ll_rw_blk.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/cpu.h>
  29. #include <linux/blktrace_api.h>
  30. /*
  31. * for max sense size
  32. */
  33. #include <scsi/scsi_cmnd.h>
  34. static void blk_unplug_work(void *data);
  35. static void blk_unplug_timeout(unsigned long data);
  36. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  37. static void init_request_from_bio(struct request *req, struct bio *bio);
  38. static int __make_request(request_queue_t *q, struct bio *bio);
  39. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  40. /*
  41. * For the allocated request tables
  42. */
  43. static kmem_cache_t *request_cachep;
  44. /*
  45. * For queue allocation
  46. */
  47. static kmem_cache_t *requestq_cachep;
  48. /*
  49. * For io context allocations
  50. */
  51. static kmem_cache_t *iocontext_cachep;
  52. static wait_queue_head_t congestion_wqh[2] = {
  53. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  54. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  55. };
  56. /*
  57. * Controlling structure to kblockd
  58. */
  59. static struct workqueue_struct *kblockd_workqueue;
  60. unsigned long blk_max_low_pfn, blk_max_pfn;
  61. EXPORT_SYMBOL(blk_max_low_pfn);
  62. EXPORT_SYMBOL(blk_max_pfn);
  63. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  64. /* Amount of time in which a process may batch requests */
  65. #define BLK_BATCH_TIME (HZ/50UL)
  66. /* Number of requests a "batching" process may submit */
  67. #define BLK_BATCH_REQ 32
  68. /*
  69. * Return the threshold (number of used requests) at which the queue is
  70. * considered to be congested. It include a little hysteresis to keep the
  71. * context switch rate down.
  72. */
  73. static inline int queue_congestion_on_threshold(struct request_queue *q)
  74. {
  75. return q->nr_congestion_on;
  76. }
  77. /*
  78. * The threshold at which a queue is considered to be uncongested
  79. */
  80. static inline int queue_congestion_off_threshold(struct request_queue *q)
  81. {
  82. return q->nr_congestion_off;
  83. }
  84. static void blk_queue_congestion_threshold(struct request_queue *q)
  85. {
  86. int nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  88. if (nr > q->nr_requests)
  89. nr = q->nr_requests;
  90. q->nr_congestion_on = nr;
  91. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  92. if (nr < 1)
  93. nr = 1;
  94. q->nr_congestion_off = nr;
  95. }
  96. /*
  97. * A queue has just exitted congestion. Note this in the global counter of
  98. * congested queues, and wake up anyone who was waiting for requests to be
  99. * put back.
  100. */
  101. void blk_clear_queue_congested(request_queue_t *q, int rw)
  102. {
  103. enum bdi_state bit;
  104. wait_queue_head_t *wqh = &congestion_wqh[rw];
  105. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  106. clear_bit(bit, &q->backing_dev_info.state);
  107. smp_mb__after_clear_bit();
  108. if (waitqueue_active(wqh))
  109. wake_up(wqh);
  110. }
  111. EXPORT_SYMBOL(blk_clear_queue_congested);
  112. /*
  113. * A queue has just entered congestion. Flag that in the queue's VM-visible
  114. * state flags and increment the global gounter of congested queues.
  115. */
  116. void blk_set_queue_congested(request_queue_t *q, int rw)
  117. {
  118. enum bdi_state bit;
  119. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  120. set_bit(bit, &q->backing_dev_info.state);
  121. }
  122. EXPORT_SYMBOL(blk_set_queue_congested);
  123. /**
  124. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  125. * @bdev: device
  126. *
  127. * Locates the passed device's request queue and returns the address of its
  128. * backing_dev_info
  129. *
  130. * Will return NULL if the request queue cannot be located.
  131. */
  132. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  133. {
  134. struct backing_dev_info *ret = NULL;
  135. request_queue_t *q = bdev_get_queue(bdev);
  136. if (q)
  137. ret = &q->backing_dev_info;
  138. return ret;
  139. }
  140. EXPORT_SYMBOL(blk_get_backing_dev_info);
  141. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  142. {
  143. q->activity_fn = fn;
  144. q->activity_data = data;
  145. }
  146. EXPORT_SYMBOL(blk_queue_activity_fn);
  147. /**
  148. * blk_queue_prep_rq - set a prepare_request function for queue
  149. * @q: queue
  150. * @pfn: prepare_request function
  151. *
  152. * It's possible for a queue to register a prepare_request callback which
  153. * is invoked before the request is handed to the request_fn. The goal of
  154. * the function is to prepare a request for I/O, it can be used to build a
  155. * cdb from the request data for instance.
  156. *
  157. */
  158. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  159. {
  160. q->prep_rq_fn = pfn;
  161. }
  162. EXPORT_SYMBOL(blk_queue_prep_rq);
  163. /**
  164. * blk_queue_merge_bvec - set a merge_bvec function for queue
  165. * @q: queue
  166. * @mbfn: merge_bvec_fn
  167. *
  168. * Usually queues have static limitations on the max sectors or segments that
  169. * we can put in a request. Stacking drivers may have some settings that
  170. * are dynamic, and thus we have to query the queue whether it is ok to
  171. * add a new bio_vec to a bio at a given offset or not. If the block device
  172. * has such limitations, it needs to register a merge_bvec_fn to control
  173. * the size of bio's sent to it. Note that a block device *must* allow a
  174. * single page to be added to an empty bio. The block device driver may want
  175. * to use the bio_split() function to deal with these bio's. By default
  176. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  177. * honored.
  178. */
  179. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  180. {
  181. q->merge_bvec_fn = mbfn;
  182. }
  183. EXPORT_SYMBOL(blk_queue_merge_bvec);
  184. void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
  185. {
  186. q->softirq_done_fn = fn;
  187. }
  188. EXPORT_SYMBOL(blk_queue_softirq_done);
  189. /**
  190. * blk_queue_make_request - define an alternate make_request function for a device
  191. * @q: the request queue for the device to be affected
  192. * @mfn: the alternate make_request function
  193. *
  194. * Description:
  195. * The normal way for &struct bios to be passed to a device
  196. * driver is for them to be collected into requests on a request
  197. * queue, and then to allow the device driver to select requests
  198. * off that queue when it is ready. This works well for many block
  199. * devices. However some block devices (typically virtual devices
  200. * such as md or lvm) do not benefit from the processing on the
  201. * request queue, and are served best by having the requests passed
  202. * directly to them. This can be achieved by providing a function
  203. * to blk_queue_make_request().
  204. *
  205. * Caveat:
  206. * The driver that does this *must* be able to deal appropriately
  207. * with buffers in "highmemory". This can be accomplished by either calling
  208. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  209. * blk_queue_bounce() to create a buffer in normal memory.
  210. **/
  211. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  212. {
  213. /*
  214. * set defaults
  215. */
  216. q->nr_requests = BLKDEV_MAX_RQ;
  217. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  218. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  219. q->make_request_fn = mfn;
  220. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  221. q->backing_dev_info.state = 0;
  222. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  223. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  224. blk_queue_hardsect_size(q, 512);
  225. blk_queue_dma_alignment(q, 511);
  226. blk_queue_congestion_threshold(q);
  227. q->nr_batching = BLK_BATCH_REQ;
  228. q->unplug_thresh = 4; /* hmm */
  229. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  230. if (q->unplug_delay == 0)
  231. q->unplug_delay = 1;
  232. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  233. q->unplug_timer.function = blk_unplug_timeout;
  234. q->unplug_timer.data = (unsigned long)q;
  235. /*
  236. * by default assume old behaviour and bounce for any highmem page
  237. */
  238. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  239. blk_queue_activity_fn(q, NULL, NULL);
  240. }
  241. EXPORT_SYMBOL(blk_queue_make_request);
  242. static void rq_init(request_queue_t *q, struct request *rq)
  243. {
  244. INIT_LIST_HEAD(&rq->queuelist);
  245. INIT_LIST_HEAD(&rq->donelist);
  246. rq->errors = 0;
  247. rq->bio = rq->biotail = NULL;
  248. INIT_HLIST_NODE(&rq->hash);
  249. RB_CLEAR_NODE(&rq->rb_node);
  250. rq->ioprio = 0;
  251. rq->buffer = NULL;
  252. rq->ref_count = 1;
  253. rq->q = q;
  254. rq->special = NULL;
  255. rq->data_len = 0;
  256. rq->data = NULL;
  257. rq->nr_phys_segments = 0;
  258. rq->sense = NULL;
  259. rq->end_io = NULL;
  260. rq->end_io_data = NULL;
  261. rq->completion_data = NULL;
  262. }
  263. /**
  264. * blk_queue_ordered - does this queue support ordered writes
  265. * @q: the request queue
  266. * @ordered: one of QUEUE_ORDERED_*
  267. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  268. *
  269. * Description:
  270. * For journalled file systems, doing ordered writes on a commit
  271. * block instead of explicitly doing wait_on_buffer (which is bad
  272. * for performance) can be a big win. Block drivers supporting this
  273. * feature should call this function and indicate so.
  274. *
  275. **/
  276. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  277. prepare_flush_fn *prepare_flush_fn)
  278. {
  279. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  280. prepare_flush_fn == NULL) {
  281. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  282. return -EINVAL;
  283. }
  284. if (ordered != QUEUE_ORDERED_NONE &&
  285. ordered != QUEUE_ORDERED_DRAIN &&
  286. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  287. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  288. ordered != QUEUE_ORDERED_TAG &&
  289. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  290. ordered != QUEUE_ORDERED_TAG_FUA) {
  291. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  292. return -EINVAL;
  293. }
  294. q->ordered = ordered;
  295. q->next_ordered = ordered;
  296. q->prepare_flush_fn = prepare_flush_fn;
  297. return 0;
  298. }
  299. EXPORT_SYMBOL(blk_queue_ordered);
  300. /**
  301. * blk_queue_issue_flush_fn - set function for issuing a flush
  302. * @q: the request queue
  303. * @iff: the function to be called issuing the flush
  304. *
  305. * Description:
  306. * If a driver supports issuing a flush command, the support is notified
  307. * to the block layer by defining it through this call.
  308. *
  309. **/
  310. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  311. {
  312. q->issue_flush_fn = iff;
  313. }
  314. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  315. /*
  316. * Cache flushing for ordered writes handling
  317. */
  318. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  319. {
  320. if (!q->ordseq)
  321. return 0;
  322. return 1 << ffz(q->ordseq);
  323. }
  324. unsigned blk_ordered_req_seq(struct request *rq)
  325. {
  326. request_queue_t *q = rq->q;
  327. BUG_ON(q->ordseq == 0);
  328. if (rq == &q->pre_flush_rq)
  329. return QUEUE_ORDSEQ_PREFLUSH;
  330. if (rq == &q->bar_rq)
  331. return QUEUE_ORDSEQ_BAR;
  332. if (rq == &q->post_flush_rq)
  333. return QUEUE_ORDSEQ_POSTFLUSH;
  334. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  335. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  336. return QUEUE_ORDSEQ_DRAIN;
  337. else
  338. return QUEUE_ORDSEQ_DONE;
  339. }
  340. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  341. {
  342. struct request *rq;
  343. int uptodate;
  344. if (error && !q->orderr)
  345. q->orderr = error;
  346. BUG_ON(q->ordseq & seq);
  347. q->ordseq |= seq;
  348. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  349. return;
  350. /*
  351. * Okay, sequence complete.
  352. */
  353. rq = q->orig_bar_rq;
  354. uptodate = q->orderr ? q->orderr : 1;
  355. q->ordseq = 0;
  356. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  357. end_that_request_last(rq, uptodate);
  358. }
  359. static void pre_flush_end_io(struct request *rq, int error)
  360. {
  361. elv_completed_request(rq->q, rq);
  362. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  363. }
  364. static void bar_end_io(struct request *rq, int error)
  365. {
  366. elv_completed_request(rq->q, rq);
  367. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  368. }
  369. static void post_flush_end_io(struct request *rq, int error)
  370. {
  371. elv_completed_request(rq->q, rq);
  372. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  373. }
  374. static void queue_flush(request_queue_t *q, unsigned which)
  375. {
  376. struct request *rq;
  377. rq_end_io_fn *end_io;
  378. if (which == QUEUE_ORDERED_PREFLUSH) {
  379. rq = &q->pre_flush_rq;
  380. end_io = pre_flush_end_io;
  381. } else {
  382. rq = &q->post_flush_rq;
  383. end_io = post_flush_end_io;
  384. }
  385. rq->cmd_flags = REQ_HARDBARRIER;
  386. rq_init(q, rq);
  387. rq->elevator_private = NULL;
  388. rq->elevator_private2 = NULL;
  389. rq->rq_disk = q->bar_rq.rq_disk;
  390. rq->end_io = end_io;
  391. q->prepare_flush_fn(q, rq);
  392. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  393. }
  394. static inline struct request *start_ordered(request_queue_t *q,
  395. struct request *rq)
  396. {
  397. q->bi_size = 0;
  398. q->orderr = 0;
  399. q->ordered = q->next_ordered;
  400. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  401. /*
  402. * Prep proxy barrier request.
  403. */
  404. blkdev_dequeue_request(rq);
  405. q->orig_bar_rq = rq;
  406. rq = &q->bar_rq;
  407. rq->cmd_flags = 0;
  408. rq_init(q, rq);
  409. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  410. rq->cmd_flags |= REQ_RW;
  411. rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  412. rq->elevator_private = NULL;
  413. rq->elevator_private2 = NULL;
  414. init_request_from_bio(rq, q->orig_bar_rq->bio);
  415. rq->end_io = bar_end_io;
  416. /*
  417. * Queue ordered sequence. As we stack them at the head, we
  418. * need to queue in reverse order. Note that we rely on that
  419. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  420. * request gets inbetween ordered sequence.
  421. */
  422. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  423. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  424. else
  425. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  426. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  427. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  428. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  429. rq = &q->pre_flush_rq;
  430. } else
  431. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  432. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  433. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  434. else
  435. rq = NULL;
  436. return rq;
  437. }
  438. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  439. {
  440. struct request *rq = *rqp;
  441. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  442. if (!q->ordseq) {
  443. if (!is_barrier)
  444. return 1;
  445. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  446. *rqp = start_ordered(q, rq);
  447. return 1;
  448. } else {
  449. /*
  450. * This can happen when the queue switches to
  451. * ORDERED_NONE while this request is on it.
