eeprom_9287.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9002_phy.h"
  18. #define NUM_EEP_WORDS (sizeof(struct ar9287_eeprom) / sizeof(u16))
  19. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  20. {
  21. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  22. }
  23. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  24. {
  25. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  26. }
  27. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  28. {
  29. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  30. struct ath_common *common = ath9k_hw_common(ah);
  31. u16 *eep_data;
  32. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  33. eep_data = (u16 *)eep;
  34. if (!ath9k_hw_use_flash(ah)) {
  35. ath_print(common, ATH_DBG_EEPROM,
  36. "Reading from EEPROM, not flash\n");
  37. }
  38. for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
  39. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  40. eep_data)) {
  41. ath_print(common, ATH_DBG_EEPROM,
  42. "Unable to read eeprom region\n");
  43. return false;
  44. }
  45. eep_data++;
  46. }
  47. return true;
  48. }
  49. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  50. {
  51. u32 sum = 0, el, integer;
  52. u16 temp, word, magic, magic2, *eepdata;
  53. int i, addr;
  54. bool need_swap = false;
  55. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  56. struct ath_common *common = ath9k_hw_common(ah);
  57. if (!ath9k_hw_use_flash(ah)) {
  58. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  59. &magic)) {
  60. ath_print(common, ATH_DBG_FATAL,
  61. "Reading Magic # failed\n");
  62. return false;
  63. }
  64. ath_print(common, ATH_DBG_EEPROM,
  65. "Read Magic = 0x%04X\n", magic);
  66. if (magic != AR5416_EEPROM_MAGIC) {
  67. magic2 = swab16(magic);
  68. if (magic2 == AR5416_EEPROM_MAGIC) {
  69. need_swap = true;
  70. eepdata = (u16 *)(&ah->eeprom);
  71. for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
  72. temp = swab16(*eepdata);
  73. *eepdata = temp;
  74. eepdata++;
  75. }
  76. } else {
  77. ath_print(common, ATH_DBG_FATAL,
  78. "Invalid EEPROM Magic. "
  79. "Endianness mismatch.\n");
  80. return -EINVAL;
  81. }
  82. }
  83. }
  84. ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  85. need_swap ? "True" : "False");
  86. if (need_swap)
  87. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  88. else
  89. el = ah->eeprom.map9287.baseEepHeader.length;
  90. if (el > sizeof(struct ar9287_eeprom))
  91. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  92. else
  93. el = el / sizeof(u16);
  94. eepdata = (u16 *)(&ah->eeprom);
  95. for (i = 0; i < el; i++)
  96. sum ^= *eepdata++;
  97. if (need_swap) {
  98. word = swab16(eep->baseEepHeader.length);
  99. eep->baseEepHeader.length = word;
  100. word = swab16(eep->baseEepHeader.checksum);
  101. eep->baseEepHeader.checksum = word;
  102. word = swab16(eep->baseEepHeader.version);
  103. eep->baseEepHeader.version = word;
  104. word = swab16(eep->baseEepHeader.regDmn[0]);
  105. eep->baseEepHeader.regDmn[0] = word;
  106. word = swab16(eep->baseEepHeader.regDmn[1]);
  107. eep->baseEepHeader.regDmn[1] = word;
  108. word = swab16(eep->baseEepHeader.rfSilent);
  109. eep->baseEepHeader.rfSilent = word;
  110. word = swab16(eep->baseEepHeader.blueToothOptions);
  111. eep->baseEepHeader.blueToothOptions = word;
  112. word = swab16(eep->baseEepHeader.deviceCap);
  113. eep->baseEepHeader.deviceCap = word;
  114. integer = swab32(eep->modalHeader.antCtrlCommon);
  115. eep->modalHeader.antCtrlCommon = integer;
  116. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  117. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  118. eep->modalHeader.antCtrlChain[i] = integer;
  119. }
  120. for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
  121. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  122. eep->modalHeader.spurChans[i].spurChan = word;
  123. }
  124. }
  125. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  126. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  127. ath_print(common, ATH_DBG_FATAL,
  128. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  129. sum, ah->eep_ops->get_eeprom_ver(ah));
  130. return -EINVAL;
  131. }
  132. return 0;
  133. }
  134. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  135. enum eeprom_param param)
  136. {
  137. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  138. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  139. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  140. u16 ver_minor;
  141. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  142. switch (param) {
  143. case EEP_NFTHRESH_2:
  144. return pModal->noiseFloorThreshCh[0];
  145. case EEP_MAC_LSW:
  146. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  147. case EEP_MAC_MID:
  148. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  149. case EEP_MAC_MSW:
