namespace.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/security.h>
  26. #include <linux/mount.h>
  27. #include <linux/ramfs.h>
  28. #include <linux/log2.h>
  29. #include <linux/idr.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/unistd.h>
  32. #include "pnode.h"
  33. #include "internal.h"
  34. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  35. #define HASH_SIZE (1UL << HASH_SHIFT)
  36. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  37. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  38. static int event;
  39. static DEFINE_IDA(mnt_id_ida);
  40. static DEFINE_IDA(mnt_group_ida);
  41. static struct list_head *mount_hashtable __read_mostly;
  42. static struct kmem_cache *mnt_cache __read_mostly;
  43. static struct rw_semaphore namespace_sem;
  44. /* /sys/fs */
  45. struct kobject *fs_kobj;
  46. EXPORT_SYMBOL_GPL(fs_kobj);
  47. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  48. {
  49. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  50. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  51. tmp = tmp + (tmp >> HASH_SHIFT);
  52. return tmp & (HASH_SIZE - 1);
  53. }
  54. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  55. /* allocation is serialized by namespace_sem */
  56. static int mnt_alloc_id(struct vfsmount *mnt)
  57. {
  58. int res;
  59. retry:
  60. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  61. spin_lock(&vfsmount_lock);
  62. res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
  63. spin_unlock(&vfsmount_lock);
  64. if (res == -EAGAIN)
  65. goto retry;
  66. return res;
  67. }
  68. static void mnt_free_id(struct vfsmount *mnt)
  69. {
  70. spin_lock(&vfsmount_lock);
  71. ida_remove(&mnt_id_ida, mnt->mnt_id);
  72. spin_unlock(&vfsmount_lock);
  73. }
  74. /*
  75. * Allocate a new peer group ID
  76. *
  77. * mnt_group_ida is protected by namespace_sem
  78. */
  79. static int mnt_alloc_group_id(struct vfsmount *mnt)
  80. {
  81. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  82. return -ENOMEM;
  83. return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
  84. }
  85. /*
  86. * Release a peer group ID
  87. */
  88. void mnt_release_group_id(struct vfsmount *mnt)
  89. {
  90. ida_remove(&mnt_group_ida, mnt->mnt_group_id);
  91. mnt->mnt_group_id = 0;
  92. }
  93. struct vfsmount *alloc_vfsmnt(const char *name)
  94. {
  95. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  96. if (mnt) {
  97. int err;
  98. err = mnt_alloc_id(mnt);
  99. if (err) {
  100. kmem_cache_free(mnt_cache, mnt);
  101. return NULL;
  102. }
  103. atomic_set(&mnt->mnt_count, 1);
  104. INIT_LIST_HEAD(&mnt->mnt_hash);
  105. INIT_LIST_HEAD(&mnt->mnt_child);
  106. INIT_LIST_HEAD(&mnt->mnt_mounts);
  107. INIT_LIST_HEAD(&mnt->mnt_list);
  108. INIT_LIST_HEAD(&mnt->mnt_expire);
  109. INIT_LIST_HEAD(&mnt->mnt_share);
  110. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  111. INIT_LIST_HEAD(&mnt->mnt_slave);
  112. atomic_set(&mnt->__mnt_writers, 0);
  113. if (name) {
  114. int size = strlen(name) + 1;
  115. char *newname = kmalloc(size, GFP_KERNEL);
  116. if (newname) {
  117. memcpy(newname, name, size);
  118. mnt->mnt_devname = newname;
  119. }
  120. }
  121. }
  122. return mnt;
  123. }
  124. /*
  125. * Most r/o checks on a fs are for operations that take
  126. * discrete amounts of time, like a write() or unlink().
  127. * We must keep track of when those operations start
  128. * (for permission checks) and when they end, so that
  129. * we can determine when writes are able to occur to
  130. * a filesystem.
  131. */
  132. /*
  133. * __mnt_is_readonly: check whether a mount is read-only
  134. * @mnt: the mount to check for its write status
  135. *
  136. * This shouldn't be used directly ouside of the VFS.
  137. * It does not guarantee that the filesystem will stay
  138. * r/w, just that it is right *now*. This can not and
  139. * should not be used in place of IS_RDONLY(inode).
  140. * mnt_want/drop_write() will _keep_ the filesystem
  141. * r/w.
  142. */
  143. int __mnt_is_readonly(struct vfsmount *mnt)
  144. {
  145. if (mnt->mnt_flags & MNT_READONLY)
  146. return 1;
  147. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  148. return 1;
  149. return 0;
  150. }
  151. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  152. struct mnt_writer {
  153. /*
  154. * If holding multiple instances of this lock, they
  155. * must be ordered by cpu number.
