static void ttwu_queue(struct task_struct *p, int cpu)
  1306. {
  1307. struct rq *rq = cpu_rq(cpu);
  1308. #if defined(CONFIG_SMP)
  1309. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1310. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1311. ttwu_queue_remote(p, cpu);
  1312. return;
  1313. }
  1314. #endif
  1315. raw_spin_lock(&rq->lock);
  1316. ttwu_do_activate(rq, p, 0);
  1317. raw_spin_unlock(&rq->lock);
  1318. }
  1319. /**
  1320. * try_to_wake_up - wake up a thread
  1321. * @p: the thread to be awakened
  1322. * @state: the mask of task states that can be woken
  1323. * @wake_flags: wake modifier flags (WF_*)
  1324. *
  1325. * Put it on the run-queue if it's not already there. The "current"
  1326. * thread is always on the run-queue (except when the actual
  1327. * re-schedule is in progress), and as such you're allowed to do
  1328. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1329. * runnable without the overhead of this.
  1330. *
  1331. * Return: %true if @p was woken up, %false if it was already running.
  1332. * or @state didn't match @p's state.
  1333. */
  1334. static int
  1335. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1336. {
  1337. unsigned long flags;
  1338. int cpu, success = 0;
  1339. /*
  1340. * If we are going to wake up a thread waiting for CONDITION we
  1341. * need to ensure that CONDITION=1 done by the caller can not be
  1342. * reordered with p->state check below. This pairs with mb() in
  1343. * set_current_state() the waiting thread does.
  1344. */
  1345. smp_mb__before_spinlock();
  1346. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1347. if (!(p->state & state))
  1348. goto out;
  1349. success = 1; /* we're going to change ->state */
  1350. cpu = task_cpu(p);
  1351. if (p->on_rq && ttwu_remote(p, wake_flags))
  1352. goto stat;
  1353. #ifdef CONFIG_SMP
  1354. /*
  1355. * If the owning (remote) cpu is still in the middle of schedule() with
  1356. * this task as prev, wait until its done referencing the task.
  1357. */
  1358. while (p->on_cpu)
  1359. cpu_relax();
  1360. /*
  1361. * Pairs with the smp_wmb() in finish_lock_switch().
  1362. */
  1363. smp_rmb();
  1364. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1365. p->state = TASK_WAKING;
  1366. if (p->sched_class->task_waking)
  1367. p->sched_class->task_waking(p);
  1368. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1369. if (task_cpu(p) != cpu) {
  1370. wake_flags |= WF_MIGRATED;
  1371. set_task_cpu(p, cpu);
  1372. }
  1373. #endif /* CONFIG_SMP */
  1374. ttwu_queue(p, cpu);
  1375. stat:
  1376. ttwu_stat(p, cpu, wake_flags);
  1377. out:
  1378. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1379. return success;
  1380. }
  1381. /**
  1382. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1383. * @p: the thread to be awakened
  1384. *
  1385. * Put @p on the run-queue if it's not already there. The caller must
  1386. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1387. * the current task.
  1388. */
  1389. static void try_to_wake_up_local(struct task_struct *p)
  1390. {
  1391. struct rq *rq = task_rq(p);
  1392. if (WARN_ON_ONCE(rq != this_rq()) ||
  1393. WARN_ON_ONCE(p == current))
  1394. return;
  1395. lockdep_assert_held(&rq->lock);
  1396. if (!raw_spin_trylock(&p->pi_lock)) {
  1397. raw_spin_unlock(&rq->lock);
  1398. raw_spin_lock(&p->pi_lock);
  1399. raw_spin_lock(&rq->lock);
  1400. }
  1401. if (!(p->state & TASK_NORMAL))
  1402. goto out;
  1403. if (!p->on_rq)
  1404. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1405. ttwu_do_wakeup(rq, p, 0);
  1406. ttwu_stat(p, smp_processor_id(), 0);
  1407. out:
  1408. raw_spin_unlock(&p->pi_lock);
  1409. }
  1410. /**
  1411. * wake_up_process - Wake up a specific process
  1412. * @p: The process to be woken up.
  1413. *
  1414. * Attempt to wake up the nominated process and move it to the set of runnable
  1415. * processes.
  1416. *
  1417. * Return: 1 if the process was woken up, 0 if it was already running.
  1418. *
  1419. * It may be assumed that this function implies a write memory barrier before
  1420. * changing the task state if and only if any tasks are woken up.
  1421. */
  1422. int wake_up_process(struct task_struct *p)
  1423. {
  1424. WARN_ON(task_is_stopped_or_traced(p));
  1425. return try_to_wake_up(p, TASK_NORMAL, 0);
  1426. }
  1427. EXPORT_SYMBOL(wake_up_process);
  1428. int wake_up_state(struct task_struct *p, unsigned int state)
  1429. {
  1430. return try_to_wake_up(p, state, 0);
  1431. }
  1432. /*
  1433. * Perform scheduler related setup for a newly forked process p.
  1434. * p is forked by current.
  1435. *
  1436. * __sched_fork() is basic setup used by init_idle() too:
  1437. */
  1438. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1439. {
  1440. p->on_rq = 0;
  1441. p->se.on_rq = 0;
  1442. p->se.exec_start = 0;
  1443. p->se.sum_exec_runtime = 0;
  1444. p->se.prev_sum_exec_runtime = 0;
  1445. p->se.nr_migrations = 0;
  1446. p->se.vruntime = 0;
  1447. INIT_LIST_HEAD(&p->se.group_node);
  1448. #ifdef CONFIG_SCHEDSTATS
  1449. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1450. #endif
  1451. INIT_LIST_HEAD(&p->rt.run_list);
  1452. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1453. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1454. #endif
  1455. #ifdef CONFIG_NUMA_BALANCING
  1456. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1457. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1458. p->mm->numa_scan_seq = 0;
  1459. }
  1460. if (clone_flags & CLONE_VM)
  1461. p->numa_preferred_nid = current->numa_preferred_nid;
  1462. else
  1463. p->numa_preferred_nid = -1;
  1464. p->node_stamp = 0ULL;
  1465. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1466. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1467. p->numa_work.next = &p->numa_work;
  1468. p->numa_faults = NULL;
  1469. p->numa_faults_buffer = NULL;
  1470. INIT_LIST_HEAD(&p->numa_entry);
  1471. p->numa_group = NULL;
  1472. #endif /* CONFIG_NUMA_BALANCING */
  1473. }
  1474. #ifdef CONFIG_NUMA_BALANCING
  1475. #ifdef CONFIG_SCHED_DEBUG
  1476. void set_numabalancing_state(bool enabled)
  1477. {
  1478. if (enabled)
  1479. sched_feat_set("NUMA");
  1480. else
  1481. sched_feat_set("NO_NUMA");
  1482. }
  1483. #else
  1484. __read_mostly bool numabalancing_enabled;
  1485. void set_numabalancing_state(bool enabled)
  1486. {
  1487. numabalancing_enabled = enabled;
  1488. }
  1489. #endif /* CONFIG_SCHED_DEBUG */
  1490. #endif /* CONFIG_NUMA_BALANCING */
  1491. /*
  1492. * fork()/clone()-time setup:
  1493. */
  1494. void sched_fork(unsigned long clone_flags, struct task_struct *p)
  1495. {
  1496. unsigned long flags;
  1497. int cpu = get_cpu();
  1498. __sched_fork(clone_flags, p);
  1499. /*
  1500. * We mark the process as running here. This guarantees that
  1501. * nobody will actually run it, and a signal or other external
  1502. * event cannot wake it up and insert it on the runqueue either.
  1503. */
  1504. p->state = TASK_RUNNING;
  1505. /*
  1506. * Make sure we do not leak PI boosting priority to the child.
  1507. */
  1508. p->prio = current->normal_prio;
  1509. /*
  1510. * Revert to default priority/policy on fork if requested.
  1511. */
  1512. if (unlikely(p->sched_reset_on_fork)) {
  1513. if (task_has_rt_policy(p)) {
  1514. p->policy = SCHED_NORMAL;
  1515. p->static_prio = NICE_TO_PRIO(0);
  1516. p->rt_priority = 0;
  1517. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1518. p->static_prio = NICE_TO_PRIO(0);
  1519. p->prio = p->normal_prio = __normal_prio(p);
  1520. set_load_weight(p);
  1521. /*
  1522. * We don't need the reset flag anymore after the fork. It has
  1523. * fulfilled its duty:
  1524. */
  1525. p->sched_reset_on_fork = 0;
  1526. }
  1527. if (!rt_prio(p->prio))
  1528. p->sched_class = &fair_sched_class;
  1529. if (p->sched_class->task_fork)
  1530. p->sched_class->task_fork(p);
  1531. /*
  1532. * The child is not yet in the pid-hash so no cgroup attach races,
  1533. * and the cgroup is pinned to this child due to cgroup_fork()
  1534. * is ran before sched_fork().
  1535. *
  1536. * Silence PROVE_RCU.
  1537. */
  1538. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1539. set_task_cpu(p, cpu);
  1540. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1541. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1542. if (likely(sched_info_on()))
  1543. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1544. #endif
  1545. #if defined(CONFIG_SMP)
  1546. p->on_cpu = 0;
  1547. #endif
  1548. init_task_preempt_count(p);
  1549. #ifdef CONFIG_SMP
  1550. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1551. #endif
  1552. put_cpu();
  1553. }
  1554. /*
  1555. * wake_up_new_task - wake up a newly created task for the first time.
  1556. *
  1557. * This function will do some initial scheduler statistics housekeeping
  1558. * that must be done for every newly created context, then puts the task
  1559. * on the runqueue and wakes it.
  1560. */
  1561. void wake_up_new_task(struct task_struct *p)
  1562. {
  1563. unsigned long flags;
  1564. struct rq *rq;
  1565. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1566. #ifdef CONFIG_SMP
  1567. /*
  1568. * Fork balancing, do it here and not earlier because:
  1569. * - cpus_allowed can change in the fork path
  1570. * - any previously selected cpu might disappear through hotplug
  1571. */
  1572. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1573. #endif
  1574. /* Initialize new task's runnable average */
  1575. init_task_runnable_average(p);
  1576. rq = __task_rq_lock(p);
  1577. activate_task(rq, p, 0);
  1578. p->on_rq = 1;
  1579. trace_sched_wakeup_new(p, true);
  1580. check_preempt_curr(rq, p, WF_FORK);
  1581. #ifdef CONFIG_SMP
  1582. if (p->sched_class->task_woken)
  1583. p->sched_class->task_woken(rq, p);
  1584. #endif
  1585. task_rq_unlock(rq, p, &flags);
  1586. }
  1587. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1588. /**
  1589. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1590. * @notifier: notifier struct to register
  1591. */
  1592. void preempt_notifier_register(struct preempt_notifier *notifier)
  1593. {
  1594. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1595. }
  1596. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1597. /**
  1598. * preempt_notifier_unregister - no longer interested in preemption notifications
  1599. * @notifier: notifier struct to unregister
  1600. *
  1601. * This is safe to call from within a preemption notifier.
  1602. */
  1603. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1604. {
  1605. hlist_del(&notifier->link);
  1606. }
  1607. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1608. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1609. {
  1610. struct preempt_notifier *notifier;
  1611. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1612. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1613. }
  1614. static void
  1615. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1616. struct task_struct *next)
  1617. {
  1618. struct preempt_notifier *notifier;
  1619. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1620. notifier->ops->sched_out(notifier, next);
  1621. }
  1622. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1623. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1624. {
  1625. }
  1626. static void
  1627. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1628. struct task_struct *next)
  1629. {
  1630. }
  1631. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1632. /**
  1633. * prepare_task_switch - prepare to switch tasks
  1634. * @rq: the runqueue preparing to switch
  1635. * @prev: the current task that is being switched out
  1636. * @next: the task we are going to switch to.
  1637. *
  1638. * This is called with the rq lock held and interrupts off. It must
  1639. * be paired with a subsequent finish_task_switch after the context
  1640. * switch.
  1641. *
  1642. * prepare_task_switch sets up locking and calls architecture specific
  1643. * hooks.
  1644. */
  1645. static inline void
  1646. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1647. struct task_struct *next)
  1648. {
  1649. trace_sched_switch(prev, next);
  1650. sched_info_switch(rq, prev, next);
  1651. perf_event_task_sched_out(prev, next);
  1652. fire_sched_out_preempt_notifiers(prev, next);
  1653. prepare_lock_switch(rq, next);
  1654. prepare_arch_switch(next);
  1655. }
  1656. /**
  1657. * finish_task_switch - clean up after a task-switch
  1658. * @rq: runqueue associated with task-switch
  1659. * @prev: the thread we just switched away from.
  1660. *
  1661. * finish_task_switch must be called after the context switch, paired
  1662. * with a prepare_task_switch call before the context switch.
  1663. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1664. * and do any other architecture-specific cleanup actions.
  1665. *
  1666. * Note that we may have delayed dropping an mm in context_switch(). If
  1667. * so, we finish that here outside of the runqueue lock. (Doing it
  1668. * with the lock held can cause deadlocks; see schedule() for
  1669. * details.)
  1670. */
  1671. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1672. __releases(rq->lock)
  1673. {
  1674. struct mm_struct *mm = rq->prev_mm;
  1675. long prev_state;
  1676. rq->prev_mm = NULL;
  1677. /*
  1678. * A task struct has one reference for the use as "current".
  1679. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1680. * schedule one last time. The schedule call will never return, and
  1681. * the scheduled task must drop that reference.
  1682. * The test for TASK_DEAD must occur while the runqueue locks are
  1683. * still held, otherwise prev could be scheduled on another cpu, die
  1684. * there before we look at prev->state, and then the reference would
  1685. * be dropped twice.
  1686. * Manfred Spraul <manfred@colorfullife.com>
  1687. */
  1688. prev_state = prev->state;
  1689. vtime_task_switch(prev);
  1690. finish_arch_switch(prev);
  1691. perf_event_task_sched_in(prev, current);
  1692. finish_lock_switch(rq, prev);
  1693. finish_arch_post_lock_switch();
  1694. fire_sched_in_preempt_notifiers(current);
  1695. if (mm)
  1696. mmdrop(mm);
  1697. if (unlikely(prev_state == TASK_DEAD)) {
  1698. task_numa_free(prev);
  1699. /*
  1700. * Remove function-return probe instances associated with this
  1701. * task and put them back on the free list.
  1702. */
  1703. kprobe_flush_task(prev);
  1704. put_task_struct(prev);
  1705. }
  1706. tick_nohz_task_switch(current);
  1707. }
  1708. #ifdef CONFIG_SMP
  1709. /* assumes rq->lock is held */
  1710. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  1711. {
  1712. if (prev->sched_class->pre_schedule)
  1713. prev->sched_class->pre_schedule(rq, prev);
  1714. }
  1715. /* rq->lock is NOT held, but preemption is disabled */
  1716. static inline void post_schedule(struct rq *rq)
  1717. {
  1718. if (rq->post_schedule) {
  1719. unsigned long flags;
  1720. raw_spin_lock_irqsave(&rq->lock, flags);
  1721. if (rq->curr->sched_class->post_schedule)
  1722. rq->curr->sched_class->post_schedule(rq);
  1723. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1724. rq->post_schedule = 0;
  1725. }
  1726. }
  1727. #else
  1728. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  1729. {
  1730. }
  1731. static inline void post_schedule(struct rq *rq)
  1732. {
  1733. }
  1734. #endif
  1735. /**
  1736. * schedule_tail - first thing a freshly forked thread must call.
  1737. * @prev: the thread we just switched away from.
  1738. */
  1739. asmlinkage void schedule_tail(struct task_struct *prev)
  1740. __releases(rq->lock)
  1741. {
  1742. struct rq *rq = this_rq();
  1743. finish_task_switch(rq, prev);
  1744. /*
  1745. * FIXME: do we need to worry about rq being invalidated by the
  1746. * task_switch?
  1747. */
  1748. post_schedule(rq);
  1749. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1750. /* In this case, finish_task_switch does not reenable preemption */
  1751. preempt_enable();
  1752. #endif
  1753. if (current->set_child_tid)
  1754. put_user(task_pid_vnr(current), current->set_child_tid);
  1755. }
  1756. /*
  1757. * context_switch - switch to the new MM and the new
  1758. * thread's register state.
  1759. */
  1760. static inline void
  1761. context_switch(struct rq *rq, struct task_struct *prev,
  1762. struct task_struct *next)
  1763. {
  1764. struct mm_struct *mm, *oldmm;
  1765. prepare_task_switch(rq, prev, next);
  1766. mm = next->mm;
  1767. oldmm = prev->active_mm;
  1768. /*
  1769. * For paravirt, this is coupled with an exit in switch_to to
  1770. * combine the page table reload and the switch backend into
  1771. * one hypercall.
  1772. */
  1773. arch_start_context_switch(prev);
  1774. if (!mm) {
  1775. next->active_mm = oldmm;
  1776. atomic_inc(&oldmm->mm_count);
  1777. enter_lazy_tlb(oldmm, next);
  1778. } else
  1779. switch_mm(oldmm, mm, next);
  1780. if (!prev->mm) {
  1781. prev->active_mm = NULL;
  1782. rq->prev_mm = oldmm;
  1783. }
  1784. /*
  1785. * Since the runqueue lock will be released by the next
  1786. * task (which is an invalid locking op but in the case
  1787. * of the scheduler it's an obvious special-case), so we
  1788. * do an early lockdep release here:
  1789. */
  1790. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1791. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1792. #endif
  1793. context_tracking_task_switch(prev, next);
  1794. /* Here we just switch the register state and the stack. */
  1795. switch_to(prev, next, prev);
  1796. barrier();
  1797. /*
  1798. * this_rq must be evaluated again because prev may have moved
  1799. * CPUs since it called schedule(), thus the 'rq' on its stack
  1800. * frame will be invalid.
  1801. */
  1802. finish_task_switch(this_rq(), prev);
  1803. }
  1804. /*
  1805. * nr_running and nr_context_switches:
  1806. *
  1807. * externally visible scheduler statistics: current number of runnable
  1808. * threads, total number of context switches performed since bootup.
  1809. */
  1810. unsigned long nr_running(void)
  1811. {
  1812. unsigned long i, sum = 0;
  1813. for_each_online_cpu(i)
  1814. sum += cpu_rq(i)->nr_running;
  1815. return sum;
  1816. }
  1817. unsigned long long nr_context_switches(void)
  1818. {
  1819. int i;
  1820. unsigned long long sum = 0;
  1821. for_each_possible_cpu(i)
  1822. sum += cpu_rq(i)->nr_switches;
  1823. return sum;
  1824. }
  1825. unsigned long nr_iowait(void)
  1826. {
  1827. unsigned long i, sum = 0;
  1828. for_each_possible_cpu(i)
  1829. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1830. return sum;
  1831. }
  1832. unsigned long nr_iowait_cpu(int cpu)
  1833. {
  1834. struct rq *this = cpu_rq(cpu);
  1835. return atomic_read(&this->nr_iowait);
  1836. }
  1837. #ifdef CONFIG_SMP
  1838. /*
  1839. * sched_exec - execve() is a valuable balancing opportunity, because at
  1840. * this point the task has the smallest effective memory and cache footprint.
  1841. */
  1842. void sched_exec(void)
  1843. {
  1844. struct task_struct *p = current;
  1845. unsigned long flags;
  1846. int dest_cpu;
  1847. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1848. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  1849. if (dest_cpu == smp_processor_id())
  1850. goto unlock;
  1851. if (likely(cpu_active(dest_cpu))) {
  1852. struct migration_arg arg = { p, dest_cpu };
  1853. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1854. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  1855. return;
  1856. }
  1857. unlock:
  1858. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1859. }
  1860. #endif
  1861. DEFINE_PER_CPU(struct kernel_stat, kstat);
  1862. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  1863. EXPORT_PER_CPU_SYMBOL(kstat);
  1864. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  1865. /*
  1866. * Return any ns on the sched_clock that have not yet been accounted in
  1867. * @p in case that task is currently running.
  1868. *
  1869. * Called with task_rq_lock() held on @rq.
  1870. */
  1871. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  1872. {
  1873. u64 ns = 0;
  1874. if (task_current(rq, p)) {
  1875. update_rq_clock(rq);
  1876. ns = rq_clock_task(rq) - p->se.exec_start;
  1877. if ((s64)ns < 0)
  1878. ns = 0;
  1879. }
  1880. return ns;
  1881. }
  1882. unsigned long long task_delta_exec(struct task_struct *p)
  1883. {
  1884. unsigned long flags;
  1885. struct rq *rq;
  1886. u64 ns = 0;
  1887. rq = task_rq_lock(p, &flags);
  1888. ns = do_task_delta_exec(p, rq);
  1889. task_rq_unlock(rq, p, &flags);
  1890. return ns;
  1891. }
  1892. /*
  1893. * Return accounted runtime for the task.
  1894. * In case the task is currently running, return the runtime plus current's
  1895. * pending runtime that have not been accounted yet.
  1896. */
  1897. unsigned long long task_sched_runtime(struct task_struct *p)
  1898. {
  1899. unsigned long flags;
  1900. struct rq *rq;
  1901. u64 ns = 0;
  1902. rq = task_rq_lock(p, &flags);
  1903. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  1904. task_rq_unlock(rq, p, &flags);
  1905. return ns;
  1906. }
  1907. /*
  1908. * This function gets called by the timer code, with HZ frequency.
  1909. * We call it with interrupts disabled.