  150. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  151. case EEP_REG_0:
  152. return pBase->regDmn[0];
  153. case EEP_REG_1:
  154. return pBase->regDmn[1];
  155. case EEP_OP_CAP:
  156. return pBase->deviceCap;
  157. case EEP_OP_MODE:
  158. return pBase->opCapFlags;
  159. case EEP_RF_SILENT:
  160. return pBase->rfSilent;
  161. case EEP_MINOR_REV:
  162. return ver_minor;
  163. case EEP_TX_MASK:
  164. return pBase->txMask;
  165. case EEP_RX_MASK:
  166. return pBase->rxMask;
  167. case EEP_DEV_TYPE:
  168. return pBase->deviceType;
  169. case EEP_OL_PWRCTRL:
  170. return pBase->openLoopPwrCntl;
  171. case EEP_TEMPSENSE_SLOPE:
  172. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  173. return pBase->tempSensSlope;
  174. else
  175. return 0;
  176. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  177. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  178. return pBase->tempSensSlopePalOn;
  179. else
  180. return 0;
  181. default:
  182. return 0;
  183. }
  184. }
  185. static void ath9k_hw_get_ar9287_gain_boundaries_pdadcs(struct ath_hw *ah,
  186. struct ath9k_channel *chan,
  187. struct cal_data_per_freq_ar9287 *pRawDataSet,
  188. u8 *bChans, u16 availPiers,
  189. u16 tPdGainOverlap,
  190. int16_t *pMinCalPower,
  191. u16 *pPdGainBoundaries,
  192. u8 *pPDADCValues,
  193. u16 numXpdGains)
  194. {
  195. #define TMP_VAL_VPD_TABLE \
  196. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  197. int i, j, k;
  198. int16_t ss;
  199. u16 idxL = 0, idxR = 0, numPiers;
  200. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  201. u8 minPwrT4[AR9287_NUM_PD_GAINS];
  202. u8 maxPwrT4[AR9287_NUM_PD_GAINS];
  203. int16_t vpdStep;
  204. int16_t tmpVal;
  205. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  206. bool match;
  207. int16_t minDelta = 0;
  208. struct chan_centers centers;
  209. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  210. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  211. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  212. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  213. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  214. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  215. ath9k_hw_get_channel_centers(ah, chan, &centers);
  216. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  217. if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
  218. break;
  219. }
  220. match = ath9k_hw_get_lower_upper_index(
  221. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  222. bChans, numPiers, &idxL, &idxR);
  223. if (match) {
  224. for (i = 0; i < numXpdGains; i++) {
  225. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  226. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  227. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  228. pRawDataSet[idxL].pwrPdg[i],
  229. pRawDataSet[idxL].vpdPdg[i],
  230. AR9287_PD_GAIN_ICEPTS,
  231. vpdTableI[i]);
  232. }
  233. } else {
  234. for (i = 0; i < numXpdGains; i++) {
  235. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  236. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  237. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  238. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  239. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  240. maxPwrT4[i] = min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
  241. pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);
  242. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  243. pPwrL, pVpdL,
  244. AR9287_PD_GAIN_ICEPTS,
  245. vpdTableL[i]);
  246. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  247. pPwrR, pVpdR,
  248. AR9287_PD_GAIN_ICEPTS,
  249. vpdTableR[i]);
  250. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  251. vpdTableI[i][j] = (u8)(ath9k_hw_interpolate(
  252. (u16)FREQ2FBIN(centers. synth_center,
  253. IS_CHAN_2GHZ(chan)),
  254. bChans[idxL], bChans[idxR],
  255. vpdTableL[i][j], vpdTableR[i][j]));
  256. }
  257. }
  258. }
  259. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  260. k = 0;
  261. for (i = 0; i < numXpdGains; i++) {
  262. if (i == (numXpdGains - 1))
  263. pPdGainBoundaries[i] =
  264. (u16)(maxPwrT4[i] / 2);
  265. else
  266. pPdGainBoundaries[i] =
  267. (u16)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
  268. pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
  269. pPdGainBoundaries[i]);
  270. if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
  271. minDelta = pPdGainBoundaries[0] - 23;
  272. pPdGainBoundaries[0] = 23;
  273. } else
  274. minDelta = 0;
  275. if (i == 0) {
  276. if (AR_SREV_9280_10_OR_LATER(ah))
  277. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  278. else
  279. ss = 0;
  280. } else
  281. ss = (int16_t)((pPdGainBoundaries[i-1] -
  282. (minPwrT4[i] / 2)) -
  283. tPdGainOverlap + 1 + minDelta);