  156. */
  157. spinlock_t lock;
  158. struct lock_class_key lock_class; /* compiles out with !lockdep */
  159. unsigned long count;
  160. struct vfsmount *mnt;
  161. } ____cacheline_aligned_in_smp;
  162. static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
  163. static int __init init_mnt_writers(void)
  164. {
  165. int cpu;
  166. for_each_possible_cpu(cpu) {
  167. struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
  168. spin_lock_init(&writer->lock);
  169. lockdep_set_class(&writer->lock, &writer->lock_class);
  170. writer->count = 0;
  171. }
  172. return 0;
  173. }
  174. fs_initcall(init_mnt_writers);
  175. static void unlock_mnt_writers(void)
  176. {
  177. int cpu;
  178. struct mnt_writer *cpu_writer;
  179. for_each_possible_cpu(cpu) {
  180. cpu_writer = &per_cpu(mnt_writers, cpu);
  181. spin_unlock(&cpu_writer->lock);
  182. }
  183. }
  184. static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
  185. {
  186. if (!cpu_writer->mnt)
  187. return;
  188. /*
  189. * This is in case anyone ever leaves an invalid,
  190. * old ->mnt and a count of 0.
  191. */
  192. if (!cpu_writer->count)
  193. return;
  194. atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
  195. cpu_writer->count = 0;
  196. }
  197. /*
  198. * must hold cpu_writer->lock
  199. */
  200. static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
  201. struct vfsmount *mnt)
  202. {
  203. if (cpu_writer->mnt == mnt)
  204. return;
  205. __clear_mnt_count(cpu_writer);
  206. cpu_writer->mnt = mnt;
  207. }
  208. /*
  209. * Most r/o checks on a fs are for operations that take
  210. * discrete amounts of time, like a write() or unlink().
  211. * We must keep track of when those operations start
  212. * (for permission checks) and when they end, so that
  213. * we can determine when writes are able to occur to
  214. * a filesystem.
  215. */
  216. /**
  217. * mnt_want_write - get write access to a mount
  218. * @mnt: the mount on which to take a write
  219. *
  220. * This tells the low-level filesystem that a write is
  221. * about to be performed to it, and makes sure that
  222. * writes are allowed before returning success. When
  223. * the write operation is finished, mnt_drop_write()
  224. * must be called. This is effectively a refcount.
  225. */
  226. int mnt_want_write(struct vfsmount *mnt)
  227. {
  228. int ret = 0;
  229. struct mnt_writer *cpu_writer;
  230. cpu_writer = &get_cpu_var(mnt_writers);
  231. spin_lock(&cpu_writer->lock);
  232. if (__mnt_is_readonly(mnt)) {
  233. ret = -EROFS;
  234. goto out;
  235. }
  236. use_cpu_writer_for_mount(cpu_writer, mnt);
  237. cpu_writer->count++;
  238. out:
  239. spin_unlock(&cpu_writer->lock);
  240. put_cpu_var(mnt_writers);
  241. return ret;
  242. }
  243. EXPORT_SYMBOL_GPL(mnt_want_write);
  244. static void lock_mnt_writers(void)
  245. {
  246. int cpu;
  247. struct mnt_writer *cpu_writer;
  248. for_each_possible_cpu(cpu) {
  249. cpu_writer = &per_cpu(mnt_writers, cpu);
  250. spin_lock(&cpu_writer->lock);
  251. __clear_mnt_count(cpu_writer);
  252. cpu_writer->mnt = NULL;
  253. }
  254. }
  255. /*
  256. * These per-cpu write counts are not guaranteed to have
  257. * matched increments and decrements on any given cpu.
  258. * A file open()ed for write on one cpu and close()d on
  259. * another cpu will imbalance this count. Make sure it
  260. * does not get too far out of whack.
  261. */
  262. static void handle_write_count_underflow(struct vfsmount *mnt)
  263. {
  264. if (atomic_read(&mnt->__mnt_writers) >=
  265. MNT_WRITER_UNDERFLOW_LIMIT)
  266. return;
  267. /*
  268. * It isn't necessary to hold all of the locks
  269. * at the same time, but doing it this way makes
  270. * us share a lot more code.
  271. */
  272. lock_mnt_writers();
  273. /*
  274. * vfsmount_lock is for mnt_flags.
  275. */
  276. spin_lock(&vfsmount_lock);
  277. /*
  278. * If coalescing the per-cpu writer counts did not
  279. * get us back to a positive writer count, we have
  280. * a bug.