  1910. */
  1911. void scheduler_tick(void)
  1912. {
  1913. int cpu = smp_processor_id();
  1914. struct rq *rq = cpu_rq(cpu);
  1915. struct task_struct *curr = rq->curr;
  1916. sched_clock_tick();
  1917. raw_spin_lock(&rq->lock);
  1918. update_rq_clock(rq);
  1919. curr->sched_class->task_tick(rq, curr, 0);
  1920. update_cpu_load_active(rq);
  1921. raw_spin_unlock(&rq->lock);
  1922. perf_event_task_tick();
  1923. #ifdef CONFIG_SMP
  1924. rq->idle_balance = idle_cpu(cpu);
  1925. trigger_load_balance(rq, cpu);
  1926. #endif
  1927. rq_last_tick_reset(rq);
  1928. }
  1929. #ifdef CONFIG_NO_HZ_FULL
  1930. /**
  1931. * scheduler_tick_max_deferment
  1932. *
  1933. * Keep at least one tick per second when a single
  1934. * active task is running because the scheduler doesn't
  1935. * yet completely support full dynticks environment.
  1936. *
  1937. * This makes sure that uptime, CFS vruntime, load
  1938. * balancing, etc... continue to move forward, even
  1939. * with a very low granularity.
  1940. *
  1941. * Return: Maximum deferment in nanoseconds.
  1942. */
  1943. u64 scheduler_tick_max_deferment(void)
  1944. {
  1945. struct rq *rq = this_rq();
  1946. unsigned long next, now = ACCESS_ONCE(jiffies);
  1947. next = rq->last_sched_tick + HZ;
  1948. if (time_before_eq(next, now))
  1949. return 0;
  1950. return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
  1951. }
  1952. #endif
  1953. notrace unsigned long get_parent_ip(unsigned long addr)
  1954. {
  1955. if (in_lock_functions(addr)) {
  1956. addr = CALLER_ADDR2;
  1957. if (in_lock_functions(addr))
  1958. addr = CALLER_ADDR3;
  1959. }
  1960. return addr;
  1961. }
  1962. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  1963. defined(CONFIG_PREEMPT_TRACER))
  1964. void __kprobes preempt_count_add(int val)
  1965. {
  1966. #ifdef CONFIG_DEBUG_PREEMPT
  1967. /*
  1968. * Underflow?
  1969. */
  1970. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  1971. return;
  1972. #endif
  1973. __preempt_count_add(val);
  1974. #ifdef CONFIG_DEBUG_PREEMPT
  1975. /*
  1976. * Spinlock count overflowing soon?
  1977. */
  1978. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  1979. PREEMPT_MASK - 10);
  1980. #endif
  1981. if (preempt_count() == val)
  1982. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  1983. }
  1984. EXPORT_SYMBOL(preempt_count_add);
  1985. void __kprobes preempt_count_sub(int val)
  1986. {
  1987. #ifdef CONFIG_DEBUG_PREEMPT
  1988. /*
  1989. * Underflow?
  1990. */
  1991. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  1992. return;
  1993. /*
  1994. * Is the spinlock portion underflowing?
  1995. */
  1996. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  1997. !(preempt_count() & PREEMPT_MASK)))
  1998. return;
  1999. #endif
  2000. if (preempt_count() == val)
  2001. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2002. __preempt_count_sub(val);
  2003. }
  2004. EXPORT_SYMBOL(preempt_count_sub);
  2005. #endif
  2006. /*
  2007. * Print scheduling while atomic bug:
  2008. */
  2009. static noinline void __schedule_bug(struct task_struct *prev)
  2010. {
  2011. if (oops_in_progress)
  2012. return;
  2013. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2014. prev->comm, prev->pid, preempt_count());
  2015. debug_show_held_locks(prev);
  2016. print_modules();
  2017. if (irqs_disabled())
  2018. print_irqtrace_events(prev);
  2019. dump_stack();
  2020. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2021. }
  2022. /*
  2023. * Various schedule()-time debugging checks and statistics:
  2024. */
  2025. static inline void schedule_debug(struct task_struct *prev)
  2026. {
  2027. /*
  2028. * Test if we are atomic. Since do_exit() needs to call into
  2029. * schedule() atomically, we ignore that path for now.
  2030. * Otherwise, whine if we are scheduling when we should not be.
  2031. */
  2032. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  2033. __schedule_bug(prev);
  2034. rcu_sleep_check();
  2035. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2036. schedstat_inc(this_rq(), sched_count);
  2037. }
  2038. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  2039. {
  2040. if (prev->on_rq || rq->skip_clock_update < 0)
  2041. update_rq_clock(rq);
  2042. prev->sched_class->put_prev_task(rq, prev);
  2043. }
  2044. /*
  2045. * Pick up the highest-prio task:
  2046. */
  2047. static inline struct task_struct *
  2048. pick_next_task(struct rq *rq)
  2049. {
  2050. const struct sched_class *class;
  2051. struct task_struct *p;
  2052. /*
  2053. * Optimization: we know that if all tasks are in
  2054. * the fair class we can call that function directly:
  2055. */
  2056. if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
  2057. p = fair_sched_class.pick_next_task(rq);
  2058. if (likely(p))
  2059. return p;
  2060. }
  2061. for_each_class(class) {
  2062. p = class->pick_next_task(rq);
  2063. if (p)
  2064. return p;
  2065. }
  2066. BUG(); /* the idle class will always have a runnable task */
  2067. }
  2068. /*
  2069. * __schedule() is the main scheduler function.
  2070. *
  2071. * The main means of driving the scheduler and thus entering this function are:
  2072. *
  2073. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2074. *
  2075. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2076. * paths. For example, see arch/x86/entry_64.S.
  2077. *
  2078. * To drive preemption between tasks, the scheduler sets the flag in timer
  2079. * interrupt handler scheduler_tick().
  2080. *
  2081. * 3. Wakeups don't really cause entry into schedule(). They add a
  2082. * task to the run-queue and that's it.
  2083. *
  2084. * Now, if the new task added to the run-queue preempts the current
  2085. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2086. * called on the nearest possible occasion:
  2087. *
  2088. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2089. *
  2090. * - in syscall or exception context, at the next outmost
  2091. * preempt_enable(). (this might be as soon as the wake_up()'s
  2092. * spin_unlock()!)
  2093. *
  2094. * - in IRQ context, return from interrupt-handler to
  2095. * preemptible context
  2096. *
  2097. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2098. * then at the next:
  2099. *
  2100. * - cond_resched() call
  2101. * - explicit schedule() call
  2102. * - return from syscall or exception to user-space
  2103. * - return from interrupt-handler to user-space
  2104. */
  2105. static void __sched __schedule(void)
  2106. {
  2107. struct task_struct *prev, *next;
  2108. unsigned long *switch_count;
  2109. struct rq *rq;
  2110. int cpu;
  2111. need_resched:
  2112. preempt_disable();
  2113. cpu = smp_processor_id();
  2114. rq = cpu_rq(cpu);
  2115. rcu_note_context_switch(cpu);
  2116. prev = rq->curr;
  2117. schedule_debug(prev);
  2118. if (sched_feat(HRTICK))
  2119. hrtick_clear(rq);
  2120. /*
  2121. * Make sure that signal_pending_state()->signal_pending() below
  2122. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2123. * done by the caller to avoid the race with signal_wake_up().
  2124. */
  2125. smp_mb__before_spinlock();
  2126. raw_spin_lock_irq(&rq->lock);
  2127. switch_count = &prev->nivcsw;
  2128. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2129. if (unlikely(signal_pending_state(prev->state, prev))) {
  2130. prev->state = TASK_RUNNING;
  2131. } else {
  2132. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2133. prev->on_rq = 0;
  2134. /*
  2135. * If a worker went to sleep, notify and ask workqueue
  2136. * whether it wants to wake up a task to maintain
  2137. * concurrency.
  2138. */
  2139. if (prev->flags & PF_WQ_WORKER) {
  2140. struct task_struct *to_wakeup;
  2141. to_wakeup = wq_worker_sleeping(prev, cpu);
  2142. if (to_wakeup)
  2143. try_to_wake_up_local(to_wakeup);
  2144. }
  2145. }
  2146. switch_count = &prev->nvcsw;
  2147. }
  2148. pre_schedule(rq, prev);
  2149. if (unlikely(!rq->nr_running))
  2150. idle_balance(cpu, rq);
  2151. put_prev_task(rq, prev);
  2152. next = pick_next_task(rq);
  2153. clear_tsk_need_resched(prev);
  2154. clear_preempt_need_resched();
  2155. rq->skip_clock_update = 0;
  2156. if (likely(prev != next)) {
  2157. rq->nr_switches++;
  2158. rq->curr = next;
  2159. ++*switch_count;
  2160. context_switch(rq, prev, next); /* unlocks the rq */
  2161. /*
  2162. * The context switch have flipped the stack from under us
  2163. * and restored the local variables which were saved when
  2164. * this task called schedule() in the past. prev == current
  2165. * is still correct, but it can be moved to another cpu/rq.
  2166. */
  2167. cpu = smp_processor_id();
  2168. rq = cpu_rq(cpu);
  2169. } else
  2170. raw_spin_unlock_irq(&rq->lock);
  2171. post_schedule(rq);
  2172. sched_preempt_enable_no_resched();
  2173. if (need_resched())
  2174. goto need_resched;
  2175. }
  2176. static inline void sched_submit_work(struct task_struct *tsk)
  2177. {
  2178. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2179. return;
  2180. /*
  2181. * If we are going to sleep and we have plugged IO queued,
  2182. * make sure to submit it to avoid deadlocks.
  2183. */
  2184. if (blk_needs_flush_plug(tsk))
  2185. blk_schedule_flush_plug(tsk);
  2186. }
  2187. asmlinkage void __sched schedule(void)
  2188. {
  2189. struct task_struct *tsk = current;
  2190. sched_submit_work(tsk);
  2191. __schedule();
  2192. }
  2193. EXPORT_SYMBOL(schedule);
  2194. #ifdef CONFIG_CONTEXT_TRACKING
  2195. asmlinkage void __sched schedule_user(void)
  2196. {
  2197. /*
  2198. * If we come here after a random call to set_need_resched(),
  2199. * or we have been woken up remotely but the IPI has not yet arrived,
  2200. * we haven't yet exited the RCU idle mode. Do it here manually until
  2201. * we find a better solution.
  2202. */
  2203. user_exit();
  2204. schedule();
  2205. user_enter();
  2206. }
  2207. #endif
  2208. /**
  2209. * schedule_preempt_disabled - called with preemption disabled
  2210. *
  2211. * Returns with preemption disabled. Note: preempt_count must be 1
  2212. */
  2213. void __sched schedule_preempt_disabled(void)
  2214. {
  2215. sched_preempt_enable_no_resched();
  2216. schedule();
  2217. preempt_disable();
  2218. }
  2219. #ifdef CONFIG_PREEMPT
  2220. /*
  2221. * this is the entry point to schedule() from in-kernel preemption
  2222. * off of preempt_enable. Kernel preemptions off return from interrupt
  2223. * occur there and call schedule directly.
  2224. */
  2225. asmlinkage void __sched notrace preempt_schedule(void)
  2226. {
  2227. /*
  2228. * If there is a non-zero preempt_count or interrupts are disabled,
  2229. * we do not want to preempt the current task. Just return..
  2230. */
  2231. if (likely(!preemptible()))
  2232. return;
  2233. do {
  2234. __preempt_count_add(PREEMPT_ACTIVE);
  2235. __schedule();
  2236. __preempt_count_sub(PREEMPT_ACTIVE);
  2237. /*
  2238. * Check again in case we missed a preemption opportunity
  2239. * between schedule and now.
  2240. */
  2241. barrier();
  2242. } while (need_resched());
  2243. }
  2244. EXPORT_SYMBOL(preempt_schedule);
  2245. /*
  2246. * this is the entry point to schedule() from kernel preemption
  2247. * off of irq context.
  2248. * Note, that this is called and return with irqs disabled. This will
  2249. * protect us against recursive calling from irq.
  2250. */
  2251. asmlinkage void __sched preempt_schedule_irq(void)
  2252. {
  2253. enum ctx_state prev_state;
  2254. /* Catch callers which need to be fixed */
  2255. BUG_ON(preempt_count() || !irqs_disabled());
  2256. prev_state = exception_enter();
  2257. do {
  2258. __preempt_count_add(PREEMPT_ACTIVE);
  2259. local_irq_enable();
  2260. __schedule();
  2261. local_irq_disable();
  2262. __preempt_count_sub(PREEMPT_ACTIVE);
  2263. /*
  2264. * Check again in case we missed a preemption opportunity
  2265. * between schedule and now.
  2266. */
  2267. barrier();
  2268. } while (need_resched());
  2269. exception_exit(prev_state);
  2270. }
  2271. #endif /* CONFIG_PREEMPT */
  2272. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2273. void *key)
  2274. {
  2275. return try_to_wake_up(curr->private, mode, wake_flags);
  2276. }
  2277. EXPORT_SYMBOL(default_wake_function);
  2278. static long __sched
  2279. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  2280. {
  2281. unsigned long flags;
  2282. wait_queue_t wait;
  2283. init_waitqueue_entry(&wait, current);
  2284. __set_current_state(state);
  2285. spin_lock_irqsave(&q->lock, flags);
  2286. __add_wait_queue(q, &wait);
  2287. spin_unlock(&q->lock);
  2288. timeout = schedule_timeout(timeout);
  2289. spin_lock_irq(&q->lock);
  2290. __remove_wait_queue(q, &wait);
  2291. spin_unlock_irqrestore(&q->lock, flags);
  2292. return timeout;
  2293. }
  2294. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  2295. {
  2296. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2297. }
  2298. EXPORT_SYMBOL(interruptible_sleep_on);
  2299. long __sched
  2300. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2301. {
  2302. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  2303. }
  2304. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  2305. void __sched sleep_on(wait_queue_head_t *q)
  2306. {
  2307. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  2308. }
  2309. EXPORT_SYMBOL(sleep_on);
  2310. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  2311. {
  2312. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  2313. }
  2314. EXPORT_SYMBOL(sleep_on_timeout);
  2315. #ifdef CONFIG_RT_MUTEXES
  2316. /*
  2317. * rt_mutex_setprio - set the current priority of a task
  2318. * @p: task
  2319. * @prio: prio value (kernel-internal form)
  2320. *
  2321. * This function changes the 'effective' priority of a task. It does
  2322. * not touch ->normal_prio like __setscheduler().
  2323. *
  2324. * Used by the rt_mutex code to implement priority inheritance logic.
  2325. */
  2326. void rt_mutex_setprio(struct task_struct *p, int prio)
  2327. {
  2328. int oldprio, on_rq, running;
  2329. struct rq *rq;
  2330. const struct sched_class *prev_class;
  2331. BUG_ON(prio < 0 || prio > MAX_PRIO);
  2332. rq = __task_rq_lock(p);
  2333. /*
  2334. * Idle task boosting is a nono in general. There is one
  2335. * exception, when PREEMPT_RT and NOHZ is active:
  2336. *
  2337. * The idle task calls get_next_timer_interrupt() and holds
  2338. * the timer wheel base->lock on the CPU and another CPU wants
  2339. * to access the timer (probably to cancel it). We can safely
  2340. * ignore the boosting request, as the idle CPU runs this code
  2341. * with interrupts disabled and will complete the lock
  2342. * protected section without being interrupted. So there is no
  2343. * real need to boost.
  2344. */
  2345. if (unlikely(p == rq->idle)) {
  2346. WARN_ON(p != rq->curr);
  2347. WARN_ON(p->pi_blocked_on);
  2348. goto out_unlock;
  2349. }
  2350. trace_sched_pi_setprio(p, prio);
  2351. oldprio = p->prio;
  2352. prev_class = p->sched_class;
  2353. on_rq = p->on_rq;
  2354. running = task_current(rq, p);
  2355. if (on_rq)
  2356. dequeue_task(rq, p, 0);
  2357. if (running)
  2358. p->sched_class->put_prev_task(rq, p);
  2359. if (rt_prio(prio))
  2360. p->sched_class = &rt_sched_class;
  2361. else
  2362. p->sched_class = &fair_sched_class;
  2363. p->prio = prio;
  2364. if (running)
  2365. p->sched_class->set_curr_task(rq);
  2366. if (on_rq)
  2367. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  2368. check_class_changed(rq, p, prev_class, oldprio);
  2369. out_unlock:
  2370. __task_rq_unlock(rq);
  2371. }
  2372. #endif
  2373. void set_user_nice(struct task_struct *p, long nice)
  2374. {
  2375. int old_prio, delta, on_rq;
  2376. unsigned long flags;
  2377. struct rq *rq;
  2378. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  2379. return;
  2380. /*
  2381. * We have to be careful, if called from sys_setpriority(),
  2382. * the task might be in the middle of scheduling on another CPU.
  2383. */
  2384. rq = task_rq_lock(p, &flags);
  2385. /*
  2386. * The RT priorities are set via sched_setscheduler(), but we still
  2387. * allow the 'normal' nice value to be set - but as expected
  2388. * it wont have any effect on scheduling until the task is
  2389. * SCHED_FIFO/SCHED_RR:
  2390. */
  2391. if (task_has_rt_policy(p)) {
  2392. p->static_prio = NICE_TO_PRIO(nice);
  2393. goto out_unlock;
  2394. }
  2395. on_rq = p->on_rq;
  2396. if (on_rq)
  2397. dequeue_task(rq, p, 0);
  2398. p->static_prio = NICE_TO_PRIO(nice);
  2399. set_load_weight(p);
  2400. old_prio = p->prio;
  2401. p->prio = effective_prio(p);
  2402. delta = p->prio - old_prio;
  2403. if (on_rq) {
  2404. enqueue_task(rq, p, 0);
  2405. /*
  2406. * If the task increased its priority or is running and
  2407. * lowered its priority, then reschedule its CPU:
  2408. */
  2409. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2410. resched_task(rq->curr);
  2411. }
  2412. out_unlock:
  2413. task_rq_unlock(rq, p, &flags);
  2414. }
  2415. EXPORT_SYMBOL(set_user_nice);
  2416. /*
  2417. * can_nice - check if a task can reduce its nice value
  2418. * @p: task
  2419. * @nice: nice value
  2420. */
  2421. int can_nice(const struct task_struct *p, const int nice)
  2422. {
  2423. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2424. int nice_rlim = 20 - nice;
  2425. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2426. capable(CAP_SYS_NICE));
  2427. }
  2428. #ifdef __ARCH_WANT_SYS_NICE
  2429. /*
  2430. * sys_nice - change the priority of the current process.
  2431. * @increment: priority increment
  2432. *
  2433. * sys_setpriority is a more generic, but much slower function that
  2434. * does similar things.
  2435. */
  2436. SYSCALL_DEFINE1(nice, int, increment)
  2437. {
  2438. long nice, retval;
  2439. /*
  2440. * Setpriority might change our priority at the same moment.
  2441. * We don't have to worry. Conceptually one call occurs first
  2442. * and we have a single winner.
  2443. */
  2444. if (increment < -40)
  2445. increment = -40;
  2446. if (increment > 40)
  2447. increment = 40;
  2448. nice = TASK_NICE(current) + increment;
  2449. if (nice < -20)
  2450. nice = -20;
  2451. if (nice > 19)
  2452. nice = 19;
  2453. if (increment < 0 && !can_nice(current, nice))
  2454. return -EPERM;
  2455. retval = security_task_setnice(current, nice);
  2456. if (retval)
  2457. return retval;
  2458. set_user_nice(current, nice);
  2459. return 0;
  2460. }
  2461. #endif
  2462. /**
  2463. * task_prio - return the priority value of a given task.
  2464. * @p: the task in question.
  2465. *
  2466. * Return: The priority value as seen by users in /proc.
  2467. * RT tasks are offset by -200. Normal tasks are centered
  2468. * around 0, value goes from -16 to +15.
  2469. */
  2470. int task_prio(const struct task_struct *p)
  2471. {
  2472. return p->prio - MAX_RT_PRIO;
  2473. }
  2474. /**
  2475. * task_nice - return the nice value of a given task.
  2476. * @p: the task in question.
  2477. *
  2478. * Return: The nice value [ -20 ... 0 ... 19 ].
  2479. */
  2480. int task_nice(const struct task_struct *p)
  2481. {
  2482. return TASK_NICE(p);
  2483. }
  2484. EXPORT_SYMBOL(task_nice);
  2485. /**
  2486. * idle_cpu - is a given cpu idle currently?
  2487. * @cpu: the processor in question.
  2488. *
  2489. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2490. */
  2491. int idle_cpu(int cpu)
  2492. {
  2493. struct rq *rq = cpu_rq(cpu);
  2494. if (rq->curr != rq->idle)
  2495. return 0;
  2496. if (rq->nr_running)
  2497. return 0;
  2498. #ifdef CONFIG_SMP
  2499. if (!llist_empty(&rq->wake_list))
  2500. return 0;
  2501. #endif
  2502. return 1;
  2503. }
  2504. /**
  2505. * idle_task - return the idle task for a given cpu.
  2506. * @cpu: the processor in question.
  2507. *
  2508. * Return: The idle task for the cpu @cpu.
  2509. */
  2510. struct task_struct *idle_task(int cpu)
  2511. {
  2512. return cpu_rq(cpu)->idle;
  2513. }
  2514. /**
  2515. * find_process_by_pid - find a process with a matching PID value.
  2516. * @pid: the pid in question.
  2517. *
  2518. * The task of @pid, if found. %NULL otherwise.