  452. */
  453. blkdev_dequeue_request(rq);
  454. end_that_request_first(rq, -EOPNOTSUPP,
  455. rq->hard_nr_sectors);
  456. end_that_request_last(rq, -EOPNOTSUPP);
  457. *rqp = NULL;
  458. return 0;
  459. }
  460. }
  461. /*
  462. * Ordered sequence in progress
  463. */
  464. /* Special requests are not subject to ordering rules. */
  465. if (!blk_fs_request(rq) &&
  466. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  467. return 1;
  468. if (q->ordered & QUEUE_ORDERED_TAG) {
  469. /* Ordered by tag. Blocking the next barrier is enough. */
  470. if (is_barrier && rq != &q->bar_rq)
  471. *rqp = NULL;
  472. } else {
  473. /* Ordered by draining. Wait for turn. */
  474. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  475. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  476. *rqp = NULL;
  477. }
  478. return 1;
  479. }
  480. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  481. {
  482. request_queue_t *q = bio->bi_private;
  483. struct bio_vec *bvec;
  484. int i;
  485. /*
  486. * This is dry run, restore bio_sector and size. We'll finish
  487. * this request again with the original bi_end_io after an
  488. * error occurs or post flush is complete.
  489. */
  490. q->bi_size += bytes;
  491. if (bio->bi_size)
  492. return 1;
  493. /* Rewind bvec's */
  494. bio->bi_idx = 0;
  495. bio_for_each_segment(bvec, bio, i) {
  496. bvec->bv_len += bvec->bv_offset;
  497. bvec->bv_offset = 0;
  498. }
  499. /* Reset bio */
  500. set_bit(BIO_UPTODATE, &bio->bi_flags);
  501. bio->bi_size = q->bi_size;
  502. bio->bi_sector -= (q->bi_size >> 9);
  503. q->bi_size = 0;
  504. return 0;
  505. }
  506. static int ordered_bio_endio(struct request *rq, struct bio *bio,
  507. unsigned int nbytes, int error)
  508. {
  509. request_queue_t *q = rq->q;
  510. bio_end_io_t *endio;
  511. void *private;
  512. if (&q->bar_rq != rq)
  513. return 0;
  514. /*
  515. * Okay, this is the barrier request in progress, dry finish it.
  516. */
  517. if (error && !q->orderr)
  518. q->orderr = error;
  519. endio = bio->bi_end_io;
  520. private = bio->bi_private;
  521. bio->bi_end_io = flush_dry_bio_endio;
  522. bio->bi_private = q;
  523. bio_endio(bio, nbytes, error);
  524. bio->bi_end_io = endio;
  525. bio->bi_private = private;
  526. return 1;
  527. }
  528. /**
  529. * blk_queue_bounce_limit - set bounce buffer limit for queue
  530. * @q: the request queue for the device
  531. * @dma_addr: bus address limit
  532. *
  533. * Description:
  534. * Different hardware can have different requirements as to what pages
  535. * it can do I/O directly to. A low level driver can call
  536. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  537. * buffers for doing I/O to pages residing above @page.
  538. **/
  539. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  540. {
  541. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  542. int dma = 0;
  543. q->bounce_gfp = GFP_NOIO;
  544. #if BITS_PER_LONG == 64
  545. /* Assume anything <= 4GB can be handled by IOMMU.
  546. Actually some IOMMUs can handle everything, but I don't
  547. know of a way to test this here. */
  548. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  549. dma = 1;
  550. q->bounce_pfn = max_low_pfn;
  551. #else
  552. if (bounce_pfn < blk_max_low_pfn)
  553. dma = 1;
  554. q->bounce_pfn = bounce_pfn;
  555. #endif
  556. if (dma) {
  557. init_emergency_isa_pool();
  558. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  559. q->bounce_pfn = bounce_pfn;
  560. }
  561. }
  562. EXPORT_SYMBOL(blk_queue_bounce_limit);
  563. /**
  564. * blk_queue_max_sectors - set max sectors for a request for this queue
  565. * @q: the request queue for the device
  566. * @max_sectors: max sectors in the usual 512b unit
  567. *
  568. * Description:
  569. * Enables a low level driver to set an upper limit on the size of
  570. * received requests.
  571. **/
  572. void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
  573. {
  574. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  575. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  576. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  577. }
  578. if (BLK_DEF_MAX_SECTORS > max_sectors)
  579. q->max_hw_sectors = q->max_sectors = max_sectors;
  580. else {
  581. q->max_sectors = BLK_DEF_MAX_SECTORS;
  582. q->max_hw_sectors = max_sectors;
  583. }
  584. }
  585. EXPORT_SYMBOL(blk_queue_max_sectors);
  586. /**
  587. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  588. * @q: the request queue for the device
  589. * @max_segments: max number of segments
  590. *
  591. * Description:
  592. * Enables a low level driver to set an upper limit on the number of
  593. * physical data segments in a request. This would be the largest sized
  594. * scatter list the driver could handle.
  595. **/
  596. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  597. {
  598. if (!max_segments) {
  599. max_segments = 1;
  600. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  601. }
  602. q->max_phys_segments = max_segments;
  603. }
  604. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  605. /**
  606. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  607. * @q: the request queue for the device
  608. * @max_segments: max number of segments
  609. *
  610. * Description:
  611. * Enables a low level driver to set an upper limit on the number of
  612. * hw data segments in a request. This would be the largest number of
  613. * address/length pairs the host adapter can actually give as once
  614. * to the device.
  615. **/
  616. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  617. {
  618. if (!max_segments) {
  619. max_segments = 1;
  620. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  621. }
  622. q->max_hw_segments = max_segments;
  623. }
  624. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  625. /**
  626. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  627. * @q: the request queue for the device
  628. * @max_size: max size of segment in bytes
  629. *
  630. * Description:
  631. * Enables a low level driver to set an upper limit on the size of a
  632. * coalesced segment
  633. **/
  634. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  635. {
  636. if (max_size < PAGE_CACHE_SIZE) {
  637. max_size = PAGE_CACHE_SIZE;
  638. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  639. }
  640. q->max_segment_size = max_size;
  641. }
  642. EXPORT_SYMBOL(blk_queue_max_segment_size);
  643. /**
  644. * blk_queue_hardsect_size - set hardware sector size for the queue
  645. * @q: the request queue for the device
  646. * @size: the hardware sector size, in bytes
  647. *
  648. * Description:
  649. * This should typically be set to the lowest possible sector size
  650. * that the hardware can operate on (possible without reverting to
  651. * even internal read-modify-write operations). Usually the default
  652. * of 512 covers most hardware.
  653. **/
  654. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  655. {
  656. q->hardsect_size = size;
  657. }
  658. EXPORT_SYMBOL(blk_queue_hardsect_size);
  659. /*
  660. * Returns the minimum that is _not_ zero, unless both are zero.
  661. */
  662. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  663. /**
  664. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  665. * @t: the stacking driver (top)
  666. * @b: the underlying device (bottom)
  667. **/
  668. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  669. {
  670. /* zero is "infinity" */
  671. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  672. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  673. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  674. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  675. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  676. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  677. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  678. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  679. }
  680. EXPORT_SYMBOL(blk_queue_stack_limits);
  681. /**
  682. * blk_queue_segment_boundary - set boundary rules for segment merging
  683. * @q: the request queue for the device
  684. * @mask: the memory boundary mask
  685. **/
  686. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  687. {
  688. if (mask < PAGE_CACHE_SIZE - 1) {
  689. mask = PAGE_CACHE_SIZE - 1;
  690. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  691. }
  692. q->seg_boundary_mask = mask;
  693. }
  694. EXPORT_SYMBOL(blk_queue_segment_boundary);
  695. /**
  696. * blk_queue_dma_alignment - set dma length and memory alignment
  697. * @q: the request queue for the device
  698. * @mask: alignment mask
  699. *
  700. * description:
  701. * set required memory and length aligment for direct dma transactions.
  702. * this is used when buiding direct io requests for the queue.
  703. *
  704. **/
  705. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  706. {
  707. q->dma_alignment = mask;
  708. }
  709. EXPORT_SYMBOL(blk_queue_dma_alignment);
  710. /**
  711. * blk_queue_find_tag - find a request by its tag and queue
  712. * @q: The request queue for the device
  713. * @tag: The tag of the request
  714. *
  715. * Notes:
  716. * Should be used when a device returns a tag and you want to match
  717. * it with a request.
  718. *
  719. * no locks need be held.
  720. **/
  721. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  722. {
  723. return blk_map_queue_find_tag(q->queue_tags, tag);
  724. }
  725. EXPORT_SYMBOL(blk_queue_find_tag);
  726. /**
  727. * __blk_free_tags - release a given set of tag maintenance info
  728. * @bqt: the tag map to free
  729. *
  730. * Tries to free the specified @bqt@. Returns true if it was
  731. * actually freed and false if there are still references using it
  732. */
  733. static int __blk_free_tags(struct blk_queue_tag *bqt)
  734. {
  735. int retval;
  736. retval = atomic_dec_and_test(&bqt->refcnt);
  737. if (retval) {
  738. BUG_ON(bqt->busy);
  739. BUG_ON(!list_empty(&bqt->busy_list));
  740. kfree(bqt->tag_index);
  741. bqt->tag_index = NULL;
  742. kfree(bqt->tag_map);
  743. bqt->tag_map = NULL;
  744. kfree(bqt);
  745. }
  746. return retval;
  747. }
  748. /**
  749. * __blk_queue_free_tags - release tag maintenance info
  750. * @q: the request queue for the device
  751. *
  752. * Notes:
  753. * blk_cleanup_queue() will take care of calling this function, if tagging
  754. * has been used. So there's no need to call this directly.
  755. **/
  756. static void __blk_queue_free_tags(request_queue_t *q)
  757. {
  758. struct blk_queue_tag *bqt = q->queue_tags;
  759. if (!bqt)
  760. return;
  761. __blk_free_tags(bqt);
  762. q->queue_tags = NULL;
  763. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  764. }
  765. /**
  766. * blk_free_tags - release a given set of tag maintenance info
  767. * @bqt: the tag map to free
  768. *
  769. * For externally managed @bqt@ frees the map. Callers of this
  770. * function must guarantee to have released all the queues that
  771. * might have been using this tag map.
  772. */
  773. void blk_free_tags(struct blk_queue_tag *bqt)
  774. {
  775. if (unlikely(!__blk_free_tags(bqt)))
  776. BUG();
  777. }
  778. EXPORT_SYMBOL(blk_free_tags);
  779. /**
  780. * blk_queue_free_tags - release tag maintenance info
  781. * @q: the request queue for the device
  782. *
  783. * Notes:
  784. * This is used to disabled tagged queuing to a device, yet leave
  785. * queue in function.
  786. **/
  787. void blk_queue_free_tags(request_queue_t *q)
  788. {
  789. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  790. }
  791. EXPORT_SYMBOL(blk_queue_free_tags);
  792. static int
  793. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  794. {
  795. struct request **tag_index;
  796. unsigned long *tag_map;
  797. int nr_ulongs;
  798. if (q && depth > q->nr_requests * 2) {
  799. depth = q->nr_requests * 2;
  800. printk(KERN_ERR "%s: adjusted depth to %d\n",
  801. __FUNCTION__, depth);
  802. }
  803. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  804. if (!tag_index)
  805. goto fail;
  806. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  807. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  808. if (!tag_map)
  809. goto fail;
  810. tags->real_max_depth = depth;
  811. tags->max_depth = depth;
  812. tags->tag_index = tag_index;
  813. tags->tag_map = tag_map;
  814. return 0;
  815. fail:
  816. kfree(tag_index);
  817. return -ENOMEM;
  818. }
  819. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  820. int depth)
  821. {
  822. struct blk_queue_tag *tags;
  823. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  824. if (!tags)
  825. goto fail;
  826. if (init_tag_map(q, tags, depth))
  827. goto fail;
  828. INIT_LIST_HEAD(&tags->busy_list);
  829. tags->busy = 0;
  830. atomic_set(&tags->refcnt, 1);
  831. return tags;
  832. fail:
  833. kfree(tags);
  834. return NULL;
  835. }
  836. /**
  837. * blk_init_tags - initialize the tag info for an external tag map
  838. * @depth: the maximum queue depth supported
  839. * @tags: the tag to use
  840. **/
  841. struct blk_queue_tag *blk_init_tags(int depth)
  842. {
  843. return __blk_queue_init_tags(NULL, depth);
  844. }
  845. EXPORT_SYMBOL(blk_init_tags);
  846. /**
  847. * blk_queue_init_tags - initialize the queue tag info
  848. * @q: the request queue for the device
  849. * @depth: the maximum queue depth supported
  850. * @tags: the tag to use
  851. **/
  852. int blk_queue_init_tags(request_queue_t *q, int depth,
  853. struct blk_queue_tag *tags)
  854. {
  855. int rc;
  856. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  857. if (!tags && !q->queue_tags) {
  858. tags = __blk_queue_init_tags(q, depth);
  859. if (!tags)
  860. goto fail;
  861. } else if (q->queue_tags) {
  862. if ((rc = blk_queue_resize_tags(q, depth)))
  863. return rc;
  864. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  865. return 0;
  866. } else
  867. atomic_inc(&tags->refcnt);
  868. /*
  869. * assign it, all done
  870. */
  871. q->queue_tags = tags;
  872. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  873. return 0;
  874. fail:
  875. kfree(tags);
  876. return -ENOMEM;
  877. }
  878. EXPORT_SYMBOL(blk_queue_init_tags);
  879. /**
  880. * blk_queue_resize_tags - change the queueing depth
  881. * @q: the request queue for the device
  882. * @new_depth: the new max command queueing depth
  883. *
  884. * Notes:
  885. * Must be called with the queue lock held.
  886. **/
  887. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  888. {
  889. struct blk_queue_tag *bqt = q->queue_tags;
  890. struct request **tag_index;
  891. unsigned long *tag_map;
  892. int max_depth, nr_ulongs;
  893. if (!bqt)
  894. return -ENXIO;
  895. /*
  896. * if we already have large enough real_max_depth. just
  897. * adjust max_depth. *NOTE* as requests with tag value
  898. * between new_depth and real_max_depth can be in-flight, tag
  899. * map can not be shrunk blindly here.