  281. */
  282. if ((atomic_read(&mnt->__mnt_writers) < 0) &&
  283. !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
  284. printk(KERN_DEBUG "leak detected on mount(%p) writers "
  285. "count: %d\n",
  286. mnt, atomic_read(&mnt->__mnt_writers));
  287. WARN_ON(1);
  288. /* use the flag to keep the dmesg spam down */
  289. mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
  290. }
  291. spin_unlock(&vfsmount_lock);
  292. unlock_mnt_writers();
  293. }
  294. /**
  295. * mnt_drop_write - give up write access to a mount
  296. * @mnt: the mount on which to give up write access
  297. *
  298. * Tells the low-level filesystem that we are done
  299. * performing writes to it. Must be matched with
  300. * mnt_want_write() call above.
  301. */
  302. void mnt_drop_write(struct vfsmount *mnt)
  303. {
  304. int must_check_underflow = 0;
  305. struct mnt_writer *cpu_writer;
  306. cpu_writer = &get_cpu_var(mnt_writers);
  307. spin_lock(&cpu_writer->lock);
  308. use_cpu_writer_for_mount(cpu_writer, mnt);
  309. if (cpu_writer->count > 0) {
  310. cpu_writer->count--;
  311. } else {
  312. must_check_underflow = 1;
  313. atomic_dec(&mnt->__mnt_writers);
  314. }
  315. spin_unlock(&cpu_writer->lock);
  316. /*
  317. * Logically, we could call this each time,
  318. * but the __mnt_writers cacheline tends to
  319. * be cold, and makes this expensive.
  320. */
  321. if (must_check_underflow)
  322. handle_write_count_underflow(mnt);
  323. /*
  324. * This could be done right after the spinlock
  325. * is taken because the spinlock keeps us on
  326. * the cpu, and disables preemption. However,
  327. * putting it here bounds the amount that
  328. * __mnt_writers can underflow. Without it,
  329. * we could theoretically wrap __mnt_writers.
  330. */
  331. put_cpu_var(mnt_writers);
  332. }
  333. EXPORT_SYMBOL_GPL(mnt_drop_write);
  334. static int mnt_make_readonly(struct vfsmount *mnt)
  335. {
  336. int ret = 0;
  337. lock_mnt_writers();
  338. /*
  339. * With all the locks held, this value is stable
  340. */
  341. if (atomic_read(&mnt->__mnt_writers) > 0) {
  342. ret = -EBUSY;
  343. goto out;
  344. }
  345. /*
  346. * nobody can do a successful mnt_want_write() with all
  347. * of the counts in MNT_DENIED_WRITE and the locks held.
  348. */
  349. spin_lock(&vfsmount_lock);
  350. if (!ret)
  351. mnt->mnt_flags |= MNT_READONLY;
  352. spin_unlock(&vfsmount_lock);
  353. out:
  354. unlock_mnt_writers();
  355. return ret;
  356. }
  357. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  358. {
  359. spin_lock(&vfsmount_lock);
  360. mnt->mnt_flags &= ~MNT_READONLY;
  361. spin_unlock(&vfsmount_lock);
  362. }
  363. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  364. {
  365. mnt->mnt_sb = sb;
  366. mnt->mnt_root = dget(sb->s_root);
  367. return 0;
  368. }
  369. EXPORT_SYMBOL(simple_set_mnt);
  370. void free_vfsmnt(struct vfsmount *mnt)
  371. {
  372. kfree(mnt->mnt_devname);
  373. mnt_free_id(mnt);
  374. kmem_cache_free(mnt_cache, mnt);
  375. }
  376. /*
  377. * find the first or last mount at @dentry on vfsmount @mnt depending on
  378. * @dir. If @dir is set return the first mount else return the last mount.
  379. */
  380. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  381. int dir)
  382. {
  383. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  384. struct list_head *tmp = head;
  385. struct vfsmount *p, *found = NULL;
  386. for (;;) {
  387. tmp = dir ? tmp->next : tmp->prev;
  388. p = NULL;
  389. if (tmp == head)
  390. break;
  391. p = list_entry(tmp, struct vfsmount, mnt_hash);
  392. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  393. found = p;
  394. break;
  395. }
  396. }
  397. return found;
  398. }
  399. /*
  400. * lookup_mnt increments the ref count before returning
  401. * the vfsmount struct.