  2519. */
  2520. static struct task_struct *find_process_by_pid(pid_t pid)
  2521. {
  2522. return pid ? find_task_by_vpid(pid) : current;
  2523. }
  2524. /* Actually do priority change: must hold rq lock. */
  2525. static void
  2526. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  2527. {
  2528. p->policy = policy;
  2529. p->rt_priority = prio;
  2530. p->normal_prio = normal_prio(p);
  2531. /* we are holding p->pi_lock already */
  2532. p->prio = rt_mutex_getprio(p);
  2533. if (rt_prio(p->prio))
  2534. p->sched_class = &rt_sched_class;
  2535. else
  2536. p->sched_class = &fair_sched_class;
  2537. set_load_weight(p);
  2538. }
  2539. /*
  2540. * check the target process has a UID that matches the current process's
  2541. */
  2542. static bool check_same_owner(struct task_struct *p)
  2543. {
  2544. const struct cred *cred = current_cred(), *pcred;
  2545. bool match;
  2546. rcu_read_lock();
  2547. pcred = __task_cred(p);
  2548. match = (uid_eq(cred->euid, pcred->euid) ||
  2549. uid_eq(cred->euid, pcred->uid));
  2550. rcu_read_unlock();
  2551. return match;
  2552. }
  2553. static int __sched_setscheduler(struct task_struct *p, int policy,
  2554. const struct sched_param *param, bool user)
  2555. {
  2556. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2557. unsigned long flags;
  2558. const struct sched_class *prev_class;
  2559. struct rq *rq;
  2560. int reset_on_fork;
  2561. /* may grab non-irq protected spin_locks */
  2562. BUG_ON(in_interrupt());
  2563. recheck:
  2564. /* double check policy once rq lock held */
  2565. if (policy < 0) {
  2566. reset_on_fork = p->sched_reset_on_fork;
  2567. policy = oldpolicy = p->policy;
  2568. } else {
  2569. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  2570. policy &= ~SCHED_RESET_ON_FORK;
  2571. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  2572. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2573. policy != SCHED_IDLE)
  2574. return -EINVAL;
  2575. }
  2576. /*
  2577. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2578. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2579. * SCHED_BATCH and SCHED_IDLE is 0.
  2580. */
  2581. if (param->sched_priority < 0 ||
  2582. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  2583. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  2584. return -EINVAL;
  2585. if (rt_policy(policy) != (param->sched_priority != 0))
  2586. return -EINVAL;
  2587. /*
  2588. * Allow unprivileged RT tasks to decrease priority:
  2589. */
  2590. if (user && !capable(CAP_SYS_NICE)) {
  2591. if (rt_policy(policy)) {
  2592. unsigned long rlim_rtprio =
  2593. task_rlimit(p, RLIMIT_RTPRIO);
  2594. /* can't set/change the rt policy */
  2595. if (policy != p->policy && !rlim_rtprio)
  2596. return -EPERM;
  2597. /* can't increase priority */
  2598. if (param->sched_priority > p->rt_priority &&
  2599. param->sched_priority > rlim_rtprio)
  2600. return -EPERM;
  2601. }
  2602. /*
  2603. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2604. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2605. */
  2606. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2607. if (!can_nice(p, TASK_NICE(p)))
  2608. return -EPERM;
  2609. }
  2610. /* can't change other user's priorities */
  2611. if (!check_same_owner(p))
  2612. return -EPERM;
  2613. /* Normal users shall not reset the sched_reset_on_fork flag */
  2614. if (p->sched_reset_on_fork && !reset_on_fork)
  2615. return -EPERM;
  2616. }
  2617. if (user) {
  2618. retval = security_task_setscheduler(p);
  2619. if (retval)
  2620. return retval;
  2621. }
  2622. /*
  2623. * make sure no PI-waiters arrive (or leave) while we are
  2624. * changing the priority of the task:
  2625. *
  2626. * To be able to change p->policy safely, the appropriate
  2627. * runqueue lock must be held.
  2628. */
  2629. rq = task_rq_lock(p, &flags);
  2630. /*
  2631. * Changing the policy of the stop threads its a very bad idea
  2632. */
  2633. if (p == rq->stop) {
  2634. task_rq_unlock(rq, p, &flags);
  2635. return -EINVAL;
  2636. }
  2637. /*
  2638. * If not changing anything there's no need to proceed further:
  2639. */
  2640. if (unlikely(policy == p->policy && (!rt_policy(policy) ||
  2641. param->sched_priority == p->rt_priority))) {
  2642. task_rq_unlock(rq, p, &flags);
  2643. return 0;
  2644. }
  2645. #ifdef CONFIG_RT_GROUP_SCHED
  2646. if (user) {
  2647. /*
  2648. * Do not allow realtime tasks into groups that have no runtime
  2649. * assigned.
  2650. */
  2651. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2652. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2653. !task_group_is_autogroup(task_group(p))) {
  2654. task_rq_unlock(rq, p, &flags);
  2655. return -EPERM;
  2656. }
  2657. }
  2658. #endif
  2659. /* recheck policy now with rq lock held */
  2660. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2661. policy = oldpolicy = -1;
  2662. task_rq_unlock(rq, p, &flags);
  2663. goto recheck;
  2664. }
  2665. on_rq = p->on_rq;
  2666. running = task_current(rq, p);
  2667. if (on_rq)
  2668. dequeue_task(rq, p, 0);
  2669. if (running)
  2670. p->sched_class->put_prev_task(rq, p);
  2671. p->sched_reset_on_fork = reset_on_fork;
  2672. oldprio = p->prio;
  2673. prev_class = p->sched_class;
  2674. __setscheduler(rq, p, policy, param->sched_priority);
  2675. if (running)
  2676. p->sched_class->set_curr_task(rq);
  2677. if (on_rq)
  2678. enqueue_task(rq, p, 0);
  2679. check_class_changed(rq, p, prev_class, oldprio);
  2680. task_rq_unlock(rq, p, &flags);
  2681. rt_mutex_adjust_pi(p);
  2682. return 0;
  2683. }
  2684. /**
  2685. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  2686. * @p: the task in question.
  2687. * @policy: new policy.
  2688. * @param: structure containing the new RT priority.
  2689. *
  2690. * Return: 0 on success. An error code otherwise.
  2691. *
  2692. * NOTE that the task may be already dead.
  2693. */
  2694. int sched_setscheduler(struct task_struct *p, int policy,
  2695. const struct sched_param *param)
  2696. {
  2697. return __sched_setscheduler(p, policy, param, true);
  2698. }
  2699. EXPORT_SYMBOL_GPL(sched_setscheduler);
  2700. /**
  2701. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  2702. * @p: the task in question.
  2703. * @policy: new policy.
  2704. * @param: structure containing the new RT priority.
  2705. *
  2706. * Just like sched_setscheduler, only don't bother checking if the
  2707. * current context has permission. For example, this is needed in
  2708. * stop_machine(): we create temporary high priority worker threads,
  2709. * but our caller might not have that capability.
  2710. *
  2711. * Return: 0 on success. An error code otherwise.
  2712. */
  2713. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  2714. const struct sched_param *param)
  2715. {
  2716. return __sched_setscheduler(p, policy, param, false);
  2717. }
  2718. static int
  2719. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  2720. {
  2721. struct sched_param lparam;
  2722. struct task_struct *p;
  2723. int retval;
  2724. if (!param || pid < 0)
  2725. return -EINVAL;
  2726. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  2727. return -EFAULT;
  2728. rcu_read_lock();
  2729. retval = -ESRCH;
  2730. p = find_process_by_pid(pid);
  2731. if (p != NULL)
  2732. retval = sched_setscheduler(p, policy, &lparam);
  2733. rcu_read_unlock();
  2734. return retval;
  2735. }
  2736. /**
  2737. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  2738. * @pid: the pid in question.
  2739. * @policy: new policy.
  2740. * @param: structure containing the new RT priority.
  2741. *
  2742. * Return: 0 on success. An error code otherwise.
  2743. */
  2744. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  2745. struct sched_param __user *, param)
  2746. {
  2747. /* negative values for policy are not valid */
  2748. if (policy < 0)
  2749. return -EINVAL;
  2750. return do_sched_setscheduler(pid, policy, param);
  2751. }
  2752. /**
  2753. * sys_sched_setparam - set/change the RT priority of a thread
  2754. * @pid: the pid in question.
  2755. * @param: structure containing the new RT priority.
  2756. *
  2757. * Return: 0 on success. An error code otherwise.
  2758. */
  2759. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  2760. {
  2761. return do_sched_setscheduler(pid, -1, param);
  2762. }
  2763. /**
  2764. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  2765. * @pid: the pid in question.
  2766. *
  2767. * Return: On success, the policy of the thread. Otherwise, a negative error
  2768. * code.
  2769. */
  2770. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  2771. {
  2772. struct task_struct *p;
  2773. int retval;
  2774. if (pid < 0)
  2775. return -EINVAL;
  2776. retval = -ESRCH;
  2777. rcu_read_lock();
  2778. p = find_process_by_pid(pid);
  2779. if (p) {
  2780. retval = security_task_getscheduler(p);
  2781. if (!retval)
  2782. retval = p->policy
  2783. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  2784. }
  2785. rcu_read_unlock();
  2786. return retval;
  2787. }
  2788. /**
  2789. * sys_sched_getparam - get the RT priority of a thread
  2790. * @pid: the pid in question.
  2791. * @param: structure containing the RT priority.
  2792. *
  2793. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  2794. * code.
  2795. */
  2796. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  2797. {
  2798. struct sched_param lp;
  2799. struct task_struct *p;
  2800. int retval;
  2801. if (!param || pid < 0)
  2802. return -EINVAL;
  2803. rcu_read_lock();
  2804. p = find_process_by_pid(pid);
  2805. retval = -ESRCH;
  2806. if (!p)
  2807. goto out_unlock;
  2808. retval = security_task_getscheduler(p);
  2809. if (retval)
  2810. goto out_unlock;
  2811. lp.sched_priority = p->rt_priority;
  2812. rcu_read_unlock();
  2813. /*
  2814. * This one might sleep, we cannot do it with a spinlock held ...
  2815. */
  2816. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  2817. return retval;
  2818. out_unlock:
  2819. rcu_read_unlock();
  2820. return retval;
  2821. }
  2822. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  2823. {
  2824. cpumask_var_t cpus_allowed, new_mask;
  2825. struct task_struct *p;
  2826. int retval;
  2827. rcu_read_lock();
  2828. p = find_process_by_pid(pid);
  2829. if (!p) {
  2830. rcu_read_unlock();
  2831. return -ESRCH;
  2832. }
  2833. /* Prevent p going away */
  2834. get_task_struct(p);
  2835. rcu_read_unlock();
  2836. if (p->flags & PF_NO_SETAFFINITY) {
  2837. retval = -EINVAL;
  2838. goto out_put_task;
  2839. }
  2840. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  2841. retval = -ENOMEM;
  2842. goto out_put_task;
  2843. }
  2844. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  2845. retval = -ENOMEM;
  2846. goto out_free_cpus_allowed;
  2847. }
  2848. retval = -EPERM;
  2849. if (!check_same_owner(p)) {
  2850. rcu_read_lock();
  2851. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  2852. rcu_read_unlock();
  2853. goto out_unlock;
  2854. }
  2855. rcu_read_unlock();
  2856. }
  2857. retval = security_task_setscheduler(p);
  2858. if (retval)
  2859. goto out_unlock;
  2860. cpuset_cpus_allowed(p, cpus_allowed);
  2861. cpumask_and(new_mask, in_mask, cpus_allowed);
  2862. again:
  2863. retval = set_cpus_allowed_ptr(p, new_mask);
  2864. if (!retval) {
  2865. cpuset_cpus_allowed(p, cpus_allowed);
  2866. if (!cpumask_subset(new_mask, cpus_allowed)) {
  2867. /*
  2868. * We must have raced with a concurrent cpuset
  2869. * update. Just reset the cpus_allowed to the
  2870. * cpuset's cpus_allowed
  2871. */
  2872. cpumask_copy(new_mask, cpus_allowed);
  2873. goto again;
  2874. }
  2875. }
  2876. out_unlock:
  2877. free_cpumask_var(new_mask);
  2878. out_free_cpus_allowed:
  2879. free_cpumask_var(cpus_allowed);
  2880. out_put_task:
  2881. put_task_struct(p);
  2882. return retval;
  2883. }
  2884. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  2885. struct cpumask *new_mask)
  2886. {
  2887. if (len < cpumask_size())
  2888. cpumask_clear(new_mask);
  2889. else if (len > cpumask_size())
  2890. len = cpumask_size();
  2891. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  2892. }
  2893. /**
  2894. * sys_sched_setaffinity - set the cpu affinity of a process
  2895. * @pid: pid of the process
  2896. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  2897. * @user_mask_ptr: user-space pointer to the new cpu mask
  2898. *
  2899. * Return: 0 on success. An error code otherwise.
  2900. */
  2901. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  2902. unsigned long __user *, user_mask_ptr)
  2903. {
  2904. cpumask_var_t new_mask;
  2905. int retval;
  2906. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  2907. return -ENOMEM;
  2908. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  2909. if (retval == 0)
  2910. retval = sched_setaffinity(pid, new_mask);
  2911. free_cpumask_var(new_mask);
  2912. return retval;
  2913. }
  2914. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  2915. {
  2916. struct task_struct *p;
  2917. unsigned long flags;
  2918. int retval;
  2919. rcu_read_lock();
  2920. retval = -ESRCH;
  2921. p = find_process_by_pid(pid);
  2922. if (!p)
  2923. goto out_unlock;
  2924. retval = security_task_getscheduler(p);
  2925. if (retval)
  2926. goto out_unlock;
  2927. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2928. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  2929. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2930. out_unlock:
  2931. rcu_read_unlock();
  2932. return retval;
  2933. }
  2934. /**
  2935. * sys_sched_getaffinity - get the cpu affinity of a process
  2936. * @pid: pid of the process
  2937. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  2938. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  2939. *
  2940. * Return: 0 on success. An error code otherwise.
  2941. */
  2942. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  2943. unsigned long __user *, user_mask_ptr)
  2944. {
  2945. int ret;
  2946. cpumask_var_t mask;
  2947. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  2948. return -EINVAL;
  2949. if (len & (sizeof(unsigned long)-1))
  2950. return -EINVAL;
  2951. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  2952. return -ENOMEM;
  2953. ret = sched_getaffinity(pid, mask);
  2954. if (ret == 0) {
  2955. size_t retlen = min_t(size_t, len, cpumask_size());
  2956. if (copy_to_user(user_mask_ptr, mask, retlen))
  2957. ret = -EFAULT;
  2958. else
  2959. ret = retlen;
  2960. }
  2961. free_cpumask_var(mask);
  2962. return ret;
  2963. }
  2964. /**
  2965. * sys_sched_yield - yield the current processor to other threads.
  2966. *
  2967. * This function yields the current CPU to other tasks. If there are no
  2968. * other threads running on this CPU then this function will return.
  2969. *
  2970. * Return: 0.
  2971. */
  2972. SYSCALL_DEFINE0(sched_yield)
  2973. {
  2974. struct rq *rq = this_rq_lock();
  2975. schedstat_inc(rq, yld_count);
  2976. current->sched_class->yield_task(rq);
  2977. /*
  2978. * Since we are going to call schedule() anyway, there's
  2979. * no need to preempt or enable interrupts:
  2980. */
  2981. __release(rq->lock);
  2982. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2983. do_raw_spin_unlock(&rq->lock);
  2984. sched_preempt_enable_no_resched();
  2985. schedule();
  2986. return 0;
  2987. }
  2988. static void __cond_resched(void)
  2989. {
  2990. __preempt_count_add(PREEMPT_ACTIVE);
  2991. __schedule();
  2992. __preempt_count_sub(PREEMPT_ACTIVE);
  2993. }
  2994. int __sched _cond_resched(void)
  2995. {
  2996. if (should_resched()) {
  2997. __cond_resched();
  2998. return 1;
  2999. }
  3000. return 0;
  3001. }
  3002. EXPORT_SYMBOL(_cond_resched);
  3003. /*
  3004. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3005. * call schedule, and on return reacquire the lock.
  3006. *
  3007. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3008. * operations here to prevent schedule() from being called twice (once via
  3009. * spin_unlock(), once by hand).
  3010. */
  3011. int __cond_resched_lock(spinlock_t *lock)
  3012. {
  3013. int resched = should_resched();
  3014. int ret = 0;
  3015. lockdep_assert_held(lock);
  3016. if (spin_needbreak(lock) || resched) {
  3017. spin_unlock(lock);
  3018. if (resched)
  3019. __cond_resched();
  3020. else
  3021. cpu_relax();
  3022. ret = 1;
  3023. spin_lock(lock);
  3024. }
  3025. return ret;
  3026. }
  3027. EXPORT_SYMBOL(__cond_resched_lock);
  3028. int __sched __cond_resched_softirq(void)
  3029. {
  3030. BUG_ON(!in_softirq());
  3031. if (should_resched()) {
  3032. local_bh_enable();
  3033. __cond_resched();
  3034. local_bh_disable();
  3035. return 1;
  3036. }
  3037. return 0;
  3038. }
  3039. EXPORT_SYMBOL(__cond_resched_softirq);
  3040. /**
  3041. * yield - yield the current processor to other threads.
  3042. *
  3043. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3044. *
  3045. * The scheduler is at all times free to pick the calling task as the most
  3046. * eligible task to run, if removing the yield() call from your code breaks
  3047. * it, its already broken.
  3048. *
  3049. * Typical broken usage is:
  3050. *
  3051. * while (!event)
  3052. * yield();
  3053. *
  3054. * where one assumes that yield() will let 'the other' process run that will
  3055. * make event true. If the current task is a SCHED_FIFO task that will never
  3056. * happen. Never use yield() as a progress guarantee!!
  3057. *
  3058. * If you want to use yield() to wait for something, use wait_event().
  3059. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3060. * If you still want to use yield(), do not!
  3061. */
  3062. void __sched yield(void)
  3063. {
  3064. set_current_state(TASK_RUNNING);
  3065. sys_sched_yield();
  3066. }
  3067. EXPORT_SYMBOL(yield);
  3068. /**
  3069. * yield_to - yield the current processor to another thread in
  3070. * your thread group, or accelerate that thread toward the
  3071. * processor it's on.
  3072. * @p: target task
  3073. * @preempt: whether task preemption is allowed or not
  3074. *
  3075. * It's the caller's job to ensure that the target task struct
  3076. * can't go away on us before we can do any checks.
  3077. *
  3078. * Return:
  3079. * true (>0) if we indeed boosted the target task.
  3080. * false (0) if we failed to boost the target.
  3081. * -ESRCH if there's no task to yield to.
  3082. */
  3083. bool __sched yield_to(struct task_struct *p, bool preempt)
  3084. {
  3085. struct task_struct *curr = current;
  3086. struct rq *rq, *p_rq;
  3087. unsigned long flags;
  3088. int yielded = 0;
  3089. local_irq_save(flags);
  3090. rq = this_rq();
  3091. again:
  3092. p_rq = task_rq(p);
  3093. /*
  3094. * If we're the only runnable task on the rq and target rq also
  3095. * has only one task, there's absolutely no point in yielding.
  3096. */
  3097. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3098. yielded = -ESRCH;
  3099. goto out_irq;
  3100. }
  3101. double_rq_lock(rq, p_rq);
  3102. while (task_rq(p) != p_rq) {
  3103. double_rq_unlock(rq, p_rq);
  3104. goto again;
  3105. }
  3106. if (!curr->sched_class->yield_to_task)
  3107. goto out_unlock;
  3108. if (curr->sched_class != p->sched_class)
  3109. goto out_unlock;
  3110. if (task_running(p_rq, p) || p->state)
  3111. goto out_unlock;
  3112. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3113. if (yielded) {
  3114. schedstat_inc(rq, yld_count);
  3115. /*
  3116. * Make p's CPU reschedule; pick_next_entity takes care of
  3117. * fairness.
  3118. */
  3119. if (preempt && rq != p_rq)
  3120. resched_task(p_rq->curr);
  3121. }
  3122. out_unlock:
  3123. double_rq_unlock(rq, p_rq);
  3124. out_irq:
  3125. local_irq_restore(flags);
  3126. if (yielded > 0)
  3127. schedule();
  3128. return yielded;
  3129. }
  3130. EXPORT_SYMBOL_GPL(yield_to);
  3131. /*
  3132. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3133. * that process accounting knows that this is a task in IO wait state.
  3134. */
  3135. void __sched io_schedule(void)
  3136. {
  3137. struct rq *rq = raw_rq();
  3138. delayacct_blkio_start();
  3139. atomic_inc(&rq->nr_iowait);
  3140. blk_flush_plug(current);
  3141. current->in_iowait = 1;
  3142. schedule();
  3143. current->in_iowait = 0;
  3144. atomic_dec(&rq->nr_iowait);
  3145. delayacct_blkio_end();
  3146. }
  3147. EXPORT_SYMBOL(io_schedule);
  3148. long __sched io_schedule_timeout(long timeout)
  3149. {
  3150. struct rq *rq = raw_rq();
  3151. long ret;
  3152. delayacct_blkio_start();
  3153. atomic_inc(&rq->nr_iowait);
  3154. blk_flush_plug(current);
  3155. current->in_iowait = 1;
  3156. ret = schedule_timeout(timeout);
  3157. current->in_iowait = 0;
  3158. atomic_dec(&rq->nr_iowait);
  3159. delayacct_blkio_end();
  3160. return ret;
  3161. }
  3162. /**
  3163. * sys_sched_get_priority_max - return maximum RT priority.
  3164. * @policy: scheduling class.
  3165. *
  3166. * Return: On success, this syscall returns the maximum
  3167. * rt_priority that can be used by a given scheduling class.