  900. */
  901. if (new_depth <= bqt->real_max_depth) {
  902. bqt->max_depth = new_depth;
  903. return 0;
  904. }
  905. /*
  906. * Currently cannot replace a shared tag map with a new
  907. * one, so error out if this is the case
  908. */
  909. if (atomic_read(&bqt->refcnt) != 1)
  910. return -EBUSY;
  911. /*
  912. * save the old state info, so we can copy it back
  913. */
  914. tag_index = bqt->tag_index;
  915. tag_map = bqt->tag_map;
  916. max_depth = bqt->real_max_depth;
  917. if (init_tag_map(q, bqt, new_depth))
  918. return -ENOMEM;
  919. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  920. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  921. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  922. kfree(tag_index);
  923. kfree(tag_map);
  924. return 0;
  925. }
  926. EXPORT_SYMBOL(blk_queue_resize_tags);
  927. /**
  928. * blk_queue_end_tag - end tag operations for a request
  929. * @q: the request queue for the device
  930. * @rq: the request that has completed
  931. *
  932. * Description:
  933. * Typically called when end_that_request_first() returns 0, meaning
  934. * all transfers have been done for a request. It's important to call
  935. * this function before end_that_request_last(), as that will put the
  936. * request back on the free list thus corrupting the internal tag list.
  937. *
  938. * Notes:
  939. * queue lock must be held.
  940. **/
  941. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  942. {
  943. struct blk_queue_tag *bqt = q->queue_tags;
  944. int tag = rq->tag;
  945. BUG_ON(tag == -1);
  946. if (unlikely(tag >= bqt->real_max_depth))
  947. /*
  948. * This can happen after tag depth has been reduced.
  949. * FIXME: how about a warning or info message here?
  950. */
  951. return;
  952. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  953. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  954. __FUNCTION__, tag);
  955. return;
  956. }
  957. list_del_init(&rq->queuelist);
  958. rq->cmd_flags &= ~REQ_QUEUED;
  959. rq->tag = -1;
  960. if (unlikely(bqt->tag_index[tag] == NULL))
  961. printk(KERN_ERR "%s: tag %d is missing\n",
  962. __FUNCTION__, tag);
  963. bqt->tag_index[tag] = NULL;
  964. bqt->busy--;
  965. }
  966. EXPORT_SYMBOL(blk_queue_end_tag);
  967. /**
  968. * blk_queue_start_tag - find a free tag and assign it
  969. * @q: the request queue for the device
  970. * @rq: the block request that needs tagging
  971. *
  972. * Description:
  973. * This can either be used as a stand-alone helper, or possibly be
  974. * assigned as the queue &prep_rq_fn (in which case &struct request
  975. * automagically gets a tag assigned). Note that this function
  976. * assumes that any type of request can be queued! if this is not
  977. * true for your device, you must check the request type before
  978. * calling this function. The request will also be removed from
  979. * the request queue, so it's the drivers responsibility to readd
  980. * it if it should need to be restarted for some reason.
  981. *
  982. * Notes:
  983. * queue lock must be held.
  984. **/
  985. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  986. {
  987. struct blk_queue_tag *bqt = q->queue_tags;
  988. int tag;
  989. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  990. printk(KERN_ERR
  991. "%s: request %p for device [%s] already tagged %d",
  992. __FUNCTION__, rq,
  993. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  994. BUG();
  995. }
  996. /*
  997. * Protect against shared tag maps, as we may not have exclusive
  998. * access to the tag map.
  999. */
  1000. do {
  1001. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  1002. if (tag >= bqt->max_depth)
  1003. return 1;
  1004. } while (test_and_set_bit(tag, bqt->tag_map));
  1005. rq->cmd_flags |= REQ_QUEUED;
  1006. rq->tag = tag;
  1007. bqt->tag_index[tag] = rq;
  1008. blkdev_dequeue_request(rq);
  1009. list_add(&rq->queuelist, &bqt->busy_list);
  1010. bqt->busy++;
  1011. return 0;
  1012. }
  1013. EXPORT_SYMBOL(blk_queue_start_tag);
  1014. /**
  1015. * blk_queue_invalidate_tags - invalidate all pending tags
  1016. * @q: the request queue for the device
  1017. *
  1018. * Description:
  1019. * Hardware conditions may dictate a need to stop all pending requests.
  1020. * In this case, we will safely clear the block side of the tag queue and
  1021. * readd all requests to the request queue in the right order.
  1022. *
  1023. * Notes:
  1024. * queue lock must be held.
  1025. **/
  1026. void blk_queue_invalidate_tags(request_queue_t *q)
  1027. {
  1028. struct blk_queue_tag *bqt = q->queue_tags;
  1029. struct list_head *tmp, *n;
  1030. struct request *rq;
  1031. list_for_each_safe(tmp, n, &bqt->busy_list) {
  1032. rq = list_entry_rq(tmp);
  1033. if (rq->tag == -1) {
  1034. printk(KERN_ERR
  1035. "%s: bad tag found on list\n", __FUNCTION__);
  1036. list_del_init(&rq->queuelist);
  1037. rq->cmd_flags &= ~REQ_QUEUED;
  1038. } else
  1039. blk_queue_end_tag(q, rq);
  1040. rq->cmd_flags &= ~REQ_STARTED;
  1041. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  1042. }
  1043. }
  1044. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1045. void blk_dump_rq_flags(struct request *rq, char *msg)
  1046. {
  1047. int bit;
  1048. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1049. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1050. rq->cmd_flags);
  1051. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1052. rq->nr_sectors,
  1053. rq->current_nr_sectors);
  1054. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1055. if (blk_pc_request(rq)) {
  1056. printk("cdb: ");
  1057. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1058. printk("%02x ", rq->cmd[bit]);
  1059. printk("\n");
  1060. }
  1061. }
  1062. EXPORT_SYMBOL(blk_dump_rq_flags);
  1063. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1064. {
  1065. struct bio_vec *bv, *bvprv = NULL;
  1066. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1067. int high, highprv = 1;
  1068. if (unlikely(!bio->bi_io_vec))
  1069. return;
  1070. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1071. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1072. bio_for_each_segment(bv, bio, i) {
  1073. /*
  1074. * the trick here is making sure that a high page is never
  1075. * considered part of another segment, since that might
  1076. * change with the bounce page.
  1077. */
  1078. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1079. if (high || highprv)
  1080. goto new_hw_segment;
  1081. if (cluster) {
  1082. if (seg_size + bv->bv_len > q->max_segment_size)
  1083. goto new_segment;
  1084. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1085. goto new_segment;
  1086. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1087. goto new_segment;
  1088. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1089. goto new_hw_segment;
  1090. seg_size += bv->bv_len;
  1091. hw_seg_size += bv->bv_len;
  1092. bvprv = bv;
  1093. continue;
  1094. }
  1095. new_segment:
  1096. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1097. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1098. hw_seg_size += bv->bv_len;
  1099. } else {
  1100. new_hw_segment:
  1101. if (hw_seg_size > bio->bi_hw_front_size)
  1102. bio->bi_hw_front_size = hw_seg_size;
  1103. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1104. nr_hw_segs++;
  1105. }
  1106. nr_phys_segs++;
  1107. bvprv = bv;
  1108. seg_size = bv->bv_len;
  1109. highprv = high;
  1110. }
  1111. if (hw_seg_size > bio->bi_hw_back_size)
  1112. bio->bi_hw_back_size = hw_seg_size;
  1113. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1114. bio->bi_hw_front_size = hw_seg_size;
  1115. bio->bi_phys_segments = nr_phys_segs;
  1116. bio->bi_hw_segments = nr_hw_segs;
  1117. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1118. }
  1119. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1120. struct bio *nxt)
  1121. {
  1122. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1123. return 0;
  1124. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1125. return 0;
  1126. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1127. return 0;
  1128. /*
  1129. * bio and nxt are contigous in memory, check if the queue allows
  1130. * these two to be merged into one
  1131. */
  1132. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1133. return 1;
  1134. return 0;
  1135. }
  1136. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1137. struct bio *nxt)
  1138. {
  1139. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1140. blk_recount_segments(q, bio);
  1141. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1142. blk_recount_segments(q, nxt);
  1143. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1144. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1145. return 0;
  1146. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1147. return 0;
  1148. return 1;
  1149. }
  1150. /*
  1151. * map a request to scatterlist, return number of sg entries setup. Caller
  1152. * must make sure sg can hold rq->nr_phys_segments entries
  1153. */
  1154. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1155. {
  1156. struct bio_vec *bvec, *bvprv;
  1157. struct bio *bio;
  1158. int nsegs, i, cluster;
  1159. nsegs = 0;
  1160. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1161. /*
  1162. * for each bio in rq
  1163. */
  1164. bvprv = NULL;
  1165. rq_for_each_bio(bio, rq) {
  1166. /*
  1167. * for each segment in bio
  1168. */
  1169. bio_for_each_segment(bvec, bio, i) {
  1170. int nbytes = bvec->bv_len;
  1171. if (bvprv && cluster) {
  1172. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1173. goto new_segment;
  1174. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1175. goto new_segment;
  1176. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1177. goto new_segment;
  1178. sg[nsegs - 1].length += nbytes;
  1179. } else {
  1180. new_segment:
  1181. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1182. sg[nsegs].page = bvec->bv_page;
  1183. sg[nsegs].length = nbytes;
  1184. sg[nsegs].offset = bvec->bv_offset;
  1185. nsegs++;
  1186. }
  1187. bvprv = bvec;
  1188. } /* segments in bio */
  1189. } /* bios in rq */
  1190. return nsegs;
  1191. }
  1192. EXPORT_SYMBOL(blk_rq_map_sg);
  1193. /*
  1194. * the standard queue merge functions, can be overridden with device
  1195. * specific ones if so desired
  1196. */
  1197. static inline int ll_new_mergeable(request_queue_t *q,
  1198. struct request *req,
  1199. struct bio *bio)
  1200. {
  1201. int nr_phys_segs = bio_phys_segments(q, bio);
  1202. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1203. req->cmd_flags |= REQ_NOMERGE;
  1204. if (req == q->last_merge)
  1205. q->last_merge = NULL;
  1206. return 0;
  1207. }
  1208. /*
  1209. * A hw segment is just getting larger, bump just the phys
  1210. * counter.
  1211. */
  1212. req->nr_phys_segments += nr_phys_segs;
  1213. return 1;
  1214. }
  1215. static inline int ll_new_hw_segment(request_queue_t *q,
  1216. struct request *req,
  1217. struct bio *bio)
  1218. {
  1219. int nr_hw_segs = bio_hw_segments(q, bio);
  1220. int nr_phys_segs = bio_phys_segments(q, bio);
  1221. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1222. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1223. req->cmd_flags |= REQ_NOMERGE;
  1224. if (req == q->last_merge)
  1225. q->last_merge = NULL;
  1226. return 0;
  1227. }
  1228. /*
  1229. * This will form the start of a new hw segment. Bump both
  1230. * counters.
  1231. */
  1232. req->nr_hw_segments += nr_hw_segs;
  1233. req->nr_phys_segments += nr_phys_segs;
  1234. return 1;
  1235. }
  1236. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1237. struct bio *bio)
  1238. {
  1239. unsigned short max_sectors;
  1240. int len;
  1241. if (unlikely(blk_pc_request(req)))
  1242. max_sectors = q->max_hw_sectors;
  1243. else
  1244. max_sectors = q->max_sectors;
  1245. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1246. req->cmd_flags |= REQ_NOMERGE;
  1247. if (req == q->last_merge)
  1248. q->last_merge = NULL;
  1249. return 0;
  1250. }
  1251. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1252. blk_recount_segments(q, req->biotail);
  1253. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1254. blk_recount_segments(q, bio);
  1255. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1256. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1257. !BIOVEC_VIRT_OVERSIZE(len)) {
  1258. int mergeable = ll_new_mergeable(q, req, bio);
  1259. if (mergeable) {
  1260. if (req->nr_hw_segments == 1)
  1261. req->bio->bi_hw_front_size = len;
  1262. if (bio->bi_hw_segments == 1)
  1263. bio->bi_hw_back_size = len;
  1264. }
  1265. return mergeable;
  1266. }
  1267. return ll_new_hw_segment(q, req, bio);
  1268. }
  1269. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1270. struct bio *bio)
  1271. {
  1272. unsigned short max_sectors;
  1273. int len;
  1274. if (unlikely(blk_pc_request(req)))
  1275. max_sectors = q->max_hw_sectors;
  1276. else
  1277. max_sectors = q->max_sectors;
  1278. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1279. req->cmd_flags |= REQ_NOMERGE;
  1280. if (req == q->last_merge)
  1281. q->last_merge = NULL;
  1282. return 0;
  1283. }
  1284. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1285. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1286. blk_recount_segments(q, bio);
  1287. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1288. blk_recount_segments(q, req->bio);
  1289. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1290. !BIOVEC_VIRT_OVERSIZE(len)) {
  1291. int mergeable = ll_new_mergeable(q, req, bio);
  1292. if (mergeable) {
  1293. if (bio->bi_hw_segments == 1)
  1294. bio->bi_hw_front_size = len;
  1295. if (req->nr_hw_segments == 1)
  1296. req->biotail->bi_hw_back_size = len;
  1297. }
  1298. return mergeable;
  1299. }
  1300. return ll_new_hw_segment(q, req, bio);
  1301. }
  1302. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1303. struct request *next)
  1304. {
  1305. int total_phys_segments;
  1306. int total_hw_segments;
  1307. /*
  1308. * First check if the either of the requests are re-queued
  1309. * requests. Can't merge them if they are.
  1310. */
  1311. if (req->special || next->special)
  1312. return 0;
  1313. /*
  1314. * Will it become too large?
  1315. */
  1316. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1317. return 0;
  1318. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1319. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1320. total_phys_segments--;
  1321. if (total_phys_segments > q->max_phys_segments)
  1322. return 0;
  1323. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1324. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1325. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1326. /*
  1327. * propagate the combined length to the end of the requests
  1328. */
  1329. if (req->nr_hw_segments == 1)
  1330. req->bio->bi_hw_front_size = len;
  1331. if (next->nr_hw_segments == 1)
  1332. next->biotail->bi_hw_back_size = len;
  1333. total_hw_segments--;
  1334. }
  1335. if (total_hw_segments > q->max_hw_segments)
  1336. return 0;
  1337. /* Merge is OK... */
  1338. req->nr_phys_segments = total_phys_segments;
  1339. req->nr_hw_segments = total_hw_segments;
  1340. return 1;
  1341. }
  1342. /*
  1343. * "plug" the device if there are no outstanding requests: this will
  1344. * force the transfer to start only after we have put all the requests
  1345. * on the list.
  1346. *
  1347. * This is called with interrupts off and no requests on the queue and
  1348. * with the queue lock held.
