forcedeth.c 190 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.62"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000400 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000800 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x81ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  116. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  117. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  118. NvRegUnknownSetupReg6 = 0x008,
  119. #define NVREG_UNKSETUP6_VAL 3
  120. /*
  121. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  122. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  123. */
  124. NvRegPollingInterval = 0x00c,
  125. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  126. #define NVREG_POLL_DEFAULT_CPU 13
  127. NvRegMSIMap0 = 0x020,
  128. NvRegMSIMap1 = 0x024,
  129. NvRegMSIIrqMask = 0x030,
  130. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  131. NvRegMisc1 = 0x080,
  132. #define NVREG_MISC1_PAUSE_TX 0x01
  133. #define NVREG_MISC1_HD 0x02
  134. #define NVREG_MISC1_FORCE 0x3b0f3c
  135. NvRegMacReset = 0x34,
  136. #define NVREG_MAC_RESET_ASSERT 0x0F3
  137. NvRegTransmitterControl = 0x084,
  138. #define NVREG_XMITCTL_START 0x01
  139. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  140. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  141. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  142. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  143. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  144. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  145. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  146. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  147. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  148. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  149. NvRegTransmitterStatus = 0x088,
  150. #define NVREG_XMITSTAT_BUSY 0x01
  151. NvRegPacketFilterFlags = 0x8c,
  152. #define NVREG_PFF_PAUSE_RX 0x08
  153. #define NVREG_PFF_ALWAYS 0x7F0000
  154. #define NVREG_PFF_PROMISC 0x80
  155. #define NVREG_PFF_MYADDR 0x20
  156. #define NVREG_PFF_LOOPBACK 0x10
  157. NvRegOffloadConfig = 0x90,
  158. #define NVREG_OFFLOAD_HOMEPHY 0x601
  159. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  160. NvRegReceiverControl = 0x094,
  161. #define NVREG_RCVCTL_START 0x01
  162. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  163. NvRegReceiverStatus = 0x98,
  164. #define NVREG_RCVSTAT_BUSY 0x01
  165. NvRegSlotTime = 0x9c,
  166. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  167. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  168. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  169. #define NVREG_SLOTTIME_HALF 0x0000ff00
  170. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  171. #define NVREG_SLOTTIME_MASK 0x000000ff
  172. NvRegTxDeferral = 0xA0,
  173. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  174. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  175. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  176. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  177. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  178. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  179. NvRegRxDeferral = 0xA4,
  180. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  181. NvRegMacAddrA = 0xA8,
  182. NvRegMacAddrB = 0xAC,
  183. NvRegMulticastAddrA = 0xB0,
  184. #define NVREG_MCASTADDRA_FORCE 0x01
  185. NvRegMulticastAddrB = 0xB4,
  186. NvRegMulticastMaskA = 0xB8,
  187. #define NVREG_MCASTMASKA_NONE 0xffffffff
  188. NvRegMulticastMaskB = 0xBC,
  189. #define NVREG_MCASTMASKB_NONE 0xffff
  190. NvRegPhyInterface = 0xC0,
  191. #define PHY_RGMII 0x10000000
  192. NvRegBackOffControl = 0xC4,
  193. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  194. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  195. #define NVREG_BKOFFCTRL_SELECT 24
  196. #define NVREG_BKOFFCTRL_GEAR 12
  197. NvRegTxRingPhysAddr = 0x100,
  198. NvRegRxRingPhysAddr = 0x104,
  199. NvRegRingSizes = 0x108,
  200. #define NVREG_RINGSZ_TXSHIFT 0
  201. #define NVREG_RINGSZ_RXSHIFT 16
  202. NvRegTransmitPoll = 0x10c,
  203. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  204. NvRegLinkSpeed = 0x110,
  205. #define NVREG_LINKSPEED_FORCE 0x10000
  206. #define NVREG_LINKSPEED_10 1000
  207. #define NVREG_LINKSPEED_100 100
  208. #define NVREG_LINKSPEED_1000 50
  209. #define NVREG_LINKSPEED_MASK (0xFFF)
  210. NvRegUnknownSetupReg5 = 0x130,
  211. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  212. NvRegTxWatermark = 0x13c,
  213. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  214. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  215. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  216. NvRegTxRxControl = 0x144,
  217. #define NVREG_TXRXCTL_KICK 0x0001
  218. #define NVREG_TXRXCTL_BIT1 0x0002
  219. #define NVREG_TXRXCTL_BIT2 0x0004
  220. #define NVREG_TXRXCTL_IDLE 0x0008
  221. #define NVREG_TXRXCTL_RESET 0x0010
  222. #define NVREG_TXRXCTL_RXCHECK 0x0400
  223. #define NVREG_TXRXCTL_DESC_1 0
  224. #define NVREG_TXRXCTL_DESC_2 0x002100
  225. #define NVREG_TXRXCTL_DESC_3 0xc02200
  226. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  227. #define NVREG_TXRXCTL_VLANINS 0x00080
  228. NvRegTxRingPhysAddrHigh = 0x148,
  229. NvRegRxRingPhysAddrHigh = 0x14C,
  230. NvRegTxPauseFrame = 0x170,
  231. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  232. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  233. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  234. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  235. NvRegTxPauseFrameLimit = 0x174,
  236. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  237. NvRegMIIStatus = 0x180,
  238. #define NVREG_MIISTAT_ERROR 0x0001
  239. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  240. #define NVREG_MIISTAT_MASK_RW 0x0007
  241. #define NVREG_MIISTAT_MASK_ALL 0x000f
  242. NvRegMIIMask = 0x184,
  243. #define NVREG_MII_LINKCHANGE 0x0008
  244. NvRegAdapterControl = 0x188,
  245. #define NVREG_ADAPTCTL_START 0x02
  246. #define NVREG_ADAPTCTL_LINKUP 0x04
  247. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  248. #define NVREG_ADAPTCTL_RUNNING 0x100000
  249. #define NVREG_ADAPTCTL_PHYSHIFT 24
  250. NvRegMIISpeed = 0x18c,
  251. #define NVREG_MIISPEED_BIT8 (1<<8)
  252. #define NVREG_MIIDELAY 5
  253. NvRegMIIControl = 0x190,
  254. #define NVREG_MIICTL_INUSE 0x08000
  255. #define NVREG_MIICTL_WRITE 0x00400
  256. #define NVREG_MIICTL_ADDRSHIFT 5
  257. NvRegMIIData = 0x194,
  258. NvRegTxUnicast = 0x1a0,
  259. NvRegTxMulticast = 0x1a4,
  260. NvRegTxBroadcast = 0x1a8,
  261. NvRegWakeUpFlags = 0x200,
  262. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  263. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  264. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  265. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  266. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  267. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  268. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  269. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  270. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  271. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  272. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  273. NvRegPatternCRC = 0x204,
  274. NvRegPatternMask = 0x208,
  275. NvRegPowerCap = 0x268,
  276. #define NVREG_POWERCAP_D3SUPP (1<<30)
  277. #define NVREG_POWERCAP_D2SUPP (1<<26)
  278. #define NVREG_POWERCAP_D1SUPP (1<<25)
  279. NvRegPowerState = 0x26c,
  280. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  281. #define NVREG_POWERSTATE_VALID 0x0100
  282. #define NVREG_POWERSTATE_MASK 0x0003
  283. #define NVREG_POWERSTATE_D0 0x0000
  284. #define NVREG_POWERSTATE_D1 0x0001
  285. #define NVREG_POWERSTATE_D2 0x0002
  286. #define NVREG_POWERSTATE_D3 0x0003
  287. NvRegTxCnt = 0x280,
  288. NvRegTxZeroReXmt = 0x284,
  289. NvRegTxOneReXmt = 0x288,
  290. NvRegTxManyReXmt = 0x28c,
  291. NvRegTxLateCol = 0x290,
  292. NvRegTxUnderflow = 0x294,
  293. NvRegTxLossCarrier = 0x298,
  294. NvRegTxExcessDef = 0x29c,
  295. NvRegTxRetryErr = 0x2a0,
  296. NvRegRxFrameErr = 0x2a4,
  297. NvRegRxExtraByte = 0x2a8,
  298. NvRegRxLateCol = 0x2ac,
  299. NvRegRxRunt = 0x2b0,
  300. NvRegRxFrameTooLong = 0x2b4,
  301. NvRegRxOverflow = 0x2b8,
  302. NvRegRxFCSErr = 0x2bc,
  303. NvRegRxFrameAlignErr = 0x2c0,
  304. NvRegRxLenErr = 0x2c4,
  305. NvRegRxUnicast = 0x2c8,
  306. NvRegRxMulticast = 0x2cc,
  307. NvRegRxBroadcast = 0x2d0,
  308. NvRegTxDef = 0x2d4,
  309. NvRegTxFrame = 0x2d8,
  310. NvRegRxCnt = 0x2dc,
  311. NvRegTxPause = 0x2e0,
  312. NvRegRxPause = 0x2e4,
  313. NvRegRxDropFrame = 0x2e8,
  314. NvRegVlanControl = 0x300,
  315. #define NVREG_VLANCONTROL_ENABLE 0x2000
  316. NvRegMSIXMap0 = 0x3e0,
  317. NvRegMSIXMap1 = 0x3e4,
  318. NvRegMSIXIrqStatus = 0x3f0,
  319. NvRegPowerState2 = 0x600,
  320. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  321. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  322. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  323. };
  324. /* Big endian: should work, but is untested */
  325. struct ring_desc {
  326. __le32 buf;
  327. __le32 flaglen;
  328. };
  329. struct ring_desc_ex {
  330. __le32 bufhigh;
  331. __le32 buflow;
  332. __le32 txvlan;
  333. __le32 flaglen;
  334. };
  335. union ring_type {
  336. struct ring_desc* orig;
  337. struct ring_desc_ex* ex;
  338. };
  339. #define FLAG_MASK_V1 0xffff0000
  340. #define FLAG_MASK_V2 0xffffc000
  341. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  342. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  343. #define NV_TX_LASTPACKET (1<<16)
  344. #define NV_TX_RETRYERROR (1<<19)
  345. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  346. #define NV_TX_FORCED_INTERRUPT (1<<24)
  347. #define NV_TX_DEFERRED (1<<26)
  348. #define NV_TX_CARRIERLOST (1<<27)
  349. #define NV_TX_LATECOLLISION (1<<28)
  350. #define NV_TX_UNDERFLOW (1<<29)
  351. #define NV_TX_ERROR (1<<30)
  352. #define NV_TX_VALID (1<<31)
  353. #define NV_TX2_LASTPACKET (1<<29)
  354. #define NV_TX2_RETRYERROR (1<<18)
  355. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  356. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  357. #define NV_TX2_DEFERRED (1<<25)
  358. #define NV_TX2_CARRIERLOST (1<<26)
  359. #define NV_TX2_LATECOLLISION (1<<27)
  360. #define NV_TX2_UNDERFLOW (1<<28)
  361. /* error and valid are the same for both */
  362. #define NV_TX2_ERROR (1<<30)
  363. #define NV_TX2_VALID (1<<31)
  364. #define NV_TX2_TSO (1<<28)
  365. #define NV_TX2_TSO_SHIFT 14
  366. #define NV_TX2_TSO_MAX_SHIFT 14
  367. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  368. #define NV_TX2_CHECKSUM_L3 (1<<27)
  369. #define NV_TX2_CHECKSUM_L4 (1<<26)
  370. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  371. #define NV_RX_DESCRIPTORVALID (1<<16)
  372. #define NV_RX_MISSEDFRAME (1<<17)
  373. #define NV_RX_SUBSTRACT1 (1<<18)
  374. #define NV_RX_ERROR1 (1<<23)
  375. #define NV_RX_ERROR2 (1<<24)
  376. #define NV_RX_ERROR3 (1<<25)
  377. #define NV_RX_ERROR4 (1<<26)
  378. #define NV_RX_CRCERR (1<<27)
  379. #define NV_RX_OVERFLOW (1<<28)
  380. #define NV_RX_FRAMINGERR (1<<29)
  381. #define NV_RX_ERROR (1<<30)
  382. #define NV_RX_AVAIL (1<<31)
  383. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  384. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  385. #define NV_RX2_CHECKSUM_IP (0x10000000)
  386. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  387. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  388. #define NV_RX2_DESCRIPTORVALID (1<<29)
  389. #define NV_RX2_SUBSTRACT1 (1<<25)
  390. #define NV_RX2_ERROR1 (1<<18)
  391. #define NV_RX2_ERROR2 (1<<19)
  392. #define NV_RX2_ERROR3 (1<<20)
  393. #define NV_RX2_ERROR4 (1<<21)
  394. #define NV_RX2_CRCERR (1<<22)
  395. #define NV_RX2_OVERFLOW (1<<23)
  396. #define NV_RX2_FRAMINGERR (1<<24)
  397. /* error and avail are the same for both */
  398. #define NV_RX2_ERROR (1<<30)
  399. #define NV_RX2_AVAIL (1<<31)
  400. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  401. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  402. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  403. /* Miscelaneous hardware related defines: */
  404. #define NV_PCI_REGSZ_VER1 0x270
  405. #define NV_PCI_REGSZ_VER2 0x2d4
  406. #define NV_PCI_REGSZ_VER3 0x604
  407. #define NV_PCI_REGSZ_MAX 0x604
  408. /* various timeout delays: all in usec */
  409. #define NV_TXRX_RESET_DELAY 4
  410. #define NV_TXSTOP_DELAY1 10
  411. #define NV_TXSTOP_DELAY1MAX 500000
  412. #define NV_TXSTOP_DELAY2 100
  413. #define NV_RXSTOP_DELAY1 10
  414. #define NV_RXSTOP_DELAY1MAX 500000
  415. #define NV_RXSTOP_DELAY2 100
  416. #define NV_SETUP5_DELAY 5
  417. #define NV_SETUP5_DELAYMAX 50000
  418. #define NV_POWERUP_DELAY 5
  419. #define NV_POWERUP_DELAYMAX 5000
  420. #define NV_MIIBUSY_DELAY 50
  421. #define NV_MIIPHY_DELAY 10
  422. #define NV_MIIPHY_DELAYMAX 10000
  423. #define NV_MAC_RESET_DELAY 64
  424. #define NV_WAKEUPPATTERNS 5
  425. #define NV_WAKEUPMASKENTRIES 4
  426. /* General driver defaults */
  427. #define NV_WATCHDOG_TIMEO (5*HZ)
  428. #define RX_RING_DEFAULT 128
  429. #define TX_RING_DEFAULT 256
  430. #define RX_RING_MIN 128
  431. #define TX_RING_MIN 64
  432. #define RING_MAX_DESC_VER_1 1024
  433. #define RING_MAX_DESC_VER_2_3 16384
  434. /* rx/tx mac addr + type + vlan + align + slack*/
  435. #define NV_RX_HEADERS (64)
  436. /* even more slack. */
  437. #define NV_RX_ALLOC_PAD (64)
  438. /* maximum mtu size */
  439. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  440. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  441. #define OOM_REFILL (1+HZ/20)
  442. #define POLL_WAIT (1+HZ/100)
  443. #define LINK_TIMEOUT (3*HZ)
  444. #define STATS_INTERVAL (10*HZ)
  445. /*
  446. * desc_ver values:
  447. * The nic supports three different descriptor types:
  448. * - DESC_VER_1: Original
  449. * - DESC_VER_2: support for jumbo frames.
  450. * - DESC_VER_3: 64-bit format.
  451. */
  452. #define DESC_VER_1 1
  453. #define DESC_VER_2 2
  454. #define DESC_VER_3 3
  455. /* PHY defines */
  456. #define PHY_OUI_MARVELL 0x5043
  457. #define PHY_OUI_CICADA 0x03f1
  458. #define PHY_OUI_VITESSE 0x01c1
  459. #define PHY_OUI_REALTEK 0x0732
  460. #define PHY_OUI_REALTEK2 0x0020
  461. #define PHYID1_OUI_MASK 0x03ff
  462. #define PHYID1_OUI_SHFT 6
  463. #define PHYID2_OUI_MASK 0xfc00
  464. #define PHYID2_OUI_SHFT 10
  465. #define PHYID2_MODEL_MASK 0x03f0
  466. #define PHY_MODEL_REALTEK_8211 0x0110
  467. #define PHY_REV_MASK 0x0001
  468. #define PHY_REV_REALTEK_8211B 0x0000
  469. #define PHY_REV_REALTEK_8211C 0x0001
  470. #define PHY_MODEL_REALTEK_8201 0x0200
  471. #define PHY_MODEL_MARVELL_E3016 0x0220
  472. #define PHY_MARVELL_E3016_INITMASK 0x0300
  473. #define PHY_CICADA_INIT1 0x0f000
  474. #define PHY_CICADA_INIT2 0x0e00
  475. #define PHY_CICADA_INIT3 0x01000
  476. #define PHY_CICADA_INIT4 0x0200
  477. #define PHY_CICADA_INIT5 0x0004
  478. #define PHY_CICADA_INIT6 0x02000
  479. #define PHY_VITESSE_INIT_REG1 0x1f
  480. #define PHY_VITESSE_INIT_REG2 0x10
  481. #define PHY_VITESSE_INIT_REG3 0x11
  482. #define PHY_VITESSE_INIT_REG4 0x12
  483. #define PHY_VITESSE_INIT_MSK1 0xc
  484. #define PHY_VITESSE_INIT_MSK2 0x0180
  485. #define PHY_VITESSE_INIT1 0x52b5
  486. #define PHY_VITESSE_INIT2 0xaf8a
  487. #define PHY_VITESSE_INIT3 0x8
  488. #define PHY_VITESSE_INIT4 0x8f8a
  489. #define PHY_VITESSE_INIT5 0xaf86
  490. #define PHY_VITESSE_INIT6 0x8f86
  491. #define PHY_VITESSE_INIT7 0xaf82
  492. #define PHY_VITESSE_INIT8 0x0100
  493. #define PHY_VITESSE_INIT9 0x8f82
  494. #define PHY_VITESSE_INIT10 0x0
  495. #define PHY_REALTEK_INIT_REG1 0x1f
  496. #define PHY_REALTEK_INIT_REG2 0x19
  497. #define PHY_REALTEK_INIT_REG3 0x13
  498. #define PHY_REALTEK_INIT_REG4 0x14
  499. #define PHY_REALTEK_INIT_REG5 0x18
  500. #define PHY_REALTEK_INIT_REG6 0x11
  501. #define PHY_REALTEK_INIT_REG7 0x01
  502. #define PHY_REALTEK_INIT1 0x0000
  503. #define PHY_REALTEK_INIT2 0x8e00
  504. #define PHY_REALTEK_INIT3 0x0001
  505. #define PHY_REALTEK_INIT4 0xad17
  506. #define PHY_REALTEK_INIT5 0xfb54
  507. #define PHY_REALTEK_INIT6 0xf5c7
  508. #define PHY_REALTEK_INIT7 0x1000
  509. #define PHY_REALTEK_INIT8 0x0003
  510. #define PHY_REALTEK_INIT9 0x0008
  511. #define PHY_REALTEK_INIT10 0x0005
  512. #define PHY_REALTEK_INIT11 0x0200
  513. #define PHY_REALTEK_INIT_MSK1 0x0003
  514. #define PHY_GIGABIT 0x0100
  515. #define PHY_TIMEOUT 0x1
  516. #define PHY_ERROR 0x2
  517. #define PHY_100 0x1
  518. #define PHY_1000 0x2
  519. #define PHY_HALF 0x100
  520. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  521. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  522. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  523. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  524. #define NV_PAUSEFRAME_RX_REQ 0x0010
  525. #define NV_PAUSEFRAME_TX_REQ 0x0020
  526. #define NV_PAUSEFRAME_AUTONEG 0x0040
  527. /* MSI/MSI-X defines */
  528. #define NV_MSI_X_MAX_VECTORS 8
  529. #define NV_MSI_X_VECTORS_MASK 0x000f
  530. #define NV_MSI_CAPABLE 0x0010
  531. #define NV_MSI_X_CAPABLE 0x0020
  532. #define NV_MSI_ENABLED 0x0040
  533. #define NV_MSI_X_ENABLED 0x0080
  534. #define NV_MSI_X_VECTOR_ALL 0x0
  535. #define NV_MSI_X_VECTOR_RX 0x0
  536. #define NV_MSI_X_VECTOR_TX 0x1
  537. #define NV_MSI_X_VECTOR_OTHER 0x2
  538. #define NV_RESTART_TX 0x1
  539. #define NV_RESTART_RX 0x2
  540. #define NV_TX_LIMIT_COUNT 16
  541. /* statistics */
  542. struct nv_ethtool_str {
  543. char name[ETH_GSTRING_LEN];
  544. };
  545. static const struct nv_ethtool_str nv_estats_str[] = {
  546. { "tx_bytes" },
  547. { "tx_zero_rexmt" },
  548. { "tx_one_rexmt" },
  549. { "tx_many_rexmt" },
  550. { "tx_late_collision" },
  551. { "tx_fifo_errors" },
  552. { "tx_carrier_errors" },
  553. { "tx_excess_deferral" },
  554. { "tx_retry_error" },
  555. { "rx_frame_error" },
  556. { "rx_extra_byte" },
  557. { "rx_late_collision" },
  558. { "rx_runt" },
  559. { "rx_frame_too_long" },
  560. { "rx_over_errors" },
  561. { "rx_crc_errors" },
  562. { "rx_frame_align_error" },
  563. { "rx_length_error" },
  564. { "rx_unicast" },
  565. { "rx_multicast" },
  566. { "rx_broadcast" },
  567. { "rx_packets" },
  568. { "rx_errors_total" },
  569. { "tx_errors_total" },
  570. /* version 2 stats */
  571. { "tx_deferral" },
  572. { "tx_packets" },
  573. { "rx_bytes" },
  574. { "tx_pause" },
  575. { "rx_pause" },
  576. { "rx_drop_frame" },
  577. /* version 3 stats */
  578. { "tx_unicast" },
  579. { "tx_multicast" },
  580. { "tx_broadcast" }
  581. };
  582. struct nv_ethtool_stats {
  583. u64 tx_bytes;
  584. u64 tx_zero_rexmt;
  585. u64 tx_one_rexmt;
  586. u64 tx_many_rexmt;
  587. u64 tx_late_collision;
  588. u64 tx_fifo_errors;
  589. u64 tx_carrier_errors;
  590. u64 tx_excess_deferral;
  591. u64 tx_retry_error;
  592. u64 rx_frame_error;
  593. u64 rx_extra_byte;
  594. u64 rx_late_collision;
  595. u64 rx_runt;
  596. u64 rx_frame_too_long;
  597. u64 rx_over_errors;
  598. u64 rx_crc_errors;
  599. u64 rx_frame_align_error;
  600. u64 rx_length_error;
  601. u64 rx_unicast;
  602. u64 rx_multicast;
  603. u64 rx_broadcast;
  604. u64 rx_packets;
  605. u64 rx_errors_total;
  606. u64 tx_errors_total;
  607. /* version 2 stats */
  608. u64 tx_deferral;
  609. u64 tx_packets;
  610. u64 rx_bytes;
  611. u64 tx_pause;
  612. u64 rx_pause;
  613. u64 rx_drop_frame;
  614. /* version 3 stats */
  615. u64 tx_unicast;
  616. u64 tx_multicast;
  617. u64 tx_broadcast;
  618. };
  619. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  620. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  621. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  622. /* diagnostics */
  623. #define NV_TEST_COUNT_BASE 3
  624. #define NV_TEST_COUNT_EXTENDED 4
  625. static const struct nv_ethtool_str nv_etests_str[] = {
  626. { "link (online/offline)" },
  627. { "register (offline) " },
  628. { "interrupt (offline) " },
  629. { "loopback (offline) " }
  630. };
  631. struct register_test {
  632. __u32 reg;
  633. __u32 mask;
  634. };
  635. static const struct register_test nv_registers_test[] = {
  636. { NvRegUnknownSetupReg6, 0x01 },
  637. { NvRegMisc1, 0x03c },
  638. { NvRegOffloadConfig, 0x03ff },
  639. { NvRegMulticastAddrA, 0xffffffff },
  640. { NvRegTxWatermark, 0x0ff },
  641. { NvRegWakeUpFlags, 0x07777 },
  642. { 0,0 }
  643. };
  644. struct nv_skb_map {
  645. struct sk_buff *skb;
  646. dma_addr_t dma;
  647. unsigned int dma_len;
  648. struct ring_desc_ex *first_tx_desc;
  649. struct nv_skb_map *next_tx_ctx;
  650. };
  651. /*
  652. * SMP locking:
  653. * All hardware access under netdev_priv(dev)->lock, except the performance
  654. * critical parts:
  655. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  656. * by the arch code for interrupts.