  3168. * On failure, a negative error code is returned.
  3169. */
  3170. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3171. {
  3172. int ret = -EINVAL;
  3173. switch (policy) {
  3174. case SCHED_FIFO:
  3175. case SCHED_RR:
  3176. ret = MAX_USER_RT_PRIO-1;
  3177. break;
  3178. case SCHED_NORMAL:
  3179. case SCHED_BATCH:
  3180. case SCHED_IDLE:
  3181. ret = 0;
  3182. break;
  3183. }
  3184. return ret;
  3185. }
  3186. /**
  3187. * sys_sched_get_priority_min - return minimum RT priority.
  3188. * @policy: scheduling class.
  3189. *
  3190. * Return: On success, this syscall returns the minimum
  3191. * rt_priority that can be used by a given scheduling class.
  3192. * On failure, a negative error code is returned.
  3193. */
  3194. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3195. {
  3196. int ret = -EINVAL;
  3197. switch (policy) {
  3198. case SCHED_FIFO:
  3199. case SCHED_RR:
  3200. ret = 1;
  3201. break;
  3202. case SCHED_NORMAL:
  3203. case SCHED_BATCH:
  3204. case SCHED_IDLE:
  3205. ret = 0;
  3206. }
  3207. return ret;
  3208. }
  3209. /**
  3210. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3211. * @pid: pid of the process.
  3212. * @interval: userspace pointer to the timeslice value.
  3213. *
  3214. * this syscall writes the default timeslice value of a given process
  3215. * into the user-space timespec buffer. A value of '0' means infinity.
  3216. *
  3217. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3218. * an error code.
  3219. */
  3220. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3221. struct timespec __user *, interval)
  3222. {
  3223. struct task_struct *p;
  3224. unsigned int time_slice;
  3225. unsigned long flags;
  3226. struct rq *rq;
  3227. int retval;
  3228. struct timespec t;
  3229. if (pid < 0)
  3230. return -EINVAL;
  3231. retval = -ESRCH;
  3232. rcu_read_lock();
  3233. p = find_process_by_pid(pid);
  3234. if (!p)
  3235. goto out_unlock;
  3236. retval = security_task_getscheduler(p);
  3237. if (retval)
  3238. goto out_unlock;
  3239. rq = task_rq_lock(p, &flags);
  3240. time_slice = p->sched_class->get_rr_interval(rq, p);
  3241. task_rq_unlock(rq, p, &flags);
  3242. rcu_read_unlock();
  3243. jiffies_to_timespec(time_slice, &t);
  3244. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3245. return retval;
  3246. out_unlock:
  3247. rcu_read_unlock();
  3248. return retval;
  3249. }
  3250. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3251. void sched_show_task(struct task_struct *p)
  3252. {
  3253. unsigned long free = 0;
  3254. int ppid;
  3255. unsigned state;
  3256. state = p->state ? __ffs(p->state) + 1 : 0;
  3257. printk(KERN_INFO "%-15.15s %c", p->comm,
  3258. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3259. #if BITS_PER_LONG == 32
  3260. if (state == TASK_RUNNING)
  3261. printk(KERN_CONT " running ");
  3262. else
  3263. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3264. #else
  3265. if (state == TASK_RUNNING)
  3266. printk(KERN_CONT " running task ");
  3267. else
  3268. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3269. #endif
  3270. #ifdef CONFIG_DEBUG_STACK_USAGE
  3271. free = stack_not_used(p);
  3272. #endif
  3273. rcu_read_lock();
  3274. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3275. rcu_read_unlock();
  3276. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3277. task_pid_nr(p), ppid,
  3278. (unsigned long)task_thread_info(p)->flags);
  3279. print_worker_info(KERN_INFO, p);
  3280. show_stack(p, NULL);
  3281. }
  3282. void show_state_filter(unsigned long state_filter)
  3283. {
  3284. struct task_struct *g, *p;
  3285. #if BITS_PER_LONG == 32
  3286. printk(KERN_INFO
  3287. " task PC stack pid father\n");
  3288. #else
  3289. printk(KERN_INFO
  3290. " task PC stack pid father\n");
  3291. #endif
  3292. rcu_read_lock();
  3293. do_each_thread(g, p) {
  3294. /*
  3295. * reset the NMI-timeout, listing all files on a slow
  3296. * console might take a lot of time:
  3297. */
  3298. touch_nmi_watchdog();
  3299. if (!state_filter || (p->state & state_filter))
  3300. sched_show_task(p);
  3301. } while_each_thread(g, p);
  3302. touch_all_softlockup_watchdogs();
  3303. #ifdef CONFIG_SCHED_DEBUG
  3304. sysrq_sched_debug_show();
  3305. #endif
  3306. rcu_read_unlock();
  3307. /*
  3308. * Only show locks if all tasks are dumped:
  3309. */
  3310. if (!state_filter)
  3311. debug_show_all_locks();
  3312. }
  3313. void init_idle_bootup_task(struct task_struct *idle)
  3314. {
  3315. idle->sched_class = &idle_sched_class;
  3316. }
  3317. /**
  3318. * init_idle - set up an idle thread for a given CPU
  3319. * @idle: task in question
  3320. * @cpu: cpu the idle task belongs to
  3321. *
  3322. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3323. * flag, to make booting more robust.
  3324. */
  3325. void init_idle(struct task_struct *idle, int cpu)
  3326. {
  3327. struct rq *rq = cpu_rq(cpu);
  3328. unsigned long flags;
  3329. raw_spin_lock_irqsave(&rq->lock, flags);
  3330. __sched_fork(0, idle);
  3331. idle->state = TASK_RUNNING;
  3332. idle->se.exec_start = sched_clock();
  3333. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3334. /*
  3335. * We're having a chicken and egg problem, even though we are
  3336. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3337. * lockdep check in task_group() will fail.
  3338. *
  3339. * Similar case to sched_fork(). / Alternatively we could
  3340. * use task_rq_lock() here and obtain the other rq->lock.
  3341. *
  3342. * Silence PROVE_RCU
  3343. */
  3344. rcu_read_lock();
  3345. __set_task_cpu(idle, cpu);
  3346. rcu_read_unlock();
  3347. rq->curr = rq->idle = idle;
  3348. #if defined(CONFIG_SMP)
  3349. idle->on_cpu = 1;
  3350. #endif
  3351. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3352. /* Set the preempt count _outside_ the spinlocks! */
  3353. init_idle_preempt_count(idle, cpu);
  3354. /*
  3355. * The idle tasks have their own, simple scheduling class:
  3356. */
  3357. idle->sched_class = &idle_sched_class;
  3358. ftrace_graph_init_idle_task(idle, cpu);
  3359. vtime_init_idle(idle, cpu);
  3360. #if defined(CONFIG_SMP)
  3361. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3362. #endif
  3363. }
  3364. #ifdef CONFIG_SMP
  3365. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3366. {
  3367. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3368. p->sched_class->set_cpus_allowed(p, new_mask);
  3369. cpumask_copy(&p->cpus_allowed, new_mask);
  3370. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3371. }
  3372. /*
  3373. * This is how migration works:
  3374. *
  3375. * 1) we invoke migration_cpu_stop() on the target CPU using
  3376. * stop_one_cpu().
  3377. * 2) stopper starts to run (implicitly forcing the migrated thread
  3378. * off the CPU)
  3379. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3380. * 4) if it's in the wrong runqueue then the migration thread removes
  3381. * it and puts it into the right queue.
  3382. * 5) stopper completes and stop_one_cpu() returns and the migration
  3383. * is done.
  3384. */
  3385. /*
  3386. * Change a given task's CPU affinity. Migrate the thread to a
  3387. * proper CPU and schedule it away if the CPU it's executing on
  3388. * is removed from the allowed bitmask.
  3389. *
  3390. * NOTE: the caller must have a valid reference to the task, the
  3391. * task must not exit() & deallocate itself prematurely. The
  3392. * call is not atomic; no spinlocks may be held.
  3393. */
  3394. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3395. {
  3396. unsigned long flags;
  3397. struct rq *rq;
  3398. unsigned int dest_cpu;
  3399. int ret = 0;
  3400. rq = task_rq_lock(p, &flags);
  3401. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3402. goto out;
  3403. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3404. ret = -EINVAL;
  3405. goto out;
  3406. }
  3407. do_set_cpus_allowed(p, new_mask);
  3408. /* Can the task run on the task's current CPU? If so, we're done */
  3409. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3410. goto out;
  3411. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3412. if (p->on_rq) {
  3413. struct migration_arg arg = { p, dest_cpu };
  3414. /* Need help from migration thread: drop lock and wait. */
  3415. task_rq_unlock(rq, p, &flags);
  3416. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3417. tlb_migrate_finish(p->mm);
  3418. return 0;
  3419. }
  3420. out:
  3421. task_rq_unlock(rq, p, &flags);
  3422. return ret;
  3423. }
  3424. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3425. /*
  3426. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3427. * this because either it can't run here any more (set_cpus_allowed()
  3428. * away from this CPU, or CPU going down), or because we're
  3429. * attempting to rebalance this task on exec (sched_exec).
  3430. *
  3431. * So we race with normal scheduler movements, but that's OK, as long
  3432. * as the task is no longer on this CPU.
  3433. *
  3434. * Returns non-zero if task was successfully migrated.
  3435. */
  3436. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3437. {
  3438. struct rq *rq_dest, *rq_src;
  3439. int ret = 0;
  3440. if (unlikely(!cpu_active(dest_cpu)))
  3441. return ret;
  3442. rq_src = cpu_rq(src_cpu);
  3443. rq_dest = cpu_rq(dest_cpu);
  3444. raw_spin_lock(&p->pi_lock);
  3445. double_rq_lock(rq_src, rq_dest);
  3446. /* Already moved. */
  3447. if (task_cpu(p) != src_cpu)
  3448. goto done;
  3449. /* Affinity changed (again). */
  3450. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  3451. goto fail;
  3452. /*
  3453. * If we're not on a rq, the next wake-up will ensure we're
  3454. * placed properly.
  3455. */
  3456. if (p->on_rq) {
  3457. dequeue_task(rq_src, p, 0);
  3458. set_task_cpu(p, dest_cpu);
  3459. enqueue_task(rq_dest, p, 0);
  3460. check_preempt_curr(rq_dest, p, 0);
  3461. }
  3462. done:
  3463. ret = 1;
  3464. fail:
  3465. double_rq_unlock(rq_src, rq_dest);
  3466. raw_spin_unlock(&p->pi_lock);
  3467. return ret;
  3468. }
  3469. #ifdef CONFIG_NUMA_BALANCING
  3470. /* Migrate current task p to target_cpu */
  3471. int migrate_task_to(struct task_struct *p, int target_cpu)
  3472. {
  3473. struct migration_arg arg = { p, target_cpu };
  3474. int curr_cpu = task_cpu(p);
  3475. if (curr_cpu == target_cpu)
  3476. return 0;
  3477. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  3478. return -EINVAL;
  3479. /* TODO: This is not properly updating schedstats */
  3480. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  3481. }
  3482. /*
  3483. * Requeue a task on a given node and accurately track the number of NUMA
  3484. * tasks on the runqueues
  3485. */
  3486. void sched_setnuma(struct task_struct *p, int nid)
  3487. {
  3488. struct rq *rq;
  3489. unsigned long flags;
  3490. bool on_rq, running;
  3491. rq = task_rq_lock(p, &flags);
  3492. on_rq = p->on_rq;
  3493. running = task_current(rq, p);
  3494. if (on_rq)
  3495. dequeue_task(rq, p, 0);
  3496. if (running)
  3497. p->sched_class->put_prev_task(rq, p);
  3498. p->numa_preferred_nid = nid;
  3499. if (running)
  3500. p->sched_class->set_curr_task(rq);
  3501. if (on_rq)
  3502. enqueue_task(rq, p, 0);
  3503. task_rq_unlock(rq, p, &flags);
  3504. }
  3505. #endif
  3506. /*
  3507. * migration_cpu_stop - this will be executed by a highprio stopper thread
  3508. * and performs thread migration by bumping thread off CPU then
  3509. * 'pushing' onto another runqueue.
  3510. */
  3511. static int migration_cpu_stop(void *data)
  3512. {
  3513. struct migration_arg *arg = data;
  3514. /*
  3515. * The original target cpu might have gone down and we might
  3516. * be on another cpu but it doesn't matter.
  3517. */
  3518. local_irq_disable();
  3519. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  3520. local_irq_enable();
  3521. return 0;
  3522. }
  3523. #ifdef CONFIG_HOTPLUG_CPU
  3524. /*
  3525. * Ensures that the idle task is using init_mm right before its cpu goes
  3526. * offline.
  3527. */
  3528. void idle_task_exit(void)
  3529. {
  3530. struct mm_struct *mm = current->active_mm;
  3531. BUG_ON(cpu_online(smp_processor_id()));
  3532. if (mm != &init_mm)
  3533. switch_mm(mm, &init_mm, current);
  3534. mmdrop(mm);
  3535. }
  3536. /*
  3537. * Since this CPU is going 'away' for a while, fold any nr_active delta
  3538. * we might have. Assumes we're called after migrate_tasks() so that the
  3539. * nr_active count is stable.
  3540. *
  3541. * Also see the comment "Global load-average calculations".
  3542. */
  3543. static void calc_load_migrate(struct rq *rq)
  3544. {
  3545. long delta = calc_load_fold_active(rq);
  3546. if (delta)
  3547. atomic_long_add(delta, &calc_load_tasks);
  3548. }
  3549. /*
  3550. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  3551. * try_to_wake_up()->select_task_rq().
  3552. *
  3553. * Called with rq->lock held even though we'er in stop_machine() and
  3554. * there's no concurrency possible, we hold the required locks anyway
  3555. * because of lock validation efforts.
  3556. */
  3557. static void migrate_tasks(unsigned int dead_cpu)
  3558. {
  3559. struct rq *rq = cpu_rq(dead_cpu);
  3560. struct task_struct *next, *stop = rq->stop;
  3561. int dest_cpu;
  3562. /*
  3563. * Fudge the rq selection such that the below task selection loop
  3564. * doesn't get stuck on the currently eligible stop task.
  3565. *
  3566. * We're currently inside stop_machine() and the rq is either stuck
  3567. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  3568. * either way we should never end up calling schedule() until we're
  3569. * done here.
  3570. */
  3571. rq->stop = NULL;
  3572. /*
  3573. * put_prev_task() and pick_next_task() sched
  3574. * class method both need to have an up-to-date
  3575. * value of rq->clock[_task]
  3576. */
  3577. update_rq_clock(rq);
  3578. for ( ; ; ) {
  3579. /*
  3580. * There's this thread running, bail when that's the only
  3581. * remaining thread.
  3582. */
  3583. if (rq->nr_running == 1)
  3584. break;
  3585. next = pick_next_task(rq);
  3586. BUG_ON(!next);
  3587. next->sched_class->put_prev_task(rq, next);
  3588. /* Find suitable destination for @next, with force if needed. */
  3589. dest_cpu = select_fallback_rq(dead_cpu, next);
  3590. raw_spin_unlock(&rq->lock);
  3591. __migrate_task(next, dead_cpu, dest_cpu);
  3592. raw_spin_lock(&rq->lock);
  3593. }
  3594. rq->stop = stop;
  3595. }
  3596. #endif /* CONFIG_HOTPLUG_CPU */
  3597. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  3598. static struct ctl_table sd_ctl_dir[] = {
  3599. {
  3600. .procname = "sched_domain",
  3601. .mode = 0555,
  3602. },
  3603. {}
  3604. };
  3605. static struct ctl_table sd_ctl_root[] = {
  3606. {
  3607. .procname = "kernel",
  3608. .mode = 0555,
  3609. .child = sd_ctl_dir,
  3610. },
  3611. {}
  3612. };
  3613. static struct ctl_table *sd_alloc_ctl_entry(int n)
  3614. {
  3615. struct ctl_table *entry =
  3616. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  3617. return entry;
  3618. }
  3619. static void sd_free_ctl_entry(struct ctl_table **tablep)
  3620. {
  3621. struct ctl_table *entry;
  3622. /*
  3623. * In the intermediate directories, both the child directory and
  3624. * procname are dynamically allocated and could fail but the mode
  3625. * will always be set. In the lowest directory the names are
  3626. * static strings and all have proc handlers.
  3627. */
  3628. for (entry = *tablep; entry->mode; entry++) {
  3629. if (entry->child)
  3630. sd_free_ctl_entry(&entry->child);
  3631. if (entry->proc_handler == NULL)
  3632. kfree(entry->procname);
  3633. }
  3634. kfree(*tablep);
  3635. *tablep = NULL;
  3636. }
  3637. static int min_load_idx = 0;
  3638. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  3639. static void
  3640. set_table_entry(struct ctl_table *entry,
  3641. const char *procname, void *data, int maxlen,
  3642. umode_t mode, proc_handler *proc_handler,
  3643. bool load_idx)
  3644. {
  3645. entry->procname = procname;
  3646. entry->data = data;
  3647. entry->maxlen = maxlen;
  3648. entry->mode = mode;
  3649. entry->proc_handler = proc_handler;
  3650. if (load_idx) {
  3651. entry->extra1 = &min_load_idx;
  3652. entry->extra2 = &max_load_idx;
  3653. }
  3654. }
  3655. static struct ctl_table *
  3656. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  3657. {
  3658. struct ctl_table *table = sd_alloc_ctl_entry(13);
  3659. if (table == NULL)
  3660. return NULL;
  3661. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  3662. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3663. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  3664. sizeof(long), 0644, proc_doulongvec_minmax, false);
  3665. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  3666. sizeof(int), 0644, proc_dointvec_minmax, true);
  3667. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  3668. sizeof(int), 0644, proc_dointvec_minmax, true);
  3669. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  3670. sizeof(int), 0644, proc_dointvec_minmax, true);
  3671. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  3672. sizeof(int), 0644, proc_dointvec_minmax, true);
  3673. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  3674. sizeof(int), 0644, proc_dointvec_minmax, true);
  3675. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  3676. sizeof(int), 0644, proc_dointvec_minmax, false);
  3677. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  3678. sizeof(int), 0644, proc_dointvec_minmax, false);
  3679. set_table_entry(&table[9], "cache_nice_tries",
  3680. &sd->cache_nice_tries,
  3681. sizeof(int), 0644, proc_dointvec_minmax, false);
  3682. set_table_entry(&table[10], "flags", &sd->flags,
  3683. sizeof(int), 0644, proc_dointvec_minmax, false);
  3684. set_table_entry(&table[11], "name", sd->name,
  3685. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  3686. /* &table[12] is terminator */
  3687. return table;
  3688. }
  3689. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  3690. {
  3691. struct ctl_table *entry, *table;
  3692. struct sched_domain *sd;
  3693. int domain_num = 0, i;
  3694. char buf[32];
  3695. for_each_domain(cpu, sd)
  3696. domain_num++;
  3697. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  3698. if (table == NULL)
  3699. return NULL;
  3700. i = 0;
  3701. for_each_domain(cpu, sd) {
  3702. snprintf(buf, 32, "domain%d", i);
  3703. entry->procname = kstrdup(buf, GFP_KERNEL);
  3704. entry->mode = 0555;
  3705. entry->child = sd_alloc_ctl_domain_table(sd);
  3706. entry++;
  3707. i++;
  3708. }
  3709. return table;
  3710. }
  3711. static struct ctl_table_header *sd_sysctl_header;
  3712. static void register_sched_domain_sysctl(void)
  3713. {
  3714. int i, cpu_num = num_possible_cpus();
  3715. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  3716. char buf[32];
  3717. WARN_ON(sd_ctl_dir[0].child);
  3718. sd_ctl_dir[0].child = entry;
  3719. if (entry == NULL)
  3720. return;
  3721. for_each_possible_cpu(i) {
  3722. snprintf(buf, 32, "cpu%d", i);
  3723. entry->procname = kstrdup(buf, GFP_KERNEL);
  3724. entry->mode = 0555;
  3725. entry->child = sd_alloc_ctl_cpu_table(i);
  3726. entry++;
  3727. }
  3728. WARN_ON(sd_sysctl_header);
  3729. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  3730. }
  3731. /* may be called multiple times per register */
  3732. static void unregister_sched_domain_sysctl(void)
  3733. {
  3734. if (sd_sysctl_header)
  3735. unregister_sysctl_table(sd_sysctl_header);
  3736. sd_sysctl_header = NULL;
  3737. if (sd_ctl_dir[0].child)
  3738. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  3739. }
  3740. #else
  3741. static void register_sched_domain_sysctl(void)
  3742. {
  3743. }
  3744. static void unregister_sched_domain_sysctl(void)
  3745. {
  3746. }
  3747. #endif
  3748. static void set_rq_online(struct rq *rq)
  3749. {
  3750. if (!rq->online) {
  3751. const struct sched_class *class;
  3752. cpumask_set_cpu(rq->cpu, rq->rd->online);
  3753. rq->online = 1;
  3754. for_each_class(class) {
  3755. if (class->rq_online)
  3756. class->rq_online(rq);
  3757. }
  3758. }
  3759. }
  3760. static void set_rq_offline(struct rq *rq)
  3761. {
  3762. if (rq->online) {
  3763. const struct sched_class *class;
  3764. for_each_class(class) {
  3765. if (class->rq_offline)
  3766. class->rq_offline(rq);
  3767. }
  3768. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  3769. rq->online = 0;
  3770. }
  3771. }
  3772. /*
  3773. * migration_call - callback that gets triggered when a CPU is added.
  3774. * Here we can start up the necessary migration thread for the new CPU.
