md.c 225 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. static int remove_and_add_spares(struct mddev *mddev,
  62. struct md_rdev *this);
  63. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  64. /*
  65. * Default number of read corrections we'll attempt on an rdev
  66. * before ejecting it from the array. We divide the read error
  67. * count by 2 for every hour elapsed between read errors.
  68. */
  69. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  70. /*
  71. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  72. * is 1000 KB/sec, so the extra system load does not show up that much.
  73. * Increase it if you want to have more _guaranteed_ speed. Note that
  74. * the RAID driver will use the maximum available bandwidth if the IO
  75. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  76. * speed limit - in case reconstruction slows down your system despite
  77. * idle IO detection.
  78. *
  79. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  80. * or /sys/block/mdX/md/sync_speed_{min,max}
  81. */
  82. static int sysctl_speed_limit_min = 1000;
  83. static int sysctl_speed_limit_max = 200000;
  84. static inline int speed_min(struct mddev *mddev)
  85. {
  86. return mddev->sync_speed_min ?
  87. mddev->sync_speed_min : sysctl_speed_limit_min;
  88. }
  89. static inline int speed_max(struct mddev *mddev)
  90. {
  91. return mddev->sync_speed_max ?
  92. mddev->sync_speed_max : sysctl_speed_limit_max;
  93. }
  94. static struct ctl_table_header *raid_table_header;
  95. static struct ctl_table raid_table[] = {
  96. {
  97. .procname = "speed_limit_min",
  98. .data = &sysctl_speed_limit_min,
  99. .maxlen = sizeof(int),
  100. .mode = S_IRUGO|S_IWUSR,
  101. .proc_handler = proc_dointvec,
  102. },
  103. {
  104. .procname = "speed_limit_max",
  105. .data = &sysctl_speed_limit_max,
  106. .maxlen = sizeof(int),
  107. .mode = S_IRUGO|S_IWUSR,
  108. .proc_handler = proc_dointvec,
  109. },
  110. { }
  111. };
  112. static struct ctl_table raid_dir_table[] = {
  113. {
  114. .procname = "raid",
  115. .maxlen = 0,
  116. .mode = S_IRUGO|S_IXUGO,
  117. .child = raid_table,
  118. },
  119. { }
  120. };
  121. static struct ctl_table raid_root_table[] = {
  122. {
  123. .procname = "dev",
  124. .maxlen = 0,
  125. .mode = 0555,
  126. .child = raid_dir_table,
  127. },
  128. { }
  129. };
  130. static const struct block_device_operations md_fops;
  131. static int start_readonly;
  132. /* bio_clone_mddev
  133. * like bio_clone, but with a local bio set
  134. */
  135. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  136. struct mddev *mddev)
  137. {
  138. struct bio *b;
  139. if (!mddev || !mddev->bio_set)
  140. return bio_alloc(gfp_mask, nr_iovecs);
  141. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  142. if (!b)
  143. return NULL;
  144. return b;
  145. }
  146. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  147. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  148. struct mddev *mddev)
  149. {
  150. if (!mddev || !mddev->bio_set)
  151. return bio_clone(bio, gfp_mask);
  152. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  153. }
  154. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  155. void md_trim_bio(struct bio *bio, int offset, int size)
  156. {
  157. /* 'bio' is a cloned bio which we need to trim to match
  158. * the given offset and size.
  159. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  160. */
  161. int i;
  162. struct bio_vec *bvec;
  163. int sofar = 0;
  164. size <<= 9;
  165. if (offset == 0 && size == bio->bi_size)
  166. return;
  167. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  168. bio_advance(bio, offset << 9);
  169. bio->bi_size = size;
  170. /* avoid any complications with bi_idx being non-zero*/
  171. if (bio->bi_idx) {
  172. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  173. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  174. bio->bi_vcnt -= bio->bi_idx;
  175. bio->bi_idx = 0;
  176. }
  177. /* Make sure vcnt and last bv are not too big */
  178. bio_for_each_segment(bvec, bio, i) {
  179. if (sofar + bvec->bv_len > size)
  180. bvec->bv_len = size - sofar;
  181. if (bvec->bv_len == 0) {
  182. bio->bi_vcnt = i;
  183. break;
  184. }
  185. sofar += bvec->bv_len;
  186. }
  187. }
  188. EXPORT_SYMBOL_GPL(md_trim_bio);
  189. /*
  190. * We have a system wide 'event count' that is incremented
  191. * on any 'interesting' event, and readers of /proc/mdstat
  192. * can use 'poll' or 'select' to find out when the event
  193. * count increases.
  194. *
  195. * Events are:
  196. * start array, stop array, error, add device, remove device,
  197. * start build, activate spare
  198. */
  199. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  200. static atomic_t md_event_count;
  201. void md_new_event(struct mddev *mddev)
  202. {
  203. atomic_inc(&md_event_count);
  204. wake_up(&md_event_waiters);
  205. }
  206. EXPORT_SYMBOL_GPL(md_new_event);
  207. /* Alternate version that can be called from interrupts
  208. * when calling sysfs_notify isn't needed.
  209. */
  210. static void md_new_event_inintr(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. /*
  216. * Enables to iterate over all existing md arrays
  217. * all_mddevs_lock protects this list.
  218. */
  219. static LIST_HEAD(all_mddevs);
  220. static DEFINE_SPINLOCK(all_mddevs_lock);
  221. /*
  222. * iterates through all used mddevs in the system.
  223. * We take care to grab the all_mddevs_lock whenever navigating
  224. * the list, and to always hold a refcount when unlocked.
  225. * Any code which breaks out of this loop while own
  226. * a reference to the current mddev and must mddev_put it.
  227. */
  228. #define for_each_mddev(_mddev,_tmp) \
  229. \
  230. for (({ spin_lock(&all_mddevs_lock); \
  231. _tmp = all_mddevs.next; \
  232. _mddev = NULL;}); \
  233. ({ if (_tmp != &all_mddevs) \
  234. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  235. spin_unlock(&all_mddevs_lock); \
  236. if (_mddev) mddev_put(_mddev); \
  237. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  238. _tmp != &all_mddevs;}); \
  239. ({ spin_lock(&all_mddevs_lock); \
  240. _tmp = _tmp->next;}) \
  241. )
  242. /* Rather than calling directly into the personality make_request function,
  243. * IO requests come here first so that we can check if the device is
  244. * being suspended pending a reconfiguration.
  245. * We hold a refcount over the call to ->make_request. By the time that
  246. * call has finished, the bio has been linked into some internal structure
  247. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  248. */
  249. static void md_make_request(struct request_queue *q, struct bio *bio)
  250. {
  251. const int rw = bio_data_dir(bio);
  252. struct mddev *mddev = q->queuedata;
  253. int cpu;
  254. unsigned int sectors;
  255. if (mddev == NULL || mddev->pers == NULL
  256. || !mddev->ready) {
  257. bio_io_error(bio);
  258. return;
  259. }
  260. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  261. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  262. return;
  263. }
  264. smp_rmb(); /* Ensure implications of 'active' are visible */
  265. rcu_read_lock();
  266. if (mddev->suspended) {
  267. DEFINE_WAIT(__wait);
  268. for (;;) {
  269. prepare_to_wait(&mddev->sb_wait, &__wait,
  270. TASK_UNINTERRUPTIBLE);
  271. if (!mddev->suspended)
  272. break;
  273. rcu_read_unlock();
  274. schedule();
  275. rcu_read_lock();
  276. }
  277. finish_wait(&mddev->sb_wait, &__wait);
  278. }
  279. atomic_inc(&mddev->active_io);
  280. rcu_read_unlock();
  281. /*
  282. * save the sectors now since our bio can
  283. * go away inside make_request
  284. */
  285. sectors = bio_sectors(bio);
  286. mddev->pers->make_request(mddev, bio);
  287. cpu = part_stat_lock();
  288. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  289. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  290. part_stat_unlock();
  291. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  292. wake_up(&mddev->sb_wait);
  293. }
  294. /* mddev_suspend makes sure no new requests are submitted
  295. * to the device, and that any requests that have been submitted
  296. * are completely handled.
  297. * Once ->stop is called and completes, the module will be completely
  298. * unused.
  299. */
  300. void mddev_suspend(struct mddev *mddev)
  301. {
  302. BUG_ON(mddev->suspended);
  303. mddev->suspended = 1;
  304. synchronize_rcu();
  305. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  306. mddev->pers->quiesce(mddev, 1);
  307. del_timer_sync(&mddev->safemode_timer);
  308. }
  309. EXPORT_SYMBOL_GPL(mddev_suspend);
  310. void mddev_resume(struct mddev *mddev)
  311. {
  312. mddev->suspended = 0;
  313. wake_up(&mddev->sb_wait);
  314. mddev->pers->quiesce(mddev, 0);
  315. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  316. md_wakeup_thread(mddev->thread);
  317. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  318. }
  319. EXPORT_SYMBOL_GPL(mddev_resume);
  320. int mddev_congested(struct mddev *mddev, int bits)
  321. {
  322. return mddev->suspended;
  323. }
  324. EXPORT_SYMBOL(mddev_congested);
  325. /*
  326. * Generic flush handling for md
  327. */
  328. static void md_end_flush(struct bio *bio, int err)
  329. {
  330. struct md_rdev *rdev = bio->bi_private;
  331. struct mddev *mddev = rdev->mddev;
  332. rdev_dec_pending(rdev, mddev);
  333. if (atomic_dec_and_test(&mddev->flush_pending)) {
  334. /* The pre-request flush has finished */
  335. queue_work(md_wq, &mddev->flush_work);
  336. }
  337. bio_put(bio);
  338. }
  339. static void md_submit_flush_data(struct work_struct *ws);
  340. static void submit_flushes(struct work_struct *ws)
  341. {
  342. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  343. struct md_rdev *rdev;
  344. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  345. atomic_set(&mddev->flush_pending, 1);
  346. rcu_read_lock();
  347. rdev_for_each_rcu(rdev, mddev)
  348. if (rdev->raid_disk >= 0 &&
  349. !test_bit(Faulty, &rdev->flags)) {
  350. /* Take two references, one is dropped
  351. * when request finishes, one after
  352. * we reclaim rcu_read_lock
  353. */
  354. struct bio *bi;
  355. atomic_inc(&rdev->nr_pending);
  356. atomic_inc(&rdev->nr_pending);
  357. rcu_read_unlock();
  358. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  359. bi->bi_end_io = md_end_flush;
  360. bi->bi_private = rdev;
  361. bi->bi_bdev = rdev->bdev;
  362. atomic_inc(&mddev->flush_pending);
  363. submit_bio(WRITE_FLUSH, bi);
  364. rcu_read_lock();
  365. rdev_dec_pending(rdev, mddev);
  366. }
  367. rcu_read_unlock();
  368. if (atomic_dec_and_test(&mddev->flush_pending))
  369. queue_work(md_wq, &mddev->flush_work);
  370. }
  371. static void md_submit_flush_data(struct work_struct *ws)
  372. {
  373. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  374. struct bio *bio = mddev->flush_bio;
  375. if (bio->bi_size == 0)
  376. /* an empty barrier - all done */
  377. bio_endio(bio, 0);
  378. else {
  379. bio->bi_rw &= ~REQ_FLUSH;
  380. mddev->pers->make_request(mddev, bio);
  381. }
  382. mddev->flush_bio = NULL;
  383. wake_up(&mddev->sb_wait);
  384. }
  385. void md_flush_request(struct mddev *mddev, struct bio *bio)
  386. {
  387. spin_lock_irq(&mddev->write_lock);
  388. wait_event_lock_irq(mddev->sb_wait,
  389. !mddev->flush_bio,
  390. mddev->write_lock);
  391. mddev->flush_bio = bio;
  392. spin_unlock_irq(&mddev->write_lock);
  393. INIT_WORK(&mddev->flush_work, submit_flushes);
  394. queue_work(md_wq, &mddev->flush_work);
  395. }
  396. EXPORT_SYMBOL(md_flush_request);
  397. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  398. {
  399. struct mddev *mddev = cb->data;
  400. md_wakeup_thread(mddev->thread);
  401. kfree(cb);
  402. }
  403. EXPORT_SYMBOL(md_unplug);
  404. static inline struct mddev *mddev_get(struct mddev *mddev)
  405. {
  406. atomic_inc(&mddev->active);
  407. return mddev;
  408. }
  409. static void mddev_delayed_delete(struct work_struct *ws);
  410. static void mddev_put(struct mddev *mddev)
  411. {
  412. struct bio_set *bs = NULL;
  413. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  414. return;
  415. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  416. mddev->ctime == 0 && !mddev->hold_active) {
  417. /* Array is not configured at all, and not held active,
  418. * so destroy it */
  419. list_del_init(&mddev->all_mddevs);
  420. bs = mddev->bio_set;
  421. mddev->bio_set = NULL;
  422. if (mddev->gendisk) {
  423. /* We did a probe so need to clean up. Call
  424. * queue_work inside the spinlock so that
  425. * flush_workqueue() after mddev_find will
  426. * succeed in waiting for the work to be done.
  427. */
  428. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  429. queue_work(md_misc_wq, &mddev->del_work);
  430. } else
  431. kfree(mddev);
  432. }
  433. spin_unlock(&all_mddevs_lock);
  434. if (bs)
  435. bioset_free(bs);
  436. }
  437. void mddev_init(struct mddev *mddev)
  438. {
  439. mutex_init(&mddev->open_mutex);
  440. mutex_init(&mddev->reconfig_mutex);
  441. mutex_init(&mddev->bitmap_info.mutex);
  442. INIT_LIST_HEAD(&mddev->disks);
  443. INIT_LIST_HEAD(&mddev->all_mddevs);
  444. init_timer(&mddev->safemode_timer);
  445. atomic_set(&mddev->active, 1);
  446. atomic_set(&mddev->openers, 0);
  447. atomic_set(&mddev->active_io, 0);
  448. spin_lock_init(&mddev->write_lock);
  449. atomic_set(&mddev->flush_pending, 0);
  450. init_waitqueue_head(&mddev->sb_wait);
  451. init_waitqueue_head(&mddev->recovery_wait);
  452. mddev->reshape_position = MaxSector;
  453. mddev->reshape_backwards = 0;
  454. mddev->last_sync_action = "none";
  455. mddev->resync_min = 0;
  456. mddev->resync_max = MaxSector;
  457. mddev->level = LEVEL_NONE;
  458. }
  459. EXPORT_SYMBOL_GPL(mddev_init);
  460. static struct mddev * mddev_find(dev_t unit)
  461. {
  462. struct mddev *mddev, *new = NULL;
  463. if (unit && MAJOR(unit) != MD_MAJOR)
  464. unit &= ~((1<<MdpMinorShift)-1);
  465. retry:
  466. spin_lock(&all_mddevs_lock);
  467. if (unit) {
  468. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  469. if (mddev->unit == unit) {
  470. mddev_get(mddev);
  471. spin_unlock(&all_mddevs_lock);
  472. kfree(new);
  473. return mddev;
  474. }
  475. if (new) {
  476. list_add(&new->all_mddevs, &all_mddevs);
  477. spin_unlock(&all_mddevs_lock);
  478. new->hold_active = UNTIL_IOCTL;
  479. return new;
  480. }
  481. } else if (new) {
  482. /* find an unused unit number */
  483. static int next_minor = 512;
  484. int start = next_minor;
  485. int is_free = 0;
  486. int dev = 0;
  487. while (!is_free) {
  488. dev = MKDEV(MD_MAJOR, next_minor);
  489. next_minor++;
  490. if (next_minor > MINORMASK)
  491. next_minor = 0;
  492. if (next_minor == start) {
  493. /* Oh dear, all in use. */
  494. spin_unlock(&all_mddevs_lock);
  495. kfree(new);
  496. return NULL;
  497. }
  498. is_free = 1;
  499. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  500. if (mddev->unit == dev) {
  501. is_free = 0;
  502. break;
  503. }
  504. }
  505. new->unit = dev;
  506. new->md_minor = MINOR(dev);
  507. new->hold_active = UNTIL_STOP;
  508. list_add(&new->all_mddevs, &all_mddevs);
  509. spin_unlock(&all_mddevs_lock);
  510. return new;
  511. }
  512. spin_unlock(&all_mddevs_lock);
  513. new = kzalloc(sizeof(*new), GFP_KERNEL);
  514. if (!new)
  515. return NULL;
  516. new->unit = unit;
  517. if (MAJOR(unit) == MD_MAJOR)
  518. new->md_minor = MINOR(unit);
  519. else
  520. new->md_minor = MINOR(unit) >> MdpMinorShift;
  521. mddev_init(new);
  522. goto retry;
  523. }
  524. static inline int __must_check mddev_lock(struct mddev * mddev)
  525. {
  526. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  527. }
  528. /* Sometimes we need to take the lock in a situation where
  529. * failure due to interrupts is not acceptable.
  530. */
  531. static inline void mddev_lock_nointr(struct mddev * mddev)
  532. {
  533. mutex_lock(&mddev->reconfig_mutex);
  534. }
  535. static inline int mddev_is_locked(struct mddev *mddev)
  536. {
  537. return mutex_is_locked(&mddev->reconfig_mutex);
  538. }
  539. static inline int mddev_trylock(struct mddev * mddev)
  540. {
  541. return mutex_trylock(&mddev->reconfig_mutex);
  542. }
  543. static struct attribute_group md_redundancy_group;
  544. static void mddev_unlock(struct mddev * mddev)
  545. {
  546. if (mddev->to_remove) {
  547. /* These cannot be removed under reconfig_mutex as
  548. * an access to the files will try to take reconfig_mutex
  549. * while holding the file unremovable, which leads to
  550. * a deadlock.
  551. * So hold set sysfs_active while the remove in happeing,
  552. * and anything else which might set ->to_remove or my
  553. * otherwise change the sysfs namespace will fail with
  554. * -EBUSY if sysfs_active is still set.
  555. * We set sysfs_active under reconfig_mutex and elsewhere
  556. * test it under the same mutex to ensure its correct value
  557. * is seen.
  558. */
  559. struct attribute_group *to_remove = mddev->to_remove;
  560. mddev->to_remove = NULL;
  561. mddev->sysfs_active = 1;
  562. mutex_unlock(&mddev->reconfig_mutex);
  563. if (mddev->kobj.sd) {
  564. if (to_remove != &md_redundancy_group)
  565. sysfs_remove_group(&mddev->kobj, to_remove);
  566. if (mddev->pers == NULL ||
  567. mddev->pers->sync_request == NULL) {
  568. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  569. if (mddev->sysfs_action)
  570. sysfs_put(mddev->sysfs_action);
  571. mddev->sysfs_action = NULL;
  572. }
  573. }
  574. mddev->sysfs_active = 0;
  575. } else
  576. mutex_unlock(&mddev->reconfig_mutex);
  577. /* As we've dropped the mutex we need a spinlock to
  578. * make sure the thread doesn't disappear
  579. */
  580. spin_lock(&pers_lock);
  581. md_wakeup_thread(mddev->thread);
  582. spin_unlock(&pers_lock);
  583. }
  584. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  585. {
  586. struct md_rdev *rdev;
  587. rdev_for_each(rdev, mddev)
  588. if (rdev->desc_nr == nr)
  589. return rdev;
  590. return NULL;
  591. }
  592. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  593. {
  594. struct md_rdev *rdev;
  595. rdev_for_each_rcu(rdev, mddev)
  596. if (rdev->desc_nr == nr)
  597. return rdev;
  598. return NULL;
  599. }
  600. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  601. {
  602. struct md_rdev *rdev;
  603. rdev_for_each(rdev, mddev)
  604. if (rdev->bdev->bd_dev == dev)
  605. return rdev;
  606. return NULL;
  607. }
  608. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  609. {
  610. struct md_rdev *rdev;
  611. rdev_for_each_rcu(rdev, mddev)
  612. if (rdev->bdev->bd_dev == dev)
  613. return rdev;
  614. return NULL;
  615. }
  616. static struct md_personality *find_pers(int level, char *clevel)
  617. {
  618. struct md_personality *pers;
  619. list_for_each_entry(pers, &pers_list, list) {
  620. if (level != LEVEL_NONE && pers->level == level)
  621. return pers;
  622. if (strcmp(pers->name, clevel)==0)
  623. return pers;
  624. }
  625. return NULL;
  626. }
  627. /* return the offset of the super block in 512byte sectors */
  628. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  629. {
  630. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  631. return MD_NEW_SIZE_SECTORS(num_sectors);
  632. }
  633. static int alloc_disk_sb(struct md_rdev * rdev)
  634. {
  635. if (rdev->sb_page)
  636. MD_BUG();
  637. rdev->sb_page = alloc_page(GFP_KERNEL);
  638. if (!rdev->sb_page) {
  639. printk(KERN_ALERT "md: out of memory.\n");
  640. return -ENOMEM;
  641. }
  642. return 0;
  643. }
  644. void md_rdev_clear(struct md_rdev *rdev)
  645. {
  646. if (rdev->sb_page) {
  647. put_page(rdev->sb_page);
  648. rdev->sb_loaded = 0;
  649. rdev->sb_page = NULL;
  650. rdev->sb_start = 0;
  651. rdev->sectors = 0;
  652. }
  653. if (rdev->bb_page) {
  654. put_page(rdev->bb_page);
  655. rdev->bb_page = NULL;
  656. }
  657. kfree(rdev->badblocks.page);
  658. rdev->badblocks.page = NULL;
  659. }
  660. EXPORT_SYMBOL_GPL(md_rdev_clear);
  661. static void super_written(struct bio *bio, int error)
  662. {
  663. struct md_rdev *rdev = bio->bi_private;
  664. struct mddev *mddev = rdev->mddev;
  665. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  666. printk("md: super_written gets error=%d, uptodate=%d\n",
  667. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  668. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  669. md_error(mddev, rdev);
  670. }
  671. if (atomic_dec_and_test(&mddev->pending_writes))
  672. wake_up(&mddev->sb_wait);
  673. bio_put(bio);
  674. }
  675. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  676. sector_t sector, int size, struct page *page)
  677. {
  678. /* write first size bytes of page to sector of rdev
  679. * Increment mddev->pending_writes before returning
  680. * and decrement it on completion, waking up sb_wait
  681. * if zero is reached.
  682. * If an error occurred, call md_error
  683. */
  684. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  685. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  686. bio->bi_sector = sector;
  687. bio_add_page(bio, page, size, 0);
  688. bio->bi_private = rdev;
  689. bio->bi_end_io = super_written;
  690. atomic_inc(&mddev->pending_writes);
  691. submit_bio(WRITE_FLUSH_FUA, bio);
  692. }
  693. void md_super_wait(struct mddev *mddev)
  694. {
  695. /* wait for all superblock writes that were scheduled to complete */
  696. DEFINE_WAIT(wq);
  697. for(;;) {
  698. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  699. if (atomic_read(&mddev->pending_writes)==0)
  700. break;
  701. schedule();
  702. }
  703. finish_wait(&mddev->sb_wait, &wq);
  704. }
  705. static void bi_complete(struct bio *bio, int error)
  706. {
  707. complete((struct completion*)bio->bi_private);
  708. }
  709. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  710. struct page *page, int rw, bool metadata_op)
  711. {
  712. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  713. struct completion event;
  714. int ret;
  715. rw |= REQ_SYNC;
  716. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  717. rdev->meta_bdev : rdev->bdev;
  718. if (metadata_op)
  719. bio->bi_sector = sector + rdev->sb_start;
  720. else if (rdev->mddev->reshape_position != MaxSector &&
  721. (rdev->mddev->reshape_backwards ==
  722. (sector >= rdev->mddev->reshape_position)))
  723. bio->bi_sector = sector + rdev->new_data_offset;
  724. else
  725. bio->bi_sector = sector + rdev->data_offset;
  726. bio_add_page(bio, page, size, 0);
  727. init_completion(&event);
  728. bio->bi_private = &event;
  729. bio->bi_end_io = bi_complete;
  730. submit_bio(rw, bio);
  731. wait_for_completion(&event);
  732. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  733. bio_put(bio);
  734. return ret;
  735. }
  736. EXPORT_SYMBOL_GPL(sync_page_io);
  737. static int read_disk_sb(struct md_rdev * rdev, int size)
  738. {
  739. char b[BDEVNAME_SIZE];
  740. if (!rdev->sb_page) {
  741. MD_BUG();
  742. return -EINVAL;
  743. }
  744. if (rdev->sb_loaded)
  745. return 0;
  746. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  747. goto fail;
  748. rdev->sb_loaded = 1;
  749. return 0;
  750. fail:
  751. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  752. bdevname(rdev->bdev,b));
  753. return -EINVAL;
  754. }
  755. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  756. {
  757. return sb1->set_uuid0 == sb2->set_uuid0 &&
  758. sb1->set_uuid1 == sb2->set_uuid1 &&
  759. sb1->set_uuid2 == sb2->set_uuid2 &&
  760. sb1->set_uuid3 == sb2->set_uuid3;
  761. }
  762. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  763. {
  764. int ret;
  765. mdp_super_t *tmp1, *tmp2;
  766. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  767. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  768. if (!tmp1 || !tmp2) {
  769. ret = 0;
  770. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  771. goto abort;
  772. }
  773. *tmp1 = *sb1;
  774. *tmp2 = *sb2;
  775. /*
  776. * nr_disks is not constant
  777. */
  778. tmp1->nr_disks = 0;
  779. tmp2->nr_disks = 0;
  780. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  781. abort:
  782. kfree(tmp1);
  783. kfree(tmp2);
  784. return ret;
  785. }
  786. static u32 md_csum_fold(u32 csum)
  787. {
  788. csum = (csum & 0xffff) + (csum >> 16);
  789. return (csum & 0xffff) + (csum >> 16);
  790. }
  791. static unsigned int calc_sb_csum(mdp_super_t * sb)
  792. {
  793. u64 newcsum = 0;
  794. u32 *sb32 = (u32*)sb;
  795. int i;
  796. unsigned int disk_csum, csum;
  797. disk_csum = sb->sb_csum;
  798. sb->sb_csum = 0;
  799. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  800. newcsum += sb32[i];
  801. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  802. #ifdef CONFIG_ALPHA
  803. /* This used to use csum_partial, which was wrong for several
  804. * reasons including that different results are returned on
  805. * different architectures. It isn't critical that we get exactly
  806. * the same return value as before (we always csum_fold before
  807. * testing, and that removes any differences). However as we
  808. * know that csum_partial always returned a 16bit value on
  809. * alphas, do a fold to maximise conformity to previous behaviour.
  810. */
  811. sb->sb_csum = md_csum_fold(disk_csum);
  812. #else
  813. sb->sb_csum = disk_csum;
  814. #endif
  815. return csum;
  816. }
  817. /*
  818. * Handle superblock details.
  819. * We want to be able to handle multiple superblock formats
  820. * so we have a common interface to them all, and an array of
  821. * different handlers.
  822. * We rely on user-space to write the initial superblock, and support
  823. * reading and updating of superblocks.
  824. * Interface methods are:
  825. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  826. * loads and validates a superblock on dev.
  827. * if refdev != NULL, compare superblocks on both devices
  828. * Return:
  829. * 0 - dev has a superblock that is compatible with refdev
  830. * 1 - dev has a superblock that is compatible and newer than refdev
  831. * so dev should be used as the refdev in future
  832. * -EINVAL superblock incompatible or invalid
  833. * -othererror e.g. -EIO
  834. *
  835. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  836. * Verify that dev is acceptable into mddev.
  837. * The first time, mddev->raid_disks will be 0, and data from
  838. * dev should be merged in. Subsequent calls check that dev
  839. * is new enough. Return 0 or -EINVAL
  840. *
  841. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  842. * Update the superblock for rdev with data in mddev
  843. * This does not write to disc.
  844. *
  845. */
  846. struct super_type {
  847. char *name;
  848. struct module *owner;
  849. int (*load_super)(struct md_rdev *rdev,
  850. struct md_rdev *refdev,
  851. int minor_version);
  852. int (*validate_super)(struct mddev *mddev,
  853. struct md_rdev *rdev);
  854. void (*sync_super)(struct mddev *mddev,
  855. struct md_rdev *rdev);
  856. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  857. sector_t num_sectors);
  858. int (*allow_new_offset)(struct md_rdev *rdev,
  859. unsigned long long new_offset);
  860. };
  861. /*
  862. * Check that the given mddev has no bitmap.
  863. *
  864. * This function is called from the run method of all personalities that do not
  865. * support bitmaps. It prints an error message and returns non-zero if mddev
  866. * has a bitmap. Otherwise, it returns 0.
  867. *
  868. */
  869. int md_check_no_bitmap(struct mddev *mddev)
  870. {
  871. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  872. return 0;
  873. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  874. mdname(mddev), mddev->pers->name);
  875. return 1;
  876. }
  877. EXPORT_SYMBOL(md_check_no_bitmap);
  878. /*
  879. * load_super for 0.90.0
  880. */
  881. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  882. {
  883. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  884. mdp_super_t *sb;
  885. int ret;
  886. /*
  887. * Calculate the position of the superblock (512byte sectors),
  888. * it's at the end of the disk.
  889. *
  890. * It also happens to be a multiple of 4Kb.
  891. */
  892. rdev->sb_start = calc_dev_sboffset(rdev);
  893. ret = read_disk_sb(rdev, MD_SB_BYTES);
  894. if (ret) return ret;
  895. ret = -EINVAL;
  896. bdevname(rdev->bdev, b);
  897. sb = page_address(rdev->sb_page);
  898. if (sb->md_magic != MD_SB_MAGIC) {
  899. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  900. b);
  901. goto abort;
  902. }
  903. if (sb->major_version != 0 ||
  904. sb->minor_version < 90 ||
  905. sb->minor_version > 91) {
  906. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  907. sb->major_version, sb->minor_version,
  908. b);
  909. goto abort;
  910. }
  911. if (sb->raid_disks <= 0)
  912. goto abort;
  913. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  914. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  915. b);
  916. goto abort;
  917. }
  918. rdev->preferred_minor = sb->md_minor;
  919. rdev->data_offset = 0;
  920. rdev->new_data_offset = 0;
  921. rdev->sb_size = MD_SB_BYTES;
  922. rdev->badblocks.shift = -1;
  923. if (sb->level == LEVEL_MULTIPATH)
  924. rdev->desc_nr = -1;
  925. else
  926. rdev->desc_nr = sb->this_disk.number;
  927. if (!refdev) {
  928. ret = 1;
  929. } else {
  930. __u64 ev1, ev2;
  931. mdp_super_t *refsb = page_address(refdev->sb_page);
  932. if (!uuid_equal(refsb, sb)) {
  933. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  934. b, bdevname(refdev->bdev,b2));
  935. goto abort;
  936. }
  937. if (!sb_equal(refsb, sb)) {
  938. printk(KERN_WARNING "md: %s has same UUID"
  939. " but different superblock to %s\n",
  940. b, bdevname(refdev->bdev, b2));
  941. goto abort;
  942. }
  943. ev1 = md_event(sb);
  944. ev2 = md_event(refsb);
  945. if (ev1 > ev2)
  946. ret = 1;
  947. else
  948. ret = 0;
  949. }
  950. rdev->sectors = rdev->sb_start;
  951. /* Limit to 4TB as metadata cannot record more than that.
  952. * (not needed for Linear and RAID0 as metadata doesn't
  953. * record this size)
  954. */
  955. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  956. rdev->sectors = (2ULL << 32) - 2;
  957. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  958. /* "this cannot possibly happen" ... */
  959. ret = -EINVAL;
  960. abort:
  961. return ret;
  962. }
  963. /*
  964. * validate_super for 0.90.0
  965. */
  966. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  967. {
  968. mdp_disk_t *desc;
  969. mdp_super_t *sb = page_address(rdev->sb_page);
  970. __u64 ev1 = md_event(sb);
  971. rdev->raid_disk = -1;
  972. clear_bit(Faulty, &rdev->flags);
  973. clear_bit(In_sync, &rdev->flags);
  974. clear_bit(WriteMostly, &rdev->flags);
  975. if (mddev->raid_disks == 0) {
  976. mddev->major_version = 0;
  977. mddev->minor_version = sb->minor_version;
  978. mddev->patch_version = sb->patch_version;
  979. mddev->external = 0;
  980. mddev->chunk_sectors = sb->chunk_size >> 9;
  981. mddev->ctime = sb->ctime;
  982. mddev->utime = sb->utime;
  983. mddev->level = sb->level;
  984. mddev->clevel[0] = 0;
  985. mddev->layout = sb->layout;
  986. mddev->raid_disks = sb->raid_disks;
  987. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  988. mddev->events = ev1;
  989. mddev->bitmap_info.offset = 0;
  990. mddev->bitmap_info.space = 0;
  991. /* bitmap can use 60 K after the 4K superblocks */
  992. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  993. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  994. mddev->reshape_backwards = 0;
  995. if (mddev->minor_version >= 91) {
  996. mddev->reshape_position = sb->reshape_position;
  997. mddev->delta_disks = sb->delta_disks;
  998. mddev->new_level = sb->new_level;
  999. mddev->new_layout = sb->new_layout;
  1000. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1001. if (mddev->delta_disks < 0)
  1002. mddev->reshape_backwards = 1;
  1003. } else {
  1004. mddev->reshape_position = MaxSector;
  1005. mddev->delta_disks = 0;
  1006. mddev->new_level = mddev->level;
  1007. mddev->new_layout = mddev->layout;
  1008. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1009. }
  1010. if (sb->state & (1<<MD_SB_CLEAN))
  1011. mddev->recovery_cp = MaxSector;
  1012. else {
  1013. if (sb->events_hi == sb->cp_events_hi &&
  1014. sb->events_lo == sb->cp_events_lo) {
  1015. mddev->recovery_cp = sb->recovery_cp;
  1016. } else
  1017. mddev->recovery_cp = 0;
  1018. }
  1019. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1020. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1021. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1022. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1023. mddev->max_disks = MD_SB_DISKS;
  1024. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1025. mddev->bitmap_info.file == NULL) {
  1026. mddev->bitmap_info.offset =
  1027. mddev->bitmap_info.default_offset;
  1028. mddev->bitmap_info.space =
  1029. mddev->bitmap_info.default_space;
  1030. }
  1031. } else if (mddev->pers == NULL) {
  1032. /* Insist on good event counter while assembling, except
  1033. * for spares (which don't need an event count) */
  1034. ++ev1;
  1035. if (sb->disks[rdev->desc_nr].state & (
  1036. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1037. if (ev1 < mddev->events)
  1038. return -EINVAL;
  1039. } else if (mddev->bitmap) {
  1040. /* if adding to array with a bitmap, then we can accept an
  1041. * older device ... but not too old.