  1349. */
  1350. void blk_plug_device(request_queue_t *q)
  1351. {
  1352. WARN_ON(!irqs_disabled());
  1353. /*
  1354. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1355. * which will restart the queueing
  1356. */
  1357. if (blk_queue_stopped(q))
  1358. return;
  1359. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1360. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1361. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1362. }
  1363. }
  1364. EXPORT_SYMBOL(blk_plug_device);
  1365. /*
  1366. * remove the queue from the plugged list, if present. called with
  1367. * queue lock held and interrupts disabled.
  1368. */
  1369. int blk_remove_plug(request_queue_t *q)
  1370. {
  1371. WARN_ON(!irqs_disabled());
  1372. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1373. return 0;
  1374. del_timer(&q->unplug_timer);
  1375. return 1;
  1376. }
  1377. EXPORT_SYMBOL(blk_remove_plug);
  1378. /*
  1379. * remove the plug and let it rip..
  1380. */
  1381. void __generic_unplug_device(request_queue_t *q)
  1382. {
  1383. if (unlikely(blk_queue_stopped(q)))
  1384. return;
  1385. if (!blk_remove_plug(q))
  1386. return;
  1387. q->request_fn(q);
  1388. }
  1389. EXPORT_SYMBOL(__generic_unplug_device);
  1390. /**
  1391. * generic_unplug_device - fire a request queue
  1392. * @q: The &request_queue_t in question
  1393. *
  1394. * Description:
  1395. * Linux uses plugging to build bigger requests queues before letting
  1396. * the device have at them. If a queue is plugged, the I/O scheduler
  1397. * is still adding and merging requests on the queue. Once the queue
  1398. * gets unplugged, the request_fn defined for the queue is invoked and
  1399. * transfers started.
  1400. **/
  1401. void generic_unplug_device(request_queue_t *q)
  1402. {
  1403. spin_lock_irq(q->queue_lock);
  1404. __generic_unplug_device(q);
  1405. spin_unlock_irq(q->queue_lock);
  1406. }
  1407. EXPORT_SYMBOL(generic_unplug_device);
  1408. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1409. struct page *page)
  1410. {
  1411. request_queue_t *q = bdi->unplug_io_data;
  1412. /*
  1413. * devices don't necessarily have an ->unplug_fn defined
  1414. */
  1415. if (q->unplug_fn) {
  1416. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1417. q->rq.count[READ] + q->rq.count[WRITE]);
  1418. q->unplug_fn(q);
  1419. }
  1420. }
  1421. static void blk_unplug_work(void *data)
  1422. {
  1423. request_queue_t *q = data;
  1424. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1425. q->rq.count[READ] + q->rq.count[WRITE]);
  1426. q->unplug_fn(q);
  1427. }
  1428. static void blk_unplug_timeout(unsigned long data)
  1429. {
  1430. request_queue_t *q = (request_queue_t *)data;
  1431. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1432. q->rq.count[READ] + q->rq.count[WRITE]);
  1433. kblockd_schedule_work(&q->unplug_work);
  1434. }
  1435. /**
  1436. * blk_start_queue - restart a previously stopped queue
  1437. * @q: The &request_queue_t in question
  1438. *
  1439. * Description:
  1440. * blk_start_queue() will clear the stop flag on the queue, and call
  1441. * the request_fn for the queue if it was in a stopped state when
  1442. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1443. **/
  1444. void blk_start_queue(request_queue_t *q)
  1445. {
  1446. WARN_ON(!irqs_disabled());
  1447. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1448. /*
  1449. * one level of recursion is ok and is much faster than kicking
  1450. * the unplug handling
  1451. */
  1452. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1453. q->request_fn(q);
  1454. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1455. } else {
  1456. blk_plug_device(q);
  1457. kblockd_schedule_work(&q->unplug_work);
  1458. }
  1459. }
  1460. EXPORT_SYMBOL(blk_start_queue);
  1461. /**
  1462. * blk_stop_queue - stop a queue
  1463. * @q: The &request_queue_t in question
  1464. *
  1465. * Description:
  1466. * The Linux block layer assumes that a block driver will consume all
  1467. * entries on the request queue when the request_fn strategy is called.
  1468. * Often this will not happen, because of hardware limitations (queue
  1469. * depth settings). If a device driver gets a 'queue full' response,
  1470. * or if it simply chooses not to queue more I/O at one point, it can
  1471. * call this function to prevent the request_fn from being called until
  1472. * the driver has signalled it's ready to go again. This happens by calling
  1473. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1474. **/
  1475. void blk_stop_queue(request_queue_t *q)
  1476. {
  1477. blk_remove_plug(q);
  1478. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1479. }
  1480. EXPORT_SYMBOL(blk_stop_queue);
  1481. /**
  1482. * blk_sync_queue - cancel any pending callbacks on a queue
  1483. * @q: the queue
  1484. *
  1485. * Description:
  1486. * The block layer may perform asynchronous callback activity
  1487. * on a queue, such as calling the unplug function after a timeout.
  1488. * A block device may call blk_sync_queue to ensure that any
  1489. * such activity is cancelled, thus allowing it to release resources
  1490. * the the callbacks might use. The caller must already have made sure
  1491. * that its ->make_request_fn will not re-add plugging prior to calling
  1492. * this function.
  1493. *
  1494. */
  1495. void blk_sync_queue(struct request_queue *q)
  1496. {
  1497. del_timer_sync(&q->unplug_timer);
  1498. kblockd_flush();
  1499. }
  1500. EXPORT_SYMBOL(blk_sync_queue);
  1501. /**
  1502. * blk_run_queue - run a single device queue
  1503. * @q: The queue to run
  1504. */
  1505. void blk_run_queue(struct request_queue *q)
  1506. {
  1507. unsigned long flags;
  1508. spin_lock_irqsave(q->queue_lock, flags);
  1509. blk_remove_plug(q);
  1510. /*
  1511. * Only recurse once to avoid overrunning the stack, let the unplug
  1512. * handling reinvoke the handler shortly if we already got there.
  1513. */
  1514. if (!elv_queue_empty(q)) {
  1515. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1516. q->request_fn(q);
  1517. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1518. } else {
  1519. blk_plug_device(q);
  1520. kblockd_schedule_work(&q->unplug_work);
  1521. }
  1522. }
  1523. spin_unlock_irqrestore(q->queue_lock, flags);
  1524. }
  1525. EXPORT_SYMBOL(blk_run_queue);
  1526. /**
  1527. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1528. * @kobj: the kobj belonging of the request queue to be released
  1529. *
  1530. * Description:
  1531. * blk_cleanup_queue is the pair to blk_init_queue() or
  1532. * blk_queue_make_request(). It should be called when a request queue is
  1533. * being released; typically when a block device is being de-registered.
  1534. * Currently, its primary task it to free all the &struct request
  1535. * structures that were allocated to the queue and the queue itself.
  1536. *
  1537. * Caveat:
  1538. * Hopefully the low level driver will have finished any
  1539. * outstanding requests first...
  1540. **/
  1541. static void blk_release_queue(struct kobject *kobj)
  1542. {
  1543. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  1544. struct request_list *rl = &q->rq;
  1545. blk_sync_queue(q);
  1546. if (rl->rq_pool)
  1547. mempool_destroy(rl->rq_pool);
  1548. if (q->queue_tags)
  1549. __blk_queue_free_tags(q);
  1550. blk_trace_shutdown(q);
  1551. kmem_cache_free(requestq_cachep, q);
  1552. }
  1553. void blk_put_queue(request_queue_t *q)
  1554. {
  1555. kobject_put(&q->kobj);
  1556. }
  1557. EXPORT_SYMBOL(blk_put_queue);
  1558. void blk_cleanup_queue(request_queue_t * q)
  1559. {
  1560. mutex_lock(&q->sysfs_lock);
  1561. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1562. mutex_unlock(&q->sysfs_lock);
  1563. if (q->elevator)
  1564. elevator_exit(q->elevator);
  1565. blk_put_queue(q);
  1566. }
  1567. EXPORT_SYMBOL(blk_cleanup_queue);
  1568. static int blk_init_free_list(request_queue_t *q)
  1569. {
  1570. struct request_list *rl = &q->rq;
  1571. rl->count[READ] = rl->count[WRITE] = 0;
  1572. rl->starved[READ] = rl->starved[WRITE] = 0;
  1573. rl->elvpriv = 0;
  1574. init_waitqueue_head(&rl->wait[READ]);
  1575. init_waitqueue_head(&rl->wait[WRITE]);
  1576. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1577. mempool_free_slab, request_cachep, q->node);
  1578. if (!rl->rq_pool)
  1579. return -ENOMEM;
  1580. return 0;
  1581. }
  1582. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1583. {
  1584. return blk_alloc_queue_node(gfp_mask, -1);
  1585. }
  1586. EXPORT_SYMBOL(blk_alloc_queue);
  1587. static struct kobj_type queue_ktype;
  1588. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1589. {
  1590. request_queue_t *q;
  1591. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1592. if (!q)
  1593. return NULL;
  1594. memset(q, 0, sizeof(*q));
  1595. init_timer(&q->unplug_timer);
  1596. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  1597. q->kobj.ktype = &queue_ktype;
  1598. kobject_init(&q->kobj);
  1599. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1600. q->backing_dev_info.unplug_io_data = q;
  1601. mutex_init(&q->sysfs_lock);
  1602. return q;
  1603. }
  1604. EXPORT_SYMBOL(blk_alloc_queue_node);
  1605. /**
  1606. * blk_init_queue - prepare a request queue for use with a block device
  1607. * @rfn: The function to be called to process requests that have been
  1608. * placed on the queue.
  1609. * @lock: Request queue spin lock
  1610. *
  1611. * Description:
  1612. * If a block device wishes to use the standard request handling procedures,
  1613. * which sorts requests and coalesces adjacent requests, then it must
  1614. * call blk_init_queue(). The function @rfn will be called when there
  1615. * are requests on the queue that need to be processed. If the device
  1616. * supports plugging, then @rfn may not be called immediately when requests
  1617. * are available on the queue, but may be called at some time later instead.
  1618. * Plugged queues are generally unplugged when a buffer belonging to one
  1619. * of the requests on the queue is needed, or due to memory pressure.
  1620. *
  1621. * @rfn is not required, or even expected, to remove all requests off the
  1622. * queue, but only as many as it can handle at a time. If it does leave
  1623. * requests on the queue, it is responsible for arranging that the requests
  1624. * get dealt with eventually.
  1625. *
  1626. * The queue spin lock must be held while manipulating the requests on the
  1627. * request queue; this lock will be taken also from interrupt context, so irq
  1628. * disabling is needed for it.
  1629. *
  1630. * Function returns a pointer to the initialized request queue, or NULL if
  1631. * it didn't succeed.
  1632. *
  1633. * Note:
  1634. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1635. * when the block device is deactivated (such as at module unload).
  1636. **/
  1637. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1638. {
  1639. return blk_init_queue_node(rfn, lock, -1);
  1640. }
  1641. EXPORT_SYMBOL(blk_init_queue);
  1642. request_queue_t *
  1643. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1644. {
  1645. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1646. if (!q)
  1647. return NULL;
  1648. q->node = node_id;
  1649. if (blk_init_free_list(q)) {
  1650. kmem_cache_free(requestq_cachep, q);
  1651. return NULL;
  1652. }
  1653. /*
  1654. * if caller didn't supply a lock, they get per-queue locking with
  1655. * our embedded lock
  1656. */
  1657. if (!lock) {
  1658. spin_lock_init(&q->__queue_lock);
  1659. lock = &q->__queue_lock;
  1660. }
  1661. q->request_fn = rfn;
  1662. q->back_merge_fn = ll_back_merge_fn;
  1663. q->front_merge_fn = ll_front_merge_fn;
  1664. q->merge_requests_fn = ll_merge_requests_fn;
  1665. q->prep_rq_fn = NULL;
  1666. q->unplug_fn = generic_unplug_device;
  1667. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1668. q->queue_lock = lock;
  1669. blk_queue_segment_boundary(q, 0xffffffff);
  1670. blk_queue_make_request(q, __make_request);
  1671. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1672. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1673. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1674. /*
  1675. * all done
  1676. */
  1677. if (!elevator_init(q, NULL)) {
  1678. blk_queue_congestion_threshold(q);
  1679. return q;
  1680. }
  1681. blk_put_queue(q);
  1682. return NULL;
  1683. }
  1684. EXPORT_SYMBOL(blk_init_queue_node);
  1685. int blk_get_queue(request_queue_t *q)
  1686. {
  1687. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1688. kobject_get(&q->kobj);
  1689. return 0;
  1690. }
  1691. return 1;
  1692. }
  1693. EXPORT_SYMBOL(blk_get_queue);
  1694. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1695. {
  1696. if (rq->cmd_flags & REQ_ELVPRIV)
  1697. elv_put_request(q, rq);
  1698. mempool_free(rq, q->rq.rq_pool);
  1699. }
  1700. static struct request *
  1701. blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
  1702. {
  1703. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1704. if (!rq)
  1705. return NULL;
  1706. /*
  1707. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1708. * see bio.h and blkdev.h
  1709. */
  1710. rq->cmd_flags = rw | REQ_ALLOCED;
  1711. if (priv) {
  1712. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1713. mempool_free(rq, q->rq.rq_pool);
  1714. return NULL;
  1715. }
  1716. rq->cmd_flags |= REQ_ELVPRIV;
  1717. }
  1718. return rq;
  1719. }
  1720. /*
  1721. * ioc_batching returns true if the ioc is a valid batching request and
  1722. * should be given priority access to a request.
  1723. */
  1724. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1725. {
  1726. if (!ioc)
  1727. return 0;
  1728. /*
  1729. * Make sure the process is able to allocate at least 1 request
  1730. * even if the batch times out, otherwise we could theoretically
  1731. * lose wakeups.
  1732. */
  1733. return ioc->nr_batch_requests == q->nr_batching ||
  1734. (ioc->nr_batch_requests > 0
  1735. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1736. }
  1737. /*
  1738. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1739. * will cause the process to be a "batcher" on all queues in the system. This
  1740. * is the behaviour we want though - once it gets a wakeup it should be given
  1741. * a nice run.
  1742. */
  1743. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1744. {
  1745. if (!ioc || ioc_batching(q, ioc))
  1746. return;
  1747. ioc->nr_batch_requests = q->nr_batching;
  1748. ioc->last_waited = jiffies;
  1749. }
  1750. static void __freed_request(request_queue_t *q, int rw)
  1751. {
  1752. struct request_list *rl = &q->rq;
  1753. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1754. blk_clear_queue_congested(q, rw);
  1755. if (rl->count[rw] + 1 <= q->nr_requests) {
  1756. if (waitqueue_active(&rl->wait[rw]))
  1757. wake_up(&rl->wait[rw]);
  1758. blk_clear_queue_full(q, rw);
  1759. }
  1760. }
  1761. /*
  1762. * A request has just been released. Account for it, update the full and
  1763. * congestion status, wake up any waiters. Called under q->queue_lock.