  3775. */
  3776. static int
  3777. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  3778. {
  3779. int cpu = (long)hcpu;
  3780. unsigned long flags;
  3781. struct rq *rq = cpu_rq(cpu);
  3782. switch (action & ~CPU_TASKS_FROZEN) {
  3783. case CPU_UP_PREPARE:
  3784. rq->calc_load_update = calc_load_update;
  3785. break;
  3786. case CPU_ONLINE:
  3787. /* Update our root-domain */
  3788. raw_spin_lock_irqsave(&rq->lock, flags);
  3789. if (rq->rd) {
  3790. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  3791. set_rq_online(rq);
  3792. }
  3793. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3794. break;
  3795. #ifdef CONFIG_HOTPLUG_CPU
  3796. case CPU_DYING:
  3797. sched_ttwu_pending();
  3798. /* Update our root-domain */
  3799. raw_spin_lock_irqsave(&rq->lock, flags);
  3800. if (rq->rd) {
  3801. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  3802. set_rq_offline(rq);
  3803. }
  3804. migrate_tasks(cpu);
  3805. BUG_ON(rq->nr_running != 1); /* the migration thread */
  3806. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3807. break;
  3808. case CPU_DEAD:
  3809. calc_load_migrate(rq);
  3810. break;
  3811. #endif
  3812. }
  3813. update_max_interval();
  3814. return NOTIFY_OK;
  3815. }
  3816. /*
  3817. * Register at high priority so that task migration (migrate_all_tasks)
  3818. * happens before everything else. This has to be lower priority than
  3819. * the notifier in the perf_event subsystem, though.
  3820. */
  3821. static struct notifier_block migration_notifier = {
  3822. .notifier_call = migration_call,
  3823. .priority = CPU_PRI_MIGRATION,
  3824. };
  3825. static int sched_cpu_active(struct notifier_block *nfb,
  3826. unsigned long action, void *hcpu)
  3827. {
  3828. switch (action & ~CPU_TASKS_FROZEN) {
  3829. case CPU_STARTING:
  3830. case CPU_DOWN_FAILED:
  3831. set_cpu_active((long)hcpu, true);
  3832. return NOTIFY_OK;
  3833. default:
  3834. return NOTIFY_DONE;
  3835. }
  3836. }
  3837. static int sched_cpu_inactive(struct notifier_block *nfb,
  3838. unsigned long action, void *hcpu)
  3839. {
  3840. switch (action & ~CPU_TASKS_FROZEN) {
  3841. case CPU_DOWN_PREPARE:
  3842. set_cpu_active((long)hcpu, false);
  3843. return NOTIFY_OK;
  3844. default:
  3845. return NOTIFY_DONE;
  3846. }
  3847. }
  3848. static int __init migration_init(void)
  3849. {
  3850. void *cpu = (void *)(long)smp_processor_id();
  3851. int err;
  3852. /* Initialize migration for the boot CPU */
  3853. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  3854. BUG_ON(err == NOTIFY_BAD);
  3855. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  3856. register_cpu_notifier(&migration_notifier);
  3857. /* Register cpu active notifiers */
  3858. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  3859. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  3860. return 0;
  3861. }
  3862. early_initcall(migration_init);
  3863. #endif
  3864. #ifdef CONFIG_SMP
  3865. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  3866. #ifdef CONFIG_SCHED_DEBUG
  3867. static __read_mostly int sched_debug_enabled;
  3868. static int __init sched_debug_setup(char *str)
  3869. {
  3870. sched_debug_enabled = 1;
  3871. return 0;
  3872. }
  3873. early_param("sched_debug", sched_debug_setup);
  3874. static inline bool sched_debug(void)
  3875. {
  3876. return sched_debug_enabled;
  3877. }
  3878. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  3879. struct cpumask *groupmask)
  3880. {
  3881. struct sched_group *group = sd->groups;
  3882. char str[256];
  3883. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  3884. cpumask_clear(groupmask);
  3885. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  3886. if (!(sd->flags & SD_LOAD_BALANCE)) {
  3887. printk("does not load-balance\n");
  3888. if (sd->parent)
  3889. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  3890. " has parent");
  3891. return -1;
  3892. }
  3893. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  3894. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  3895. printk(KERN_ERR "ERROR: domain->span does not contain "
  3896. "CPU%d\n", cpu);
  3897. }
  3898. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  3899. printk(KERN_ERR "ERROR: domain->groups does not contain"
  3900. " CPU%d\n", cpu);
  3901. }
  3902. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  3903. do {
  3904. if (!group) {
  3905. printk("\n");
  3906. printk(KERN_ERR "ERROR: group is NULL\n");
  3907. break;
  3908. }
  3909. /*
  3910. * Even though we initialize ->power to something semi-sane,
  3911. * we leave power_orig unset. This allows us to detect if
  3912. * domain iteration is still funny without causing /0 traps.
  3913. */
  3914. if (!group->sgp->power_orig) {
  3915. printk(KERN_CONT "\n");
  3916. printk(KERN_ERR "ERROR: domain->cpu_power not "
  3917. "set\n");
  3918. break;
  3919. }
  3920. if (!cpumask_weight(sched_group_cpus(group))) {
  3921. printk(KERN_CONT "\n");
  3922. printk(KERN_ERR "ERROR: empty group\n");
  3923. break;
  3924. }
  3925. if (!(sd->flags & SD_OVERLAP) &&
  3926. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  3927. printk(KERN_CONT "\n");
  3928. printk(KERN_ERR "ERROR: repeated CPUs\n");
  3929. break;
  3930. }
  3931. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  3932. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  3933. printk(KERN_CONT " %s", str);
  3934. if (group->sgp->power != SCHED_POWER_SCALE) {
  3935. printk(KERN_CONT " (cpu_power = %d)",
  3936. group->sgp->power);
  3937. }
  3938. group = group->next;
  3939. } while (group != sd->groups);
  3940. printk(KERN_CONT "\n");
  3941. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  3942. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  3943. if (sd->parent &&
  3944. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  3945. printk(KERN_ERR "ERROR: parent span is not a superset "
  3946. "of domain->span\n");
  3947. return 0;
  3948. }
  3949. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  3950. {
  3951. int level = 0;
  3952. if (!sched_debug_enabled)
  3953. return;
  3954. if (!sd) {
  3955. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  3956. return;
  3957. }
  3958. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  3959. for (;;) {
  3960. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  3961. break;
  3962. level++;
  3963. sd = sd->parent;
  3964. if (!sd)
  3965. break;
  3966. }
  3967. }
  3968. #else /* !CONFIG_SCHED_DEBUG */
  3969. # define sched_domain_debug(sd, cpu) do { } while (0)
  3970. static inline bool sched_debug(void)
  3971. {
  3972. return false;
  3973. }
  3974. #endif /* CONFIG_SCHED_DEBUG */
  3975. static int sd_degenerate(struct sched_domain *sd)
  3976. {
  3977. if (cpumask_weight(sched_domain_span(sd)) == 1)
  3978. return 1;
  3979. /* Following flags need at least 2 groups */
  3980. if (sd->flags & (SD_LOAD_BALANCE |
  3981. SD_BALANCE_NEWIDLE |
  3982. SD_BALANCE_FORK |
  3983. SD_BALANCE_EXEC |
  3984. SD_SHARE_CPUPOWER |
  3985. SD_SHARE_PKG_RESOURCES)) {
  3986. if (sd->groups != sd->groups->next)
  3987. return 0;
  3988. }
  3989. /* Following flags don't use groups */
  3990. if (sd->flags & (SD_WAKE_AFFINE))
  3991. return 0;
  3992. return 1;
  3993. }
  3994. static int
  3995. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  3996. {
  3997. unsigned long cflags = sd->flags, pflags = parent->flags;
  3998. if (sd_degenerate(parent))
  3999. return 1;
  4000. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4001. return 0;
  4002. /* Flags needing groups don't count if only 1 group in parent */
  4003. if (parent->groups == parent->groups->next) {
  4004. pflags &= ~(SD_LOAD_BALANCE |
  4005. SD_BALANCE_NEWIDLE |
  4006. SD_BALANCE_FORK |
  4007. SD_BALANCE_EXEC |
  4008. SD_SHARE_CPUPOWER |
  4009. SD_SHARE_PKG_RESOURCES |
  4010. SD_PREFER_SIBLING);
  4011. if (nr_node_ids == 1)
  4012. pflags &= ~SD_SERIALIZE;
  4013. }
  4014. if (~cflags & pflags)
  4015. return 0;
  4016. return 1;
  4017. }
  4018. static void free_rootdomain(struct rcu_head *rcu)
  4019. {
  4020. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4021. cpupri_cleanup(&rd->cpupri);
  4022. free_cpumask_var(rd->rto_mask);
  4023. free_cpumask_var(rd->online);
  4024. free_cpumask_var(rd->span);
  4025. kfree(rd);
  4026. }
  4027. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4028. {
  4029. struct root_domain *old_rd = NULL;
  4030. unsigned long flags;
  4031. raw_spin_lock_irqsave(&rq->lock, flags);
  4032. if (rq->rd) {
  4033. old_rd = rq->rd;
  4034. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4035. set_rq_offline(rq);
  4036. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4037. /*
  4038. * If we dont want to free the old_rt yet then
  4039. * set old_rd to NULL to skip the freeing later
  4040. * in this function:
  4041. */
  4042. if (!atomic_dec_and_test(&old_rd->refcount))
  4043. old_rd = NULL;
  4044. }
  4045. atomic_inc(&rd->refcount);
  4046. rq->rd = rd;
  4047. cpumask_set_cpu(rq->cpu, rd->span);
  4048. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4049. set_rq_online(rq);
  4050. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4051. if (old_rd)
  4052. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4053. }
  4054. static int init_rootdomain(struct root_domain *rd)
  4055. {
  4056. memset(rd, 0, sizeof(*rd));
  4057. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4058. goto out;
  4059. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4060. goto free_span;
  4061. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4062. goto free_online;
  4063. if (cpupri_init(&rd->cpupri) != 0)
  4064. goto free_rto_mask;
  4065. return 0;
  4066. free_rto_mask:
  4067. free_cpumask_var(rd->rto_mask);
  4068. free_online:
  4069. free_cpumask_var(rd->online);
  4070. free_span:
  4071. free_cpumask_var(rd->span);
  4072. out:
  4073. return -ENOMEM;
  4074. }
  4075. /*
  4076. * By default the system creates a single root-domain with all cpus as
  4077. * members (mimicking the global state we have today).
  4078. */
  4079. struct root_domain def_root_domain;
  4080. static void init_defrootdomain(void)
  4081. {
  4082. init_rootdomain(&def_root_domain);
  4083. atomic_set(&def_root_domain.refcount, 1);
  4084. }
  4085. static struct root_domain *alloc_rootdomain(void)
  4086. {
  4087. struct root_domain *rd;
  4088. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4089. if (!rd)
  4090. return NULL;
  4091. if (init_rootdomain(rd) != 0) {
  4092. kfree(rd);
  4093. return NULL;
  4094. }
  4095. return rd;
  4096. }
  4097. static void free_sched_groups(struct sched_group *sg, int free_sgp)
  4098. {
  4099. struct sched_group *tmp, *first;
  4100. if (!sg)
  4101. return;
  4102. first = sg;
  4103. do {
  4104. tmp = sg->next;
  4105. if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
  4106. kfree(sg->sgp);
  4107. kfree(sg);
  4108. sg = tmp;
  4109. } while (sg != first);
  4110. }
  4111. static void free_sched_domain(struct rcu_head *rcu)
  4112. {
  4113. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4114. /*
  4115. * If its an overlapping domain it has private groups, iterate and
  4116. * nuke them all.
  4117. */
  4118. if (sd->flags & SD_OVERLAP) {
  4119. free_sched_groups(sd->groups, 1);
  4120. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4121. kfree(sd->groups->sgp);
  4122. kfree(sd->groups);
  4123. }
  4124. kfree(sd);
  4125. }
  4126. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4127. {
  4128. call_rcu(&sd->rcu, free_sched_domain);
  4129. }
  4130. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4131. {
  4132. for (; sd; sd = sd->parent)
  4133. destroy_sched_domain(sd, cpu);
  4134. }
  4135. /*
  4136. * Keep a special pointer to the highest sched_domain that has
  4137. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4138. * allows us to avoid some pointer chasing select_idle_sibling().
  4139. *
  4140. * Also keep a unique ID per domain (we use the first cpu number in
  4141. * the cpumask of the domain), this allows us to quickly tell if
  4142. * two cpus are in the same cache domain, see cpus_share_cache().
  4143. */
  4144. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4145. DEFINE_PER_CPU(int, sd_llc_size);
  4146. DEFINE_PER_CPU(int, sd_llc_id);
  4147. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4148. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4149. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4150. static void update_top_cache_domain(int cpu)
  4151. {
  4152. struct sched_domain *sd;
  4153. int id = cpu;
  4154. int size = 1;
  4155. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4156. if (sd) {
  4157. id = cpumask_first(sched_domain_span(sd));
  4158. size = cpumask_weight(sched_domain_span(sd));
  4159. rcu_assign_pointer(per_cpu(sd_busy, cpu), sd->parent);
  4160. }
  4161. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4162. per_cpu(sd_llc_size, cpu) = size;
  4163. per_cpu(sd_llc_id, cpu) = id;
  4164. sd = lowest_flag_domain(cpu, SD_NUMA);
  4165. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4166. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4167. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4168. }
  4169. /*
  4170. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4171. * hold the hotplug lock.
  4172. */
  4173. static void
  4174. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4175. {
  4176. struct rq *rq = cpu_rq(cpu);
  4177. struct sched_domain *tmp;
  4178. /* Remove the sched domains which do not contribute to scheduling. */
  4179. for (tmp = sd; tmp; ) {
  4180. struct sched_domain *parent = tmp->parent;
  4181. if (!parent)
  4182. break;
  4183. if (sd_parent_degenerate(tmp, parent)) {
  4184. tmp->parent = parent->parent;
  4185. if (parent->parent)
  4186. parent->parent->child = tmp;
  4187. /*
  4188. * Transfer SD_PREFER_SIBLING down in case of a
  4189. * degenerate parent; the spans match for this
  4190. * so the property transfers.
  4191. */
  4192. if (parent->flags & SD_PREFER_SIBLING)
  4193. tmp->flags |= SD_PREFER_SIBLING;
  4194. destroy_sched_domain(parent, cpu);
  4195. } else
  4196. tmp = tmp->parent;
  4197. }
  4198. if (sd && sd_degenerate(sd)) {
  4199. tmp = sd;
  4200. sd = sd->parent;
  4201. destroy_sched_domain(tmp, cpu);
  4202. if (sd)
  4203. sd->child = NULL;
  4204. }
  4205. sched_domain_debug(sd, cpu);
  4206. rq_attach_root(rq, rd);
  4207. tmp = rq->sd;
  4208. rcu_assign_pointer(rq->sd, sd);
  4209. destroy_sched_domains(tmp, cpu);
  4210. update_top_cache_domain(cpu);
  4211. }
  4212. /* cpus with isolated domains */
  4213. static cpumask_var_t cpu_isolated_map;
  4214. /* Setup the mask of cpus configured for isolated domains */
  4215. static int __init isolated_cpu_setup(char *str)
  4216. {
  4217. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4218. cpulist_parse(str, cpu_isolated_map);
  4219. return 1;
  4220. }
  4221. __setup("isolcpus=", isolated_cpu_setup);
  4222. static const struct cpumask *cpu_cpu_mask(int cpu)
  4223. {
  4224. return cpumask_of_node(cpu_to_node(cpu));
  4225. }
  4226. struct sd_data {
  4227. struct sched_domain **__percpu sd;
  4228. struct sched_group **__percpu sg;
  4229. struct sched_group_power **__percpu sgp;
  4230. };
  4231. struct s_data {
  4232. struct sched_domain ** __percpu sd;
  4233. struct root_domain *rd;
  4234. };
  4235. enum s_alloc {
  4236. sa_rootdomain,
  4237. sa_sd,
  4238. sa_sd_storage,
  4239. sa_none,
  4240. };
  4241. struct sched_domain_topology_level;
  4242. typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
  4243. typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
  4244. #define SDTL_OVERLAP 0x01
  4245. struct sched_domain_topology_level {
  4246. sched_domain_init_f init;
  4247. sched_domain_mask_f mask;
  4248. int flags;
  4249. int numa_level;
  4250. struct sd_data data;
  4251. };
  4252. /*
  4253. * Build an iteration mask that can exclude certain CPUs from the upwards
  4254. * domain traversal.
  4255. *
  4256. * Asymmetric node setups can result in situations where the domain tree is of
  4257. * unequal depth, make sure to skip domains that already cover the entire
  4258. * range.
  4259. *
  4260. * In that case build_sched_domains() will have terminated the iteration early
  4261. * and our sibling sd spans will be empty. Domains should always include the
  4262. * cpu they're built on, so check that.
  4263. *
  4264. */
  4265. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4266. {
  4267. const struct cpumask *span = sched_domain_span(sd);
  4268. struct sd_data *sdd = sd->private;
  4269. struct sched_domain *sibling;
  4270. int i;
  4271. for_each_cpu(i, span) {
  4272. sibling = *per_cpu_ptr(sdd->sd, i);
  4273. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4274. continue;
  4275. cpumask_set_cpu(i, sched_group_mask(sg));
  4276. }
  4277. }
  4278. /*
  4279. * Return the canonical balance cpu for this group, this is the first cpu
  4280. * of this group that's also in the iteration mask.
  4281. */
  4282. int group_balance_cpu(struct sched_group *sg)
  4283. {
  4284. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4285. }
  4286. static int
  4287. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4288. {
  4289. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4290. const struct cpumask *span = sched_domain_span(sd);
  4291. struct cpumask *covered = sched_domains_tmpmask;
  4292. struct sd_data *sdd = sd->private;
  4293. struct sched_domain *child;
  4294. int i;
  4295. cpumask_clear(covered);
  4296. for_each_cpu(i, span) {
  4297. struct cpumask *sg_span;
  4298. if (cpumask_test_cpu(i, covered))
  4299. continue;
  4300. child = *per_cpu_ptr(sdd->sd, i);
  4301. /* See the comment near build_group_mask(). */
  4302. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4303. continue;
  4304. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4305. GFP_KERNEL, cpu_to_node(cpu));
  4306. if (!sg)
  4307. goto fail;
  4308. sg_span = sched_group_cpus(sg);
  4309. if (child->child) {
  4310. child = child->child;
  4311. cpumask_copy(sg_span, sched_domain_span(child));
  4312. } else
  4313. cpumask_set_cpu(i, sg_span);
  4314. cpumask_or(covered, covered, sg_span);
  4315. sg->sgp = *per_cpu_ptr(sdd->sgp, i);
  4316. if (atomic_inc_return(&sg->sgp->ref) == 1)
  4317. build_group_mask(sd, sg);
  4318. /*
  4319. * Initialize sgp->power such that even if we mess up the
  4320. * domains and no possible iteration will get us here, we won't
  4321. * die on a /0 trap.
  4322. */
  4323. sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
  4324. /*
  4325. * Make sure the first group of this domain contains the
  4326. * canonical balance cpu. Otherwise the sched_domain iteration
  4327. * breaks. See update_sg_lb_stats().
  4328. */
  4329. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4330. group_balance_cpu(sg) == cpu)
  4331. groups = sg;
  4332. if (!first)
  4333. first = sg;
  4334. if (last)
  4335. last->next = sg;
  4336. last = sg;
  4337. last->next = first;
  4338. }
  4339. sd->groups = groups;
  4340. return 0;
  4341. fail:
  4342. free_sched_groups(first, 0);
  4343. return -ENOMEM;
  4344. }
  4345. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4346. {
  4347. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4348. struct sched_domain *child = sd->child;
  4349. if (child)
  4350. cpu = cpumask_first(sched_domain_span(child));
  4351. if (sg) {
  4352. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4353. (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
  4354. atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
  4355. }
  4356. return cpu;
  4357. }
  4358. /*
  4359. * build_sched_groups will build a circular linked list of the groups
  4360. * covered by the given span, and will set each group's ->cpumask correctly,
  4361. * and ->cpu_power to 0.
  4362. *
  4363. * Assumes the sched_domain tree is fully constructed
  4364. */
  4365. static int
  4366. build_sched_groups(struct sched_domain *sd, int cpu)
  4367. {
  4368. struct sched_group *first = NULL, *last = NULL;
  4369. struct sd_data *sdd = sd->private;
  4370. const struct cpumask *span = sched_domain_span(sd);
  4371. struct cpumask *covered;
  4372. int i;
  4373. get_group(cpu, sdd, &sd->groups);
  4374. atomic_inc(&sd->groups->ref);
  4375. if (cpu != cpumask_first(span))
  4376. return 0;
  4377. lockdep_assert_held(&sched_domains_mutex);
  4378. covered = sched_domains_tmpmask;
  4379. cpumask_clear(covered);
  4380. for_each_cpu(i, span) {
  4381. struct sched_group *sg;
  4382. int group, j;
  4383. if (cpumask_test_cpu(i, covered))
  4384. continue;
  4385. group = get_group(i, sdd, &sg);
  4386. cpumask_clear(sched_group_cpus(sg));
  4387. sg->sgp->power = 0;
  4388. cpumask_setall(sched_group_mask(sg));
  4389. for_each_cpu(j, span) {
  4390. if (get_group(j, sdd, NULL) != group)
  4391. continue;
  4392. cpumask_set_cpu(j, covered);
  4393. cpumask_set_cpu(j, sched_group_cpus(sg));
  4394. }
  4395. if (!first)
  4396. first = sg;
  4397. if (last)
  4398. last->next = sg;
  4399. last = sg;
  4400. }
  4401. last->next = first;
  4402. return 0;
  4403. }
  4404. /*
  4405. * Initialize sched groups cpu_power.