  1042. */
  1043. if (ev1 < mddev->bitmap->events_cleared)
  1044. return 0;
  1045. } else {
  1046. if (ev1 < mddev->events)
  1047. /* just a hot-add of a new device, leave raid_disk at -1 */
  1048. return 0;
  1049. }
  1050. if (mddev->level != LEVEL_MULTIPATH) {
  1051. desc = sb->disks + rdev->desc_nr;
  1052. if (desc->state & (1<<MD_DISK_FAULTY))
  1053. set_bit(Faulty, &rdev->flags);
  1054. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1055. desc->raid_disk < mddev->raid_disks */) {
  1056. set_bit(In_sync, &rdev->flags);
  1057. rdev->raid_disk = desc->raid_disk;
  1058. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1059. /* active but not in sync implies recovery up to
  1060. * reshape position. We don't know exactly where
  1061. * that is, so set to zero for now */
  1062. if (mddev->minor_version >= 91) {
  1063. rdev->recovery_offset = 0;
  1064. rdev->raid_disk = desc->raid_disk;
  1065. }
  1066. }
  1067. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1068. set_bit(WriteMostly, &rdev->flags);
  1069. } else /* MULTIPATH are always insync */
  1070. set_bit(In_sync, &rdev->flags);
  1071. return 0;
  1072. }
  1073. /*
  1074. * sync_super for 0.90.0
  1075. */
  1076. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1077. {
  1078. mdp_super_t *sb;
  1079. struct md_rdev *rdev2;
  1080. int next_spare = mddev->raid_disks;
  1081. /* make rdev->sb match mddev data..
  1082. *
  1083. * 1/ zero out disks
  1084. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1085. * 3/ any empty disks < next_spare become removed
  1086. *
  1087. * disks[0] gets initialised to REMOVED because
  1088. * we cannot be sure from other fields if it has
  1089. * been initialised or not.
  1090. */
  1091. int i;
  1092. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1093. rdev->sb_size = MD_SB_BYTES;
  1094. sb = page_address(rdev->sb_page);
  1095. memset(sb, 0, sizeof(*sb));
  1096. sb->md_magic = MD_SB_MAGIC;
  1097. sb->major_version = mddev->major_version;
  1098. sb->patch_version = mddev->patch_version;
  1099. sb->gvalid_words = 0; /* ignored */
  1100. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1101. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1102. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1103. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1104. sb->ctime = mddev->ctime;
  1105. sb->level = mddev->level;
  1106. sb->size = mddev->dev_sectors / 2;
  1107. sb->raid_disks = mddev->raid_disks;
  1108. sb->md_minor = mddev->md_minor;
  1109. sb->not_persistent = 0;
  1110. sb->utime = mddev->utime;
  1111. sb->state = 0;
  1112. sb->events_hi = (mddev->events>>32);
  1113. sb->events_lo = (u32)mddev->events;
  1114. if (mddev->reshape_position == MaxSector)
  1115. sb->minor_version = 90;
  1116. else {
  1117. sb->minor_version = 91;
  1118. sb->reshape_position = mddev->reshape_position;
  1119. sb->new_level = mddev->new_level;
  1120. sb->delta_disks = mddev->delta_disks;
  1121. sb->new_layout = mddev->new_layout;
  1122. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1123. }
  1124. mddev->minor_version = sb->minor_version;
  1125. if (mddev->in_sync)
  1126. {
  1127. sb->recovery_cp = mddev->recovery_cp;
  1128. sb->cp_events_hi = (mddev->events>>32);
  1129. sb->cp_events_lo = (u32)mddev->events;
  1130. if (mddev->recovery_cp == MaxSector)
  1131. sb->state = (1<< MD_SB_CLEAN);
  1132. } else
  1133. sb->recovery_cp = 0;
  1134. sb->layout = mddev->layout;
  1135. sb->chunk_size = mddev->chunk_sectors << 9;
  1136. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1137. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1138. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1139. rdev_for_each(rdev2, mddev) {
  1140. mdp_disk_t *d;
  1141. int desc_nr;
  1142. int is_active = test_bit(In_sync, &rdev2->flags);
  1143. if (rdev2->raid_disk >= 0 &&
  1144. sb->minor_version >= 91)
  1145. /* we have nowhere to store the recovery_offset,
  1146. * but if it is not below the reshape_position,
  1147. * we can piggy-back on that.
  1148. */
  1149. is_active = 1;
  1150. if (rdev2->raid_disk < 0 ||
  1151. test_bit(Faulty, &rdev2->flags))
  1152. is_active = 0;
  1153. if (is_active)
  1154. desc_nr = rdev2->raid_disk;
  1155. else
  1156. desc_nr = next_spare++;
  1157. rdev2->desc_nr = desc_nr;
  1158. d = &sb->disks[rdev2->desc_nr];
  1159. nr_disks++;
  1160. d->number = rdev2->desc_nr;
  1161. d->major = MAJOR(rdev2->bdev->bd_dev);
  1162. d->minor = MINOR(rdev2->bdev->bd_dev);
  1163. if (is_active)
  1164. d->raid_disk = rdev2->raid_disk;
  1165. else
  1166. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1167. if (test_bit(Faulty, &rdev2->flags))
  1168. d->state = (1<<MD_DISK_FAULTY);
  1169. else if (is_active) {
  1170. d->state = (1<<MD_DISK_ACTIVE);
  1171. if (test_bit(In_sync, &rdev2->flags))
  1172. d->state |= (1<<MD_DISK_SYNC);
  1173. active++;
  1174. working++;
  1175. } else {
  1176. d->state = 0;
  1177. spare++;
  1178. working++;
  1179. }
  1180. if (test_bit(WriteMostly, &rdev2->flags))
  1181. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1182. }
  1183. /* now set the "removed" and "faulty" bits on any missing devices */
  1184. for (i=0 ; i < mddev->raid_disks ; i++) {
  1185. mdp_disk_t *d = &sb->disks[i];
  1186. if (d->state == 0 && d->number == 0) {
  1187. d->number = i;
  1188. d->raid_disk = i;
  1189. d->state = (1<<MD_DISK_REMOVED);
  1190. d->state |= (1<<MD_DISK_FAULTY);
  1191. failed++;
  1192. }
  1193. }
  1194. sb->nr_disks = nr_disks;
  1195. sb->active_disks = active;
  1196. sb->working_disks = working;
  1197. sb->failed_disks = failed;
  1198. sb->spare_disks = spare;
  1199. sb->this_disk = sb->disks[rdev->desc_nr];
  1200. sb->sb_csum = calc_sb_csum(sb);
  1201. }
  1202. /*
  1203. * rdev_size_change for 0.90.0
  1204. */
  1205. static unsigned long long
  1206. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1207. {
  1208. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1209. return 0; /* component must fit device */
  1210. if (rdev->mddev->bitmap_info.offset)
  1211. return 0; /* can't move bitmap */
  1212. rdev->sb_start = calc_dev_sboffset(rdev);
  1213. if (!num_sectors || num_sectors > rdev->sb_start)
  1214. num_sectors = rdev->sb_start;
  1215. /* Limit to 4TB as metadata cannot record more than that.
  1216. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1217. */
  1218. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1219. num_sectors = (2ULL << 32) - 2;
  1220. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1221. rdev->sb_page);
  1222. md_super_wait(rdev->mddev);
  1223. return num_sectors;
  1224. }
  1225. static int
  1226. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1227. {
  1228. /* non-zero offset changes not possible with v0.90 */
  1229. return new_offset == 0;
  1230. }
  1231. /*
  1232. * version 1 superblock
  1233. */
  1234. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1235. {
  1236. __le32 disk_csum;
  1237. u32 csum;
  1238. unsigned long long newcsum;
  1239. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1240. __le32 *isuper = (__le32*)sb;
  1241. disk_csum = sb->sb_csum;
  1242. sb->sb_csum = 0;
  1243. newcsum = 0;
  1244. for (; size >= 4; size -= 4)
  1245. newcsum += le32_to_cpu(*isuper++);
  1246. if (size == 2)
  1247. newcsum += le16_to_cpu(*(__le16*) isuper);
  1248. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1249. sb->sb_csum = disk_csum;
  1250. return cpu_to_le32(csum);
  1251. }
  1252. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1253. int acknowledged);
  1254. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1255. {
  1256. struct mdp_superblock_1 *sb;
  1257. int ret;
  1258. sector_t sb_start;
  1259. sector_t sectors;
  1260. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1261. int bmask;
  1262. /*
  1263. * Calculate the position of the superblock in 512byte sectors.
  1264. * It is always aligned to a 4K boundary and
  1265. * depeding on minor_version, it can be:
  1266. * 0: At least 8K, but less than 12K, from end of device
  1267. * 1: At start of device
  1268. * 2: 4K from start of device.
  1269. */
  1270. switch(minor_version) {
  1271. case 0:
  1272. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1273. sb_start -= 8*2;
  1274. sb_start &= ~(sector_t)(4*2-1);
  1275. break;
  1276. case 1:
  1277. sb_start = 0;
  1278. break;
  1279. case 2:
  1280. sb_start = 8;
  1281. break;
  1282. default:
  1283. return -EINVAL;
  1284. }
  1285. rdev->sb_start = sb_start;
  1286. /* superblock is rarely larger than 1K, but it can be larger,
  1287. * and it is safe to read 4k, so we do that
  1288. */
  1289. ret = read_disk_sb(rdev, 4096);
  1290. if (ret) return ret;
  1291. sb = page_address(rdev->sb_page);
  1292. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1293. sb->major_version != cpu_to_le32(1) ||
  1294. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1295. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1296. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1297. return -EINVAL;
  1298. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1299. printk("md: invalid superblock checksum on %s\n",
  1300. bdevname(rdev->bdev,b));
  1301. return -EINVAL;
  1302. }
  1303. if (le64_to_cpu(sb->data_size) < 10) {
  1304. printk("md: data_size too small on %s\n",
  1305. bdevname(rdev->bdev,b));
  1306. return -EINVAL;
  1307. }
  1308. if (sb->pad0 ||
  1309. sb->pad3[0] ||
  1310. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1311. /* Some padding is non-zero, might be a new feature */
  1312. return -EINVAL;
  1313. rdev->preferred_minor = 0xffff;
  1314. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1315. rdev->new_data_offset = rdev->data_offset;
  1316. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1317. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1318. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1319. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1320. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1321. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1322. if (rdev->sb_size & bmask)
  1323. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1324. if (minor_version
  1325. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1326. return -EINVAL;
  1327. if (minor_version
  1328. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1329. return -EINVAL;
  1330. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1331. rdev->desc_nr = -1;
  1332. else
  1333. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1334. if (!rdev->bb_page) {
  1335. rdev->bb_page = alloc_page(GFP_KERNEL);
  1336. if (!rdev->bb_page)
  1337. return -ENOMEM;
  1338. }
  1339. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1340. rdev->badblocks.count == 0) {
  1341. /* need to load the bad block list.
  1342. * Currently we limit it to one page.
  1343. */
  1344. s32 offset;
  1345. sector_t bb_sector;
  1346. u64 *bbp;
  1347. int i;
  1348. int sectors = le16_to_cpu(sb->bblog_size);
  1349. if (sectors > (PAGE_SIZE / 512))
  1350. return -EINVAL;
  1351. offset = le32_to_cpu(sb->bblog_offset);
  1352. if (offset == 0)
  1353. return -EINVAL;
  1354. bb_sector = (long long)offset;
  1355. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1356. rdev->bb_page, READ, true))
  1357. return -EIO;
  1358. bbp = (u64 *)page_address(rdev->bb_page);
  1359. rdev->badblocks.shift = sb->bblog_shift;
  1360. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1361. u64 bb = le64_to_cpu(*bbp);
  1362. int count = bb & (0x3ff);
  1363. u64 sector = bb >> 10;
  1364. sector <<= sb->bblog_shift;
  1365. count <<= sb->bblog_shift;
  1366. if (bb + 1 == 0)
  1367. break;
  1368. if (md_set_badblocks(&rdev->badblocks,
  1369. sector, count, 1) == 0)
  1370. return -EINVAL;
  1371. }
  1372. } else if (sb->bblog_offset != 0)
  1373. rdev->badblocks.shift = 0;
  1374. if (!refdev) {
  1375. ret = 1;
  1376. } else {
  1377. __u64 ev1, ev2;
  1378. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1379. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1380. sb->level != refsb->level ||
  1381. sb->layout != refsb->layout ||
  1382. sb->chunksize != refsb->chunksize) {
  1383. printk(KERN_WARNING "md: %s has strangely different"
  1384. " superblock to %s\n",
  1385. bdevname(rdev->bdev,b),
  1386. bdevname(refdev->bdev,b2));
  1387. return -EINVAL;
  1388. }
  1389. ev1 = le64_to_cpu(sb->events);
  1390. ev2 = le64_to_cpu(refsb->events);
  1391. if (ev1 > ev2)
  1392. ret = 1;
  1393. else
  1394. ret = 0;
  1395. }
  1396. if (minor_version) {
  1397. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1398. sectors -= rdev->data_offset;
  1399. } else
  1400. sectors = rdev->sb_start;
  1401. if (sectors < le64_to_cpu(sb->data_size))
  1402. return -EINVAL;
  1403. rdev->sectors = le64_to_cpu(sb->data_size);
  1404. return ret;
  1405. }
  1406. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1407. {
  1408. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1409. __u64 ev1 = le64_to_cpu(sb->events);
  1410. rdev->raid_disk = -1;
  1411. clear_bit(Faulty, &rdev->flags);
  1412. clear_bit(In_sync, &rdev->flags);
  1413. clear_bit(WriteMostly, &rdev->flags);
  1414. if (mddev->raid_disks == 0) {
  1415. mddev->major_version = 1;
  1416. mddev->patch_version = 0;
  1417. mddev->external = 0;
  1418. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1419. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1420. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1421. mddev->level = le32_to_cpu(sb->level);
  1422. mddev->clevel[0] = 0;
  1423. mddev->layout = le32_to_cpu(sb->layout);
  1424. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1425. mddev->dev_sectors = le64_to_cpu(sb->size);
  1426. mddev->events = ev1;
  1427. mddev->bitmap_info.offset = 0;
  1428. mddev->bitmap_info.space = 0;
  1429. /* Default location for bitmap is 1K after superblock
  1430. * using 3K - total of 4K
  1431. */
  1432. mddev->bitmap_info.default_offset = 1024 >> 9;
  1433. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1434. mddev->reshape_backwards = 0;
  1435. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1436. memcpy(mddev->uuid, sb->set_uuid, 16);
  1437. mddev->max_disks = (4096-256)/2;
  1438. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1439. mddev->bitmap_info.file == NULL) {
  1440. mddev->bitmap_info.offset =
  1441. (__s32)le32_to_cpu(sb->bitmap_offset);
  1442. /* Metadata doesn't record how much space is available.
  1443. * For 1.0, we assume we can use up to the superblock
  1444. * if before, else to 4K beyond superblock.
  1445. * For others, assume no change is possible.
  1446. */
  1447. if (mddev->minor_version > 0)
  1448. mddev->bitmap_info.space = 0;
  1449. else if (mddev->bitmap_info.offset > 0)
  1450. mddev->bitmap_info.space =
  1451. 8 - mddev->bitmap_info.offset;
  1452. else
  1453. mddev->bitmap_info.space =
  1454. -mddev->bitmap_info.offset;
  1455. }
  1456. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1457. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1458. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1459. mddev->new_level = le32_to_cpu(sb->new_level);
  1460. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1461. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1462. if (mddev->delta_disks < 0 ||
  1463. (mddev->delta_disks == 0 &&
  1464. (le32_to_cpu(sb->feature_map)
  1465. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1466. mddev->reshape_backwards = 1;
  1467. } else {
  1468. mddev->reshape_position = MaxSector;
  1469. mddev->delta_disks = 0;
  1470. mddev->new_level = mddev->level;
  1471. mddev->new_layout = mddev->layout;
  1472. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1473. }
  1474. } else if (mddev->pers == NULL) {
  1475. /* Insist of good event counter while assembling, except for
  1476. * spares (which don't need an event count) */
  1477. ++ev1;
  1478. if (rdev->desc_nr >= 0 &&
  1479. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1480. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1481. if (ev1 < mddev->events)
  1482. return -EINVAL;
  1483. } else if (mddev->bitmap) {
  1484. /* If adding to array with a bitmap, then we can accept an
  1485. * older device, but not too old.
  1486. */
  1487. if (ev1 < mddev->bitmap->events_cleared)
  1488. return 0;
  1489. } else {
  1490. if (ev1 < mddev->events)
  1491. /* just a hot-add of a new device, leave raid_disk at -1 */
  1492. return 0;
  1493. }
  1494. if (mddev->level != LEVEL_MULTIPATH) {
  1495. int role;
  1496. if (rdev->desc_nr < 0 ||
  1497. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1498. role = 0xffff;
  1499. rdev->desc_nr = -1;
  1500. } else
  1501. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1502. switch(role) {
  1503. case 0xffff: /* spare */
  1504. break;
  1505. case 0xfffe: /* faulty */
  1506. set_bit(Faulty, &rdev->flags);
  1507. break;
  1508. default:
  1509. if ((le32_to_cpu(sb->feature_map) &
  1510. MD_FEATURE_RECOVERY_OFFSET))
  1511. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1512. else
  1513. set_bit(In_sync, &rdev->flags);
  1514. rdev->raid_disk = role;
  1515. break;
  1516. }
  1517. if (sb->devflags & WriteMostly1)
  1518. set_bit(WriteMostly, &rdev->flags);
  1519. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1520. set_bit(Replacement, &rdev->flags);
  1521. } else /* MULTIPATH are always insync */
  1522. set_bit(In_sync, &rdev->flags);
  1523. return 0;
  1524. }
  1525. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1526. {
  1527. struct mdp_superblock_1 *sb;
  1528. struct md_rdev *rdev2;
  1529. int max_dev, i;
  1530. /* make rdev->sb match mddev and rdev data. */
  1531. sb = page_address(rdev->sb_page);
  1532. sb->feature_map = 0;
  1533. sb->pad0 = 0;
  1534. sb->recovery_offset = cpu_to_le64(0);
  1535. memset(sb->pad3, 0, sizeof(sb->pad3));
  1536. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1537. sb->events = cpu_to_le64(mddev->events);
  1538. if (mddev->in_sync)
  1539. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1540. else
  1541. sb->resync_offset = cpu_to_le64(0);
  1542. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1543. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1544. sb->size = cpu_to_le64(mddev->dev_sectors);
  1545. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1546. sb->level = cpu_to_le32(mddev->level);
  1547. sb->layout = cpu_to_le32(mddev->layout);
  1548. if (test_bit(WriteMostly, &rdev->flags))
  1549. sb->devflags |= WriteMostly1;
  1550. else
  1551. sb->devflags &= ~WriteMostly1;
  1552. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1553. sb->data_size = cpu_to_le64(rdev->sectors);
  1554. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1555. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1556. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1557. }
  1558. if (rdev->raid_disk >= 0 &&
  1559. !test_bit(In_sync, &rdev->flags)) {
  1560. sb->feature_map |=
  1561. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1562. sb->recovery_offset =
  1563. cpu_to_le64(rdev->recovery_offset);
  1564. }
  1565. if (test_bit(Replacement, &rdev->flags))
  1566. sb->feature_map |=
  1567. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1568. if (mddev->reshape_position != MaxSector) {
  1569. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1570. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1571. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1572. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1573. sb->new_level = cpu_to_le32(mddev->new_level);
  1574. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1575. if (mddev->delta_disks == 0 &&
  1576. mddev->reshape_backwards)
  1577. sb->feature_map
  1578. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1579. if (rdev->new_data_offset != rdev->data_offset) {
  1580. sb->feature_map
  1581. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1582. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1583. - rdev->data_offset));
  1584. }
  1585. }
  1586. if (rdev->badblocks.count == 0)
  1587. /* Nothing to do for bad blocks*/ ;
  1588. else if (sb->bblog_offset == 0)
  1589. /* Cannot record bad blocks on this device */
  1590. md_error(mddev, rdev);
  1591. else {
  1592. struct badblocks *bb = &rdev->badblocks;
  1593. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1594. u64 *p = bb->page;
  1595. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1596. if (bb->changed) {
  1597. unsigned seq;
  1598. retry:
  1599. seq = read_seqbegin(&bb->lock);
  1600. memset(bbp, 0xff, PAGE_SIZE);
  1601. for (i = 0 ; i < bb->count ; i++) {
  1602. u64 internal_bb = p[i];
  1603. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1604. | BB_LEN(internal_bb));
  1605. bbp[i] = cpu_to_le64(store_bb);
  1606. }
  1607. bb->changed = 0;
  1608. if (read_seqretry(&bb->lock, seq))
  1609. goto retry;
  1610. bb->sector = (rdev->sb_start +
  1611. (int)le32_to_cpu(sb->bblog_offset));
  1612. bb->size = le16_to_cpu(sb->bblog_size);
  1613. }
  1614. }
  1615. max_dev = 0;
  1616. rdev_for_each(rdev2, mddev)
  1617. if (rdev2->desc_nr+1 > max_dev)
  1618. max_dev = rdev2->desc_nr+1;
  1619. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1620. int bmask;
  1621. sb->max_dev = cpu_to_le32(max_dev);
  1622. rdev->sb_size = max_dev * 2 + 256;
  1623. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1624. if (rdev->sb_size & bmask)
  1625. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1626. } else
  1627. max_dev = le32_to_cpu(sb->max_dev);
  1628. for (i=0; i<max_dev;i++)
  1629. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1630. rdev_for_each(rdev2, mddev) {
  1631. i = rdev2->desc_nr;
  1632. if (test_bit(Faulty, &rdev2->flags))
  1633. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1634. else if (test_bit(In_sync, &rdev2->flags))
  1635. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1636. else if (rdev2->raid_disk >= 0)
  1637. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1638. else
  1639. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1640. }
  1641. sb->sb_csum = calc_sb_1_csum(sb);
  1642. }
  1643. static unsigned long long
  1644. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1645. {
  1646. struct mdp_superblock_1 *sb;
  1647. sector_t max_sectors;
  1648. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1649. return 0; /* component must fit device */
  1650. if (rdev->data_offset != rdev->new_data_offset)
  1651. return 0; /* too confusing */
  1652. if (rdev->sb_start < rdev->data_offset) {
  1653. /* minor versions 1 and 2; superblock before data */
  1654. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1655. max_sectors -= rdev->data_offset;
  1656. if (!num_sectors || num_sectors > max_sectors)
  1657. num_sectors = max_sectors;
  1658. } else if (rdev->mddev->bitmap_info.offset) {
  1659. /* minor version 0 with bitmap we can't move */
  1660. return 0;
  1661. } else {
  1662. /* minor version 0; superblock after data */
  1663. sector_t sb_start;
  1664. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1665. sb_start &= ~(sector_t)(4*2 - 1);
  1666. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1667. if (!num_sectors || num_sectors > max_sectors)
  1668. num_sectors = max_sectors;
  1669. rdev->sb_start = sb_start;
  1670. }
  1671. sb = page_address(rdev->sb_page);
  1672. sb->data_size = cpu_to_le64(num_sectors);
  1673. sb->super_offset = rdev->sb_start;
  1674. sb->sb_csum = calc_sb_1_csum(sb);
  1675. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1676. rdev->sb_page);
  1677. md_super_wait(rdev->mddev);
  1678. return num_sectors;
  1679. }
  1680. static int
  1681. super_1_allow_new_offset(struct md_rdev *rdev,
  1682. unsigned long long new_offset)
  1683. {
  1684. /* All necessary checks on new >= old have been done */
  1685. struct bitmap *bitmap;
  1686. if (new_offset >= rdev->data_offset)
  1687. return 1;
  1688. /* with 1.0 metadata, there is no metadata to tread on
  1689. * so we can always move back */
  1690. if (rdev->mddev->minor_version == 0)
  1691. return 1;
  1692. /* otherwise we must be sure not to step on
  1693. * any metadata, so stay:
  1694. * 36K beyond start of superblock
  1695. * beyond end of badblocks
  1696. * beyond write-intent bitmap
  1697. */
  1698. if (rdev->sb_start + (32+4)*2 > new_offset)
  1699. return 0;
  1700. bitmap = rdev->mddev->bitmap;
  1701. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1702. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1703. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1704. return 0;
  1705. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1706. return 0;
  1707. return 1;
  1708. }
  1709. static struct super_type super_types[] = {
  1710. [0] = {
  1711. .name = "0.90.0",
  1712. .owner = THIS_MODULE,
  1713. .load_super = super_90_load,
  1714. .validate_super = super_90_validate,
  1715. .sync_super = super_90_sync,
  1716. .rdev_size_change = super_90_rdev_size_change,
  1717. .allow_new_offset = super_90_allow_new_offset,
  1718. },
  1719. [1] = {
  1720. .name = "md-1",
  1721. .owner = THIS_MODULE,
  1722. .load_super = super_1_load,
  1723. .validate_super = super_1_validate,
  1724. .sync_super = super_1_sync,
  1725. .rdev_size_change = super_1_rdev_size_change,
  1726. .allow_new_offset = super_1_allow_new_offset,
  1727. },
  1728. };
  1729. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1730. {
  1731. if (mddev->sync_super) {
  1732. mddev->sync_super(mddev, rdev);
  1733. return;
  1734. }
  1735. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1736. super_types[mddev->major_version].sync_super(mddev, rdev);
  1737. }
  1738. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1739. {
  1740. struct md_rdev *rdev, *rdev2;
  1741. rcu_read_lock();
  1742. rdev_for_each_rcu(rdev, mddev1)
  1743. rdev_for_each_rcu(rdev2, mddev2)
  1744. if (rdev->bdev->bd_contains ==
  1745. rdev2->bdev->bd_contains) {
  1746. rcu_read_unlock();
  1747. return 1;
  1748. }
  1749. rcu_read_unlock();
  1750. return 0;
  1751. }
  1752. static LIST_HEAD(pending_raid_disks);
  1753. /*
  1754. * Try to register data integrity profile for an mddev
  1755. *
  1756. * This is called when an array is started and after a disk has been kicked
  1757. * from the array. It only succeeds if all working and active component devices
  1758. * are integrity capable with matching profiles.
  1759. */
  1760. int md_integrity_register(struct mddev *mddev)
  1761. {
  1762. struct md_rdev *rdev, *reference = NULL;
  1763. if (list_empty(&mddev->disks))
  1764. return 0; /* nothing to do */
  1765. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1766. return 0; /* shouldn't register, or already is */
  1767. rdev_for_each(rdev, mddev) {
  1768. /* skip spares and non-functional disks */
  1769. if (test_bit(Faulty, &rdev->flags))
  1770. continue;
  1771. if (rdev->raid_disk < 0)
  1772. continue;
  1773. if (!reference) {
  1774. /* Use the first rdev as the reference */
  1775. reference = rdev;
  1776. continue;
  1777. }
  1778. /* does this rdev's profile match the reference profile? */
  1779. if (blk_integrity_compare(reference->bdev->bd_disk,
  1780. rdev->bdev->bd_disk) < 0)
  1781. return -EINVAL;
  1782. }
  1783. if (!reference || !bdev_get_integrity(reference->bdev))
  1784. return 0;
  1785. /*
  1786. * All component devices are integrity capable and have matching
  1787. * profiles, register the common profile for the md device.
  1788. */
  1789. if (blk_integrity_register(mddev->gendisk,
  1790. bdev_get_integrity(reference->bdev)) != 0) {
  1791. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1792. mdname(mddev));
  1793. return -EINVAL;
  1794. }
  1795. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1796. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1797. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1798. mdname(mddev));
  1799. return -EINVAL;
  1800. }
  1801. return 0;
  1802. }
  1803. EXPORT_SYMBOL(md_integrity_register);
  1804. /* Disable data integrity if non-capable/non-matching disk is being added */
  1805. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1806. {
  1807. struct blk_integrity *bi_rdev;
  1808. struct blk_integrity *bi_mddev;
  1809. if (!mddev->gendisk)
  1810. return;
  1811. bi_rdev = bdev_get_integrity(rdev->bdev);
  1812. bi_mddev = blk_get_integrity(mddev->gendisk);
  1813. if (!bi_mddev) /* nothing to do */
  1814. return;
  1815. if (rdev->raid_disk < 0) /* skip spares */
  1816. return;
  1817. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1818. rdev->bdev->bd_disk) >= 0)
  1819. return;
  1820. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1821. blk_integrity_unregister(mddev->gendisk);
  1822. }
  1823. EXPORT_SYMBOL(md_integrity_add_rdev);
  1824. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1825. {
  1826. char b[BDEVNAME_SIZE];
  1827. struct kobject *ko;
  1828. char *s;
  1829. int err;
  1830. if (rdev->mddev) {
  1831. MD_BUG();
  1832. return -EINVAL;
  1833. }
  1834. /* prevent duplicates */
  1835. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1836. return -EEXIST;
  1837. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1838. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1839. rdev->sectors < mddev->dev_sectors)) {
  1840. if (mddev->pers) {
  1841. /* Cannot change size, so fail
  1842. * If mddev->level <= 0, then we don't care
  1843. * about aligning sizes (e.g. linear)
  1844. */
  1845. if (mddev->level > 0)
  1846. return -ENOSPC;
  1847. } else
  1848. mddev->dev_sectors = rdev->sectors;
  1849. }
  1850. /* Verify rdev->desc_nr is unique.
  1851. * If it is -1, assign a free number, else
  1852. * check number is not in use
  1853. */
  1854. if (rdev->desc_nr < 0) {
  1855. int choice = 0;
  1856. if (mddev->pers) choice = mddev->raid_disks;
  1857. while (find_rdev_nr(mddev, choice))
  1858. choice++;
  1859. rdev->desc_nr = choice;
  1860. } else {
  1861. if (find_rdev_nr(mddev, rdev->desc_nr))
  1862. return -EBUSY;
  1863. }
  1864. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1865. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1866. mdname(mddev), mddev->max_disks);
  1867. return -EBUSY;
  1868. }
  1869. bdevname(rdev->bdev,b);
  1870. while ( (s=strchr(b, '/')) != NULL)
  1871. *s = '!';
  1872. rdev->mddev = mddev;
  1873. printk(KERN_INFO "md: bind<%s>\n", b);
  1874. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1875. goto fail;
  1876. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1877. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1878. /* failure here is OK */;
  1879. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1880. list_add_rcu(&rdev->same_set, &mddev->disks);
  1881. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1882. /* May as well allow recovery to be retried once */
  1883. mddev->recovery_disabled++;
  1884. return 0;
  1885. fail:
  1886. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1887. b, mdname(mddev));
  1888. return err;
  1889. }
  1890. static void md_delayed_delete(struct work_struct *ws)
  1891. {
  1892. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1893. kobject_del(&rdev->kobj);
  1894. kobject_put(&rdev->kobj);
  1895. }
  1896. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1897. {
  1898. char b[BDEVNAME_SIZE];
  1899. if (!rdev->mddev) {
  1900. MD_BUG();
  1901. return;
  1902. }
  1903. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1904. list_del_rcu(&rdev->same_set);
  1905. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1906. rdev->mddev = NULL;
  1907. sysfs_remove_link(&rdev->kobj, "block");
  1908. sysfs_put(rdev->sysfs_state);
  1909. rdev->sysfs_state = NULL;
  1910. rdev->badblocks.count = 0;
  1911. /* We need to delay this, otherwise we can deadlock when
  1912. * writing to 'remove' to "dev/state". We also need
  1913. * to delay it due to rcu usage.
  1914. */
  1915. synchronize_rcu();
  1916. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1917. kobject_get(&rdev->kobj);
  1918. queue_work(md_misc_wq, &rdev->del_work);
  1919. }
  1920. /*
  1921. * prevent the device from being mounted, repartitioned or
  1922. * otherwise reused by a RAID array (or any other kernel
  1923. * subsystem), by bd_claiming the device.