  1764. */
  1765. static void freed_request(request_queue_t *q, int rw, int priv)
  1766. {
  1767. struct request_list *rl = &q->rq;
  1768. rl->count[rw]--;
  1769. if (priv)
  1770. rl->elvpriv--;
  1771. __freed_request(q, rw);
  1772. if (unlikely(rl->starved[rw ^ 1]))
  1773. __freed_request(q, rw ^ 1);
  1774. }
  1775. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1776. /*
  1777. * Get a free request, queue_lock must be held.
  1778. * Returns NULL on failure, with queue_lock held.
  1779. * Returns !NULL on success, with queue_lock *not held*.
  1780. */
  1781. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1782. gfp_t gfp_mask)
  1783. {
  1784. struct request *rq = NULL;
  1785. struct request_list *rl = &q->rq;
  1786. struct io_context *ioc = NULL;
  1787. int may_queue, priv;
  1788. may_queue = elv_may_queue(q, rw);
  1789. if (may_queue == ELV_MQUEUE_NO)
  1790. goto rq_starved;
  1791. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1792. if (rl->count[rw]+1 >= q->nr_requests) {
  1793. ioc = current_io_context(GFP_ATOMIC, q->node);
  1794. /*
  1795. * The queue will fill after this allocation, so set
  1796. * it as full, and mark this process as "batching".
  1797. * This process will be allowed to complete a batch of
  1798. * requests, others will be blocked.
  1799. */
  1800. if (!blk_queue_full(q, rw)) {
  1801. ioc_set_batching(q, ioc);
  1802. blk_set_queue_full(q, rw);
  1803. } else {
  1804. if (may_queue != ELV_MQUEUE_MUST
  1805. && !ioc_batching(q, ioc)) {
  1806. /*
  1807. * The queue is full and the allocating
  1808. * process is not a "batcher", and not
  1809. * exempted by the IO scheduler
  1810. */
  1811. goto out;
  1812. }
  1813. }
  1814. }
  1815. blk_set_queue_congested(q, rw);
  1816. }
  1817. /*
  1818. * Only allow batching queuers to allocate up to 50% over the defined
  1819. * limit of requests, otherwise we could have thousands of requests
  1820. * allocated with any setting of ->nr_requests
  1821. */
  1822. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1823. goto out;
  1824. rl->count[rw]++;
  1825. rl->starved[rw] = 0;
  1826. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1827. if (priv)
  1828. rl->elvpriv++;
  1829. spin_unlock_irq(q->queue_lock);
  1830. rq = blk_alloc_request(q, rw, priv, gfp_mask);
  1831. if (unlikely(!rq)) {
  1832. /*
  1833. * Allocation failed presumably due to memory. Undo anything
  1834. * we might have messed up.
  1835. *
  1836. * Allocating task should really be put onto the front of the
  1837. * wait queue, but this is pretty rare.
  1838. */
  1839. spin_lock_irq(q->queue_lock);
  1840. freed_request(q, rw, priv);
  1841. /*
  1842. * in the very unlikely event that allocation failed and no
  1843. * requests for this direction was pending, mark us starved
  1844. * so that freeing of a request in the other direction will
  1845. * notice us. another possible fix would be to split the
  1846. * rq mempool into READ and WRITE
  1847. */
  1848. rq_starved:
  1849. if (unlikely(rl->count[rw] == 0))
  1850. rl->starved[rw] = 1;
  1851. goto out;
  1852. }
  1853. /*
  1854. * ioc may be NULL here, and ioc_batching will be false. That's
  1855. * OK, if the queue is under the request limit then requests need
  1856. * not count toward the nr_batch_requests limit. There will always
  1857. * be some limit enforced by BLK_BATCH_TIME.
  1858. */
  1859. if (ioc_batching(q, ioc))
  1860. ioc->nr_batch_requests--;
  1861. rq_init(q, rq);
  1862. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1863. out:
  1864. return rq;
  1865. }
  1866. /*
  1867. * No available requests for this queue, unplug the device and wait for some
  1868. * requests to become available.
  1869. *
  1870. * Called with q->queue_lock held, and returns with it unlocked.
  1871. */
  1872. static struct request *get_request_wait(request_queue_t *q, int rw,
  1873. struct bio *bio)
  1874. {
  1875. struct request *rq;
  1876. rq = get_request(q, rw, bio, GFP_NOIO);
  1877. while (!rq) {
  1878. DEFINE_WAIT(wait);
  1879. struct request_list *rl = &q->rq;
  1880. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1881. TASK_UNINTERRUPTIBLE);
  1882. rq = get_request(q, rw, bio, GFP_NOIO);
  1883. if (!rq) {
  1884. struct io_context *ioc;
  1885. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1886. __generic_unplug_device(q);
  1887. spin_unlock_irq(q->queue_lock);
  1888. io_schedule();
  1889. /*
  1890. * After sleeping, we become a "batching" process and
  1891. * will be able to allocate at least one request, and
  1892. * up to a big batch of them for a small period time.
  1893. * See ioc_batching, ioc_set_batching
  1894. */
  1895. ioc = current_io_context(GFP_NOIO, q->node);
  1896. ioc_set_batching(q, ioc);
  1897. spin_lock_irq(q->queue_lock);
  1898. }
  1899. finish_wait(&rl->wait[rw], &wait);
  1900. }
  1901. return rq;
  1902. }
  1903. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1904. {
  1905. struct request *rq;
  1906. BUG_ON(rw != READ && rw != WRITE);
  1907. spin_lock_irq(q->queue_lock);
  1908. if (gfp_mask & __GFP_WAIT) {
  1909. rq = get_request_wait(q, rw, NULL);
  1910. } else {
  1911. rq = get_request(q, rw, NULL, gfp_mask);
  1912. if (!rq)
  1913. spin_unlock_irq(q->queue_lock);
  1914. }
  1915. /* q->queue_lock is unlocked at this point */
  1916. return rq;
  1917. }
  1918. EXPORT_SYMBOL(blk_get_request);
  1919. /**
  1920. * blk_start_queueing - initiate dispatch of requests to device
  1921. * @q: request queue to kick into gear
  1922. *
  1923. * This is basically a helper to remove the need to know whether a queue
  1924. * is plugged or not if someone just wants to initiate dispatch of requests
  1925. * for this queue.
  1926. *
  1927. * The queue lock must be held with interrupts disabled.
  1928. */
  1929. void blk_start_queueing(request_queue_t *q)
  1930. {
  1931. if (!blk_queue_plugged(q))
  1932. q->request_fn(q);
  1933. else
  1934. __generic_unplug_device(q);
  1935. }
  1936. EXPORT_SYMBOL(blk_start_queueing);
  1937. /**
  1938. * blk_requeue_request - put a request back on queue
  1939. * @q: request queue where request should be inserted
  1940. * @rq: request to be inserted
  1941. *
  1942. * Description:
  1943. * Drivers often keep queueing requests until the hardware cannot accept
  1944. * more, when that condition happens we need to put the request back
  1945. * on the queue. Must be called with queue lock held.
  1946. */
  1947. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1948. {
  1949. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1950. if (blk_rq_tagged(rq))
  1951. blk_queue_end_tag(q, rq);
  1952. elv_requeue_request(q, rq);
  1953. }
  1954. EXPORT_SYMBOL(blk_requeue_request);
  1955. /**
  1956. * blk_insert_request - insert a special request in to a request queue
  1957. * @q: request queue where request should be inserted
  1958. * @rq: request to be inserted
  1959. * @at_head: insert request at head or tail of queue
  1960. * @data: private data
  1961. *
  1962. * Description:
  1963. * Many block devices need to execute commands asynchronously, so they don't
  1964. * block the whole kernel from preemption during request execution. This is
  1965. * accomplished normally by inserting aritficial requests tagged as
  1966. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1967. * scheduled for actual execution by the request queue.
  1968. *
  1969. * We have the option of inserting the head or the tail of the queue.
  1970. * Typically we use the tail for new ioctls and so forth. We use the head
  1971. * of the queue for things like a QUEUE_FULL message from a device, or a
  1972. * host that is unable to accept a particular command.
  1973. */
  1974. void blk_insert_request(request_queue_t *q, struct request *rq,
  1975. int at_head, void *data)
  1976. {
  1977. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1978. unsigned long flags;
  1979. /*
  1980. * tell I/O scheduler that this isn't a regular read/write (ie it
  1981. * must not attempt merges on this) and that it acts as a soft
  1982. * barrier
  1983. */
  1984. rq->cmd_type = REQ_TYPE_SPECIAL;
  1985. rq->cmd_flags |= REQ_SOFTBARRIER;
  1986. rq->special = data;
  1987. spin_lock_irqsave(q->queue_lock, flags);
  1988. /*
  1989. * If command is tagged, release the tag
  1990. */
  1991. if (blk_rq_tagged(rq))
  1992. blk_queue_end_tag(q, rq);
  1993. drive_stat_acct(rq, rq->nr_sectors, 1);
  1994. __elv_add_request(q, rq, where, 0);
  1995. blk_start_queueing(q);
  1996. spin_unlock_irqrestore(q->queue_lock, flags);
  1997. }
  1998. EXPORT_SYMBOL(blk_insert_request);
  1999. /**
  2000. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2001. * @q: request queue where request should be inserted
  2002. * @rq: request structure to fill
  2003. * @ubuf: the user buffer
  2004. * @len: length of user data
  2005. *
  2006. * Description:
  2007. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2008. * a kernel bounce buffer is used.
  2009. *
  2010. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2011. * still in process context.
  2012. *
  2013. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2014. * before being submitted to the device, as pages mapped may be out of
  2015. * reach. It's the callers responsibility to make sure this happens. The
  2016. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2017. * unmapping.
  2018. */
  2019. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  2020. unsigned int len)
  2021. {
  2022. unsigned long uaddr;
  2023. struct bio *bio;
  2024. int reading;
  2025. if (len > (q->max_hw_sectors << 9))
  2026. return -EINVAL;
  2027. if (!len || !ubuf)
  2028. return -EINVAL;
  2029. reading = rq_data_dir(rq) == READ;
  2030. /*
  2031. * if alignment requirement is satisfied, map in user pages for
  2032. * direct dma. else, set up kernel bounce buffers
  2033. */
  2034. uaddr = (unsigned long) ubuf;
  2035. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2036. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2037. else
  2038. bio = bio_copy_user(q, uaddr, len, reading);
  2039. if (!IS_ERR(bio)) {
  2040. rq->bio = rq->biotail = bio;
  2041. blk_rq_bio_prep(q, rq, bio);
  2042. rq->buffer = rq->data = NULL;
  2043. rq->data_len = len;
  2044. return 0;
  2045. }
  2046. /*
  2047. * bio is the err-ptr
  2048. */
  2049. return PTR_ERR(bio);
  2050. }
  2051. EXPORT_SYMBOL(blk_rq_map_user);
  2052. /**
  2053. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2054. * @q: request queue where request should be inserted
  2055. * @rq: request to map data to
  2056. * @iov: pointer to the iovec
  2057. * @iov_count: number of elements in the iovec
  2058. *
  2059. * Description:
  2060. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2061. * a kernel bounce buffer is used.
  2062. *
  2063. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2064. * still in process context.
  2065. *
  2066. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2067. * before being submitted to the device, as pages mapped may be out of
  2068. * reach. It's the callers responsibility to make sure this happens. The
  2069. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2070. * unmapping.
  2071. */
  2072. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  2073. struct sg_iovec *iov, int iov_count)
  2074. {
  2075. struct bio *bio;
  2076. if (!iov || iov_count <= 0)
  2077. return -EINVAL;
  2078. /* we don't allow misaligned data like bio_map_user() does. If the
  2079. * user is using sg, they're expected to know the alignment constraints
  2080. * and respect them accordingly */
  2081. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2082. if (IS_ERR(bio))
  2083. return PTR_ERR(bio);
  2084. rq->bio = rq->biotail = bio;
  2085. blk_rq_bio_prep(q, rq, bio);
  2086. rq->buffer = rq->data = NULL;
  2087. rq->data_len = bio->bi_size;
  2088. return 0;
  2089. }
  2090. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2091. /**
  2092. * blk_rq_unmap_user - unmap a request with user data
  2093. * @bio: bio to be unmapped
  2094. * @ulen: length of user buffer
  2095. *
  2096. * Description:
  2097. * Unmap a bio previously mapped by blk_rq_map_user().
  2098. */
  2099. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2100. {
  2101. int ret = 0;
  2102. if (bio) {
  2103. if (bio_flagged(bio, BIO_USER_MAPPED))
  2104. bio_unmap_user(bio);
  2105. else
  2106. ret = bio_uncopy_user(bio);
  2107. }
  2108. return 0;
  2109. }
  2110. EXPORT_SYMBOL(blk_rq_unmap_user);
  2111. /**
  2112. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2113. * @q: request queue where request should be inserted
  2114. * @rq: request to fill
  2115. * @kbuf: the kernel buffer
  2116. * @len: length of user data
  2117. * @gfp_mask: memory allocation flags
  2118. */
  2119. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2120. unsigned int len, gfp_t gfp_mask)
  2121. {
  2122. struct bio *bio;
  2123. if (len > (q->max_hw_sectors << 9))
  2124. return -EINVAL;
  2125. if (!len || !kbuf)
  2126. return -EINVAL;
  2127. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2128. if (IS_ERR(bio))
  2129. return PTR_ERR(bio);
  2130. if (rq_data_dir(rq) == WRITE)
  2131. bio->bi_rw |= (1 << BIO_RW);
  2132. rq->bio = rq->biotail = bio;
  2133. blk_rq_bio_prep(q, rq, bio);
  2134. rq->buffer = rq->data = NULL;
  2135. rq->data_len = len;
  2136. return 0;
  2137. }
  2138. EXPORT_SYMBOL(blk_rq_map_kern);
  2139. /**
  2140. * blk_execute_rq_nowait - insert a request into queue for execution
  2141. * @q: queue to insert the request in
  2142. * @bd_disk: matching gendisk
  2143. * @rq: request to insert
  2144. * @at_head: insert request at head or tail of queue
  2145. * @done: I/O completion handler
  2146. *
  2147. * Description:
  2148. * Insert a fully prepared request at the back of the io scheduler queue
  2149. * for execution. Don't wait for completion.