  657. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  658. * needs netdev_priv(dev)->lock :-(
  659. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  660. */
  661. /* in dev: base, irq */
  662. struct fe_priv {
  663. spinlock_t lock;
  664. struct net_device *dev;
  665. struct napi_struct napi;
  666. /* General data:
  667. * Locking: spin_lock(&np->lock); */
  668. struct nv_ethtool_stats estats;
  669. int in_shutdown;
  670. u32 linkspeed;
  671. int duplex;
  672. int autoneg;
  673. int fixed_mode;
  674. int phyaddr;
  675. int wolenabled;
  676. unsigned int phy_oui;
  677. unsigned int phy_model;
  678. unsigned int phy_rev;
  679. u16 gigabit;
  680. int intr_test;
  681. int recover_error;
  682. /* General data: RO fields */
  683. dma_addr_t ring_addr;
  684. struct pci_dev *pci_dev;
  685. u32 orig_mac[2];
  686. u32 irqmask;
  687. u32 desc_ver;
  688. u32 txrxctl_bits;
  689. u32 vlanctl_bits;
  690. u32 driver_data;
  691. u32 device_id;
  692. u32 register_size;
  693. int rx_csum;
  694. u32 mac_in_use;
  695. void __iomem *base;
  696. /* rx specific fields.
  697. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  698. */
  699. union ring_type get_rx, put_rx, first_rx, last_rx;
  700. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  701. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  702. struct nv_skb_map *rx_skb;
  703. union ring_type rx_ring;
  704. unsigned int rx_buf_sz;
  705. unsigned int pkt_limit;
  706. struct timer_list oom_kick;
  707. struct timer_list nic_poll;
  708. struct timer_list stats_poll;
  709. u32 nic_poll_irq;
  710. int rx_ring_size;
  711. /* media detection workaround.
  712. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  713. */
  714. int need_linktimer;
  715. unsigned long link_timeout;
  716. /*
  717. * tx specific fields.
  718. */
  719. union ring_type get_tx, put_tx, first_tx, last_tx;
  720. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  721. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  722. struct nv_skb_map *tx_skb;
  723. union ring_type tx_ring;
  724. u32 tx_flags;
  725. int tx_ring_size;
  726. int tx_limit;
  727. u32 tx_pkts_in_progress;
  728. struct nv_skb_map *tx_change_owner;
  729. struct nv_skb_map *tx_end_flip;
  730. int tx_stop;
  731. /* vlan fields */
  732. struct vlan_group *vlangrp;
  733. /* msi/msi-x fields */
  734. u32 msi_flags;
  735. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  736. /* flow control */
  737. u32 pause_flags;
  738. /* power saved state */
  739. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  740. /* for different msi-x irq type */
  741. char name_rx[IFNAMSIZ + 3]; /* -rx */
  742. char name_tx[IFNAMSIZ + 3]; /* -tx */
  743. char name_other[IFNAMSIZ + 6]; /* -other */
  744. };
  745. /*
  746. * Maximum number of loops until we assume that a bit in the irq mask
  747. * is stuck. Overridable with module param.
  748. */
  749. static int max_interrupt_work = 15;
  750. /*
  751. * Optimization can be either throuput mode or cpu mode
  752. *
  753. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  754. * CPU Mode: Interrupts are controlled by a timer.
  755. */
  756. enum {
  757. NV_OPTIMIZATION_MODE_THROUGHPUT,
  758. NV_OPTIMIZATION_MODE_CPU
  759. };
  760. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  761. /*
  762. * Poll interval for timer irq
  763. *
  764. * This interval determines how frequent an interrupt is generated.
  765. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  766. * Min = 0, and Max = 65535
  767. */
  768. static int poll_interval = -1;
  769. /*
  770. * MSI interrupts
  771. */
  772. enum {
  773. NV_MSI_INT_DISABLED,
  774. NV_MSI_INT_ENABLED
  775. };
  776. static int msi = NV_MSI_INT_ENABLED;
  777. /*
  778. * MSIX interrupts
  779. */
  780. enum {
  781. NV_MSIX_INT_DISABLED,
  782. NV_MSIX_INT_ENABLED
  783. };
  784. static int msix = NV_MSIX_INT_DISABLED;
  785. /*
  786. * DMA 64bit
  787. */
  788. enum {
  789. NV_DMA_64BIT_DISABLED,
  790. NV_DMA_64BIT_ENABLED
  791. };
  792. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  793. /*
  794. * Crossover Detection
  795. * Realtek 8201 phy + some OEM boards do not work properly.
  796. */
  797. enum {
  798. NV_CROSSOVER_DETECTION_DISABLED,
  799. NV_CROSSOVER_DETECTION_ENABLED
  800. };
  801. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  802. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  803. {
  804. return netdev_priv(dev);
  805. }
  806. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  807. {
  808. return ((struct fe_priv *)netdev_priv(dev))->base;
  809. }
  810. static inline void pci_push(u8 __iomem *base)
  811. {
  812. /* force out pending posted writes */
  813. readl(base);
  814. }
  815. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  816. {
  817. return le32_to_cpu(prd->flaglen)
  818. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  819. }
  820. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  821. {
  822. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  823. }
  824. static bool nv_optimized(struct fe_priv *np)
  825. {
  826. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  827. return false;
  828. return true;
  829. }
  830. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  831. int delay, int delaymax, const char *msg)
  832. {
  833. u8 __iomem *base = get_hwbase(dev);
  834. pci_push(base);
  835. do {
  836. udelay(delay);
  837. delaymax -= delay;
  838. if (delaymax < 0) {
  839. if (msg)
  840. printk(msg);
  841. return 1;
  842. }
  843. } while ((readl(base + offset) & mask) != target);
  844. return 0;
  845. }
  846. #define NV_SETUP_RX_RING 0x01
  847. #define NV_SETUP_TX_RING 0x02
  848. static inline u32 dma_low(dma_addr_t addr)
  849. {
  850. return addr;
  851. }
  852. static inline u32 dma_high(dma_addr_t addr)
  853. {
  854. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  855. }
  856. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  857. {
  858. struct fe_priv *np = get_nvpriv(dev);
  859. u8 __iomem *base = get_hwbase(dev);
  860. if (!nv_optimized(np)) {
  861. if (rxtx_flags & NV_SETUP_RX_RING) {
  862. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  863. }
  864. if (rxtx_flags & NV_SETUP_TX_RING) {
  865. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  866. }
  867. } else {
  868. if (rxtx_flags & NV_SETUP_RX_RING) {
  869. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  870. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  871. }
  872. if (rxtx_flags & NV_SETUP_TX_RING) {
  873. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  874. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  875. }
  876. }
  877. }
  878. static void free_rings(struct net_device *dev)
  879. {
  880. struct fe_priv *np = get_nvpriv(dev);
  881. if (!nv_optimized(np)) {
  882. if (np->rx_ring.orig)
  883. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  884. np->rx_ring.orig, np->ring_addr);
  885. } else {
  886. if (np->rx_ring.ex)
  887. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  888. np->rx_ring.ex, np->ring_addr);
  889. }
  890. if (np->rx_skb)
  891. kfree(np->rx_skb);
  892. if (np->tx_skb)
  893. kfree(np->tx_skb);
  894. }
  895. static int using_multi_irqs(struct net_device *dev)
  896. {
  897. struct fe_priv *np = get_nvpriv(dev);
  898. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  899. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  900. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  901. return 0;
  902. else
  903. return 1;
  904. }
  905. static void nv_enable_irq(struct net_device *dev)
  906. {
  907. struct fe_priv *np = get_nvpriv(dev);
  908. if (!using_multi_irqs(dev)) {
  909. if (np->msi_flags & NV_MSI_X_ENABLED)
  910. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  911. else
  912. enable_irq(np->pci_dev->irq);
  913. } else {
  914. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  915. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  916. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  917. }
  918. }
  919. static void nv_disable_irq(struct net_device *dev)
  920. {
  921. struct fe_priv *np = get_nvpriv(dev);
  922. if (!using_multi_irqs(dev)) {
  923. if (np->msi_flags & NV_MSI_X_ENABLED)
  924. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  925. else
  926. disable_irq(np->pci_dev->irq);
  927. } else {
  928. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  929. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  930. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  931. }
  932. }
  933. /* In MSIX mode, a write to irqmask behaves as XOR */
  934. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  935. {
  936. u8 __iomem *base = get_hwbase(dev);
  937. writel(mask, base + NvRegIrqMask);
  938. }
  939. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  940. {
  941. struct fe_priv *np = get_nvpriv(dev);
  942. u8 __iomem *base = get_hwbase(dev);
  943. if (np->msi_flags & NV_MSI_X_ENABLED) {
  944. writel(mask, base + NvRegIrqMask);
  945. } else {
  946. if (np->msi_flags & NV_MSI_ENABLED)
  947. writel(0, base + NvRegMSIIrqMask);
  948. writel(0, base + NvRegIrqMask);
  949. }
  950. }
  951. #define MII_READ (-1)
  952. /* mii_rw: read/write a register on the PHY.
  953. *
  954. * Caller must guarantee serialization
  955. */
  956. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  957. {
  958. u8 __iomem *base = get_hwbase(dev);
  959. u32 reg;
  960. int retval;
  961. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  962. reg = readl(base + NvRegMIIControl);
  963. if (reg & NVREG_MIICTL_INUSE) {
  964. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  965. udelay(NV_MIIBUSY_DELAY);
  966. }
  967. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  968. if (value != MII_READ) {
  969. writel(value, base + NvRegMIIData);
  970. reg |= NVREG_MIICTL_WRITE;
  971. }
  972. writel(reg, base + NvRegMIIControl);
  973. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  974. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  975. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  976. dev->name, miireg, addr);
  977. retval = -1;
  978. } else if (value != MII_READ) {
  979. /* it was a write operation - fewer failures are detectable */
  980. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  981. dev->name, value, miireg, addr);
  982. retval = 0;
  983. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  984. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  985. dev->name, miireg, addr);
  986. retval = -1;
  987. } else {
  988. retval = readl(base + NvRegMIIData);
  989. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  990. dev->name, miireg, addr, retval);
  991. }
  992. return retval;
  993. }
  994. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  995. {
  996. struct fe_priv *np = netdev_priv(dev);
  997. u32 miicontrol;
  998. unsigned int tries = 0;
  999. miicontrol = BMCR_RESET | bmcr_setup;
  1000. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1001. return -1;
  1002. }
  1003. /* wait for 500ms */
  1004. msleep(500);
  1005. /* must wait till reset is deasserted */
  1006. while (miicontrol & BMCR_RESET) {
  1007. msleep(10);
  1008. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1009. /* FIXME: 100 tries seem excessive */
  1010. if (tries++ > 100)
  1011. return -1;
  1012. }
  1013. return 0;
  1014. }
  1015. static int phy_init(struct net_device *dev)
  1016. {
  1017. struct fe_priv *np = get_nvpriv(dev);
  1018. u8 __iomem *base = get_hwbase(dev);
  1019. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1020. /* phy errata for E3016 phy */
  1021. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1022. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1023. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1024. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1025. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1026. return PHY_ERROR;
  1027. }
  1028. }
  1029. if (np->phy_oui == PHY_OUI_REALTEK) {
  1030. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1031. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1032. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1033. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1034. return PHY_ERROR;
  1035. }
  1036. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1037. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1038. return PHY_ERROR;
  1039. }
  1040. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1041. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1042. return PHY_ERROR;
  1043. }
  1044. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1045. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1046. return PHY_ERROR;
  1047. }
  1048. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1049. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1050. return PHY_ERROR;
  1051. }
  1052. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1053. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1054. return PHY_ERROR;
  1055. }
  1056. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1057. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1058. return PHY_ERROR;
  1059. }
  1060. }
  1061. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1062. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1063. u32 powerstate = readl(base + NvRegPowerState2);
  1064. /* need to perform hw phy reset */
  1065. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1066. writel(powerstate, base + NvRegPowerState2);
  1067. msleep(25);
  1068. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1069. writel(powerstate, base + NvRegPowerState2);
  1070. msleep(25);
  1071. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1072. reg |= PHY_REALTEK_INIT9;
  1073. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1074. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1075. return PHY_ERROR;
  1076. }
  1077. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1078. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1079. return PHY_ERROR;
  1080. }
  1081. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1082. if (!(reg & PHY_REALTEK_INIT11)) {
  1083. reg |= PHY_REALTEK_INIT11;
  1084. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1085. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1086. return PHY_ERROR;
  1087. }
  1088. }
  1089. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1090. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1091. return PHY_ERROR;
  1092. }
  1093. }
  1094. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1095. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1096. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1097. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1098. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1099. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1100. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1101. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1102. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1103. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1104. phy_reserved |= PHY_REALTEK_INIT7;
  1105. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1106. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1107. return PHY_ERROR;
  1108. }
  1109. }
  1110. }
  1111. }
  1112. /* set advertise register */
  1113. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1114. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1115. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1116. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1117. return PHY_ERROR;
  1118. }
  1119. /* get phy interface type */
  1120. phyinterface = readl(base + NvRegPhyInterface);
  1121. /* see if gigabit phy */
  1122. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1123. if (mii_status & PHY_GIGABIT) {
  1124. np->gigabit = PHY_GIGABIT;
  1125. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1126. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1127. if (phyinterface & PHY_RGMII)
  1128. mii_control_1000 |= ADVERTISE_1000FULL;
  1129. else
  1130. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1131. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1132. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1133. return PHY_ERROR;
  1134. }
  1135. }
  1136. else
  1137. np->gigabit = 0;
  1138. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1139. mii_control |= BMCR_ANENABLE;
  1140. if (np->phy_oui == PHY_OUI_REALTEK &&
  1141. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1142. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1143. /* start autoneg since we already performed hw reset above */
  1144. mii_control |= BMCR_ANRESTART;
  1145. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1146. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1147. return PHY_ERROR;
  1148. }
  1149. } else {
  1150. /* reset the phy
  1151. * (certain phys need bmcr to be setup with reset)
  1152. */
  1153. if (phy_reset(dev, mii_control)) {
  1154. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1155. return PHY_ERROR;
  1156. }
  1157. }
  1158. /* phy vendor specific configuration */
  1159. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1160. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1161. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1162. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1163. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1164. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1165. return PHY_ERROR;
  1166. }
  1167. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1168. phy_reserved |= PHY_CICADA_INIT5;
  1169. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1170. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1171. return PHY_ERROR;
  1172. }
  1173. }
  1174. if (np->phy_oui == PHY_OUI_CICADA) {
  1175. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1176. phy_reserved |= PHY_CICADA_INIT6;
  1177. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1178. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1179. return PHY_ERROR;
  1180. }
  1181. }
  1182. if (np->phy_oui == PHY_OUI_VITESSE) {
  1183. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1184. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1185. return PHY_ERROR;
  1186. }
  1187. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1188. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1189. return PHY_ERROR;
  1190. }
  1191. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1192. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1193. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1194. return PHY_ERROR;
  1195. }
  1196. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1197. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1198. phy_reserved |= PHY_VITESSE_INIT3;
  1199. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1200. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1201. return PHY_ERROR;
  1202. }
  1203. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1204. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1205. return PHY_ERROR;
  1206. }
  1207. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1208. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1209. return PHY_ERROR;
  1210. }
  1211. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1212. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1213. phy_reserved |= PHY_VITESSE_INIT3;
  1214. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1215. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1216. return PHY_ERROR;
  1217. }
  1218. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1219. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1220. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1221. return PHY_ERROR;
  1222. }
  1223. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1224. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1225. return PHY_ERROR;
  1226. }
  1227. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1228. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1229. return PHY_ERROR;
  1230. }
  1231. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1232. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1233. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1234. return PHY_ERROR;
  1235. }
  1236. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1237. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1238. phy_reserved |= PHY_VITESSE_INIT8;
  1239. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1240. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1241. return PHY_ERROR;
  1242. }
  1243. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1244. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1245. return PHY_ERROR;
  1246. }
  1247. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1248. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1249. return PHY_ERROR;
  1250. }
  1251. }
  1252. if (np->phy_oui == PHY_OUI_REALTEK) {
  1253. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1254. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1255. /* reset could have cleared these out, set them back */
  1256. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1257. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1258. return PHY_ERROR;
  1259. }
  1260. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1261. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1262. return PHY_ERROR;
  1263. }
  1264. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1265. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1266. return PHY_ERROR;
  1267. }
  1268. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1269. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1270. return PHY_ERROR;
  1271. }
  1272. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1273. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1274. return PHY_ERROR;
  1275. }
  1276. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1277. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1278. return PHY_ERROR;
  1279. }
  1280. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1281. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1282. return PHY_ERROR;
  1283. }
  1284. }
  1285. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1286. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1287. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1288. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1289. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1290. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1291. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1292. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1293. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1294. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1295. phy_reserved |= PHY_REALTEK_INIT7;
  1296. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1297. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1298. return PHY_ERROR;
  1299. }
  1300. }
  1301. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1302. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1303. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1304. return PHY_ERROR;
  1305. }
  1306. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1307. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1308. phy_reserved |= PHY_REALTEK_INIT3;
  1309. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1310. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1311. return PHY_ERROR;
  1312. }
  1313. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1314. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1315. return PHY_ERROR;
  1316. }
  1317. }
  1318. }
  1319. }
  1320. /* some phys clear out pause advertisment on reset, set it back */
  1321. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1322. /* restart auto negotiation, power down phy */
  1323. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1324. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1325. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1326. return PHY_ERROR;
  1327. }
  1328. return 0;
  1329. }
  1330. static void nv_start_rx(struct net_device *dev)
  1331. {
  1332. struct fe_priv *np = netdev_priv(dev);
  1333. u8 __iomem *base = get_hwbase(dev);
  1334. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1335. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1336. /* Already running? Stop it. */
  1337. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1338. rx_ctrl &= ~NVREG_RCVCTL_START;
  1339. writel(rx_ctrl, base + NvRegReceiverControl);
  1340. pci_push(base);
  1341. }
  1342. writel(np->linkspeed, base + NvRegLinkSpeed);
  1343. pci_push(base);
  1344. rx_ctrl |= NVREG_RCVCTL_START;
  1345. if (np->mac_in_use)
  1346. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1347. writel(rx_ctrl, base + NvRegReceiverControl);
  1348. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1349. dev->name, np->duplex, np->linkspeed);
  1350. pci_push(base);
  1351. }
  1352. static void nv_stop_rx(struct net_device *dev)
  1353. {
  1354. struct fe_priv *np = netdev_priv(dev);
  1355. u8 __iomem *base = get_hwbase(dev);
  1356. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1357. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1358. if (!np->mac_in_use)
  1359. rx_ctrl &= ~NVREG_RCVCTL_START;
  1360. else
  1361. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1362. writel(rx_ctrl, base + NvRegReceiverControl);
  1363. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1364. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1365. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1366. udelay(NV_RXSTOP_DELAY2);
  1367. if (!np->mac_in_use)
  1368. writel(0, base + NvRegLinkSpeed);
  1369. }
  1370. static void nv_start_tx(struct net_device *dev)
  1371. {
  1372. struct fe_priv *np = netdev_priv(dev);
  1373. u8 __iomem *base = get_hwbase(dev);
  1374. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1375. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1376. tx_ctrl |= NVREG_XMITCTL_START;
  1377. if (np->mac_in_use)
  1378. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1379. writel(tx_ctrl, base + NvRegTransmitterControl);
  1380. pci_push(base);
  1381. }
  1382. static void nv_stop_tx(struct net_device *dev)
  1383. {
  1384. struct fe_priv *np = netdev_priv(dev);
  1385. u8 __iomem *base = get_hwbase(dev);
  1386. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1387. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1388. if (!np->mac_in_use)
  1389. tx_ctrl &= ~NVREG_XMITCTL_START;
  1390. else
  1391. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1392. writel(tx_ctrl, base + NvRegTransmitterControl);
  1393. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1394. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1395. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1396. udelay(NV_TXSTOP_DELAY2);
  1397. if (!np->mac_in_use)
  1398. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1399. base + NvRegTransmitPoll);
  1400. }
  1401. static void nv_start_rxtx(struct net_device *dev)
  1402. {
  1403. nv_start_rx(dev);
  1404. nv_start_tx(dev);
  1405. }
  1406. static void nv_stop_rxtx(struct net_device *dev)
  1407. {
  1408. nv_stop_rx(dev);
  1409. nv_stop_tx(dev);
  1410. }
  1411. static void nv_txrx_reset(struct net_device *dev)
  1412. {
  1413. struct fe_priv *np = netdev_priv(dev);
  1414. u8 __iomem *base = get_hwbase(dev);
  1415. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1416. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1417. pci_push(base);
  1418. udelay(NV_TXRX_RESET_DELAY);
  1419. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1420. pci_push(base);
  1421. }
  1422. static void nv_mac_reset(struct net_device *dev)
  1423. {
  1424. struct fe_priv *np = netdev_priv(dev);
  1425. u8 __iomem *base = get_hwbase(dev);
  1426. u32 temp1, temp2, temp3;
  1427. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1428. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1429. pci_push(base);
  1430. /* save registers since they will be cleared on reset */
  1431. temp1 = readl(base + NvRegMacAddrA);
  1432. temp2 = readl(base + NvRegMacAddrB);
  1433. temp3 = readl(base + NvRegTransmitPoll);
  1434. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1435. pci_push(base);
  1436. udelay(NV_MAC_RESET_DELAY);
  1437. writel(0, base + NvRegMacReset);
  1438. pci_push(base);
  1439. udelay(NV_MAC_RESET_DELAY);
  1440. /* restore saved registers */
  1441. writel(temp1, base + NvRegMacAddrA);
  1442. writel(temp2, base + NvRegMacAddrB);
  1443. writel(temp3, base + NvRegTransmitPoll);
  1444. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1445. pci_push(base);
  1446. }
  1447. static void nv_get_hw_stats(struct net_device *dev)
  1448. {
  1449. struct fe_priv *np = netdev_priv(dev);
  1450. u8 __iomem *base = get_hwbase(dev);
  1451. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1452. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1453. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1454. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1455. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1456. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1457. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1458. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1459. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1460. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1461. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1462. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1463. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1464. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1465. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1466. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1467. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1468. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1469. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1470. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1471. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1472. np->estats.rx_packets =
  1473. np->estats.rx_unicast +
  1474. np->estats.rx_multicast +
  1475. np->estats.rx_broadcast;
  1476. np->estats.rx_errors_total =
  1477. np->estats.rx_crc_errors +
  1478. np->estats.rx_over_errors +
  1479. np->estats.rx_frame_error +
  1480. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1481. np->estats.rx_late_collision +
  1482. np->estats.rx_runt +
  1483. np->estats.rx_frame_too_long;
  1484. np->estats.tx_errors_total =
  1485. np->estats.tx_late_collision +
  1486. np->estats.tx_fifo_errors +
  1487. np->estats.tx_carrier_errors +
  1488. np->estats.tx_excess_deferral +
  1489. np->estats.tx_retry_error;
  1490. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1491. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1492. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1493. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1494. np->estats.tx_pause += readl(base + NvRegTxPause);
  1495. np->estats.rx_pause += readl(base + NvRegRxPause);
  1496. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1497. }
  1498. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1499. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1500. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1501. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1502. }
  1503. }
  1504. /*
  1505. * nv_get_stats: dev->get_stats function
  1506. * Get latest stats value from the nic.