  1924. */
  1925. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1926. {
  1927. int err = 0;
  1928. struct block_device *bdev;
  1929. char b[BDEVNAME_SIZE];
  1930. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1931. shared ? (struct md_rdev *)lock_rdev : rdev);
  1932. if (IS_ERR(bdev)) {
  1933. printk(KERN_ERR "md: could not open %s.\n",
  1934. __bdevname(dev, b));
  1935. return PTR_ERR(bdev);
  1936. }
  1937. rdev->bdev = bdev;
  1938. return err;
  1939. }
  1940. static void unlock_rdev(struct md_rdev *rdev)
  1941. {
  1942. struct block_device *bdev = rdev->bdev;
  1943. rdev->bdev = NULL;
  1944. if (!bdev)
  1945. MD_BUG();
  1946. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1947. }
  1948. void md_autodetect_dev(dev_t dev);
  1949. static void export_rdev(struct md_rdev * rdev)
  1950. {
  1951. char b[BDEVNAME_SIZE];
  1952. printk(KERN_INFO "md: export_rdev(%s)\n",
  1953. bdevname(rdev->bdev,b));
  1954. if (rdev->mddev)
  1955. MD_BUG();
  1956. md_rdev_clear(rdev);
  1957. #ifndef MODULE
  1958. if (test_bit(AutoDetected, &rdev->flags))
  1959. md_autodetect_dev(rdev->bdev->bd_dev);
  1960. #endif
  1961. unlock_rdev(rdev);
  1962. kobject_put(&rdev->kobj);
  1963. }
  1964. static void kick_rdev_from_array(struct md_rdev * rdev)
  1965. {
  1966. unbind_rdev_from_array(rdev);
  1967. export_rdev(rdev);
  1968. }
  1969. static void export_array(struct mddev *mddev)
  1970. {
  1971. struct md_rdev *rdev, *tmp;
  1972. rdev_for_each_safe(rdev, tmp, mddev) {
  1973. if (!rdev->mddev) {
  1974. MD_BUG();
  1975. continue;
  1976. }
  1977. kick_rdev_from_array(rdev);
  1978. }
  1979. if (!list_empty(&mddev->disks))
  1980. MD_BUG();
  1981. mddev->raid_disks = 0;
  1982. mddev->major_version = 0;
  1983. }
  1984. static void print_desc(mdp_disk_t *desc)
  1985. {
  1986. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1987. desc->major,desc->minor,desc->raid_disk,desc->state);
  1988. }
  1989. static void print_sb_90(mdp_super_t *sb)
  1990. {
  1991. int i;
  1992. printk(KERN_INFO
  1993. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1994. sb->major_version, sb->minor_version, sb->patch_version,
  1995. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1996. sb->ctime);
  1997. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1998. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1999. sb->md_minor, sb->layout, sb->chunk_size);
  2000. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2001. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2002. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2003. sb->failed_disks, sb->spare_disks,
  2004. sb->sb_csum, (unsigned long)sb->events_lo);
  2005. printk(KERN_INFO);
  2006. for (i = 0; i < MD_SB_DISKS; i++) {
  2007. mdp_disk_t *desc;
  2008. desc = sb->disks + i;
  2009. if (desc->number || desc->major || desc->minor ||
  2010. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2011. printk(" D %2d: ", i);
  2012. print_desc(desc);
  2013. }
  2014. }
  2015. printk(KERN_INFO "md: THIS: ");
  2016. print_desc(&sb->this_disk);
  2017. }
  2018. static void print_sb_1(struct mdp_superblock_1 *sb)
  2019. {
  2020. __u8 *uuid;
  2021. uuid = sb->set_uuid;
  2022. printk(KERN_INFO
  2023. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2024. "md: Name: \"%s\" CT:%llu\n",
  2025. le32_to_cpu(sb->major_version),
  2026. le32_to_cpu(sb->feature_map),
  2027. uuid,
  2028. sb->set_name,
  2029. (unsigned long long)le64_to_cpu(sb->ctime)
  2030. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2031. uuid = sb->device_uuid;
  2032. printk(KERN_INFO
  2033. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2034. " RO:%llu\n"
  2035. "md: Dev:%08x UUID: %pU\n"
  2036. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2037. "md: (MaxDev:%u) \n",
  2038. le32_to_cpu(sb->level),
  2039. (unsigned long long)le64_to_cpu(sb->size),
  2040. le32_to_cpu(sb->raid_disks),
  2041. le32_to_cpu(sb->layout),
  2042. le32_to_cpu(sb->chunksize),
  2043. (unsigned long long)le64_to_cpu(sb->data_offset),
  2044. (unsigned long long)le64_to_cpu(sb->data_size),
  2045. (unsigned long long)le64_to_cpu(sb->super_offset),
  2046. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2047. le32_to_cpu(sb->dev_number),
  2048. uuid,
  2049. sb->devflags,
  2050. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2051. (unsigned long long)le64_to_cpu(sb->events),
  2052. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2053. le32_to_cpu(sb->sb_csum),
  2054. le32_to_cpu(sb->max_dev)
  2055. );
  2056. }
  2057. static void print_rdev(struct md_rdev *rdev, int major_version)
  2058. {
  2059. char b[BDEVNAME_SIZE];
  2060. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2061. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2062. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2063. rdev->desc_nr);
  2064. if (rdev->sb_loaded) {
  2065. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2066. switch (major_version) {
  2067. case 0:
  2068. print_sb_90(page_address(rdev->sb_page));
  2069. break;
  2070. case 1:
  2071. print_sb_1(page_address(rdev->sb_page));
  2072. break;
  2073. }
  2074. } else
  2075. printk(KERN_INFO "md: no rdev superblock!\n");
  2076. }
  2077. static void md_print_devices(void)
  2078. {
  2079. struct list_head *tmp;
  2080. struct md_rdev *rdev;
  2081. struct mddev *mddev;
  2082. char b[BDEVNAME_SIZE];
  2083. printk("\n");
  2084. printk("md: **********************************\n");
  2085. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2086. printk("md: **********************************\n");
  2087. for_each_mddev(mddev, tmp) {
  2088. if (mddev->bitmap)
  2089. bitmap_print_sb(mddev->bitmap);
  2090. else
  2091. printk("%s: ", mdname(mddev));
  2092. rdev_for_each(rdev, mddev)
  2093. printk("<%s>", bdevname(rdev->bdev,b));
  2094. printk("\n");
  2095. rdev_for_each(rdev, mddev)
  2096. print_rdev(rdev, mddev->major_version);
  2097. }
  2098. printk("md: **********************************\n");
  2099. printk("\n");
  2100. }
  2101. static void sync_sbs(struct mddev * mddev, int nospares)
  2102. {
  2103. /* Update each superblock (in-memory image), but
  2104. * if we are allowed to, skip spares which already
  2105. * have the right event counter, or have one earlier
  2106. * (which would mean they aren't being marked as dirty
  2107. * with the rest of the array)
  2108. */
  2109. struct md_rdev *rdev;
  2110. rdev_for_each(rdev, mddev) {
  2111. if (rdev->sb_events == mddev->events ||
  2112. (nospares &&
  2113. rdev->raid_disk < 0 &&
  2114. rdev->sb_events+1 == mddev->events)) {
  2115. /* Don't update this superblock */
  2116. rdev->sb_loaded = 2;
  2117. } else {
  2118. sync_super(mddev, rdev);
  2119. rdev->sb_loaded = 1;
  2120. }
  2121. }
  2122. }
  2123. static void md_update_sb(struct mddev * mddev, int force_change)
  2124. {
  2125. struct md_rdev *rdev;
  2126. int sync_req;
  2127. int nospares = 0;
  2128. int any_badblocks_changed = 0;
  2129. if (mddev->ro) {
  2130. if (force_change)
  2131. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2132. return;
  2133. }
  2134. repeat:
  2135. /* First make sure individual recovery_offsets are correct */
  2136. rdev_for_each(rdev, mddev) {
  2137. if (rdev->raid_disk >= 0 &&
  2138. mddev->delta_disks >= 0 &&
  2139. !test_bit(In_sync, &rdev->flags) &&
  2140. mddev->curr_resync_completed > rdev->recovery_offset)
  2141. rdev->recovery_offset = mddev->curr_resync_completed;
  2142. }
  2143. if (!mddev->persistent) {
  2144. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2145. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2146. if (!mddev->external) {
  2147. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2148. rdev_for_each(rdev, mddev) {
  2149. if (rdev->badblocks.changed) {
  2150. rdev->badblocks.changed = 0;
  2151. md_ack_all_badblocks(&rdev->badblocks);
  2152. md_error(mddev, rdev);
  2153. }
  2154. clear_bit(Blocked, &rdev->flags);
  2155. clear_bit(BlockedBadBlocks, &rdev->flags);
  2156. wake_up(&rdev->blocked_wait);
  2157. }
  2158. }
  2159. wake_up(&mddev->sb_wait);
  2160. return;
  2161. }
  2162. spin_lock_irq(&mddev->write_lock);
  2163. mddev->utime = get_seconds();
  2164. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2165. force_change = 1;
  2166. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2167. /* just a clean<-> dirty transition, possibly leave spares alone,
  2168. * though if events isn't the right even/odd, we will have to do
  2169. * spares after all
  2170. */
  2171. nospares = 1;
  2172. if (force_change)
  2173. nospares = 0;
  2174. if (mddev->degraded)
  2175. /* If the array is degraded, then skipping spares is both
  2176. * dangerous and fairly pointless.
  2177. * Dangerous because a device that was removed from the array
  2178. * might have a event_count that still looks up-to-date,
  2179. * so it can be re-added without a resync.
  2180. * Pointless because if there are any spares to skip,
  2181. * then a recovery will happen and soon that array won't
  2182. * be degraded any more and the spare can go back to sleep then.
  2183. */
  2184. nospares = 0;
  2185. sync_req = mddev->in_sync;
  2186. /* If this is just a dirty<->clean transition, and the array is clean
  2187. * and 'events' is odd, we can roll back to the previous clean state */
  2188. if (nospares
  2189. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2190. && mddev->can_decrease_events
  2191. && mddev->events != 1) {
  2192. mddev->events--;
  2193. mddev->can_decrease_events = 0;
  2194. } else {
  2195. /* otherwise we have to go forward and ... */
  2196. mddev->events ++;
  2197. mddev->can_decrease_events = nospares;
  2198. }
  2199. if (!mddev->events) {
  2200. /*
  2201. * oops, this 64-bit counter should never wrap.
  2202. * Either we are in around ~1 trillion A.C., assuming
  2203. * 1 reboot per second, or we have a bug:
  2204. */
  2205. MD_BUG();
  2206. mddev->events --;
  2207. }
  2208. rdev_for_each(rdev, mddev) {
  2209. if (rdev->badblocks.changed)
  2210. any_badblocks_changed++;
  2211. if (test_bit(Faulty, &rdev->flags))
  2212. set_bit(FaultRecorded, &rdev->flags);
  2213. }
  2214. sync_sbs(mddev, nospares);
  2215. spin_unlock_irq(&mddev->write_lock);
  2216. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2217. mdname(mddev), mddev->in_sync);
  2218. bitmap_update_sb(mddev->bitmap);
  2219. rdev_for_each(rdev, mddev) {
  2220. char b[BDEVNAME_SIZE];
  2221. if (rdev->sb_loaded != 1)
  2222. continue; /* no noise on spare devices */
  2223. if (!test_bit(Faulty, &rdev->flags) &&
  2224. rdev->saved_raid_disk == -1) {
  2225. md_super_write(mddev,rdev,
  2226. rdev->sb_start, rdev->sb_size,
  2227. rdev->sb_page);
  2228. pr_debug("md: (write) %s's sb offset: %llu\n",
  2229. bdevname(rdev->bdev, b),
  2230. (unsigned long long)rdev->sb_start);
  2231. rdev->sb_events = mddev->events;
  2232. if (rdev->badblocks.size) {
  2233. md_super_write(mddev, rdev,
  2234. rdev->badblocks.sector,
  2235. rdev->badblocks.size << 9,
  2236. rdev->bb_page);
  2237. rdev->badblocks.size = 0;
  2238. }
  2239. } else if (test_bit(Faulty, &rdev->flags))
  2240. pr_debug("md: %s (skipping faulty)\n",
  2241. bdevname(rdev->bdev, b));
  2242. else
  2243. pr_debug("(skipping incremental s/r ");
  2244. if (mddev->level == LEVEL_MULTIPATH)
  2245. /* only need to write one superblock... */
  2246. break;
  2247. }
  2248. md_super_wait(mddev);
  2249. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2250. spin_lock_irq(&mddev->write_lock);
  2251. if (mddev->in_sync != sync_req ||
  2252. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2253. /* have to write it out again */
  2254. spin_unlock_irq(&mddev->write_lock);
  2255. goto repeat;
  2256. }
  2257. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2258. spin_unlock_irq(&mddev->write_lock);
  2259. wake_up(&mddev->sb_wait);
  2260. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2261. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2262. rdev_for_each(rdev, mddev) {
  2263. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2264. clear_bit(Blocked, &rdev->flags);
  2265. if (any_badblocks_changed)
  2266. md_ack_all_badblocks(&rdev->badblocks);
  2267. clear_bit(BlockedBadBlocks, &rdev->flags);
  2268. wake_up(&rdev->blocked_wait);
  2269. }
  2270. }
  2271. /* words written to sysfs files may, or may not, be \n terminated.
  2272. * We want to accept with case. For this we use cmd_match.
  2273. */
  2274. static int cmd_match(const char *cmd, const char *str)
  2275. {
  2276. /* See if cmd, written into a sysfs file, matches
  2277. * str. They must either be the same, or cmd can
  2278. * have a trailing newline
  2279. */
  2280. while (*cmd && *str && *cmd == *str) {
  2281. cmd++;
  2282. str++;
  2283. }
  2284. if (*cmd == '\n')
  2285. cmd++;
  2286. if (*str || *cmd)
  2287. return 0;
  2288. return 1;
  2289. }
  2290. struct rdev_sysfs_entry {
  2291. struct attribute attr;
  2292. ssize_t (*show)(struct md_rdev *, char *);
  2293. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2294. };
  2295. static ssize_t
  2296. state_show(struct md_rdev *rdev, char *page)
  2297. {
  2298. char *sep = "";
  2299. size_t len = 0;
  2300. if (test_bit(Faulty, &rdev->flags) ||
  2301. rdev->badblocks.unacked_exist) {
  2302. len+= sprintf(page+len, "%sfaulty",sep);
  2303. sep = ",";
  2304. }
  2305. if (test_bit(In_sync, &rdev->flags)) {
  2306. len += sprintf(page+len, "%sin_sync",sep);
  2307. sep = ",";
  2308. }
  2309. if (test_bit(WriteMostly, &rdev->flags)) {
  2310. len += sprintf(page+len, "%swrite_mostly",sep);
  2311. sep = ",";
  2312. }
  2313. if (test_bit(Blocked, &rdev->flags) ||
  2314. (rdev->badblocks.unacked_exist
  2315. && !test_bit(Faulty, &rdev->flags))) {
  2316. len += sprintf(page+len, "%sblocked", sep);
  2317. sep = ",";
  2318. }
  2319. if (!test_bit(Faulty, &rdev->flags) &&
  2320. !test_bit(In_sync, &rdev->flags)) {
  2321. len += sprintf(page+len, "%sspare", sep);
  2322. sep = ",";
  2323. }
  2324. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2325. len += sprintf(page+len, "%swrite_error", sep);
  2326. sep = ",";
  2327. }
  2328. if (test_bit(WantReplacement, &rdev->flags)) {
  2329. len += sprintf(page+len, "%swant_replacement", sep);
  2330. sep = ",";
  2331. }
  2332. if (test_bit(Replacement, &rdev->flags)) {
  2333. len += sprintf(page+len, "%sreplacement", sep);
  2334. sep = ",";
  2335. }
  2336. return len+sprintf(page+len, "\n");
  2337. }
  2338. static ssize_t
  2339. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2340. {
  2341. /* can write
  2342. * faulty - simulates an error
  2343. * remove - disconnects the device
  2344. * writemostly - sets write_mostly
  2345. * -writemostly - clears write_mostly
  2346. * blocked - sets the Blocked flags
  2347. * -blocked - clears the Blocked and possibly simulates an error
  2348. * insync - sets Insync providing device isn't active
  2349. * write_error - sets WriteErrorSeen
  2350. * -write_error - clears WriteErrorSeen
  2351. */
  2352. int err = -EINVAL;
  2353. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2354. md_error(rdev->mddev, rdev);
  2355. if (test_bit(Faulty, &rdev->flags))
  2356. err = 0;
  2357. else
  2358. err = -EBUSY;
  2359. } else if (cmd_match(buf, "remove")) {
  2360. if (rdev->raid_disk >= 0)
  2361. err = -EBUSY;
  2362. else {
  2363. struct mddev *mddev = rdev->mddev;
  2364. kick_rdev_from_array(rdev);
  2365. if (mddev->pers)
  2366. md_update_sb(mddev, 1);
  2367. md_new_event(mddev);
  2368. err = 0;
  2369. }
  2370. } else if (cmd_match(buf, "writemostly")) {
  2371. set_bit(WriteMostly, &rdev->flags);
  2372. err = 0;
  2373. } else if (cmd_match(buf, "-writemostly")) {
  2374. clear_bit(WriteMostly, &rdev->flags);
  2375. err = 0;
  2376. } else if (cmd_match(buf, "blocked")) {
  2377. set_bit(Blocked, &rdev->flags);
  2378. err = 0;
  2379. } else if (cmd_match(buf, "-blocked")) {
  2380. if (!test_bit(Faulty, &rdev->flags) &&
  2381. rdev->badblocks.unacked_exist) {
  2382. /* metadata handler doesn't understand badblocks,
  2383. * so we need to fail the device
  2384. */
  2385. md_error(rdev->mddev, rdev);
  2386. }
  2387. clear_bit(Blocked, &rdev->flags);
  2388. clear_bit(BlockedBadBlocks, &rdev->flags);
  2389. wake_up(&rdev->blocked_wait);
  2390. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2391. md_wakeup_thread(rdev->mddev->thread);
  2392. err = 0;
  2393. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2394. set_bit(In_sync, &rdev->flags);
  2395. err = 0;
  2396. } else if (cmd_match(buf, "write_error")) {
  2397. set_bit(WriteErrorSeen, &rdev->flags);
  2398. err = 0;
  2399. } else if (cmd_match(buf, "-write_error")) {
  2400. clear_bit(WriteErrorSeen, &rdev->flags);
  2401. err = 0;
  2402. } else if (cmd_match(buf, "want_replacement")) {
  2403. /* Any non-spare device that is not a replacement can
  2404. * become want_replacement at any time, but we then need to
  2405. * check if recovery is needed.
  2406. */
  2407. if (rdev->raid_disk >= 0 &&
  2408. !test_bit(Replacement, &rdev->flags))
  2409. set_bit(WantReplacement, &rdev->flags);
  2410. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2411. md_wakeup_thread(rdev->mddev->thread);
  2412. err = 0;
  2413. } else if (cmd_match(buf, "-want_replacement")) {
  2414. /* Clearing 'want_replacement' is always allowed.
  2415. * Once replacements starts it is too late though.
  2416. */
  2417. err = 0;
  2418. clear_bit(WantReplacement, &rdev->flags);
  2419. } else if (cmd_match(buf, "replacement")) {
  2420. /* Can only set a device as a replacement when array has not
  2421. * yet been started. Once running, replacement is automatic
  2422. * from spares, or by assigning 'slot'.
  2423. */
  2424. if (rdev->mddev->pers)
  2425. err = -EBUSY;
  2426. else {
  2427. set_bit(Replacement, &rdev->flags);
  2428. err = 0;
  2429. }
  2430. } else if (cmd_match(buf, "-replacement")) {
  2431. /* Similarly, can only clear Replacement before start */
  2432. if (rdev->mddev->pers)
  2433. err = -EBUSY;
  2434. else {
  2435. clear_bit(Replacement, &rdev->flags);
  2436. err = 0;
  2437. }
  2438. }
  2439. if (!err)
  2440. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2441. return err ? err : len;
  2442. }
  2443. static struct rdev_sysfs_entry rdev_state =
  2444. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2445. static ssize_t
  2446. errors_show(struct md_rdev *rdev, char *page)
  2447. {
  2448. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2449. }
  2450. static ssize_t
  2451. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2452. {
  2453. char *e;
  2454. unsigned long n = simple_strtoul(buf, &e, 10);
  2455. if (*buf && (*e == 0 || *e == '\n')) {
  2456. atomic_set(&rdev->corrected_errors, n);
  2457. return len;
  2458. }
  2459. return -EINVAL;
  2460. }
  2461. static struct rdev_sysfs_entry rdev_errors =
  2462. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2463. static ssize_t
  2464. slot_show(struct md_rdev *rdev, char *page)
  2465. {
  2466. if (rdev->raid_disk < 0)
  2467. return sprintf(page, "none\n");
  2468. else
  2469. return sprintf(page, "%d\n", rdev->raid_disk);
  2470. }
  2471. static ssize_t
  2472. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2473. {
  2474. char *e;
  2475. int err;
  2476. int slot = simple_strtoul(buf, &e, 10);
  2477. if (strncmp(buf, "none", 4)==0)
  2478. slot = -1;
  2479. else if (e==buf || (*e && *e!= '\n'))
  2480. return -EINVAL;
  2481. if (rdev->mddev->pers && slot == -1) {
  2482. /* Setting 'slot' on an active array requires also
  2483. * updating the 'rd%d' link, and communicating
  2484. * with the personality with ->hot_*_disk.
  2485. * For now we only support removing
  2486. * failed/spare devices. This normally happens automatically,
  2487. * but not when the metadata is externally managed.
  2488. */
  2489. if (rdev->raid_disk == -1)
  2490. return -EEXIST;
  2491. /* personality does all needed checks */
  2492. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2493. return -EINVAL;
  2494. clear_bit(Blocked, &rdev->flags);
  2495. remove_and_add_spares(rdev->mddev, rdev);
  2496. if (rdev->raid_disk >= 0)
  2497. return -EBUSY;
  2498. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2499. md_wakeup_thread(rdev->mddev->thread);
  2500. } else if (rdev->mddev->pers) {
  2501. /* Activating a spare .. or possibly reactivating
  2502. * if we ever get bitmaps working here.
  2503. */
  2504. if (rdev->raid_disk != -1)
  2505. return -EBUSY;
  2506. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2507. return -EBUSY;
  2508. if (rdev->mddev->pers->hot_add_disk == NULL)
  2509. return -EINVAL;
  2510. if (slot >= rdev->mddev->raid_disks &&
  2511. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2512. return -ENOSPC;
  2513. rdev->raid_disk = slot;
  2514. if (test_bit(In_sync, &rdev->flags))
  2515. rdev->saved_raid_disk = slot;
  2516. else
  2517. rdev->saved_raid_disk = -1;
  2518. clear_bit(In_sync, &rdev->flags);
  2519. err = rdev->mddev->pers->
  2520. hot_add_disk(rdev->mddev, rdev);
  2521. if (err) {
  2522. rdev->raid_disk = -1;
  2523. return err;
  2524. } else
  2525. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2526. if (sysfs_link_rdev(rdev->mddev, rdev))
  2527. /* failure here is OK */;
  2528. /* don't wakeup anyone, leave that to userspace. */
  2529. } else {
  2530. if (slot >= rdev->mddev->raid_disks &&
  2531. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2532. return -ENOSPC;
  2533. rdev->raid_disk = slot;
  2534. /* assume it is working */
  2535. clear_bit(Faulty, &rdev->flags);
  2536. clear_bit(WriteMostly, &rdev->flags);
  2537. set_bit(In_sync, &rdev->flags);
  2538. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2539. }
  2540. return len;
  2541. }
  2542. static struct rdev_sysfs_entry rdev_slot =
  2543. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2544. static ssize_t
  2545. offset_show(struct md_rdev *rdev, char *page)
  2546. {
  2547. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2548. }
  2549. static ssize_t
  2550. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2551. {
  2552. unsigned long long offset;
  2553. if (kstrtoull(buf, 10, &offset) < 0)
  2554. return -EINVAL;
  2555. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2556. return -EBUSY;
  2557. if (rdev->sectors && rdev->mddev->external)
  2558. /* Must set offset before size, so overlap checks
  2559. * can be sane */
  2560. return -EBUSY;
  2561. rdev->data_offset = offset;
  2562. rdev->new_data_offset = offset;
  2563. return len;
  2564. }
  2565. static struct rdev_sysfs_entry rdev_offset =
  2566. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2567. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2568. {
  2569. return sprintf(page, "%llu\n",
  2570. (unsigned long long)rdev->new_data_offset);
  2571. }
  2572. static ssize_t new_offset_store(struct md_rdev *rdev,
  2573. const char *buf, size_t len)
  2574. {
  2575. unsigned long long new_offset;
  2576. struct mddev *mddev = rdev->mddev;
  2577. if (kstrtoull(buf, 10, &new_offset) < 0)
  2578. return -EINVAL;
  2579. if (mddev->sync_thread)
  2580. return -EBUSY;
  2581. if (new_offset == rdev->data_offset)
  2582. /* reset is always permitted */
  2583. ;
  2584. else if (new_offset > rdev->data_offset) {
  2585. /* must not push array size beyond rdev_sectors */
  2586. if (new_offset - rdev->data_offset
  2587. + mddev->dev_sectors > rdev->sectors)
  2588. return -E2BIG;
  2589. }
  2590. /* Metadata worries about other space details. */
  2591. /* decreasing the offset is inconsistent with a backwards
  2592. * reshape.
  2593. */
  2594. if (new_offset < rdev->data_offset &&
  2595. mddev->reshape_backwards)
  2596. return -EINVAL;
  2597. /* Increasing offset is inconsistent with forwards
  2598. * reshape. reshape_direction should be set to
  2599. * 'backwards' first.
  2600. */
  2601. if (new_offset > rdev->data_offset &&
  2602. !mddev->reshape_backwards)
  2603. return -EINVAL;
  2604. if (mddev->pers && mddev->persistent &&
  2605. !super_types[mddev->major_version]
  2606. .allow_new_offset(rdev, new_offset))
  2607. return -E2BIG;
  2608. rdev->new_data_offset = new_offset;
  2609. if (new_offset > rdev->data_offset)
  2610. mddev->reshape_backwards = 1;
  2611. else if (new_offset < rdev->data_offset)
  2612. mddev->reshape_backwards = 0;
  2613. return len;
  2614. }
  2615. static struct rdev_sysfs_entry rdev_new_offset =
  2616. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2617. static ssize_t
  2618. rdev_size_show(struct md_rdev *rdev, char *page)
  2619. {
  2620. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2621. }
  2622. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2623. {
  2624. /* check if two start/length pairs overlap */
  2625. if (s1+l1 <= s2)
  2626. return 0;
  2627. if (s2+l2 <= s1)
  2628. return 0;
  2629. return 1;
  2630. }
  2631. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2632. {
  2633. unsigned long long blocks;
  2634. sector_t new;
  2635. if (kstrtoull(buf, 10, &blocks) < 0)
  2636. return -EINVAL;
  2637. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2638. return -EINVAL; /* sector conversion overflow */
  2639. new = blocks * 2;
  2640. if (new != blocks * 2)
  2641. return -EINVAL; /* unsigned long long to sector_t overflow */
  2642. *sectors = new;
  2643. return 0;
  2644. }
  2645. static ssize_t
  2646. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2647. {
  2648. struct mddev *my_mddev = rdev->mddev;
  2649. sector_t oldsectors = rdev->sectors;
  2650. sector_t sectors;
  2651. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2652. return -EINVAL;
  2653. if (rdev->data_offset != rdev->new_data_offset)
  2654. return -EINVAL; /* too confusing */
  2655. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2656. if (my_mddev->persistent) {
  2657. sectors = super_types[my_mddev->major_version].
  2658. rdev_size_change(rdev, sectors);
  2659. if (!sectors)
  2660. return -EBUSY;
  2661. } else if (!sectors)
  2662. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2663. rdev->data_offset;
  2664. if (!my_mddev->pers->resize)
  2665. /* Cannot change size for RAID0 or Linear etc */
  2666. return -EINVAL;
  2667. }
  2668. if (sectors < my_mddev->dev_sectors)
  2669. return -EINVAL; /* component must fit device */
  2670. rdev->sectors = sectors;
  2671. if (sectors > oldsectors && my_mddev->external) {
  2672. /* need to check that all other rdevs with the same ->bdev
  2673. * do not overlap. We need to unlock the mddev to avoid
  2674. * a deadlock. We have already changed rdev->sectors, and if
  2675. * we have to change it back, we will have the lock again.
  2676. */
  2677. struct mddev *mddev;
  2678. int overlap = 0;
  2679. struct list_head *tmp;
  2680. mddev_unlock(my_mddev);
  2681. for_each_mddev(mddev, tmp) {
  2682. struct md_rdev *rdev2;
  2683. mddev_lock_nointr(mddev);
  2684. rdev_for_each(rdev2, mddev)
  2685. if (rdev->bdev == rdev2->bdev &&
  2686. rdev != rdev2 &&
  2687. overlaps(rdev->data_offset, rdev->sectors,
  2688. rdev2->data_offset,
  2689. rdev2->sectors)) {
  2690. overlap = 1;
  2691. break;
  2692. }
  2693. mddev_unlock(mddev);
  2694. if (overlap) {
  2695. mddev_put(mddev);
  2696. break;
  2697. }
  2698. }
  2699. mddev_lock_nointr(my_mddev);
  2700. if (overlap) {
  2701. /* Someone else could have slipped in a size
  2702. * change here, but doing so is just silly.
  2703. * We put oldsectors back because we *know* it is
  2704. * safe, and trust userspace not to race with
  2705. * itself
  2706. */
  2707. rdev->sectors = oldsectors;
  2708. return -EBUSY;
  2709. }
  2710. }
  2711. return len;
  2712. }
  2713. static struct rdev_sysfs_entry rdev_size =
  2714. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2715. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2716. {
  2717. unsigned long long recovery_start = rdev->recovery_offset;
  2718. if (test_bit(In_sync, &rdev->flags) ||
  2719. recovery_start == MaxSector)
  2720. return sprintf(page, "none\n");
  2721. return sprintf(page, "%llu\n", recovery_start);
  2722. }
  2723. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2724. {
  2725. unsigned long long recovery_start;
  2726. if (cmd_match(buf, "none"))
  2727. recovery_start = MaxSector;
  2728. else if (kstrtoull(buf, 10, &recovery_start))
  2729. return -EINVAL;
  2730. if (rdev->mddev->pers &&
  2731. rdev->raid_disk >= 0)
  2732. return -EBUSY;
  2733. rdev->recovery_offset = recovery_start;
  2734. if (recovery_start == MaxSector)
  2735. set_bit(In_sync, &rdev->flags);
  2736. else
  2737. clear_bit(In_sync, &rdev->flags);
  2738. return len;
  2739. }
  2740. static struct rdev_sysfs_entry rdev_recovery_start =
  2741. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2742. static ssize_t
  2743. badblocks_show(struct badblocks *bb, char *page, int unack);
  2744. static ssize_t
  2745. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2746. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2747. {
  2748. return badblocks_show(&rdev->badblocks, page, 0);
  2749. }
  2750. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2751. {
  2752. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2753. /* Maybe that ack was all we needed */
  2754. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2755. wake_up(&rdev->blocked_wait);
  2756. return rv;
  2757. }
  2758. static struct rdev_sysfs_entry rdev_bad_blocks =
  2759. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2760. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2761. {
  2762. return badblocks_show(&rdev->badblocks, page, 1);
  2763. }
  2764. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2765. {
  2766. return badblocks_store(&rdev->badblocks, page, len, 1);
  2767. }
  2768. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2769. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2770. static struct attribute *rdev_default_attrs[] = {
  2771. &rdev_state.attr,
  2772. &rdev_errors.attr,
  2773. &rdev_slot.attr,
  2774. &rdev_offset.attr,
  2775. &rdev_new_offset.attr,
  2776. &rdev_size.attr,
  2777. &rdev_recovery_start.attr,
  2778. &rdev_bad_blocks.attr,
  2779. &rdev_unack_bad_blocks.attr,
  2780. NULL,
  2781. };
  2782. static ssize_t
  2783. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2784. {
  2785. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2786. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2787. struct mddev *mddev = rdev->mddev;
  2788. ssize_t rv;
  2789. if (!entry->show)
  2790. return -EIO;
  2791. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2792. if (!rv) {
  2793. if (rdev->mddev == NULL)
  2794. rv = -EBUSY;
  2795. else
  2796. rv = entry->show(rdev, page);
  2797. mddev_unlock(mddev);
  2798. }
  2799. return rv;
  2800. }
  2801. static ssize_t
  2802. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2803. const char *page, size_t length)
  2804. {
  2805. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2806. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2807. ssize_t rv;
  2808. struct mddev *mddev = rdev->mddev;
  2809. if (!entry->store)
  2810. return -EIO;
  2811. if (!capable(CAP_SYS_ADMIN))
  2812. return -EACCES;
  2813. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2814. if (!rv) {
  2815. if (rdev->mddev == NULL)
  2816. rv = -EBUSY;
  2817. else
  2818. rv = entry->store(rdev, page, length);
  2819. mddev_unlock(mddev);
  2820. }
  2821. return rv;
  2822. }
  2823. static void rdev_free(struct kobject *ko)
  2824. {
  2825. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2826. kfree(rdev);
  2827. }
  2828. static const struct sysfs_ops rdev_sysfs_ops = {
  2829. .show = rdev_attr_show,
  2830. .store = rdev_attr_store,
  2831. };
  2832. static struct kobj_type rdev_ktype = {
  2833. .release = rdev_free,
  2834. .sysfs_ops = &rdev_sysfs_ops,
  2835. .default_attrs = rdev_default_attrs,
  2836. };
  2837. int md_rdev_init(struct md_rdev *rdev)
  2838. {
  2839. rdev->desc_nr = -1;
  2840. rdev->saved_raid_disk = -1;
  2841. rdev->raid_disk = -1;
  2842. rdev->flags = 0;
  2843. rdev->data_offset = 0;
  2844. rdev->new_data_offset = 0;
  2845. rdev->sb_events = 0;
  2846. rdev->last_read_error.tv_sec = 0;
  2847. rdev->last_read_error.tv_nsec = 0;
  2848. rdev->sb_loaded = 0;
  2849. rdev->bb_page = NULL;
  2850. atomic_set(&rdev->nr_pending, 0);
  2851. atomic_set(&rdev->read_errors, 0);
  2852. atomic_set(&rdev->corrected_errors, 0);
  2853. INIT_LIST_HEAD(&rdev->same_set);
  2854. init_waitqueue_head(&rdev->blocked_wait);
  2855. /* Add space to store bad block list.
  2856. * This reserves the space even on arrays where it cannot
  2857. * be used - I wonder if that matters
  2858. */
  2859. rdev->badblocks.count = 0;
  2860. rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
  2861. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2862. seqlock_init(&rdev->badblocks.lock);
  2863. if (rdev->badblocks.page == NULL)
  2864. return -ENOMEM;
  2865. return 0;
  2866. }
  2867. EXPORT_SYMBOL_GPL(md_rdev_init);
  2868. /*
  2869. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2870. *
  2871. * mark the device faulty if:
  2872. *
  2873. * - the device is nonexistent (zero size)
  2874. * - the device has no valid superblock
  2875. *
  2876. * a faulty rdev _never_ has rdev->sb set.
  2877. */
  2878. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2879. {
  2880. char b[BDEVNAME_SIZE];
  2881. int err;
  2882. struct md_rdev *rdev;
  2883. sector_t size;
  2884. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2885. if (!rdev) {
  2886. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2887. return ERR_PTR(-ENOMEM);
  2888. }
  2889. err = md_rdev_init(rdev);
  2890. if (err)
  2891. goto abort_free;
  2892. err = alloc_disk_sb(rdev);
  2893. if (err)
  2894. goto abort_free;
  2895. err = lock_rdev(rdev, newdev, super_format == -2);
  2896. if (err)
  2897. goto abort_free;
  2898. kobject_init(&rdev->kobj, &rdev_ktype);
  2899. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2900. if (!size) {
  2901. printk(KERN_WARNING
  2902. "md: %s has zero or unknown size, marking faulty!\n",
  2903. bdevname(rdev->bdev,b));
  2904. err = -EINVAL;
  2905. goto abort_free;
  2906. }
  2907. if (super_format >= 0) {
  2908. err = super_types[super_format].