  4406. *
  4407. * cpu_power indicates the capacity of sched group, which is used while
  4408. * distributing the load between different sched groups in a sched domain.
  4409. * Typically cpu_power for all the groups in a sched domain will be same unless
  4410. * there are asymmetries in the topology. If there are asymmetries, group
  4411. * having more cpu_power will pickup more load compared to the group having
  4412. * less cpu_power.
  4413. */
  4414. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4415. {
  4416. struct sched_group *sg = sd->groups;
  4417. WARN_ON(!sg);
  4418. do {
  4419. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  4420. sg = sg->next;
  4421. } while (sg != sd->groups);
  4422. if (cpu != group_balance_cpu(sg))
  4423. return;
  4424. update_group_power(sd, cpu);
  4425. atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
  4426. }
  4427. int __weak arch_sd_sibling_asym_packing(void)
  4428. {
  4429. return 0*SD_ASYM_PACKING;
  4430. }
  4431. /*
  4432. * Initializers for schedule domains
  4433. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  4434. */
  4435. #ifdef CONFIG_SCHED_DEBUG
  4436. # define SD_INIT_NAME(sd, type) sd->name = #type
  4437. #else
  4438. # define SD_INIT_NAME(sd, type) do { } while (0)
  4439. #endif
  4440. #define SD_INIT_FUNC(type) \
  4441. static noinline struct sched_domain * \
  4442. sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
  4443. { \
  4444. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
  4445. *sd = SD_##type##_INIT; \
  4446. SD_INIT_NAME(sd, type); \
  4447. sd->private = &tl->data; \
  4448. return sd; \
  4449. }
  4450. SD_INIT_FUNC(CPU)
  4451. #ifdef CONFIG_SCHED_SMT
  4452. SD_INIT_FUNC(SIBLING)
  4453. #endif
  4454. #ifdef CONFIG_SCHED_MC
  4455. SD_INIT_FUNC(MC)
  4456. #endif
  4457. #ifdef CONFIG_SCHED_BOOK
  4458. SD_INIT_FUNC(BOOK)
  4459. #endif
  4460. static int default_relax_domain_level = -1;
  4461. int sched_domain_level_max;
  4462. static int __init setup_relax_domain_level(char *str)
  4463. {
  4464. if (kstrtoint(str, 0, &default_relax_domain_level))
  4465. pr_warn("Unable to set relax_domain_level\n");
  4466. return 1;
  4467. }
  4468. __setup("relax_domain_level=", setup_relax_domain_level);
  4469. static void set_domain_attribute(struct sched_domain *sd,
  4470. struct sched_domain_attr *attr)
  4471. {
  4472. int request;
  4473. if (!attr || attr->relax_domain_level < 0) {
  4474. if (default_relax_domain_level < 0)
  4475. return;
  4476. else
  4477. request = default_relax_domain_level;
  4478. } else
  4479. request = attr->relax_domain_level;
  4480. if (request < sd->level) {
  4481. /* turn off idle balance on this domain */
  4482. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4483. } else {
  4484. /* turn on idle balance on this domain */
  4485. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  4486. }
  4487. }
  4488. static void __sdt_free(const struct cpumask *cpu_map);
  4489. static int __sdt_alloc(const struct cpumask *cpu_map);
  4490. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  4491. const struct cpumask *cpu_map)
  4492. {
  4493. switch (what) {
  4494. case sa_rootdomain:
  4495. if (!atomic_read(&d->rd->refcount))
  4496. free_rootdomain(&d->rd->rcu); /* fall through */
  4497. case sa_sd:
  4498. free_percpu(d->sd); /* fall through */
  4499. case sa_sd_storage:
  4500. __sdt_free(cpu_map); /* fall through */
  4501. case sa_none:
  4502. break;
  4503. }
  4504. }
  4505. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  4506. const struct cpumask *cpu_map)
  4507. {
  4508. memset(d, 0, sizeof(*d));
  4509. if (__sdt_alloc(cpu_map))
  4510. return sa_sd_storage;
  4511. d->sd = alloc_percpu(struct sched_domain *);
  4512. if (!d->sd)
  4513. return sa_sd_storage;
  4514. d->rd = alloc_rootdomain();
  4515. if (!d->rd)
  4516. return sa_sd;
  4517. return sa_rootdomain;
  4518. }
  4519. /*
  4520. * NULL the sd_data elements we've used to build the sched_domain and
  4521. * sched_group structure so that the subsequent __free_domain_allocs()
  4522. * will not free the data we're using.
  4523. */
  4524. static void claim_allocations(int cpu, struct sched_domain *sd)
  4525. {
  4526. struct sd_data *sdd = sd->private;
  4527. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  4528. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  4529. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  4530. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  4531. if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
  4532. *per_cpu_ptr(sdd->sgp, cpu) = NULL;
  4533. }
  4534. #ifdef CONFIG_SCHED_SMT
  4535. static const struct cpumask *cpu_smt_mask(int cpu)
  4536. {
  4537. return topology_thread_cpumask(cpu);
  4538. }
  4539. #endif
  4540. /*
  4541. * Topology list, bottom-up.
  4542. */
  4543. static struct sched_domain_topology_level default_topology[] = {
  4544. #ifdef CONFIG_SCHED_SMT
  4545. { sd_init_SIBLING, cpu_smt_mask, },
  4546. #endif
  4547. #ifdef CONFIG_SCHED_MC
  4548. { sd_init_MC, cpu_coregroup_mask, },
  4549. #endif
  4550. #ifdef CONFIG_SCHED_BOOK
  4551. { sd_init_BOOK, cpu_book_mask, },
  4552. #endif
  4553. { sd_init_CPU, cpu_cpu_mask, },
  4554. { NULL, },
  4555. };
  4556. static struct sched_domain_topology_level *sched_domain_topology = default_topology;
  4557. #define for_each_sd_topology(tl) \
  4558. for (tl = sched_domain_topology; tl->init; tl++)
  4559. #ifdef CONFIG_NUMA
  4560. static int sched_domains_numa_levels;
  4561. static int *sched_domains_numa_distance;
  4562. static struct cpumask ***sched_domains_numa_masks;
  4563. static int sched_domains_curr_level;
  4564. static inline int sd_local_flags(int level)
  4565. {
  4566. if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
  4567. return 0;
  4568. return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
  4569. }
  4570. static struct sched_domain *
  4571. sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
  4572. {
  4573. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  4574. int level = tl->numa_level;
  4575. int sd_weight = cpumask_weight(
  4576. sched_domains_numa_masks[level][cpu_to_node(cpu)]);
  4577. *sd = (struct sched_domain){
  4578. .min_interval = sd_weight,
  4579. .max_interval = 2*sd_weight,
  4580. .busy_factor = 32,
  4581. .imbalance_pct = 125,
  4582. .cache_nice_tries = 2,
  4583. .busy_idx = 3,
  4584. .idle_idx = 2,
  4585. .newidle_idx = 0,
  4586. .wake_idx = 0,
  4587. .forkexec_idx = 0,
  4588. .flags = 1*SD_LOAD_BALANCE
  4589. | 1*SD_BALANCE_NEWIDLE
  4590. | 0*SD_BALANCE_EXEC
  4591. | 0*SD_BALANCE_FORK
  4592. | 0*SD_BALANCE_WAKE
  4593. | 0*SD_WAKE_AFFINE
  4594. | 0*SD_SHARE_CPUPOWER
  4595. | 0*SD_SHARE_PKG_RESOURCES
  4596. | 1*SD_SERIALIZE
  4597. | 0*SD_PREFER_SIBLING
  4598. | 1*SD_NUMA
  4599. | sd_local_flags(level)
  4600. ,
  4601. .last_balance = jiffies,
  4602. .balance_interval = sd_weight,
  4603. };
  4604. SD_INIT_NAME(sd, NUMA);
  4605. sd->private = &tl->data;
  4606. /*
  4607. * Ugly hack to pass state to sd_numa_mask()...
  4608. */
  4609. sched_domains_curr_level = tl->numa_level;
  4610. return sd;
  4611. }
  4612. static const struct cpumask *sd_numa_mask(int cpu)
  4613. {
  4614. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  4615. }
  4616. static void sched_numa_warn(const char *str)
  4617. {
  4618. static int done = false;
  4619. int i,j;
  4620. if (done)
  4621. return;
  4622. done = true;
  4623. printk(KERN_WARNING "ERROR: %s\n\n", str);
  4624. for (i = 0; i < nr_node_ids; i++) {
  4625. printk(KERN_WARNING " ");
  4626. for (j = 0; j < nr_node_ids; j++)
  4627. printk(KERN_CONT "%02d ", node_distance(i,j));
  4628. printk(KERN_CONT "\n");
  4629. }
  4630. printk(KERN_WARNING "\n");
  4631. }
  4632. static bool find_numa_distance(int distance)
  4633. {
  4634. int i;
  4635. if (distance == node_distance(0, 0))
  4636. return true;
  4637. for (i = 0; i < sched_domains_numa_levels; i++) {
  4638. if (sched_domains_numa_distance[i] == distance)
  4639. return true;
  4640. }
  4641. return false;
  4642. }
  4643. static void sched_init_numa(void)
  4644. {
  4645. int next_distance, curr_distance = node_distance(0, 0);
  4646. struct sched_domain_topology_level *tl;
  4647. int level = 0;
  4648. int i, j, k;
  4649. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  4650. if (!sched_domains_numa_distance)
  4651. return;
  4652. /*
  4653. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  4654. * unique distances in the node_distance() table.
  4655. *
  4656. * Assumes node_distance(0,j) includes all distances in
  4657. * node_distance(i,j) in order to avoid cubic time.
  4658. */
  4659. next_distance = curr_distance;
  4660. for (i = 0; i < nr_node_ids; i++) {
  4661. for (j = 0; j < nr_node_ids; j++) {
  4662. for (k = 0; k < nr_node_ids; k++) {
  4663. int distance = node_distance(i, k);
  4664. if (distance > curr_distance &&
  4665. (distance < next_distance ||
  4666. next_distance == curr_distance))
  4667. next_distance = distance;
  4668. /*
  4669. * While not a strong assumption it would be nice to know
  4670. * about cases where if node A is connected to B, B is not
  4671. * equally connected to A.
  4672. */
  4673. if (sched_debug() && node_distance(k, i) != distance)
  4674. sched_numa_warn("Node-distance not symmetric");
  4675. if (sched_debug() && i && !find_numa_distance(distance))
  4676. sched_numa_warn("Node-0 not representative");
  4677. }
  4678. if (next_distance != curr_distance) {
  4679. sched_domains_numa_distance[level++] = next_distance;
  4680. sched_domains_numa_levels = level;
  4681. curr_distance = next_distance;
  4682. } else break;
  4683. }
  4684. /*
  4685. * In case of sched_debug() we verify the above assumption.
  4686. */
  4687. if (!sched_debug())
  4688. break;
  4689. }
  4690. /*
  4691. * 'level' contains the number of unique distances, excluding the
  4692. * identity distance node_distance(i,i).
  4693. *
  4694. * The sched_domains_numa_distance[] array includes the actual distance
  4695. * numbers.
  4696. */
  4697. /*
  4698. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  4699. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  4700. * the array will contain less then 'level' members. This could be
  4701. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  4702. * in other functions.
  4703. *
  4704. * We reset it to 'level' at the end of this function.
  4705. */
  4706. sched_domains_numa_levels = 0;
  4707. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  4708. if (!sched_domains_numa_masks)
  4709. return;
  4710. /*
  4711. * Now for each level, construct a mask per node which contains all
  4712. * cpus of nodes that are that many hops away from us.
  4713. */
  4714. for (i = 0; i < level; i++) {
  4715. sched_domains_numa_masks[i] =
  4716. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  4717. if (!sched_domains_numa_masks[i])
  4718. return;
  4719. for (j = 0; j < nr_node_ids; j++) {
  4720. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  4721. if (!mask)
  4722. return;
  4723. sched_domains_numa_masks[i][j] = mask;
  4724. for (k = 0; k < nr_node_ids; k++) {
  4725. if (node_distance(j, k) > sched_domains_numa_distance[i])
  4726. continue;
  4727. cpumask_or(mask, mask, cpumask_of_node(k));
  4728. }
  4729. }
  4730. }
  4731. tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
  4732. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  4733. if (!tl)
  4734. return;
  4735. /*
  4736. * Copy the default topology bits..
  4737. */
  4738. for (i = 0; default_topology[i].init; i++)
  4739. tl[i] = default_topology[i];
  4740. /*
  4741. * .. and append 'j' levels of NUMA goodness.
  4742. */
  4743. for (j = 0; j < level; i++, j++) {
  4744. tl[i] = (struct sched_domain_topology_level){
  4745. .init = sd_numa_init,
  4746. .mask = sd_numa_mask,
  4747. .flags = SDTL_OVERLAP,
  4748. .numa_level = j,
  4749. };
  4750. }
  4751. sched_domain_topology = tl;
  4752. sched_domains_numa_levels = level;
  4753. }
  4754. static void sched_domains_numa_masks_set(int cpu)
  4755. {
  4756. int i, j;
  4757. int node = cpu_to_node(cpu);
  4758. for (i = 0; i < sched_domains_numa_levels; i++) {
  4759. for (j = 0; j < nr_node_ids; j++) {
  4760. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  4761. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  4762. }
  4763. }
  4764. }
  4765. static void sched_domains_numa_masks_clear(int cpu)
  4766. {
  4767. int i, j;
  4768. for (i = 0; i < sched_domains_numa_levels; i++) {
  4769. for (j = 0; j < nr_node_ids; j++)
  4770. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  4771. }
  4772. }
  4773. /*
  4774. * Update sched_domains_numa_masks[level][node] array when new cpus
  4775. * are onlined.
  4776. */
  4777. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  4778. unsigned long action,
  4779. void *hcpu)
  4780. {
  4781. int cpu = (long)hcpu;
  4782. switch (action & ~CPU_TASKS_FROZEN) {
  4783. case CPU_ONLINE:
  4784. sched_domains_numa_masks_set(cpu);
  4785. break;
  4786. case CPU_DEAD:
  4787. sched_domains_numa_masks_clear(cpu);
  4788. break;
  4789. default:
  4790. return NOTIFY_DONE;
  4791. }
  4792. return NOTIFY_OK;
  4793. }
  4794. #else
  4795. static inline void sched_init_numa(void)
  4796. {
  4797. }
  4798. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  4799. unsigned long action,
  4800. void *hcpu)
  4801. {
  4802. return 0;
  4803. }
  4804. #endif /* CONFIG_NUMA */
  4805. static int __sdt_alloc(const struct cpumask *cpu_map)
  4806. {
  4807. struct sched_domain_topology_level *tl;
  4808. int j;
  4809. for_each_sd_topology(tl) {
  4810. struct sd_data *sdd = &tl->data;
  4811. sdd->sd = alloc_percpu(struct sched_domain *);
  4812. if (!sdd->sd)
  4813. return -ENOMEM;
  4814. sdd->sg = alloc_percpu(struct sched_group *);
  4815. if (!sdd->sg)
  4816. return -ENOMEM;
  4817. sdd->sgp = alloc_percpu(struct sched_group_power *);
  4818. if (!sdd->sgp)
  4819. return -ENOMEM;
  4820. for_each_cpu(j, cpu_map) {
  4821. struct sched_domain *sd;
  4822. struct sched_group *sg;
  4823. struct sched_group_power *sgp;
  4824. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  4825. GFP_KERNEL, cpu_to_node(j));
  4826. if (!sd)
  4827. return -ENOMEM;
  4828. *per_cpu_ptr(sdd->sd, j) = sd;
  4829. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4830. GFP_KERNEL, cpu_to_node(j));
  4831. if (!sg)
  4832. return -ENOMEM;
  4833. sg->next = sg;
  4834. *per_cpu_ptr(sdd->sg, j) = sg;
  4835. sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
  4836. GFP_KERNEL, cpu_to_node(j));
  4837. if (!sgp)
  4838. return -ENOMEM;
  4839. *per_cpu_ptr(sdd->sgp, j) = sgp;
  4840. }
  4841. }
  4842. return 0;
  4843. }
  4844. static void __sdt_free(const struct cpumask *cpu_map)
  4845. {
  4846. struct sched_domain_topology_level *tl;
  4847. int j;
  4848. for_each_sd_topology(tl) {
  4849. struct sd_data *sdd = &tl->data;
  4850. for_each_cpu(j, cpu_map) {
  4851. struct sched_domain *sd;
  4852. if (sdd->sd) {
  4853. sd = *per_cpu_ptr(sdd->sd, j);
  4854. if (sd && (sd->flags & SD_OVERLAP))
  4855. free_sched_groups(sd->groups, 0);
  4856. kfree(*per_cpu_ptr(sdd->sd, j));
  4857. }
  4858. if (sdd->sg)
  4859. kfree(*per_cpu_ptr(sdd->sg, j));
  4860. if (sdd->sgp)
  4861. kfree(*per_cpu_ptr(sdd->sgp, j));
  4862. }
  4863. free_percpu(sdd->sd);
  4864. sdd->sd = NULL;
  4865. free_percpu(sdd->sg);
  4866. sdd->sg = NULL;
  4867. free_percpu(sdd->sgp);
  4868. sdd->sgp = NULL;
  4869. }
  4870. }
  4871. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  4872. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  4873. struct sched_domain *child, int cpu)
  4874. {
  4875. struct sched_domain *sd = tl->init(tl, cpu);
  4876. if (!sd)
  4877. return child;
  4878. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  4879. if (child) {
  4880. sd->level = child->level + 1;
  4881. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  4882. child->parent = sd;
  4883. sd->child = child;
  4884. }
  4885. set_domain_attribute(sd, attr);
  4886. return sd;
  4887. }
  4888. /*
  4889. * Build sched domains for a given set of cpus and attach the sched domains
  4890. * to the individual cpus
  4891. */
  4892. static int build_sched_domains(const struct cpumask *cpu_map,
  4893. struct sched_domain_attr *attr)
  4894. {
  4895. enum s_alloc alloc_state;
  4896. struct sched_domain *sd;
  4897. struct s_data d;
  4898. int i, ret = -ENOMEM;
  4899. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  4900. if (alloc_state != sa_rootdomain)
  4901. goto error;
  4902. /* Set up domains for cpus specified by the cpu_map. */
  4903. for_each_cpu(i, cpu_map) {
  4904. struct sched_domain_topology_level *tl;
  4905. sd = NULL;
  4906. for_each_sd_topology(tl) {
  4907. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  4908. if (tl == sched_domain_topology)
  4909. *per_cpu_ptr(d.sd, i) = sd;
  4910. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  4911. sd->flags |= SD_OVERLAP;
  4912. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  4913. break;
  4914. }
  4915. }
  4916. /* Build the groups for the domains */
  4917. for_each_cpu(i, cpu_map) {
  4918. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  4919. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  4920. if (sd->flags & SD_OVERLAP) {
  4921. if (build_overlap_sched_groups(sd, i))
  4922. goto error;
  4923. } else {
  4924. if (build_sched_groups(sd, i))
  4925. goto error;
  4926. }
  4927. }
  4928. }
  4929. /* Calculate CPU power for physical packages and nodes */
  4930. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  4931. if (!cpumask_test_cpu(i, cpu_map))
  4932. continue;
  4933. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  4934. claim_allocations(i, sd);
  4935. init_sched_groups_power(i, sd);
  4936. }
  4937. }
  4938. /* Attach the domains */
  4939. rcu_read_lock();
  4940. for_each_cpu(i, cpu_map) {
  4941. sd = *per_cpu_ptr(d.sd, i);
  4942. cpu_attach_domain(sd, d.rd, i);
  4943. }
  4944. rcu_read_unlock();
  4945. ret = 0;
  4946. error:
  4947. __free_domain_allocs(&d, alloc_state, cpu_map);
  4948. return ret;
  4949. }
  4950. static cpumask_var_t *doms_cur; /* current sched domains */
  4951. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  4952. static struct sched_domain_attr *dattr_cur;
  4953. /* attribues of custom domains in 'doms_cur' */
  4954. /*
  4955. * Special case: If a kmalloc of a doms_cur partition (array of
  4956. * cpumask) fails, then fallback to a single sched domain,
  4957. * as determined by the single cpumask fallback_doms.
  4958. */
  4959. static cpumask_var_t fallback_doms;
  4960. /*
  4961. * arch_update_cpu_topology lets virtualized architectures update the
  4962. * cpu core maps. It is supposed to return 1 if the topology changed
  4963. * or 0 if it stayed the same.
  4964. */
  4965. int __attribute__((weak)) arch_update_cpu_topology(void)
  4966. {
  4967. return 0;
  4968. }
  4969. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  4970. {
  4971. int i;
  4972. cpumask_var_t *doms;
  4973. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  4974. if (!doms)
  4975. return NULL;
  4976. for (i = 0; i < ndoms; i++) {
  4977. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  4978. free_sched_domains(doms, i);
  4979. return NULL;
  4980. }
  4981. }
  4982. return doms;
  4983. }
  4984. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  4985. {
  4986. unsigned int i;
  4987. for (i = 0; i < ndoms; i++)
  4988. free_cpumask_var(doms[i]);
  4989. kfree(doms);
  4990. }
  4991. /*
  4992. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  4993. * For now this just excludes isolated cpus, but could be used to
  4994. * exclude other special cases in the future.