  284. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  285. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  286. while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1))) {
  287. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  288. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  289. ss++;
  290. }
  291. sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  292. tgtIndex = (u8)(pPdGainBoundaries[i] +
  293. tPdGainOverlap - (minPwrT4[i] / 2));
  294. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  295. tgtIndex : sizeCurrVpdTable;
  296. while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
  297. pPDADCValues[k++] = vpdTableI[i][ss++];
  298. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  299. vpdTableI[i][sizeCurrVpdTable - 2]);
  300. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  301. if (tgtIndex > maxIndex) {
  302. while ((ss <= tgtIndex) &&
  303. (k < (AR9287_NUM_PDADC_VALUES - 1))) {
  304. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  305. pPDADCValues[k++] =
  306. (u8)((tmpVal > 255) ? 255 : tmpVal);
  307. ss++;
  308. }
  309. }
  310. }
  311. while (i < AR9287_PD_GAINS_IN_MASK) {
  312. pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
  313. i++;
  314. }
  315. while (k < AR9287_NUM_PDADC_VALUES) {
  316. pPDADCValues[k] = pPDADCValues[k-1];
  317. k++;
  318. }
  319. #undef TMP_VAL_VPD_TABLE
  320. }
  321. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  322. struct ath9k_channel *chan,
  323. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  324. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  325. {
  326. u16 idxL = 0, idxR = 0, numPiers;
  327. bool match;
  328. struct chan_centers centers;
  329. ath9k_hw_get_channel_centers(ah, chan, &centers);
  330. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  331. if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
  332. break;
  333. }
  334. match = ath9k_hw_get_lower_upper_index(
  335. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  336. pCalChans, numPiers, &idxL, &idxR);
  337. if (match) {
  338. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  339. } else {
  340. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  341. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  342. }
  343. }
  344. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  345. int32_t txPower, u16 chain)
  346. {
  347. u32 tmpVal;
  348. u32 a;
  349. /* Enable OLPC for chain 0 */
  350. tmpVal = REG_READ(ah, 0xa270);
  351. tmpVal = tmpVal & 0xFCFFFFFF;
  352. tmpVal = tmpVal | (0x3 << 24);
  353. REG_WRITE(ah, 0xa270, tmpVal);
  354. /* Enable OLPC for chain 1 */
  355. tmpVal = REG_READ(ah, 0xb270);
  356. tmpVal = tmpVal & 0xFCFFFFFF;
  357. tmpVal = tmpVal | (0x3 << 24);
  358. REG_WRITE(ah, 0xb270, tmpVal);
  359. /* Write the OLPC ref power for chain 0 */
  360. if (chain == 0) {
  361. tmpVal = REG_READ(ah, 0xa398);
  362. tmpVal = tmpVal & 0xff00ffff;
  363. a = (txPower)&0xff;
  364. tmpVal = tmpVal | (a << 16);
  365. REG_WRITE(ah, 0xa398, tmpVal);
  366. }
  367. /* Write the OLPC ref power for chain 1 */
  368. if (chain == 1) {
  369. tmpVal = REG_READ(ah, 0xb398);
  370. tmpVal = tmpVal & 0xff00ffff;
  371. a = (txPower)&0xff;
  372. tmpVal = tmpVal | (a << 16);
  373. REG_WRITE(ah, 0xb398, tmpVal);
  374. }
  375. }
  376. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  377. struct ath9k_channel *chan,
  378. int16_t *pTxPowerIndexOffset)
  379. {
  380. struct cal_data_per_freq_ar9287 *pRawDataset;
  381. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  382. u8 *pCalBChans = NULL;
  383. u16 pdGainOverlap_t2;
  384. u8 pdadcValues[AR9287_NUM_PDADC_VALUES];
  385. u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
  386. u16 numPiers = 0, i, j;
  387. int16_t tMinCalPower;
  388. u16 numXpdGain, xpdMask;
  389. u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
  390. u32 reg32, regOffset, regChainOffset;
  391. int16_t modalIdx, diff = 0;
  392. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  393. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  394. xpdMask = pEepData->modalHeader.xpdGain;
  395. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  396. AR9287_EEP_MINOR_VER_2)
  397. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  398. else
  399. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  400. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  401. if (IS_CHAN_2GHZ(chan)) {
  402. pCalBChans = pEepData->calFreqPier2G;
  403. numPiers = AR9287_NUM_2G_CAL_PIERS;
  404. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  405. pRawDatasetOpenLoop =
  406. (struct cal_data_op_loop_ar9287 *)
  407. pEepData->calPierData2G[0];
  408. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  409. }
  410. }
  411. numXpdGain = 0;
  412. for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