  2909. load_super(rdev, NULL, super_minor);
  2910. if (err == -EINVAL) {
  2911. printk(KERN_WARNING
  2912. "md: %s does not have a valid v%d.%d "
  2913. "superblock, not importing!\n",
  2914. bdevname(rdev->bdev,b),
  2915. super_format, super_minor);
  2916. goto abort_free;
  2917. }
  2918. if (err < 0) {
  2919. printk(KERN_WARNING
  2920. "md: could not read %s's sb, not importing!\n",
  2921. bdevname(rdev->bdev,b));
  2922. goto abort_free;
  2923. }
  2924. }
  2925. return rdev;
  2926. abort_free:
  2927. if (rdev->bdev)
  2928. unlock_rdev(rdev);
  2929. md_rdev_clear(rdev);
  2930. kfree(rdev);
  2931. return ERR_PTR(err);
  2932. }
  2933. /*
  2934. * Check a full RAID array for plausibility
  2935. */
  2936. static void analyze_sbs(struct mddev * mddev)
  2937. {
  2938. int i;
  2939. struct md_rdev *rdev, *freshest, *tmp;
  2940. char b[BDEVNAME_SIZE];
  2941. freshest = NULL;
  2942. rdev_for_each_safe(rdev, tmp, mddev)
  2943. switch (super_types[mddev->major_version].
  2944. load_super(rdev, freshest, mddev->minor_version)) {
  2945. case 1:
  2946. freshest = rdev;
  2947. break;
  2948. case 0:
  2949. break;
  2950. default:
  2951. printk( KERN_ERR \
  2952. "md: fatal superblock inconsistency in %s"
  2953. " -- removing from array\n",
  2954. bdevname(rdev->bdev,b));
  2955. kick_rdev_from_array(rdev);
  2956. }
  2957. super_types[mddev->major_version].
  2958. validate_super(mddev, freshest);
  2959. i = 0;
  2960. rdev_for_each_safe(rdev, tmp, mddev) {
  2961. if (mddev->max_disks &&
  2962. (rdev->desc_nr >= mddev->max_disks ||
  2963. i > mddev->max_disks)) {
  2964. printk(KERN_WARNING
  2965. "md: %s: %s: only %d devices permitted\n",
  2966. mdname(mddev), bdevname(rdev->bdev, b),
  2967. mddev->max_disks);
  2968. kick_rdev_from_array(rdev);
  2969. continue;
  2970. }
  2971. if (rdev != freshest)
  2972. if (super_types[mddev->major_version].
  2973. validate_super(mddev, rdev)) {
  2974. printk(KERN_WARNING "md: kicking non-fresh %s"
  2975. " from array!\n",
  2976. bdevname(rdev->bdev,b));
  2977. kick_rdev_from_array(rdev);
  2978. continue;
  2979. }
  2980. if (mddev->level == LEVEL_MULTIPATH) {
  2981. rdev->desc_nr = i++;
  2982. rdev->raid_disk = rdev->desc_nr;
  2983. set_bit(In_sync, &rdev->flags);
  2984. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2985. rdev->raid_disk = -1;
  2986. clear_bit(In_sync, &rdev->flags);
  2987. }
  2988. }
  2989. }
  2990. /* Read a fixed-point number.
  2991. * Numbers in sysfs attributes should be in "standard" units where
  2992. * possible, so time should be in seconds.
  2993. * However we internally use a a much smaller unit such as
  2994. * milliseconds or jiffies.
  2995. * This function takes a decimal number with a possible fractional
  2996. * component, and produces an integer which is the result of
  2997. * multiplying that number by 10^'scale'.
  2998. * all without any floating-point arithmetic.
  2999. */
  3000. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3001. {
  3002. unsigned long result = 0;
  3003. long decimals = -1;
  3004. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3005. if (*cp == '.')
  3006. decimals = 0;
  3007. else if (decimals < scale) {
  3008. unsigned int value;
  3009. value = *cp - '0';
  3010. result = result * 10 + value;
  3011. if (decimals >= 0)
  3012. decimals++;
  3013. }
  3014. cp++;
  3015. }
  3016. if (*cp == '\n')
  3017. cp++;
  3018. if (*cp)
  3019. return -EINVAL;
  3020. if (decimals < 0)
  3021. decimals = 0;
  3022. while (decimals < scale) {
  3023. result *= 10;
  3024. decimals ++;
  3025. }
  3026. *res = result;
  3027. return 0;
  3028. }
  3029. static void md_safemode_timeout(unsigned long data);
  3030. static ssize_t
  3031. safe_delay_show(struct mddev *mddev, char *page)
  3032. {
  3033. int msec = (mddev->safemode_delay*1000)/HZ;
  3034. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3035. }
  3036. static ssize_t
  3037. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3038. {
  3039. unsigned long msec;
  3040. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3041. return -EINVAL;
  3042. if (msec == 0)
  3043. mddev->safemode_delay = 0;
  3044. else {
  3045. unsigned long old_delay = mddev->safemode_delay;
  3046. mddev->safemode_delay = (msec*HZ)/1000;
  3047. if (mddev->safemode_delay == 0)
  3048. mddev->safemode_delay = 1;
  3049. if (mddev->safemode_delay < old_delay || old_delay == 0)
  3050. md_safemode_timeout((unsigned long)mddev);
  3051. }
  3052. return len;
  3053. }
  3054. static struct md_sysfs_entry md_safe_delay =
  3055. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3056. static ssize_t
  3057. level_show(struct mddev *mddev, char *page)
  3058. {
  3059. struct md_personality *p = mddev->pers;
  3060. if (p)
  3061. return sprintf(page, "%s\n", p->name);
  3062. else if (mddev->clevel[0])
  3063. return sprintf(page, "%s\n", mddev->clevel);
  3064. else if (mddev->level != LEVEL_NONE)
  3065. return sprintf(page, "%d\n", mddev->level);
  3066. else
  3067. return 0;
  3068. }
  3069. static ssize_t
  3070. level_store(struct mddev *mddev, const char *buf, size_t len)
  3071. {
  3072. char clevel[16];
  3073. ssize_t rv = len;
  3074. struct md_personality *pers;
  3075. long level;
  3076. void *priv;
  3077. struct md_rdev *rdev;
  3078. if (mddev->pers == NULL) {
  3079. if (len == 0)
  3080. return 0;
  3081. if (len >= sizeof(mddev->clevel))
  3082. return -ENOSPC;
  3083. strncpy(mddev->clevel, buf, len);
  3084. if (mddev->clevel[len-1] == '\n')
  3085. len--;
  3086. mddev->clevel[len] = 0;
  3087. mddev->level = LEVEL_NONE;
  3088. return rv;
  3089. }
  3090. /* request to change the personality. Need to ensure:
  3091. * - array is not engaged in resync/recovery/reshape
  3092. * - old personality can be suspended
  3093. * - new personality will access other array.
  3094. */
  3095. if (mddev->sync_thread ||
  3096. mddev->reshape_position != MaxSector ||
  3097. mddev->sysfs_active)
  3098. return -EBUSY;
  3099. if (!mddev->pers->quiesce) {
  3100. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3101. mdname(mddev), mddev->pers->name);
  3102. return -EINVAL;
  3103. }
  3104. /* Now find the new personality */
  3105. if (len == 0 || len >= sizeof(clevel))
  3106. return -EINVAL;
  3107. strncpy(clevel, buf, len);
  3108. if (clevel[len-1] == '\n')
  3109. len--;
  3110. clevel[len] = 0;
  3111. if (kstrtol(clevel, 10, &level))
  3112. level = LEVEL_NONE;
  3113. if (request_module("md-%s", clevel) != 0)
  3114. request_module("md-level-%s", clevel);
  3115. spin_lock(&pers_lock);
  3116. pers = find_pers(level, clevel);
  3117. if (!pers || !try_module_get(pers->owner)) {
  3118. spin_unlock(&pers_lock);
  3119. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3120. return -EINVAL;
  3121. }
  3122. spin_unlock(&pers_lock);
  3123. if (pers == mddev->pers) {
  3124. /* Nothing to do! */
  3125. module_put(pers->owner);
  3126. return rv;
  3127. }
  3128. if (!pers->takeover) {
  3129. module_put(pers->owner);
  3130. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3131. mdname(mddev), clevel);
  3132. return -EINVAL;
  3133. }
  3134. rdev_for_each(rdev, mddev)
  3135. rdev->new_raid_disk = rdev->raid_disk;
  3136. /* ->takeover must set new_* and/or delta_disks
  3137. * if it succeeds, and may set them when it fails.
  3138. */
  3139. priv = pers->takeover(mddev);
  3140. if (IS_ERR(priv)) {
  3141. mddev->new_level = mddev->level;
  3142. mddev->new_layout = mddev->layout;
  3143. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3144. mddev->raid_disks -= mddev->delta_disks;
  3145. mddev->delta_disks = 0;
  3146. mddev->reshape_backwards = 0;
  3147. module_put(pers->owner);
  3148. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3149. mdname(mddev), clevel);
  3150. return PTR_ERR(priv);
  3151. }
  3152. /* Looks like we have a winner */
  3153. mddev_suspend(mddev);
  3154. mddev->pers->stop(mddev);
  3155. if (mddev->pers->sync_request == NULL &&
  3156. pers->sync_request != NULL) {
  3157. /* need to add the md_redundancy_group */
  3158. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3159. printk(KERN_WARNING
  3160. "md: cannot register extra attributes for %s\n",
  3161. mdname(mddev));
  3162. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3163. }
  3164. if (mddev->pers->sync_request != NULL &&
  3165. pers->sync_request == NULL) {
  3166. /* need to remove the md_redundancy_group */
  3167. if (mddev->to_remove == NULL)
  3168. mddev->to_remove = &md_redundancy_group;
  3169. }
  3170. if (mddev->pers->sync_request == NULL &&
  3171. mddev->external) {
  3172. /* We are converting from a no-redundancy array
  3173. * to a redundancy array and metadata is managed
  3174. * externally so we need to be sure that writes
  3175. * won't block due to a need to transition
  3176. * clean->dirty
  3177. * until external management is started.
  3178. */
  3179. mddev->in_sync = 0;
  3180. mddev->safemode_delay = 0;
  3181. mddev->safemode = 0;
  3182. }
  3183. rdev_for_each(rdev, mddev) {
  3184. if (rdev->raid_disk < 0)
  3185. continue;
  3186. if (rdev->new_raid_disk >= mddev->raid_disks)
  3187. rdev->new_raid_disk = -1;
  3188. if (rdev->new_raid_disk == rdev->raid_disk)
  3189. continue;
  3190. sysfs_unlink_rdev(mddev, rdev);
  3191. }
  3192. rdev_for_each(rdev, mddev) {
  3193. if (rdev->raid_disk < 0)
  3194. continue;
  3195. if (rdev->new_raid_disk == rdev->raid_disk)
  3196. continue;
  3197. rdev->raid_disk = rdev->new_raid_disk;
  3198. if (rdev->raid_disk < 0)
  3199. clear_bit(In_sync, &rdev->flags);
  3200. else {
  3201. if (sysfs_link_rdev(mddev, rdev))
  3202. printk(KERN_WARNING "md: cannot register rd%d"
  3203. " for %s after level change\n",
  3204. rdev->raid_disk, mdname(mddev));
  3205. }
  3206. }
  3207. module_put(mddev->pers->owner);
  3208. mddev->pers = pers;
  3209. mddev->private = priv;
  3210. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3211. mddev->level = mddev->new_level;
  3212. mddev->layout = mddev->new_layout;
  3213. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3214. mddev->delta_disks = 0;
  3215. mddev->reshape_backwards = 0;
  3216. mddev->degraded = 0;
  3217. if (mddev->pers->sync_request == NULL) {
  3218. /* this is now an array without redundancy, so
  3219. * it must always be in_sync
  3220. */
  3221. mddev->in_sync = 1;
  3222. del_timer_sync(&mddev->safemode_timer);
  3223. }
  3224. blk_set_stacking_limits(&mddev->queue->limits);
  3225. pers->run(mddev);
  3226. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3227. mddev_resume(mddev);
  3228. sysfs_notify(&mddev->kobj, NULL, "level");
  3229. md_new_event(mddev);
  3230. return rv;
  3231. }
  3232. static struct md_sysfs_entry md_level =
  3233. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3234. static ssize_t
  3235. layout_show(struct mddev *mddev, char *page)
  3236. {
  3237. /* just a number, not meaningful for all levels */
  3238. if (mddev->reshape_position != MaxSector &&
  3239. mddev->layout != mddev->new_layout)
  3240. return sprintf(page, "%d (%d)\n",
  3241. mddev->new_layout, mddev->layout);
  3242. return sprintf(page, "%d\n", mddev->layout);
  3243. }
  3244. static ssize_t
  3245. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3246. {
  3247. char *e;
  3248. unsigned long n = simple_strtoul(buf, &e, 10);
  3249. if (!*buf || (*e && *e != '\n'))
  3250. return -EINVAL;
  3251. if (mddev->pers) {
  3252. int err;
  3253. if (mddev->pers->check_reshape == NULL)
  3254. return -EBUSY;
  3255. mddev->new_layout = n;
  3256. err = mddev->pers->check_reshape(mddev);
  3257. if (err) {
  3258. mddev->new_layout = mddev->layout;
  3259. return err;
  3260. }
  3261. } else {
  3262. mddev->new_layout = n;
  3263. if (mddev->reshape_position == MaxSector)
  3264. mddev->layout = n;
  3265. }
  3266. return len;
  3267. }
  3268. static struct md_sysfs_entry md_layout =
  3269. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3270. static ssize_t
  3271. raid_disks_show(struct mddev *mddev, char *page)
  3272. {
  3273. if (mddev->raid_disks == 0)
  3274. return 0;
  3275. if (mddev->reshape_position != MaxSector &&
  3276. mddev->delta_disks != 0)
  3277. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3278. mddev->raid_disks - mddev->delta_disks);
  3279. return sprintf(page, "%d\n", mddev->raid_disks);
  3280. }
  3281. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3282. static ssize_t
  3283. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3284. {
  3285. char *e;
  3286. int rv = 0;
  3287. unsigned long n = simple_strtoul(buf, &e, 10);
  3288. if (!*buf || (*e && *e != '\n'))
  3289. return -EINVAL;
  3290. if (mddev->pers)
  3291. rv = update_raid_disks(mddev, n);
  3292. else if (mddev->reshape_position != MaxSector) {
  3293. struct md_rdev *rdev;
  3294. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3295. rdev_for_each(rdev, mddev) {
  3296. if (olddisks < n &&
  3297. rdev->data_offset < rdev->new_data_offset)
  3298. return -EINVAL;
  3299. if (olddisks > n &&
  3300. rdev->data_offset > rdev->new_data_offset)
  3301. return -EINVAL;
  3302. }
  3303. mddev->delta_disks = n - olddisks;
  3304. mddev->raid_disks = n;
  3305. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3306. } else
  3307. mddev->raid_disks = n;
  3308. return rv ? rv : len;
  3309. }
  3310. static struct md_sysfs_entry md_raid_disks =
  3311. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3312. static ssize_t
  3313. chunk_size_show(struct mddev *mddev, char *page)
  3314. {
  3315. if (mddev->reshape_position != MaxSector &&
  3316. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3317. return sprintf(page, "%d (%d)\n",
  3318. mddev->new_chunk_sectors << 9,
  3319. mddev->chunk_sectors << 9);
  3320. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3321. }
  3322. static ssize_t
  3323. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3324. {
  3325. char *e;
  3326. unsigned long n = simple_strtoul(buf, &e, 10);
  3327. if (!*buf || (*e && *e != '\n'))
  3328. return -EINVAL;
  3329. if (mddev->pers) {
  3330. int err;
  3331. if (mddev->pers->check_reshape == NULL)
  3332. return -EBUSY;
  3333. mddev->new_chunk_sectors = n >> 9;
  3334. err = mddev->pers->check_reshape(mddev);
  3335. if (err) {
  3336. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3337. return err;
  3338. }
  3339. } else {
  3340. mddev->new_chunk_sectors = n >> 9;
  3341. if (mddev->reshape_position == MaxSector)
  3342. mddev->chunk_sectors = n >> 9;
  3343. }
  3344. return len;
  3345. }
  3346. static struct md_sysfs_entry md_chunk_size =
  3347. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3348. static ssize_t
  3349. resync_start_show(struct mddev *mddev, char *page)
  3350. {
  3351. if (mddev->recovery_cp == MaxSector)
  3352. return sprintf(page, "none\n");
  3353. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3354. }
  3355. static ssize_t
  3356. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3357. {
  3358. char *e;
  3359. unsigned long long n = simple_strtoull(buf, &e, 10);
  3360. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3361. return -EBUSY;
  3362. if (cmd_match(buf, "none"))
  3363. n = MaxSector;
  3364. else if (!*buf || (*e && *e != '\n'))
  3365. return -EINVAL;
  3366. mddev->recovery_cp = n;
  3367. if (mddev->pers)
  3368. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3369. return len;
  3370. }
  3371. static struct md_sysfs_entry md_resync_start =
  3372. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3373. /*
  3374. * The array state can be:
  3375. *
  3376. * clear
  3377. * No devices, no size, no level
  3378. * Equivalent to STOP_ARRAY ioctl
  3379. * inactive
  3380. * May have some settings, but array is not active
  3381. * all IO results in error
  3382. * When written, doesn't tear down array, but just stops it
  3383. * suspended (not supported yet)
  3384. * All IO requests will block. The array can be reconfigured.
  3385. * Writing this, if accepted, will block until array is quiescent
  3386. * readonly
  3387. * no resync can happen. no superblocks get written.
  3388. * write requests fail
  3389. * read-auto
  3390. * like readonly, but behaves like 'clean' on a write request.
  3391. *
  3392. * clean - no pending writes, but otherwise active.
  3393. * When written to inactive array, starts without resync
  3394. * If a write request arrives then
  3395. * if metadata is known, mark 'dirty' and switch to 'active'.
  3396. * if not known, block and switch to write-pending
  3397. * If written to an active array that has pending writes, then fails.
  3398. * active
  3399. * fully active: IO and resync can be happening.
  3400. * When written to inactive array, starts with resync
  3401. *
  3402. * write-pending
  3403. * clean, but writes are blocked waiting for 'active' to be written.
  3404. *
  3405. * active-idle
  3406. * like active, but no writes have been seen for a while (100msec).
  3407. *
  3408. */
  3409. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3410. write_pending, active_idle, bad_word};
  3411. static char *array_states[] = {
  3412. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3413. "write-pending", "active-idle", NULL };
  3414. static int match_word(const char *word, char **list)
  3415. {
  3416. int n;
  3417. for (n=0; list[n]; n++)
  3418. if (cmd_match(word, list[n]))
  3419. break;
  3420. return n;
  3421. }
  3422. static ssize_t
  3423. array_state_show(struct mddev *mddev, char *page)
  3424. {
  3425. enum array_state st = inactive;
  3426. if (mddev->pers)
  3427. switch(mddev->ro) {
  3428. case 1:
  3429. st = readonly;
  3430. break;
  3431. case 2:
  3432. st = read_auto;
  3433. break;
  3434. case 0:
  3435. if (mddev->in_sync)
  3436. st = clean;
  3437. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3438. st = write_pending;
  3439. else if (mddev->safemode)
  3440. st = active_idle;
  3441. else
  3442. st = active;
  3443. }
  3444. else {
  3445. if (list_empty(&mddev->disks) &&
  3446. mddev->raid_disks == 0 &&
  3447. mddev->dev_sectors == 0)
  3448. st = clear;
  3449. else
  3450. st = inactive;
  3451. }
  3452. return sprintf(page, "%s\n", array_states[st]);
  3453. }
  3454. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3455. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3456. static int do_md_run(struct mddev * mddev);
  3457. static int restart_array(struct mddev *mddev);
  3458. static ssize_t
  3459. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3460. {
  3461. int err = -EINVAL;
  3462. enum array_state st = match_word(buf, array_states);
  3463. switch(st) {
  3464. case bad_word:
  3465. break;
  3466. case clear:
  3467. /* stopping an active array */
  3468. err = do_md_stop(mddev, 0, NULL);
  3469. break;
  3470. case inactive:
  3471. /* stopping an active array */
  3472. if (mddev->pers)
  3473. err = do_md_stop(mddev, 2, NULL);
  3474. else
  3475. err = 0; /* already inactive */
  3476. break;
  3477. case suspended:
  3478. break; /* not supported yet */
  3479. case readonly:
  3480. if (mddev->pers)
  3481. err = md_set_readonly(mddev, NULL);
  3482. else {
  3483. mddev->ro = 1;
  3484. set_disk_ro(mddev->gendisk, 1);
  3485. err = do_md_run(mddev);
  3486. }
  3487. break;
  3488. case read_auto:
  3489. if (mddev->pers) {
  3490. if (mddev->ro == 0)
  3491. err = md_set_readonly(mddev, NULL);
  3492. else if (mddev->ro == 1)
  3493. err = restart_array(mddev);
  3494. if (err == 0) {
  3495. mddev->ro = 2;
  3496. set_disk_ro(mddev->gendisk, 0);
  3497. }
  3498. } else {
  3499. mddev->ro = 2;
  3500. err = do_md_run(mddev);
  3501. }
  3502. break;
  3503. case clean:
  3504. if (mddev->pers) {
  3505. restart_array(mddev);
  3506. spin_lock_irq(&mddev->write_lock);
  3507. if (atomic_read(&mddev->writes_pending) == 0) {
  3508. if (mddev->in_sync == 0) {
  3509. mddev->in_sync = 1;
  3510. if (mddev->safemode == 1)
  3511. mddev->safemode = 0;
  3512. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3513. }
  3514. err = 0;
  3515. } else
  3516. err = -EBUSY;
  3517. spin_unlock_irq(&mddev->write_lock);
  3518. } else
  3519. err = -EINVAL;
  3520. break;
  3521. case active:
  3522. if (mddev->pers) {
  3523. restart_array(mddev);
  3524. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3525. wake_up(&mddev->sb_wait);
  3526. err = 0;
  3527. } else {
  3528. mddev->ro = 0;
  3529. set_disk_ro(mddev->gendisk, 0);
  3530. err = do_md_run(mddev);
  3531. }
  3532. break;
  3533. case write_pending:
  3534. case active_idle:
  3535. /* these cannot be set */
  3536. break;
  3537. }
  3538. if (err)
  3539. return err;
  3540. else {
  3541. if (mddev->hold_active == UNTIL_IOCTL)
  3542. mddev->hold_active = 0;
  3543. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3544. return len;
  3545. }
  3546. }
  3547. static struct md_sysfs_entry md_array_state =
  3548. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3549. static ssize_t
  3550. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3551. return sprintf(page, "%d\n",
  3552. atomic_read(&mddev->max_corr_read_errors));
  3553. }
  3554. static ssize_t
  3555. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3556. {
  3557. char *e;
  3558. unsigned long n = simple_strtoul(buf, &e, 10);
  3559. if (*buf && (*e == 0 || *e == '\n')) {
  3560. atomic_set(&mddev->max_corr_read_errors, n);
  3561. return len;
  3562. }
  3563. return -EINVAL;
  3564. }
  3565. static struct md_sysfs_entry max_corr_read_errors =
  3566. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3567. max_corrected_read_errors_store);
  3568. static ssize_t
  3569. null_show(struct mddev *mddev, char *page)
  3570. {
  3571. return -EINVAL;
  3572. }
  3573. static ssize_t
  3574. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3575. {
  3576. /* buf must be %d:%d\n? giving major and minor numbers */
  3577. /* The new device is added to the array.
  3578. * If the array has a persistent superblock, we read the
  3579. * superblock to initialise info and check validity.
  3580. * Otherwise, only checking done is that in bind_rdev_to_array,
  3581. * which mainly checks size.
  3582. */
  3583. char *e;
  3584. int major = simple_strtoul(buf, &e, 10);
  3585. int minor;
  3586. dev_t dev;
  3587. struct md_rdev *rdev;
  3588. int err;
  3589. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3590. return -EINVAL;
  3591. minor = simple_strtoul(e+1, &e, 10);
  3592. if (*e && *e != '\n')
  3593. return -EINVAL;
  3594. dev = MKDEV(major, minor);
  3595. if (major != MAJOR(dev) ||
  3596. minor != MINOR(dev))
  3597. return -EOVERFLOW;
  3598. if (mddev->persistent) {
  3599. rdev = md_import_device(dev, mddev->major_version,
  3600. mddev->minor_version);
  3601. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3602. struct md_rdev *rdev0
  3603. = list_entry(mddev->disks.next,
  3604. struct md_rdev, same_set);
  3605. err = super_types[mddev->major_version]
  3606. .load_super(rdev, rdev0, mddev->minor_version);
  3607. if (err < 0)
  3608. goto out;
  3609. }
  3610. } else if (mddev->external)
  3611. rdev = md_import_device(dev, -2, -1);
  3612. else
  3613. rdev = md_import_device(dev, -1, -1);
  3614. if (IS_ERR(rdev))
  3615. return PTR_ERR(rdev);
  3616. err = bind_rdev_to_array(rdev, mddev);
  3617. out:
  3618. if (err)
  3619. export_rdev(rdev);
  3620. return err ? err : len;
  3621. }
  3622. static struct md_sysfs_entry md_new_device =
  3623. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3624. static ssize_t
  3625. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3626. {
  3627. char *end;
  3628. unsigned long chunk, end_chunk;
  3629. if (!mddev->bitmap)
  3630. goto out;
  3631. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3632. while (*buf) {
  3633. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3634. if (buf == end) break;
  3635. if (*end == '-') { /* range */
  3636. buf = end + 1;
  3637. end_chunk = simple_strtoul(buf, &end, 0);
  3638. if (buf == end) break;
  3639. }
  3640. if (*end && !isspace(*end)) break;
  3641. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3642. buf = skip_spaces(end);
  3643. }
  3644. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3645. out:
  3646. return len;
  3647. }
  3648. static struct md_sysfs_entry md_bitmap =
  3649. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3650. static ssize_t
  3651. size_show(struct mddev *mddev, char *page)
  3652. {
  3653. return sprintf(page, "%llu\n",
  3654. (unsigned long long)mddev->dev_sectors / 2);
  3655. }
  3656. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3657. static ssize_t
  3658. size_store(struct mddev *mddev, const char *buf, size_t len)
  3659. {
  3660. /* If array is inactive, we can reduce the component size, but
  3661. * not increase it (except from 0).
  3662. * If array is active, we can try an on-line resize
  3663. */
  3664. sector_t sectors;
  3665. int err = strict_blocks_to_sectors(buf, &sectors);
  3666. if (err < 0)
  3667. return err;
  3668. if (mddev->pers) {
  3669. err = update_size(mddev, sectors);
  3670. md_update_sb(mddev, 1);
  3671. } else {
  3672. if (mddev->dev_sectors == 0 ||
  3673. mddev->dev_sectors > sectors)
  3674. mddev->dev_sectors = sectors;
  3675. else
  3676. err = -ENOSPC;
  3677. }
  3678. return err ? err : len;
  3679. }
  3680. static struct md_sysfs_entry md_size =
  3681. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3682. /* Metadata version.
  3683. * This is one of
  3684. * 'none' for arrays with no metadata (good luck...)
  3685. * 'external' for arrays with externally managed metadata,
  3686. * or N.M for internally known formats
  3687. */
  3688. static ssize_t
  3689. metadata_show(struct mddev *mddev, char *page)
  3690. {
  3691. if (mddev->persistent)
  3692. return sprintf(page, "%d.%d\n",
  3693. mddev->major_version, mddev->minor_version);
  3694. else if (mddev->external)
  3695. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3696. else
  3697. return sprintf(page, "none\n");
  3698. }
  3699. static ssize_t
  3700. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3701. {
  3702. int major, minor;
  3703. char *e;
  3704. /* Changing the details of 'external' metadata is
  3705. * always permitted. Otherwise there must be
  3706. * no devices attached to the array.
  3707. */
  3708. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3709. ;
  3710. else if (!list_empty(&mddev->disks))
  3711. return -EBUSY;
  3712. if (cmd_match(buf, "none")) {
  3713. mddev->persistent = 0;
  3714. mddev->external = 0;
  3715. mddev->major_version = 0;
  3716. mddev->minor_version = 90;
  3717. return len;
  3718. }
  3719. if (strncmp(buf, "external:", 9) == 0) {
  3720. size_t namelen = len-9;
  3721. if (namelen >= sizeof(mddev->metadata_type))
  3722. namelen = sizeof(mddev->metadata_type)-1;
  3723. strncpy(mddev->metadata_type, buf+9, namelen);
  3724. mddev->metadata_type[namelen] = 0;
  3725. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3726. mddev->metadata_type[--namelen] = 0;
  3727. mddev->persistent = 0;
  3728. mddev->external = 1;
  3729. mddev->major_version = 0;
  3730. mddev->minor_version = 90;
  3731. return len;
  3732. }
  3733. major = simple_strtoul(buf, &e, 10);
  3734. if (e==buf || *e != '.')