  2150. */
  2151. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2152. struct request *rq, int at_head,
  2153. rq_end_io_fn *done)
  2154. {
  2155. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2156. rq->rq_disk = bd_disk;
  2157. rq->cmd_flags |= REQ_NOMERGE;
  2158. rq->end_io = done;
  2159. WARN_ON(irqs_disabled());
  2160. spin_lock_irq(q->queue_lock);
  2161. __elv_add_request(q, rq, where, 1);
  2162. __generic_unplug_device(q);
  2163. spin_unlock_irq(q->queue_lock);
  2164. }
  2165. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2166. /**
  2167. * blk_execute_rq - insert a request into queue for execution
  2168. * @q: queue to insert the request in
  2169. * @bd_disk: matching gendisk
  2170. * @rq: request to insert
  2171. * @at_head: insert request at head or tail of queue
  2172. *
  2173. * Description:
  2174. * Insert a fully prepared request at the back of the io scheduler queue
  2175. * for execution and wait for completion.
  2176. */
  2177. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2178. struct request *rq, int at_head)
  2179. {
  2180. DECLARE_COMPLETION_ONSTACK(wait);
  2181. char sense[SCSI_SENSE_BUFFERSIZE];
  2182. int err = 0;
  2183. /*
  2184. * we need an extra reference to the request, so we can look at
  2185. * it after io completion
  2186. */
  2187. rq->ref_count++;
  2188. if (!rq->sense) {
  2189. memset(sense, 0, sizeof(sense));
  2190. rq->sense = sense;
  2191. rq->sense_len = 0;
  2192. }
  2193. rq->end_io_data = &wait;
  2194. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2195. wait_for_completion(&wait);
  2196. if (rq->errors)
  2197. err = -EIO;
  2198. return err;
  2199. }
  2200. EXPORT_SYMBOL(blk_execute_rq);
  2201. /**
  2202. * blkdev_issue_flush - queue a flush
  2203. * @bdev: blockdev to issue flush for
  2204. * @error_sector: error sector
  2205. *
  2206. * Description:
  2207. * Issue a flush for the block device in question. Caller can supply
  2208. * room for storing the error offset in case of a flush error, if they
  2209. * wish to. Caller must run wait_for_completion() on its own.
  2210. */
  2211. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2212. {
  2213. request_queue_t *q;
  2214. if (bdev->bd_disk == NULL)
  2215. return -ENXIO;
  2216. q = bdev_get_queue(bdev);
  2217. if (!q)
  2218. return -ENXIO;
  2219. if (!q->issue_flush_fn)
  2220. return -EOPNOTSUPP;
  2221. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2222. }
  2223. EXPORT_SYMBOL(blkdev_issue_flush);
  2224. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2225. {
  2226. int rw = rq_data_dir(rq);
  2227. if (!blk_fs_request(rq) || !rq->rq_disk)
  2228. return;
  2229. if (!new_io) {
  2230. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2231. } else {
  2232. disk_round_stats(rq->rq_disk);
  2233. rq->rq_disk->in_flight++;
  2234. }
  2235. }
  2236. /*
  2237. * add-request adds a request to the linked list.
  2238. * queue lock is held and interrupts disabled, as we muck with the
  2239. * request queue list.
  2240. */
  2241. static inline void add_request(request_queue_t * q, struct request * req)
  2242. {
  2243. drive_stat_acct(req, req->nr_sectors, 1);
  2244. if (q->activity_fn)
  2245. q->activity_fn(q->activity_data, rq_data_dir(req));
  2246. /*
  2247. * elevator indicated where it wants this request to be
  2248. * inserted at elevator_merge time
  2249. */
  2250. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2251. }
  2252. /*
  2253. * disk_round_stats() - Round off the performance stats on a struct
  2254. * disk_stats.
  2255. *
  2256. * The average IO queue length and utilisation statistics are maintained
  2257. * by observing the current state of the queue length and the amount of
  2258. * time it has been in this state for.
  2259. *
  2260. * Normally, that accounting is done on IO completion, but that can result
  2261. * in more than a second's worth of IO being accounted for within any one
  2262. * second, leading to >100% utilisation. To deal with that, we call this
  2263. * function to do a round-off before returning the results when reading
  2264. * /proc/diskstats. This accounts immediately for all queue usage up to
  2265. * the current jiffies and restarts the counters again.
  2266. */
  2267. void disk_round_stats(struct gendisk *disk)
  2268. {
  2269. unsigned long now = jiffies;
  2270. if (now == disk->stamp)
  2271. return;
  2272. if (disk->in_flight) {
  2273. __disk_stat_add(disk, time_in_queue,
  2274. disk->in_flight * (now - disk->stamp));
  2275. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2276. }
  2277. disk->stamp = now;
  2278. }
  2279. EXPORT_SYMBOL_GPL(disk_round_stats);
  2280. /*
  2281. * queue lock must be held
  2282. */
  2283. void __blk_put_request(request_queue_t *q, struct request *req)
  2284. {
  2285. if (unlikely(!q))
  2286. return;
  2287. if (unlikely(--req->ref_count))
  2288. return;
  2289. elv_completed_request(q, req);
  2290. /*
  2291. * Request may not have originated from ll_rw_blk. if not,
  2292. * it didn't come out of our reserved rq pools
  2293. */
  2294. if (req->cmd_flags & REQ_ALLOCED) {
  2295. int rw = rq_data_dir(req);
  2296. int priv = req->cmd_flags & REQ_ELVPRIV;
  2297. BUG_ON(!list_empty(&req->queuelist));
  2298. BUG_ON(!hlist_unhashed(&req->hash));
  2299. blk_free_request(q, req);
  2300. freed_request(q, rw, priv);
  2301. }
  2302. }
  2303. EXPORT_SYMBOL_GPL(__blk_put_request);
  2304. void blk_put_request(struct request *req)
  2305. {
  2306. unsigned long flags;
  2307. request_queue_t *q = req->q;
  2308. /*
  2309. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2310. * following if (q) test.
  2311. */
  2312. if (q) {
  2313. spin_lock_irqsave(q->queue_lock, flags);
  2314. __blk_put_request(q, req);
  2315. spin_unlock_irqrestore(q->queue_lock, flags);
  2316. }
  2317. }
  2318. EXPORT_SYMBOL(blk_put_request);
  2319. /**
  2320. * blk_end_sync_rq - executes a completion event on a request
  2321. * @rq: request to complete
  2322. * @error: end io status of the request
  2323. */
  2324. void blk_end_sync_rq(struct request *rq, int error)
  2325. {
  2326. struct completion *waiting = rq->end_io_data;
  2327. rq->end_io_data = NULL;
  2328. __blk_put_request(rq->q, rq);
  2329. /*
  2330. * complete last, if this is a stack request the process (and thus
  2331. * the rq pointer) could be invalid right after this complete()
  2332. */
  2333. complete(waiting);
  2334. }
  2335. EXPORT_SYMBOL(blk_end_sync_rq);
  2336. /**
  2337. * blk_congestion_wait - wait for a queue to become uncongested
  2338. * @rw: READ or WRITE
  2339. * @timeout: timeout in jiffies
  2340. *
  2341. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2342. * If no queues are congested then just wait for the next request to be
  2343. * returned.
  2344. */
  2345. long blk_congestion_wait(int rw, long timeout)
  2346. {
  2347. long ret;
  2348. DEFINE_WAIT(wait);
  2349. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2350. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2351. ret = io_schedule_timeout(timeout);
  2352. finish_wait(wqh, &wait);
  2353. return ret;
  2354. }
  2355. EXPORT_SYMBOL(blk_congestion_wait);
  2356. /**
  2357. * blk_congestion_end - wake up sleepers on a congestion queue
  2358. * @rw: READ or WRITE
  2359. */
  2360. void blk_congestion_end(int rw)
  2361. {
  2362. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2363. if (waitqueue_active(wqh))
  2364. wake_up(wqh);
  2365. }
  2366. /*
  2367. * Has to be called with the request spinlock acquired
  2368. */
  2369. static int attempt_merge(request_queue_t *q, struct request *req,
  2370. struct request *next)
  2371. {
  2372. if (!rq_mergeable(req) || !rq_mergeable(next))
  2373. return 0;
  2374. /*
  2375. * not contiguous
  2376. */
  2377. if (req->sector + req->nr_sectors != next->sector)
  2378. return 0;
  2379. if (rq_data_dir(req) != rq_data_dir(next)
  2380. || req->rq_disk != next->rq_disk
  2381. || next->special)
  2382. return 0;
  2383. /*
  2384. * If we are allowed to merge, then append bio list
  2385. * from next to rq and release next. merge_requests_fn
  2386. * will have updated segment counts, update sector
  2387. * counts here.
  2388. */
  2389. if (!q->merge_requests_fn(q, req, next))
  2390. return 0;
  2391. /*
  2392. * At this point we have either done a back merge
  2393. * or front merge. We need the smaller start_time of
  2394. * the merged requests to be the current request
  2395. * for accounting purposes.
  2396. */
  2397. if (time_after(req->start_time, next->start_time))
  2398. req->start_time = next->start_time;
  2399. req->biotail->bi_next = next->bio;
  2400. req->biotail = next->biotail;
  2401. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2402. elv_merge_requests(q, req, next);
  2403. if (req->rq_disk) {
  2404. disk_round_stats(req->rq_disk);
  2405. req->rq_disk->in_flight--;
  2406. }
  2407. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2408. __blk_put_request(q, next);
  2409. return 1;
  2410. }
  2411. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2412. {
  2413. struct request *next = elv_latter_request(q, rq);
  2414. if (next)
  2415. return attempt_merge(q, rq, next);
  2416. return 0;
  2417. }
  2418. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2419. {
  2420. struct request *prev = elv_former_request(q, rq);
  2421. if (prev)
  2422. return attempt_merge(q, prev, rq);
  2423. return 0;
  2424. }
  2425. static void init_request_from_bio(struct request *req, struct bio *bio)
  2426. {
  2427. req->cmd_type = REQ_TYPE_FS;
  2428. /*
  2429. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2430. */
  2431. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2432. req->cmd_flags |= REQ_FAILFAST;
  2433. /*
  2434. * REQ_BARRIER implies no merging, but lets make it explicit
  2435. */
  2436. if (unlikely(bio_barrier(bio)))
  2437. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2438. if (bio_sync(bio))
  2439. req->cmd_flags |= REQ_RW_SYNC;
  2440. if (bio_rw_meta(bio))
  2441. req->cmd_flags |= REQ_RW_META;
  2442. req->errors = 0;
  2443. req->hard_sector = req->sector = bio->bi_sector;
  2444. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2445. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2446. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2447. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2448. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2449. req->bio = req->biotail = bio;
  2450. req->ioprio = bio_prio(bio);
  2451. req->rq_disk = bio->bi_bdev->bd_disk;
  2452. req->start_time = jiffies;
  2453. }
  2454. static int __make_request(request_queue_t *q, struct bio *bio)
  2455. {
  2456. struct request *req;
  2457. int el_ret, nr_sectors, barrier, err;
  2458. const unsigned short prio = bio_prio(bio);
  2459. const int sync = bio_sync(bio);
  2460. nr_sectors = bio_sectors(bio);
  2461. /*
  2462. * low level driver can indicate that it wants pages above a
  2463. * certain limit bounced to low memory (ie for highmem, or even
  2464. * ISA dma in theory)
  2465. */
  2466. blk_queue_bounce(q, &bio);
  2467. barrier = bio_barrier(bio);
  2468. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2469. err = -EOPNOTSUPP;
  2470. goto end_io;
  2471. }
  2472. spin_lock_irq(q->queue_lock);
  2473. if (unlikely(barrier) || elv_queue_empty(q))
  2474. goto get_rq;
  2475. el_ret = elv_merge(q, &req, bio);
  2476. switch (el_ret) {
  2477. case ELEVATOR_BACK_MERGE:
  2478. BUG_ON(!rq_mergeable(req));
  2479. if (!q->back_merge_fn(q, req, bio))
  2480. break;
  2481. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2482. req->biotail->bi_next = bio;
  2483. req->biotail = bio;
  2484. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2485. req->ioprio = ioprio_best(req->ioprio, prio);
  2486. drive_stat_acct(req, nr_sectors, 0);
  2487. if (!attempt_back_merge(q, req))
  2488. elv_merged_request(q, req, el_ret);
  2489. goto out;
  2490. case ELEVATOR_FRONT_MERGE:
  2491. BUG_ON(!rq_mergeable(req));
  2492. if (!q->front_merge_fn(q, req, bio))
  2493. break;
  2494. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2495. bio->bi_next = req->bio;
  2496. req->bio = bio;
  2497. /*
  2498. * may not be valid. if the low level driver said
  2499. * it didn't need a bounce buffer then it better
  2500. * not touch req->buffer either...
  2501. */
  2502. req->buffer = bio_data(bio);
  2503. req->current_nr_sectors = bio_cur_sectors(bio);
  2504. req->hard_cur_sectors = req->current_nr_sectors;
  2505. req->sector = req->hard_sector = bio->bi_sector;
  2506. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2507. req->ioprio = ioprio_best(req->ioprio, prio);
  2508. drive_stat_acct(req, nr_sectors, 0);
  2509. if (!attempt_front_merge(q, req))
  2510. elv_merged_request(q, req, el_ret);
  2511. goto out;
  2512. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2513. default:
  2514. ;
  2515. }
  2516. get_rq:
  2517. /*
  2518. * Grab a free request. This is might sleep but can not fail.
  2519. * Returns with the queue unlocked.
  2520. */
  2521. req = get_request_wait(q, bio_data_dir(bio), bio);
  2522. /*
  2523. * After dropping the lock and possibly sleeping here, our request
  2524. * may now be mergeable after it had proven unmergeable (above).
  2525. * We don't worry about that case for efficiency. It won't happen
  2526. * often, and the elevators are able to handle it.