  413. if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
  414. if (numXpdGain >= AR9287_NUM_PD_GAINS)
  415. break;
  416. xpdGainValues[numXpdGain] =
  417. (u16)(AR9287_PD_GAINS_IN_MASK-i);
  418. numXpdGain++;
  419. }
  420. }
  421. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  422. (numXpdGain - 1) & 0x3);
  423. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  424. xpdGainValues[0]);
  425. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  426. xpdGainValues[1]);
  427. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  428. xpdGainValues[2]);
  429. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  430. regChainOffset = i * 0x1000;
  431. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  432. pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)
  433. pEepData->calPierData2G[i];
  434. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  435. int8_t txPower;
  436. ar9287_eeprom_get_tx_gain_index(ah, chan,
  437. pRawDatasetOpenLoop,
  438. pCalBChans, numPiers,
  439. &txPower);
  440. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  441. } else {
  442. pRawDataset =
  443. (struct cal_data_per_freq_ar9287 *)
  444. pEepData->calPierData2G[i];
  445. ath9k_hw_get_ar9287_gain_boundaries_pdadcs(
  446. ah, chan, pRawDataset,
  447. pCalBChans, numPiers,
  448. pdGainOverlap_t2,
  449. &tMinCalPower, gainBoundaries,
  450. pdadcValues, numXpdGain);
  451. }
  452. if (i == 0) {
  453. if (!ath9k_hw_ar9287_get_eeprom(
  454. ah, EEP_OL_PWRCTRL)) {
  455. REG_WRITE(ah, AR_PHY_TPCRG5 +
  456. regChainOffset,
  457. SM(pdGainOverlap_t2,
  458. AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
  459. SM(gainBoundaries[0],
  460. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  461. | SM(gainBoundaries[1],
  462. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  463. | SM(gainBoundaries[2],
  464. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  465. | SM(gainBoundaries[3],
  466. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  467. }
  468. }
  469. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  470. pEepData->baseEepHeader.pwrTableOffset) {
  471. diff = (u16)
  472. (pEepData->baseEepHeader.pwrTableOffset
  473. - (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  474. diff *= 2;
  475. for (j = 0;
  476. j < ((u16)AR9287_NUM_PDADC_VALUES-diff);
  477. j++)
  478. pdadcValues[j] = pdadcValues[j+diff];
  479. for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
  480. j < AR9287_NUM_PDADC_VALUES; j++)
  481. pdadcValues[j] =
  482. pdadcValues[
  483. AR9287_NUM_PDADC_VALUES-diff];
  484. }
  485. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  486. regOffset = AR_PHY_BASE + (672 << 2) +
  487. regChainOffset;
  488. for (j = 0; j < 32; j++) {
  489. reg32 = ((pdadcValues[4*j + 0]
  490. & 0xFF) << 0) |
  491. ((pdadcValues[4*j + 1]
  492. & 0xFF) << 8) |
  493. ((pdadcValues[4*j + 2]
  494. & 0xFF) << 16) |
  495. ((pdadcValues[4*j + 3]
  496. & 0xFF) << 24) ;
  497. REG_WRITE(ah, regOffset, reg32);
  498. regOffset += 4;
  499. }
  500. }
  501. }
  502. }
  503. *pTxPowerIndexOffset = 0;
  504. }
  505. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  506. struct ath9k_channel *chan,
  507. int16_t *ratesArray,
  508. u16 cfgCtl,
  509. u16 AntennaReduction,
  510. u16 twiceMaxRegulatoryPower,
  511. u16 powerLimit)
  512. {
  513. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
  514. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
  515. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  516. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  517. static const u16 tpScaleReductionTable[5] =
  518. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  519. int i;
  520. int16_t twiceLargestAntenna;
  521. struct cal_ctl_data_ar9287 *rep;
  522. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  523. targetPowerCck = {0, {0, 0, 0, 0} };
  524. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  525. targetPowerCckExt = {0, {0, 0, 0, 0} };
  526. struct cal_target_power_ht targetPowerHt20,
  527. targetPowerHt40 = {0, {0, 0, 0, 0} };
  528. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  529. u16 ctlModesFor11g[] =
  530. {CTL_11B, CTL_11G, CTL_2GHT20,
  531. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
  532. u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
  533. struct chan_centers centers;
  534. int tx_chainmask;
  535. u16 twiceMinEdgePower;
  536. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  537. tx_chainmask = ah->txchainmask;
  538. ath9k_hw_get_channel_centers(ah, chan, &centers);
  539. twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
  540. pEepData->modalHeader.antennaGainCh[1]);
  541. twiceLargestAntenna = (int16_t)min((AntennaReduction) -
  542. twiceLargestAntenna, 0);