  402. */
  403. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  404. {
  405. struct vfsmount *child_mnt;
  406. spin_lock(&vfsmount_lock);
  407. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  408. mntget(child_mnt);
  409. spin_unlock(&vfsmount_lock);
  410. return child_mnt;
  411. }
  412. static inline int check_mnt(struct vfsmount *mnt)
  413. {
  414. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  415. }
  416. static void touch_mnt_namespace(struct mnt_namespace *ns)
  417. {
  418. if (ns) {
  419. ns->event = ++event;
  420. wake_up_interruptible(&ns->poll);
  421. }
  422. }
  423. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  424. {
  425. if (ns && ns->event != event) {
  426. ns->event = event;
  427. wake_up_interruptible(&ns->poll);
  428. }
  429. }
  430. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  431. {
  432. old_path->dentry = mnt->mnt_mountpoint;
  433. old_path->mnt = mnt->mnt_parent;
  434. mnt->mnt_parent = mnt;
  435. mnt->mnt_mountpoint = mnt->mnt_root;
  436. list_del_init(&mnt->mnt_child);
  437. list_del_init(&mnt->mnt_hash);
  438. old_path->dentry->d_mounted--;
  439. }
  440. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  441. struct vfsmount *child_mnt)
  442. {
  443. child_mnt->mnt_parent = mntget(mnt);
  444. child_mnt->mnt_mountpoint = dget(dentry);
  445. dentry->d_mounted++;
  446. }
  447. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  448. {
  449. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  450. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  451. hash(path->mnt, path->dentry));
  452. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  453. }
  454. /*
  455. * the caller must hold vfsmount_lock
  456. */
  457. static void commit_tree(struct vfsmount *mnt)
  458. {
  459. struct vfsmount *parent = mnt->mnt_parent;
  460. struct vfsmount *m;
  461. LIST_HEAD(head);
  462. struct mnt_namespace *n = parent->mnt_ns;
  463. BUG_ON(parent == mnt);
  464. list_add_tail(&head, &mnt->mnt_list);
  465. list_for_each_entry(m, &head, mnt_list)
  466. m->mnt_ns = n;
  467. list_splice(&head, n->list.prev);
  468. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  469. hash(parent, mnt->mnt_mountpoint));
  470. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  471. touch_mnt_namespace(n);
  472. }
  473. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  474. {
  475. struct list_head *next = p->mnt_mounts.next;
  476. if (next == &p->mnt_mounts) {
  477. while (1) {
  478. if (p == root)
  479. return NULL;
  480. next = p->mnt_child.next;
  481. if (next != &p->mnt_parent->mnt_mounts)
  482. break;
  483. p = p->mnt_parent;
  484. }
  485. }
  486. return list_entry(next, struct vfsmount, mnt_child);
  487. }
  488. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  489. {
  490. struct list_head *prev = p->mnt_mounts.prev;
  491. while (prev != &p->mnt_mounts) {
  492. p = list_entry(prev, struct vfsmount, mnt_child);
  493. prev = p->mnt_mounts.prev;
  494. }
  495. return p;
  496. }
  497. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  498. int flag)
  499. {
  500. struct super_block *sb = old->mnt_sb;
  501. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  502. if (mnt) {
  503. if (flag & (CL_SLAVE | CL_PRIVATE))
  504. mnt->mnt_group_id = 0; /* not a peer of original */
  505. else
  506. mnt->mnt_group_id = old->mnt_group_id;
  507. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  508. int err = mnt_alloc_group_id(mnt);
  509. if (err)
  510. goto out_free;
  511. }
  512. mnt->mnt_flags = old->mnt_flags;
  513. atomic_inc(&sb->s_active);
  514. mnt->mnt_sb = sb;
  515. mnt->mnt_root = dget(root);
  516. mnt->mnt_mountpoint = mnt->mnt_root;
  517. mnt->mnt_parent = mnt;
  518. if (flag & CL_SLAVE) {
  519. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  520. mnt->mnt_master = old;
  521. CLEAR_MNT_SHARED(mnt);
  522. } else if (!(flag & CL_PRIVATE)) {
  523. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  524. list_add(&mnt->mnt_share, &old->mnt_share);
  525. if (IS_MNT_SLAVE(old))
  526. list_add(&mnt->mnt_slave, &old->mnt_slave);
  527. mnt->mnt_master = old->mnt_master;
  528. }
  529. if (flag & CL_MAKE_SHARED)
  530. set_mnt_shared(mnt);
  531. /* stick the duplicate mount on the same expiry list
  532. * as the original if that was on one */
  533. if (flag & CL_EXPIRE) {
  534. if (!list_empty(&old->mnt_expire))
  535. list_add(&mnt->mnt_expire, &old->mnt_expire);
  536. }
  537. }
  538. return mnt;
  539. out_free:
  540. free_vfsmnt(mnt);
  541. return NULL;
  542. }
  543. static inline void __mntput(struct vfsmount *mnt)
  544. {
  545. int cpu;
  546. struct super_block *sb = mnt->mnt_sb;
  547. /*
  548. * We don't have to hold all of the locks at the
  549. * same time here because we know that we're the
  550. * last reference to mnt and that no new writers
  551. * can come in.
  552. */
  553. for_each_possible_cpu(cpu) {
  554. struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
  555. if (cpu_writer->mnt != mnt)
  556. continue;
  557. spin_lock(&cpu_writer->lock);
  558. atomic_add(cpu_writer->count, &mnt->__mnt_writers);
  559. cpu_writer->count = 0;
  560. /*
  561. * Might as well do this so that no one
  562. * ever sees the pointer and expects
  563. * it to be valid.