  1507. * Called with read_lock(&dev_base_lock) held for read -
  1508. * only synchronized against unregister_netdevice.
  1509. */
  1510. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1511. {
  1512. struct fe_priv *np = netdev_priv(dev);
  1513. /* If the nic supports hw counters then retrieve latest values */
  1514. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1515. nv_get_hw_stats(dev);
  1516. /* copy to net_device stats */
  1517. dev->stats.tx_bytes = np->estats.tx_bytes;
  1518. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1519. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1520. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1521. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1522. dev->stats.rx_errors = np->estats.rx_errors_total;
  1523. dev->stats.tx_errors = np->estats.tx_errors_total;
  1524. }
  1525. return &dev->stats;
  1526. }
  1527. /*
  1528. * nv_alloc_rx: fill rx ring entries.
  1529. * Return 1 if the allocations for the skbs failed and the
  1530. * rx engine is without Available descriptors
  1531. */
  1532. static int nv_alloc_rx(struct net_device *dev)
  1533. {
  1534. struct fe_priv *np = netdev_priv(dev);
  1535. struct ring_desc* less_rx;
  1536. less_rx = np->get_rx.orig;
  1537. if (less_rx-- == np->first_rx.orig)
  1538. less_rx = np->last_rx.orig;
  1539. while (np->put_rx.orig != less_rx) {
  1540. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1541. if (skb) {
  1542. np->put_rx_ctx->skb = skb;
  1543. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1544. skb->data,
  1545. skb_tailroom(skb),
  1546. PCI_DMA_FROMDEVICE);
  1547. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1548. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1549. wmb();
  1550. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1551. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1552. np->put_rx.orig = np->first_rx.orig;
  1553. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1554. np->put_rx_ctx = np->first_rx_ctx;
  1555. } else {
  1556. return 1;
  1557. }
  1558. }
  1559. return 0;
  1560. }
  1561. static int nv_alloc_rx_optimized(struct net_device *dev)
  1562. {
  1563. struct fe_priv *np = netdev_priv(dev);
  1564. struct ring_desc_ex* less_rx;
  1565. less_rx = np->get_rx.ex;
  1566. if (less_rx-- == np->first_rx.ex)
  1567. less_rx = np->last_rx.ex;
  1568. while (np->put_rx.ex != less_rx) {
  1569. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1570. if (skb) {
  1571. np->put_rx_ctx->skb = skb;
  1572. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1573. skb->data,
  1574. skb_tailroom(skb),
  1575. PCI_DMA_FROMDEVICE);
  1576. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1577. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1578. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1579. wmb();
  1580. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1581. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1582. np->put_rx.ex = np->first_rx.ex;
  1583. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1584. np->put_rx_ctx = np->first_rx_ctx;
  1585. } else {
  1586. return 1;
  1587. }
  1588. }
  1589. return 0;
  1590. }
  1591. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1592. #ifdef CONFIG_FORCEDETH_NAPI
  1593. static void nv_do_rx_refill(unsigned long data)
  1594. {
  1595. struct net_device *dev = (struct net_device *) data;
  1596. struct fe_priv *np = netdev_priv(dev);
  1597. /* Just reschedule NAPI rx processing */
  1598. napi_schedule(&np->napi);
  1599. }
  1600. #else
  1601. static void nv_do_rx_refill(unsigned long data)
  1602. {
  1603. struct net_device *dev = (struct net_device *) data;
  1604. struct fe_priv *np = netdev_priv(dev);
  1605. int retcode;
  1606. if (!using_multi_irqs(dev)) {
  1607. if (np->msi_flags & NV_MSI_X_ENABLED)
  1608. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1609. else
  1610. disable_irq(np->pci_dev->irq);
  1611. } else {
  1612. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1613. }
  1614. if (!nv_optimized(np))
  1615. retcode = nv_alloc_rx(dev);
  1616. else
  1617. retcode = nv_alloc_rx_optimized(dev);
  1618. if (retcode) {
  1619. spin_lock_irq(&np->lock);
  1620. if (!np->in_shutdown)
  1621. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1622. spin_unlock_irq(&np->lock);
  1623. }
  1624. if (!using_multi_irqs(dev)) {
  1625. if (np->msi_flags & NV_MSI_X_ENABLED)
  1626. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1627. else
  1628. enable_irq(np->pci_dev->irq);
  1629. } else {
  1630. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1631. }
  1632. }
  1633. #endif
  1634. static void nv_init_rx(struct net_device *dev)
  1635. {
  1636. struct fe_priv *np = netdev_priv(dev);
  1637. int i;
  1638. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1639. if (!nv_optimized(np))
  1640. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1641. else
  1642. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1643. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1644. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1645. for (i = 0; i < np->rx_ring_size; i++) {
  1646. if (!nv_optimized(np)) {
  1647. np->rx_ring.orig[i].flaglen = 0;
  1648. np->rx_ring.orig[i].buf = 0;
  1649. } else {
  1650. np->rx_ring.ex[i].flaglen = 0;
  1651. np->rx_ring.ex[i].txvlan = 0;
  1652. np->rx_ring.ex[i].bufhigh = 0;
  1653. np->rx_ring.ex[i].buflow = 0;
  1654. }
  1655. np->rx_skb[i].skb = NULL;
  1656. np->rx_skb[i].dma = 0;
  1657. }
  1658. }
  1659. static void nv_init_tx(struct net_device *dev)
  1660. {
  1661. struct fe_priv *np = netdev_priv(dev);
  1662. int i;
  1663. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1664. if (!nv_optimized(np))
  1665. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1666. else
  1667. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1668. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1669. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1670. np->tx_pkts_in_progress = 0;
  1671. np->tx_change_owner = NULL;
  1672. np->tx_end_flip = NULL;
  1673. for (i = 0; i < np->tx_ring_size; i++) {
  1674. if (!nv_optimized(np)) {
  1675. np->tx_ring.orig[i].flaglen = 0;
  1676. np->tx_ring.orig[i].buf = 0;
  1677. } else {
  1678. np->tx_ring.ex[i].flaglen = 0;
  1679. np->tx_ring.ex[i].txvlan = 0;
  1680. np->tx_ring.ex[i].bufhigh = 0;
  1681. np->tx_ring.ex[i].buflow = 0;
  1682. }
  1683. np->tx_skb[i].skb = NULL;
  1684. np->tx_skb[i].dma = 0;
  1685. np->tx_skb[i].dma_len = 0;
  1686. np->tx_skb[i].first_tx_desc = NULL;
  1687. np->tx_skb[i].next_tx_ctx = NULL;
  1688. }
  1689. }
  1690. static int nv_init_ring(struct net_device *dev)
  1691. {
  1692. struct fe_priv *np = netdev_priv(dev);
  1693. nv_init_tx(dev);
  1694. nv_init_rx(dev);
  1695. if (!nv_optimized(np))
  1696. return nv_alloc_rx(dev);
  1697. else
  1698. return nv_alloc_rx_optimized(dev);
  1699. }
  1700. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1701. {
  1702. struct fe_priv *np = netdev_priv(dev);
  1703. if (tx_skb->dma) {
  1704. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1705. tx_skb->dma_len,
  1706. PCI_DMA_TODEVICE);
  1707. tx_skb->dma = 0;
  1708. }
  1709. if (tx_skb->skb) {
  1710. dev_kfree_skb_any(tx_skb->skb);
  1711. tx_skb->skb = NULL;
  1712. return 1;
  1713. } else {
  1714. return 0;
  1715. }
  1716. }
  1717. static void nv_drain_tx(struct net_device *dev)
  1718. {
  1719. struct fe_priv *np = netdev_priv(dev);
  1720. unsigned int i;
  1721. for (i = 0; i < np->tx_ring_size; i++) {
  1722. if (!nv_optimized(np)) {
  1723. np->tx_ring.orig[i].flaglen = 0;
  1724. np->tx_ring.orig[i].buf = 0;
  1725. } else {
  1726. np->tx_ring.ex[i].flaglen = 0;
  1727. np->tx_ring.ex[i].txvlan = 0;
  1728. np->tx_ring.ex[i].bufhigh = 0;
  1729. np->tx_ring.ex[i].buflow = 0;
  1730. }
  1731. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1732. dev->stats.tx_dropped++;
  1733. np->tx_skb[i].dma = 0;
  1734. np->tx_skb[i].dma_len = 0;
  1735. np->tx_skb[i].first_tx_desc = NULL;
  1736. np->tx_skb[i].next_tx_ctx = NULL;
  1737. }
  1738. np->tx_pkts_in_progress = 0;
  1739. np->tx_change_owner = NULL;
  1740. np->tx_end_flip = NULL;
  1741. }
  1742. static void nv_drain_rx(struct net_device *dev)
  1743. {
  1744. struct fe_priv *np = netdev_priv(dev);
  1745. int i;
  1746. for (i = 0; i < np->rx_ring_size; i++) {
  1747. if (!nv_optimized(np)) {
  1748. np->rx_ring.orig[i].flaglen = 0;
  1749. np->rx_ring.orig[i].buf = 0;
  1750. } else {
  1751. np->rx_ring.ex[i].flaglen = 0;
  1752. np->rx_ring.ex[i].txvlan = 0;
  1753. np->rx_ring.ex[i].bufhigh = 0;
  1754. np->rx_ring.ex[i].buflow = 0;
  1755. }
  1756. wmb();
  1757. if (np->rx_skb[i].skb) {
  1758. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1759. (skb_end_pointer(np->rx_skb[i].skb) -
  1760. np->rx_skb[i].skb->data),
  1761. PCI_DMA_FROMDEVICE);
  1762. dev_kfree_skb(np->rx_skb[i].skb);
  1763. np->rx_skb[i].skb = NULL;
  1764. }
  1765. }
  1766. }
  1767. static void nv_drain_rxtx(struct net_device *dev)
  1768. {
  1769. nv_drain_tx(dev);
  1770. nv_drain_rx(dev);
  1771. }
  1772. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1773. {
  1774. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1775. }
  1776. static void nv_legacybackoff_reseed(struct net_device *dev)
  1777. {
  1778. u8 __iomem *base = get_hwbase(dev);
  1779. u32 reg;
  1780. u32 low;
  1781. int tx_status = 0;
  1782. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1783. get_random_bytes(&low, sizeof(low));
  1784. reg |= low & NVREG_SLOTTIME_MASK;
  1785. /* Need to stop tx before change takes effect.
  1786. * Caller has already gained np->lock.
  1787. */
  1788. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1789. if (tx_status)
  1790. nv_stop_tx(dev);
  1791. nv_stop_rx(dev);
  1792. writel(reg, base + NvRegSlotTime);
  1793. if (tx_status)
  1794. nv_start_tx(dev);
  1795. nv_start_rx(dev);
  1796. }
  1797. /* Gear Backoff Seeds */
  1798. #define BACKOFF_SEEDSET_ROWS 8
  1799. #define BACKOFF_SEEDSET_LFSRS 15
  1800. /* Known Good seed sets */
  1801. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1802. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1803. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1804. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1805. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1806. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1807. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1808. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1809. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1810. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1811. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1812. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1813. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1814. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1815. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1816. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1817. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1818. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1819. static void nv_gear_backoff_reseed(struct net_device *dev)
  1820. {
  1821. u8 __iomem *base = get_hwbase(dev);
  1822. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1823. u32 temp, seedset, combinedSeed;
  1824. int i;
  1825. /* Setup seed for free running LFSR */
  1826. /* We are going to read the time stamp counter 3 times
  1827. and swizzle bits around to increase randomness */
  1828. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1829. miniseed1 &= 0x0fff;
  1830. if (miniseed1 == 0)
  1831. miniseed1 = 0xabc;
  1832. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1833. miniseed2 &= 0x0fff;
  1834. if (miniseed2 == 0)
  1835. miniseed2 = 0xabc;
  1836. miniseed2_reversed =
  1837. ((miniseed2 & 0xF00) >> 8) |
  1838. (miniseed2 & 0x0F0) |
  1839. ((miniseed2 & 0x00F) << 8);
  1840. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1841. miniseed3 &= 0x0fff;
  1842. if (miniseed3 == 0)
  1843. miniseed3 = 0xabc;
  1844. miniseed3_reversed =
  1845. ((miniseed3 & 0xF00) >> 8) |
  1846. (miniseed3 & 0x0F0) |
  1847. ((miniseed3 & 0x00F) << 8);
  1848. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1849. (miniseed2 ^ miniseed3_reversed);
  1850. /* Seeds can not be zero */
  1851. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1852. combinedSeed |= 0x08;
  1853. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1854. combinedSeed |= 0x8000;
  1855. /* No need to disable tx here */
  1856. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1857. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1858. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1859. writel(temp,base + NvRegBackOffControl);
  1860. /* Setup seeds for all gear LFSRs. */
  1861. get_random_bytes(&seedset, sizeof(seedset));
  1862. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1863. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1864. {
  1865. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1866. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1867. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1868. writel(temp, base + NvRegBackOffControl);
  1869. }
  1870. }
  1871. /*
  1872. * nv_start_xmit: dev->hard_start_xmit function
  1873. * Called with netif_tx_lock held.
  1874. */
  1875. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1876. {
  1877. struct fe_priv *np = netdev_priv(dev);
  1878. u32 tx_flags = 0;
  1879. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1880. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1881. unsigned int i;
  1882. u32 offset = 0;
  1883. u32 bcnt;
  1884. u32 size = skb->len-skb->data_len;
  1885. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1886. u32 empty_slots;
  1887. struct ring_desc* put_tx;
  1888. struct ring_desc* start_tx;
  1889. struct ring_desc* prev_tx;
  1890. struct nv_skb_map* prev_tx_ctx;
  1891. unsigned long flags;
  1892. /* add fragments to entries count */
  1893. for (i = 0; i < fragments; i++) {
  1894. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1895. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1896. }
  1897. spin_lock_irqsave(&np->lock, flags);
  1898. empty_slots = nv_get_empty_tx_slots(np);
  1899. if (unlikely(empty_slots <= entries)) {
  1900. netif_stop_queue(dev);
  1901. np->tx_stop = 1;
  1902. spin_unlock_irqrestore(&np->lock, flags);
  1903. return NETDEV_TX_BUSY;
  1904. }
  1905. spin_unlock_irqrestore(&np->lock, flags);
  1906. start_tx = put_tx = np->put_tx.orig;
  1907. /* setup the header buffer */
  1908. do {
  1909. prev_tx = put_tx;
  1910. prev_tx_ctx = np->put_tx_ctx;
  1911. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1912. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1913. PCI_DMA_TODEVICE);
  1914. np->put_tx_ctx->dma_len = bcnt;
  1915. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1916. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1917. tx_flags = np->tx_flags;
  1918. offset += bcnt;
  1919. size -= bcnt;
  1920. if (unlikely(put_tx++ == np->last_tx.orig))
  1921. put_tx = np->first_tx.orig;
  1922. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1923. np->put_tx_ctx = np->first_tx_ctx;
  1924. } while (size);
  1925. /* setup the fragments */
  1926. for (i = 0; i < fragments; i++) {
  1927. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1928. u32 size = frag->size;
  1929. offset = 0;
  1930. do {
  1931. prev_tx = put_tx;
  1932. prev_tx_ctx = np->put_tx_ctx;
  1933. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1934. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1935. PCI_DMA_TODEVICE);
  1936. np->put_tx_ctx->dma_len = bcnt;
  1937. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1938. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1939. offset += bcnt;
  1940. size -= bcnt;
  1941. if (unlikely(put_tx++ == np->last_tx.orig))
  1942. put_tx = np->first_tx.orig;
  1943. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1944. np->put_tx_ctx = np->first_tx_ctx;
  1945. } while (size);
  1946. }
  1947. /* set last fragment flag */
  1948. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1949. /* save skb in this slot's context area */
  1950. prev_tx_ctx->skb = skb;
  1951. if (skb_is_gso(skb))
  1952. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1953. else
  1954. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1955. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1956. spin_lock_irqsave(&np->lock, flags);
  1957. /* set tx flags */
  1958. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1959. np->put_tx.orig = put_tx;
  1960. spin_unlock_irqrestore(&np->lock, flags);
  1961. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1962. dev->name, entries, tx_flags_extra);
  1963. {
  1964. int j;
  1965. for (j=0; j<64; j++) {
  1966. if ((j%16) == 0)
  1967. dprintk("\n%03x:", j);
  1968. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1969. }
  1970. dprintk("\n");
  1971. }
  1972. dev->trans_start = jiffies;
  1973. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1974. return NETDEV_TX_OK;
  1975. }
  1976. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1977. {
  1978. struct fe_priv *np = netdev_priv(dev);
  1979. u32 tx_flags = 0;
  1980. u32 tx_flags_extra;
  1981. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1982. unsigned int i;
  1983. u32 offset = 0;
  1984. u32 bcnt;
  1985. u32 size = skb->len-skb->data_len;
  1986. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1987. u32 empty_slots;
  1988. struct ring_desc_ex* put_tx;
  1989. struct ring_desc_ex* start_tx;
  1990. struct ring_desc_ex* prev_tx;
  1991. struct nv_skb_map* prev_tx_ctx;
  1992. struct nv_skb_map* start_tx_ctx;
  1993. unsigned long flags;
  1994. /* add fragments to entries count */
  1995. for (i = 0; i < fragments; i++) {
  1996. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1997. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1998. }
  1999. spin_lock_irqsave(&np->lock, flags);
  2000. empty_slots = nv_get_empty_tx_slots(np);
  2001. if (unlikely(empty_slots <= entries)) {
  2002. netif_stop_queue(dev);
  2003. np->tx_stop = 1;
  2004. spin_unlock_irqrestore(&np->lock, flags);
  2005. return NETDEV_TX_BUSY;
  2006. }
  2007. spin_unlock_irqrestore(&np->lock, flags);
  2008. start_tx = put_tx = np->put_tx.ex;
  2009. start_tx_ctx = np->put_tx_ctx;
  2010. /* setup the header buffer */
  2011. do {
  2012. prev_tx = put_tx;
  2013. prev_tx_ctx = np->put_tx_ctx;
  2014. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2015. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2016. PCI_DMA_TODEVICE);
  2017. np->put_tx_ctx->dma_len = bcnt;
  2018. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2019. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2020. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2021. tx_flags = NV_TX2_VALID;
  2022. offset += bcnt;
  2023. size -= bcnt;
  2024. if (unlikely(put_tx++ == np->last_tx.ex))
  2025. put_tx = np->first_tx.ex;
  2026. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2027. np->put_tx_ctx = np->first_tx_ctx;
  2028. } while (size);
  2029. /* setup the fragments */
  2030. for (i = 0; i < fragments; i++) {
  2031. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2032. u32 size = frag->size;
  2033. offset = 0;
  2034. do {
  2035. prev_tx = put_tx;
  2036. prev_tx_ctx = np->put_tx_ctx;
  2037. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2038. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2039. PCI_DMA_TODEVICE);
  2040. np->put_tx_ctx->dma_len = bcnt;
  2041. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2042. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2043. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2044. offset += bcnt;
  2045. size -= bcnt;
  2046. if (unlikely(put_tx++ == np->last_tx.ex))
  2047. put_tx = np->first_tx.ex;
  2048. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2049. np->put_tx_ctx = np->first_tx_ctx;
  2050. } while (size);
  2051. }
  2052. /* set last fragment flag */
  2053. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2054. /* save skb in this slot's context area */
  2055. prev_tx_ctx->skb = skb;
  2056. if (skb_is_gso(skb))
  2057. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2058. else
  2059. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2060. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2061. /* vlan tag */
  2062. if (likely(!np->vlangrp)) {
  2063. start_tx->txvlan = 0;
  2064. } else {
  2065. if (vlan_tx_tag_present(skb))
  2066. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2067. else
  2068. start_tx->txvlan = 0;
  2069. }
  2070. spin_lock_irqsave(&np->lock, flags);
  2071. if (np->tx_limit) {
  2072. /* Limit the number of outstanding tx. Setup all fragments, but
  2073. * do not set the VALID bit on the first descriptor. Save a pointer
  2074. * to that descriptor and also for next skb_map element.