  543. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  544. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
  545. maxRegAllowedPower -=
  546. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  547. scaledPower = min(powerLimit, maxRegAllowedPower);
  548. switch (ar5416_get_ntxchains(tx_chainmask)) {
  549. case 1:
  550. break;
  551. case 2:
  552. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  553. break;
  554. case 3:
  555. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  556. break;
  557. }
  558. scaledPower = max((u16)0, scaledPower);
  559. if (IS_CHAN_2GHZ(chan)) {
  560. numCtlModes =
  561. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  562. pCtlMode = ctlModesFor11g;
  563. ath9k_hw_get_legacy_target_powers(ah, chan,
  564. pEepData->calTargetPowerCck,
  565. AR9287_NUM_2G_CCK_TARGET_POWERS,
  566. &targetPowerCck, 4, false);
  567. ath9k_hw_get_legacy_target_powers(ah, chan,
  568. pEepData->calTargetPower2G,
  569. AR9287_NUM_2G_20_TARGET_POWERS,
  570. &targetPowerOfdm, 4, false);
  571. ath9k_hw_get_target_powers(ah, chan,
  572. pEepData->calTargetPower2GHT20,
  573. AR9287_NUM_2G_20_TARGET_POWERS,
  574. &targetPowerHt20, 8, false);
  575. if (IS_CHAN_HT40(chan)) {
  576. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  577. ath9k_hw_get_target_powers(ah, chan,
  578. pEepData->calTargetPower2GHT40,
  579. AR9287_NUM_2G_40_TARGET_POWERS,
  580. &targetPowerHt40, 8, true);
  581. ath9k_hw_get_legacy_target_powers(ah, chan,
  582. pEepData->calTargetPowerCck,
  583. AR9287_NUM_2G_CCK_TARGET_POWERS,
  584. &targetPowerCckExt, 4, true);
  585. ath9k_hw_get_legacy_target_powers(ah, chan,
  586. pEepData->calTargetPower2G,
  587. AR9287_NUM_2G_20_TARGET_POWERS,
  588. &targetPowerOfdmExt, 4, true);
  589. }
  590. }
  591. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  592. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  593. (pCtlMode[ctlMode] == CTL_2GHT40);
  594. if (isHt40CtlMode)
  595. freq = centers.synth_center;
  596. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  597. freq = centers.ext_center;
  598. else
  599. freq = centers.ctl_center;
  600. if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
  601. ah->eep_ops->get_eeprom_rev(ah) <= 2)
  602. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  603. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  604. if ((((cfgCtl & ~CTL_MODE_M) |
  605. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  606. pEepData->ctlIndex[i]) ||
  607. (((cfgCtl & ~CTL_MODE_M) |
  608. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  609. ((pEepData->ctlIndex[i] &
  610. CTL_MODE_M) | SD_NO_CTL))) {
  611. rep = &(pEepData->ctlData[i]);
  612. twiceMinEdgePower = ath9k_hw_get_max_edge_power(
  613. freq,
  614. rep->ctlEdges[ar5416_get_ntxchains(
  615. tx_chainmask) - 1],
  616. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  617. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
  618. twiceMaxEdgePower = min(
  619. twiceMaxEdgePower,
  620. twiceMinEdgePower);
  621. else {
  622. twiceMaxEdgePower = twiceMinEdgePower;
  623. break;
  624. }
  625. }
  626. }
  627. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  628. switch (pCtlMode[ctlMode]) {
  629. case CTL_11B:
  630. for (i = 0;
  631. i < ARRAY_SIZE(targetPowerCck.tPow2x);
  632. i++) {
  633. targetPowerCck.tPow2x[i] = (u8)min(
  634. (u16)targetPowerCck.tPow2x[i],
  635. minCtlPower);
  636. }
  637. break;
  638. case CTL_11A:
  639. case CTL_11G:
  640. for (i = 0;
  641. i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  642. i++) {
  643. targetPowerOfdm.tPow2x[i] = (u8)min(
  644. (u16)targetPowerOfdm.tPow2x[i],
  645. minCtlPower);
  646. }
  647. break;
  648. case CTL_5GHT20:
  649. case CTL_2GHT20:
  650. for (i = 0;
  651. i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  652. i++) {
  653. targetPowerHt20.tPow2x[i] = (u8)min(
  654. (u16)targetPowerHt20.tPow2x[i],
  655. minCtlPower);
  656. }
  657. break;
  658. case CTL_11B_EXT:
  659. targetPowerCckExt.tPow2x[0] = (u8)min(
  660. (u16)targetPowerCckExt.tPow2x[0],
  661. minCtlPower);
  662. break;
  663. case CTL_11A_EXT:
  664. case CTL_11G_EXT:
  665. targetPowerOfdmExt.tPow2x[0] = (u8)min(
  666. (u16)targetPowerOfdmExt.tPow2x[0],
  667. minCtlPower);
  668. break;
  669. case CTL_5GHT40:
  670. case CTL_2GHT40:
  671. for (i = 0;
  672. i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  673. i++) {
  674. targetPowerHt40.tPow2x[i] = (u8)min(
  675. (u16)targetPowerHt40.tPow2x[i],
  676. minCtlPower);
  677. }
  678. break;
  679. default:
  680. break;
  681. }
  682. }
  683. ratesArray[rate6mb] =
  684. ratesArray[rate9mb] =
  685. ratesArray[rate12mb] =
  686. ratesArray[rate18mb] =
  687. ratesArray[rate24mb] =
  688. targetPowerOfdm.tPow2x[0];