  564. */
  565. cpu_writer->mnt = NULL;
  566. spin_unlock(&cpu_writer->lock);
  567. }
  568. /*
  569. * This probably indicates that somebody messed
  570. * up a mnt_want/drop_write() pair. If this
  571. * happens, the filesystem was probably unable
  572. * to make r/w->r/o transitions.
  573. */
  574. WARN_ON(atomic_read(&mnt->__mnt_writers));
  575. dput(mnt->mnt_root);
  576. free_vfsmnt(mnt);
  577. deactivate_super(sb);
  578. }
  579. void mntput_no_expire(struct vfsmount *mnt)
  580. {
  581. repeat:
  582. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  583. if (likely(!mnt->mnt_pinned)) {
  584. spin_unlock(&vfsmount_lock);
  585. __mntput(mnt);
  586. return;
  587. }
  588. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  589. mnt->mnt_pinned = 0;
  590. spin_unlock(&vfsmount_lock);
  591. acct_auto_close_mnt(mnt);
  592. security_sb_umount_close(mnt);
  593. goto repeat;
  594. }
  595. }
  596. EXPORT_SYMBOL(mntput_no_expire);
  597. void mnt_pin(struct vfsmount *mnt)
  598. {
  599. spin_lock(&vfsmount_lock);
  600. mnt->mnt_pinned++;
  601. spin_unlock(&vfsmount_lock);
  602. }
  603. EXPORT_SYMBOL(mnt_pin);
  604. void mnt_unpin(struct vfsmount *mnt)
  605. {
  606. spin_lock(&vfsmount_lock);
  607. if (mnt->mnt_pinned) {
  608. atomic_inc(&mnt->mnt_count);
  609. mnt->mnt_pinned--;
  610. }
  611. spin_unlock(&vfsmount_lock);
  612. }
  613. EXPORT_SYMBOL(mnt_unpin);
  614. static inline void mangle(struct seq_file *m, const char *s)
  615. {
  616. seq_escape(m, s, " \t\n\\");
  617. }
  618. /*
  619. * Simple .show_options callback for filesystems which don't want to
  620. * implement more complex mount option showing.
  621. *
  622. * See also save_mount_options().
  623. */
  624. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  625. {
  626. const char *options = mnt->mnt_sb->s_options;
  627. if (options != NULL && options[0]) {
  628. seq_putc(m, ',');
  629. mangle(m, options);
  630. }
  631. return 0;
  632. }
  633. EXPORT_SYMBOL(generic_show_options);
  634. /*
  635. * If filesystem uses generic_show_options(), this function should be
  636. * called from the fill_super() callback.
  637. *
  638. * The .remount_fs callback usually needs to be handled in a special
  639. * way, to make sure, that previous options are not overwritten if the
  640. * remount fails.
  641. *
  642. * Also note, that if the filesystem's .remount_fs function doesn't
  643. * reset all options to their default value, but changes only newly
  644. * given options, then the displayed options will not reflect reality
  645. * any more.
  646. */
  647. void save_mount_options(struct super_block *sb, char *options)
  648. {
  649. kfree(sb->s_options);
  650. sb->s_options = kstrdup(options, GFP_KERNEL);
  651. }
  652. EXPORT_SYMBOL(save_mount_options);
  653. #ifdef CONFIG_PROC_FS
  654. /* iterator */
  655. static void *m_start(struct seq_file *m, loff_t *pos)
  656. {
  657. struct proc_mounts *p = m->private;
  658. down_read(&namespace_sem);
  659. return seq_list_start(&p->ns->list, *pos);
  660. }
  661. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  662. {
  663. struct proc_mounts *p = m->private;
  664. return seq_list_next(v, &p->ns->list, pos);
  665. }
  666. static void m_stop(struct seq_file *m, void *v)
  667. {
  668. up_read(&namespace_sem);
  669. }
  670. struct proc_fs_info {
  671. int flag;
  672. const char *str;
  673. };
  674. static void show_sb_opts(struct seq_file *m, struct super_block *sb)
  675. {
  676. static const struct proc_fs_info fs_info[] = {
  677. { MS_SYNCHRONOUS, ",sync" },
  678. { MS_DIRSYNC, ",dirsync" },
  679. { MS_MANDLOCK, ",mand" },
  680. { 0, NULL }
  681. };
  682. const struct proc_fs_info *fs_infop;
  683. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  684. if (sb->s_flags & fs_infop->flag)
  685. seq_puts(m, fs_infop->str);
  686. }
  687. }
  688. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  689. {
  690. static const struct proc_fs_info mnt_info[] = {
  691. { MNT_NOSUID, ",nosuid" },
  692. { MNT_NODEV, ",nodev" },
  693. { MNT_NOEXEC, ",noexec" },
  694. { MNT_NOATIME, ",noatime" },
  695. { MNT_NODIRATIME, ",nodiratime" },
  696. { MNT_RELATIME, ",relatime" },
  697. { 0, NULL }
  698. };
  699. const struct proc_fs_info *fs_infop;
  700. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  701. if (mnt->mnt_flags & fs_infop->flag)