  3735. return -EINVAL;
  3736. buf = e+1;
  3737. minor = simple_strtoul(buf, &e, 10);
  3738. if (e==buf || (*e && *e != '\n') )
  3739. return -EINVAL;
  3740. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3741. return -ENOENT;
  3742. mddev->major_version = major;
  3743. mddev->minor_version = minor;
  3744. mddev->persistent = 1;
  3745. mddev->external = 0;
  3746. return len;
  3747. }
  3748. static struct md_sysfs_entry md_metadata =
  3749. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3750. static ssize_t
  3751. action_show(struct mddev *mddev, char *page)
  3752. {
  3753. char *type = "idle";
  3754. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3755. type = "frozen";
  3756. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3757. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3758. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3759. type = "reshape";
  3760. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3761. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3762. type = "resync";
  3763. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3764. type = "check";
  3765. else
  3766. type = "repair";
  3767. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3768. type = "recover";
  3769. }
  3770. return sprintf(page, "%s\n", type);
  3771. }
  3772. static ssize_t
  3773. action_store(struct mddev *mddev, const char *page, size_t len)
  3774. {
  3775. if (!mddev->pers || !mddev->pers->sync_request)
  3776. return -EINVAL;
  3777. if (cmd_match(page, "frozen"))
  3778. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3779. else
  3780. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3781. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3782. if (mddev->sync_thread) {
  3783. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3784. md_reap_sync_thread(mddev);
  3785. }
  3786. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3787. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3788. return -EBUSY;
  3789. else if (cmd_match(page, "resync"))
  3790. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3791. else if (cmd_match(page, "recover")) {
  3792. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3793. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3794. } else if (cmd_match(page, "reshape")) {
  3795. int err;
  3796. if (mddev->pers->start_reshape == NULL)
  3797. return -EINVAL;
  3798. err = mddev->pers->start_reshape(mddev);
  3799. if (err)
  3800. return err;
  3801. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3802. } else {
  3803. if (cmd_match(page, "check"))
  3804. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3805. else if (!cmd_match(page, "repair"))
  3806. return -EINVAL;
  3807. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3808. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3809. }
  3810. if (mddev->ro == 2) {
  3811. /* A write to sync_action is enough to justify
  3812. * canceling read-auto mode
  3813. */
  3814. mddev->ro = 0;
  3815. md_wakeup_thread(mddev->sync_thread);
  3816. }
  3817. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3818. md_wakeup_thread(mddev->thread);
  3819. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3820. return len;
  3821. }
  3822. static struct md_sysfs_entry md_scan_mode =
  3823. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3824. static ssize_t
  3825. last_sync_action_show(struct mddev *mddev, char *page)
  3826. {
  3827. return sprintf(page, "%s\n", mddev->last_sync_action);
  3828. }
  3829. static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
  3830. static ssize_t
  3831. mismatch_cnt_show(struct mddev *mddev, char *page)
  3832. {
  3833. return sprintf(page, "%llu\n",
  3834. (unsigned long long)
  3835. atomic64_read(&mddev->resync_mismatches));
  3836. }
  3837. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3838. static ssize_t
  3839. sync_min_show(struct mddev *mddev, char *page)
  3840. {
  3841. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3842. mddev->sync_speed_min ? "local": "system");
  3843. }
  3844. static ssize_t
  3845. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3846. {
  3847. int min;
  3848. char *e;
  3849. if (strncmp(buf, "system", 6)==0) {
  3850. mddev->sync_speed_min = 0;
  3851. return len;
  3852. }
  3853. min = simple_strtoul(buf, &e, 10);
  3854. if (buf == e || (*e && *e != '\n') || min <= 0)
  3855. return -EINVAL;
  3856. mddev->sync_speed_min = min;
  3857. return len;
  3858. }
  3859. static struct md_sysfs_entry md_sync_min =
  3860. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3861. static ssize_t
  3862. sync_max_show(struct mddev *mddev, char *page)
  3863. {
  3864. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3865. mddev->sync_speed_max ? "local": "system");
  3866. }
  3867. static ssize_t
  3868. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3869. {
  3870. int max;
  3871. char *e;
  3872. if (strncmp(buf, "system", 6)==0) {
  3873. mddev->sync_speed_max = 0;
  3874. return len;
  3875. }
  3876. max = simple_strtoul(buf, &e, 10);
  3877. if (buf == e || (*e && *e != '\n') || max <= 0)
  3878. return -EINVAL;
  3879. mddev->sync_speed_max = max;
  3880. return len;
  3881. }
  3882. static struct md_sysfs_entry md_sync_max =
  3883. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3884. static ssize_t
  3885. degraded_show(struct mddev *mddev, char *page)
  3886. {
  3887. return sprintf(page, "%d\n", mddev->degraded);
  3888. }
  3889. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3890. static ssize_t
  3891. sync_force_parallel_show(struct mddev *mddev, char *page)
  3892. {
  3893. return sprintf(page, "%d\n", mddev->parallel_resync);
  3894. }
  3895. static ssize_t
  3896. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3897. {
  3898. long n;
  3899. if (kstrtol(buf, 10, &n))
  3900. return -EINVAL;
  3901. if (n != 0 && n != 1)
  3902. return -EINVAL;
  3903. mddev->parallel_resync = n;
  3904. if (mddev->sync_thread)
  3905. wake_up(&resync_wait);
  3906. return len;
  3907. }
  3908. /* force parallel resync, even with shared block devices */
  3909. static struct md_sysfs_entry md_sync_force_parallel =
  3910. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3911. sync_force_parallel_show, sync_force_parallel_store);
  3912. static ssize_t
  3913. sync_speed_show(struct mddev *mddev, char *page)
  3914. {
  3915. unsigned long resync, dt, db;
  3916. if (mddev->curr_resync == 0)
  3917. return sprintf(page, "none\n");
  3918. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3919. dt = (jiffies - mddev->resync_mark) / HZ;
  3920. if (!dt) dt++;
  3921. db = resync - mddev->resync_mark_cnt;
  3922. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3923. }
  3924. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3925. static ssize_t
  3926. sync_completed_show(struct mddev *mddev, char *page)
  3927. {
  3928. unsigned long long max_sectors, resync;
  3929. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3930. return sprintf(page, "none\n");
  3931. if (mddev->curr_resync == 1 ||
  3932. mddev->curr_resync == 2)
  3933. return sprintf(page, "delayed\n");
  3934. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3935. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3936. max_sectors = mddev->resync_max_sectors;
  3937. else
  3938. max_sectors = mddev->dev_sectors;
  3939. resync = mddev->curr_resync_completed;
  3940. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3941. }
  3942. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3943. static ssize_t
  3944. min_sync_show(struct mddev *mddev, char *page)
  3945. {
  3946. return sprintf(page, "%llu\n",
  3947. (unsigned long long)mddev->resync_min);
  3948. }
  3949. static ssize_t
  3950. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3951. {
  3952. unsigned long long min;
  3953. if (kstrtoull(buf, 10, &min))
  3954. return -EINVAL;
  3955. if (min > mddev->resync_max)
  3956. return -EINVAL;
  3957. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3958. return -EBUSY;
  3959. /* Must be a multiple of chunk_size */
  3960. if (mddev->chunk_sectors) {
  3961. sector_t temp = min;
  3962. if (sector_div(temp, mddev->chunk_sectors))
  3963. return -EINVAL;
  3964. }
  3965. mddev->resync_min = min;
  3966. return len;
  3967. }
  3968. static struct md_sysfs_entry md_min_sync =
  3969. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3970. static ssize_t
  3971. max_sync_show(struct mddev *mddev, char *page)
  3972. {
  3973. if (mddev->resync_max == MaxSector)
  3974. return sprintf(page, "max\n");
  3975. else
  3976. return sprintf(page, "%llu\n",
  3977. (unsigned long long)mddev->resync_max);
  3978. }
  3979. static ssize_t
  3980. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3981. {
  3982. if (strncmp(buf, "max", 3) == 0)
  3983. mddev->resync_max = MaxSector;
  3984. else {
  3985. unsigned long long max;
  3986. if (kstrtoull(buf, 10, &max))
  3987. return -EINVAL;
  3988. if (max < mddev->resync_min)
  3989. return -EINVAL;
  3990. if (max < mddev->resync_max &&
  3991. mddev->ro == 0 &&
  3992. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3993. return -EBUSY;
  3994. /* Must be a multiple of chunk_size */
  3995. if (mddev->chunk_sectors) {
  3996. sector_t temp = max;
  3997. if (sector_div(temp, mddev->chunk_sectors))
  3998. return -EINVAL;
  3999. }
  4000. mddev->resync_max = max;
  4001. }
  4002. wake_up(&mddev->recovery_wait);
  4003. return len;
  4004. }
  4005. static struct md_sysfs_entry md_max_sync =
  4006. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4007. static ssize_t
  4008. suspend_lo_show(struct mddev *mddev, char *page)
  4009. {
  4010. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4011. }
  4012. static ssize_t
  4013. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4014. {
  4015. char *e;
  4016. unsigned long long new = simple_strtoull(buf, &e, 10);
  4017. unsigned long long old = mddev->suspend_lo;
  4018. if (mddev->pers == NULL ||
  4019. mddev->pers->quiesce == NULL)
  4020. return -EINVAL;
  4021. if (buf == e || (*e && *e != '\n'))
  4022. return -EINVAL;
  4023. mddev->suspend_lo = new;
  4024. if (new >= old)
  4025. /* Shrinking suspended region */
  4026. mddev->pers->quiesce(mddev, 2);
  4027. else {
  4028. /* Expanding suspended region - need to wait */
  4029. mddev->pers->quiesce(mddev, 1);
  4030. mddev->pers->quiesce(mddev, 0);
  4031. }
  4032. return len;
  4033. }
  4034. static struct md_sysfs_entry md_suspend_lo =
  4035. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4036. static ssize_t
  4037. suspend_hi_show(struct mddev *mddev, char *page)
  4038. {
  4039. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4040. }
  4041. static ssize_t
  4042. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4043. {
  4044. char *e;
  4045. unsigned long long new = simple_strtoull(buf, &e, 10);
  4046. unsigned long long old = mddev->suspend_hi;
  4047. if (mddev->pers == NULL ||
  4048. mddev->pers->quiesce == NULL)
  4049. return -EINVAL;
  4050. if (buf == e || (*e && *e != '\n'))
  4051. return -EINVAL;
  4052. mddev->suspend_hi = new;
  4053. if (new <= old)
  4054. /* Shrinking suspended region */
  4055. mddev->pers->quiesce(mddev, 2);
  4056. else {
  4057. /* Expanding suspended region - need to wait */
  4058. mddev->pers->quiesce(mddev, 1);
  4059. mddev->pers->quiesce(mddev, 0);
  4060. }
  4061. return len;
  4062. }
  4063. static struct md_sysfs_entry md_suspend_hi =
  4064. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4065. static ssize_t
  4066. reshape_position_show(struct mddev *mddev, char *page)
  4067. {
  4068. if (mddev->reshape_position != MaxSector)
  4069. return sprintf(page, "%llu\n",
  4070. (unsigned long long)mddev->reshape_position);
  4071. strcpy(page, "none\n");
  4072. return 5;
  4073. }
  4074. static ssize_t
  4075. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4076. {
  4077. struct md_rdev *rdev;
  4078. char *e;
  4079. unsigned long long new = simple_strtoull(buf, &e, 10);
  4080. if (mddev->pers)
  4081. return -EBUSY;
  4082. if (buf == e || (*e && *e != '\n'))
  4083. return -EINVAL;
  4084. mddev->reshape_position = new;
  4085. mddev->delta_disks = 0;
  4086. mddev->reshape_backwards = 0;
  4087. mddev->new_level = mddev->level;
  4088. mddev->new_layout = mddev->layout;
  4089. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4090. rdev_for_each(rdev, mddev)
  4091. rdev->new_data_offset = rdev->data_offset;
  4092. return len;
  4093. }
  4094. static struct md_sysfs_entry md_reshape_position =
  4095. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4096. reshape_position_store);
  4097. static ssize_t
  4098. reshape_direction_show(struct mddev *mddev, char *page)
  4099. {
  4100. return sprintf(page, "%s\n",
  4101. mddev->reshape_backwards ? "backwards" : "forwards");
  4102. }
  4103. static ssize_t
  4104. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4105. {
  4106. int backwards = 0;
  4107. if (cmd_match(buf, "forwards"))
  4108. backwards = 0;
  4109. else if (cmd_match(buf, "backwards"))
  4110. backwards = 1;
  4111. else
  4112. return -EINVAL;
  4113. if (mddev->reshape_backwards == backwards)
  4114. return len;
  4115. /* check if we are allowed to change */
  4116. if (mddev->delta_disks)
  4117. return -EBUSY;
  4118. if (mddev->persistent &&
  4119. mddev->major_version == 0)
  4120. return -EINVAL;
  4121. mddev->reshape_backwards = backwards;
  4122. return len;
  4123. }
  4124. static struct md_sysfs_entry md_reshape_direction =
  4125. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4126. reshape_direction_store);
  4127. static ssize_t
  4128. array_size_show(struct mddev *mddev, char *page)
  4129. {
  4130. if (mddev->external_size)
  4131. return sprintf(page, "%llu\n",
  4132. (unsigned long long)mddev->array_sectors/2);
  4133. else
  4134. return sprintf(page, "default\n");
  4135. }
  4136. static ssize_t
  4137. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4138. {
  4139. sector_t sectors;
  4140. if (strncmp(buf, "default", 7) == 0) {
  4141. if (mddev->pers)
  4142. sectors = mddev->pers->size(mddev, 0, 0);
  4143. else
  4144. sectors = mddev->array_sectors;
  4145. mddev->external_size = 0;
  4146. } else {
  4147. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4148. return -EINVAL;
  4149. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4150. return -E2BIG;
  4151. mddev->external_size = 1;
  4152. }
  4153. mddev->array_sectors = sectors;
  4154. if (mddev->pers) {
  4155. set_capacity(mddev->gendisk, mddev->array_sectors);
  4156. revalidate_disk(mddev->gendisk);
  4157. }
  4158. return len;
  4159. }
  4160. static struct md_sysfs_entry md_array_size =
  4161. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4162. array_size_store);
  4163. static struct attribute *md_default_attrs[] = {
  4164. &md_level.attr,
  4165. &md_layout.attr,
  4166. &md_raid_disks.attr,
  4167. &md_chunk_size.attr,
  4168. &md_size.attr,
  4169. &md_resync_start.attr,
  4170. &md_metadata.attr,
  4171. &md_new_device.attr,
  4172. &md_safe_delay.attr,
  4173. &md_array_state.attr,
  4174. &md_reshape_position.attr,
  4175. &md_reshape_direction.attr,
  4176. &md_array_size.attr,
  4177. &max_corr_read_errors.attr,
  4178. NULL,
  4179. };
  4180. static struct attribute *md_redundancy_attrs[] = {
  4181. &md_scan_mode.attr,
  4182. &md_last_scan_mode.attr,
  4183. &md_mismatches.attr,
  4184. &md_sync_min.attr,
  4185. &md_sync_max.attr,
  4186. &md_sync_speed.attr,
  4187. &md_sync_force_parallel.attr,
  4188. &md_sync_completed.attr,
  4189. &md_min_sync.attr,
  4190. &md_max_sync.attr,
  4191. &md_suspend_lo.attr,
  4192. &md_suspend_hi.attr,
  4193. &md_bitmap.attr,
  4194. &md_degraded.attr,
  4195. NULL,
  4196. };
  4197. static struct attribute_group md_redundancy_group = {
  4198. .name = NULL,
  4199. .attrs = md_redundancy_attrs,
  4200. };
  4201. static ssize_t
  4202. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4203. {
  4204. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4205. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4206. ssize_t rv;
  4207. if (!entry->show)
  4208. return -EIO;
  4209. spin_lock(&all_mddevs_lock);
  4210. if (list_empty(&mddev->all_mddevs)) {
  4211. spin_unlock(&all_mddevs_lock);
  4212. return -EBUSY;
  4213. }
  4214. mddev_get(mddev);
  4215. spin_unlock(&all_mddevs_lock);
  4216. rv = mddev_lock(mddev);
  4217. if (!rv) {
  4218. rv = entry->show(mddev, page);
  4219. mddev_unlock(mddev);
  4220. }
  4221. mddev_put(mddev);
  4222. return rv;
  4223. }
  4224. static ssize_t
  4225. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4226. const char *page, size_t length)
  4227. {
  4228. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4229. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4230. ssize_t rv;
  4231. if (!entry->store)
  4232. return -EIO;
  4233. if (!capable(CAP_SYS_ADMIN))
  4234. return -EACCES;
  4235. spin_lock(&all_mddevs_lock);
  4236. if (list_empty(&mddev->all_mddevs)) {
  4237. spin_unlock(&all_mddevs_lock);
  4238. return -EBUSY;
  4239. }
  4240. mddev_get(mddev);
  4241. spin_unlock(&all_mddevs_lock);
  4242. if (entry->store == new_dev_store)
  4243. flush_workqueue(md_misc_wq);
  4244. rv = mddev_lock(mddev);
  4245. if (!rv) {
  4246. rv = entry->store(mddev, page, length);
  4247. mddev_unlock(mddev);
  4248. }
  4249. mddev_put(mddev);
  4250. return rv;
  4251. }
  4252. static void md_free(struct kobject *ko)
  4253. {
  4254. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4255. if (mddev->sysfs_state)
  4256. sysfs_put(mddev->sysfs_state);
  4257. if (mddev->gendisk) {
  4258. del_gendisk(mddev->gendisk);
  4259. put_disk(mddev->gendisk);
  4260. }
  4261. if (mddev->queue)
  4262. blk_cleanup_queue(mddev->queue);
  4263. kfree(mddev);
  4264. }
  4265. static const struct sysfs_ops md_sysfs_ops = {
  4266. .show = md_attr_show,
  4267. .store = md_attr_store,
  4268. };
  4269. static struct kobj_type md_ktype = {
  4270. .release = md_free,
  4271. .sysfs_ops = &md_sysfs_ops,
  4272. .default_attrs = md_default_attrs,
  4273. };
  4274. int mdp_major = 0;
  4275. static void mddev_delayed_delete(struct work_struct *ws)
  4276. {
  4277. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4278. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4279. kobject_del(&mddev->kobj);
  4280. kobject_put(&mddev->kobj);
  4281. }
  4282. static int md_alloc(dev_t dev, char *name)
  4283. {
  4284. static DEFINE_MUTEX(disks_mutex);
  4285. struct mddev *mddev = mddev_find(dev);
  4286. struct gendisk *disk;
  4287. int partitioned;
  4288. int shift;
  4289. int unit;
  4290. int error;
  4291. if (!mddev)
  4292. return -ENODEV;
  4293. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4294. shift = partitioned ? MdpMinorShift : 0;
  4295. unit = MINOR(mddev->unit) >> shift;
  4296. /* wait for any previous instance of this device to be
  4297. * completely removed (mddev_delayed_delete).
  4298. */
  4299. flush_workqueue(md_misc_wq);
  4300. mutex_lock(&disks_mutex);
  4301. error = -EEXIST;
  4302. if (mddev->gendisk)
  4303. goto abort;
  4304. if (name) {
  4305. /* Need to ensure that 'name' is not a duplicate.
  4306. */
  4307. struct mddev *mddev2;
  4308. spin_lock(&all_mddevs_lock);
  4309. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4310. if (mddev2->gendisk &&
  4311. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4312. spin_unlock(&all_mddevs_lock);
  4313. goto abort;
  4314. }
  4315. spin_unlock(&all_mddevs_lock);
  4316. }
  4317. error = -ENOMEM;
  4318. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4319. if (!mddev->queue)
  4320. goto abort;
  4321. mddev->queue->queuedata = mddev;
  4322. blk_queue_make_request(mddev->queue, md_make_request);
  4323. blk_set_stacking_limits(&mddev->queue->limits);
  4324. disk = alloc_disk(1 << shift);
  4325. if (!disk) {
  4326. blk_cleanup_queue(mddev->queue);
  4327. mddev->queue = NULL;
  4328. goto abort;
  4329. }
  4330. disk->major = MAJOR(mddev->unit);
  4331. disk->first_minor = unit << shift;
  4332. if (name)
  4333. strcpy(disk->disk_name, name);
  4334. else if (partitioned)
  4335. sprintf(disk->disk_name, "md_d%d", unit);
  4336. else
  4337. sprintf(disk->disk_name, "md%d", unit);
  4338. disk->fops = &md_fops;
  4339. disk->private_data = mddev;
  4340. disk->queue = mddev->queue;
  4341. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4342. /* Allow extended partitions. This makes the
  4343. * 'mdp' device redundant, but we can't really
  4344. * remove it now.
  4345. */
  4346. disk->flags |= GENHD_FL_EXT_DEVT;
  4347. mddev->gendisk = disk;
  4348. /* As soon as we call add_disk(), another thread could get
  4349. * through to md_open, so make sure it doesn't get too far
  4350. */
  4351. mutex_lock(&mddev->open_mutex);
  4352. add_disk(disk);
  4353. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4354. &disk_to_dev(disk)->kobj, "%s", "md");
  4355. if (error) {
  4356. /* This isn't possible, but as kobject_init_and_add is marked
  4357. * __must_check, we must do something with the result
  4358. */
  4359. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4360. disk->disk_name);
  4361. error = 0;
  4362. }
  4363. if (mddev->kobj.sd &&
  4364. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4365. printk(KERN_DEBUG "pointless warning\n");
  4366. mutex_unlock(&mddev->open_mutex);
  4367. abort:
  4368. mutex_unlock(&disks_mutex);
  4369. if (!error && mddev->kobj.sd) {
  4370. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4371. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4372. }
  4373. mddev_put(mddev);
  4374. return error;
  4375. }
  4376. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4377. {
  4378. md_alloc(dev, NULL);
  4379. return NULL;
  4380. }
  4381. static int add_named_array(const char *val, struct kernel_param *kp)
  4382. {
  4383. /* val must be "md_*" where * is not all digits.
  4384. * We allocate an array with a large free minor number, and
  4385. * set the name to val. val must not already be an active name.
  4386. */
  4387. int len = strlen(val);
  4388. char buf[DISK_NAME_LEN];
  4389. while (len && val[len-1] == '\n')
  4390. len--;
  4391. if (len >= DISK_NAME_LEN)
  4392. return -E2BIG;
  4393. strlcpy(buf, val, len+1);
  4394. if (strncmp(buf, "md_", 3) != 0)
  4395. return -EINVAL;
  4396. return md_alloc(0, buf);
  4397. }
  4398. static void md_safemode_timeout(unsigned long data)
  4399. {
  4400. struct mddev *mddev = (struct mddev *) data;
  4401. if (!atomic_read(&mddev->writes_pending)) {
  4402. mddev->safemode = 1;
  4403. if (mddev->external)
  4404. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4405. }
  4406. md_wakeup_thread(mddev->thread);
  4407. }
  4408. static int start_dirty_degraded;
  4409. int md_run(struct mddev *mddev)
  4410. {
  4411. int err;
  4412. struct md_rdev *rdev;
  4413. struct md_personality *pers;
  4414. if (list_empty(&mddev->disks))
  4415. /* cannot run an array with no devices.. */
  4416. return -EINVAL;
  4417. if (mddev->pers)
  4418. return -EBUSY;
  4419. /* Cannot run until previous stop completes properly */
  4420. if (mddev->sysfs_active)
  4421. return -EBUSY;
  4422. /*
  4423. * Analyze all RAID superblock(s)
  4424. */
  4425. if (!mddev->raid_disks) {
  4426. if (!mddev->persistent)
  4427. return -EINVAL;
  4428. analyze_sbs(mddev);
  4429. }
  4430. if (mddev->level != LEVEL_NONE)
  4431. request_module("md-level-%d", mddev->level);
  4432. else if (mddev->clevel[0])
  4433. request_module("md-%s", mddev->clevel);
  4434. /*
  4435. * Drop all container device buffers, from now on
  4436. * the only valid external interface is through the md
  4437. * device.
  4438. */
  4439. rdev_for_each(rdev, mddev) {
  4440. if (test_bit(Faulty, &rdev->flags))
  4441. continue;
  4442. sync_blockdev(rdev->bdev);
  4443. invalidate_bdev(rdev->bdev);
  4444. /* perform some consistency tests on the device.
  4445. * We don't want the data to overlap the metadata,
  4446. * Internal Bitmap issues have been handled elsewhere.
  4447. */
  4448. if (rdev->meta_bdev) {
  4449. /* Nothing to check */;
  4450. } else if (rdev->data_offset < rdev->sb_start) {
  4451. if (mddev->dev_sectors &&
  4452. rdev->data_offset + mddev->dev_sectors
  4453. > rdev->sb_start) {
  4454. printk("md: %s: data overlaps metadata\n",
  4455. mdname(mddev));
  4456. return -EINVAL;
  4457. }
  4458. } else {
  4459. if (rdev->sb_start + rdev->sb_size/512
  4460. > rdev->data_offset) {
  4461. printk("md: %s: metadata overlaps data\n",
  4462. mdname(mddev));
  4463. return -EINVAL;
  4464. }
  4465. }
  4466. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4467. }
  4468. if (mddev->bio_set == NULL)
  4469. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4470. spin_lock(&pers_lock);
  4471. pers = find_pers(mddev->level, mddev->clevel);
  4472. if (!pers || !try_module_get(pers->owner)) {
  4473. spin_unlock(&pers_lock);
  4474. if (mddev->level != LEVEL_NONE)
  4475. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4476. mddev->level);
  4477. else
  4478. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4479. mddev->clevel);
  4480. return -EINVAL;
  4481. }
  4482. mddev->pers = pers;
  4483. spin_unlock(&pers_lock);
  4484. if (mddev->level != pers->level) {
  4485. mddev->level = pers->level;
  4486. mddev->new_level = pers->level;
  4487. }
  4488. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4489. if (mddev->reshape_position != MaxSector &&
  4490. pers->start_reshape == NULL) {
  4491. /* This personality cannot handle reshaping... */
  4492. mddev->pers = NULL;
  4493. module_put(pers->owner);
  4494. return -EINVAL;
  4495. }
  4496. if (pers->sync_request) {
  4497. /* Warn if this is a potentially silly
  4498. * configuration.
  4499. */
  4500. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4501. struct md_rdev *rdev2;
  4502. int warned = 0;
  4503. rdev_for_each(rdev, mddev)
  4504. rdev_for_each(rdev2, mddev) {
  4505. if (rdev < rdev2 &&
  4506. rdev->bdev->bd_contains ==
  4507. rdev2->bdev->bd_contains) {
  4508. printk(KERN_WARNING
  4509. "%s: WARNING: %s appears to be"
  4510. " on the same physical disk as"
  4511. " %s.\n",
  4512. mdname(mddev),
  4513. bdevname(rdev->bdev,b),
  4514. bdevname(rdev2->bdev,b2));
  4515. warned = 1;
  4516. }
  4517. }
  4518. if (warned)
  4519. printk(KERN_WARNING
  4520. "True protection against single-disk"
  4521. " failure might be compromised.\n");
  4522. }
  4523. mddev->recovery = 0;
  4524. /* may be over-ridden by personality */
  4525. mddev->resync_max_sectors = mddev->dev_sectors;
  4526. mddev->ok_start_degraded = start_dirty_degraded;
  4527. if (start_readonly && mddev->ro == 0)
  4528. mddev->ro = 2; /* read-only, but switch on first write */
  4529. err = mddev->pers->run(mddev);
  4530. if (err)
  4531. printk(KERN_ERR "md: pers->run() failed ...\n");
  4532. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4533. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4534. " but 'external_size' not in effect?\n", __func__);
  4535. printk(KERN_ERR
  4536. "md: invalid array_size %llu > default size %llu\n",
  4537. (unsigned long long)mddev->array_sectors / 2,
  4538. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4539. err = -EINVAL;
  4540. mddev->pers->stop(mddev);
  4541. }
  4542. if (err == 0 && mddev->pers->sync_request &&
  4543. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4544. err = bitmap_create(mddev);
  4545. if (err) {
  4546. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4547. mdname(mddev), err);
  4548. mddev->pers->stop(mddev);
  4549. }
  4550. }
  4551. if (err) {
  4552. module_put(mddev->pers->owner);
  4553. mddev->pers = NULL;
  4554. bitmap_destroy(mddev);
  4555. return err;
  4556. }
  4557. if (mddev->pers->sync_request) {
  4558. if (mddev->kobj.sd &&
  4559. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4560. printk(KERN_WARNING
  4561. "md: cannot register extra attributes for %s\n",
  4562. mdname(mddev));
  4563. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4564. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4565. mddev->ro = 0;
  4566. atomic_set(&mddev->writes_pending,0);
  4567. atomic_set(&mddev->max_corr_read_errors,
  4568. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4569. mddev->safemode = 0;
  4570. mddev->safemode_timer.function = md_safemode_timeout;
  4571. mddev->safemode_timer.data = (unsigned long) mddev;
  4572. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4573. mddev->in_sync = 1;
  4574. smp_wmb();
  4575. mddev->ready = 1;
  4576. rdev_for_each(rdev, mddev)
  4577. if (rdev->raid_disk >= 0)
  4578. if (sysfs_link_rdev(mddev, rdev))
  4579. /* failure here is OK */;
  4580. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4581. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  4582. md_update_sb(mddev, 0);
  4583. md_new_event(mddev);
  4584. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4585. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4586. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4587. return 0;
  4588. }
  4589. EXPORT_SYMBOL_GPL(md_run);
  4590. static int do_md_run(struct mddev *mddev)
  4591. {
  4592. int err;
  4593. err = md_run(mddev);
  4594. if (err)
  4595. goto out;
  4596. err = bitmap_load(mddev);
  4597. if (err) {
  4598. bitmap_destroy(mddev);
  4599. goto out;
  4600. }
  4601. md_wakeup_thread(mddev->thread);
  4602. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4603. set_capacity(mddev->gendisk, mddev->array_sectors);
  4604. revalidate_disk(mddev->gendisk);
  4605. mddev->changed = 1;
  4606. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4607. out:
  4608. return err;
  4609. }
  4610. static int restart_array(struct mddev *mddev)
  4611. {
  4612. struct gendisk *disk = mddev->gendisk;
  4613. /* Complain if it has no devices */
  4614. if (list_empty(&mddev->disks))
  4615. return -ENXIO;
  4616. if (!mddev->pers)
  4617. return -EINVAL;
  4618. if (!mddev->ro)
  4619. return -EBUSY;
  4620. mddev->safemode = 0;
  4621. mddev->ro = 0;
  4622. set_disk_ro(disk, 0);
  4623. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4624. mdname(mddev));
  4625. /* Kick recovery or resync if necessary */
  4626. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4627. md_wakeup_thread(mddev->thread);
  4628. md_wakeup_thread(mddev->sync_thread);
  4629. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4630. return 0;
  4631. }
  4632. /* similar to deny_write_access, but accounts for our holding a reference
  4633. * to the file ourselves */
  4634. static int deny_bitmap_write_access(struct file * file)
  4635. {
  4636. struct inode *inode = file->f_mapping->host;
  4637. spin_lock(&inode->i_lock);
  4638. if (atomic_read(&inode->i_writecount) > 1) {
  4639. spin_unlock(&inode->i_lock);
  4640. return -ETXTBSY;
  4641. }
  4642. atomic_set(&inode->i_writecount, -1);
  4643. spin_unlock(&inode->i_lock);
  4644. return 0;
  4645. }
  4646. void restore_bitmap_write_access(struct file *file)
  4647. {
  4648. struct inode *inode = file->f_mapping->host;
  4649. spin_lock(&inode->i_lock);
  4650. atomic_set(&inode->i_writecount, 1);
  4651. spin_unlock(&inode->i_lock);
  4652. }
  4653. static void md_clean(struct mddev *mddev)
  4654. {
  4655. mddev->array_sectors = 0;
  4656. mddev->external_size = 0;
  4657. mddev->dev_sectors = 0;
  4658. mddev->raid_disks = 0;
  4659. mddev->recovery_cp = 0;
  4660. mddev->resync_min = 0;
  4661. mddev->resync_max = MaxSector;
  4662. mddev->reshape_position = MaxSector;
  4663. mddev->external = 0;
  4664. mddev->persistent = 0;
  4665. mddev->level = LEVEL_NONE;
  4666. mddev->clevel[0] = 0;
  4667. mddev->flags = 0;
  4668. mddev->ro = 0;
  4669. mddev->metadata_type[0] = 0;
  4670. mddev->chunk_sectors = 0;
  4671. mddev->ctime = mddev->utime = 0;
  4672. mddev->layout = 0;
  4673. mddev->max_disks = 0;
  4674. mddev->events = 0;
  4675. mddev->can_decrease_events = 0;
  4676. mddev->delta_disks = 0;
  4677. mddev->reshape_backwards = 0;
  4678. mddev->new_level = LEVEL_NONE;
  4679. mddev->new_layout = 0;
  4680. mddev->new_chunk_sectors = 0;
  4681. mddev->curr_resync = 0;
  4682. atomic64_set(&mddev->resync_mismatches, 0);
  4683. mddev->suspend_lo = mddev->suspend_hi = 0;
  4684. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4685. mddev->recovery = 0;
  4686. mddev->in_sync = 0;
  4687. mddev->changed = 0;
  4688. mddev->degraded = 0;
  4689. mddev->safemode = 0;
  4690. mddev->merge_check_needed = 0;
  4691. mddev->bitmap_info.offset = 0;
  4692. mddev->bitmap_info.default_offset = 0;
  4693. mddev->bitmap_info.default_space = 0;
  4694. mddev->bitmap_info.chunksize = 0;
  4695. mddev->bitmap_info.daemon_sleep = 0;
  4696. mddev->bitmap_info.max_write_behind = 0;
  4697. }
  4698. static void __md_stop_writes(struct mddev *mddev)
  4699. {
  4700. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4701. if (mddev->sync_thread) {
  4702. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4703. md_reap_sync_thread(mddev);
  4704. }
  4705. del_timer_sync(&mddev->safemode_timer);
  4706. bitmap_flush(mddev);
  4707. md_super_wait(mddev);
  4708. if (mddev->ro == 0 &&
  4709. (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
  4710. /* mark array as shutdown cleanly */
  4711. mddev->in_sync = 1;
  4712. md_update_sb(mddev, 1);
  4713. }
  4714. }
  4715. void md_stop_writes(struct mddev *mddev)
  4716. {
  4717. mddev_lock_nointr(mddev);
  4718. __md_stop_writes(mddev);
  4719. mddev_unlock(mddev);
  4720. }
  4721. EXPORT_SYMBOL_GPL(md_stop_writes);
  4722. static void __md_stop(struct mddev *mddev)
  4723. {
  4724. mddev->ready = 0;
  4725. mddev->pers->stop(mddev);
  4726. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4727. mddev->to_remove = &md_redundancy_group;
  4728. module_put(mddev->pers->owner);
  4729. mddev->pers = NULL;
  4730. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4731. }
  4732. void md_stop(struct mddev *mddev)
  4733. {
  4734. /* stop the array and free an attached data structures.
  4735. * This is called from dm-raid
  4736. */
  4737. __md_stop(mddev);
  4738. bitmap_destroy(mddev);
  4739. if (mddev->bio_set)
  4740. bioset_free(mddev->bio_set);
  4741. }
  4742. EXPORT_SYMBOL_GPL(md_stop);
  4743. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4744. {
  4745. int err = 0;
  4746. int did_freeze = 0;
  4747. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4748. did_freeze = 1;
  4749. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4750. md_wakeup_thread(mddev->thread);
  4751. }
  4752. if (mddev->sync_thread) {
  4753. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4754. /* Thread might be blocked waiting for metadata update
  4755. * which will now never happen */
  4756. wake_up_process(mddev->sync_thread->tsk);
  4757. }
  4758. mddev_unlock(mddev);
  4759. wait_event(resync_wait, mddev->sync_thread == NULL);
  4760. mddev_lock_nointr(mddev);
  4761. mutex_lock(&mddev->open_mutex);
  4762. if (atomic_read(&mddev->openers) > !!bdev ||
  4763. mddev->sync_thread ||
  4764. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4765. printk("md: %s still in use.\n",mdname(mddev));
  4766. if (did_freeze) {
  4767. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4768. md_wakeup_thread(mddev->thread);
  4769. }
  4770. err = -EBUSY;
  4771. goto out;
  4772. }
  4773. if (mddev->pers) {
  4774. __md_stop_writes(mddev);
  4775. err = -ENXIO;
  4776. if (mddev->ro==1)
  4777. goto out;
  4778. mddev->ro = 1;
  4779. set_disk_ro(mddev->gendisk, 1);
  4780. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4781. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4782. err = 0;
  4783. }
  4784. out:
  4785. mutex_unlock(&mddev->open_mutex);
  4786. return err;
  4787. }
  4788. /* mode:
  4789. * 0 - completely stop and dis-assemble array
  4790. * 2 - stop but do not disassemble array
  4791. */
  4792. static int do_md_stop(struct mddev * mddev, int mode,
  4793. struct block_device *bdev)
  4794. {
  4795. struct gendisk *disk = mddev->gendisk;
  4796. struct md_rdev *rdev;
  4797. int did_freeze = 0;
  4798. if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
  4799. did_freeze = 1;
  4800. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4801. md_wakeup_thread(mddev->thread);
  4802. }
  4803. if (mddev->sync_thread) {
  4804. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4805. /* Thread might be blocked waiting for metadata update
  4806. * which will now never happen */
  4807. wake_up_process(mddev->sync_thread->tsk);
  4808. }
  4809. mddev_unlock(mddev);
  4810. wait_event(resync_wait, mddev->sync_thread == NULL);
  4811. mddev_lock_nointr(mddev);
  4812. mutex_lock(&mddev->open_mutex);
  4813. if (atomic_read(&mddev->openers) > !!bdev ||
  4814. mddev->sysfs_active ||
  4815. mddev->sync_thread ||
  4816. (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
  4817. printk("md: %s still in use.\n",mdname(mddev));
  4818. mutex_unlock(&mddev->open_mutex);
  4819. if (did_freeze) {
  4820. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4821. md_wakeup_thread(mddev->thread);
  4822. }
  4823. return -EBUSY;
  4824. }
  4825. if (mddev->pers) {
  4826. if (mddev->ro)
  4827. set_disk_ro(disk, 0);
  4828. __md_stop_writes(mddev);
  4829. __md_stop(mddev);
  4830. mddev->queue->merge_bvec_fn = NULL;
  4831. mddev->queue->backing_dev_info.congested_fn = NULL;
  4832. /* tell userspace to handle 'inactive' */
  4833. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4834. rdev_for_each(rdev, mddev)
  4835. if (rdev->raid_disk >= 0)
  4836. sysfs_unlink_rdev(mddev, rdev);
  4837. set_capacity(disk, 0);
  4838. mutex_unlock(&mddev->open_mutex);
  4839. mddev->changed = 1;
  4840. revalidate_disk(disk);
  4841. if (mddev->ro)
  4842. mddev->ro = 0;
  4843. } else
  4844. mutex_unlock(&mddev->open_mutex);
  4845. /*
  4846. * Free resources if final stop
  4847. */
  4848. if (mode == 0) {
  4849. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4850. bitmap_destroy(mddev);
  4851. if (mddev->bitmap_info.file) {
  4852. restore_bitmap_write_access(mddev->bitmap_info.file);
  4853. fput(mddev->bitmap_info.file);
  4854. mddev->bitmap_info.file = NULL;
  4855. }
  4856. mddev->bitmap_info.offset = 0;
  4857. export_array(mddev);
  4858. md_clean(mddev);
  4859. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4860. if (mddev->hold_active == UNTIL_STOP)
  4861. mddev->hold_active = 0;
  4862. }
  4863. blk_integrity_unregister(disk);
  4864. md_new_event(mddev);
  4865. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4866. return 0;
  4867. }
  4868. #ifndef MODULE
  4869. static void autorun_array(struct mddev *mddev)
  4870. {
  4871. struct md_rdev *rdev;
  4872. int err;
  4873. if (list_empty(&mddev->disks))
  4874. return;
  4875. printk(KERN_INFO "md: running: ");
  4876. rdev_for_each(rdev, mddev) {
  4877. char b[BDEVNAME_SIZE];
  4878. printk("<%s>", bdevname(rdev->bdev,b));
  4879. }
  4880. printk("\n");
  4881. err = do_md_run(mddev);
  4882. if (err) {
  4883. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4884. do_md_stop(mddev, 0, NULL);
  4885. }
  4886. }
  4887. /*
  4888. * lets try to run arrays based on all disks that have arrived
  4889. * until now. (those are in pending_raid_disks)
  4890. *
  4891. * the method: pick the first pending disk, collect all disks with
  4892. * the same UUID, remove all from the pending list and put them into
  4893. * the 'same_array' list. Then order this list based on superblock
  4894. * update time (freshest comes first), kick out 'old' disks and
  4895. * compare superblocks. If everything's fine then run it.