  689. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  690. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  691. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  692. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  693. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  694. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  695. if (IS_CHAN_2GHZ(chan)) {
  696. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  697. ratesArray[rate2s] = ratesArray[rate2l] =
  698. targetPowerCck.tPow2x[1];
  699. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  700. targetPowerCck.tPow2x[2];
  701. ratesArray[rate11s] = ratesArray[rate11l] =
  702. targetPowerCck.tPow2x[3];
  703. }
  704. if (IS_CHAN_HT40(chan)) {
  705. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  706. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  707. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  708. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  709. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  710. if (IS_CHAN_2GHZ(chan))
  711. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  712. }
  713. #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  714. #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
  715. }
  716. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  717. struct ath9k_channel *chan, u16 cfgCtl,
  718. u8 twiceAntennaReduction,
  719. u8 twiceMaxRegulatoryPower,
  720. u8 powerLimit)
  721. {
  722. #define INCREASE_MAXPOW_BY_TWO_CHAIN 6
  723. #define INCREASE_MAXPOW_BY_THREE_CHAIN 10
  724. struct ath_common *common = ath9k_hw_common(ah);
  725. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  726. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  727. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  728. int16_t ratesArray[Ar5416RateSize];
  729. int16_t txPowerIndexOffset = 0;
  730. u8 ht40PowerIncForPdadc = 2;
  731. int i;
  732. memset(ratesArray, 0, sizeof(ratesArray));
  733. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  734. AR9287_EEP_MINOR_VER_2)
  735. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  736. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  737. &ratesArray[0], cfgCtl,
  738. twiceAntennaReduction,
  739. twiceMaxRegulatoryPower,
  740. powerLimit);
  741. ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
  742. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  743. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  744. if (ratesArray[i] > AR9287_MAX_RATE_POWER)
  745. ratesArray[i] = AR9287_MAX_RATE_POWER;
  746. }
  747. if (AR_SREV_9280_10_OR_LATER(ah)) {
  748. for (i = 0; i < Ar5416RateSize; i++)
  749. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  750. }
  751. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  752. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  753. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  754. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  755. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  756. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  757. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  758. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  759. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  760. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  761. if (IS_CHAN_2GHZ(chan)) {
  762. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  763. ATH9K_POW_SM(ratesArray[rate2s], 24)
  764. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  765. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  766. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  767. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  768. ATH9K_POW_SM(ratesArray[rate11s], 24)
  769. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  770. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  771. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  772. }
  773. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  774. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  775. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  776. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  777. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  778. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  779. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  780. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  781. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  782. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  783. if (IS_CHAN_HT40(chan)) {
  784. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  785. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  786. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  787. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  788. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  789. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  790. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  791. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  792. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  793. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  794. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  795. } else {