  4995. */
  4996. static int init_sched_domains(const struct cpumask *cpu_map)
  4997. {
  4998. int err;
  4999. arch_update_cpu_topology();
  5000. ndoms_cur = 1;
  5001. doms_cur = alloc_sched_domains(ndoms_cur);
  5002. if (!doms_cur)
  5003. doms_cur = &fallback_doms;
  5004. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5005. err = build_sched_domains(doms_cur[0], NULL);
  5006. register_sched_domain_sysctl();
  5007. return err;
  5008. }
  5009. /*
  5010. * Detach sched domains from a group of cpus specified in cpu_map
  5011. * These cpus will now be attached to the NULL domain
  5012. */
  5013. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5014. {
  5015. int i;
  5016. rcu_read_lock();
  5017. for_each_cpu(i, cpu_map)
  5018. cpu_attach_domain(NULL, &def_root_domain, i);
  5019. rcu_read_unlock();
  5020. }
  5021. /* handle null as "default" */
  5022. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5023. struct sched_domain_attr *new, int idx_new)
  5024. {
  5025. struct sched_domain_attr tmp;
  5026. /* fast path */
  5027. if (!new && !cur)
  5028. return 1;
  5029. tmp = SD_ATTR_INIT;
  5030. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5031. new ? (new + idx_new) : &tmp,
  5032. sizeof(struct sched_domain_attr));
  5033. }
  5034. /*
  5035. * Partition sched domains as specified by the 'ndoms_new'
  5036. * cpumasks in the array doms_new[] of cpumasks. This compares
  5037. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5038. * It destroys each deleted domain and builds each new domain.
  5039. *
  5040. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5041. * The masks don't intersect (don't overlap.) We should setup one
  5042. * sched domain for each mask. CPUs not in any of the cpumasks will
  5043. * not be load balanced. If the same cpumask appears both in the
  5044. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5045. * it as it is.
  5046. *
  5047. * The passed in 'doms_new' should be allocated using
  5048. * alloc_sched_domains. This routine takes ownership of it and will
  5049. * free_sched_domains it when done with it. If the caller failed the
  5050. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5051. * and partition_sched_domains() will fallback to the single partition
  5052. * 'fallback_doms', it also forces the domains to be rebuilt.
  5053. *
  5054. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5055. * ndoms_new == 0 is a special case for destroying existing domains,
  5056. * and it will not create the default domain.
  5057. *
  5058. * Call with hotplug lock held
  5059. */
  5060. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5061. struct sched_domain_attr *dattr_new)
  5062. {
  5063. int i, j, n;
  5064. int new_topology;
  5065. mutex_lock(&sched_domains_mutex);
  5066. /* always unregister in case we don't destroy any domains */
  5067. unregister_sched_domain_sysctl();
  5068. /* Let architecture update cpu core mappings. */
  5069. new_topology = arch_update_cpu_topology();
  5070. n = doms_new ? ndoms_new : 0;
  5071. /* Destroy deleted domains */
  5072. for (i = 0; i < ndoms_cur; i++) {
  5073. for (j = 0; j < n && !new_topology; j++) {
  5074. if (cpumask_equal(doms_cur[i], doms_new[j])
  5075. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5076. goto match1;
  5077. }
  5078. /* no match - a current sched domain not in new doms_new[] */
  5079. detach_destroy_domains(doms_cur[i]);
  5080. match1:
  5081. ;
  5082. }
  5083. n = ndoms_cur;
  5084. if (doms_new == NULL) {
  5085. n = 0;
  5086. doms_new = &fallback_doms;
  5087. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5088. WARN_ON_ONCE(dattr_new);
  5089. }
  5090. /* Build new domains */
  5091. for (i = 0; i < ndoms_new; i++) {
  5092. for (j = 0; j < n && !new_topology; j++) {
  5093. if (cpumask_equal(doms_new[i], doms_cur[j])
  5094. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5095. goto match2;
  5096. }
  5097. /* no match - add a new doms_new */
  5098. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5099. match2:
  5100. ;
  5101. }
  5102. /* Remember the new sched domains */
  5103. if (doms_cur != &fallback_doms)
  5104. free_sched_domains(doms_cur, ndoms_cur);
  5105. kfree(dattr_cur); /* kfree(NULL) is safe */
  5106. doms_cur = doms_new;
  5107. dattr_cur = dattr_new;
  5108. ndoms_cur = ndoms_new;
  5109. register_sched_domain_sysctl();
  5110. mutex_unlock(&sched_domains_mutex);
  5111. }
  5112. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5113. /*
  5114. * Update cpusets according to cpu_active mask. If cpusets are
  5115. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5116. * around partition_sched_domains().
  5117. *
  5118. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5119. * want to restore it back to its original state upon resume anyway.
  5120. */
  5121. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5122. void *hcpu)
  5123. {
  5124. switch (action) {
  5125. case CPU_ONLINE_FROZEN:
  5126. case CPU_DOWN_FAILED_FROZEN:
  5127. /*
  5128. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5129. * resume sequence. As long as this is not the last online
  5130. * operation in the resume sequence, just build a single sched
  5131. * domain, ignoring cpusets.
  5132. */
  5133. num_cpus_frozen--;
  5134. if (likely(num_cpus_frozen)) {
  5135. partition_sched_domains(1, NULL, NULL);
  5136. break;
  5137. }
  5138. /*
  5139. * This is the last CPU online operation. So fall through and
  5140. * restore the original sched domains by considering the
  5141. * cpuset configurations.
  5142. */
  5143. case CPU_ONLINE:
  5144. case CPU_DOWN_FAILED:
  5145. cpuset_update_active_cpus(true);
  5146. break;
  5147. default:
  5148. return NOTIFY_DONE;
  5149. }
  5150. return NOTIFY_OK;
  5151. }
  5152. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5153. void *hcpu)
  5154. {
  5155. switch (action) {
  5156. case CPU_DOWN_PREPARE:
  5157. cpuset_update_active_cpus(false);
  5158. break;
  5159. case CPU_DOWN_PREPARE_FROZEN:
  5160. num_cpus_frozen++;
  5161. partition_sched_domains(1, NULL, NULL);
  5162. break;
  5163. default:
  5164. return NOTIFY_DONE;
  5165. }
  5166. return NOTIFY_OK;
  5167. }
  5168. void __init sched_init_smp(void)
  5169. {
  5170. cpumask_var_t non_isolated_cpus;
  5171. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5172. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5173. sched_init_numa();
  5174. /*
  5175. * There's no userspace yet to cause hotplug operations; hence all the
  5176. * cpu masks are stable and all blatant races in the below code cannot
  5177. * happen.
  5178. */
  5179. mutex_lock(&sched_domains_mutex);
  5180. init_sched_domains(cpu_active_mask);
  5181. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5182. if (cpumask_empty(non_isolated_cpus))
  5183. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5184. mutex_unlock(&sched_domains_mutex);
  5185. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5186. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5187. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5188. init_hrtick();
  5189. /* Move init over to a non-isolated CPU */
  5190. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5191. BUG();
  5192. sched_init_granularity();
  5193. free_cpumask_var(non_isolated_cpus);
  5194. init_sched_rt_class();
  5195. }
  5196. #else
  5197. void __init sched_init_smp(void)
  5198. {
  5199. sched_init_granularity();
  5200. }
  5201. #endif /* CONFIG_SMP */
  5202. const_debug unsigned int sysctl_timer_migration = 1;
  5203. int in_sched_functions(unsigned long addr)
  5204. {
  5205. return in_lock_functions(addr) ||
  5206. (addr >= (unsigned long)__sched_text_start
  5207. && addr < (unsigned long)__sched_text_end);
  5208. }
  5209. #ifdef CONFIG_CGROUP_SCHED
  5210. /*
  5211. * Default task group.
  5212. * Every task in system belongs to this group at bootup.
  5213. */
  5214. struct task_group root_task_group;
  5215. LIST_HEAD(task_groups);
  5216. #endif
  5217. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5218. void __init sched_init(void)
  5219. {
  5220. int i, j;
  5221. unsigned long alloc_size = 0, ptr;
  5222. #ifdef CONFIG_FAIR_GROUP_SCHED
  5223. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5224. #endif
  5225. #ifdef CONFIG_RT_GROUP_SCHED
  5226. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5227. #endif
  5228. #ifdef CONFIG_CPUMASK_OFFSTACK
  5229. alloc_size += num_possible_cpus() * cpumask_size();
  5230. #endif
  5231. if (alloc_size) {
  5232. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5233. #ifdef CONFIG_FAIR_GROUP_SCHED
  5234. root_task_group.se = (struct sched_entity **)ptr;
  5235. ptr += nr_cpu_ids * sizeof(void **);
  5236. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5237. ptr += nr_cpu_ids * sizeof(void **);
  5238. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5239. #ifdef CONFIG_RT_GROUP_SCHED
  5240. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5241. ptr += nr_cpu_ids * sizeof(void **);
  5242. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5243. ptr += nr_cpu_ids * sizeof(void **);
  5244. #endif /* CONFIG_RT_GROUP_SCHED */
  5245. #ifdef CONFIG_CPUMASK_OFFSTACK
  5246. for_each_possible_cpu(i) {
  5247. per_cpu(load_balance_mask, i) = (void *)ptr;
  5248. ptr += cpumask_size();
  5249. }
  5250. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5251. }
  5252. #ifdef CONFIG_SMP
  5253. init_defrootdomain();
  5254. #endif
  5255. init_rt_bandwidth(&def_rt_bandwidth,
  5256. global_rt_period(), global_rt_runtime());
  5257. #ifdef CONFIG_RT_GROUP_SCHED
  5258. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5259. global_rt_period(), global_rt_runtime());
  5260. #endif /* CONFIG_RT_GROUP_SCHED */
  5261. #ifdef CONFIG_CGROUP_SCHED
  5262. list_add(&root_task_group.list, &task_groups);
  5263. INIT_LIST_HEAD(&root_task_group.children);
  5264. INIT_LIST_HEAD(&root_task_group.siblings);
  5265. autogroup_init(&init_task);
  5266. #endif /* CONFIG_CGROUP_SCHED */
  5267. for_each_possible_cpu(i) {
  5268. struct rq *rq;
  5269. rq = cpu_rq(i);
  5270. raw_spin_lock_init(&rq->lock);
  5271. rq->nr_running = 0;
  5272. rq->calc_load_active = 0;
  5273. rq->calc_load_update = jiffies + LOAD_FREQ;
  5274. init_cfs_rq(&rq->cfs);
  5275. init_rt_rq(&rq->rt, rq);
  5276. #ifdef CONFIG_FAIR_GROUP_SCHED
  5277. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5278. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5279. /*
  5280. * How much cpu bandwidth does root_task_group get?
  5281. *
  5282. * In case of task-groups formed thr' the cgroup filesystem, it
  5283. * gets 100% of the cpu resources in the system. This overall
  5284. * system cpu resource is divided among the tasks of
  5285. * root_task_group and its child task-groups in a fair manner,
  5286. * based on each entity's (task or task-group's) weight
  5287. * (se->load.weight).
  5288. *
  5289. * In other words, if root_task_group has 10 tasks of weight
  5290. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5291. * then A0's share of the cpu resource is:
  5292. *
  5293. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5294. *
  5295. * We achieve this by letting root_task_group's tasks sit
  5296. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5297. */
  5298. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5299. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5300. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5301. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5302. #ifdef CONFIG_RT_GROUP_SCHED
  5303. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  5304. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5305. #endif
  5306. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5307. rq->cpu_load[j] = 0;
  5308. rq->last_load_update_tick = jiffies;
  5309. #ifdef CONFIG_SMP
  5310. rq->sd = NULL;
  5311. rq->rd = NULL;
  5312. rq->cpu_power = SCHED_POWER_SCALE;
  5313. rq->post_schedule = 0;
  5314. rq->active_balance = 0;
  5315. rq->next_balance = jiffies;
  5316. rq->push_cpu = 0;
  5317. rq->cpu = i;
  5318. rq->online = 0;
  5319. rq->idle_stamp = 0;
  5320. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5321. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5322. INIT_LIST_HEAD(&rq->cfs_tasks);
  5323. rq_attach_root(rq, &def_root_domain);
  5324. #ifdef CONFIG_NO_HZ_COMMON
  5325. rq->nohz_flags = 0;
  5326. #endif
  5327. #ifdef CONFIG_NO_HZ_FULL
  5328. rq->last_sched_tick = 0;
  5329. #endif
  5330. #endif
  5331. init_rq_hrtick(rq);
  5332. atomic_set(&rq->nr_iowait, 0);
  5333. }
  5334. set_load_weight(&init_task);
  5335. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5336. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5337. #endif
  5338. #ifdef CONFIG_RT_MUTEXES
  5339. plist_head_init(&init_task.pi_waiters);
  5340. #endif
  5341. /*
  5342. * The boot idle thread does lazy MMU switching as well:
  5343. */
  5344. atomic_inc(&init_mm.mm_count);
  5345. enter_lazy_tlb(&init_mm, current);
  5346. /*
  5347. * Make us the idle thread. Technically, schedule() should not be
  5348. * called from this thread, however somewhere below it might be,
  5349. * but because we are the idle thread, we just pick up running again
  5350. * when this runqueue becomes "idle".
  5351. */
  5352. init_idle(current, smp_processor_id());
  5353. calc_load_update = jiffies + LOAD_FREQ;
  5354. /*
  5355. * During early bootup we pretend to be a normal task:
  5356. */
  5357. current->sched_class = &fair_sched_class;
  5358. #ifdef CONFIG_SMP
  5359. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5360. /* May be allocated at isolcpus cmdline parse time */
  5361. if (cpu_isolated_map == NULL)
  5362. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5363. idle_thread_set_boot_cpu();
  5364. #endif
  5365. init_sched_fair_class();
  5366. scheduler_running = 1;
  5367. }
  5368. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5369. static inline int preempt_count_equals(int preempt_offset)
  5370. {
  5371. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5372. return (nested == preempt_offset);
  5373. }
  5374. void __might_sleep(const char *file, int line, int preempt_offset)
  5375. {
  5376. static unsigned long prev_jiffy; /* ratelimiting */
  5377. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5378. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  5379. system_state != SYSTEM_RUNNING || oops_in_progress)
  5380. return;
  5381. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5382. return;
  5383. prev_jiffy = jiffies;
  5384. printk(KERN_ERR
  5385. "BUG: sleeping function called from invalid context at %s:%d\n",
  5386. file, line);
  5387. printk(KERN_ERR
  5388. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5389. in_atomic(), irqs_disabled(),
  5390. current->pid, current->comm);
  5391. debug_show_held_locks(current);
  5392. if (irqs_disabled())
  5393. print_irqtrace_events(current);
  5394. dump_stack();
  5395. }
  5396. EXPORT_SYMBOL(__might_sleep);
  5397. #endif
  5398. #ifdef CONFIG_MAGIC_SYSRQ
  5399. static void normalize_task(struct rq *rq, struct task_struct *p)
  5400. {
  5401. const struct sched_class *prev_class = p->sched_class;
  5402. int old_prio = p->prio;
  5403. int on_rq;
  5404. on_rq = p->on_rq;
  5405. if (on_rq)
  5406. dequeue_task(rq, p, 0);
  5407. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5408. if (on_rq) {
  5409. enqueue_task(rq, p, 0);
  5410. resched_task(rq->curr);
  5411. }
  5412. check_class_changed(rq, p, prev_class, old_prio);
  5413. }
  5414. void normalize_rt_tasks(void)
  5415. {
  5416. struct task_struct *g, *p;
  5417. unsigned long flags;
  5418. struct rq *rq;
  5419. read_lock_irqsave(&tasklist_lock, flags);
  5420. do_each_thread(g, p) {
  5421. /*
  5422. * Only normalize user tasks:
  5423. */
  5424. if (!p->mm)
  5425. continue;
  5426. p->se.exec_start = 0;
  5427. #ifdef CONFIG_SCHEDSTATS
  5428. p->se.statistics.wait_start = 0;
  5429. p->se.statistics.sleep_start = 0;
  5430. p->se.statistics.block_start = 0;
  5431. #endif
  5432. if (!rt_task(p)) {
  5433. /*
  5434. * Renice negative nice level userspace
  5435. * tasks back to 0:
  5436. */
  5437. if (TASK_NICE(p) < 0 && p->mm)
  5438. set_user_nice(p, 0);
  5439. continue;
  5440. }
  5441. raw_spin_lock(&p->pi_lock);
  5442. rq = __task_rq_lock(p);
  5443. normalize_task(rq, p);
  5444. __task_rq_unlock(rq);
  5445. raw_spin_unlock(&p->pi_lock);
  5446. } while_each_thread(g, p);
  5447. read_unlock_irqrestore(&tasklist_lock, flags);
  5448. }
  5449. #endif /* CONFIG_MAGIC_SYSRQ */
  5450. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  5451. /*
  5452. * These functions are only useful for the IA64 MCA handling, or kdb.
  5453. *
  5454. * They can only be called when the whole system has been
  5455. * stopped - every CPU needs to be quiescent, and no scheduling
  5456. * activity can take place. Using them for anything else would
  5457. * be a serious bug, and as a result, they aren't even visible
  5458. * under any other configuration.
  5459. */
  5460. /**
  5461. * curr_task - return the current task for a given cpu.
  5462. * @cpu: the processor in question.
  5463. *
  5464. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5465. *
  5466. * Return: The current task for @cpu.
  5467. */
  5468. struct task_struct *curr_task(int cpu)
  5469. {
  5470. return cpu_curr(cpu);
  5471. }
  5472. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  5473. #ifdef CONFIG_IA64
  5474. /**
  5475. * set_curr_task - set the current task for a given cpu.
  5476. * @cpu: the processor in question.
  5477. * @p: the task pointer to set.
  5478. *
  5479. * Description: This function must only be used when non-maskable interrupts
  5480. * are serviced on a separate stack. It allows the architecture to switch the
  5481. * notion of the current task on a cpu in a non-blocking manner. This function
  5482. * must be called with all CPU's synchronized, and interrupts disabled, the
  5483. * and caller must save the original value of the current task (see
  5484. * curr_task() above) and restore that value before reenabling interrupts and
  5485. * re-starting the system.
  5486. *
  5487. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5488. */
  5489. void set_curr_task(int cpu, struct task_struct *p)
  5490. {
  5491. cpu_curr(cpu) = p;
  5492. }
  5493. #endif
  5494. #ifdef CONFIG_CGROUP_SCHED
  5495. /* task_group_lock serializes the addition/removal of task groups */
  5496. static DEFINE_SPINLOCK(task_group_lock);
  5497. static void free_sched_group(struct task_group *tg)
  5498. {
  5499. free_fair_sched_group(tg);
  5500. free_rt_sched_group(tg);
  5501. autogroup_free(tg);
  5502. kfree(tg);
  5503. }
  5504. /* allocate runqueue etc for a new task group */
  5505. struct task_group *sched_create_group(struct task_group *parent)
  5506. {
  5507. struct task_group *tg;
  5508. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  5509. if (!tg)
  5510. return ERR_PTR(-ENOMEM);
  5511. if (!alloc_fair_sched_group(tg, parent))
  5512. goto err;
  5513. if (!alloc_rt_sched_group(tg, parent))
  5514. goto err;
  5515. return tg;
  5516. err:
  5517. free_sched_group(tg);
  5518. return ERR_PTR(-ENOMEM);
  5519. }
  5520. void sched_online_group(struct task_group *tg, struct task_group *parent)
  5521. {
  5522. unsigned long flags;
  5523. spin_lock_irqsave(&task_group_lock, flags);
  5524. list_add_rcu(&tg->list, &task_groups);
  5525. WARN_ON(!parent); /* root should already exist */
  5526. tg->parent = parent;
  5527. INIT_LIST_HEAD(&tg->children);
  5528. list_add_rcu(&tg->siblings, &parent->children);
  5529. spin_unlock_irqrestore(&task_group_lock, flags);
  5530. }
  5531. /* rcu callback to free various structures associated with a task group */
  5532. static void free_sched_group_rcu(struct rcu_head *rhp)
  5533. {
  5534. /* now it should be safe to free those cfs_rqs */
  5535. free_sched_group(container_of(rhp, struct task_group, rcu));
  5536. }
  5537. /* Destroy runqueue etc associated with a task group */
  5538. void sched_destroy_group(struct task_group *tg)
  5539. {
  5540. /* wait for possible concurrent references to cfs_rqs complete */
  5541. call_rcu(&tg->rcu, free_sched_group_rcu);
  5542. }
  5543. void sched_offline_group(struct task_group *tg)
  5544. {
  5545. unsigned long flags;
  5546. int i;
  5547. /* end participation in shares distribution */
  5548. for_each_possible_cpu(i)
  5549. unregister_fair_sched_group(tg, i);
  5550. spin_lock_irqsave(&task_group_lock, flags);
  5551. list_del_rcu(&tg->list);
  5552. list_del_rcu(&tg->siblings);
  5553. spin_unlock_irqrestore(&task_group_lock, flags);
  5554. }
  5555. /* change task's runqueue when it moves between groups.
  5556. * The caller of this function should have put the task in its new group
  5557. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  5558. * reflect its new group.