  4896. *
  4897. * If "unit" is allocated, then bump its reference count
  4898. */
  4899. static void autorun_devices(int part)
  4900. {
  4901. struct md_rdev *rdev0, *rdev, *tmp;
  4902. struct mddev *mddev;
  4903. char b[BDEVNAME_SIZE];
  4904. printk(KERN_INFO "md: autorun ...\n");
  4905. while (!list_empty(&pending_raid_disks)) {
  4906. int unit;
  4907. dev_t dev;
  4908. LIST_HEAD(candidates);
  4909. rdev0 = list_entry(pending_raid_disks.next,
  4910. struct md_rdev, same_set);
  4911. printk(KERN_INFO "md: considering %s ...\n",
  4912. bdevname(rdev0->bdev,b));
  4913. INIT_LIST_HEAD(&candidates);
  4914. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4915. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4916. printk(KERN_INFO "md: adding %s ...\n",
  4917. bdevname(rdev->bdev,b));
  4918. list_move(&rdev->same_set, &candidates);
  4919. }
  4920. /*
  4921. * now we have a set of devices, with all of them having
  4922. * mostly sane superblocks. It's time to allocate the
  4923. * mddev.
  4924. */
  4925. if (part) {
  4926. dev = MKDEV(mdp_major,
  4927. rdev0->preferred_minor << MdpMinorShift);
  4928. unit = MINOR(dev) >> MdpMinorShift;
  4929. } else {
  4930. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4931. unit = MINOR(dev);
  4932. }
  4933. if (rdev0->preferred_minor != unit) {
  4934. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4935. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4936. break;
  4937. }
  4938. md_probe(dev, NULL, NULL);
  4939. mddev = mddev_find(dev);
  4940. if (!mddev || !mddev->gendisk) {
  4941. if (mddev)
  4942. mddev_put(mddev);
  4943. printk(KERN_ERR
  4944. "md: cannot allocate memory for md drive.\n");
  4945. break;
  4946. }
  4947. if (mddev_lock(mddev))
  4948. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4949. mdname(mddev));
  4950. else if (mddev->raid_disks || mddev->major_version
  4951. || !list_empty(&mddev->disks)) {
  4952. printk(KERN_WARNING
  4953. "md: %s already running, cannot run %s\n",
  4954. mdname(mddev), bdevname(rdev0->bdev,b));
  4955. mddev_unlock(mddev);
  4956. } else {
  4957. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4958. mddev->persistent = 1;
  4959. rdev_for_each_list(rdev, tmp, &candidates) {
  4960. list_del_init(&rdev->same_set);
  4961. if (bind_rdev_to_array(rdev, mddev))
  4962. export_rdev(rdev);
  4963. }
  4964. autorun_array(mddev);
  4965. mddev_unlock(mddev);
  4966. }
  4967. /* on success, candidates will be empty, on error
  4968. * it won't...
  4969. */
  4970. rdev_for_each_list(rdev, tmp, &candidates) {
  4971. list_del_init(&rdev->same_set);
  4972. export_rdev(rdev);
  4973. }
  4974. mddev_put(mddev);
  4975. }
  4976. printk(KERN_INFO "md: ... autorun DONE.\n");
  4977. }
  4978. #endif /* !MODULE */
  4979. static int get_version(void __user * arg)
  4980. {
  4981. mdu_version_t ver;
  4982. ver.major = MD_MAJOR_VERSION;
  4983. ver.minor = MD_MINOR_VERSION;
  4984. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4985. if (copy_to_user(arg, &ver, sizeof(ver)))
  4986. return -EFAULT;
  4987. return 0;
  4988. }
  4989. static int get_array_info(struct mddev * mddev, void __user * arg)
  4990. {
  4991. mdu_array_info_t info;
  4992. int nr,working,insync,failed,spare;
  4993. struct md_rdev *rdev;
  4994. nr = working = insync = failed = spare = 0;
  4995. rcu_read_lock();
  4996. rdev_for_each_rcu(rdev, mddev) {
  4997. nr++;
  4998. if (test_bit(Faulty, &rdev->flags))
  4999. failed++;
  5000. else {
  5001. working++;
  5002. if (test_bit(In_sync, &rdev->flags))
  5003. insync++;
  5004. else
  5005. spare++;
  5006. }
  5007. }
  5008. rcu_read_unlock();
  5009. info.major_version = mddev->major_version;
  5010. info.minor_version = mddev->minor_version;
  5011. info.patch_version = MD_PATCHLEVEL_VERSION;
  5012. info.ctime = mddev->ctime;
  5013. info.level = mddev->level;
  5014. info.size = mddev->dev_sectors / 2;
  5015. if (info.size != mddev->dev_sectors / 2) /* overflow */
  5016. info.size = -1;
  5017. info.nr_disks = nr;
  5018. info.raid_disks = mddev->raid_disks;
  5019. info.md_minor = mddev->md_minor;
  5020. info.not_persistent= !mddev->persistent;
  5021. info.utime = mddev->utime;
  5022. info.state = 0;
  5023. if (mddev->in_sync)
  5024. info.state = (1<<MD_SB_CLEAN);
  5025. if (mddev->bitmap && mddev->bitmap_info.offset)
  5026. info.state = (1<<MD_SB_BITMAP_PRESENT);
  5027. info.active_disks = insync;
  5028. info.working_disks = working;
  5029. info.failed_disks = failed;
  5030. info.spare_disks = spare;
  5031. info.layout = mddev->layout;
  5032. info.chunk_size = mddev->chunk_sectors << 9;
  5033. if (copy_to_user(arg, &info, sizeof(info)))
  5034. return -EFAULT;
  5035. return 0;
  5036. }
  5037. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  5038. {
  5039. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5040. char *ptr, *buf = NULL;
  5041. int err = -ENOMEM;
  5042. file = kmalloc(sizeof(*file), GFP_NOIO);
  5043. if (!file)
  5044. goto out;
  5045. /* bitmap disabled, zero the first byte and copy out */
  5046. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5047. file->pathname[0] = '\0';
  5048. goto copy_out;
  5049. }
  5050. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5051. if (!buf)
  5052. goto out;
  5053. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5054. buf, sizeof(file->pathname));
  5055. if (IS_ERR(ptr))
  5056. goto out;
  5057. strcpy(file->pathname, ptr);
  5058. copy_out:
  5059. err = 0;
  5060. if (copy_to_user(arg, file, sizeof(*file)))
  5061. err = -EFAULT;
  5062. out:
  5063. kfree(buf);
  5064. kfree(file);
  5065. return err;
  5066. }
  5067. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5068. {
  5069. mdu_disk_info_t info;
  5070. struct md_rdev *rdev;
  5071. if (copy_from_user(&info, arg, sizeof(info)))
  5072. return -EFAULT;
  5073. rcu_read_lock();
  5074. rdev = find_rdev_nr_rcu(mddev, info.number);
  5075. if (rdev) {
  5076. info.major = MAJOR(rdev->bdev->bd_dev);
  5077. info.minor = MINOR(rdev->bdev->bd_dev);
  5078. info.raid_disk = rdev->raid_disk;
  5079. info.state = 0;
  5080. if (test_bit(Faulty, &rdev->flags))
  5081. info.state |= (1<<MD_DISK_FAULTY);
  5082. else if (test_bit(In_sync, &rdev->flags)) {
  5083. info.state |= (1<<MD_DISK_ACTIVE);
  5084. info.state |= (1<<MD_DISK_SYNC);
  5085. }
  5086. if (test_bit(WriteMostly, &rdev->flags))
  5087. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5088. } else {
  5089. info.major = info.minor = 0;
  5090. info.raid_disk = -1;
  5091. info.state = (1<<MD_DISK_REMOVED);
  5092. }
  5093. rcu_read_unlock();
  5094. if (copy_to_user(arg, &info, sizeof(info)))
  5095. return -EFAULT;
  5096. return 0;
  5097. }
  5098. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5099. {
  5100. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5101. struct md_rdev *rdev;
  5102. dev_t dev = MKDEV(info->major,info->minor);
  5103. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5104. return -EOVERFLOW;
  5105. if (!mddev->raid_disks) {
  5106. int err;
  5107. /* expecting a device which has a superblock */
  5108. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5109. if (IS_ERR(rdev)) {
  5110. printk(KERN_WARNING
  5111. "md: md_import_device returned %ld\n",
  5112. PTR_ERR(rdev));
  5113. return PTR_ERR(rdev);
  5114. }
  5115. if (!list_empty(&mddev->disks)) {
  5116. struct md_rdev *rdev0
  5117. = list_entry(mddev->disks.next,
  5118. struct md_rdev, same_set);
  5119. err = super_types[mddev->major_version]
  5120. .load_super(rdev, rdev0, mddev->minor_version);
  5121. if (err < 0) {
  5122. printk(KERN_WARNING
  5123. "md: %s has different UUID to %s\n",
  5124. bdevname(rdev->bdev,b),
  5125. bdevname(rdev0->bdev,b2));
  5126. export_rdev(rdev);
  5127. return -EINVAL;
  5128. }
  5129. }
  5130. err = bind_rdev_to_array(rdev, mddev);
  5131. if (err)
  5132. export_rdev(rdev);
  5133. return err;
  5134. }
  5135. /*
  5136. * add_new_disk can be used once the array is assembled
  5137. * to add "hot spares". They must already have a superblock
  5138. * written
  5139. */
  5140. if (mddev->pers) {
  5141. int err;
  5142. if (!mddev->pers->hot_add_disk) {
  5143. printk(KERN_WARNING
  5144. "%s: personality does not support diskops!\n",
  5145. mdname(mddev));
  5146. return -EINVAL;
  5147. }
  5148. if (mddev->persistent)
  5149. rdev = md_import_device(dev, mddev->major_version,
  5150. mddev->minor_version);
  5151. else
  5152. rdev = md_import_device(dev, -1, -1);
  5153. if (IS_ERR(rdev)) {
  5154. printk(KERN_WARNING
  5155. "md: md_import_device returned %ld\n",
  5156. PTR_ERR(rdev));
  5157. return PTR_ERR(rdev);
  5158. }
  5159. /* set saved_raid_disk if appropriate */
  5160. if (!mddev->persistent) {
  5161. if (info->state & (1<<MD_DISK_SYNC) &&
  5162. info->raid_disk < mddev->raid_disks) {
  5163. rdev->raid_disk = info->raid_disk;
  5164. set_bit(In_sync, &rdev->flags);
  5165. } else
  5166. rdev->raid_disk = -1;
  5167. } else
  5168. super_types[mddev->major_version].
  5169. validate_super(mddev, rdev);
  5170. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5171. rdev->raid_disk != info->raid_disk) {
  5172. /* This was a hot-add request, but events doesn't
  5173. * match, so reject it.
  5174. */
  5175. export_rdev(rdev);
  5176. return -EINVAL;
  5177. }
  5178. if (test_bit(In_sync, &rdev->flags))
  5179. rdev->saved_raid_disk = rdev->raid_disk;
  5180. else
  5181. rdev->saved_raid_disk = -1;
  5182. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5183. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5184. set_bit(WriteMostly, &rdev->flags);
  5185. else
  5186. clear_bit(WriteMostly, &rdev->flags);
  5187. rdev->raid_disk = -1;
  5188. err = bind_rdev_to_array(rdev, mddev);
  5189. if (!err && !mddev->pers->hot_remove_disk) {
  5190. /* If there is hot_add_disk but no hot_remove_disk
  5191. * then added disks for geometry changes,
  5192. * and should be added immediately.
  5193. */
  5194. super_types[mddev->major_version].
  5195. validate_super(mddev, rdev);
  5196. err = mddev->pers->hot_add_disk(mddev, rdev);
  5197. if (err)
  5198. unbind_rdev_from_array(rdev);
  5199. }
  5200. if (err)
  5201. export_rdev(rdev);
  5202. else
  5203. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5204. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5205. if (mddev->degraded)
  5206. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5207. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5208. if (!err)
  5209. md_new_event(mddev);
  5210. md_wakeup_thread(mddev->thread);
  5211. return err;
  5212. }
  5213. /* otherwise, add_new_disk is only allowed
  5214. * for major_version==0 superblocks
  5215. */
  5216. if (mddev->major_version != 0) {
  5217. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5218. mdname(mddev));
  5219. return -EINVAL;
  5220. }
  5221. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5222. int err;
  5223. rdev = md_import_device(dev, -1, 0);
  5224. if (IS_ERR(rdev)) {
  5225. printk(KERN_WARNING
  5226. "md: error, md_import_device() returned %ld\n",
  5227. PTR_ERR(rdev));
  5228. return PTR_ERR(rdev);
  5229. }
  5230. rdev->desc_nr = info->number;
  5231. if (info->raid_disk < mddev->raid_disks)
  5232. rdev->raid_disk = info->raid_disk;
  5233. else
  5234. rdev->raid_disk = -1;
  5235. if (rdev->raid_disk < mddev->raid_disks)
  5236. if (info->state & (1<<MD_DISK_SYNC))
  5237. set_bit(In_sync, &rdev->flags);
  5238. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5239. set_bit(WriteMostly, &rdev->flags);
  5240. if (!mddev->persistent) {
  5241. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5242. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5243. } else
  5244. rdev->sb_start = calc_dev_sboffset(rdev);
  5245. rdev->sectors = rdev->sb_start;
  5246. err = bind_rdev_to_array(rdev, mddev);
  5247. if (err) {
  5248. export_rdev(rdev);
  5249. return err;
  5250. }
  5251. }
  5252. return 0;
  5253. }
  5254. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5255. {
  5256. char b[BDEVNAME_SIZE];
  5257. struct md_rdev *rdev;
  5258. rdev = find_rdev(mddev, dev);
  5259. if (!rdev)
  5260. return -ENXIO;
  5261. clear_bit(Blocked, &rdev->flags);
  5262. remove_and_add_spares(mddev, rdev);
  5263. if (rdev->raid_disk >= 0)
  5264. goto busy;
  5265. kick_rdev_from_array(rdev);
  5266. md_update_sb(mddev, 1);
  5267. md_new_event(mddev);
  5268. return 0;
  5269. busy:
  5270. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5271. bdevname(rdev->bdev,b), mdname(mddev));
  5272. return -EBUSY;
  5273. }
  5274. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5275. {
  5276. char b[BDEVNAME_SIZE];
  5277. int err;
  5278. struct md_rdev *rdev;
  5279. if (!mddev->pers)
  5280. return -ENODEV;
  5281. if (mddev->major_version != 0) {
  5282. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5283. " version-0 superblocks.\n",
  5284. mdname(mddev));
  5285. return -EINVAL;
  5286. }
  5287. if (!mddev->pers->hot_add_disk) {
  5288. printk(KERN_WARNING
  5289. "%s: personality does not support diskops!\n",
  5290. mdname(mddev));
  5291. return -EINVAL;
  5292. }
  5293. rdev = md_import_device(dev, -1, 0);
  5294. if (IS_ERR(rdev)) {
  5295. printk(KERN_WARNING
  5296. "md: error, md_import_device() returned %ld\n",
  5297. PTR_ERR(rdev));
  5298. return -EINVAL;
  5299. }
  5300. if (mddev->persistent)
  5301. rdev->sb_start = calc_dev_sboffset(rdev);
  5302. else
  5303. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5304. rdev->sectors = rdev->sb_start;
  5305. if (test_bit(Faulty, &rdev->flags)) {
  5306. printk(KERN_WARNING
  5307. "md: can not hot-add faulty %s disk to %s!\n",
  5308. bdevname(rdev->bdev,b), mdname(mddev));
  5309. err = -EINVAL;
  5310. goto abort_export;
  5311. }
  5312. clear_bit(In_sync, &rdev->flags);
  5313. rdev->desc_nr = -1;
  5314. rdev->saved_raid_disk = -1;
  5315. err = bind_rdev_to_array(rdev, mddev);
  5316. if (err)
  5317. goto abort_export;
  5318. /*
  5319. * The rest should better be atomic, we can have disk failures
  5320. * noticed in interrupt contexts ...
  5321. */
  5322. rdev->raid_disk = -1;
  5323. md_update_sb(mddev, 1);
  5324. /*
  5325. * Kick recovery, maybe this spare has to be added to the
  5326. * array immediately.
  5327. */
  5328. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5329. md_wakeup_thread(mddev->thread);
  5330. md_new_event(mddev);
  5331. return 0;
  5332. abort_export:
  5333. export_rdev(rdev);
  5334. return err;
  5335. }
  5336. static int set_bitmap_file(struct mddev *mddev, int fd)
  5337. {
  5338. int err;
  5339. if (mddev->pers) {
  5340. if (!mddev->pers->quiesce)
  5341. return -EBUSY;
  5342. if (mddev->recovery || mddev->sync_thread)
  5343. return -EBUSY;
  5344. /* we should be able to change the bitmap.. */
  5345. }
  5346. if (fd >= 0) {
  5347. if (mddev->bitmap)
  5348. return -EEXIST; /* cannot add when bitmap is present */
  5349. mddev->bitmap_info.file = fget(fd);
  5350. if (mddev->bitmap_info.file == NULL) {
  5351. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5352. mdname(mddev));
  5353. return -EBADF;
  5354. }
  5355. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5356. if (err) {
  5357. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5358. mdname(mddev));
  5359. fput(mddev->bitmap_info.file);
  5360. mddev->bitmap_info.file = NULL;
  5361. return err;
  5362. }
  5363. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5364. } else if (mddev->bitmap == NULL)
  5365. return -ENOENT; /* cannot remove what isn't there */
  5366. err = 0;
  5367. if (mddev->pers) {
  5368. mddev->pers->quiesce(mddev, 1);
  5369. if (fd >= 0) {
  5370. err = bitmap_create(mddev);
  5371. if (!err)
  5372. err = bitmap_load(mddev);
  5373. }
  5374. if (fd < 0 || err) {
  5375. bitmap_destroy(mddev);
  5376. fd = -1; /* make sure to put the file */
  5377. }
  5378. mddev->pers->quiesce(mddev, 0);
  5379. }
  5380. if (fd < 0) {
  5381. if (mddev->bitmap_info.file) {
  5382. restore_bitmap_write_access(mddev->bitmap_info.file);
  5383. fput(mddev->bitmap_info.file);
  5384. }
  5385. mddev->bitmap_info.file = NULL;
  5386. }
  5387. return err;
  5388. }
  5389. /*
  5390. * set_array_info is used two different ways
  5391. * The original usage is when creating a new array.
  5392. * In this usage, raid_disks is > 0 and it together with
  5393. * level, size, not_persistent,layout,chunksize determine the
  5394. * shape of the array.
  5395. * This will always create an array with a type-0.90.0 superblock.
  5396. * The newer usage is when assembling an array.
  5397. * In this case raid_disks will be 0, and the major_version field is
  5398. * use to determine which style super-blocks are to be found on the devices.
  5399. * The minor and patch _version numbers are also kept incase the
  5400. * super_block handler wishes to interpret them.
  5401. */
  5402. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5403. {
  5404. if (info->raid_disks == 0) {
  5405. /* just setting version number for superblock loading */
  5406. if (info->major_version < 0 ||
  5407. info->major_version >= ARRAY_SIZE(super_types) ||
  5408. super_types[info->major_version].name == NULL) {
  5409. /* maybe try to auto-load a module? */
  5410. printk(KERN_INFO
  5411. "md: superblock version %d not known\n",
  5412. info->major_version);
  5413. return -EINVAL;
  5414. }
  5415. mddev->major_version = info->major_version;
  5416. mddev->minor_version = info->minor_version;
  5417. mddev->patch_version = info->patch_version;
  5418. mddev->persistent = !info->not_persistent;
  5419. /* ensure mddev_put doesn't delete this now that there
  5420. * is some minimal configuration.
  5421. */
  5422. mddev->ctime = get_seconds();
  5423. return 0;
  5424. }
  5425. mddev->major_version = MD_MAJOR_VERSION;
  5426. mddev->minor_version = MD_MINOR_VERSION;
  5427. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5428. mddev->ctime = get_seconds();
  5429. mddev->level = info->level;
  5430. mddev->clevel[0] = 0;
  5431. mddev->dev_sectors = 2 * (sector_t)info->size;
  5432. mddev->raid_disks = info->raid_disks;
  5433. /* don't set md_minor, it is determined by which /dev/md* was
  5434. * openned
  5435. */
  5436. if (info->state & (1<<MD_SB_CLEAN))
  5437. mddev->recovery_cp = MaxSector;
  5438. else
  5439. mddev->recovery_cp = 0;
  5440. mddev->persistent = ! info->not_persistent;
  5441. mddev->external = 0;
  5442. mddev->layout = info->layout;
  5443. mddev->chunk_sectors = info->chunk_size >> 9;
  5444. mddev->max_disks = MD_SB_DISKS;
  5445. if (mddev->persistent)
  5446. mddev->flags = 0;
  5447. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5448. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5449. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5450. mddev->bitmap_info.offset = 0;
  5451. mddev->reshape_position = MaxSector;
  5452. /*
  5453. * Generate a 128 bit UUID
  5454. */
  5455. get_random_bytes(mddev->uuid, 16);
  5456. mddev->new_level = mddev->level;
  5457. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5458. mddev->new_layout = mddev->layout;
  5459. mddev->delta_disks = 0;
  5460. mddev->reshape_backwards = 0;
  5461. return 0;
  5462. }
  5463. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5464. {
  5465. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5466. if (mddev->external_size)
  5467. return;
  5468. mddev->array_sectors = array_sectors;
  5469. }
  5470. EXPORT_SYMBOL(md_set_array_sectors);
  5471. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5472. {
  5473. struct md_rdev *rdev;
  5474. int rv;
  5475. int fit = (num_sectors == 0);
  5476. if (mddev->pers->resize == NULL)
  5477. return -EINVAL;
  5478. /* The "num_sectors" is the number of sectors of each device that
  5479. * is used. This can only make sense for arrays with redundancy.
  5480. * linear and raid0 always use whatever space is available. We can only
  5481. * consider changing this number if no resync or reconstruction is
  5482. * happening, and if the new size is acceptable. It must fit before the
  5483. * sb_start or, if that is <data_offset, it must fit before the size
  5484. * of each device. If num_sectors is zero, we find the largest size
  5485. * that fits.
  5486. */
  5487. if (mddev->sync_thread)
  5488. return -EBUSY;
  5489. rdev_for_each(rdev, mddev) {
  5490. sector_t avail = rdev->sectors;
  5491. if (fit && (num_sectors == 0 || num_sectors > avail))
  5492. num_sectors = avail;
  5493. if (avail < num_sectors)
  5494. return -ENOSPC;
  5495. }
  5496. rv = mddev->pers->resize(mddev, num_sectors);
  5497. if (!rv)
  5498. revalidate_disk(mddev->gendisk);
  5499. return rv;
  5500. }
  5501. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5502. {
  5503. int rv;
  5504. struct md_rdev *rdev;
  5505. /* change the number of raid disks */
  5506. if (mddev->pers->check_reshape == NULL)
  5507. return -EINVAL;
  5508. if (raid_disks <= 0 ||
  5509. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5510. return -EINVAL;
  5511. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5512. return -EBUSY;
  5513. rdev_for_each(rdev, mddev) {
  5514. if (mddev->raid_disks < raid_disks &&
  5515. rdev->data_offset < rdev->new_data_offset)
  5516. return -EINVAL;
  5517. if (mddev->raid_disks > raid_disks &&
  5518. rdev->data_offset > rdev->new_data_offset)
  5519. return -EINVAL;
  5520. }
  5521. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5522. if (mddev->delta_disks < 0)
  5523. mddev->reshape_backwards = 1;
  5524. else if (mddev->delta_disks > 0)
  5525. mddev->reshape_backwards = 0;
  5526. rv = mddev->pers->check_reshape(mddev);
  5527. if (rv < 0) {
  5528. mddev->delta_disks = 0;
  5529. mddev->reshape_backwards = 0;
  5530. }
  5531. return rv;
  5532. }
  5533. /*
  5534. * update_array_info is used to change the configuration of an
  5535. * on-line array.
  5536. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5537. * fields in the info are checked against the array.
  5538. * Any differences that cannot be handled will cause an error.
  5539. * Normally, only one change can be managed at a time.
  5540. */
  5541. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5542. {
  5543. int rv = 0;
  5544. int cnt = 0;
  5545. int state = 0;
  5546. /* calculate expected state,ignoring low bits */
  5547. if (mddev->bitmap && mddev->bitmap_info.offset)
  5548. state |= (1 << MD_SB_BITMAP_PRESENT);
  5549. if (mddev->major_version != info->major_version ||
  5550. mddev->minor_version != info->minor_version ||
  5551. /* mddev->patch_version != info->patch_version || */
  5552. mddev->ctime != info->ctime ||
  5553. mddev->level != info->level ||
  5554. /* mddev->layout != info->layout || */
  5555. !mddev->persistent != info->not_persistent||
  5556. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5557. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5558. ((state^info->state) & 0xfffffe00)
  5559. )
  5560. return -EINVAL;
  5561. /* Check there is only one change */
  5562. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5563. cnt++;
  5564. if (mddev->raid_disks != info->raid_disks)
  5565. cnt++;
  5566. if (mddev->layout != info->layout)
  5567. cnt++;
  5568. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5569. cnt++;
  5570. if (cnt == 0)
  5571. return 0;
  5572. if (cnt > 1)
  5573. return -EINVAL;
  5574. if (mddev->layout != info->layout) {
  5575. /* Change layout
  5576. * we don't need to do anything at the md level, the
  5577. * personality will take care of it all.
  5578. */
  5579. if (mddev->pers->check_reshape == NULL)
  5580. return -EINVAL;
  5581. else {
  5582. mddev->new_layout = info->layout;
  5583. rv = mddev->pers->check_reshape(mddev);
  5584. if (rv)
  5585. mddev->new_layout = mddev->layout;
  5586. return rv;
  5587. }
  5588. }
  5589. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5590. rv = update_size(mddev, (sector_t)info->size * 2);
  5591. if (mddev->raid_disks != info->raid_disks)
  5592. rv = update_raid_disks(mddev, info->raid_disks);
  5593. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5594. if (mddev->pers->quiesce == NULL)
  5595. return -EINVAL;
  5596. if (mddev->recovery || mddev->sync_thread)
  5597. return -EBUSY;
  5598. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5599. /* add the bitmap */
  5600. if (mddev->bitmap)
  5601. return -EEXIST;
  5602. if (mddev->bitmap_info.default_offset == 0)
  5603. return -EINVAL;
  5604. mddev->bitmap_info.offset =
  5605. mddev->bitmap_info.default_offset;
  5606. mddev->bitmap_info.space =
  5607. mddev->bitmap_info.default_space;
  5608. mddev->pers->quiesce(mddev, 1);
  5609. rv = bitmap_create(mddev);
  5610. if (!rv)
  5611. rv = bitmap_load(mddev);
  5612. if (rv)
  5613. bitmap_destroy(mddev);
  5614. mddev->pers->quiesce(mddev, 0);
  5615. } else {
  5616. /* remove the bitmap */
  5617. if (!mddev->bitmap)
  5618. return -ENOENT;
  5619. if (mddev->bitmap->storage.file)
  5620. return -EINVAL;
  5621. mddev->pers->quiesce(mddev, 1);
  5622. bitmap_destroy(mddev);
  5623. mddev->pers->quiesce(mddev, 0);
  5624. mddev->bitmap_info.offset = 0;
  5625. }
  5626. }
  5627. md_update_sb(mddev, 1);
  5628. return rv;
  5629. }
  5630. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5631. {
  5632. struct md_rdev *rdev;
  5633. int err = 0;
  5634. if (mddev->pers == NULL)
  5635. return -ENODEV;
  5636. rcu_read_lock();
  5637. rdev = find_rdev_rcu(mddev, dev);
  5638. if (!rdev)
  5639. err = -ENODEV;
  5640. else {
  5641. md_error(mddev, rdev);
  5642. if (!test_bit(Faulty, &rdev->flags))
  5643. err = -EBUSY;
  5644. }
  5645. rcu_read_unlock();
  5646. return err;
  5647. }
  5648. /*
  5649. * We have a problem here : there is no easy way to give a CHS
  5650. * virtual geometry. We currently pretend that we have a 2 heads
  5651. * 4 sectors (with a BIG number of cylinders...). This drives
  5652. * dosfs just mad... ;-)
  5653. */
  5654. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5655. {
  5656. struct mddev *mddev = bdev->bd_disk->private_data;
  5657. geo->heads = 2;
  5658. geo->sectors = 4;
  5659. geo->cylinders = mddev->array_sectors / 8;
  5660. return 0;
  5661. }
  5662. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5663. unsigned int cmd, unsigned long arg)
  5664. {
  5665. int err = 0;
  5666. void __user *argp = (void __user *)arg;
  5667. struct mddev *mddev = NULL;
  5668. int ro;
  5669. switch (cmd) {
  5670. case RAID_VERSION:
  5671. case GET_ARRAY_INFO:
  5672. case GET_DISK_INFO:
  5673. break;
  5674. default:
  5675. if (!capable(CAP_SYS_ADMIN))
  5676. return -EACCES;
  5677. }
  5678. /*
  5679. * Commands dealing with the RAID driver but not any
  5680. * particular array:
  5681. */
  5682. switch (cmd) {
  5683. case RAID_VERSION:
  5684. err = get_version(argp);
  5685. goto done;
  5686. case PRINT_RAID_DEBUG:
  5687. err = 0;
  5688. md_print_devices();
  5689. goto done;
  5690. #ifndef MODULE
  5691. case RAID_AUTORUN:
  5692. err = 0;
  5693. autostart_arrays(arg);
  5694. goto done;
  5695. #endif
  5696. default:;
  5697. }
  5698. /*
  5699. * Commands creating/starting a new array:
  5700. */
  5701. mddev = bdev->bd_disk->private_data;
  5702. if (!mddev) {
  5703. BUG();
  5704. goto abort;
  5705. }
  5706. /* Some actions do not requires the mutex */
  5707. switch (cmd) {
  5708. case GET_ARRAY_INFO:
  5709. if (!mddev->raid_disks && !mddev->external)
  5710. err = -ENODEV;
  5711. else
  5712. err = get_array_info(mddev, argp);
  5713. goto abort;
  5714. case GET_DISK_INFO:
  5715. if (!mddev->raid_disks && !mddev->external)
  5716. err = -ENODEV;
  5717. else
  5718. err = get_disk_info(mddev, argp);
  5719. goto abort;
  5720. case SET_DISK_FAULTY:
  5721. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5722. goto abort;
  5723. }
  5724. if (cmd == ADD_NEW_DISK)
  5725. /* need to ensure md_delayed_delete() has completed */
  5726. flush_workqueue(md_misc_wq);
  5727. if (cmd == HOT_REMOVE_DISK)
  5728. /* need to ensure recovery thread has run */
  5729. wait_event_interruptible_timeout(mddev->sb_wait,
  5730. !test_bit(MD_RECOVERY_NEEDED,
  5731. &mddev->flags),
  5732. msecs_to_jiffies(5000));
  5733. if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
  5734. /* Need to flush page cache, and ensure no-one else opens
  5735. * and writes
  5736. */
  5737. mutex_lock(&mddev->open_mutex);
  5738. if (atomic_read(&mddev->openers) > 1) {
  5739. mutex_unlock(&mddev->open_mutex);
  5740. err = -EBUSY;
  5741. goto abort;
  5742. }
  5743. set_bit(MD_STILL_CLOSED, &mddev->flags);
  5744. mutex_unlock(&mddev->open_mutex);
  5745. sync_blockdev(bdev);
  5746. }
  5747. err = mddev_lock(mddev);
  5748. if (err) {
  5749. printk(KERN_INFO
  5750. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5751. err, cmd);
  5752. goto abort;
  5753. }
  5754. if (cmd == SET_ARRAY_INFO) {
  5755. mdu_array_info_t info;
  5756. if (!arg)
  5757. memset(&info, 0, sizeof(info));
  5758. else if (copy_from_user(&info, argp, sizeof(info))) {
  5759. err = -EFAULT;
  5760. goto abort_unlock;
  5761. }
  5762. if (mddev->pers) {
  5763. err = update_array_info(mddev, &info);
  5764. if (err) {
  5765. printk(KERN_WARNING "md: couldn't update"
  5766. " array info. %d\n", err);
  5767. goto abort_unlock;
  5768. }
  5769. goto done_unlock;
  5770. }
  5771. if (!list_empty(&mddev->disks)) {
  5772. printk(KERN_WARNING
  5773. "md: array %s already has disks!\n",
  5774. mdname(mddev));
  5775. err = -EBUSY;
  5776. goto abort_unlock;
  5777. }
  5778. if (mddev->raid_disks) {
  5779. printk(KERN_WARNING
  5780. "md: array %s already initialised!\n",
  5781. mdname(mddev));
  5782. err = -EBUSY;
  5783. goto abort_unlock;
  5784. }
  5785. err = set_array_info(mddev, &info);
  5786. if (err) {
  5787. printk(KERN_WARNING "md: couldn't set"
  5788. " array info. %d\n", err);
  5789. goto abort_unlock;
  5790. }
  5791. goto done_unlock;
  5792. }
  5793. /*
  5794. * Commands querying/configuring an existing array:
  5795. */
  5796. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5797. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5798. if ((!mddev->raid_disks && !mddev->external)
  5799. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5800. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5801. && cmd != GET_BITMAP_FILE) {
  5802. err = -ENODEV;
  5803. goto abort_unlock;
  5804. }
  5805. /*
  5806. * Commands even a read-only array can execute:
  5807. */
  5808. switch (cmd) {
  5809. case GET_BITMAP_FILE:
  5810. err = get_bitmap_file(mddev, argp);
  5811. goto done_unlock;
  5812. case RESTART_ARRAY_RW:
  5813. err = restart_array(mddev);
  5814. goto done_unlock;
  5815. case STOP_ARRAY:
  5816. err = do_md_stop(mddev, 0, bdev);
  5817. goto done_unlock;
  5818. case STOP_ARRAY_RO:
  5819. err = md_set_readonly(mddev, bdev);
  5820. goto done_unlock;
  5821. case HOT_REMOVE_DISK:
  5822. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5823. goto done_unlock;
  5824. case ADD_NEW_DISK:
  5825. /* We can support ADD_NEW_DISK on read-only arrays
  5826. * on if we are re-adding a preexisting device.