  702. seq_puts(m, fs_infop->str);
  703. }
  704. }
  705. static void show_type(struct seq_file *m, struct super_block *sb)
  706. {
  707. mangle(m, sb->s_type->name);
  708. if (sb->s_subtype && sb->s_subtype[0]) {
  709. seq_putc(m, '.');
  710. mangle(m, sb->s_subtype);
  711. }
  712. }
  713. static int show_vfsmnt(struct seq_file *m, void *v)
  714. {
  715. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  716. int err = 0;
  717. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  718. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  719. seq_putc(m, ' ');
  720. seq_path(m, &mnt_path, " \t\n\\");
  721. seq_putc(m, ' ');
  722. show_type(m, mnt->mnt_sb);
  723. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  724. show_sb_opts(m, mnt->mnt_sb);
  725. show_mnt_opts(m, mnt);
  726. if (mnt->mnt_sb->s_op->show_options)
  727. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  728. seq_puts(m, " 0 0\n");
  729. return err;
  730. }
  731. const struct seq_operations mounts_op = {
  732. .start = m_start,
  733. .next = m_next,
  734. .stop = m_stop,
  735. .show = show_vfsmnt
  736. };
  737. static int show_mountinfo(struct seq_file *m, void *v)
  738. {
  739. struct proc_mounts *p = m->private;
  740. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  741. struct super_block *sb = mnt->mnt_sb;
  742. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  743. struct path root = p->root;
  744. int err = 0;
  745. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  746. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  747. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  748. seq_putc(m, ' ');
  749. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  750. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  751. /*
  752. * Mountpoint is outside root, discard that one. Ugly,
  753. * but less so than trying to do that in iterator in a
  754. * race-free way (due to renames).
  755. */
  756. return SEQ_SKIP;
  757. }
  758. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  759. show_mnt_opts(m, mnt);
  760. /* Tagged fields ("foo:X" or "bar") */
  761. if (IS_MNT_SHARED(mnt))
  762. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  763. if (IS_MNT_SLAVE(mnt)) {
  764. int master = mnt->mnt_master->mnt_group_id;
  765. int dom = get_dominating_id(mnt, &p->root);
  766. seq_printf(m, " master:%i", master);
  767. if (dom && dom != master)
  768. seq_printf(m, " propagate_from:%i", dom);
  769. }
  770. if (IS_MNT_UNBINDABLE(mnt))
  771. seq_puts(m, " unbindable");
  772. /* Filesystem specific data */
  773. seq_puts(m, " - ");
  774. show_type(m, sb);
  775. seq_putc(m, ' ');
  776. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  777. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  778. show_sb_opts(m, sb);
  779. if (sb->s_op->show_options)
  780. err = sb->s_op->show_options(m, mnt);
  781. seq_putc(m, '\n');
  782. return err;
  783. }
  784. const struct seq_operations mountinfo_op = {
  785. .start = m_start,
  786. .next = m_next,
  787. .stop = m_stop,
  788. .show = show_mountinfo,
  789. };
  790. static int show_vfsstat(struct seq_file *m, void *v)
  791. {
  792. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  793. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  794. int err = 0;
  795. /* device */
  796. if (mnt->mnt_devname) {
  797. seq_puts(m, "device ");
  798. mangle(m, mnt->mnt_devname);
  799. } else
  800. seq_puts(m, "no device");
  801. /* mount point */
  802. seq_puts(m, " mounted on ");
  803. seq_path(m, &mnt_path, " \t\n\\");
  804. seq_putc(m, ' ');
  805. /* file system type */
  806. seq_puts(m, "with fstype ");
  807. show_type(m, mnt->mnt_sb);
  808. /* optional statistics */
  809. if (mnt->mnt_sb->s_op->show_stats) {
  810. seq_putc(m, ' ');
  811. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  812. }
  813. seq_putc(m, '\n');
  814. return err;
  815. }
  816. const struct seq_operations mountstats_op = {
  817. .start = m_start,
  818. .next = m_next,
  819. .stop = m_stop,
  820. .show = show_vfsstat,
  821. };
  822. #endif /* CONFIG_PROC_FS */
  823. /**
  824. * may_umount_tree - check if a mount tree is busy
  825. * @mnt: root of mount tree
  826. *
  827. * This is called to check if a tree of mounts has any
  828. * open files, pwds, chroots or sub mounts that are
  829. * busy.