  2527. */
  2528. init_request_from_bio(req, bio);
  2529. spin_lock_irq(q->queue_lock);
  2530. if (elv_queue_empty(q))
  2531. blk_plug_device(q);
  2532. add_request(q, req);
  2533. out:
  2534. if (sync)
  2535. __generic_unplug_device(q);
  2536. spin_unlock_irq(q->queue_lock);
  2537. return 0;
  2538. end_io:
  2539. bio_endio(bio, nr_sectors << 9, err);
  2540. return 0;
  2541. }
  2542. /*
  2543. * If bio->bi_dev is a partition, remap the location
  2544. */
  2545. static inline void blk_partition_remap(struct bio *bio)
  2546. {
  2547. struct block_device *bdev = bio->bi_bdev;
  2548. if (bdev != bdev->bd_contains) {
  2549. struct hd_struct *p = bdev->bd_part;
  2550. const int rw = bio_data_dir(bio);
  2551. p->sectors[rw] += bio_sectors(bio);
  2552. p->ios[rw]++;
  2553. bio->bi_sector += p->start_sect;
  2554. bio->bi_bdev = bdev->bd_contains;
  2555. }
  2556. }
  2557. static void handle_bad_sector(struct bio *bio)
  2558. {
  2559. char b[BDEVNAME_SIZE];
  2560. printk(KERN_INFO "attempt to access beyond end of device\n");
  2561. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2562. bdevname(bio->bi_bdev, b),
  2563. bio->bi_rw,
  2564. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2565. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2566. set_bit(BIO_EOF, &bio->bi_flags);
  2567. }
  2568. /**
  2569. * generic_make_request: hand a buffer to its device driver for I/O
  2570. * @bio: The bio describing the location in memory and on the device.
  2571. *
  2572. * generic_make_request() is used to make I/O requests of block
  2573. * devices. It is passed a &struct bio, which describes the I/O that needs
  2574. * to be done.
  2575. *
  2576. * generic_make_request() does not return any status. The
  2577. * success/failure status of the request, along with notification of
  2578. * completion, is delivered asynchronously through the bio->bi_end_io
  2579. * function described (one day) else where.
  2580. *
  2581. * The caller of generic_make_request must make sure that bi_io_vec
  2582. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2583. * set to describe the device address, and the
  2584. * bi_end_io and optionally bi_private are set to describe how
  2585. * completion notification should be signaled.
  2586. *
  2587. * generic_make_request and the drivers it calls may use bi_next if this
  2588. * bio happens to be merged with someone else, and may change bi_dev and
  2589. * bi_sector for remaps as it sees fit. So the values of these fields
  2590. * should NOT be depended on after the call to generic_make_request.
  2591. */
  2592. void generic_make_request(struct bio *bio)
  2593. {
  2594. request_queue_t *q;
  2595. sector_t maxsector;
  2596. int ret, nr_sectors = bio_sectors(bio);
  2597. dev_t old_dev;
  2598. might_sleep();
  2599. /* Test device or partition size, when known. */
  2600. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2601. if (maxsector) {
  2602. sector_t sector = bio->bi_sector;
  2603. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2604. /*
  2605. * This may well happen - the kernel calls bread()
  2606. * without checking the size of the device, e.g., when
  2607. * mounting a device.
  2608. */
  2609. handle_bad_sector(bio);
  2610. goto end_io;
  2611. }
  2612. }
  2613. /*
  2614. * Resolve the mapping until finished. (drivers are
  2615. * still free to implement/resolve their own stacking
  2616. * by explicitly returning 0)
  2617. *
  2618. * NOTE: we don't repeat the blk_size check for each new device.
  2619. * Stacking drivers are expected to know what they are doing.
  2620. */
  2621. maxsector = -1;
  2622. old_dev = 0;
  2623. do {
  2624. char b[BDEVNAME_SIZE];
  2625. q = bdev_get_queue(bio->bi_bdev);
  2626. if (!q) {
  2627. printk(KERN_ERR
  2628. "generic_make_request: Trying to access "
  2629. "nonexistent block-device %s (%Lu)\n",
  2630. bdevname(bio->bi_bdev, b),
  2631. (long long) bio->bi_sector);
  2632. end_io:
  2633. bio_endio(bio, bio->bi_size, -EIO);
  2634. break;
  2635. }
  2636. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2637. printk("bio too big device %s (%u > %u)\n",
  2638. bdevname(bio->bi_bdev, b),
  2639. bio_sectors(bio),
  2640. q->max_hw_sectors);
  2641. goto end_io;
  2642. }
  2643. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2644. goto end_io;
  2645. /*
  2646. * If this device has partitions, remap block n
  2647. * of partition p to block n+start(p) of the disk.
  2648. */
  2649. blk_partition_remap(bio);
  2650. if (maxsector != -1)
  2651. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2652. maxsector);
  2653. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2654. maxsector = bio->bi_sector;
  2655. old_dev = bio->bi_bdev->bd_dev;
  2656. ret = q->make_request_fn(q, bio);
  2657. } while (ret);
  2658. }
  2659. EXPORT_SYMBOL(generic_make_request);
  2660. /**
  2661. * submit_bio: submit a bio to the block device layer for I/O
  2662. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2663. * @bio: The &struct bio which describes the I/O
  2664. *
  2665. * submit_bio() is very similar in purpose to generic_make_request(), and
  2666. * uses that function to do most of the work. Both are fairly rough
  2667. * interfaces, @bio must be presetup and ready for I/O.
  2668. *
  2669. */
  2670. void submit_bio(int rw, struct bio *bio)
  2671. {
  2672. int count = bio_sectors(bio);
  2673. BIO_BUG_ON(!bio->bi_size);
  2674. BIO_BUG_ON(!bio->bi_io_vec);
  2675. bio->bi_rw |= rw;
  2676. if (rw & WRITE)
  2677. count_vm_events(PGPGOUT, count);
  2678. else
  2679. count_vm_events(PGPGIN, count);
  2680. if (unlikely(block_dump)) {
  2681. char b[BDEVNAME_SIZE];
  2682. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2683. current->comm, current->pid,
  2684. (rw & WRITE) ? "WRITE" : "READ",
  2685. (unsigned long long)bio->bi_sector,
  2686. bdevname(bio->bi_bdev,b));
  2687. }
  2688. generic_make_request(bio);
  2689. }
  2690. EXPORT_SYMBOL(submit_bio);
  2691. static void blk_recalc_rq_segments(struct request *rq)
  2692. {
  2693. struct bio *bio, *prevbio = NULL;
  2694. int nr_phys_segs, nr_hw_segs;
  2695. unsigned int phys_size, hw_size;
  2696. request_queue_t *q = rq->q;
  2697. if (!rq->bio)
  2698. return;
  2699. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2700. rq_for_each_bio(bio, rq) {
  2701. /* Force bio hw/phys segs to be recalculated. */
  2702. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2703. nr_phys_segs += bio_phys_segments(q, bio);
  2704. nr_hw_segs += bio_hw_segments(q, bio);
  2705. if (prevbio) {
  2706. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2707. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2708. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2709. pseg <= q->max_segment_size) {
  2710. nr_phys_segs--;
  2711. phys_size += prevbio->bi_size + bio->bi_size;
  2712. } else
  2713. phys_size = 0;
  2714. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2715. hseg <= q->max_segment_size) {
  2716. nr_hw_segs--;
  2717. hw_size += prevbio->bi_size + bio->bi_size;
  2718. } else
  2719. hw_size = 0;
  2720. }
  2721. prevbio = bio;
  2722. }
  2723. rq->nr_phys_segments = nr_phys_segs;
  2724. rq->nr_hw_segments = nr_hw_segs;
  2725. }
  2726. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2727. {
  2728. if (blk_fs_request(rq)) {
  2729. rq->hard_sector += nsect;
  2730. rq->hard_nr_sectors -= nsect;
  2731. /*
  2732. * Move the I/O submission pointers ahead if required.
  2733. */
  2734. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2735. (rq->sector <= rq->hard_sector)) {
  2736. rq->sector = rq->hard_sector;
  2737. rq->nr_sectors = rq->hard_nr_sectors;
  2738. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2739. rq->current_nr_sectors = rq->hard_cur_sectors;
  2740. rq->buffer = bio_data(rq->bio);
  2741. }
  2742. /*
  2743. * if total number of sectors is less than the first segment
  2744. * size, something has gone terribly wrong
  2745. */
  2746. if (rq->nr_sectors < rq->current_nr_sectors) {
  2747. printk("blk: request botched\n");
  2748. rq->nr_sectors = rq->current_nr_sectors;
  2749. }
  2750. }
  2751. }
  2752. static int __end_that_request_first(struct request *req, int uptodate,
  2753. int nr_bytes)
  2754. {
  2755. int total_bytes, bio_nbytes, error, next_idx = 0;
  2756. struct bio *bio;
  2757. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2758. /*
  2759. * extend uptodate bool to allow < 0 value to be direct io error
  2760. */
  2761. error = 0;
  2762. if (end_io_error(uptodate))
  2763. error = !uptodate ? -EIO : uptodate;
  2764. /*
  2765. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2766. * sense key with us all the way through
  2767. */
  2768. if (!blk_pc_request(req))
  2769. req->errors = 0;
  2770. if (!uptodate) {
  2771. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2772. printk("end_request: I/O error, dev %s, sector %llu\n",
  2773. req->rq_disk ? req->rq_disk->disk_name : "?",
  2774. (unsigned long long)req->sector);
  2775. }
  2776. if (blk_fs_request(req) && req->rq_disk) {
  2777. const int rw = rq_data_dir(req);
  2778. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2779. }
  2780. total_bytes = bio_nbytes = 0;
  2781. while ((bio = req->bio) != NULL) {
  2782. int nbytes;
  2783. if (nr_bytes >= bio->bi_size) {
  2784. req->bio = bio->bi_next;
  2785. nbytes = bio->bi_size;
  2786. if (!ordered_bio_endio(req, bio, nbytes, error))
  2787. bio_endio(bio, nbytes, error);
  2788. next_idx = 0;
  2789. bio_nbytes = 0;
  2790. } else {
  2791. int idx = bio->bi_idx + next_idx;
  2792. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2793. blk_dump_rq_flags(req, "__end_that");
  2794. printk("%s: bio idx %d >= vcnt %d\n",
  2795. __FUNCTION__,
  2796. bio->bi_idx, bio->bi_vcnt);
  2797. break;
  2798. }
  2799. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2800. BIO_BUG_ON(nbytes > bio->bi_size);
  2801. /*
  2802. * not a complete bvec done
  2803. */
  2804. if (unlikely(nbytes > nr_bytes)) {
  2805. bio_nbytes += nr_bytes;
  2806. total_bytes += nr_bytes;
  2807. break;
  2808. }
  2809. /*
  2810. * advance to the next vector
  2811. */
  2812. next_idx++;
  2813. bio_nbytes += nbytes;
  2814. }
  2815. total_bytes += nbytes;
  2816. nr_bytes -= nbytes;
  2817. if ((bio = req->bio)) {
  2818. /*
  2819. * end more in this run, or just return 'not-done'
  2820. */
  2821. if (unlikely(nr_bytes <= 0))
  2822. break;
  2823. }
  2824. }
  2825. /*
  2826. * completely done
  2827. */
  2828. if (!req->bio)
  2829. return 0;
  2830. /*
  2831. * if the request wasn't completed, update state
  2832. */
  2833. if (bio_nbytes) {
  2834. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2835. bio_endio(bio, bio_nbytes, error);
  2836. bio->bi_idx += next_idx;
  2837. bio_iovec(bio)->bv_offset += nr_bytes;
  2838. bio_iovec(bio)->bv_len -= nr_bytes;
  2839. }
  2840. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2841. blk_recalc_rq_segments(req);
  2842. return 1;
  2843. }
  2844. /**
  2845. * end_that_request_first - end I/O on a request
  2846. * @req: the request being processed
  2847. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2848. * @nr_sectors: number of sectors to end I/O on
  2849. *
  2850. * Description:
  2851. * Ends I/O on a number of sectors attached to @req, and sets it up
  2852. * for the next range of segments (if any) in the cluster.
  2853. *
  2854. * Return:
  2855. * 0 - we are done with this request, call end_that_request_last()
  2856. * 1 - still buffers pending for this request
  2857. **/
  2858. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2859. {
  2860. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2861. }
  2862. EXPORT_SYMBOL(end_that_request_first);
  2863. /**
  2864. * end_that_request_chunk - end I/O on a request
  2865. * @req: the request being processed
  2866. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2867. * @nr_bytes: number of bytes to complete
  2868. *
  2869. * Description:
  2870. * Ends I/O on a number of bytes attached to @req, and sets it up
  2871. * for the next range of segments (if any). Like end_that_request_first(),
  2872. * but deals with bytes instead of sectors.
  2873. *
  2874. * Return:
  2875. * 0 - we are done with this request, call end_that_request_last()
  2876. * 1 - still buffers pending for this request
  2877. **/
  2878. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2879. {
  2880. return __end_that_request_first(req, uptodate, nr_bytes);
  2881. }
  2882. EXPORT_SYMBOL(end_that_request_chunk);
  2883. /*
  2884. * splice the completion data to a local structure and hand off to
  2885. * process_completion_queue() to complete the requests
  2886. */
  2887. static void blk_done_softirq(struct softirq_action *h)
  2888. {
  2889. struct list_head *cpu_list, local_list;
  2890. local_irq_disable();
  2891. cpu_list = &__get_cpu_var(blk_cpu_done);
  2892. list_replace_init(cpu_list, &local_list);
  2893. local_irq_enable();
  2894. while (!list_empty(&local_list)) {
  2895. struct request *rq = list_entry(local_list.next, struct request, donelist);
  2896. list_del_init(&rq->donelist);
  2897. rq->q->softirq_done_fn(rq);
  2898. }
  2899. }
  2900. #ifdef CONFIG_HOTPLUG_CPU
  2901. static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
  2902. void *hcpu)
  2903. {
  2904. /*
  2905. * If a CPU goes away, splice its entries to the current CPU
  2906. * and trigger a run of the softirq
  2907. */
  2908. if (action == CPU_DEAD) {
  2909. int cpu = (unsigned long) hcpu;
  2910. local_irq_disable();
  2911. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  2912. &__get_cpu_var(blk_cpu_done));
  2913. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2914. local_irq_enable();
  2915. }
  2916. return NOTIFY_OK;
  2917. }
  2918. static struct notifier_block __devinitdata blk_cpu_notifier = {
  2919. .notifier_call = blk_cpu_notify,
  2920. };
  2921. #endif /* CONFIG_HOTPLUG_CPU */
  2922. /**
  2923. * blk_complete_request - end I/O on a request
  2924. * @req: the request being processed
  2925. *
  2926. * Description:
  2927. * Ends all I/O on a request. It does not handle partial completions,
  2928. * unless the driver actually implements this in its completion callback
  2929. * through requeueing. Theh actual completion happens out-of-order,
  2930. * through a softirq handler. The user must have registered a completion
  2931. * callback through blk_queue_softirq_done().