  2075. */
  2076. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2077. if (!np->tx_change_owner)
  2078. np->tx_change_owner = start_tx_ctx;
  2079. /* remove VALID bit */
  2080. tx_flags &= ~NV_TX2_VALID;
  2081. start_tx_ctx->first_tx_desc = start_tx;
  2082. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2083. np->tx_end_flip = np->put_tx_ctx;
  2084. } else {
  2085. np->tx_pkts_in_progress++;
  2086. }
  2087. }
  2088. /* set tx flags */
  2089. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2090. np->put_tx.ex = put_tx;
  2091. spin_unlock_irqrestore(&np->lock, flags);
  2092. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2093. dev->name, entries, tx_flags_extra);
  2094. {
  2095. int j;
  2096. for (j=0; j<64; j++) {
  2097. if ((j%16) == 0)
  2098. dprintk("\n%03x:", j);
  2099. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2100. }
  2101. dprintk("\n");
  2102. }
  2103. dev->trans_start = jiffies;
  2104. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2105. return NETDEV_TX_OK;
  2106. }
  2107. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2108. {
  2109. struct fe_priv *np = netdev_priv(dev);
  2110. np->tx_pkts_in_progress--;
  2111. if (np->tx_change_owner) {
  2112. np->tx_change_owner->first_tx_desc->flaglen |=
  2113. cpu_to_le32(NV_TX2_VALID);
  2114. np->tx_pkts_in_progress++;
  2115. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2116. if (np->tx_change_owner == np->tx_end_flip)
  2117. np->tx_change_owner = NULL;
  2118. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2119. }
  2120. }
  2121. /*
  2122. * nv_tx_done: check for completed packets, release the skbs.
  2123. *
  2124. * Caller must own np->lock.
  2125. */
  2126. static void nv_tx_done(struct net_device *dev)
  2127. {
  2128. struct fe_priv *np = netdev_priv(dev);
  2129. u32 flags;
  2130. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2131. while ((np->get_tx.orig != np->put_tx.orig) &&
  2132. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2133. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2134. dev->name, flags);
  2135. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2136. np->get_tx_ctx->dma_len,
  2137. PCI_DMA_TODEVICE);
  2138. np->get_tx_ctx->dma = 0;
  2139. if (np->desc_ver == DESC_VER_1) {
  2140. if (flags & NV_TX_LASTPACKET) {
  2141. if (flags & NV_TX_ERROR) {
  2142. if (flags & NV_TX_UNDERFLOW)
  2143. dev->stats.tx_fifo_errors++;
  2144. if (flags & NV_TX_CARRIERLOST)
  2145. dev->stats.tx_carrier_errors++;
  2146. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2147. nv_legacybackoff_reseed(dev);
  2148. dev->stats.tx_errors++;
  2149. } else {
  2150. dev->stats.tx_packets++;
  2151. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2152. }
  2153. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2154. np->get_tx_ctx->skb = NULL;
  2155. }
  2156. } else {
  2157. if (flags & NV_TX2_LASTPACKET) {
  2158. if (flags & NV_TX2_ERROR) {
  2159. if (flags & NV_TX2_UNDERFLOW)
  2160. dev->stats.tx_fifo_errors++;
  2161. if (flags & NV_TX2_CARRIERLOST)
  2162. dev->stats.tx_carrier_errors++;
  2163. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2164. nv_legacybackoff_reseed(dev);
  2165. dev->stats.tx_errors++;
  2166. } else {
  2167. dev->stats.tx_packets++;
  2168. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2169. }
  2170. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2171. np->get_tx_ctx->skb = NULL;
  2172. }
  2173. }
  2174. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2175. np->get_tx.orig = np->first_tx.orig;
  2176. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2177. np->get_tx_ctx = np->first_tx_ctx;
  2178. }
  2179. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2180. np->tx_stop = 0;
  2181. netif_wake_queue(dev);
  2182. }
  2183. }
  2184. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2185. {
  2186. struct fe_priv *np = netdev_priv(dev);
  2187. u32 flags;
  2188. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2189. while ((np->get_tx.ex != np->put_tx.ex) &&
  2190. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2191. (limit-- > 0)) {
  2192. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2193. dev->name, flags);
  2194. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2195. np->get_tx_ctx->dma_len,
  2196. PCI_DMA_TODEVICE);
  2197. np->get_tx_ctx->dma = 0;
  2198. if (flags & NV_TX2_LASTPACKET) {
  2199. if (!(flags & NV_TX2_ERROR))
  2200. dev->stats.tx_packets++;
  2201. else {
  2202. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2203. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2204. nv_gear_backoff_reseed(dev);
  2205. else
  2206. nv_legacybackoff_reseed(dev);
  2207. }
  2208. }
  2209. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2210. np->get_tx_ctx->skb = NULL;
  2211. if (np->tx_limit) {
  2212. nv_tx_flip_ownership(dev);
  2213. }
  2214. }
  2215. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2216. np->get_tx.ex = np->first_tx.ex;
  2217. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2218. np->get_tx_ctx = np->first_tx_ctx;
  2219. }
  2220. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2221. np->tx_stop = 0;
  2222. netif_wake_queue(dev);
  2223. }
  2224. }
  2225. /*
  2226. * nv_tx_timeout: dev->tx_timeout function
  2227. * Called with netif_tx_lock held.
  2228. */
  2229. static void nv_tx_timeout(struct net_device *dev)
  2230. {
  2231. struct fe_priv *np = netdev_priv(dev);
  2232. u8 __iomem *base = get_hwbase(dev);
  2233. u32 status;
  2234. if (np->msi_flags & NV_MSI_X_ENABLED)
  2235. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2236. else
  2237. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2238. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2239. {
  2240. int i;
  2241. printk(KERN_INFO "%s: Ring at %lx\n",
  2242. dev->name, (unsigned long)np->ring_addr);
  2243. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2244. for (i=0;i<=np->register_size;i+= 32) {
  2245. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2246. i,
  2247. readl(base + i + 0), readl(base + i + 4),
  2248. readl(base + i + 8), readl(base + i + 12),
  2249. readl(base + i + 16), readl(base + i + 20),
  2250. readl(base + i + 24), readl(base + i + 28));
  2251. }
  2252. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2253. for (i=0;i<np->tx_ring_size;i+= 4) {
  2254. if (!nv_optimized(np)) {
  2255. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2256. i,
  2257. le32_to_cpu(np->tx_ring.orig[i].buf),
  2258. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2259. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2260. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2261. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2262. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2263. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2264. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2265. } else {
  2266. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2267. i,
  2268. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2269. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2270. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2271. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2272. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2273. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2274. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2275. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2276. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2277. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2278. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2279. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2280. }
  2281. }
  2282. }
  2283. spin_lock_irq(&np->lock);
  2284. /* 1) stop tx engine */
  2285. nv_stop_tx(dev);
  2286. /* 2) check that the packets were not sent already: */
  2287. if (!nv_optimized(np))
  2288. nv_tx_done(dev);
  2289. else
  2290. nv_tx_done_optimized(dev, np->tx_ring_size);
  2291. /* 3) if there are dead entries: clear everything */
  2292. if (np->get_tx_ctx != np->put_tx_ctx) {
  2293. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2294. nv_drain_tx(dev);
  2295. nv_init_tx(dev);
  2296. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2297. }
  2298. netif_wake_queue(dev);
  2299. /* 4) restart tx engine */
  2300. nv_start_tx(dev);
  2301. spin_unlock_irq(&np->lock);
  2302. }
  2303. /*
  2304. * Called when the nic notices a mismatch between the actual data len on the
  2305. * wire and the len indicated in the 802 header
  2306. */
  2307. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2308. {
  2309. int hdrlen; /* length of the 802 header */
  2310. int protolen; /* length as stored in the proto field */
  2311. /* 1) calculate len according to header */
  2312. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2313. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2314. hdrlen = VLAN_HLEN;
  2315. } else {
  2316. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2317. hdrlen = ETH_HLEN;
  2318. }
  2319. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2320. dev->name, datalen, protolen, hdrlen);
  2321. if (protolen > ETH_DATA_LEN)
  2322. return datalen; /* Value in proto field not a len, no checks possible */
  2323. protolen += hdrlen;
  2324. /* consistency checks: */
  2325. if (datalen > ETH_ZLEN) {
  2326. if (datalen >= protolen) {
  2327. /* more data on wire than in 802 header, trim of
  2328. * additional data.
  2329. */
  2330. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2331. dev->name, protolen);
  2332. return protolen;
  2333. } else {
  2334. /* less data on wire than mentioned in header.
  2335. * Discard the packet.
  2336. */
  2337. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2338. dev->name);
  2339. return -1;
  2340. }
  2341. } else {
  2342. /* short packet. Accept only if 802 values are also short */
  2343. if (protolen > ETH_ZLEN) {
  2344. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2345. dev->name);
  2346. return -1;
  2347. }
  2348. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2349. dev->name, datalen);
  2350. return datalen;
  2351. }
  2352. }
  2353. static int nv_rx_process(struct net_device *dev, int limit)
  2354. {
  2355. struct fe_priv *np = netdev_priv(dev);
  2356. u32 flags;
  2357. int rx_work = 0;
  2358. struct sk_buff *skb;
  2359. int len;
  2360. while((np->get_rx.orig != np->put_rx.orig) &&
  2361. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2362. (rx_work < limit)) {
  2363. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2364. dev->name, flags);
  2365. /*
  2366. * the packet is for us - immediately tear down the pci mapping.
  2367. * TODO: check if a prefetch of the first cacheline improves
  2368. * the performance.
  2369. */
  2370. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2371. np->get_rx_ctx->dma_len,
  2372. PCI_DMA_FROMDEVICE);
  2373. skb = np->get_rx_ctx->skb;
  2374. np->get_rx_ctx->skb = NULL;
  2375. {
  2376. int j;
  2377. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2378. for (j=0; j<64; j++) {
  2379. if ((j%16) == 0)
  2380. dprintk("\n%03x:", j);
  2381. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2382. }
  2383. dprintk("\n");
  2384. }
  2385. /* look at what we actually got: */
  2386. if (np->desc_ver == DESC_VER_1) {
  2387. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2388. len = flags & LEN_MASK_V1;
  2389. if (unlikely(flags & NV_RX_ERROR)) {
  2390. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2391. len = nv_getlen(dev, skb->data, len);
  2392. if (len < 0) {
  2393. dev->stats.rx_errors++;
  2394. dev_kfree_skb(skb);
  2395. goto next_pkt;
  2396. }
  2397. }
  2398. /* framing errors are soft errors */
  2399. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2400. if (flags & NV_RX_SUBSTRACT1) {
  2401. len--;
  2402. }
  2403. }
  2404. /* the rest are hard errors */
  2405. else {
  2406. if (flags & NV_RX_MISSEDFRAME)
  2407. dev->stats.rx_missed_errors++;
  2408. if (flags & NV_RX_CRCERR)
  2409. dev->stats.rx_crc_errors++;
  2410. if (flags & NV_RX_OVERFLOW)
  2411. dev->stats.rx_over_errors++;
  2412. dev->stats.rx_errors++;
  2413. dev_kfree_skb(skb);
  2414. goto next_pkt;
  2415. }
  2416. }
  2417. } else {
  2418. dev_kfree_skb(skb);
  2419. goto next_pkt;
  2420. }
  2421. } else {
  2422. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2423. len = flags & LEN_MASK_V2;
  2424. if (unlikely(flags & NV_RX2_ERROR)) {
  2425. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2426. len = nv_getlen(dev, skb->data, len);
  2427. if (len < 0) {
  2428. dev->stats.rx_errors++;
  2429. dev_kfree_skb(skb);
  2430. goto next_pkt;
  2431. }
  2432. }
  2433. /* framing errors are soft errors */
  2434. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2435. if (flags & NV_RX2_SUBSTRACT1) {
  2436. len--;
  2437. }
  2438. }
  2439. /* the rest are hard errors */
  2440. else {
  2441. if (flags & NV_RX2_CRCERR)
  2442. dev->stats.rx_crc_errors++;
  2443. if (flags & NV_RX2_OVERFLOW)
  2444. dev->stats.rx_over_errors++;
  2445. dev->stats.rx_errors++;
  2446. dev_kfree_skb(skb);
  2447. goto next_pkt;
  2448. }
  2449. }
  2450. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2451. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2452. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2453. } else {
  2454. dev_kfree_skb(skb);
  2455. goto next_pkt;
  2456. }
  2457. }
  2458. /* got a valid packet - forward it to the network core */
  2459. skb_put(skb, len);
  2460. skb->protocol = eth_type_trans(skb, dev);
  2461. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2462. dev->name, len, skb->protocol);
  2463. #ifdef CONFIG_FORCEDETH_NAPI
  2464. netif_receive_skb(skb);
  2465. #else
  2466. netif_rx(skb);
  2467. #endif
  2468. dev->stats.rx_packets++;
  2469. dev->stats.rx_bytes += len;
  2470. next_pkt:
  2471. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2472. np->get_rx.orig = np->first_rx.orig;
  2473. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2474. np->get_rx_ctx = np->first_rx_ctx;
  2475. rx_work++;
  2476. }
  2477. return rx_work;
  2478. }
  2479. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2480. {
  2481. struct fe_priv *np = netdev_priv(dev);
  2482. u32 flags;
  2483. u32 vlanflags = 0;
  2484. int rx_work = 0;
  2485. struct sk_buff *skb;
  2486. int len;
  2487. while((np->get_rx.ex != np->put_rx.ex) &&
  2488. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2489. (rx_work < limit)) {
  2490. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2491. dev->name, flags);
  2492. /*
  2493. * the packet is for us - immediately tear down the pci mapping.
  2494. * TODO: check if a prefetch of the first cacheline improves
  2495. * the performance.
  2496. */
  2497. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2498. np->get_rx_ctx->dma_len,
  2499. PCI_DMA_FROMDEVICE);
  2500. skb = np->get_rx_ctx->skb;
  2501. np->get_rx_ctx->skb = NULL;
  2502. {
  2503. int j;
  2504. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2505. for (j=0; j<64; j++) {
  2506. if ((j%16) == 0)
  2507. dprintk("\n%03x:", j);
  2508. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2509. }
  2510. dprintk("\n");
  2511. }
  2512. /* look at what we actually got: */
  2513. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2514. len = flags & LEN_MASK_V2;
  2515. if (unlikely(flags & NV_RX2_ERROR)) {
  2516. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2517. len = nv_getlen(dev, skb->data, len);
  2518. if (len < 0) {
  2519. dev_kfree_skb(skb);
  2520. goto next_pkt;
  2521. }
  2522. }
  2523. /* framing errors are soft errors */
  2524. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2525. if (flags & NV_RX2_SUBSTRACT1) {
  2526. len--;
  2527. }
  2528. }
  2529. /* the rest are hard errors */
  2530. else {
  2531. dev_kfree_skb(skb);
  2532. goto next_pkt;
  2533. }
  2534. }
  2535. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2536. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2537. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2538. /* got a valid packet - forward it to the network core */
  2539. skb_put(skb, len);
  2540. skb->protocol = eth_type_trans(skb, dev);
  2541. prefetch(skb->data);
  2542. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2543. dev->name, len, skb->protocol);
  2544. if (likely(!np->vlangrp)) {
  2545. #ifdef CONFIG_FORCEDETH_NAPI
  2546. netif_receive_skb(skb);
  2547. #else
  2548. netif_rx(skb);
  2549. #endif
  2550. } else {
  2551. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2552. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2553. #ifdef CONFIG_FORCEDETH_NAPI
  2554. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2555. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2556. #else
  2557. vlan_hwaccel_rx(skb, np->vlangrp,
  2558. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2559. #endif
  2560. } else {
  2561. #ifdef CONFIG_FORCEDETH_NAPI
  2562. netif_receive_skb(skb);
  2563. #else
  2564. netif_rx(skb);
  2565. #endif
  2566. }
  2567. }
  2568. dev->stats.rx_packets++;
  2569. dev->stats.rx_bytes += len;
  2570. } else {
  2571. dev_kfree_skb(skb);
  2572. }
  2573. next_pkt:
  2574. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2575. np->get_rx.ex = np->first_rx.ex;
  2576. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2577. np->get_rx_ctx = np->first_rx_ctx;
  2578. rx_work++;
  2579. }
  2580. return rx_work;
  2581. }
  2582. static void set_bufsize(struct net_device *dev)
  2583. {
  2584. struct fe_priv *np = netdev_priv(dev);
  2585. if (dev->mtu <= ETH_DATA_LEN)
  2586. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2587. else
  2588. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2589. }
  2590. /*
  2591. * nv_change_mtu: dev->change_mtu function
  2592. * Called with dev_base_lock held for read.
  2593. */
  2594. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2595. {
  2596. struct fe_priv *np = netdev_priv(dev);
  2597. int old_mtu;
  2598. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2599. return -EINVAL;
  2600. old_mtu = dev->mtu;
  2601. dev->mtu = new_mtu;
  2602. /* return early if the buffer sizes will not change */
  2603. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2604. return 0;
  2605. if (old_mtu == new_mtu)
  2606. return 0;
  2607. /* synchronized against open : rtnl_lock() held by caller */
  2608. if (netif_running(dev)) {
  2609. u8 __iomem *base = get_hwbase(dev);
  2610. /*
  2611. * It seems that the nic preloads valid ring entries into an
  2612. * internal buffer. The procedure for flushing everything is
  2613. * guessed, there is probably a simpler approach.
  2614. * Changing the MTU is a rare event, it shouldn't matter.
  2615. */
  2616. nv_disable_irq(dev);
  2617. netif_tx_lock_bh(dev);
  2618. netif_addr_lock(dev);
  2619. spin_lock(&np->lock);
  2620. /* stop engines */
  2621. nv_stop_rxtx(dev);
  2622. nv_txrx_reset(dev);
  2623. /* drain rx queue */
  2624. nv_drain_rxtx(dev);
  2625. /* reinit driver view of the rx queue */
  2626. set_bufsize(dev);
  2627. if (nv_init_ring(dev)) {
  2628. if (!np->in_shutdown)
  2629. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2630. }
  2631. /* reinit nic view of the rx queue */
  2632. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2633. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2634. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2635. base + NvRegRingSizes);
  2636. pci_push(base);
  2637. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2638. pci_push(base);
  2639. /* restart rx engine */
  2640. nv_start_rxtx(dev);
  2641. spin_unlock(&np->lock);
  2642. netif_addr_unlock(dev);
  2643. netif_tx_unlock_bh(dev);
  2644. nv_enable_irq(dev);
  2645. }
  2646. return 0;
  2647. }
  2648. static void nv_copy_mac_to_hw(struct net_device *dev)
  2649. {
  2650. u8 __iomem *base = get_hwbase(dev);
  2651. u32 mac[2];
  2652. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2653. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2654. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2655. writel(mac[0], base + NvRegMacAddrA);
  2656. writel(mac[1], base + NvRegMacAddrB);
  2657. }
  2658. /*
  2659. * nv_set_mac_address: dev->set_mac_address function
  2660. * Called with rtnl_lock() held.
  2661. */
  2662. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2663. {
  2664. struct fe_priv *np = netdev_priv(dev);
  2665. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2666. if (!is_valid_ether_addr(macaddr->sa_data))
  2667. return -EADDRNOTAVAIL;
  2668. /* synchronized against open : rtnl_lock() held by caller */
  2669. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2670. if (netif_running(dev)) {
  2671. netif_tx_lock_bh(dev);
  2672. netif_addr_lock(dev);
  2673. spin_lock_irq(&np->lock);
  2674. /* stop rx engine */
  2675. nv_stop_rx(dev);
  2676. /* set mac address */
  2677. nv_copy_mac_to_hw(dev);
  2678. /* restart rx engine */
  2679. nv_start_rx(dev);
  2680. spin_unlock_irq(&np->lock);
  2681. netif_addr_unlock(dev);
  2682. netif_tx_unlock_bh(dev);
  2683. } else {
  2684. nv_copy_mac_to_hw(dev);
  2685. }
  2686. return 0;
  2687. }
  2688. /*
  2689. * nv_set_multicast: dev->set_multicast function
  2690. * Called with netif_tx_lock held.