  796. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  797. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  798. ht40PowerIncForPdadc, 24)
  799. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  800. ht40PowerIncForPdadc, 16)
  801. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  802. ht40PowerIncForPdadc, 8)
  803. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  804. ht40PowerIncForPdadc, 0));
  805. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  806. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  807. ht40PowerIncForPdadc, 24)
  808. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  809. ht40PowerIncForPdadc, 16)
  810. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  811. ht40PowerIncForPdadc, 8)
  812. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  813. ht40PowerIncForPdadc, 0));
  814. }
  815. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  816. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  817. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  818. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  819. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  820. }
  821. if (IS_CHAN_2GHZ(chan))
  822. i = rate1l;
  823. else
  824. i = rate6mb;
  825. if (AR_SREV_9280_10_OR_LATER(ah))
  826. regulatory->max_power_level =
  827. ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
  828. else
  829. regulatory->max_power_level = ratesArray[i];
  830. switch (ar5416_get_ntxchains(ah->txchainmask)) {
  831. case 1:
  832. break;
  833. case 2:
  834. regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
  835. break;
  836. case 3:
  837. regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
  838. break;
  839. default:
  840. ath_print(common, ATH_DBG_EEPROM,
  841. "Invalid chainmask configuration\n");
  842. break;
  843. }
  844. }
  845. static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
  846. struct ath9k_channel *chan)
  847. {
  848. }
  849. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  850. struct ath9k_channel *chan)
  851. {
  852. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  853. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  854. u16 antWrites[AR9287_ANT_16S];
  855. u32 regChainOffset, regval;
  856. u8 txRxAttenLocal;
  857. int i, j, offset_num;
  858. pModal = &eep->modalHeader;
  859. antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
  860. antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
  861. antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
  862. antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
  863. antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
  864. antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
  865. antWrites[6] = (u16)((pModal->antCtrlCommon >> 4) & 0xF);
  866. antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);
  867. offset_num = 8;
  868. for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
  869. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
  870. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
  871. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
  872. antWrites[j++] = 0;
  873. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
  874. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
  875. antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
  876. antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
  877. }
  878. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  879. ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
  880. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  881. regChainOffset = i * 0x1000;
  882. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  883. pModal->antCtrlChain[i]);
  884. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  885. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  886. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  887. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  888. SM(pModal->iqCalICh[i],
  889. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  890. SM(pModal->iqCalQCh[i],
  891. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  892. txRxAttenLocal = pModal->txRxAttenCh[i];
  893. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  894. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  895. pModal->bswMargin[i]);
  896. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  897. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  898. pModal->bswAtten[i]);
  899. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  900. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  901. txRxAttenLocal);