  5559. */
  5560. void sched_move_task(struct task_struct *tsk)
  5561. {
  5562. struct task_group *tg;
  5563. int on_rq, running;
  5564. unsigned long flags;
  5565. struct rq *rq;
  5566. rq = task_rq_lock(tsk, &flags);
  5567. running = task_current(rq, tsk);
  5568. on_rq = tsk->on_rq;
  5569. if (on_rq)
  5570. dequeue_task(rq, tsk, 0);
  5571. if (unlikely(running))
  5572. tsk->sched_class->put_prev_task(rq, tsk);
  5573. tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
  5574. lockdep_is_held(&tsk->sighand->siglock)),
  5575. struct task_group, css);
  5576. tg = autogroup_task_group(tsk, tg);
  5577. tsk->sched_task_group = tg;
  5578. #ifdef CONFIG_FAIR_GROUP_SCHED
  5579. if (tsk->sched_class->task_move_group)
  5580. tsk->sched_class->task_move_group(tsk, on_rq);
  5581. else
  5582. #endif
  5583. set_task_rq(tsk, task_cpu(tsk));
  5584. if (unlikely(running))
  5585. tsk->sched_class->set_curr_task(rq);
  5586. if (on_rq)
  5587. enqueue_task(rq, tsk, 0);
  5588. task_rq_unlock(rq, tsk, &flags);
  5589. }
  5590. #endif /* CONFIG_CGROUP_SCHED */
  5591. #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
  5592. static unsigned long to_ratio(u64 period, u64 runtime)
  5593. {
  5594. if (runtime == RUNTIME_INF)
  5595. return 1ULL << 20;
  5596. return div64_u64(runtime << 20, period);
  5597. }
  5598. #endif
  5599. #ifdef CONFIG_RT_GROUP_SCHED
  5600. /*
  5601. * Ensure that the real time constraints are schedulable.
  5602. */
  5603. static DEFINE_MUTEX(rt_constraints_mutex);
  5604. /* Must be called with tasklist_lock held */
  5605. static inline int tg_has_rt_tasks(struct task_group *tg)
  5606. {
  5607. struct task_struct *g, *p;
  5608. do_each_thread(g, p) {
  5609. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  5610. return 1;
  5611. } while_each_thread(g, p);
  5612. return 0;
  5613. }
  5614. struct rt_schedulable_data {
  5615. struct task_group *tg;
  5616. u64 rt_period;
  5617. u64 rt_runtime;
  5618. };
  5619. static int tg_rt_schedulable(struct task_group *tg, void *data)
  5620. {
  5621. struct rt_schedulable_data *d = data;
  5622. struct task_group *child;
  5623. unsigned long total, sum = 0;
  5624. u64 period, runtime;
  5625. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5626. runtime = tg->rt_bandwidth.rt_runtime;
  5627. if (tg == d->tg) {
  5628. period = d->rt_period;
  5629. runtime = d->rt_runtime;
  5630. }
  5631. /*
  5632. * Cannot have more runtime than the period.
  5633. */
  5634. if (runtime > period && runtime != RUNTIME_INF)
  5635. return -EINVAL;
  5636. /*
  5637. * Ensure we don't starve existing RT tasks.
  5638. */
  5639. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  5640. return -EBUSY;
  5641. total = to_ratio(period, runtime);
  5642. /*
  5643. * Nobody can have more than the global setting allows.
  5644. */
  5645. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  5646. return -EINVAL;
  5647. /*
  5648. * The sum of our children's runtime should not exceed our own.
  5649. */
  5650. list_for_each_entry_rcu(child, &tg->children, siblings) {
  5651. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  5652. runtime = child->rt_bandwidth.rt_runtime;
  5653. if (child == d->tg) {
  5654. period = d->rt_period;
  5655. runtime = d->rt_runtime;
  5656. }
  5657. sum += to_ratio(period, runtime);
  5658. }
  5659. if (sum > total)
  5660. return -EINVAL;
  5661. return 0;
  5662. }
  5663. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  5664. {
  5665. int ret;
  5666. struct rt_schedulable_data data = {
  5667. .tg = tg,
  5668. .rt_period = period,
  5669. .rt_runtime = runtime,
  5670. };
  5671. rcu_read_lock();
  5672. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  5673. rcu_read_unlock();
  5674. return ret;
  5675. }
  5676. static int tg_set_rt_bandwidth(struct task_group *tg,
  5677. u64 rt_period, u64 rt_runtime)
  5678. {
  5679. int i, err = 0;
  5680. mutex_lock(&rt_constraints_mutex);
  5681. read_lock(&tasklist_lock);
  5682. err = __rt_schedulable(tg, rt_period, rt_runtime);
  5683. if (err)
  5684. goto unlock;
  5685. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5686. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  5687. tg->rt_bandwidth.rt_runtime = rt_runtime;
  5688. for_each_possible_cpu(i) {
  5689. struct rt_rq *rt_rq = tg->rt_rq[i];
  5690. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5691. rt_rq->rt_runtime = rt_runtime;
  5692. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5693. }
  5694. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  5695. unlock:
  5696. read_unlock(&tasklist_lock);
  5697. mutex_unlock(&rt_constraints_mutex);
  5698. return err;
  5699. }
  5700. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  5701. {
  5702. u64 rt_runtime, rt_period;
  5703. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5704. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  5705. if (rt_runtime_us < 0)
  5706. rt_runtime = RUNTIME_INF;
  5707. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5708. }
  5709. static long sched_group_rt_runtime(struct task_group *tg)
  5710. {
  5711. u64 rt_runtime_us;
  5712. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  5713. return -1;
  5714. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  5715. do_div(rt_runtime_us, NSEC_PER_USEC);
  5716. return rt_runtime_us;
  5717. }
  5718. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  5719. {
  5720. u64 rt_runtime, rt_period;
  5721. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  5722. rt_runtime = tg->rt_bandwidth.rt_runtime;
  5723. if (rt_period == 0)
  5724. return -EINVAL;
  5725. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  5726. }
  5727. static long sched_group_rt_period(struct task_group *tg)
  5728. {
  5729. u64 rt_period_us;
  5730. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  5731. do_div(rt_period_us, NSEC_PER_USEC);
  5732. return rt_period_us;
  5733. }
  5734. static int sched_rt_global_constraints(void)
  5735. {
  5736. u64 runtime, period;
  5737. int ret = 0;
  5738. if (sysctl_sched_rt_period <= 0)
  5739. return -EINVAL;
  5740. runtime = global_rt_runtime();
  5741. period = global_rt_period();
  5742. /*
  5743. * Sanity check on the sysctl variables.
  5744. */
  5745. if (runtime > period && runtime != RUNTIME_INF)
  5746. return -EINVAL;
  5747. mutex_lock(&rt_constraints_mutex);
  5748. read_lock(&tasklist_lock);
  5749. ret = __rt_schedulable(NULL, 0, 0);
  5750. read_unlock(&tasklist_lock);
  5751. mutex_unlock(&rt_constraints_mutex);
  5752. return ret;
  5753. }
  5754. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  5755. {
  5756. /* Don't accept realtime tasks when there is no way for them to run */
  5757. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  5758. return 0;
  5759. return 1;
  5760. }
  5761. #else /* !CONFIG_RT_GROUP_SCHED */
  5762. static int sched_rt_global_constraints(void)
  5763. {
  5764. unsigned long flags;
  5765. int i;
  5766. if (sysctl_sched_rt_period <= 0)
  5767. return -EINVAL;
  5768. /*
  5769. * There's always some RT tasks in the root group
  5770. * -- migration, kstopmachine etc..
  5771. */
  5772. if (sysctl_sched_rt_runtime == 0)
  5773. return -EBUSY;
  5774. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  5775. for_each_possible_cpu(i) {
  5776. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  5777. raw_spin_lock(&rt_rq->rt_runtime_lock);
  5778. rt_rq->rt_runtime = global_rt_runtime();
  5779. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  5780. }
  5781. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  5782. return 0;
  5783. }
  5784. #endif /* CONFIG_RT_GROUP_SCHED */
  5785. int sched_rr_handler(struct ctl_table *table, int write,
  5786. void __user *buffer, size_t *lenp,
  5787. loff_t *ppos)
  5788. {
  5789. int ret;
  5790. static DEFINE_MUTEX(mutex);
  5791. mutex_lock(&mutex);
  5792. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  5793. /* make sure that internally we keep jiffies */
  5794. /* also, writing zero resets timeslice to default */
  5795. if (!ret && write) {
  5796. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  5797. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  5798. }
  5799. mutex_unlock(&mutex);
  5800. return ret;
  5801. }
  5802. int sched_rt_handler(struct ctl_table *table, int write,
  5803. void __user *buffer, size_t *lenp,
  5804. loff_t *ppos)
  5805. {
  5806. int ret;
  5807. int old_period, old_runtime;
  5808. static DEFINE_MUTEX(mutex);
  5809. mutex_lock(&mutex);
  5810. old_period = sysctl_sched_rt_period;
  5811. old_runtime = sysctl_sched_rt_runtime;
  5812. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  5813. if (!ret && write) {
  5814. ret = sched_rt_global_constraints();
  5815. if (ret) {
  5816. sysctl_sched_rt_period = old_period;
  5817. sysctl_sched_rt_runtime = old_runtime;
  5818. } else {
  5819. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  5820. def_rt_bandwidth.rt_period =
  5821. ns_to_ktime(global_rt_period());
  5822. }
  5823. }
  5824. mutex_unlock(&mutex);
  5825. return ret;
  5826. }
  5827. #ifdef CONFIG_CGROUP_SCHED
  5828. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  5829. {
  5830. return css ? container_of(css, struct task_group, css) : NULL;
  5831. }
  5832. static struct cgroup_subsys_state *
  5833. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  5834. {
  5835. struct task_group *parent = css_tg(parent_css);
  5836. struct task_group *tg;
  5837. if (!parent) {
  5838. /* This is early initialization for the top cgroup */
  5839. return &root_task_group.css;
  5840. }
  5841. tg = sched_create_group(parent);
  5842. if (IS_ERR(tg))
  5843. return ERR_PTR(-ENOMEM);
  5844. return &tg->css;
  5845. }
  5846. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  5847. {
  5848. struct task_group *tg = css_tg(css);
  5849. struct task_group *parent = css_tg(css_parent(css));
  5850. if (parent)
  5851. sched_online_group(tg, parent);
  5852. return 0;
  5853. }
  5854. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  5855. {
  5856. struct task_group *tg = css_tg(css);
  5857. sched_destroy_group(tg);
  5858. }
  5859. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  5860. {
  5861. struct task_group *tg = css_tg(css);
  5862. sched_offline_group(tg);
  5863. }
  5864. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  5865. struct cgroup_taskset *tset)
  5866. {
  5867. struct task_struct *task;
  5868. cgroup_taskset_for_each(task, css, tset) {
  5869. #ifdef CONFIG_RT_GROUP_SCHED
  5870. if (!sched_rt_can_attach(css_tg(css), task))
  5871. return -EINVAL;
  5872. #else
  5873. /* We don't support RT-tasks being in separate groups */
  5874. if (task->sched_class != &fair_sched_class)
  5875. return -EINVAL;
  5876. #endif
  5877. }
  5878. return 0;
  5879. }
  5880. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  5881. struct cgroup_taskset *tset)
  5882. {
  5883. struct task_struct *task;
  5884. cgroup_taskset_for_each(task, css, tset)
  5885. sched_move_task(task);
  5886. }
  5887. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  5888. struct cgroup_subsys_state *old_css,
  5889. struct task_struct *task)
  5890. {
  5891. /*
  5892. * cgroup_exit() is called in the copy_process() failure path.
  5893. * Ignore this case since the task hasn't ran yet, this avoids
  5894. * trying to poke a half freed task state from generic code.
  5895. */
  5896. if (!(task->flags & PF_EXITING))
  5897. return;
  5898. sched_move_task(task);
  5899. }
  5900. #ifdef CONFIG_FAIR_GROUP_SCHED
  5901. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  5902. struct cftype *cftype, u64 shareval)
  5903. {
  5904. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  5905. }
  5906. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  5907. struct cftype *cft)
  5908. {
  5909. struct task_group *tg = css_tg(css);
  5910. return (u64) scale_load_down(tg->shares);
  5911. }
  5912. #ifdef CONFIG_CFS_BANDWIDTH
  5913. static DEFINE_MUTEX(cfs_constraints_mutex);
  5914. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  5915. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  5916. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  5917. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  5918. {
  5919. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  5920. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  5921. if (tg == &root_task_group)
  5922. return -EINVAL;
  5923. /*
  5924. * Ensure we have at some amount of bandwidth every period. This is
  5925. * to prevent reaching a state of large arrears when throttled via
  5926. * entity_tick() resulting in prolonged exit starvation.
  5927. */
  5928. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  5929. return -EINVAL;
  5930. /*
  5931. * Likewise, bound things on the otherside by preventing insane quota
  5932. * periods. This also allows us to normalize in computing quota
  5933. * feasibility.
  5934. */
  5935. if (period > max_cfs_quota_period)
  5936. return -EINVAL;
  5937. mutex_lock(&cfs_constraints_mutex);
  5938. ret = __cfs_schedulable(tg, period, quota);
  5939. if (ret)
  5940. goto out_unlock;
  5941. runtime_enabled = quota != RUNTIME_INF;
  5942. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  5943. /*
  5944. * If we need to toggle cfs_bandwidth_used, off->on must occur
  5945. * before making related changes, and on->off must occur afterwards
  5946. */
  5947. if (runtime_enabled && !runtime_was_enabled)
  5948. cfs_bandwidth_usage_inc();
  5949. raw_spin_lock_irq(&cfs_b->lock);
  5950. cfs_b->period = ns_to_ktime(period);
  5951. cfs_b->quota = quota;
  5952. __refill_cfs_bandwidth_runtime(cfs_b);
  5953. /* restart the period timer (if active) to handle new period expiry */
  5954. if (runtime_enabled && cfs_b->timer_active) {
  5955. /* force a reprogram */
  5956. cfs_b->timer_active = 0;
  5957. __start_cfs_bandwidth(cfs_b);
  5958. }
  5959. raw_spin_unlock_irq(&cfs_b->lock);
  5960. for_each_possible_cpu(i) {
  5961. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  5962. struct rq *rq = cfs_rq->rq;
  5963. raw_spin_lock_irq(&rq->lock);
  5964. cfs_rq->runtime_enabled = runtime_enabled;
  5965. cfs_rq->runtime_remaining = 0;
  5966. if (cfs_rq->throttled)
  5967. unthrottle_cfs_rq(cfs_rq);
  5968. raw_spin_unlock_irq(&rq->lock);
  5969. }
  5970. if (runtime_was_enabled && !runtime_enabled)
  5971. cfs_bandwidth_usage_dec();
  5972. out_unlock:
  5973. mutex_unlock(&cfs_constraints_mutex);
  5974. return ret;
  5975. }
  5976. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  5977. {
  5978. u64 quota, period;
  5979. period = ktime_to_ns(tg->cfs_bandwidth.period);
  5980. if (cfs_quota_us < 0)
  5981. quota = RUNTIME_INF;
  5982. else
  5983. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  5984. return tg_set_cfs_bandwidth(tg, period, quota);
  5985. }
  5986. long tg_get_cfs_quota(struct task_group *tg)
  5987. {
  5988. u64 quota_us;
  5989. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  5990. return -1;
  5991. quota_us = tg->cfs_bandwidth.quota;
  5992. do_div(quota_us, NSEC_PER_USEC);
  5993. return quota_us;
  5994. }
  5995. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  5996. {
  5997. u64 quota, period;
  5998. period = (u64)cfs_period_us * NSEC_PER_USEC;
  5999. quota = tg->cfs_bandwidth.quota;
  6000. return tg_set_cfs_bandwidth(tg, period, quota);
  6001. }
  6002. long tg_get_cfs_period(struct task_group *tg)
  6003. {
  6004. u64 cfs_period_us;
  6005. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6006. do_div(cfs_period_us, NSEC_PER_USEC);
  6007. return cfs_period_us;
  6008. }
  6009. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6010. struct cftype *cft)
  6011. {
  6012. return tg_get_cfs_quota(css_tg(css));
  6013. }
  6014. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6015. struct cftype *cftype, s64 cfs_quota_us)
  6016. {
  6017. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6018. }
  6019. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6020. struct cftype *cft)
  6021. {
  6022. return tg_get_cfs_period(css_tg(css));
  6023. }
  6024. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6025. struct cftype *cftype, u64 cfs_period_us)
  6026. {
  6027. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6028. }
  6029. struct cfs_schedulable_data {
  6030. struct task_group *tg;
  6031. u64 period, quota;
  6032. };
  6033. /*
  6034. * normalize group quota/period to be quota/max_period
  6035. * note: units are usecs
  6036. */
  6037. static u64 normalize_cfs_quota(struct task_group *tg,
  6038. struct cfs_schedulable_data *d)
  6039. {
  6040. u64 quota, period;
  6041. if (tg == d->tg) {
  6042. period = d->period;
  6043. quota = d->quota;
  6044. } else {
  6045. period = tg_get_cfs_period(tg);
  6046. quota = tg_get_cfs_quota(tg);
  6047. }
  6048. /* note: these should typically be equivalent */
  6049. if (quota == RUNTIME_INF || quota == -1)
  6050. return RUNTIME_INF;
  6051. return to_ratio(period, quota);
  6052. }
  6053. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6054. {
  6055. struct cfs_schedulable_data *d = data;
  6056. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6057. s64 quota = 0, parent_quota = -1;
  6058. if (!tg->parent) {
  6059. quota = RUNTIME_INF;
  6060. } else {
  6061. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6062. quota = normalize_cfs_quota(tg, d);
  6063. parent_quota = parent_b->hierarchal_quota;
  6064. /*
  6065. * ensure max(child_quota) <= parent_quota, inherit when no
  6066. * limit is set
  6067. */
  6068. if (quota == RUNTIME_INF)
  6069. quota = parent_quota;
  6070. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6071. return -EINVAL;
  6072. }
  6073. cfs_b->hierarchal_quota = quota;
  6074. return 0;
  6075. }
  6076. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6077. {
  6078. int ret;
  6079. struct cfs_schedulable_data data = {
  6080. .tg = tg,
  6081. .period = period,
  6082. .quota = quota,
  6083. };
  6084. if (quota != RUNTIME_INF) {
  6085. do_div(data.period, NSEC_PER_USEC);
  6086. do_div(data.quota, NSEC_PER_USEC);
  6087. }
  6088. rcu_read_lock();
  6089. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6090. rcu_read_unlock();
  6091. return ret;
  6092. }
  6093. static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
  6094. struct cgroup_map_cb *cb)
  6095. {
  6096. struct task_group *tg = css_tg(css);
  6097. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6098. cb->fill(cb, "nr_periods", cfs_b->nr_periods);
  6099. cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
  6100. cb->fill(cb, "throttled_time", cfs_b->throttled_time);
  6101. return 0;
  6102. }
  6103. #endif /* CONFIG_CFS_BANDWIDTH */
  6104. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6105. #ifdef CONFIG_RT_GROUP_SCHED
  6106. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6107. struct cftype *cft, s64 val)
  6108. {
  6109. return sched_group_set_rt_runtime(css_tg(css), val);
  6110. }
  6111. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6112. struct cftype *cft)
  6113. {
  6114. return sched_group_rt_runtime(css_tg(css));
  6115. }
  6116. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6117. struct cftype *cftype, u64 rt_period_us)
  6118. {
  6119. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6120. }
  6121. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6122. struct cftype *cft)
  6123. {
  6124. return sched_group_rt_period(css_tg(css));
  6125. }
  6126. #endif /* CONFIG_RT_GROUP_SCHED */
  6127. static struct cftype cpu_files[] = {
  6128. #ifdef CONFIG_FAIR_GROUP_SCHED
  6129. {
  6130. .name = "shares",
  6131. .read_u64 = cpu_shares_read_u64,
  6132. .write_u64 = cpu_shares_write_u64,
  6133. },
  6134. #endif
  6135. #ifdef CONFIG_CFS_BANDWIDTH
  6136. {
  6137. .name = "cfs_quota_us",
  6138. .read_s64 = cpu_cfs_quota_read_s64,
  6139. .write_s64 = cpu_cfs_quota_write_s64,
  6140. },
  6141. {
  6142. .name = "cfs_period_us",
  6143. .read_u64 = cpu_cfs_period_read_u64,
  6144. .write_u64 = cpu_cfs_period_write_u64,
  6145. },
  6146. {
  6147. .name = "stat",
  6148. .read_map = cpu_stats_show,
  6149. },
  6150. #endif
  6151. #ifdef CONFIG_RT_GROUP_SCHED
  6152. {
  6153. .name = "rt_runtime_us",
  6154. .read_s64 = cpu_rt_runtime_read,
  6155. .write_s64 = cpu_rt_runtime_write,
  6156. },
  6157. {
  6158. .name = "rt_period_us",
  6159. .read_u64 = cpu_rt_period_read_uint,
  6160. .write_u64 = cpu_rt_period_write_uint,
  6161. },
  6162. #endif
  6163. { } /* terminate */
  6164. };
  6165. struct cgroup_subsys cpu_cgroup_subsys = {
  6166. .name = "cpu",
  6167. .css_alloc = cpu_cgroup_css_alloc,
  6168. .css_free = cpu_cgroup_css_free,
  6169. .css_online = cpu_cgroup_css_online,
  6170. .css_offline = cpu_cgroup_css_offline,
  6171. .can_attach = cpu_cgroup_can_attach,
  6172. .attach = cpu_cgroup_attach,
  6173. .exit = cpu_cgroup_exit,
  6174. .subsys_id = cpu_cgroup_subsys_id,
  6175. .base_cftypes = cpu_files,
  6176. .early_init = 1,
  6177. };
  6178. #endif /* CONFIG_CGROUP_SCHED */
  6179. void dump_cpu_task(int cpu)
  6180. {
  6181. pr_info("Task dump for CPU %d:\n", cpu);
  6182. sched_show_task(cpu_curr(cpu));
  6183. }