  2691. */
  2692. static void nv_set_multicast(struct net_device *dev)
  2693. {
  2694. struct fe_priv *np = netdev_priv(dev);
  2695. u8 __iomem *base = get_hwbase(dev);
  2696. u32 addr[2];
  2697. u32 mask[2];
  2698. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2699. memset(addr, 0, sizeof(addr));
  2700. memset(mask, 0, sizeof(mask));
  2701. if (dev->flags & IFF_PROMISC) {
  2702. pff |= NVREG_PFF_PROMISC;
  2703. } else {
  2704. pff |= NVREG_PFF_MYADDR;
  2705. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2706. u32 alwaysOff[2];
  2707. u32 alwaysOn[2];
  2708. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2709. if (dev->flags & IFF_ALLMULTI) {
  2710. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2711. } else {
  2712. struct dev_mc_list *walk;
  2713. walk = dev->mc_list;
  2714. while (walk != NULL) {
  2715. u32 a, b;
  2716. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2717. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2718. alwaysOn[0] &= a;
  2719. alwaysOff[0] &= ~a;
  2720. alwaysOn[1] &= b;
  2721. alwaysOff[1] &= ~b;
  2722. walk = walk->next;
  2723. }
  2724. }
  2725. addr[0] = alwaysOn[0];
  2726. addr[1] = alwaysOn[1];
  2727. mask[0] = alwaysOn[0] | alwaysOff[0];
  2728. mask[1] = alwaysOn[1] | alwaysOff[1];
  2729. } else {
  2730. mask[0] = NVREG_MCASTMASKA_NONE;
  2731. mask[1] = NVREG_MCASTMASKB_NONE;
  2732. }
  2733. }
  2734. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2735. pff |= NVREG_PFF_ALWAYS;
  2736. spin_lock_irq(&np->lock);
  2737. nv_stop_rx(dev);
  2738. writel(addr[0], base + NvRegMulticastAddrA);
  2739. writel(addr[1], base + NvRegMulticastAddrB);
  2740. writel(mask[0], base + NvRegMulticastMaskA);
  2741. writel(mask[1], base + NvRegMulticastMaskB);
  2742. writel(pff, base + NvRegPacketFilterFlags);
  2743. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2744. dev->name);
  2745. nv_start_rx(dev);
  2746. spin_unlock_irq(&np->lock);
  2747. }
  2748. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2749. {
  2750. struct fe_priv *np = netdev_priv(dev);
  2751. u8 __iomem *base = get_hwbase(dev);
  2752. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2753. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2754. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2755. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2756. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2757. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2758. } else {
  2759. writel(pff, base + NvRegPacketFilterFlags);
  2760. }
  2761. }
  2762. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2763. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2764. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2765. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2766. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2767. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2768. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2769. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2770. /* limit the number of tx pause frames to a default of 8 */
  2771. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2772. }
  2773. writel(pause_enable, base + NvRegTxPauseFrame);
  2774. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2775. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2776. } else {
  2777. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2778. writel(regmisc, base + NvRegMisc1);
  2779. }
  2780. }
  2781. }
  2782. /**
  2783. * nv_update_linkspeed: Setup the MAC according to the link partner
  2784. * @dev: Network device to be configured
  2785. *
  2786. * The function queries the PHY and checks if there is a link partner.
  2787. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2788. * set to 10 MBit HD.
  2789. *
  2790. * The function returns 0 if there is no link partner and 1 if there is
  2791. * a good link partner.
  2792. */
  2793. static int nv_update_linkspeed(struct net_device *dev)
  2794. {
  2795. struct fe_priv *np = netdev_priv(dev);
  2796. u8 __iomem *base = get_hwbase(dev);
  2797. int adv = 0;
  2798. int lpa = 0;
  2799. int adv_lpa, adv_pause, lpa_pause;
  2800. int newls = np->linkspeed;
  2801. int newdup = np->duplex;
  2802. int mii_status;
  2803. int retval = 0;
  2804. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2805. u32 txrxFlags = 0;
  2806. u32 phy_exp;
  2807. /* BMSR_LSTATUS is latched, read it twice:
  2808. * we want the current value.
  2809. */
  2810. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2811. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2812. if (!(mii_status & BMSR_LSTATUS)) {
  2813. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2814. dev->name);
  2815. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2816. newdup = 0;
  2817. retval = 0;
  2818. goto set_speed;
  2819. }
  2820. if (np->autoneg == 0) {
  2821. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2822. dev->name, np->fixed_mode);
  2823. if (np->fixed_mode & LPA_100FULL) {
  2824. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2825. newdup = 1;
  2826. } else if (np->fixed_mode & LPA_100HALF) {
  2827. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2828. newdup = 0;
  2829. } else if (np->fixed_mode & LPA_10FULL) {
  2830. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2831. newdup = 1;
  2832. } else {
  2833. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2834. newdup = 0;
  2835. }
  2836. retval = 1;
  2837. goto set_speed;
  2838. }
  2839. /* check auto negotiation is complete */
  2840. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2841. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2842. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2843. newdup = 0;
  2844. retval = 0;
  2845. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2846. goto set_speed;
  2847. }
  2848. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2849. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2850. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2851. dev->name, adv, lpa);
  2852. retval = 1;
  2853. if (np->gigabit == PHY_GIGABIT) {
  2854. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2855. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2856. if ((control_1000 & ADVERTISE_1000FULL) &&
  2857. (status_1000 & LPA_1000FULL)) {
  2858. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2859. dev->name);
  2860. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2861. newdup = 1;
  2862. goto set_speed;
  2863. }
  2864. }
  2865. /* FIXME: handle parallel detection properly */
  2866. adv_lpa = lpa & adv;
  2867. if (adv_lpa & LPA_100FULL) {
  2868. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2869. newdup = 1;
  2870. } else if (adv_lpa & LPA_100HALF) {
  2871. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2872. newdup = 0;
  2873. } else if (adv_lpa & LPA_10FULL) {
  2874. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2875. newdup = 1;
  2876. } else if (adv_lpa & LPA_10HALF) {
  2877. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2878. newdup = 0;
  2879. } else {
  2880. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2881. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2882. newdup = 0;
  2883. }
  2884. set_speed:
  2885. if (np->duplex == newdup && np->linkspeed == newls)
  2886. return retval;
  2887. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2888. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2889. np->duplex = newdup;
  2890. np->linkspeed = newls;
  2891. /* The transmitter and receiver must be restarted for safe update */
  2892. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2893. txrxFlags |= NV_RESTART_TX;
  2894. nv_stop_tx(dev);
  2895. }
  2896. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2897. txrxFlags |= NV_RESTART_RX;
  2898. nv_stop_rx(dev);
  2899. }
  2900. if (np->gigabit == PHY_GIGABIT) {
  2901. phyreg = readl(base + NvRegSlotTime);
  2902. phyreg &= ~(0x3FF00);
  2903. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2904. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2905. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2906. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2907. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2908. writel(phyreg, base + NvRegSlotTime);
  2909. }
  2910. phyreg = readl(base + NvRegPhyInterface);
  2911. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2912. if (np->duplex == 0)
  2913. phyreg |= PHY_HALF;
  2914. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2915. phyreg |= PHY_100;
  2916. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2917. phyreg |= PHY_1000;
  2918. writel(phyreg, base + NvRegPhyInterface);
  2919. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2920. if (phyreg & PHY_RGMII) {
  2921. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2922. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2923. } else {
  2924. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2925. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2926. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2927. else
  2928. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2929. } else {
  2930. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2931. }
  2932. }
  2933. } else {
  2934. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2935. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2936. else
  2937. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2938. }
  2939. writel(txreg, base + NvRegTxDeferral);
  2940. if (np->desc_ver == DESC_VER_1) {
  2941. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2942. } else {
  2943. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2944. txreg = NVREG_TX_WM_DESC2_3_1000;
  2945. else
  2946. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2947. }
  2948. writel(txreg, base + NvRegTxWatermark);
  2949. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2950. base + NvRegMisc1);
  2951. pci_push(base);
  2952. writel(np->linkspeed, base + NvRegLinkSpeed);
  2953. pci_push(base);
  2954. pause_flags = 0;
  2955. /* setup pause frame */
  2956. if (np->duplex != 0) {
  2957. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2958. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2959. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2960. switch (adv_pause) {
  2961. case ADVERTISE_PAUSE_CAP:
  2962. if (lpa_pause & LPA_PAUSE_CAP) {
  2963. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2964. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2965. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2966. }
  2967. break;
  2968. case ADVERTISE_PAUSE_ASYM:
  2969. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2970. {
  2971. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2972. }
  2973. break;
  2974. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2975. if (lpa_pause & LPA_PAUSE_CAP)
  2976. {
  2977. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2978. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2979. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2980. }
  2981. if (lpa_pause == LPA_PAUSE_ASYM)
  2982. {
  2983. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2984. }
  2985. break;
  2986. }
  2987. } else {
  2988. pause_flags = np->pause_flags;
  2989. }
  2990. }
  2991. nv_update_pause(dev, pause_flags);
  2992. if (txrxFlags & NV_RESTART_TX)
  2993. nv_start_tx(dev);
  2994. if (txrxFlags & NV_RESTART_RX)
  2995. nv_start_rx(dev);
  2996. return retval;
  2997. }
  2998. static void nv_linkchange(struct net_device *dev)
  2999. {
  3000. if (nv_update_linkspeed(dev)) {
  3001. if (!netif_carrier_ok(dev)) {
  3002. netif_carrier_on(dev);
  3003. printk(KERN_INFO "%s: link up.\n", dev->name);
  3004. nv_start_rx(dev);
  3005. }
  3006. } else {
  3007. if (netif_carrier_ok(dev)) {
  3008. netif_carrier_off(dev);
  3009. printk(KERN_INFO "%s: link down.\n", dev->name);
  3010. nv_stop_rx(dev);
  3011. }
  3012. }
  3013. }
  3014. static void nv_link_irq(struct net_device *dev)
  3015. {
  3016. u8 __iomem *base = get_hwbase(dev);
  3017. u32 miistat;
  3018. miistat = readl(base + NvRegMIIStatus);
  3019. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3020. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3021. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3022. nv_linkchange(dev);
  3023. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3024. }
  3025. static void nv_msi_workaround(struct fe_priv *np)
  3026. {
  3027. /* Need to toggle the msi irq mask within the ethernet device,
  3028. * otherwise, future interrupts will not be detected.
  3029. */
  3030. if (np->msi_flags & NV_MSI_ENABLED) {
  3031. u8 __iomem *base = np->base;
  3032. writel(0, base + NvRegMSIIrqMask);
  3033. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3034. }
  3035. }
  3036. static irqreturn_t nv_nic_irq(int foo, void *data)
  3037. {
  3038. struct net_device *dev = (struct net_device *) data;
  3039. struct fe_priv *np = netdev_priv(dev);
  3040. u8 __iomem *base = get_hwbase(dev);
  3041. u32 events;
  3042. int i;
  3043. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3044. for (i=0; ; i++) {
  3045. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3046. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3047. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3048. } else {
  3049. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3050. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3051. }
  3052. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3053. if (!(events & np->irqmask))
  3054. break;
  3055. nv_msi_workaround(np);
  3056. spin_lock(&np->lock);
  3057. nv_tx_done(dev);
  3058. spin_unlock(&np->lock);
  3059. #ifdef CONFIG_FORCEDETH_NAPI
  3060. if (events & NVREG_IRQ_RX_ALL) {
  3061. spin_lock(&np->lock);
  3062. napi_schedule(&np->napi);
  3063. /* Disable furthur receive irq's */
  3064. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3065. if (np->msi_flags & NV_MSI_X_ENABLED)
  3066. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3067. else
  3068. writel(np->irqmask, base + NvRegIrqMask);
  3069. spin_unlock(&np->lock);
  3070. }
  3071. #else
  3072. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  3073. if (unlikely(nv_alloc_rx(dev))) {
  3074. spin_lock(&np->lock);
  3075. if (!np->in_shutdown)
  3076. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3077. spin_unlock(&np->lock);
  3078. }
  3079. }
  3080. #endif
  3081. if (unlikely(events & NVREG_IRQ_LINK)) {
  3082. spin_lock(&np->lock);
  3083. nv_link_irq(dev);
  3084. spin_unlock(&np->lock);
  3085. }
  3086. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3087. spin_lock(&np->lock);
  3088. nv_linkchange(dev);
  3089. spin_unlock(&np->lock);
  3090. np->link_timeout = jiffies + LINK_TIMEOUT;
  3091. }
  3092. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3093. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3094. dev->name, events);
  3095. }
  3096. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3097. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3098. dev->name, events);
  3099. }
  3100. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3101. spin_lock(&np->lock);
  3102. /* disable interrupts on the nic */
  3103. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3104. writel(0, base + NvRegIrqMask);
  3105. else
  3106. writel(np->irqmask, base + NvRegIrqMask);
  3107. pci_push(base);
  3108. if (!np->in_shutdown) {
  3109. np->nic_poll_irq = np->irqmask;
  3110. np->recover_error = 1;
  3111. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3112. }
  3113. spin_unlock(&np->lock);
  3114. break;
  3115. }
  3116. if (unlikely(i > max_interrupt_work)) {
  3117. spin_lock(&np->lock);
  3118. /* disable interrupts on the nic */
  3119. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3120. writel(0, base + NvRegIrqMask);
  3121. else
  3122. writel(np->irqmask, base + NvRegIrqMask);
  3123. pci_push(base);
  3124. if (!np->in_shutdown) {
  3125. np->nic_poll_irq = np->irqmask;
  3126. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3127. }
  3128. spin_unlock(&np->lock);
  3129. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3130. break;
  3131. }
  3132. }
  3133. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3134. return IRQ_RETVAL(i);
  3135. }
  3136. /**
  3137. * All _optimized functions are used to help increase performance
  3138. * (reduce CPU and increase throughput). They use descripter version 3,
  3139. * compiler directives, and reduce memory accesses.
  3140. */
  3141. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3142. {
  3143. struct net_device *dev = (struct net_device *) data;
  3144. struct fe_priv *np = netdev_priv(dev);
  3145. u8 __iomem *base = get_hwbase(dev);
  3146. u32 events;
  3147. int i;
  3148. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3149. for (i=0; ; i++) {
  3150. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3151. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3152. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3153. } else {
  3154. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3155. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3156. }
  3157. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3158. if (!(events & np->irqmask))
  3159. break;
  3160. nv_msi_workaround(np);
  3161. spin_lock(&np->lock);
  3162. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3163. spin_unlock(&np->lock);
  3164. #ifdef CONFIG_FORCEDETH_NAPI
  3165. if (events & NVREG_IRQ_RX_ALL) {
  3166. spin_lock(&np->lock);
  3167. napi_schedule(&np->napi);
  3168. /* Disable furthur receive irq's */
  3169. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3170. if (np->msi_flags & NV_MSI_X_ENABLED)
  3171. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3172. else
  3173. writel(np->irqmask, base + NvRegIrqMask);
  3174. spin_unlock(&np->lock);
  3175. }
  3176. #else
  3177. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3178. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3179. spin_lock(&np->lock);
  3180. if (!np->in_shutdown)
  3181. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3182. spin_unlock(&np->lock);
  3183. }
  3184. }
  3185. #endif
  3186. if (unlikely(events & NVREG_IRQ_LINK)) {
  3187. spin_lock(&np->lock);
  3188. nv_link_irq(dev);
  3189. spin_unlock(&np->lock);
  3190. }
  3191. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3192. spin_lock(&np->lock);
  3193. nv_linkchange(dev);
  3194. spin_unlock(&np->lock);
  3195. np->link_timeout = jiffies + LINK_TIMEOUT;
  3196. }
  3197. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3198. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3199. dev->name, events);
  3200. }
  3201. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3202. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3203. dev->name, events);
  3204. }
  3205. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3206. spin_lock(&np->lock);
  3207. /* disable interrupts on the nic */
  3208. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3209. writel(0, base + NvRegIrqMask);
  3210. else
  3211. writel(np->irqmask, base + NvRegIrqMask);
  3212. pci_push(base);
  3213. if (!np->in_shutdown) {
  3214. np->nic_poll_irq = np->irqmask;
  3215. np->recover_error = 1;
  3216. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3217. }
  3218. spin_unlock(&np->lock);
  3219. break;
  3220. }
  3221. if (unlikely(i > max_interrupt_work)) {
  3222. spin_lock(&np->lock);
  3223. /* disable interrupts on the nic */
  3224. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3225. writel(0, base + NvRegIrqMask);
  3226. else
  3227. writel(np->irqmask, base + NvRegIrqMask);
  3228. pci_push(base);
  3229. if (!np->in_shutdown) {
  3230. np->nic_poll_irq = np->irqmask;
  3231. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3232. }
  3233. spin_unlock(&np->lock);
  3234. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3235. break;
  3236. }
  3237. }
  3238. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3239. return IRQ_RETVAL(i);
  3240. }
  3241. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3242. {
  3243. struct net_device *dev = (struct net_device *) data;
  3244. struct fe_priv *np = netdev_priv(dev);
  3245. u8 __iomem *base = get_hwbase(dev);
  3246. u32 events;
  3247. int i;
  3248. unsigned long flags;
  3249. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3250. for (i=0; ; i++) {
  3251. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3252. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3253. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3254. if (!(events & np->irqmask))
  3255. break;
  3256. spin_lock_irqsave(&np->lock, flags);
  3257. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3258. spin_unlock_irqrestore(&np->lock, flags);
  3259. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3260. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3261. dev->name, events);
  3262. }
  3263. if (unlikely(i > max_interrupt_work)) {
  3264. spin_lock_irqsave(&np->lock, flags);
  3265. /* disable interrupts on the nic */
  3266. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3267. pci_push(base);
  3268. if (!np->in_shutdown) {
  3269. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3270. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3271. }
  3272. spin_unlock_irqrestore(&np->lock, flags);
  3273. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3274. break;
  3275. }
  3276. }
  3277. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3278. return IRQ_RETVAL(i);
  3279. }
  3280. #ifdef CONFIG_FORCEDETH_NAPI
  3281. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3282. {
  3283. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3284. struct net_device *dev = np->dev;
  3285. u8 __iomem *base = get_hwbase(dev);
  3286. unsigned long flags;
  3287. int pkts, retcode;
  3288. if (!nv_optimized(np)) {
  3289. pkts = nv_rx_process(dev, budget);
  3290. retcode = nv_alloc_rx(dev);
  3291. } else {
  3292. pkts = nv_rx_process_optimized(dev, budget);
  3293. retcode = nv_alloc_rx_optimized(dev);
  3294. }
  3295. if (retcode) {
  3296. spin_lock_irqsave(&np->lock, flags);
  3297. if (!np->in_shutdown)
  3298. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3299. spin_unlock_irqrestore(&np->lock, flags);
  3300. }
  3301. if (pkts < budget) {
  3302. /* re-enable receive interrupts */
  3303. spin_lock_irqsave(&np->lock, flags);
  3304. __napi_complete(napi);
  3305. np->irqmask |= NVREG_IRQ_RX_ALL;
  3306. if (np->msi_flags & NV_MSI_X_ENABLED)
  3307. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3308. else
  3309. writel(np->irqmask, base + NvRegIrqMask);
  3310. spin_unlock_irqrestore(&np->lock, flags);
  3311. }
  3312. return pkts;
  3313. }
  3314. #endif
  3315. #ifdef CONFIG_FORCEDETH_NAPI
  3316. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3317. {
  3318. struct net_device *dev = (struct net_device *) data;
  3319. struct fe_priv *np = netdev_priv(dev);
  3320. u8 __iomem *base = get_hwbase(dev);
  3321. u32 events;
  3322. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3323. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3324. if (events) {
  3325. napi_schedule(&np->napi);
  3326. /* disable receive interrupts on the nic */
  3327. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3328. pci_push(base);
  3329. }
  3330. return IRQ_HANDLED;
  3331. }
  3332. #else
  3333. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3334. {
  3335. struct net_device *dev = (struct net_device *) data;
  3336. struct fe_priv *np = netdev_priv(dev);
  3337. u8 __iomem *base = get_hwbase(dev);
  3338. u32 events;
  3339. int i;
  3340. unsigned long flags;
  3341. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3342. for (i=0; ; i++) {
  3343. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3344. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3345. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3346. if (!(events & np->irqmask))
  3347. break;
  3348. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3349. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3350. spin_lock_irqsave(&np->lock, flags);
  3351. if (!np->in_shutdown)
  3352. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3353. spin_unlock_irqrestore(&np->lock, flags);
  3354. }
  3355. }
  3356. if (unlikely(i > max_interrupt_work)) {
  3357. spin_lock_irqsave(&np->lock, flags);
  3358. /* disable interrupts on the nic */
  3359. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3360. pci_push(base);
  3361. if (!np->in_shutdown) {
  3362. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3363. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3364. }
  3365. spin_unlock_irqrestore(&np->lock, flags);
  3366. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3367. break;
  3368. }
  3369. }
  3370. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3371. return IRQ_RETVAL(i);
  3372. }
  3373. #endif
  3374. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3375. {
  3376. struct net_device *dev = (struct net_device *) data;
  3377. struct fe_priv *np = netdev_priv(dev);
  3378. u8 __iomem *base = get_hwbase(dev);
  3379. u32 events;
  3380. int i;
  3381. unsigned long flags;
  3382. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3383. for (i=0; ; i++) {
  3384. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3385. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3386. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3387. if (!(events & np->irqmask))
  3388. break;
  3389. /* check tx in case we reached max loop limit in tx isr */
  3390. spin_lock_irqsave(&np->lock, flags);
  3391. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3392. spin_unlock_irqrestore(&np->lock, flags);
  3393. if (events & NVREG_IRQ_LINK) {
  3394. spin_lock_irqsave(&np->lock, flags);
  3395. nv_link_irq(dev);
  3396. spin_unlock_irqrestore(&np->lock, flags);
  3397. }
  3398. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3399. spin_lock_irqsave(&np->lock, flags);
  3400. nv_linkchange(dev);
  3401. spin_unlock_irqrestore(&np->lock, flags);
  3402. np->link_timeout = jiffies + LINK_TIMEOUT;
  3403. }
  3404. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3405. spin_lock_irq(&np->lock);
  3406. /* disable interrupts on the nic */
  3407. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3408. pci_push(base);
  3409. if (!np->in_shutdown) {
  3410. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3411. np->recover_error = 1;
  3412. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3413. }
  3414. spin_unlock_irq(&np->lock);
  3415. break;
  3416. }
  3417. if (events & (NVREG_IRQ_UNKNOWN)) {
  3418. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3419. dev->name, events);
  3420. }
  3421. if (unlikely(i > max_interrupt_work)) {
  3422. spin_lock_irqsave(&np->lock, flags);
  3423. /* disable interrupts on the nic */
  3424. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3425. pci_push(base);
  3426. if (!np->in_shutdown) {
  3427. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3428. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3429. }
  3430. spin_unlock_irqrestore(&np->lock, flags);
  3431. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3432. break;
  3433. }
  3434. }
  3435. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3436. return IRQ_RETVAL(i);
  3437. }
  3438. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3439. {
  3440. struct net_device *dev = (struct net_device *) data;
  3441. struct fe_priv *np = netdev_priv(dev);
  3442. u8 __iomem *base = get_hwbase(dev);
  3443. u32 events;
  3444. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3445. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3446. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3447. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3448. } else {
  3449. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3450. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3451. }
  3452. pci_push(base);
  3453. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3454. if (!(events & NVREG_IRQ_TIMER))
  3455. return IRQ_RETVAL(0);
  3456. nv_msi_workaround(np);
  3457. spin_lock(&np->lock);
  3458. np->intr_test = 1;
  3459. spin_unlock(&np->lock);
  3460. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3461. return IRQ_RETVAL(1);
  3462. }
  3463. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3464. {
  3465. u8 __iomem *base = get_hwbase(dev);
  3466. int i;
  3467. u32 msixmap = 0;
  3468. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3469. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3470. * the remaining 8 interrupts.