  830. */
  831. int may_umount_tree(struct vfsmount *mnt)
  832. {
  833. int actual_refs = 0;
  834. int minimum_refs = 0;
  835. struct vfsmount *p;
  836. spin_lock(&vfsmount_lock);
  837. for (p = mnt; p; p = next_mnt(p, mnt)) {
  838. actual_refs += atomic_read(&p->mnt_count);
  839. minimum_refs += 2;
  840. }
  841. spin_unlock(&vfsmount_lock);
  842. if (actual_refs > minimum_refs)
  843. return 0;
  844. return 1;
  845. }
  846. EXPORT_SYMBOL(may_umount_tree);
  847. /**
  848. * may_umount - check if a mount point is busy
  849. * @mnt: root of mount
  850. *
  851. * This is called to check if a mount point has any
  852. * open files, pwds, chroots or sub mounts. If the
  853. * mount has sub mounts this will return busy
  854. * regardless of whether the sub mounts are busy.
  855. *
  856. * Doesn't take quota and stuff into account. IOW, in some cases it will
  857. * give false negatives. The main reason why it's here is that we need
  858. * a non-destructive way to look for easily umountable filesystems.
  859. */
  860. int may_umount(struct vfsmount *mnt)
  861. {
  862. int ret = 1;
  863. spin_lock(&vfsmount_lock);
  864. if (propagate_mount_busy(mnt, 2))
  865. ret = 0;
  866. spin_unlock(&vfsmount_lock);
  867. return ret;
  868. }
  869. EXPORT_SYMBOL(may_umount);
  870. void release_mounts(struct list_head *head)
  871. {
  872. struct vfsmount *mnt;
  873. while (!list_empty(head)) {
  874. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  875. list_del_init(&mnt->mnt_hash);
  876. if (mnt->mnt_parent != mnt) {
  877. struct dentry *dentry;
  878. struct vfsmount *m;
  879. spin_lock(&vfsmount_lock);
  880. dentry = mnt->mnt_mountpoint;
  881. m = mnt->mnt_parent;
  882. mnt->mnt_mountpoint = mnt->mnt_root;
  883. mnt->mnt_parent = mnt;
  884. m->mnt_ghosts--;
  885. spin_unlock(&vfsmount_lock);
  886. dput(dentry);
  887. mntput(m);
  888. }
  889. mntput(mnt);
  890. }
  891. }
  892. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  893. {
  894. struct vfsmount *p;
  895. for (p = mnt; p; p = next_mnt(p, mnt))
  896. list_move(&p->mnt_hash, kill);
  897. if (propagate)
  898. propagate_umount(kill);
  899. list_for_each_entry(p, kill, mnt_hash) {
  900. list_del_init(&p->mnt_expire);
  901. list_del_init(&p->mnt_list);
  902. __touch_mnt_namespace(p->mnt_ns);
  903. p->mnt_ns = NULL;
  904. list_del_init(&p->mnt_child);
  905. if (p->mnt_parent != p) {
  906. p->mnt_parent->mnt_ghosts++;
  907. p->mnt_mountpoint->d_mounted--;
  908. }
  909. change_mnt_propagation(p, MS_PRIVATE);
  910. }
  911. }
  912. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  913. static int do_umount(struct vfsmount *mnt, int flags)
  914. {
  915. struct super_block *sb = mnt->mnt_sb;
  916. int retval;
  917. LIST_HEAD(umount_list);
  918. retval = security_sb_umount(mnt, flags);
  919. if (retval)
  920. return retval;
  921. /*
  922. * Allow userspace to request a mountpoint be expired rather than
  923. * unmounting unconditionally. Unmount only happens if:
  924. * (1) the mark is already set (the mark is cleared by mntput())
  925. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  926. */
  927. if (flags & MNT_EXPIRE) {
  928. if (mnt == current->fs->root.mnt ||
  929. flags & (MNT_FORCE | MNT_DETACH))
  930. return -EINVAL;
  931. if (atomic_read(&mnt->mnt_count) != 2)
  932. return -EBUSY;
  933. if (!xchg(&mnt->mnt_expiry_mark, 1))
  934. return -EAGAIN;
  935. }
  936. /*
  937. * If we may have to abort operations to get out of this
  938. * mount, and they will themselves hold resources we must
  939. * allow the fs to do things. In the Unix tradition of
  940. * 'Gee thats tricky lets do it in userspace' the umount_begin
  941. * might fail to complete on the first run through as other tasks
  942. * must return, and the like. Thats for the mount program to worry
  943. * about for the moment.
  944. */
  945. lock_kernel();
  946. if (sb->s_op->umount_begin)
  947. sb->s_op->umount_begin(mnt, flags);
  948. unlock_kernel();
  949. /*
  950. * No sense to grab the lock for this test, but test itself looks
  951. * somewhat bogus. Suggestions for better replacement?