  902. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  903. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  904. pModal->rxTxMarginCh[i]);
  905. }
  906. if (IS_CHAN_HT40(chan))
  907. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  908. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  909. else
  910. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  911. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  912. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  913. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  914. REG_WRITE(ah, AR_PHY_RF_CTL4,
  915. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  916. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  917. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  918. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  919. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  920. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  921. REG_RMW_FIELD(ah, AR_PHY_CCA,
  922. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  923. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  924. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  925. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  926. regval &= ~(AR9287_AN_RF2G3_DB1 |
  927. AR9287_AN_RF2G3_DB2 |
  928. AR9287_AN_RF2G3_OB_CCK |
  929. AR9287_AN_RF2G3_OB_PSK |
  930. AR9287_AN_RF2G3_OB_QAM |
  931. AR9287_AN_RF2G3_OB_PAL_OFF);
  932. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  933. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  934. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  935. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  936. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  937. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  938. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  939. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  940. regval &= ~(AR9287_AN_RF2G3_DB1 |
  941. AR9287_AN_RF2G3_DB2 |
  942. AR9287_AN_RF2G3_OB_CCK |
  943. AR9287_AN_RF2G3_OB_PSK |
  944. AR9287_AN_RF2G3_OB_QAM |
  945. AR9287_AN_RF2G3_OB_PAL_OFF);
  946. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  947. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  948. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  949. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  950. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  951. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  952. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  953. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  954. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  955. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  956. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  957. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  958. AR9287_AN_TOP2_XPABIAS_LVL,
  959. AR9287_AN_TOP2_XPABIAS_LVL_S,
  960. pModal->xpaBiasLvl);
  961. }
  962. static u8 ath9k_hw_ar9287_get_num_ant_config(struct ath_hw *ah,
  963. enum ieee80211_band freq_band)
  964. {
  965. return 1;
  966. }
  967. static u16 ath9k_hw_ar9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
  968. struct ath9k_channel *chan)
  969. {
  970. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  971. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  972. return pModal->antCtrlCommon & 0xFFFF;
  973. }
  974. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  975. u16 i, bool is2GHz)
  976. {
  977. #define EEP_MAP9287_SPURCHAN \
  978. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  979. struct ath_common *common = ath9k_hw_common(ah);
  980. u16 spur_val = AR_NO_SPUR;
  981. ath_print(common, ATH_DBG_ANI,
  982. "Getting spur idx %d is2Ghz. %d val %x\n",
  983. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  984. switch (ah->config.spurmode) {
  985. case SPUR_DISABLE:
  986. break;
  987. case SPUR_ENABLE_IOCTL:
  988. spur_val = ah->config.spurchans[i][is2GHz];
  989. ath_print(common, ATH_DBG_ANI,
  990. "Getting spur val from new loc. %d\n", spur_val);
  991. break;
  992. case SPUR_ENABLE_EEPROM:
  993. spur_val = EEP_MAP9287_SPURCHAN;
  994. break;
  995. }
  996. return spur_val;
  997. #undef EEP_MAP9287_SPURCHAN
  998. }
  999. const struct eeprom_ops eep_ar9287_ops = {
  1000. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  1001. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  1002. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  1003. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  1004. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  1005. .get_num_ant_config = ath9k_hw_ar9287_get_num_ant_config,
  1006. .get_eeprom_antenna_cfg = ath9k_hw_ar9287_get_eeprom_antenna_cfg,
  1007. .set_board_values = ath9k_hw_ar9287_set_board_values,
  1008. .set_addac = ath9k_hw_ar9287_set_addac,
  1009. .set_txpower = ath9k_hw_ar9287_set_txpower,
  1010. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  1011. };