  3471. */
  3472. for (i = 0; i < 8; i++) {
  3473. if ((irqmask >> i) & 0x1) {
  3474. msixmap |= vector << (i << 2);
  3475. }
  3476. }
  3477. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3478. msixmap = 0;
  3479. for (i = 0; i < 8; i++) {
  3480. if ((irqmask >> (i + 8)) & 0x1) {
  3481. msixmap |= vector << (i << 2);
  3482. }
  3483. }
  3484. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3485. }
  3486. static int nv_request_irq(struct net_device *dev, int intr_test)
  3487. {
  3488. struct fe_priv *np = get_nvpriv(dev);
  3489. u8 __iomem *base = get_hwbase(dev);
  3490. int ret = 1;
  3491. int i;
  3492. irqreturn_t (*handler)(int foo, void *data);
  3493. if (intr_test) {
  3494. handler = nv_nic_irq_test;
  3495. } else {
  3496. if (nv_optimized(np))
  3497. handler = nv_nic_irq_optimized;
  3498. else
  3499. handler = nv_nic_irq;
  3500. }
  3501. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3502. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3503. np->msi_x_entry[i].entry = i;
  3504. }
  3505. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3506. np->msi_flags |= NV_MSI_X_ENABLED;
  3507. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3508. /* Request irq for rx handling */
  3509. sprintf(np->name_rx, "%s-rx", dev->name);
  3510. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3511. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3512. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3513. pci_disable_msix(np->pci_dev);
  3514. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3515. goto out_err;
  3516. }
  3517. /* Request irq for tx handling */
  3518. sprintf(np->name_tx, "%s-tx", dev->name);
  3519. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3520. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3521. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3522. pci_disable_msix(np->pci_dev);
  3523. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3524. goto out_free_rx;
  3525. }
  3526. /* Request irq for link and timer handling */
  3527. sprintf(np->name_other, "%s-other", dev->name);
  3528. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3529. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3530. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3531. pci_disable_msix(np->pci_dev);
  3532. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3533. goto out_free_tx;
  3534. }
  3535. /* map interrupts to their respective vector */
  3536. writel(0, base + NvRegMSIXMap0);
  3537. writel(0, base + NvRegMSIXMap1);
  3538. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3539. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3540. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3541. } else {
  3542. /* Request irq for all interrupts */
  3543. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3544. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3545. pci_disable_msix(np->pci_dev);
  3546. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3547. goto out_err;
  3548. }
  3549. /* map interrupts to vector 0 */
  3550. writel(0, base + NvRegMSIXMap0);
  3551. writel(0, base + NvRegMSIXMap1);
  3552. }
  3553. }
  3554. }
  3555. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3556. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3557. np->msi_flags |= NV_MSI_ENABLED;
  3558. dev->irq = np->pci_dev->irq;
  3559. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3560. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3561. pci_disable_msi(np->pci_dev);
  3562. np->msi_flags &= ~NV_MSI_ENABLED;
  3563. dev->irq = np->pci_dev->irq;
  3564. goto out_err;
  3565. }
  3566. /* map interrupts to vector 0 */
  3567. writel(0, base + NvRegMSIMap0);
  3568. writel(0, base + NvRegMSIMap1);
  3569. /* enable msi vector 0 */
  3570. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3571. }
  3572. }
  3573. if (ret != 0) {
  3574. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3575. goto out_err;
  3576. }
  3577. return 0;
  3578. out_free_tx:
  3579. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3580. out_free_rx:
  3581. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3582. out_err:
  3583. return 1;
  3584. }
  3585. static void nv_free_irq(struct net_device *dev)
  3586. {
  3587. struct fe_priv *np = get_nvpriv(dev);
  3588. int i;
  3589. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3590. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3591. free_irq(np->msi_x_entry[i].vector, dev);
  3592. }
  3593. pci_disable_msix(np->pci_dev);
  3594. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3595. } else {
  3596. free_irq(np->pci_dev->irq, dev);
  3597. if (np->msi_flags & NV_MSI_ENABLED) {
  3598. pci_disable_msi(np->pci_dev);
  3599. np->msi_flags &= ~NV_MSI_ENABLED;
  3600. }
  3601. }
  3602. }
  3603. static void nv_do_nic_poll(unsigned long data)
  3604. {
  3605. struct net_device *dev = (struct net_device *) data;
  3606. struct fe_priv *np = netdev_priv(dev);
  3607. u8 __iomem *base = get_hwbase(dev);
  3608. u32 mask = 0;
  3609. /*
  3610. * First disable irq(s) and then
  3611. * reenable interrupts on the nic, we have to do this before calling
  3612. * nv_nic_irq because that may decide to do otherwise
  3613. */
  3614. if (!using_multi_irqs(dev)) {
  3615. if (np->msi_flags & NV_MSI_X_ENABLED)
  3616. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3617. else
  3618. disable_irq_lockdep(np->pci_dev->irq);
  3619. mask = np->irqmask;
  3620. } else {
  3621. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3622. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3623. mask |= NVREG_IRQ_RX_ALL;
  3624. }
  3625. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3626. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3627. mask |= NVREG_IRQ_TX_ALL;
  3628. }
  3629. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3630. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3631. mask |= NVREG_IRQ_OTHER;
  3632. }
  3633. }
  3634. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3635. if (np->recover_error) {
  3636. np->recover_error = 0;
  3637. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3638. if (netif_running(dev)) {
  3639. netif_tx_lock_bh(dev);
  3640. netif_addr_lock(dev);
  3641. spin_lock(&np->lock);
  3642. /* stop engines */
  3643. nv_stop_rxtx(dev);
  3644. nv_txrx_reset(dev);
  3645. /* drain rx queue */
  3646. nv_drain_rxtx(dev);
  3647. /* reinit driver view of the rx queue */
  3648. set_bufsize(dev);
  3649. if (nv_init_ring(dev)) {
  3650. if (!np->in_shutdown)
  3651. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3652. }
  3653. /* reinit nic view of the rx queue */
  3654. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3655. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3656. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3657. base + NvRegRingSizes);
  3658. pci_push(base);
  3659. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3660. pci_push(base);
  3661. /* restart rx engine */
  3662. nv_start_rxtx(dev);
  3663. spin_unlock(&np->lock);
  3664. netif_addr_unlock(dev);
  3665. netif_tx_unlock_bh(dev);
  3666. }
  3667. }
  3668. writel(mask, base + NvRegIrqMask);
  3669. pci_push(base);
  3670. if (!using_multi_irqs(dev)) {
  3671. np->nic_poll_irq = 0;
  3672. if (nv_optimized(np))
  3673. nv_nic_irq_optimized(0, dev);
  3674. else
  3675. nv_nic_irq(0, dev);
  3676. if (np->msi_flags & NV_MSI_X_ENABLED)
  3677. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3678. else
  3679. enable_irq_lockdep(np->pci_dev->irq);
  3680. } else {
  3681. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3682. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3683. nv_nic_irq_rx(0, dev);
  3684. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3685. }
  3686. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3687. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3688. nv_nic_irq_tx(0, dev);
  3689. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3690. }
  3691. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3692. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3693. nv_nic_irq_other(0, dev);
  3694. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3695. }
  3696. }
  3697. }
  3698. #ifdef CONFIG_NET_POLL_CONTROLLER
  3699. static void nv_poll_controller(struct net_device *dev)
  3700. {
  3701. nv_do_nic_poll((unsigned long) dev);
  3702. }
  3703. #endif
  3704. static void nv_do_stats_poll(unsigned long data)
  3705. {
  3706. struct net_device *dev = (struct net_device *) data;
  3707. struct fe_priv *np = netdev_priv(dev);
  3708. nv_get_hw_stats(dev);
  3709. if (!np->in_shutdown)
  3710. mod_timer(&np->stats_poll,
  3711. round_jiffies(jiffies + STATS_INTERVAL));
  3712. }
  3713. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3714. {
  3715. struct fe_priv *np = netdev_priv(dev);
  3716. strcpy(info->driver, DRV_NAME);
  3717. strcpy(info->version, FORCEDETH_VERSION);
  3718. strcpy(info->bus_info, pci_name(np->pci_dev));
  3719. }
  3720. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3721. {
  3722. struct fe_priv *np = netdev_priv(dev);
  3723. wolinfo->supported = WAKE_MAGIC;
  3724. spin_lock_irq(&np->lock);
  3725. if (np->wolenabled)
  3726. wolinfo->wolopts = WAKE_MAGIC;
  3727. spin_unlock_irq(&np->lock);
  3728. }
  3729. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3730. {
  3731. struct fe_priv *np = netdev_priv(dev);
  3732. u8 __iomem *base = get_hwbase(dev);
  3733. u32 flags = 0;
  3734. if (wolinfo->wolopts == 0) {
  3735. np->wolenabled = 0;
  3736. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3737. np->wolenabled = 1;
  3738. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3739. }
  3740. if (netif_running(dev)) {
  3741. spin_lock_irq(&np->lock);
  3742. writel(flags, base + NvRegWakeUpFlags);
  3743. spin_unlock_irq(&np->lock);
  3744. }
  3745. return 0;
  3746. }
  3747. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3748. {
  3749. struct fe_priv *np = netdev_priv(dev);
  3750. int adv;
  3751. spin_lock_irq(&np->lock);
  3752. ecmd->port = PORT_MII;
  3753. if (!netif_running(dev)) {
  3754. /* We do not track link speed / duplex setting if the
  3755. * interface is disabled. Force a link check */
  3756. if (nv_update_linkspeed(dev)) {
  3757. if (!netif_carrier_ok(dev))
  3758. netif_carrier_on(dev);
  3759. } else {
  3760. if (netif_carrier_ok(dev))
  3761. netif_carrier_off(dev);
  3762. }
  3763. }
  3764. if (netif_carrier_ok(dev)) {
  3765. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3766. case NVREG_LINKSPEED_10:
  3767. ecmd->speed = SPEED_10;
  3768. break;
  3769. case NVREG_LINKSPEED_100:
  3770. ecmd->speed = SPEED_100;
  3771. break;
  3772. case NVREG_LINKSPEED_1000:
  3773. ecmd->speed = SPEED_1000;
  3774. break;
  3775. }
  3776. ecmd->duplex = DUPLEX_HALF;
  3777. if (np->duplex)
  3778. ecmd->duplex = DUPLEX_FULL;
  3779. } else {
  3780. ecmd->speed = -1;
  3781. ecmd->duplex = -1;
  3782. }
  3783. ecmd->autoneg = np->autoneg;
  3784. ecmd->advertising = ADVERTISED_MII;
  3785. if (np->autoneg) {
  3786. ecmd->advertising |= ADVERTISED_Autoneg;
  3787. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3788. if (adv & ADVERTISE_10HALF)
  3789. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3790. if (adv & ADVERTISE_10FULL)
  3791. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3792. if (adv & ADVERTISE_100HALF)
  3793. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3794. if (adv & ADVERTISE_100FULL)
  3795. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3796. if (np->gigabit == PHY_GIGABIT) {
  3797. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3798. if (adv & ADVERTISE_1000FULL)
  3799. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3800. }
  3801. }
  3802. ecmd->supported = (SUPPORTED_Autoneg |
  3803. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3804. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3805. SUPPORTED_MII);
  3806. if (np->gigabit == PHY_GIGABIT)
  3807. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3808. ecmd->phy_address = np->phyaddr;
  3809. ecmd->transceiver = XCVR_EXTERNAL;
  3810. /* ignore maxtxpkt, maxrxpkt for now */
  3811. spin_unlock_irq(&np->lock);
  3812. return 0;
  3813. }
  3814. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3815. {
  3816. struct fe_priv *np = netdev_priv(dev);
  3817. if (ecmd->port != PORT_MII)
  3818. return -EINVAL;
  3819. if (ecmd->transceiver != XCVR_EXTERNAL)
  3820. return -EINVAL;
  3821. if (ecmd->phy_address != np->phyaddr) {
  3822. /* TODO: support switching between multiple phys. Should be
  3823. * trivial, but not enabled due to lack of test hardware. */
  3824. return -EINVAL;
  3825. }
  3826. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3827. u32 mask;
  3828. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3829. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3830. if (np->gigabit == PHY_GIGABIT)
  3831. mask |= ADVERTISED_1000baseT_Full;
  3832. if ((ecmd->advertising & mask) == 0)
  3833. return -EINVAL;
  3834. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3835. /* Note: autonegotiation disable, speed 1000 intentionally
  3836. * forbidden - noone should need that. */
  3837. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3838. return -EINVAL;
  3839. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3840. return -EINVAL;
  3841. } else {
  3842. return -EINVAL;
  3843. }
  3844. netif_carrier_off(dev);
  3845. if (netif_running(dev)) {
  3846. unsigned long flags;
  3847. nv_disable_irq(dev);
  3848. netif_tx_lock_bh(dev);
  3849. netif_addr_lock(dev);
  3850. /* with plain spinlock lockdep complains */
  3851. spin_lock_irqsave(&np->lock, flags);
  3852. /* stop engines */
  3853. /* FIXME:
  3854. * this can take some time, and interrupts are disabled
  3855. * due to spin_lock_irqsave, but let's hope no daemon
  3856. * is going to change the settings very often...
  3857. * Worst case:
  3858. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3859. * + some minor delays, which is up to a second approximately
  3860. */
  3861. nv_stop_rxtx(dev);
  3862. spin_unlock_irqrestore(&np->lock, flags);
  3863. netif_addr_unlock(dev);
  3864. netif_tx_unlock_bh(dev);
  3865. }
  3866. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3867. int adv, bmcr;
  3868. np->autoneg = 1;
  3869. /* advertise only what has been requested */
  3870. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3871. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3872. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3873. adv |= ADVERTISE_10HALF;
  3874. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3875. adv |= ADVERTISE_10FULL;
  3876. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3877. adv |= ADVERTISE_100HALF;
  3878. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3879. adv |= ADVERTISE_100FULL;
  3880. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3881. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3882. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3883. adv |= ADVERTISE_PAUSE_ASYM;
  3884. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3885. if (np->gigabit == PHY_GIGABIT) {
  3886. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3887. adv &= ~ADVERTISE_1000FULL;
  3888. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3889. adv |= ADVERTISE_1000FULL;
  3890. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3891. }
  3892. if (netif_running(dev))
  3893. printk(KERN_INFO "%s: link down.\n", dev->name);
  3894. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3895. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3896. bmcr |= BMCR_ANENABLE;
  3897. /* reset the phy in order for settings to stick,
  3898. * and cause autoneg to start */
  3899. if (phy_reset(dev, bmcr)) {
  3900. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3901. return -EINVAL;
  3902. }
  3903. } else {
  3904. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3905. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3906. }
  3907. } else {
  3908. int adv, bmcr;
  3909. np->autoneg = 0;
  3910. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3911. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3912. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3913. adv |= ADVERTISE_10HALF;
  3914. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3915. adv |= ADVERTISE_10FULL;
  3916. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3917. adv |= ADVERTISE_100HALF;
  3918. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3919. adv |= ADVERTISE_100FULL;
  3920. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3921. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3922. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3923. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3924. }
  3925. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3926. adv |= ADVERTISE_PAUSE_ASYM;
  3927. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3928. }
  3929. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3930. np->fixed_mode = adv;
  3931. if (np->gigabit == PHY_GIGABIT) {
  3932. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3933. adv &= ~ADVERTISE_1000FULL;
  3934. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3935. }
  3936. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3937. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3938. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3939. bmcr |= BMCR_FULLDPLX;
  3940. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3941. bmcr |= BMCR_SPEED100;
  3942. if (np->phy_oui == PHY_OUI_MARVELL) {
  3943. /* reset the phy in order for forced mode settings to stick */
  3944. if (phy_reset(dev, bmcr)) {
  3945. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3946. return -EINVAL;
  3947. }
  3948. } else {
  3949. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3950. if (netif_running(dev)) {
  3951. /* Wait a bit and then reconfigure the nic. */
  3952. udelay(10);
  3953. nv_linkchange(dev);
  3954. }
  3955. }
  3956. }
  3957. if (netif_running(dev)) {
  3958. nv_start_rxtx(dev);
  3959. nv_enable_irq(dev);
  3960. }
  3961. return 0;
  3962. }
  3963. #define FORCEDETH_REGS_VER 1
  3964. static int nv_get_regs_len(struct net_device *dev)
  3965. {
  3966. struct fe_priv *np = netdev_priv(dev);
  3967. return np->register_size;
  3968. }
  3969. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3970. {
  3971. struct fe_priv *np = netdev_priv(dev);
  3972. u8 __iomem *base = get_hwbase(dev);
  3973. u32 *rbuf = buf;
  3974. int i;
  3975. regs->version = FORCEDETH_REGS_VER;
  3976. spin_lock_irq(&np->lock);
  3977. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3978. rbuf[i] = readl(base + i*sizeof(u32));
  3979. spin_unlock_irq(&np->lock);
  3980. }
  3981. static int nv_nway_reset(struct net_device *dev)
  3982. {
  3983. struct fe_priv *np = netdev_priv(dev);
  3984. int ret;
  3985. if (np->autoneg) {
  3986. int bmcr;
  3987. netif_carrier_off(dev);
  3988. if (netif_running(dev)) {
  3989. nv_disable_irq(dev);
  3990. netif_tx_lock_bh(dev);
  3991. netif_addr_lock(dev);
  3992. spin_lock(&np->lock);
  3993. /* stop engines */
  3994. nv_stop_rxtx(dev);
  3995. spin_unlock(&np->lock);
  3996. netif_addr_unlock(dev);
  3997. netif_tx_unlock_bh(dev);
  3998. printk(KERN_INFO "%s: link down.\n", dev->name);
  3999. }
  4000. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4001. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4002. bmcr |= BMCR_ANENABLE;
  4003. /* reset the phy in order for settings to stick*/
  4004. if (phy_reset(dev, bmcr)) {
  4005. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4006. return -EINVAL;
  4007. }
  4008. } else {
  4009. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4010. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4011. }
  4012. if (netif_running(dev)) {
  4013. nv_start_rxtx(dev);
  4014. nv_enable_irq(dev);
  4015. }
  4016. ret = 0;
  4017. } else {
  4018. ret = -EINVAL;
  4019. }
  4020. return ret;
  4021. }
  4022. static int nv_set_tso(struct net_device *dev, u32 value)
  4023. {
  4024. struct fe_priv *np = netdev_priv(dev);
  4025. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4026. return ethtool_op_set_tso(dev, value);
  4027. else
  4028. return -EOPNOTSUPP;
  4029. }
  4030. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4031. {
  4032. struct fe_priv *np = netdev_priv(dev);
  4033. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4034. ring->rx_mini_max_pending = 0;
  4035. ring->rx_jumbo_max_pending = 0;
  4036. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4037. ring->rx_pending = np->rx_ring_size;
  4038. ring->rx_mini_pending = 0;
  4039. ring->rx_jumbo_pending = 0;
  4040. ring->tx_pending = np->tx_ring_size;
  4041. }
  4042. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4043. {
  4044. struct fe_priv *np = netdev_priv(dev);
  4045. u8 __iomem *base = get_hwbase(dev);
  4046. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4047. dma_addr_t ring_addr;
  4048. if (ring->rx_pending < RX_RING_MIN ||
  4049. ring->tx_pending < TX_RING_MIN ||
  4050. ring->rx_mini_pending != 0 ||
  4051. ring->rx_jumbo_pending != 0 ||
  4052. (np->desc_ver == DESC_VER_1 &&
  4053. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4054. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4055. (np->desc_ver != DESC_VER_1 &&
  4056. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4057. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4058. return -EINVAL;
  4059. }
  4060. /* allocate new rings */
  4061. if (!nv_optimized(np)) {
  4062. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4063. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4064. &ring_addr);
  4065. } else {
  4066. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4067. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4068. &ring_addr);
  4069. }
  4070. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4071. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4072. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4073. /* fall back to old rings */
  4074. if (!nv_optimized(np)) {
  4075. if (rxtx_ring)
  4076. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4077. rxtx_ring, ring_addr);
  4078. } else {
  4079. if (rxtx_ring)
  4080. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4081. rxtx_ring, ring_addr);
  4082. }
  4083. if (rx_skbuff)
  4084. kfree(rx_skbuff);
  4085. if (tx_skbuff)
  4086. kfree(tx_skbuff);
  4087. goto exit;
  4088. }
  4089. if (netif_running(dev)) {
  4090. nv_disable_irq(dev);
  4091. netif_tx_lock_bh(dev);
  4092. netif_addr_lock(dev);
  4093. spin_lock(&np->lock);
  4094. /* stop engines */
  4095. nv_stop_rxtx(dev);
  4096. nv_txrx_reset(dev);
  4097. /* drain queues */
  4098. nv_drain_rxtx(dev);
  4099. /* delete queues */
  4100. free_rings(dev);
  4101. }
  4102. /* set new values */
  4103. np->rx_ring_size = ring->rx_pending;
  4104. np->tx_ring_size = ring->tx_pending;
  4105. if (!nv_optimized(np)) {
  4106. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4107. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4108. } else {