  2932. **/
  2933. void blk_complete_request(struct request *req)
  2934. {
  2935. struct list_head *cpu_list;
  2936. unsigned long flags;
  2937. BUG_ON(!req->q->softirq_done_fn);
  2938. local_irq_save(flags);
  2939. cpu_list = &__get_cpu_var(blk_cpu_done);
  2940. list_add_tail(&req->donelist, cpu_list);
  2941. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  2942. local_irq_restore(flags);
  2943. }
  2944. EXPORT_SYMBOL(blk_complete_request);
  2945. /*
  2946. * queue lock must be held
  2947. */
  2948. void end_that_request_last(struct request *req, int uptodate)
  2949. {
  2950. struct gendisk *disk = req->rq_disk;
  2951. int error;
  2952. /*
  2953. * extend uptodate bool to allow < 0 value to be direct io error
  2954. */
  2955. error = 0;
  2956. if (end_io_error(uptodate))
  2957. error = !uptodate ? -EIO : uptodate;
  2958. if (unlikely(laptop_mode) && blk_fs_request(req))
  2959. laptop_io_completion();
  2960. /*
  2961. * Account IO completion. bar_rq isn't accounted as a normal
  2962. * IO on queueing nor completion. Accounting the containing
  2963. * request is enough.
  2964. */
  2965. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  2966. unsigned long duration = jiffies - req->start_time;
  2967. const int rw = rq_data_dir(req);
  2968. __disk_stat_inc(disk, ios[rw]);
  2969. __disk_stat_add(disk, ticks[rw], duration);
  2970. disk_round_stats(disk);
  2971. disk->in_flight--;
  2972. }
  2973. if (req->end_io)
  2974. req->end_io(req, error);
  2975. else
  2976. __blk_put_request(req->q, req);
  2977. }
  2978. EXPORT_SYMBOL(end_that_request_last);
  2979. void end_request(struct request *req, int uptodate)
  2980. {
  2981. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2982. add_disk_randomness(req->rq_disk);
  2983. blkdev_dequeue_request(req);
  2984. end_that_request_last(req, uptodate);
  2985. }
  2986. }
  2987. EXPORT_SYMBOL(end_request);
  2988. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2989. {
  2990. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  2991. rq->cmd_flags |= (bio->bi_rw & 3);
  2992. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2993. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2994. rq->current_nr_sectors = bio_cur_sectors(bio);
  2995. rq->hard_cur_sectors = rq->current_nr_sectors;
  2996. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2997. rq->buffer = bio_data(bio);
  2998. rq->bio = rq->biotail = bio;
  2999. }
  3000. EXPORT_SYMBOL(blk_rq_bio_prep);
  3001. int kblockd_schedule_work(struct work_struct *work)
  3002. {
  3003. return queue_work(kblockd_workqueue, work);
  3004. }
  3005. EXPORT_SYMBOL(kblockd_schedule_work);
  3006. void kblockd_flush(void)
  3007. {
  3008. flush_workqueue(kblockd_workqueue);
  3009. }
  3010. EXPORT_SYMBOL(kblockd_flush);
  3011. int __init blk_dev_init(void)
  3012. {
  3013. int i;
  3014. kblockd_workqueue = create_workqueue("kblockd");
  3015. if (!kblockd_workqueue)
  3016. panic("Failed to create kblockd\n");
  3017. request_cachep = kmem_cache_create("blkdev_requests",
  3018. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  3019. requestq_cachep = kmem_cache_create("blkdev_queue",
  3020. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  3021. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3022. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  3023. for_each_possible_cpu(i)
  3024. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3025. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3026. register_hotcpu_notifier(&blk_cpu_notifier);
  3027. blk_max_low_pfn = max_low_pfn;
  3028. blk_max_pfn = max_pfn;
  3029. return 0;
  3030. }
  3031. /*
  3032. * IO Context helper functions
  3033. */
  3034. void put_io_context(struct io_context *ioc)
  3035. {
  3036. if (ioc == NULL)
  3037. return;
  3038. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3039. if (atomic_dec_and_test(&ioc->refcount)) {
  3040. struct cfq_io_context *cic;
  3041. rcu_read_lock();
  3042. if (ioc->aic && ioc->aic->dtor)
  3043. ioc->aic->dtor(ioc->aic);
  3044. if (ioc->cic_root.rb_node != NULL) {
  3045. struct rb_node *n = rb_first(&ioc->cic_root);
  3046. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3047. cic->dtor(ioc);
  3048. }
  3049. rcu_read_unlock();
  3050. kmem_cache_free(iocontext_cachep, ioc);
  3051. }
  3052. }
  3053. EXPORT_SYMBOL(put_io_context);
  3054. /* Called by the exitting task */
  3055. void exit_io_context(void)
  3056. {
  3057. struct io_context *ioc;
  3058. struct cfq_io_context *cic;
  3059. task_lock(current);
  3060. ioc = current->io_context;
  3061. current->io_context = NULL;
  3062. task_unlock(current);
  3063. ioc->task = NULL;
  3064. if (ioc->aic && ioc->aic->exit)
  3065. ioc->aic->exit(ioc->aic);
  3066. if (ioc->cic_root.rb_node != NULL) {
  3067. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3068. cic->exit(ioc);
  3069. }
  3070. put_io_context(ioc);
  3071. }
  3072. /*
  3073. * If the current task has no IO context then create one and initialise it.
  3074. * Otherwise, return its existing IO context.
  3075. *
  3076. * This returned IO context doesn't have a specifically elevated refcount,
  3077. * but since the current task itself holds a reference, the context can be
  3078. * used in general code, so long as it stays within `current` context.
  3079. */
  3080. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3081. {
  3082. struct task_struct *tsk = current;
  3083. struct io_context *ret;
  3084. ret = tsk->io_context;
  3085. if (likely(ret))
  3086. return ret;
  3087. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3088. if (ret) {
  3089. atomic_set(&ret->refcount, 1);
  3090. ret->task = current;
  3091. ret->ioprio_changed = 0;
  3092. ret->last_waited = jiffies; /* doesn't matter... */
  3093. ret->nr_batch_requests = 0; /* because this is 0 */
  3094. ret->aic = NULL;
  3095. ret->cic_root.rb_node = NULL;
  3096. /* make sure set_task_ioprio() sees the settings above */
  3097. smp_wmb();
  3098. tsk->io_context = ret;
  3099. }
  3100. return ret;
  3101. }
  3102. EXPORT_SYMBOL(current_io_context);
  3103. /*
  3104. * If the current task has no IO context then create one and initialise it.
  3105. * If it does have a context, take a ref on it.
  3106. *
  3107. * This is always called in the context of the task which submitted the I/O.
  3108. */
  3109. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3110. {
  3111. struct io_context *ret;
  3112. ret = current_io_context(gfp_flags, node);
  3113. if (likely(ret))
  3114. atomic_inc(&ret->refcount);
  3115. return ret;
  3116. }
  3117. EXPORT_SYMBOL(get_io_context);
  3118. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3119. {
  3120. struct io_context *src = *psrc;
  3121. struct io_context *dst = *pdst;
  3122. if (src) {
  3123. BUG_ON(atomic_read(&src->refcount) == 0);
  3124. atomic_inc(&src->refcount);
  3125. put_io_context(dst);
  3126. *pdst = src;
  3127. }
  3128. }
  3129. EXPORT_SYMBOL(copy_io_context);
  3130. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3131. {
  3132. struct io_context *temp;
  3133. temp = *ioc1;
  3134. *ioc1 = *ioc2;
  3135. *ioc2 = temp;
  3136. }
  3137. EXPORT_SYMBOL(swap_io_context);
  3138. /*
  3139. * sysfs parts below
  3140. */
  3141. struct queue_sysfs_entry {
  3142. struct attribute attr;
  3143. ssize_t (*show)(struct request_queue *, char *);
  3144. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3145. };
  3146. static ssize_t
  3147. queue_var_show(unsigned int var, char *page)
  3148. {
  3149. return sprintf(page, "%d\n", var);
  3150. }
  3151. static ssize_t
  3152. queue_var_store(unsigned long *var, const char *page, size_t count)
  3153. {
  3154. char *p = (char *) page;
  3155. *var = simple_strtoul(p, &p, 10);
  3156. return count;
  3157. }
  3158. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3159. {
  3160. return queue_var_show(q->nr_requests, (page));
  3161. }
  3162. static ssize_t
  3163. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3164. {
  3165. struct request_list *rl = &q->rq;
  3166. unsigned long nr;
  3167. int ret = queue_var_store(&nr, page, count);
  3168. if (nr < BLKDEV_MIN_RQ)
  3169. nr = BLKDEV_MIN_RQ;
  3170. spin_lock_irq(q->queue_lock);
  3171. q->nr_requests = nr;
  3172. blk_queue_congestion_threshold(q);
  3173. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3174. blk_set_queue_congested(q, READ);
  3175. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3176. blk_clear_queue_congested(q, READ);
  3177. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3178. blk_set_queue_congested(q, WRITE);
  3179. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3180. blk_clear_queue_congested(q, WRITE);
  3181. if (rl->count[READ] >= q->nr_requests) {
  3182. blk_set_queue_full(q, READ);
  3183. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3184. blk_clear_queue_full(q, READ);
  3185. wake_up(&rl->wait[READ]);
  3186. }
  3187. if (rl->count[WRITE] >= q->nr_requests) {
  3188. blk_set_queue_full(q, WRITE);
  3189. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3190. blk_clear_queue_full(q, WRITE);
  3191. wake_up(&rl->wait[WRITE]);
  3192. }
  3193. spin_unlock_irq(q->queue_lock);
  3194. return ret;
  3195. }
  3196. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3197. {
  3198. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3199. return queue_var_show(ra_kb, (page));
  3200. }
  3201. static ssize_t
  3202. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3203. {
  3204. unsigned long ra_kb;
  3205. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3206. spin_lock_irq(q->queue_lock);
  3207. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3208. spin_unlock_irq(q->queue_lock);
  3209. return ret;
  3210. }
  3211. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3212. {
  3213. int max_sectors_kb = q->max_sectors >> 1;
  3214. return queue_var_show(max_sectors_kb, (page));
  3215. }
  3216. static ssize_t
  3217. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3218. {
  3219. unsigned long max_sectors_kb,
  3220. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3221. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3222. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3223. int ra_kb;
  3224. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3225. return -EINVAL;
  3226. /*
  3227. * Take the queue lock to update the readahead and max_sectors
  3228. * values synchronously:
  3229. */
  3230. spin_lock_irq(q->queue_lock);
  3231. /*
  3232. * Trim readahead window as well, if necessary:
  3233. */
  3234. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3235. if (ra_kb > max_sectors_kb)
  3236. q->backing_dev_info.ra_pages =
  3237. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3238. q->max_sectors = max_sectors_kb << 1;
  3239. spin_unlock_irq(q->queue_lock);
  3240. return ret;
  3241. }
  3242. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3243. {
  3244. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3245. return queue_var_show(max_hw_sectors_kb, (page));
  3246. }
  3247. static struct queue_sysfs_entry queue_requests_entry = {
  3248. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3249. .show = queue_requests_show,
  3250. .store = queue_requests_store,
  3251. };
  3252. static struct queue_sysfs_entry queue_ra_entry = {
  3253. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3254. .show = queue_ra_show,
  3255. .store = queue_ra_store,
  3256. };
  3257. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3258. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3259. .show = queue_max_sectors_show,
  3260. .store = queue_max_sectors_store,
  3261. };
  3262. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3263. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3264. .show = queue_max_hw_sectors_show,
  3265. };
  3266. static struct queue_sysfs_entry queue_iosched_entry = {
  3267. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3268. .show = elv_iosched_show,
  3269. .store = elv_iosched_store,
  3270. };
  3271. static struct attribute *default_attrs[] = {
  3272. &queue_requests_entry.attr,
  3273. &queue_ra_entry.attr,
  3274. &queue_max_hw_sectors_entry.attr,
  3275. &queue_max_sectors_entry.attr,
  3276. &queue_iosched_entry.attr,
  3277. NULL,
  3278. };
  3279. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3280. static ssize_t
  3281. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3282. {
  3283. struct queue_sysfs_entry *entry = to_queue(attr);
  3284. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3285. ssize_t res;
  3286. if (!entry->show)
  3287. return -EIO;
  3288. mutex_lock(&q->sysfs_lock);
  3289. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3290. mutex_unlock(&q->sysfs_lock);
  3291. return -ENOENT;
  3292. }
  3293. res = entry->show(q, page);
  3294. mutex_unlock(&q->sysfs_lock);
  3295. return res;
  3296. }
  3297. static ssize_t
  3298. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3299. const char *page, size_t length)
  3300. {
  3301. struct queue_sysfs_entry *entry = to_queue(attr);
  3302. request_queue_t *q = container_of(kobj, struct request_queue, kobj);
  3303. ssize_t res;
  3304. if (!entry->store)
  3305. return -EIO;
  3306. mutex_lock(&q->sysfs_lock);
  3307. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3308. mutex_unlock(&q->sysfs_lock);
  3309. return -ENOENT;
  3310. }
  3311. res = entry->store(q, page, length);
  3312. mutex_unlock(&q->sysfs_lock);
  3313. return res;
  3314. }
  3315. static struct sysfs_ops queue_sysfs_ops = {
  3316. .show = queue_attr_show,
  3317. .store = queue_attr_store,
  3318. };
  3319. static struct kobj_type queue_ktype = {
  3320. .sysfs_ops = &queue_sysfs_ops,
  3321. .default_attrs = default_attrs,
  3322. .release = blk_release_queue,
  3323. };
  3324. int blk_register_queue(struct gendisk *disk)
  3325. {
  3326. int ret;
  3327. request_queue_t *q = disk->queue;
  3328. if (!q || !q->request_fn)
  3329. return -ENXIO;
  3330. q->kobj.parent = kobject_get(&disk->kobj);
  3331. ret = kobject_add(&q->kobj);
  3332. if (ret < 0)
  3333. return ret;
  3334. kobject_uevent(&q->kobj, KOBJ_ADD);
  3335. ret = elv_register_queue(q);
  3336. if (ret) {
  3337. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3338. kobject_del(&q->kobj);
  3339. return ret;
  3340. }
  3341. return 0;
  3342. }
  3343. void blk_unregister_queue(struct gendisk *disk)
  3344. {
  3345. request_queue_t *q = disk->queue;
  3346. if (q && q->request_fn) {
  3347. elv_unregister_queue(q);
  3348. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3349. kobject_del(&q->kobj);
  3350. kobject_put(&disk->kobj);
  3351. }
  3352. }