  5827. * So require mddev->pers and MD_DISK_SYNC.
  5828. */
  5829. if (mddev->pers) {
  5830. mdu_disk_info_t info;
  5831. if (copy_from_user(&info, argp, sizeof(info)))
  5832. err = -EFAULT;
  5833. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5834. /* Need to clear read-only for this */
  5835. break;
  5836. else
  5837. err = add_new_disk(mddev, &info);
  5838. goto done_unlock;
  5839. }
  5840. break;
  5841. case BLKROSET:
  5842. if (get_user(ro, (int __user *)(arg))) {
  5843. err = -EFAULT;
  5844. goto done_unlock;
  5845. }
  5846. err = -EINVAL;
  5847. /* if the bdev is going readonly the value of mddev->ro
  5848. * does not matter, no writes are coming
  5849. */
  5850. if (ro)
  5851. goto done_unlock;
  5852. /* are we are already prepared for writes? */
  5853. if (mddev->ro != 1)
  5854. goto done_unlock;
  5855. /* transitioning to readauto need only happen for
  5856. * arrays that call md_write_start
  5857. */
  5858. if (mddev->pers) {
  5859. err = restart_array(mddev);
  5860. if (err == 0) {
  5861. mddev->ro = 2;
  5862. set_disk_ro(mddev->gendisk, 0);
  5863. }
  5864. }
  5865. goto done_unlock;
  5866. }
  5867. /*
  5868. * The remaining ioctls are changing the state of the
  5869. * superblock, so we do not allow them on read-only arrays.
  5870. * However non-MD ioctls (e.g. get-size) will still come through
  5871. * here and hit the 'default' below, so only disallow
  5872. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5873. */
  5874. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5875. if (mddev->ro == 2) {
  5876. mddev->ro = 0;
  5877. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5878. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5879. /* mddev_unlock will wake thread */
  5880. /* If a device failed while we were read-only, we
  5881. * need to make sure the metadata is updated now.
  5882. */
  5883. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5884. mddev_unlock(mddev);
  5885. wait_event(mddev->sb_wait,
  5886. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5887. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5888. mddev_lock_nointr(mddev);
  5889. }
  5890. } else {
  5891. err = -EROFS;
  5892. goto abort_unlock;
  5893. }
  5894. }
  5895. switch (cmd) {
  5896. case ADD_NEW_DISK:
  5897. {
  5898. mdu_disk_info_t info;
  5899. if (copy_from_user(&info, argp, sizeof(info)))
  5900. err = -EFAULT;
  5901. else
  5902. err = add_new_disk(mddev, &info);
  5903. goto done_unlock;
  5904. }
  5905. case HOT_ADD_DISK:
  5906. err = hot_add_disk(mddev, new_decode_dev(arg));
  5907. goto done_unlock;
  5908. case RUN_ARRAY:
  5909. err = do_md_run(mddev);
  5910. goto done_unlock;
  5911. case SET_BITMAP_FILE:
  5912. err = set_bitmap_file(mddev, (int)arg);
  5913. goto done_unlock;
  5914. default:
  5915. err = -EINVAL;
  5916. goto abort_unlock;
  5917. }
  5918. done_unlock:
  5919. abort_unlock:
  5920. if (mddev->hold_active == UNTIL_IOCTL &&
  5921. err != -EINVAL)
  5922. mddev->hold_active = 0;
  5923. mddev_unlock(mddev);
  5924. return err;
  5925. done:
  5926. if (err)
  5927. MD_BUG();
  5928. abort:
  5929. return err;
  5930. }
  5931. #ifdef CONFIG_COMPAT
  5932. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5933. unsigned int cmd, unsigned long arg)
  5934. {
  5935. switch (cmd) {
  5936. case HOT_REMOVE_DISK:
  5937. case HOT_ADD_DISK:
  5938. case SET_DISK_FAULTY:
  5939. case SET_BITMAP_FILE:
  5940. /* These take in integer arg, do not convert */
  5941. break;
  5942. default:
  5943. arg = (unsigned long)compat_ptr(arg);
  5944. break;
  5945. }
  5946. return md_ioctl(bdev, mode, cmd, arg);
  5947. }
  5948. #endif /* CONFIG_COMPAT */
  5949. static int md_open(struct block_device *bdev, fmode_t mode)
  5950. {
  5951. /*
  5952. * Succeed if we can lock the mddev, which confirms that
  5953. * it isn't being stopped right now.
  5954. */
  5955. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5956. int err;
  5957. if (!mddev)
  5958. return -ENODEV;
  5959. if (mddev->gendisk != bdev->bd_disk) {
  5960. /* we are racing with mddev_put which is discarding this
  5961. * bd_disk.
  5962. */
  5963. mddev_put(mddev);
  5964. /* Wait until bdev->bd_disk is definitely gone */
  5965. flush_workqueue(md_misc_wq);
  5966. /* Then retry the open from the top */
  5967. return -ERESTARTSYS;
  5968. }
  5969. BUG_ON(mddev != bdev->bd_disk->private_data);
  5970. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5971. goto out;
  5972. err = 0;
  5973. atomic_inc(&mddev->openers);
  5974. clear_bit(MD_STILL_CLOSED, &mddev->flags);
  5975. mutex_unlock(&mddev->open_mutex);
  5976. check_disk_change(bdev);
  5977. out:
  5978. return err;
  5979. }
  5980. static void md_release(struct gendisk *disk, fmode_t mode)
  5981. {
  5982. struct mddev *mddev = disk->private_data;
  5983. BUG_ON(!mddev);
  5984. atomic_dec(&mddev->openers);
  5985. mddev_put(mddev);
  5986. }
  5987. static int md_media_changed(struct gendisk *disk)
  5988. {
  5989. struct mddev *mddev = disk->private_data;
  5990. return mddev->changed;
  5991. }
  5992. static int md_revalidate(struct gendisk *disk)
  5993. {
  5994. struct mddev *mddev = disk->private_data;
  5995. mddev->changed = 0;
  5996. return 0;
  5997. }
  5998. static const struct block_device_operations md_fops =
  5999. {
  6000. .owner = THIS_MODULE,
  6001. .open = md_open,
  6002. .release = md_release,
  6003. .ioctl = md_ioctl,
  6004. #ifdef CONFIG_COMPAT
  6005. .compat_ioctl = md_compat_ioctl,
  6006. #endif
  6007. .getgeo = md_getgeo,
  6008. .media_changed = md_media_changed,
  6009. .revalidate_disk= md_revalidate,
  6010. };
  6011. static int md_thread(void * arg)
  6012. {
  6013. struct md_thread *thread = arg;
  6014. /*
  6015. * md_thread is a 'system-thread', it's priority should be very
  6016. * high. We avoid resource deadlocks individually in each
  6017. * raid personality. (RAID5 does preallocation) We also use RR and
  6018. * the very same RT priority as kswapd, thus we will never get
  6019. * into a priority inversion deadlock.
  6020. *
  6021. * we definitely have to have equal or higher priority than
  6022. * bdflush, otherwise bdflush will deadlock if there are too
  6023. * many dirty RAID5 blocks.
  6024. */
  6025. allow_signal(SIGKILL);
  6026. while (!kthread_should_stop()) {
  6027. /* We need to wait INTERRUPTIBLE so that
  6028. * we don't add to the load-average.
  6029. * That means we need to be sure no signals are
  6030. * pending
  6031. */
  6032. if (signal_pending(current))
  6033. flush_signals(current);
  6034. wait_event_interruptible_timeout
  6035. (thread->wqueue,
  6036. test_bit(THREAD_WAKEUP, &thread->flags)
  6037. || kthread_should_stop(),
  6038. thread->timeout);
  6039. clear_bit(THREAD_WAKEUP, &thread->flags);
  6040. if (!kthread_should_stop())
  6041. thread->run(thread);
  6042. }
  6043. return 0;
  6044. }
  6045. void md_wakeup_thread(struct md_thread *thread)
  6046. {
  6047. if (thread) {
  6048. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  6049. set_bit(THREAD_WAKEUP, &thread->flags);
  6050. wake_up(&thread->wqueue);
  6051. }
  6052. }
  6053. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6054. struct mddev *mddev, const char *name)
  6055. {
  6056. struct md_thread *thread;
  6057. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6058. if (!thread)
  6059. return NULL;
  6060. init_waitqueue_head(&thread->wqueue);
  6061. thread->run = run;
  6062. thread->mddev = mddev;
  6063. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6064. thread->tsk = kthread_run(md_thread, thread,
  6065. "%s_%s",
  6066. mdname(thread->mddev),
  6067. name);
  6068. if (IS_ERR(thread->tsk)) {
  6069. kfree(thread);
  6070. return NULL;
  6071. }
  6072. return thread;
  6073. }
  6074. void md_unregister_thread(struct md_thread **threadp)
  6075. {
  6076. struct md_thread *thread = *threadp;
  6077. if (!thread)
  6078. return;
  6079. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6080. /* Locking ensures that mddev_unlock does not wake_up a
  6081. * non-existent thread
  6082. */
  6083. spin_lock(&pers_lock);
  6084. *threadp = NULL;
  6085. spin_unlock(&pers_lock);
  6086. kthread_stop(thread->tsk);
  6087. kfree(thread);
  6088. }
  6089. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6090. {
  6091. if (!mddev) {
  6092. MD_BUG();
  6093. return;
  6094. }
  6095. if (!rdev || test_bit(Faulty, &rdev->flags))
  6096. return;
  6097. if (!mddev->pers || !mddev->pers->error_handler)
  6098. return;
  6099. mddev->pers->error_handler(mddev,rdev);
  6100. if (mddev->degraded)
  6101. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6102. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6103. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6104. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6105. md_wakeup_thread(mddev->thread);
  6106. if (mddev->event_work.func)
  6107. queue_work(md_misc_wq, &mddev->event_work);
  6108. md_new_event_inintr(mddev);
  6109. }
  6110. /* seq_file implementation /proc/mdstat */
  6111. static void status_unused(struct seq_file *seq)
  6112. {
  6113. int i = 0;
  6114. struct md_rdev *rdev;
  6115. seq_printf(seq, "unused devices: ");
  6116. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6117. char b[BDEVNAME_SIZE];
  6118. i++;
  6119. seq_printf(seq, "%s ",
  6120. bdevname(rdev->bdev,b));
  6121. }
  6122. if (!i)
  6123. seq_printf(seq, "<none>");
  6124. seq_printf(seq, "\n");
  6125. }
  6126. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6127. {
  6128. sector_t max_sectors, resync, res;
  6129. unsigned long dt, db;
  6130. sector_t rt;
  6131. int scale;
  6132. unsigned int per_milli;
  6133. if (mddev->curr_resync <= 3)
  6134. resync = 0;
  6135. else
  6136. resync = mddev->curr_resync
  6137. - atomic_read(&mddev->recovery_active);
  6138. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6139. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6140. max_sectors = mddev->resync_max_sectors;
  6141. else
  6142. max_sectors = mddev->dev_sectors;
  6143. /*
  6144. * Should not happen.
  6145. */
  6146. if (!max_sectors) {
  6147. MD_BUG();
  6148. return;
  6149. }
  6150. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6151. * in a sector_t, and (max_sectors>>scale) will fit in a
  6152. * u32, as those are the requirements for sector_div.
  6153. * Thus 'scale' must be at least 10
  6154. */
  6155. scale = 10;
  6156. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6157. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6158. scale++;
  6159. }
  6160. res = (resync>>scale)*1000;
  6161. sector_div(res, (u32)((max_sectors>>scale)+1));
  6162. per_milli = res;
  6163. {
  6164. int i, x = per_milli/50, y = 20-x;
  6165. seq_printf(seq, "[");
  6166. for (i = 0; i < x; i++)
  6167. seq_printf(seq, "=");
  6168. seq_printf(seq, ">");
  6169. for (i = 0; i < y; i++)
  6170. seq_printf(seq, ".");
  6171. seq_printf(seq, "] ");
  6172. }
  6173. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6174. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6175. "reshape" :
  6176. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6177. "check" :
  6178. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6179. "resync" : "recovery"))),
  6180. per_milli/10, per_milli % 10,
  6181. (unsigned long long) resync/2,
  6182. (unsigned long long) max_sectors/2);
  6183. /*
  6184. * dt: time from mark until now
  6185. * db: blocks written from mark until now
  6186. * rt: remaining time
  6187. *
  6188. * rt is a sector_t, so could be 32bit or 64bit.
  6189. * So we divide before multiply in case it is 32bit and close
  6190. * to the limit.
  6191. * We scale the divisor (db) by 32 to avoid losing precision
  6192. * near the end of resync when the number of remaining sectors
  6193. * is close to 'db'.
  6194. * We then divide rt by 32 after multiplying by db to compensate.
  6195. * The '+1' avoids division by zero if db is very small.
  6196. */
  6197. dt = ((jiffies - mddev->resync_mark) / HZ);
  6198. if (!dt) dt++;
  6199. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6200. - mddev->resync_mark_cnt;
  6201. rt = max_sectors - resync; /* number of remaining sectors */
  6202. sector_div(rt, db/32+1);
  6203. rt *= dt;
  6204. rt >>= 5;
  6205. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6206. ((unsigned long)rt % 60)/6);
  6207. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6208. }
  6209. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6210. {
  6211. struct list_head *tmp;
  6212. loff_t l = *pos;
  6213. struct mddev *mddev;
  6214. if (l >= 0x10000)
  6215. return NULL;
  6216. if (!l--)
  6217. /* header */
  6218. return (void*)1;
  6219. spin_lock(&all_mddevs_lock);
  6220. list_for_each(tmp,&all_mddevs)
  6221. if (!l--) {
  6222. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6223. mddev_get(mddev);
  6224. spin_unlock(&all_mddevs_lock);
  6225. return mddev;
  6226. }
  6227. spin_unlock(&all_mddevs_lock);
  6228. if (!l--)
  6229. return (void*)2;/* tail */
  6230. return NULL;
  6231. }
  6232. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6233. {
  6234. struct list_head *tmp;
  6235. struct mddev *next_mddev, *mddev = v;
  6236. ++*pos;
  6237. if (v == (void*)2)
  6238. return NULL;
  6239. spin_lock(&all_mddevs_lock);
  6240. if (v == (void*)1)
  6241. tmp = all_mddevs.next;
  6242. else
  6243. tmp = mddev->all_mddevs.next;
  6244. if (tmp != &all_mddevs)
  6245. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6246. else {
  6247. next_mddev = (void*)2;
  6248. *pos = 0x10000;
  6249. }
  6250. spin_unlock(&all_mddevs_lock);
  6251. if (v != (void*)1)
  6252. mddev_put(mddev);
  6253. return next_mddev;
  6254. }
  6255. static void md_seq_stop(struct seq_file *seq, void *v)
  6256. {
  6257. struct mddev *mddev = v;
  6258. if (mddev && v != (void*)1 && v != (void*)2)
  6259. mddev_put(mddev);
  6260. }
  6261. static int md_seq_show(struct seq_file *seq, void *v)
  6262. {
  6263. struct mddev *mddev = v;
  6264. sector_t sectors;
  6265. struct md_rdev *rdev;
  6266. if (v == (void*)1) {
  6267. struct md_personality *pers;
  6268. seq_printf(seq, "Personalities : ");
  6269. spin_lock(&pers_lock);
  6270. list_for_each_entry(pers, &pers_list, list)
  6271. seq_printf(seq, "[%s] ", pers->name);
  6272. spin_unlock(&pers_lock);
  6273. seq_printf(seq, "\n");
  6274. seq->poll_event = atomic_read(&md_event_count);
  6275. return 0;
  6276. }
  6277. if (v == (void*)2) {
  6278. status_unused(seq);
  6279. return 0;
  6280. }
  6281. if (mddev_lock(mddev) < 0)
  6282. return -EINTR;
  6283. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6284. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6285. mddev->pers ? "" : "in");
  6286. if (mddev->pers) {
  6287. if (mddev->ro==1)
  6288. seq_printf(seq, " (read-only)");
  6289. if (mddev->ro==2)
  6290. seq_printf(seq, " (auto-read-only)");
  6291. seq_printf(seq, " %s", mddev->pers->name);
  6292. }
  6293. sectors = 0;
  6294. rdev_for_each(rdev, mddev) {
  6295. char b[BDEVNAME_SIZE];
  6296. seq_printf(seq, " %s[%d]",
  6297. bdevname(rdev->bdev,b), rdev->desc_nr);
  6298. if (test_bit(WriteMostly, &rdev->flags))
  6299. seq_printf(seq, "(W)");
  6300. if (test_bit(Faulty, &rdev->flags)) {
  6301. seq_printf(seq, "(F)");
  6302. continue;
  6303. }
  6304. if (rdev->raid_disk < 0)
  6305. seq_printf(seq, "(S)"); /* spare */
  6306. if (test_bit(Replacement, &rdev->flags))
  6307. seq_printf(seq, "(R)");
  6308. sectors += rdev->sectors;
  6309. }
  6310. if (!list_empty(&mddev->disks)) {
  6311. if (mddev->pers)
  6312. seq_printf(seq, "\n %llu blocks",
  6313. (unsigned long long)
  6314. mddev->array_sectors / 2);
  6315. else
  6316. seq_printf(seq, "\n %llu blocks",
  6317. (unsigned long long)sectors / 2);
  6318. }
  6319. if (mddev->persistent) {
  6320. if (mddev->major_version != 0 ||
  6321. mddev->minor_version != 90) {
  6322. seq_printf(seq," super %d.%d",
  6323. mddev->major_version,
  6324. mddev->minor_version);
  6325. }
  6326. } else if (mddev->external)
  6327. seq_printf(seq, " super external:%s",
  6328. mddev->metadata_type);
  6329. else
  6330. seq_printf(seq, " super non-persistent");
  6331. if (mddev->pers) {
  6332. mddev->pers->status(seq, mddev);
  6333. seq_printf(seq, "\n ");
  6334. if (mddev->pers->sync_request) {
  6335. if (mddev->curr_resync > 2) {
  6336. status_resync(seq, mddev);
  6337. seq_printf(seq, "\n ");
  6338. } else if (mddev->curr_resync >= 1)
  6339. seq_printf(seq, "\tresync=DELAYED\n ");
  6340. else if (mddev->recovery_cp < MaxSector)
  6341. seq_printf(seq, "\tresync=PENDING\n ");
  6342. }
  6343. } else
  6344. seq_printf(seq, "\n ");
  6345. bitmap_status(seq, mddev->bitmap);
  6346. seq_printf(seq, "\n");
  6347. }
  6348. mddev_unlock(mddev);
  6349. return 0;
  6350. }
  6351. static const struct seq_operations md_seq_ops = {
  6352. .start = md_seq_start,
  6353. .next = md_seq_next,
  6354. .stop = md_seq_stop,
  6355. .show = md_seq_show,
  6356. };
  6357. static int md_seq_open(struct inode *inode, struct file *file)
  6358. {
  6359. struct seq_file *seq;
  6360. int error;
  6361. error = seq_open(file, &md_seq_ops);
  6362. if (error)
  6363. return error;
  6364. seq = file->private_data;
  6365. seq->poll_event = atomic_read(&md_event_count);
  6366. return error;
  6367. }
  6368. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6369. {
  6370. struct seq_file *seq = filp->private_data;
  6371. int mask;
  6372. poll_wait(filp, &md_event_waiters, wait);
  6373. /* always allow read */
  6374. mask = POLLIN | POLLRDNORM;
  6375. if (seq->poll_event != atomic_read(&md_event_count))
  6376. mask |= POLLERR | POLLPRI;
  6377. return mask;
  6378. }
  6379. static const struct file_operations md_seq_fops = {
  6380. .owner = THIS_MODULE,
  6381. .open = md_seq_open,
  6382. .read = seq_read,
  6383. .llseek = seq_lseek,
  6384. .release = seq_release_private,
  6385. .poll = mdstat_poll,
  6386. };
  6387. int register_md_personality(struct md_personality *p)
  6388. {
  6389. spin_lock(&pers_lock);
  6390. list_add_tail(&p->list, &pers_list);
  6391. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6392. spin_unlock(&pers_lock);
  6393. return 0;
  6394. }
  6395. int unregister_md_personality(struct md_personality *p)
  6396. {
  6397. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6398. spin_lock(&pers_lock);
  6399. list_del_init(&p->list);
  6400. spin_unlock(&pers_lock);
  6401. return 0;
  6402. }
  6403. static int is_mddev_idle(struct mddev *mddev, int init)
  6404. {
  6405. struct md_rdev * rdev;
  6406. int idle;
  6407. int curr_events;
  6408. idle = 1;
  6409. rcu_read_lock();
  6410. rdev_for_each_rcu(rdev, mddev) {
  6411. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6412. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6413. (int)part_stat_read(&disk->part0, sectors[1]) -
  6414. atomic_read(&disk->sync_io);
  6415. /* sync IO will cause sync_io to increase before the disk_stats
  6416. * as sync_io is counted when a request starts, and
  6417. * disk_stats is counted when it completes.
  6418. * So resync activity will cause curr_events to be smaller than
  6419. * when there was no such activity.
  6420. * non-sync IO will cause disk_stat to increase without
  6421. * increasing sync_io so curr_events will (eventually)
  6422. * be larger than it was before. Once it becomes
  6423. * substantially larger, the test below will cause
  6424. * the array to appear non-idle, and resync will slow
  6425. * down.
  6426. * If there is a lot of outstanding resync activity when
  6427. * we set last_event to curr_events, then all that activity
  6428. * completing might cause the array to appear non-idle
  6429. * and resync will be slowed down even though there might
  6430. * not have been non-resync activity. This will only
  6431. * happen once though. 'last_events' will soon reflect
  6432. * the state where there is little or no outstanding
  6433. * resync requests, and further resync activity will
  6434. * always make curr_events less than last_events.
  6435. *
  6436. */
  6437. if (init || curr_events - rdev->last_events > 64) {
  6438. rdev->last_events = curr_events;
  6439. idle = 0;
  6440. }
  6441. }
  6442. rcu_read_unlock();
  6443. return idle;
  6444. }
  6445. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6446. {
  6447. /* another "blocks" (512byte) blocks have been synced */
  6448. atomic_sub(blocks, &mddev->recovery_active);
  6449. wake_up(&mddev->recovery_wait);
  6450. if (!ok) {
  6451. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6452. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6453. md_wakeup_thread(mddev->thread);
  6454. // stop recovery, signal do_sync ....
  6455. }
  6456. }
  6457. /* md_write_start(mddev, bi)
  6458. * If we need to update some array metadata (e.g. 'active' flag
  6459. * in superblock) before writing, schedule a superblock update
  6460. * and wait for it to complete.
  6461. */
  6462. void md_write_start(struct mddev *mddev, struct bio *bi)
  6463. {
  6464. int did_change = 0;
  6465. if (bio_data_dir(bi) != WRITE)
  6466. return;
  6467. BUG_ON(mddev->ro == 1);
  6468. if (mddev->ro == 2) {
  6469. /* need to switch to read/write */
  6470. mddev->ro = 0;
  6471. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6472. md_wakeup_thread(mddev->thread);
  6473. md_wakeup_thread(mddev->sync_thread);
  6474. did_change = 1;
  6475. }
  6476. atomic_inc(&mddev->writes_pending);
  6477. if (mddev->safemode == 1)
  6478. mddev->safemode = 0;
  6479. if (mddev->in_sync) {
  6480. spin_lock_irq(&mddev->write_lock);
  6481. if (mddev->in_sync) {
  6482. mddev->in_sync = 0;
  6483. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6484. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6485. md_wakeup_thread(mddev->thread);
  6486. did_change = 1;
  6487. }
  6488. spin_unlock_irq(&mddev->write_lock);
  6489. }
  6490. if (did_change)
  6491. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6492. wait_event(mddev->sb_wait,
  6493. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6494. }
  6495. void md_write_end(struct mddev *mddev)
  6496. {
  6497. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6498. if (mddev->safemode == 2)
  6499. md_wakeup_thread(mddev->thread);
  6500. else if (mddev->safemode_delay)
  6501. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6502. }
  6503. }
  6504. /* md_allow_write(mddev)
  6505. * Calling this ensures that the array is marked 'active' so that writes
  6506. * may proceed without blocking. It is important to call this before
  6507. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6508. * Must be called with mddev_lock held.
  6509. *
  6510. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6511. * is dropped, so return -EAGAIN after notifying userspace.
  6512. */
  6513. int md_allow_write(struct mddev *mddev)
  6514. {
  6515. if (!mddev->pers)
  6516. return 0;
  6517. if (mddev->ro)
  6518. return 0;
  6519. if (!mddev->pers->sync_request)
  6520. return 0;
  6521. spin_lock_irq(&mddev->write_lock);
  6522. if (mddev->in_sync) {
  6523. mddev->in_sync = 0;
  6524. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6525. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6526. if (mddev->safemode_delay &&
  6527. mddev->safemode == 0)
  6528. mddev->safemode = 1;
  6529. spin_unlock_irq(&mddev->write_lock);
  6530. md_update_sb(mddev, 0);
  6531. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6532. } else
  6533. spin_unlock_irq(&mddev->write_lock);
  6534. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6535. return -EAGAIN;
  6536. else
  6537. return 0;
  6538. }
  6539. EXPORT_SYMBOL_GPL(md_allow_write);
  6540. #define SYNC_MARKS 10
  6541. #define SYNC_MARK_STEP (3*HZ)
  6542. #define UPDATE_FREQUENCY (5*60*HZ)
  6543. void md_do_sync(struct md_thread *thread)
  6544. {
  6545. struct mddev *mddev = thread->mddev;
  6546. struct mddev *mddev2;
  6547. unsigned int currspeed = 0,
  6548. window;
  6549. sector_t max_sectors,j, io_sectors;
  6550. unsigned long mark[SYNC_MARKS];
  6551. unsigned long update_time;
  6552. sector_t mark_cnt[SYNC_MARKS];
  6553. int last_mark,m;
  6554. struct list_head *tmp;
  6555. sector_t last_check;
  6556. int skipped = 0;
  6557. struct md_rdev *rdev;
  6558. char *desc, *action = NULL;
  6559. struct blk_plug plug;
  6560. /* just incase thread restarts... */
  6561. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6562. return;
  6563. if (mddev->ro) /* never try to sync a read-only array */
  6564. return;
  6565. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6566. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
  6567. desc = "data-check";
  6568. action = "check";
  6569. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6570. desc = "requested-resync";
  6571. action = "repair";
  6572. } else
  6573. desc = "resync";
  6574. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6575. desc = "reshape";
  6576. else
  6577. desc = "recovery";
  6578. mddev->last_sync_action = action ?: desc;
  6579. /* we overload curr_resync somewhat here.
  6580. * 0 == not engaged in resync at all
  6581. * 2 == checking that there is no conflict with another sync
  6582. * 1 == like 2, but have yielded to allow conflicting resync to
  6583. * commense
  6584. * other == active in resync - this many blocks
  6585. *
  6586. * Before starting a resync we must have set curr_resync to
  6587. * 2, and then checked that every "conflicting" array has curr_resync
  6588. * less than ours. When we find one that is the same or higher
  6589. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6590. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6591. * This will mean we have to start checking from the beginning again.
  6592. *
  6593. */
  6594. do {
  6595. mddev->curr_resync = 2;
  6596. try_again:
  6597. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6598. goto skip;
  6599. for_each_mddev(mddev2, tmp) {
  6600. if (mddev2 == mddev)
  6601. continue;
  6602. if (!mddev->parallel_resync
  6603. && mddev2->curr_resync
  6604. && match_mddev_units(mddev, mddev2)) {
  6605. DEFINE_WAIT(wq);
  6606. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6607. /* arbitrarily yield */
  6608. mddev->curr_resync = 1;
  6609. wake_up(&resync_wait);
  6610. }
  6611. if (mddev > mddev2 && mddev->curr_resync == 1)
  6612. /* no need to wait here, we can wait the next
  6613. * time 'round when curr_resync == 2
  6614. */
  6615. continue;
  6616. /* We need to wait 'interruptible' so as not to
  6617. * contribute to the load average, and not to
  6618. * be caught by 'softlockup'
  6619. */
  6620. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6621. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6622. mddev2->curr_resync >= mddev->curr_resync) {
  6623. printk(KERN_INFO "md: delaying %s of %s"
  6624. " until %s has finished (they"
  6625. " share one or more physical units)\n",
  6626. desc, mdname(mddev), mdname(mddev2));
  6627. mddev_put(mddev2);
  6628. if (signal_pending(current))
  6629. flush_signals(current);
  6630. schedule();
  6631. finish_wait(&resync_wait, &wq);
  6632. goto try_again;
  6633. }
  6634. finish_wait(&resync_wait, &wq);
  6635. }
  6636. }
  6637. } while (mddev->curr_resync < 2);
  6638. j = 0;
  6639. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6640. /* resync follows the size requested by the personality,
  6641. * which defaults to physical size, but can be virtual size
  6642. */
  6643. max_sectors = mddev->resync_max_sectors;
  6644. atomic64_set(&mddev->resync_mismatches, 0);
  6645. /* we don't use the checkpoint if there's a bitmap */
  6646. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6647. j = mddev->resync_min;
  6648. else if (!mddev->bitmap)
  6649. j = mddev->recovery_cp;
  6650. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6651. max_sectors = mddev->resync_max_sectors;
  6652. else {
  6653. /* recovery follows the physical size of devices */
  6654. max_sectors = mddev->dev_sectors;
  6655. j = MaxSector;
  6656. rcu_read_lock();
  6657. rdev_for_each_rcu(rdev, mddev)
  6658. if (rdev->raid_disk >= 0 &&
  6659. !test_bit(Faulty, &rdev->flags) &&
  6660. !test_bit(In_sync, &rdev->flags) &&
  6661. rdev->recovery_offset < j)
  6662. j = rdev->recovery_offset;
  6663. rcu_read_unlock();
  6664. }
  6665. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6666. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6667. " %d KB/sec/disk.\n", speed_min(mddev));
  6668. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6669. "(but not more than %d KB/sec) for %s.\n",
  6670. speed_max(mddev), desc);
  6671. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6672. io_sectors = 0;
  6673. for (m = 0; m < SYNC_MARKS; m++) {
  6674. mark[m] = jiffies;
  6675. mark_cnt[m] = io_sectors;
  6676. }
  6677. last_mark = 0;
  6678. mddev->resync_mark = mark[last_mark];
  6679. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6680. /*
  6681. * Tune reconstruction:
  6682. */
  6683. window = 32*(PAGE_SIZE/512);
  6684. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6685. window/2, (unsigned long long)max_sectors/2);
  6686. atomic_set(&mddev->recovery_active, 0);
  6687. last_check = 0;
  6688. if (j>2) {
  6689. printk(KERN_INFO
  6690. "md: resuming %s of %s from checkpoint.\n",
  6691. desc, mdname(mddev));
  6692. mddev->curr_resync = j;
  6693. } else
  6694. mddev->curr_resync = 3; /* no longer delayed */
  6695. mddev->curr_resync_completed = j;
  6696. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6697. md_new_event(mddev);
  6698. update_time = jiffies;
  6699. blk_start_plug(&plug);
  6700. while (j < max_sectors) {
  6701. sector_t sectors;
  6702. skipped = 0;
  6703. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6704. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6705. (mddev->curr_resync - mddev->curr_resync_completed)
  6706. > (max_sectors >> 4)) ||
  6707. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6708. (j - mddev->curr_resync_completed)*2
  6709. >= mddev->resync_max - mddev->curr_resync_completed
  6710. )) {
  6711. /* time to update curr_resync_completed */
  6712. wait_event(mddev->recovery_wait,
  6713. atomic_read(&mddev->recovery_active) == 0);
  6714. mddev->curr_resync_completed = j;
  6715. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6716. j > mddev->recovery_cp)
  6717. mddev->recovery_cp = j;
  6718. update_time = jiffies;
  6719. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6720. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6721. }
  6722. while (j >= mddev->resync_max &&
  6723. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6724. /* As this condition is controlled by user-space,
  6725. * we can block indefinitely, so use '_interruptible'
  6726. * to avoid triggering warnings.
  6727. */
  6728. flush_signals(current); /* just in case */
  6729. wait_event_interruptible(mddev->recovery_wait,
  6730. mddev->resync_max > j
  6731. || test_bit(MD_RECOVERY_INTR,
  6732. &mddev->recovery));
  6733. }
  6734. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6735. break;
  6736. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6737. currspeed < speed_min(mddev));
  6738. if (sectors == 0) {
  6739. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6740. break;
  6741. }
  6742. if (!skipped) { /* actual IO requested */
  6743. io_sectors += sectors;
  6744. atomic_add(sectors, &mddev->recovery_active);
  6745. }
  6746. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6747. break;
  6748. j += sectors;
  6749. if (j > 2)
  6750. mddev->curr_resync = j;
  6751. mddev->curr_mark_cnt = io_sectors;
  6752. if (last_check == 0)
  6753. /* this is the earliest that rebuild will be
  6754. * visible in /proc/mdstat
  6755. */
  6756. md_new_event(mddev);
  6757. if (last_check + window > io_sectors || j == max_sectors)
  6758. continue;
  6759. last_check = io_sectors;
  6760. repeat:
  6761. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6762. /* step marks */
  6763. int next = (last_mark+1) % SYNC_MARKS;
  6764. mddev->resync_mark = mark[next];
  6765. mddev->resync_mark_cnt = mark_cnt[next];
  6766. mark[next] = jiffies;
  6767. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6768. last_mark = next;
  6769. }
  6770. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6771. break;
  6772. /*
  6773. * this loop exits only if either when we are slower than
  6774. * the 'hard' speed limit, or the system was IO-idle for
  6775. * a jiffy.