  4109. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4110. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4111. }
  4112. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4113. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4114. np->ring_addr = ring_addr;
  4115. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4116. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4117. if (netif_running(dev)) {
  4118. /* reinit driver view of the queues */
  4119. set_bufsize(dev);
  4120. if (nv_init_ring(dev)) {
  4121. if (!np->in_shutdown)
  4122. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4123. }
  4124. /* reinit nic view of the queues */
  4125. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4126. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4127. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4128. base + NvRegRingSizes);
  4129. pci_push(base);
  4130. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4131. pci_push(base);
  4132. /* restart engines */
  4133. nv_start_rxtx(dev);
  4134. spin_unlock(&np->lock);
  4135. netif_addr_unlock(dev);
  4136. netif_tx_unlock_bh(dev);
  4137. nv_enable_irq(dev);
  4138. }
  4139. return 0;
  4140. exit:
  4141. return -ENOMEM;
  4142. }
  4143. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4144. {
  4145. struct fe_priv *np = netdev_priv(dev);
  4146. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4147. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4148. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4149. }
  4150. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4151. {
  4152. struct fe_priv *np = netdev_priv(dev);
  4153. int adv, bmcr;
  4154. if ((!np->autoneg && np->duplex == 0) ||
  4155. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4156. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4157. dev->name);
  4158. return -EINVAL;
  4159. }
  4160. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4161. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4162. return -EINVAL;
  4163. }
  4164. netif_carrier_off(dev);
  4165. if (netif_running(dev)) {
  4166. nv_disable_irq(dev);
  4167. netif_tx_lock_bh(dev);
  4168. netif_addr_lock(dev);
  4169. spin_lock(&np->lock);
  4170. /* stop engines */
  4171. nv_stop_rxtx(dev);
  4172. spin_unlock(&np->lock);
  4173. netif_addr_unlock(dev);
  4174. netif_tx_unlock_bh(dev);
  4175. }
  4176. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4177. if (pause->rx_pause)
  4178. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4179. if (pause->tx_pause)
  4180. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4181. if (np->autoneg && pause->autoneg) {
  4182. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4183. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4184. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4185. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4186. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4187. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4188. adv |= ADVERTISE_PAUSE_ASYM;
  4189. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4190. if (netif_running(dev))
  4191. printk(KERN_INFO "%s: link down.\n", dev->name);
  4192. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4193. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4194. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4195. } else {
  4196. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4197. if (pause->rx_pause)
  4198. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4199. if (pause->tx_pause)
  4200. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4201. if (!netif_running(dev))
  4202. nv_update_linkspeed(dev);
  4203. else
  4204. nv_update_pause(dev, np->pause_flags);
  4205. }
  4206. if (netif_running(dev)) {
  4207. nv_start_rxtx(dev);
  4208. nv_enable_irq(dev);
  4209. }
  4210. return 0;
  4211. }
  4212. static u32 nv_get_rx_csum(struct net_device *dev)
  4213. {
  4214. struct fe_priv *np = netdev_priv(dev);
  4215. return (np->rx_csum) != 0;
  4216. }
  4217. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4218. {
  4219. struct fe_priv *np = netdev_priv(dev);
  4220. u8 __iomem *base = get_hwbase(dev);
  4221. int retcode = 0;
  4222. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4223. if (data) {
  4224. np->rx_csum = 1;
  4225. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4226. } else {
  4227. np->rx_csum = 0;
  4228. /* vlan is dependent on rx checksum offload */
  4229. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4230. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4231. }
  4232. if (netif_running(dev)) {
  4233. spin_lock_irq(&np->lock);
  4234. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4235. spin_unlock_irq(&np->lock);
  4236. }
  4237. } else {
  4238. return -EINVAL;
  4239. }
  4240. return retcode;
  4241. }
  4242. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4243. {
  4244. struct fe_priv *np = netdev_priv(dev);
  4245. if (np->driver_data & DEV_HAS_CHECKSUM)
  4246. return ethtool_op_set_tx_hw_csum(dev, data);
  4247. else
  4248. return -EOPNOTSUPP;
  4249. }
  4250. static int nv_set_sg(struct net_device *dev, u32 data)
  4251. {
  4252. struct fe_priv *np = netdev_priv(dev);
  4253. if (np->driver_data & DEV_HAS_CHECKSUM)
  4254. return ethtool_op_set_sg(dev, data);
  4255. else
  4256. return -EOPNOTSUPP;
  4257. }
  4258. static int nv_get_sset_count(struct net_device *dev, int sset)
  4259. {
  4260. struct fe_priv *np = netdev_priv(dev);
  4261. switch (sset) {
  4262. case ETH_SS_TEST:
  4263. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4264. return NV_TEST_COUNT_EXTENDED;
  4265. else
  4266. return NV_TEST_COUNT_BASE;
  4267. case ETH_SS_STATS:
  4268. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4269. return NV_DEV_STATISTICS_V1_COUNT;
  4270. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4271. return NV_DEV_STATISTICS_V2_COUNT;
  4272. else if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4273. return NV_DEV_STATISTICS_V3_COUNT;
  4274. else
  4275. return 0;
  4276. default:
  4277. return -EOPNOTSUPP;
  4278. }
  4279. }
  4280. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4281. {
  4282. struct fe_priv *np = netdev_priv(dev);
  4283. /* update stats */
  4284. nv_do_stats_poll((unsigned long)dev);
  4285. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4286. }
  4287. static int nv_link_test(struct net_device *dev)
  4288. {
  4289. struct fe_priv *np = netdev_priv(dev);
  4290. int mii_status;
  4291. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4292. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4293. /* check phy link status */
  4294. if (!(mii_status & BMSR_LSTATUS))
  4295. return 0;
  4296. else
  4297. return 1;
  4298. }
  4299. static int nv_register_test(struct net_device *dev)
  4300. {
  4301. u8 __iomem *base = get_hwbase(dev);
  4302. int i = 0;
  4303. u32 orig_read, new_read;
  4304. do {
  4305. orig_read = readl(base + nv_registers_test[i].reg);
  4306. /* xor with mask to toggle bits */
  4307. orig_read ^= nv_registers_test[i].mask;
  4308. writel(orig_read, base + nv_registers_test[i].reg);
  4309. new_read = readl(base + nv_registers_test[i].reg);
  4310. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4311. return 0;
  4312. /* restore original value */
  4313. orig_read ^= nv_registers_test[i].mask;
  4314. writel(orig_read, base + nv_registers_test[i].reg);
  4315. } while (nv_registers_test[++i].reg != 0);
  4316. return 1;
  4317. }
  4318. static int nv_interrupt_test(struct net_device *dev)
  4319. {
  4320. struct fe_priv *np = netdev_priv(dev);
  4321. u8 __iomem *base = get_hwbase(dev);
  4322. int ret = 1;
  4323. int testcnt;
  4324. u32 save_msi_flags, save_poll_interval = 0;
  4325. if (netif_running(dev)) {
  4326. /* free current irq */
  4327. nv_free_irq(dev);
  4328. save_poll_interval = readl(base+NvRegPollingInterval);
  4329. }
  4330. /* flag to test interrupt handler */
  4331. np->intr_test = 0;
  4332. /* setup test irq */
  4333. save_msi_flags = np->msi_flags;
  4334. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4335. np->msi_flags |= 0x001; /* setup 1 vector */
  4336. if (nv_request_irq(dev, 1))
  4337. return 0;
  4338. /* setup timer interrupt */
  4339. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4340. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4341. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4342. /* wait for at least one interrupt */
  4343. msleep(100);
  4344. spin_lock_irq(&np->lock);
  4345. /* flag should be set within ISR */
  4346. testcnt = np->intr_test;
  4347. if (!testcnt)
  4348. ret = 2;
  4349. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4350. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4351. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4352. else
  4353. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4354. spin_unlock_irq(&np->lock);
  4355. nv_free_irq(dev);
  4356. np->msi_flags = save_msi_flags;
  4357. if (netif_running(dev)) {
  4358. writel(save_poll_interval, base + NvRegPollingInterval);
  4359. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4360. /* restore original irq */
  4361. if (nv_request_irq(dev, 0))
  4362. return 0;
  4363. }
  4364. return ret;
  4365. }
  4366. static int nv_loopback_test(struct net_device *dev)
  4367. {
  4368. struct fe_priv *np = netdev_priv(dev);
  4369. u8 __iomem *base = get_hwbase(dev);
  4370. struct sk_buff *tx_skb, *rx_skb;
  4371. dma_addr_t test_dma_addr;
  4372. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4373. u32 flags;
  4374. int len, i, pkt_len;
  4375. u8 *pkt_data;
  4376. u32 filter_flags = 0;
  4377. u32 misc1_flags = 0;
  4378. int ret = 1;
  4379. if (netif_running(dev)) {
  4380. nv_disable_irq(dev);
  4381. filter_flags = readl(base + NvRegPacketFilterFlags);
  4382. misc1_flags = readl(base + NvRegMisc1);
  4383. } else {
  4384. nv_txrx_reset(dev);
  4385. }
  4386. /* reinit driver view of the rx queue */
  4387. set_bufsize(dev);
  4388. nv_init_ring(dev);
  4389. /* setup hardware for loopback */
  4390. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4391. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4392. /* reinit nic view of the rx queue */
  4393. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4394. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4395. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4396. base + NvRegRingSizes);
  4397. pci_push(base);
  4398. /* restart rx engine */
  4399. nv_start_rxtx(dev);
  4400. /* setup packet for tx */
  4401. pkt_len = ETH_DATA_LEN;
  4402. tx_skb = dev_alloc_skb(pkt_len);
  4403. if (!tx_skb) {
  4404. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4405. " of %s\n", dev->name);
  4406. ret = 0;
  4407. goto out;
  4408. }
  4409. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4410. skb_tailroom(tx_skb),
  4411. PCI_DMA_FROMDEVICE);
  4412. pkt_data = skb_put(tx_skb, pkt_len);
  4413. for (i = 0; i < pkt_len; i++)
  4414. pkt_data[i] = (u8)(i & 0xff);
  4415. if (!nv_optimized(np)) {
  4416. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4417. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4418. } else {
  4419. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4420. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4421. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4422. }
  4423. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4424. pci_push(get_hwbase(dev));
  4425. msleep(500);
  4426. /* check for rx of the packet */
  4427. if (!nv_optimized(np)) {
  4428. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4429. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4430. } else {
  4431. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4432. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4433. }
  4434. if (flags & NV_RX_AVAIL) {
  4435. ret = 0;
  4436. } else if (np->desc_ver == DESC_VER_1) {
  4437. if (flags & NV_RX_ERROR)
  4438. ret = 0;
  4439. } else {
  4440. if (flags & NV_RX2_ERROR) {
  4441. ret = 0;
  4442. }
  4443. }
  4444. if (ret) {
  4445. if (len != pkt_len) {
  4446. ret = 0;
  4447. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4448. dev->name, len, pkt_len);
  4449. } else {
  4450. rx_skb = np->rx_skb[0].skb;
  4451. for (i = 0; i < pkt_len; i++) {
  4452. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4453. ret = 0;
  4454. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4455. dev->name, i);
  4456. break;
  4457. }
  4458. }
  4459. }
  4460. } else {
  4461. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4462. }
  4463. pci_unmap_page(np->pci_dev, test_dma_addr,
  4464. (skb_end_pointer(tx_skb) - tx_skb->data),
  4465. PCI_DMA_TODEVICE);
  4466. dev_kfree_skb_any(tx_skb);
  4467. out:
  4468. /* stop engines */
  4469. nv_stop_rxtx(dev);
  4470. nv_txrx_reset(dev);
  4471. /* drain rx queue */
  4472. nv_drain_rxtx(dev);
  4473. if (netif_running(dev)) {
  4474. writel(misc1_flags, base + NvRegMisc1);
  4475. writel(filter_flags, base + NvRegPacketFilterFlags);
  4476. nv_enable_irq(dev);
  4477. }
  4478. return ret;
  4479. }
  4480. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4481. {
  4482. struct fe_priv *np = netdev_priv(dev);
  4483. u8 __iomem *base = get_hwbase(dev);
  4484. int result;
  4485. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4486. if (!nv_link_test(dev)) {
  4487. test->flags |= ETH_TEST_FL_FAILED;
  4488. buffer[0] = 1;
  4489. }
  4490. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4491. if (netif_running(dev)) {
  4492. netif_stop_queue(dev);
  4493. #ifdef CONFIG_FORCEDETH_NAPI
  4494. napi_disable(&np->napi);
  4495. #endif
  4496. netif_tx_lock_bh(dev);
  4497. netif_addr_lock(dev);
  4498. spin_lock_irq(&np->lock);
  4499. nv_disable_hw_interrupts(dev, np->irqmask);
  4500. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4501. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4502. } else {
  4503. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4504. }
  4505. /* stop engines */
  4506. nv_stop_rxtx(dev);
  4507. nv_txrx_reset(dev);
  4508. /* drain rx queue */
  4509. nv_drain_rxtx(dev);
  4510. spin_unlock_irq(&np->lock);
  4511. netif_addr_unlock(dev);
  4512. netif_tx_unlock_bh(dev);
  4513. }
  4514. if (!nv_register_test(dev)) {
  4515. test->flags |= ETH_TEST_FL_FAILED;
  4516. buffer[1] = 1;
  4517. }
  4518. result = nv_interrupt_test(dev);
  4519. if (result != 1) {
  4520. test->flags |= ETH_TEST_FL_FAILED;
  4521. buffer[2] = 1;
  4522. }
  4523. if (result == 0) {
  4524. /* bail out */
  4525. return;
  4526. }
  4527. if (!nv_loopback_test(dev)) {
  4528. test->flags |= ETH_TEST_FL_FAILED;
  4529. buffer[3] = 1;
  4530. }
  4531. if (netif_running(dev)) {
  4532. /* reinit driver view of the rx queue */
  4533. set_bufsize(dev);
  4534. if (nv_init_ring(dev)) {
  4535. if (!np->in_shutdown)
  4536. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4537. }
  4538. /* reinit nic view of the rx queue */
  4539. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4540. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4541. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4542. base + NvRegRingSizes);
  4543. pci_push(base);
  4544. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4545. pci_push(base);
  4546. /* restart rx engine */
  4547. nv_start_rxtx(dev);
  4548. netif_start_queue(dev);
  4549. #ifdef CONFIG_FORCEDETH_NAPI
  4550. napi_enable(&np->napi);
  4551. #endif
  4552. nv_enable_hw_interrupts(dev, np->irqmask);
  4553. }
  4554. }
  4555. }
  4556. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4557. {
  4558. switch (stringset) {
  4559. case ETH_SS_STATS:
  4560. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4561. break;
  4562. case ETH_SS_TEST:
  4563. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4564. break;
  4565. }
  4566. }
  4567. static const struct ethtool_ops ops = {
  4568. .get_drvinfo = nv_get_drvinfo,
  4569. .get_link = ethtool_op_get_link,
  4570. .get_wol = nv_get_wol,
  4571. .set_wol = nv_set_wol,
  4572. .get_settings = nv_get_settings,
  4573. .set_settings = nv_set_settings,
  4574. .get_regs_len = nv_get_regs_len,
  4575. .get_regs = nv_get_regs,
  4576. .nway_reset = nv_nway_reset,
  4577. .set_tso = nv_set_tso,
  4578. .get_ringparam = nv_get_ringparam,
  4579. .set_ringparam = nv_set_ringparam,
  4580. .get_pauseparam = nv_get_pauseparam,
  4581. .set_pauseparam = nv_set_pauseparam,
  4582. .get_rx_csum = nv_get_rx_csum,
  4583. .set_rx_csum = nv_set_rx_csum,
  4584. .set_tx_csum = nv_set_tx_csum,
  4585. .set_sg = nv_set_sg,
  4586. .get_strings = nv_get_strings,
  4587. .get_ethtool_stats = nv_get_ethtool_stats,
  4588. .get_sset_count = nv_get_sset_count,
  4589. .self_test = nv_self_test,
  4590. };
  4591. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4592. {
  4593. struct fe_priv *np = get_nvpriv(dev);
  4594. spin_lock_irq(&np->lock);
  4595. /* save vlan group */
  4596. np->vlangrp = grp;
  4597. if (grp) {
  4598. /* enable vlan on MAC */
  4599. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4600. } else {
  4601. /* disable vlan on MAC */
  4602. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4603. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4604. }
  4605. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4606. spin_unlock_irq(&np->lock);
  4607. }
  4608. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4609. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4610. {
  4611. u8 __iomem *base = get_hwbase(dev);
  4612. int i;
  4613. u32 tx_ctrl, mgmt_sema;
  4614. for (i = 0; i < 10; i++) {
  4615. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4616. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4617. break;
  4618. msleep(500);
  4619. }
  4620. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4621. return 0;
  4622. for (i = 0; i < 2; i++) {
  4623. tx_ctrl = readl(base + NvRegTransmitterControl);
  4624. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4625. writel(tx_ctrl, base + NvRegTransmitterControl);
  4626. /* verify that semaphore was acquired */
  4627. tx_ctrl = readl(base + NvRegTransmitterControl);
  4628. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4629. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4630. return 1;
  4631. else
  4632. udelay(50);
  4633. }
  4634. return 0;
  4635. }
  4636. static int nv_open(struct net_device *dev)
  4637. {
  4638. struct fe_priv *np = netdev_priv(dev);
  4639. u8 __iomem *base = get_hwbase(dev);
  4640. int ret = 1;
  4641. int oom, i;
  4642. u32 low;
  4643. dprintk(KERN_DEBUG "nv_open: begin\n");
  4644. /* power up phy */
  4645. mii_rw(dev, np->phyaddr, MII_BMCR,
  4646. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4647. /* erase previous misconfiguration */
  4648. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4649. nv_mac_reset(dev);
  4650. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4651. writel(0, base + NvRegMulticastAddrB);
  4652. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4653. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4654. writel(0, base + NvRegPacketFilterFlags);
  4655. writel(0, base + NvRegTransmitterControl);
  4656. writel(0, base + NvRegReceiverControl);
  4657. writel(0, base + NvRegAdapterControl);
  4658. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4659. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4660. /* initialize descriptor rings */
  4661. set_bufsize(dev);
  4662. oom = nv_init_ring(dev);
  4663. writel(0, base + NvRegLinkSpeed);
  4664. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4665. nv_txrx_reset(dev);
  4666. writel(0, base + NvRegUnknownSetupReg6);
  4667. np->in_shutdown = 0;
  4668. /* give hw rings */
  4669. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4670. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4671. base + NvRegRingSizes);
  4672. writel(np->linkspeed, base + NvRegLinkSpeed);
  4673. if (np->desc_ver == DESC_VER_1)
  4674. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4675. else
  4676. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4677. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4678. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4679. pci_push(base);
  4680. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4681. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4682. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4683. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4684. writel(0, base + NvRegMIIMask);
  4685. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4686. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4687. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4688. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4689. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4690. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4691. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4692. get_random_bytes(&low, sizeof(low));
  4693. low &= NVREG_SLOTTIME_MASK;
  4694. if (np->desc_ver == DESC_VER_1) {
  4695. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4696. } else {
  4697. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4698. /* setup legacy backoff */
  4699. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4700. } else {
  4701. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4702. nv_gear_backoff_reseed(dev);
  4703. }
  4704. }
  4705. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4706. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4707. if (poll_interval == -1) {
  4708. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4709. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4710. else
  4711. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4712. }
  4713. else
  4714. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4715. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4716. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4717. base + NvRegAdapterControl);
  4718. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4719. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4720. if (np->wolenabled)
  4721. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4722. i = readl(base + NvRegPowerState);
  4723. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4724. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4725. pci_push(base);
  4726. udelay(10);
  4727. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4728. nv_disable_hw_interrupts(dev, np->irqmask);
  4729. pci_push(base);
  4730. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4731. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4732. pci_push(base);
  4733. if (nv_request_irq(dev, 0)) {
  4734. goto out_drain;
  4735. }
  4736. /* ask for interrupts */
  4737. nv_enable_hw_interrupts(dev, np->irqmask);
  4738. spin_lock_irq(&np->lock);
  4739. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4740. writel(0, base + NvRegMulticastAddrB);
  4741. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4742. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4743. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4744. /* One manual link speed update: Interrupts are enabled, future link
  4745. * speed changes cause interrupts and are handled by nv_link_irq().
  4746. */
  4747. {
  4748. u32 miistat;
  4749. miistat = readl(base + NvRegMIIStatus);
  4750. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4751. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4752. }
  4753. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4754. * to init hw */
  4755. np->linkspeed = 0;
  4756. ret = nv_update_linkspeed(dev);
  4757. nv_start_rxtx(dev);
  4758. netif_start_queue(dev);
  4759. #ifdef CONFIG_FORCEDETH_NAPI
  4760. napi_enable(&np->napi);
  4761. #endif
  4762. if (ret) {
  4763. netif_carrier_on(dev);
  4764. } else {
  4765. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4766. netif_carrier_off(dev);
  4767. }
  4768. if (oom)
  4769. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4770. /* start statistics timer */
  4771. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4772. mod_timer(&np->stats_poll,
  4773. round_jiffies(jiffies + STATS_INTERVAL));
  4774. spin_unlock_irq(&np->lock);
  4775. return 0;
  4776. out_drain:
  4777. nv_drain_rxtx(dev);
  4778. return ret;
  4779. }
  4780. static int nv_close(struct net_device *dev)
  4781. {
  4782. struct fe_priv *np = netdev_priv(dev);
  4783. u8 __iomem *base;
  4784. spin_lock_irq(&np->lock);
  4785. np->in_shutdown = 1;
  4786. spin_unlock_irq(&np->lock);
  4787. #ifdef CONFIG_FORCEDETH_NAPI
  4788. napi_disable(&np->napi);
  4789. #endif
  4790. synchronize_irq(np->pci_dev->irq);
  4791. del_timer_sync(&np->oom_kick);
  4792. del_timer_sync(&np->nic_poll);
  4793. del_timer_sync(&np->stats_poll);
  4794. netif_stop_queue(dev);
  4795. spin_lock_irq(&np->lock);
  4796. nv_stop_rxtx(dev);
  4797. nv_txrx_reset(dev);
  4798. /* disable interrupts on the nic or we will lock up */
  4799. base = get_hwbase(dev);
  4800. nv_disable_hw_interrupts(dev, np->irqmask);
  4801. pci_push(base);
  4802. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4803. spin_unlock_irq(&np->lock);
  4804. nv_free_irq(dev);
  4805. nv_drain_rxtx(dev);
  4806. if (np->wolenabled) {
  4807. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4808. nv_start_rx(dev);
  4809. } else {
  4810. /* power down phy */
  4811. mii_rw(dev, np->phyaddr, MII_BMCR,
  4812. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4813. }
  4814. /* FIXME: power down nic */
  4815. return 0;
  4816. }
  4817. static const struct net_device_ops nv_netdev_ops = {
  4818. .ndo_open = nv_open,
  4819. .ndo_stop = nv_close,
  4820. .ndo_get_stats = nv_get_stats,
  4821. .ndo_start_xmit = nv_start_xmit,
  4822. .ndo_tx_timeout = nv_tx_timeout,
  4823. .ndo_change_mtu = nv_change_mtu,
  4824. .ndo_validate_addr = eth_validate_addr,
  4825. .ndo_set_mac_address = nv_set_mac_address,
  4826. .ndo_set_multicast_list = nv_set_multicast,
  4827. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4828. #ifdef CONFIG_NET_POLL_CONTROLLER
  4829. .ndo_poll_controller = nv_poll_controller,
  4830. #endif
  4831. };
  4832. static const struct net_device_ops nv_netdev_ops_optimized = {
  4833. .ndo_open = nv_open,
  4834. .ndo_stop = nv_close,
  4835. .ndo_get_stats = nv_get_stats,
  4836. .ndo_start_xmit = nv_start_xmit_optimized,
  4837. .ndo_tx_timeout = nv_tx_timeout,
  4838. .ndo_change_mtu = nv_change_mtu,
  4839. .ndo_validate_addr = eth_validate_addr,
  4840. .ndo_set_mac_address = nv_set_mac_address,
  4841. .ndo_set_multicast_list = nv_set_multicast,
  4842. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4843. #ifdef CONFIG_NET_POLL_CONTROLLER
  4844. .ndo_poll_controller = nv_poll_controller,
  4845. #endif
  4846. };
  4847. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4848. {
  4849. struct net_device *dev;
  4850. struct fe_priv *np;
  4851. unsigned long addr;
  4852. u8 __iomem *base;
  4853. int err, i;
  4854. u32 powerstate, txreg;
  4855. u32 phystate_orig = 0, phystate;
  4856. int phyinitialized = 0;
  4857. static int printed_version;
  4858. if (!printed_version++)
  4859. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4860. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4861. dev = alloc_etherdev(sizeof(struct fe_priv));
  4862. err = -ENOMEM;
  4863. if (!dev)
  4864. goto out;
  4865. np = netdev_priv(dev);
  4866. np->dev = dev;
  4867. np->pci_dev = pci_dev;
  4868. spin_lock_init(&np->lock);
  4869. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4870. init_timer(&np->oom_kick);
  4871. np->oom_kick.data = (unsigned long) dev;
  4872. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4873. init_timer(&np->nic_poll);
  4874. np->nic_poll.data = (unsigned long) dev;
  4875. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4876. init_timer(&np->stats_poll);
  4877. np->stats_poll.data = (unsigned long) dev;
  4878. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4879. err = pci_enable_device(pci_dev);
  4880. if (err)
  4881. goto out_free;
  4882. pci_set_master(pci_dev);
  4883. err = pci_request_regions(pci_dev, DRV_NAME);
  4884. if (err < 0)
  4885. goto out_disable;
  4886. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4887. np->register_size = NV_PCI_REGSZ_VER3;
  4888. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4889. np->register_size = NV_PCI_REGSZ_VER2;
  4890. else
  4891. np->register_size = NV_PCI_REGSZ_VER1;
  4892. err = -EINVAL;
  4893. addr = 0;
  4894. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4895. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4896. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4897. pci_resource_len(pci_dev, i),
  4898. pci_resource_flags(pci_dev, i));
  4899. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4900. pci_resource_len(pci_dev, i) >= np->register_size) {
  4901. addr = pci_resource_start(pci_dev, i);
  4902. break;
  4903. }
  4904. }
  4905. if (i == DEVICE_COUNT_RESOURCE) {
  4906. dev_printk(KERN_INFO, &pci_dev->dev,
  4907. "Couldn't find register window\n");
  4908. goto out_relreg;
  4909. }
  4910. /* copy of driver data */
  4911. np->driver_data = id->driver_data;
  4912. /* copy of device id */
  4913. np->device_id = id->device;
  4914. /* handle different descriptor versions */
  4915. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4916. /* packet format 3: supports 40-bit addressing */
  4917. np->desc_ver = DESC_VER_3;
  4918. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4919. if (dma_64bit) {
  4920. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4921. dev_printk(KERN_INFO, &pci_dev->dev,
  4922. "64-bit DMA failed, using 32-bit addressing\n");
  4923. else
  4924. dev->features |= NETIF_F_HIGHDMA;
  4925. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4926. dev_printk(KERN_INFO, &pci_dev->dev,
  4927. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4928. }
  4929. }
  4930. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4931. /* packet format 2: supports jumbo frames */
  4932. np->desc_ver = DESC_VER_2;
  4933. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4934. } else {
  4935. /* original packet format */
  4936. np->desc_ver = DESC_VER_1;
  4937. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4938. }
  4939. np->pkt_limit = NV_PKTLIMIT_1;
  4940. if (id->driver_data & DEV_HAS_LARGEDESC)
  4941. np->pkt_limit = NV_PKTLIMIT_2;
  4942. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4943. np->rx_csum = 1;
  4944. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4945. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  4946. dev->features |= NETIF_F_TSO;
  4947. }
  4948. np->vlanctl_bits = 0;
  4949. if (id->driver_data & DEV_HAS_VLAN) {
  4950. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4951. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4952. }
  4953. np->msi_flags = 0;
  4954. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4955. np->msi_flags |= NV_MSI_CAPABLE;
  4956. }
  4957. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4958. np->msi_flags |= NV_MSI_X_CAPABLE;
  4959. }
  4960. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4961. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4962. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4963. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4964. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4965. }
  4966. err = -ENOMEM;
  4967. np->base = ioremap(addr, np->register_size);
  4968. if (!np->base)
  4969. goto out_relreg;
  4970. dev->base_addr = (unsigned long)np->base;
  4971. dev->irq = pci_dev->irq;
  4972. np->rx_ring_size = RX_RING_DEFAULT;
  4973. np->tx_ring_size = TX_RING_DEFAULT;
  4974. if (!nv_optimized(np)) {
  4975. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4976. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4977. &np->ring_addr);
  4978. if (!np->rx_ring.orig)
  4979. goto out_unmap;
  4980. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4981. } else {
  4982. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4983. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4984. &np->ring_addr);
  4985. if (!np->rx_ring.ex)
  4986. goto out_unmap;
  4987. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4988. }
  4989. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4990. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4991. if (!np->rx_skb || !np->tx_skb)
  4992. goto out_freering;
  4993. if (!nv_optimized(np))
  4994. dev->netdev_ops = &nv_netdev_ops;
  4995. else
  4996. dev->netdev_ops = &nv_netdev_ops_optimized;
  4997. #ifdef CONFIG_FORCEDETH_NAPI
  4998. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4999. #endif
  5000. SET_ETHTOOL_OPS(dev, &ops);
  5001. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5002. pci_set_drvdata(pci_dev, dev);
  5003. /* read the mac address */
  5004. base = get_hwbase(dev);
  5005. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5006. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5007. /* check the workaround bit for correct mac address order */
  5008. txreg = readl(base + NvRegTransmitPoll);
  5009. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5010. /* mac address is already in correct order */
  5011. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5012. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5013. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5014. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5015. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5016. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5017. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5018. /* mac address is already in correct order */
  5019. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5020. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5021. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5022. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5023. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5024. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5025. /*
  5026. * Set orig mac address back to the reversed version.
  5027. * This flag will be cleared during low power transition.
  5028. * Therefore, we should always put back the reversed address.
  5029. */
  5030. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5031. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5032. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5033. } else {
  5034. /* need to reverse mac address to correct order */
  5035. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5036. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5037. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5038. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5039. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5040. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5041. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5042. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5043. }
  5044. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5045. if (!is_valid_ether_addr(dev->perm_addr)) {
  5046. /*
  5047. * Bad mac address. At least one bios sets the mac address
  5048. * to 01:23:45:67:89:ab
  5049. */
  5050. dev_printk(KERN_ERR, &pci_dev->dev,
  5051. "Invalid Mac address detected: %pM\n",
  5052. dev->dev_addr);
  5053. dev_printk(KERN_ERR, &pci_dev->dev,
  5054. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5055. dev->dev_addr[0] = 0x00;
  5056. dev->dev_addr[1] = 0x00;
  5057. dev->dev_addr[2] = 0x6c;
  5058. get_random_bytes(&dev->dev_addr[3], 3);
  5059. }
  5060. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5061. pci_name(pci_dev), dev->dev_addr);
  5062. /* set mac address */
  5063. nv_copy_mac_to_hw(dev);
  5064. /* Workaround current PCI init glitch: wakeup bits aren't
  5065. * being set from PCI PM capability.
  5066. */
  5067. device_init_wakeup(&pci_dev->dev, 1);
  5068. /* disable WOL */
  5069. writel(0, base + NvRegWakeUpFlags);
  5070. np->wolenabled = 0;
  5071. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5072. /* take phy and nic out of low power mode */
  5073. powerstate = readl(base + NvRegPowerState2);
  5074. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5075. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5076. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5077. pci_dev->revision >= 0xA3)
  5078. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5079. writel(powerstate, base + NvRegPowerState2);
  5080. }
  5081. if (np->desc_ver == DESC_VER_1) {
  5082. np->tx_flags = NV_TX_VALID;
  5083. } else {
  5084. np->tx_flags = NV_TX2_VALID;
  5085. }
  5086. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  5087. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5088. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5089. np->msi_flags |= 0x0003;
  5090. } else {
  5091. np->irqmask = NVREG_IRQMASK_CPU;
  5092. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5093. np->msi_flags |= 0x0001;
  5094. }
  5095. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5096. np->irqmask |= NVREG_IRQ_TIMER;
  5097. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5098. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5099. np->need_linktimer = 1;
  5100. np->link_timeout = jiffies + LINK_TIMEOUT;
  5101. } else {
  5102. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5103. np->need_linktimer = 0;
  5104. }
  5105. /* Limit the number of tx's outstanding for hw bug */
  5106. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5107. np->tx_limit = 1;
  5108. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5109. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5110. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5111. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5112. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5113. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5114. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5115. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5116. pci_dev->revision >= 0xA2)
  5117. np->tx_limit = 0;
  5118. }
  5119. /* clear phy state and temporarily halt phy interrupts */
  5120. writel(0, base + NvRegMIIMask);
  5121. phystate = readl(base + NvRegAdapterControl);
  5122. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5123. phystate_orig = 1;
  5124. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5125. writel(phystate, base + NvRegAdapterControl);
  5126. }
  5127. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5128. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5129. /* management unit running on the mac? */
  5130. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  5131. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  5132. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  5133. if (nv_mgmt_acquire_sema(dev)) {
  5134. /* management unit setup the phy already? */
  5135. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5136. NVREG_XMITCTL_SYNC_PHY_INIT) {
  5137. /* phy is inited by mgmt unit */
  5138. phyinitialized = 1;
  5139. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  5140. } else {
  5141. /* we need to init the phy */
  5142. }
  5143. }
  5144. }
  5145. }
  5146. /* find a suitable phy */
  5147. for (i = 1; i <= 32; i++) {
  5148. int id1, id2;
  5149. int phyaddr = i & 0x1F;
  5150. spin_lock_irq(&np->lock);
  5151. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5152. spin_unlock_irq(&np->lock);
  5153. if (id1 < 0 || id1 == 0xffff)
  5154. continue;
  5155. spin_lock_irq(&np->lock);
  5156. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5157. spin_unlock_irq(&np->lock);
  5158. if (id2 < 0 || id2 == 0xffff)
  5159. continue;
  5160. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5161. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5162. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5163. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5164. pci_name(pci_dev), id1, id2, phyaddr);
  5165. np->phyaddr = phyaddr;
  5166. np->phy_oui = id1 | id2;
  5167. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5168. if (np->phy_oui == PHY_OUI_REALTEK2)
  5169. np->phy_oui = PHY_OUI_REALTEK;
  5170. /* Setup phy revision for Realtek */
  5171. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5172. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5173. break;
  5174. }
  5175. if (i == 33) {
  5176. dev_printk(KERN_INFO, &pci_dev->dev,
  5177. "open: Could not find a valid PHY.\n");
  5178. goto out_error;
  5179. }
  5180. if (!phyinitialized) {
  5181. /* reset it */
  5182. phy_init(dev);
  5183. } else {
  5184. /* see if it is a gigabit phy */
  5185. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5186. if (mii_status & PHY_GIGABIT) {
  5187. np->gigabit = PHY_GIGABIT;
  5188. }
  5189. }
  5190. /* set default link speed settings */
  5191. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5192. np->duplex = 0;
  5193. np->autoneg = 1;
  5194. err = register_netdev(dev);
  5195. if (err) {
  5196. dev_printk(KERN_INFO, &pci_dev->dev,
  5197. "unable to register netdev: %d\n", err);
  5198. goto out_error;
  5199. }
  5200. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5201. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5202. dev->name,
  5203. np->phy_oui,
  5204. np->phyaddr,
  5205. dev->dev_addr[0],
  5206. dev->dev_addr[1],
  5207. dev->dev_addr[2],
  5208. dev->dev_addr[3],
  5209. dev->dev_addr[4],
  5210. dev->dev_addr[5]);
  5211. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5212. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5213. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5214. "csum " : "",
  5215. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5216. "vlan " : "",
  5217. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5218. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5219. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5220. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5221. np->need_linktimer ? "lnktim " : "",
  5222. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5223. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5224. np->desc_ver);
  5225. return 0;
  5226. out_error:
  5227. if (phystate_orig)
  5228. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5229. pci_set_drvdata(pci_dev, NULL);
  5230. out_freering:
  5231. free_rings(dev);
  5232. out_unmap:
  5233. iounmap(get_hwbase(dev));
  5234. out_relreg:
  5235. pci_release_regions(pci_dev);
  5236. out_disable:
  5237. pci_disable_device(pci_dev);
  5238. out_free:
  5239. free_netdev(dev);
  5240. out:
  5241. return err;
  5242. }
  5243. static void nv_restore_phy(struct net_device *dev)
  5244. {
  5245. struct fe_priv *np = netdev_priv(dev);
  5246. u16 phy_reserved, mii_control;
  5247. if (np->phy_oui == PHY_OUI_REALTEK &&
  5248. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5249. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5250. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5251. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5252. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5253. phy_reserved |= PHY_REALTEK_INIT8;
  5254. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5255. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5256. /* restart auto negotiation */
  5257. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5258. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5259. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5260. }
  5261. }
  5262. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5263. {
  5264. struct net_device *dev = pci_get_drvdata(pci_dev);
  5265. struct fe_priv *np = netdev_priv(dev);
  5266. u8 __iomem *base = get_hwbase(dev);
  5267. /* special op: write back the misordered MAC address - otherwise
  5268. * the next nv_probe would see a wrong address.
  5269. */
  5270. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5271. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5272. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5273. base + NvRegTransmitPoll);
  5274. }
  5275. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5276. {
  5277. struct net_device *dev = pci_get_drvdata(pci_dev);
  5278. unregister_netdev(dev);
  5279. nv_restore_mac_addr(pci_dev);
  5280. /* restore any phy related changes */
  5281. nv_restore_phy(dev);
  5282. /* free all structures */
  5283. free_rings(dev);
  5284. iounmap(get_hwbase(dev));
  5285. pci_release_regions(pci_dev);
  5286. pci_disable_device(pci_dev);
  5287. free_netdev(dev);
  5288. pci_set_drvdata(pci_dev, NULL);
  5289. }
  5290. #ifdef CONFIG_PM
  5291. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5292. {
  5293. struct net_device *dev = pci_get_drvdata(pdev);
  5294. struct fe_priv *np = netdev_priv(dev);
  5295. u8 __iomem *base = get_hwbase(dev);
  5296. int i;
  5297. if (netif_running(dev)) {
  5298. // Gross.
  5299. nv_close(dev);
  5300. }
  5301. netif_device_detach(dev);
  5302. /* save non-pci configuration space */
  5303. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5304. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5305. pci_save_state(pdev);
  5306. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5307. pci_disable_device(pdev);
  5308. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5309. return 0;
  5310. }
  5311. static int nv_resume(struct pci_dev *pdev)
  5312. {
  5313. struct net_device *dev = pci_get_drvdata(pdev);
  5314. struct fe_priv *np = netdev_priv(dev);
  5315. u8 __iomem *base = get_hwbase(dev);
  5316. int i, rc = 0;
  5317. pci_set_power_state(pdev, PCI_D0);
  5318. pci_restore_state(pdev);
  5319. /* ack any pending wake events, disable PME */
  5320. pci_enable_wake(pdev, PCI_D0, 0);
  5321. /* restore non-pci configuration space */
  5322. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5323. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5324. netif_device_attach(dev);
  5325. if (netif_running(dev)) {
  5326. rc = nv_open(dev);
  5327. nv_set_multicast(dev);
  5328. }
  5329. return rc;
  5330. }
  5331. static void nv_shutdown(struct pci_dev *pdev)
  5332. {
  5333. struct net_device *dev = pci_get_drvdata(pdev);
  5334. struct fe_priv *np = netdev_priv(dev);
  5335. if (netif_running(dev))
  5336. nv_close(dev);
  5337. nv_restore_mac_addr(pdev);
  5338. pci_disable_device(pdev);
  5339. if (system_state == SYSTEM_POWER_OFF) {
  5340. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5341. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5342. pci_set_power_state(pdev, PCI_D3hot);
  5343. }
  5344. }
  5345. #else
  5346. #define nv_suspend NULL
  5347. #define nv_shutdown NULL
  5348. #define nv_resume NULL
  5349. #endif /* CONFIG_PM */
  5350. static struct pci_device_id pci_tbl[] = {
  5351. { /* nForce Ethernet Controller */
  5352. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5353. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5354. },
  5355. { /* nForce2 Ethernet Controller */
  5356. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5357. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5358. },
  5359. { /* nForce3 Ethernet Controller */
  5360. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5361. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5362. },
  5363. { /* nForce3 Ethernet Controller */
  5364. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5365. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5366. },
  5367. { /* nForce3 Ethernet Controller */
  5368. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5369. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5370. },
  5371. { /* nForce3 Ethernet Controller */
  5372. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5373. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5374. },
  5375. { /* nForce3 Ethernet Controller */
  5376. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5377. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5378. },
  5379. { /* CK804 Ethernet Controller */
  5380. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5381. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5382. },
  5383. { /* CK804 Ethernet Controller */
  5384. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5385. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5386. },
  5387. { /* MCP04 Ethernet Controller */
  5388. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5389. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5390. },
  5391. { /* MCP04 Ethernet Controller */
  5392. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5393. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5394. },
  5395. { /* MCP51 Ethernet Controller */
  5396. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5397. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5398. },
  5399. { /* MCP51 Ethernet Controller */
  5400. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5401. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5402. },
  5403. { /* MCP55 Ethernet Controller */
  5404. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5405. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5406. },
  5407. { /* MCP55 Ethernet Controller */
  5408. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5409. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5410. },
  5411. { /* MCP61 Ethernet Controller */
  5412. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5413. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5414. },
  5415. { /* MCP61 Ethernet Controller */
  5416. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5417. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5418. },
  5419. { /* MCP61 Ethernet Controller */
  5420. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5421. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5422. },
  5423. { /* MCP61 Ethernet Controller */
  5424. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5425. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5426. },
  5427. { /* MCP65 Ethernet Controller */
  5428. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5429. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5430. },
  5431. { /* MCP65 Ethernet Controller */
  5432. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5433. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5434. },
  5435. { /* MCP65 Ethernet Controller */
  5436. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5437. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5438. },
  5439. { /* MCP65 Ethernet Controller */
  5440. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5441. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5442. },
  5443. { /* MCP67 Ethernet Controller */
  5444. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5445. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5446. },
  5447. { /* MCP67 Ethernet Controller */
  5448. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5449. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5450. },
  5451. { /* MCP67 Ethernet Controller */
  5452. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5453. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5454. },
  5455. { /* MCP67 Ethernet Controller */
  5456. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5457. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5458. },
  5459. { /* MCP73 Ethernet Controller */
  5460. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5461. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5462. },
  5463. { /* MCP73 Ethernet Controller */
  5464. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5465. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5466. },
  5467. { /* MCP73 Ethernet Controller */
  5468. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5469. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5470. },
  5471. { /* MCP73 Ethernet Controller */
  5472. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5473. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5474. },
  5475. { /* MCP77 Ethernet Controller */
  5476. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5477. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5478. },
  5479. { /* MCP77 Ethernet Controller */
  5480. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5481. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5482. },
  5483. { /* MCP77 Ethernet Controller */
  5484. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5485. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5486. },
  5487. { /* MCP77 Ethernet Controller */
  5488. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5489. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5490. },
  5491. { /* MCP79 Ethernet Controller */
  5492. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5493. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5494. },
  5495. { /* MCP79 Ethernet Controller */
  5496. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5497. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5498. },
  5499. { /* MCP79 Ethernet Controller */
  5500. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5501. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5502. },
  5503. { /* MCP79 Ethernet Controller */
  5504. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5505. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5506. },
  5507. {0,},
  5508. };
  5509. static struct pci_driver driver = {
  5510. .name = DRV_NAME,
  5511. .id_table = pci_tbl,
  5512. .probe = nv_probe,
  5513. .remove = __devexit_p(nv_remove),
  5514. .suspend = nv_suspend,
  5515. .resume = nv_resume,
  5516. .shutdown = nv_shutdown,
  5517. };
  5518. static int __init init_nic(void)
  5519. {
  5520. return pci_register_driver(&driver);
  5521. }
  5522. static void __exit exit_nic(void)
  5523. {
  5524. pci_unregister_driver(&driver);
  5525. }
  5526. module_param(max_interrupt_work, int, 0);
  5527. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5528. module_param(optimization_mode, int, 0);
  5529. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5530. module_param(poll_interval, int, 0);
  5531. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5532. module_param(msi, int, 0);
  5533. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5534. module_param(msix, int, 0);
  5535. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5536. module_param(dma_64bit, int, 0);
  5537. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5538. module_param(phy_cross, int, 0);
  5539. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5540. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5541. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5542. MODULE_LICENSE("GPL");
  5543. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5544. module_init(init_nic);
  5545. module_exit(exit_nic);