  6776. * the system might be non-idle CPU-wise, but we only care
  6777. * about not overloading the IO subsystem. (things like an
  6778. * e2fsck being done on the RAID array should execute fast)
  6779. */
  6780. cond_resched();
  6781. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6782. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6783. if (currspeed > speed_min(mddev)) {
  6784. if ((currspeed > speed_max(mddev)) ||
  6785. !is_mddev_idle(mddev, 0)) {
  6786. msleep(500);
  6787. goto repeat;
  6788. }
  6789. }
  6790. }
  6791. printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
  6792. test_bit(MD_RECOVERY_INTR, &mddev->recovery)
  6793. ? "interrupted" : "done");
  6794. /*
  6795. * this also signals 'finished resyncing' to md_stop
  6796. */
  6797. blk_finish_plug(&plug);
  6798. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6799. /* tell personality that we are finished */
  6800. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6801. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6802. mddev->curr_resync > 2) {
  6803. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6804. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6805. if (mddev->curr_resync >= mddev->recovery_cp) {
  6806. printk(KERN_INFO
  6807. "md: checkpointing %s of %s.\n",
  6808. desc, mdname(mddev));
  6809. if (test_bit(MD_RECOVERY_ERROR,
  6810. &mddev->recovery))
  6811. mddev->recovery_cp =
  6812. mddev->curr_resync_completed;
  6813. else
  6814. mddev->recovery_cp =
  6815. mddev->curr_resync;
  6816. }
  6817. } else
  6818. mddev->recovery_cp = MaxSector;
  6819. } else {
  6820. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6821. mddev->curr_resync = MaxSector;
  6822. rcu_read_lock();
  6823. rdev_for_each_rcu(rdev, mddev)
  6824. if (rdev->raid_disk >= 0 &&
  6825. mddev->delta_disks >= 0 &&
  6826. !test_bit(Faulty, &rdev->flags) &&
  6827. !test_bit(In_sync, &rdev->flags) &&
  6828. rdev->recovery_offset < mddev->curr_resync)
  6829. rdev->recovery_offset = mddev->curr_resync;
  6830. rcu_read_unlock();
  6831. }
  6832. }
  6833. skip:
  6834. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6835. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6836. /* We completed so min/max setting can be forgotten if used. */
  6837. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6838. mddev->resync_min = 0;
  6839. mddev->resync_max = MaxSector;
  6840. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6841. mddev->resync_min = mddev->curr_resync_completed;
  6842. mddev->curr_resync = 0;
  6843. wake_up(&resync_wait);
  6844. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6845. md_wakeup_thread(mddev->thread);
  6846. return;
  6847. }
  6848. EXPORT_SYMBOL_GPL(md_do_sync);
  6849. static int remove_and_add_spares(struct mddev *mddev,
  6850. struct md_rdev *this)
  6851. {
  6852. struct md_rdev *rdev;
  6853. int spares = 0;
  6854. int removed = 0;
  6855. rdev_for_each(rdev, mddev)
  6856. if ((this == NULL || rdev == this) &&
  6857. rdev->raid_disk >= 0 &&
  6858. !test_bit(Blocked, &rdev->flags) &&
  6859. (test_bit(Faulty, &rdev->flags) ||
  6860. ! test_bit(In_sync, &rdev->flags)) &&
  6861. atomic_read(&rdev->nr_pending)==0) {
  6862. if (mddev->pers->hot_remove_disk(
  6863. mddev, rdev) == 0) {
  6864. sysfs_unlink_rdev(mddev, rdev);
  6865. rdev->raid_disk = -1;
  6866. removed++;
  6867. }
  6868. }
  6869. if (removed && mddev->kobj.sd)
  6870. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6871. if (this)
  6872. goto no_add;
  6873. rdev_for_each(rdev, mddev) {
  6874. if (rdev->raid_disk >= 0 &&
  6875. !test_bit(In_sync, &rdev->flags) &&
  6876. !test_bit(Faulty, &rdev->flags))
  6877. spares++;
  6878. if (rdev->raid_disk >= 0)
  6879. continue;
  6880. if (test_bit(Faulty, &rdev->flags))
  6881. continue;
  6882. if (mddev->ro &&
  6883. rdev->saved_raid_disk < 0)
  6884. continue;
  6885. rdev->recovery_offset = 0;
  6886. if (mddev->pers->
  6887. hot_add_disk(mddev, rdev) == 0) {
  6888. if (sysfs_link_rdev(mddev, rdev))
  6889. /* failure here is OK */;
  6890. spares++;
  6891. md_new_event(mddev);
  6892. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6893. }
  6894. }
  6895. no_add:
  6896. if (removed)
  6897. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6898. return spares;
  6899. }
  6900. /*
  6901. * This routine is regularly called by all per-raid-array threads to
  6902. * deal with generic issues like resync and super-block update.
  6903. * Raid personalities that don't have a thread (linear/raid0) do not
  6904. * need this as they never do any recovery or update the superblock.
  6905. *
  6906. * It does not do any resync itself, but rather "forks" off other threads
  6907. * to do that as needed.
  6908. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6909. * "->recovery" and create a thread at ->sync_thread.
  6910. * When the thread finishes it sets MD_RECOVERY_DONE
  6911. * and wakeups up this thread which will reap the thread and finish up.
  6912. * This thread also removes any faulty devices (with nr_pending == 0).
  6913. *
  6914. * The overall approach is:
  6915. * 1/ if the superblock needs updating, update it.
  6916. * 2/ If a recovery thread is running, don't do anything else.
  6917. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6918. * 4/ If there are any faulty devices, remove them.
  6919. * 5/ If array is degraded, try to add spares devices
  6920. * 6/ If array has spares or is not in-sync, start a resync thread.
  6921. */
  6922. void md_check_recovery(struct mddev *mddev)
  6923. {
  6924. if (mddev->suspended)
  6925. return;
  6926. if (mddev->bitmap)
  6927. bitmap_daemon_work(mddev);
  6928. if (signal_pending(current)) {
  6929. if (mddev->pers->sync_request && !mddev->external) {
  6930. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6931. mdname(mddev));
  6932. mddev->safemode = 2;
  6933. }
  6934. flush_signals(current);
  6935. }
  6936. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6937. return;
  6938. if ( ! (
  6939. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6940. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6941. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6942. (mddev->external == 0 && mddev->safemode == 1) ||
  6943. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6944. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6945. ))
  6946. return;
  6947. if (mddev_trylock(mddev)) {
  6948. int spares = 0;
  6949. if (mddev->ro) {
  6950. /* On a read-only array we can:
  6951. * - remove failed devices
  6952. * - add already-in_sync devices if the array itself
  6953. * is in-sync.
  6954. * As we only add devices that are already in-sync,
  6955. * we can activate the spares immediately.
  6956. */
  6957. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6958. remove_and_add_spares(mddev, NULL);
  6959. mddev->pers->spare_active(mddev);
  6960. goto unlock;
  6961. }
  6962. if (!mddev->external) {
  6963. int did_change = 0;
  6964. spin_lock_irq(&mddev->write_lock);
  6965. if (mddev->safemode &&
  6966. !atomic_read(&mddev->writes_pending) &&
  6967. !mddev->in_sync &&
  6968. mddev->recovery_cp == MaxSector) {
  6969. mddev->in_sync = 1;
  6970. did_change = 1;
  6971. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6972. }
  6973. if (mddev->safemode == 1)
  6974. mddev->safemode = 0;
  6975. spin_unlock_irq(&mddev->write_lock);
  6976. if (did_change)
  6977. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6978. }
  6979. if (mddev->flags & MD_UPDATE_SB_FLAGS)
  6980. md_update_sb(mddev, 0);
  6981. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6982. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6983. /* resync/recovery still happening */
  6984. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6985. goto unlock;
  6986. }
  6987. if (mddev->sync_thread) {
  6988. md_reap_sync_thread(mddev);
  6989. goto unlock;
  6990. }
  6991. /* Set RUNNING before clearing NEEDED to avoid
  6992. * any transients in the value of "sync_action".
  6993. */
  6994. mddev->curr_resync_completed = 0;
  6995. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6996. /* Clear some bits that don't mean anything, but
  6997. * might be left set
  6998. */
  6999. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7000. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7001. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7002. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7003. goto unlock;
  7004. /* no recovery is running.
  7005. * remove any failed drives, then
  7006. * add spares if possible.
  7007. * Spares are also removed and re-added, to allow
  7008. * the personality to fail the re-add.
  7009. */
  7010. if (mddev->reshape_position != MaxSector) {
  7011. if (mddev->pers->check_reshape == NULL ||
  7012. mddev->pers->check_reshape(mddev) != 0)
  7013. /* Cannot proceed */
  7014. goto unlock;
  7015. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7016. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7017. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7018. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7019. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7020. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7021. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7022. } else if (mddev->recovery_cp < MaxSector) {
  7023. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7024. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7025. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7026. /* nothing to be done ... */
  7027. goto unlock;
  7028. if (mddev->pers->sync_request) {
  7029. if (spares) {
  7030. /* We are adding a device or devices to an array
  7031. * which has the bitmap stored on all devices.
  7032. * So make sure all bitmap pages get written
  7033. */
  7034. bitmap_write_all(mddev->bitmap);
  7035. }
  7036. mddev->sync_thread = md_register_thread(md_do_sync,
  7037. mddev,
  7038. "resync");
  7039. if (!mddev->sync_thread) {
  7040. printk(KERN_ERR "%s: could not start resync"
  7041. " thread...\n",
  7042. mdname(mddev));
  7043. /* leave the spares where they are, it shouldn't hurt */
  7044. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7045. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7046. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7047. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7048. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7049. } else
  7050. md_wakeup_thread(mddev->sync_thread);
  7051. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7052. md_new_event(mddev);
  7053. }
  7054. unlock:
  7055. wake_up(&mddev->sb_wait);
  7056. if (!mddev->sync_thread) {
  7057. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7058. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7059. &mddev->recovery))
  7060. if (mddev->sysfs_action)
  7061. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7062. }
  7063. mddev_unlock(mddev);
  7064. }
  7065. }
  7066. void md_reap_sync_thread(struct mddev *mddev)
  7067. {
  7068. struct md_rdev *rdev;
  7069. /* resync has finished, collect result */
  7070. md_unregister_thread(&mddev->sync_thread);
  7071. wake_up(&resync_wait);
  7072. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  7073. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  7074. /* success...*/
  7075. /* activate any spares */
  7076. if (mddev->pers->spare_active(mddev)) {
  7077. sysfs_notify(&mddev->kobj, NULL,
  7078. "degraded");
  7079. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  7080. }
  7081. }
  7082. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  7083. mddev->pers->finish_reshape)
  7084. mddev->pers->finish_reshape(mddev);
  7085. /* If array is no-longer degraded, then any saved_raid_disk
  7086. * information must be scrapped. Also if any device is now
  7087. * In_sync we must scrape the saved_raid_disk for that device
  7088. * do the superblock for an incrementally recovered device
  7089. * written out.
  7090. */
  7091. rdev_for_each(rdev, mddev)
  7092. if (!mddev->degraded ||
  7093. test_bit(In_sync, &rdev->flags))
  7094. rdev->saved_raid_disk = -1;
  7095. md_update_sb(mddev, 1);
  7096. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7097. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7098. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7099. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7100. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7101. /* flag recovery needed just to double check */
  7102. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  7103. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7104. md_new_event(mddev);
  7105. if (mddev->event_work.func)
  7106. queue_work(md_misc_wq, &mddev->event_work);
  7107. }
  7108. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7109. {
  7110. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7111. wait_event_timeout(rdev->blocked_wait,
  7112. !test_bit(Blocked, &rdev->flags) &&
  7113. !test_bit(BlockedBadBlocks, &rdev->flags),
  7114. msecs_to_jiffies(5000));
  7115. rdev_dec_pending(rdev, mddev);
  7116. }
  7117. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7118. void md_finish_reshape(struct mddev *mddev)
  7119. {
  7120. /* called be personality module when reshape completes. */
  7121. struct md_rdev *rdev;
  7122. rdev_for_each(rdev, mddev) {
  7123. if (rdev->data_offset > rdev->new_data_offset)
  7124. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7125. else
  7126. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7127. rdev->data_offset = rdev->new_data_offset;
  7128. }
  7129. }
  7130. EXPORT_SYMBOL(md_finish_reshape);
  7131. /* Bad block management.
  7132. * We can record which blocks on each device are 'bad' and so just
  7133. * fail those blocks, or that stripe, rather than the whole device.
  7134. * Entries in the bad-block table are 64bits wide. This comprises:
  7135. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7136. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7137. * A 'shift' can be set so that larger blocks are tracked and
  7138. * consequently larger devices can be covered.
  7139. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7140. *
  7141. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7142. * might need to retry if it is very unlucky.
  7143. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7144. * so we use the write_seqlock_irq variant.
  7145. *
  7146. * When looking for a bad block we specify a range and want to
  7147. * know if any block in the range is bad. So we binary-search
  7148. * to the last range that starts at-or-before the given endpoint,
  7149. * (or "before the sector after the target range")
  7150. * then see if it ends after the given start.
  7151. * We return
  7152. * 0 if there are no known bad blocks in the range
  7153. * 1 if there are known bad block which are all acknowledged
  7154. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7155. * plus the start/length of the first bad section we overlap.
  7156. */
  7157. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7158. sector_t *first_bad, int *bad_sectors)
  7159. {
  7160. int hi;
  7161. int lo;
  7162. u64 *p = bb->page;
  7163. int rv;
  7164. sector_t target = s + sectors;
  7165. unsigned seq;
  7166. if (bb->shift > 0) {
  7167. /* round the start down, and the end up */
  7168. s >>= bb->shift;
  7169. target += (1<<bb->shift) - 1;
  7170. target >>= bb->shift;
  7171. sectors = target - s;
  7172. }
  7173. /* 'target' is now the first block after the bad range */
  7174. retry:
  7175. seq = read_seqbegin(&bb->lock);
  7176. lo = 0;
  7177. rv = 0;
  7178. hi = bb->count;
  7179. /* Binary search between lo and hi for 'target'
  7180. * i.e. for the last range that starts before 'target'
  7181. */
  7182. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7183. * are known not to be the last range before target.
  7184. * VARIANT: hi-lo is the number of possible
  7185. * ranges, and decreases until it reaches 1
  7186. */
  7187. while (hi - lo > 1) {
  7188. int mid = (lo + hi) / 2;
  7189. sector_t a = BB_OFFSET(p[mid]);
  7190. if (a < target)
  7191. /* This could still be the one, earlier ranges
  7192. * could not. */
  7193. lo = mid;
  7194. else
  7195. /* This and later ranges are definitely out. */
  7196. hi = mid;
  7197. }
  7198. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7199. if (hi > lo) {
  7200. /* need to check all range that end after 's' to see if
  7201. * any are unacknowledged.
  7202. */
  7203. while (lo >= 0 &&
  7204. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7205. if (BB_OFFSET(p[lo]) < target) {
  7206. /* starts before the end, and finishes after
  7207. * the start, so they must overlap
  7208. */
  7209. if (rv != -1 && BB_ACK(p[lo]))
  7210. rv = 1;
  7211. else
  7212. rv = -1;
  7213. *first_bad = BB_OFFSET(p[lo]);
  7214. *bad_sectors = BB_LEN(p[lo]);
  7215. }
  7216. lo--;
  7217. }
  7218. }
  7219. if (read_seqretry(&bb->lock, seq))
  7220. goto retry;
  7221. return rv;
  7222. }
  7223. EXPORT_SYMBOL_GPL(md_is_badblock);
  7224. /*
  7225. * Add a range of bad blocks to the table.
  7226. * This might extend the table, or might contract it
  7227. * if two adjacent ranges can be merged.
  7228. * We binary-search to find the 'insertion' point, then
  7229. * decide how best to handle it.
  7230. */
  7231. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7232. int acknowledged)
  7233. {
  7234. u64 *p;
  7235. int lo, hi;
  7236. int rv = 1;
  7237. unsigned long flags;
  7238. if (bb->shift < 0)
  7239. /* badblocks are disabled */
  7240. return 0;
  7241. if (bb->shift) {
  7242. /* round the start down, and the end up */
  7243. sector_t next = s + sectors;
  7244. s >>= bb->shift;
  7245. next += (1<<bb->shift) - 1;
  7246. next >>= bb->shift;
  7247. sectors = next - s;
  7248. }
  7249. write_seqlock_irqsave(&bb->lock, flags);
  7250. p = bb->page;
  7251. lo = 0;
  7252. hi = bb->count;
  7253. /* Find the last range that starts at-or-before 's' */
  7254. while (hi - lo > 1) {
  7255. int mid = (lo + hi) / 2;
  7256. sector_t a = BB_OFFSET(p[mid]);
  7257. if (a <= s)
  7258. lo = mid;
  7259. else
  7260. hi = mid;
  7261. }
  7262. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7263. hi = lo;
  7264. if (hi > lo) {
  7265. /* we found a range that might merge with the start
  7266. * of our new range
  7267. */
  7268. sector_t a = BB_OFFSET(p[lo]);
  7269. sector_t e = a + BB_LEN(p[lo]);
  7270. int ack = BB_ACK(p[lo]);
  7271. if (e >= s) {
  7272. /* Yes, we can merge with a previous range */
  7273. if (s == a && s + sectors >= e)
  7274. /* new range covers old */
  7275. ack = acknowledged;
  7276. else
  7277. ack = ack && acknowledged;
  7278. if (e < s + sectors)
  7279. e = s + sectors;
  7280. if (e - a <= BB_MAX_LEN) {
  7281. p[lo] = BB_MAKE(a, e-a, ack);
  7282. s = e;
  7283. } else {
  7284. /* does not all fit in one range,
  7285. * make p[lo] maximal
  7286. */
  7287. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7288. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7289. s = a + BB_MAX_LEN;
  7290. }
  7291. sectors = e - s;
  7292. }
  7293. }
  7294. if (sectors && hi < bb->count) {
  7295. /* 'hi' points to the first range that starts after 's'.
  7296. * Maybe we can merge with the start of that range */
  7297. sector_t a = BB_OFFSET(p[hi]);
  7298. sector_t e = a + BB_LEN(p[hi]);
  7299. int ack = BB_ACK(p[hi]);
  7300. if (a <= s + sectors) {
  7301. /* merging is possible */
  7302. if (e <= s + sectors) {
  7303. /* full overlap */
  7304. e = s + sectors;
  7305. ack = acknowledged;
  7306. } else
  7307. ack = ack && acknowledged;
  7308. a = s;
  7309. if (e - a <= BB_MAX_LEN) {
  7310. p[hi] = BB_MAKE(a, e-a, ack);
  7311. s = e;
  7312. } else {
  7313. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7314. s = a + BB_MAX_LEN;
  7315. }
  7316. sectors = e - s;
  7317. lo = hi;
  7318. hi++;
  7319. }
  7320. }
  7321. if (sectors == 0 && hi < bb->count) {
  7322. /* we might be able to combine lo and hi */
  7323. /* Note: 's' is at the end of 'lo' */
  7324. sector_t a = BB_OFFSET(p[hi]);
  7325. int lolen = BB_LEN(p[lo]);
  7326. int hilen = BB_LEN(p[hi]);
  7327. int newlen = lolen + hilen - (s - a);
  7328. if (s >= a && newlen < BB_MAX_LEN) {
  7329. /* yes, we can combine them */
  7330. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7331. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7332. memmove(p + hi, p + hi + 1,
  7333. (bb->count - hi - 1) * 8);
  7334. bb->count--;
  7335. }
  7336. }
  7337. while (sectors) {
  7338. /* didn't merge (it all).
  7339. * Need to add a range just before 'hi' */
  7340. if (bb->count >= MD_MAX_BADBLOCKS) {
  7341. /* No room for more */
  7342. rv = 0;
  7343. break;
  7344. } else {
  7345. int this_sectors = sectors;
  7346. memmove(p + hi + 1, p + hi,
  7347. (bb->count - hi) * 8);
  7348. bb->count++;
  7349. if (this_sectors > BB_MAX_LEN)
  7350. this_sectors = BB_MAX_LEN;
  7351. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7352. sectors -= this_sectors;
  7353. s += this_sectors;
  7354. }
  7355. }
  7356. bb->changed = 1;
  7357. if (!acknowledged)
  7358. bb->unacked_exist = 1;
  7359. write_sequnlock_irqrestore(&bb->lock, flags);
  7360. return rv;
  7361. }
  7362. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7363. int is_new)
  7364. {
  7365. int rv;
  7366. if (is_new)
  7367. s += rdev->new_data_offset;
  7368. else
  7369. s += rdev->data_offset;
  7370. rv = md_set_badblocks(&rdev->badblocks,
  7371. s, sectors, 0);
  7372. if (rv) {
  7373. /* Make sure they get written out promptly */
  7374. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7375. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7376. md_wakeup_thread(rdev->mddev->thread);
  7377. }
  7378. return rv;
  7379. }
  7380. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7381. /*
  7382. * Remove a range of bad blocks from the table.
  7383. * This may involve extending the table if we spilt a region,
  7384. * but it must not fail. So if the table becomes full, we just
  7385. * drop the remove request.
  7386. */
  7387. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7388. {
  7389. u64 *p;
  7390. int lo, hi;
  7391. sector_t target = s + sectors;
  7392. int rv = 0;
  7393. if (bb->shift > 0) {
  7394. /* When clearing we round the start up and the end down.
  7395. * This should not matter as the shift should align with
  7396. * the block size and no rounding should ever be needed.
  7397. * However it is better the think a block is bad when it
  7398. * isn't than to think a block is not bad when it is.
  7399. */
  7400. s += (1<<bb->shift) - 1;
  7401. s >>= bb->shift;
  7402. target >>= bb->shift;
  7403. sectors = target - s;
  7404. }
  7405. write_seqlock_irq(&bb->lock);
  7406. p = bb->page;
  7407. lo = 0;
  7408. hi = bb->count;
  7409. /* Find the last range that starts before 'target' */
  7410. while (hi - lo > 1) {
  7411. int mid = (lo + hi) / 2;
  7412. sector_t a = BB_OFFSET(p[mid]);
  7413. if (a < target)
  7414. lo = mid;
  7415. else
  7416. hi = mid;
  7417. }
  7418. if (hi > lo) {
  7419. /* p[lo] is the last range that could overlap the
  7420. * current range. Earlier ranges could also overlap,
  7421. * but only this one can overlap the end of the range.
  7422. */
  7423. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7424. /* Partial overlap, leave the tail of this range */
  7425. int ack = BB_ACK(p[lo]);
  7426. sector_t a = BB_OFFSET(p[lo]);
  7427. sector_t end = a + BB_LEN(p[lo]);
  7428. if (a < s) {
  7429. /* we need to split this range */
  7430. if (bb->count >= MD_MAX_BADBLOCKS) {
  7431. rv = 0;
  7432. goto out;
  7433. }
  7434. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7435. bb->count++;
  7436. p[lo] = BB_MAKE(a, s-a, ack);
  7437. lo++;
  7438. }
  7439. p[lo] = BB_MAKE(target, end - target, ack);
  7440. /* there is no longer an overlap */
  7441. hi = lo;
  7442. lo--;
  7443. }
  7444. while (lo >= 0 &&
  7445. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7446. /* This range does overlap */
  7447. if (BB_OFFSET(p[lo]) < s) {
  7448. /* Keep the early parts of this range. */
  7449. int ack = BB_ACK(p[lo]);
  7450. sector_t start = BB_OFFSET(p[lo]);
  7451. p[lo] = BB_MAKE(start, s - start, ack);
  7452. /* now low doesn't overlap, so.. */
  7453. break;
  7454. }
  7455. lo--;
  7456. }
  7457. /* 'lo' is strictly before, 'hi' is strictly after,
  7458. * anything between needs to be discarded
  7459. */
  7460. if (hi - lo > 1) {
  7461. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7462. bb->count -= (hi - lo - 1);
  7463. }
  7464. }
  7465. bb->changed = 1;
  7466. out:
  7467. write_sequnlock_irq(&bb->lock);
  7468. return rv;
  7469. }
  7470. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7471. int is_new)
  7472. {
  7473. if (is_new)
  7474. s += rdev->new_data_offset;
  7475. else
  7476. s += rdev->data_offset;
  7477. return md_clear_badblocks(&rdev->badblocks,
  7478. s, sectors);
  7479. }
  7480. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7481. /*
  7482. * Acknowledge all bad blocks in a list.
  7483. * This only succeeds if ->changed is clear. It is used by
  7484. * in-kernel metadata updates
  7485. */
  7486. void md_ack_all_badblocks(struct badblocks *bb)
  7487. {
  7488. if (bb->page == NULL || bb->changed)
  7489. /* no point even trying */
  7490. return;
  7491. write_seqlock_irq(&bb->lock);
  7492. if (bb->changed == 0 && bb->unacked_exist) {
  7493. u64 *p = bb->page;
  7494. int i;
  7495. for (i = 0; i < bb->count ; i++) {
  7496. if (!BB_ACK(p[i])) {
  7497. sector_t start = BB_OFFSET(p[i]);
  7498. int len = BB_LEN(p[i]);
  7499. p[i] = BB_MAKE(start, len, 1);
  7500. }
  7501. }
  7502. bb->unacked_exist = 0;
  7503. }
  7504. write_sequnlock_irq(&bb->lock);
  7505. }
  7506. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7507. /* sysfs access to bad-blocks list.
  7508. * We present two files.
  7509. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7510. * are recorded as bad. The list is truncated to fit within
  7511. * the one-page limit of sysfs.
  7512. * Writing "sector length" to this file adds an acknowledged
  7513. * bad block list.
  7514. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7515. * been acknowledged. Writing to this file adds bad blocks
  7516. * without acknowledging them. This is largely for testing.
  7517. */
  7518. static ssize_t
  7519. badblocks_show(struct badblocks *bb, char *page, int unack)
  7520. {
  7521. size_t len;
  7522. int i;
  7523. u64 *p = bb->page;
  7524. unsigned seq;
  7525. if (bb->shift < 0)
  7526. return 0;
  7527. retry:
  7528. seq = read_seqbegin(&bb->lock);
  7529. len = 0;
  7530. i = 0;
  7531. while (len < PAGE_SIZE && i < bb->count) {
  7532. sector_t s = BB_OFFSET(p[i]);
  7533. unsigned int length = BB_LEN(p[i]);
  7534. int ack = BB_ACK(p[i]);
  7535. i++;
  7536. if (unack && ack)
  7537. continue;
  7538. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7539. (unsigned long long)s << bb->shift,
  7540. length << bb->shift);
  7541. }
  7542. if (unack && len == 0)
  7543. bb->unacked_exist = 0;
  7544. if (read_seqretry(&bb->lock, seq))
  7545. goto retry;
  7546. return len;
  7547. }
  7548. #define DO_DEBUG 1
  7549. static ssize_t
  7550. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7551. {
  7552. unsigned long long sector;
  7553. int length;
  7554. char newline;
  7555. #ifdef DO_DEBUG
  7556. /* Allow clearing via sysfs *only* for testing/debugging.
  7557. * Normally only a successful write may clear a badblock
  7558. */
  7559. int clear = 0;
  7560. if (page[0] == '-') {
  7561. clear = 1;
  7562. page++;
  7563. }
  7564. #endif /* DO_DEBUG */
  7565. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7566. case 3:
  7567. if (newline != '\n')
  7568. return -EINVAL;
  7569. case 2:
  7570. if (length <= 0)
  7571. return -EINVAL;
  7572. break;
  7573. default:
  7574. return -EINVAL;
  7575. }
  7576. #ifdef DO_DEBUG
  7577. if (clear) {
  7578. md_clear_badblocks(bb, sector, length);
  7579. return len;
  7580. }
  7581. #endif /* DO_DEBUG */
  7582. if (md_set_badblocks(bb, sector, length, !unack))
  7583. return len;
  7584. else
  7585. return -ENOSPC;
  7586. }
  7587. static int md_notify_reboot(struct notifier_block *this,
  7588. unsigned long code, void *x)
  7589. {
  7590. struct list_head *tmp;
  7591. struct mddev *mddev;
  7592. int need_delay = 0;
  7593. for_each_mddev(mddev, tmp) {
  7594. if (mddev_trylock(mddev)) {
  7595. if (mddev->pers)
  7596. __md_stop_writes(mddev);
  7597. mddev->safemode = 2;
  7598. mddev_unlock(mddev);
  7599. }
  7600. need_delay = 1;
  7601. }
  7602. /*
  7603. * certain more exotic SCSI devices are known to be
  7604. * volatile wrt too early system reboots. While the
  7605. * right place to handle this issue is the given
  7606. * driver, we do want to have a safe RAID driver ...
  7607. */
  7608. if (need_delay)
  7609. mdelay(1000*1);
  7610. return NOTIFY_DONE;
  7611. }
  7612. static struct notifier_block md_notifier = {
  7613. .notifier_call = md_notify_reboot,
  7614. .next = NULL,
  7615. .priority = INT_MAX, /* before any real devices */
  7616. };
  7617. static void md_geninit(void)
  7618. {
  7619. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7620. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7621. }
  7622. static int __init md_init(void)
  7623. {
  7624. int ret = -ENOMEM;
  7625. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7626. if (!md_wq)
  7627. goto err_wq;
  7628. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7629. if (!md_misc_wq)
  7630. goto err_misc_wq;
  7631. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7632. goto err_md;
  7633. if ((ret = register_blkdev(0, "mdp")) < 0)
  7634. goto err_mdp;
  7635. mdp_major = ret;
  7636. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7637. md_probe, NULL, NULL);
  7638. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7639. md_probe, NULL, NULL);
  7640. register_reboot_notifier(&md_notifier);
  7641. raid_table_header = register_sysctl_table(raid_root_table);
  7642. md_geninit();
  7643. return 0;
  7644. err_mdp:
  7645. unregister_blkdev(MD_MAJOR, "md");
  7646. err_md:
  7647. destroy_workqueue(md_misc_wq);
  7648. err_misc_wq:
  7649. destroy_workqueue(md_wq);
  7650. err_wq:
  7651. return ret;
  7652. }
  7653. #ifndef MODULE
  7654. /*
  7655. * Searches all registered partitions for autorun RAID arrays
  7656. * at boot time.
  7657. */
  7658. static LIST_HEAD(all_detected_devices);
  7659. struct detected_devices_node {
  7660. struct list_head list;
  7661. dev_t dev;
  7662. };
  7663. void md_autodetect_dev(dev_t dev)
  7664. {
  7665. struct detected_devices_node *node_detected_dev;
  7666. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7667. if (node_detected_dev) {
  7668. node_detected_dev->dev = dev;
  7669. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7670. } else {
  7671. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7672. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7673. }
  7674. }
  7675. static void autostart_arrays(int part)
  7676. {
  7677. struct md_rdev *rdev;
  7678. struct detected_devices_node *node_detected_dev;
  7679. dev_t dev;
  7680. int i_scanned, i_passed;
  7681. i_scanned = 0;
  7682. i_passed = 0;
  7683. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7684. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7685. i_scanned++;
  7686. node_detected_dev = list_entry(all_detected_devices.next,
  7687. struct detected_devices_node, list);
  7688. list_del(&node_detected_dev->list);
  7689. dev = node_detected_dev->dev;
  7690. kfree(node_detected_dev);
  7691. rdev = md_import_device(dev,0, 90);
  7692. if (IS_ERR(rdev))
  7693. continue;
  7694. if (test_bit(Faulty, &rdev->flags)) {
  7695. MD_BUG();
  7696. continue;
  7697. }
  7698. set_bit(AutoDetected, &rdev->flags);
  7699. list_add(&rdev->same_set, &pending_raid_disks);
  7700. i_passed++;
  7701. }
  7702. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7703. i_scanned, i_passed);
  7704. autorun_devices(part);
  7705. }
  7706. #endif /* !MODULE */
  7707. static __exit void md_exit(void)
  7708. {
  7709. struct mddev *mddev;
  7710. struct list_head *tmp;
  7711. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7712. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7713. unregister_blkdev(MD_MAJOR,"md");
  7714. unregister_blkdev(mdp_major, "mdp");
  7715. unregister_reboot_notifier(&md_notifier);
  7716. unregister_sysctl_table(raid_table_header);
  7717. remove_proc_entry("mdstat", NULL);
  7718. for_each_mddev(mddev, tmp) {
  7719. export_array(mddev);
  7720. mddev->hold_active = 0;
  7721. }
  7722. destroy_workqueue(md_misc_wq);
  7723. destroy_workqueue(md_wq);
  7724. }
  7725. subsys_initcall(md_init);
  7726. module_exit(md_exit)
  7727. static int get_ro(char *buffer, struct kernel_param *kp)
  7728. {
  7729. return sprintf(buffer, "%d", start_readonly);
  7730. }
  7731. static int set_ro(const char *val, struct kernel_param *kp)
  7732. {
  7733. char *e;
  7734. int num = simple_strtoul(val, &e, 10);
  7735. if (*val && (*e == '\0' || *e == '\n')) {
  7736. start_readonly = num;
  7737. return 0;
  7738. }
  7739. return -EINVAL;
  7740. }
  7741. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7742. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7743. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7744. EXPORT_SYMBOL(register_md_personality);
  7745. EXPORT_SYMBOL(unregister_md_personality);
  7746. EXPORT_SYMBOL(md_error);
  7747. EXPORT_SYMBOL(md_done_sync);
  7748. EXPORT_SYMBOL(md_write_start);
  7749. EXPORT_SYMBOL(md_write_end);
  7750. EXPORT_SYMBOL(md_register_thread);
  7751. EXPORT_SYMBOL(md_unregister_thread);
  7752. EXPORT_SYMBOL(md_wakeup_thread);
  7753. EXPORT_SYMBOL(md_check_recovery);
  7754. EXPORT_SYMBOL(md_reap_sync_thread);
  7755. MODULE_LICENSE("GPL");
  7756. MODULE_DESCRIPTION("MD RAID framework");
  7757. MODULE_ALIAS("md");
  7758. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);