  952. * Ho-hum... In principle, we might treat that as umount + switch
  953. * to rootfs. GC would eventually take care of the old vfsmount.
  954. * Actually it makes sense, especially if rootfs would contain a
  955. * /reboot - static binary that would close all descriptors and
  956. * call reboot(9). Then init(8) could umount root and exec /reboot.
  957. */
  958. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  959. /*
  960. * Special case for "unmounting" root ...
  961. * we just try to remount it readonly.
  962. */
  963. down_write(&sb->s_umount);
  964. if (!(sb->s_flags & MS_RDONLY)) {
  965. lock_kernel();
  966. DQUOT_OFF(sb);
  967. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  968. unlock_kernel();
  969. }
  970. up_write(&sb->s_umount);
  971. return retval;
  972. }
  973. down_write(&namespace_sem);
  974. spin_lock(&vfsmount_lock);
  975. event++;
  976. if (!(flags & MNT_DETACH))
  977. shrink_submounts(mnt, &umount_list);
  978. retval = -EBUSY;
  979. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  980. if (!list_empty(&mnt->mnt_list))
  981. umount_tree(mnt, 1, &umount_list);
  982. retval = 0;
  983. }
  984. spin_unlock(&vfsmount_lock);
  985. if (retval)
  986. security_sb_umount_busy(mnt);
  987. up_write(&namespace_sem);
  988. release_mounts(&umount_list);
  989. return retval;
  990. }
  991. /*
  992. * Now umount can handle mount points as well as block devices.
  993. * This is important for filesystems which use unnamed block devices.
  994. *
  995. * We now support a flag for forced unmount like the other 'big iron'
  996. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  997. */
  998. asmlinkage long sys_umount(char __user * name, int flags)
  999. {
  1000. struct nameidata nd;
  1001. int retval;
  1002. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  1003. if (retval)
  1004. goto out;
  1005. retval = -EINVAL;
  1006. if (nd.path.dentry != nd.path.mnt->mnt_root)
  1007. goto dput_and_out;
  1008. if (!check_mnt(nd.path.mnt))
  1009. goto dput_and_out;
  1010. retval = -EPERM;
  1011. if (!capable(CAP_SYS_ADMIN))
  1012. goto dput_and_out;
  1013. retval = do_umount(nd.path.mnt, flags);
  1014. dput_and_out:
  1015. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1016. dput(nd.path.dentry);
  1017. mntput_no_expire(nd.path.mnt);
  1018. out:
  1019. return retval;
  1020. }
  1021. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1022. /*
  1023. * The 2.0 compatible umount. No flags.
  1024. */
  1025. asmlinkage long sys_oldumount(char __user * name)
  1026. {
  1027. return sys_umount(name, 0);
  1028. }
  1029. #endif
  1030. static int mount_is_safe(struct nameidata *nd)
  1031. {
  1032. if (capable(CAP_SYS_ADMIN))
  1033. return 0;
  1034. return -EPERM;
  1035. #ifdef notyet
  1036. if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
  1037. return -EPERM;
  1038. if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
  1039. if (current->uid != nd->path.dentry->d_inode->i_uid)
  1040. return -EPERM;
  1041. }
  1042. if (vfs_permission(nd, MAY_WRITE))
  1043. return -EPERM;
  1044. return 0;
  1045. #endif
  1046. }
  1047. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  1048. {
  1049. while (1) {
  1050. if (d == dentry)
  1051. return 1;
  1052. if (d == NULL || d == d->d_parent)
  1053. return 0;
  1054. d = d->d_parent;
  1055. }
  1056. }
  1057. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1058. int flag)
  1059. {
  1060. struct vfsmount *res, *p, *q, *r, *s;
  1061. struct path path;
  1062. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1063. return NULL;
  1064. res = q = clone_mnt(mnt, dentry, flag);
  1065. if (!q)
  1066. goto Enomem;
  1067. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1068. p = mnt;
  1069. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1070. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  1071. continue;
  1072. for (s = r; s; s = next_mnt(s, r)) {
  1073. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1074. s = skip_mnt_tree(s);
  1075. continue;
  1076. }
  1077. while (p != s->mnt_parent) {
  1078. p = p->mnt_parent;
  1079. q = q->mnt_parent;
  1080. }
  1081. p = s;
  1082. path.mnt = q;
  1083. path.dentry = p->mnt_mountpoint;
  1084. q = clone_mnt(p, p->mnt_root, flag);
  1085. if (!q)
  1086. goto Enomem;
  1087. spin_lock(&vfsmount_lock);
  1088. list_add_tail(&q->mnt_list, &res->mnt_list);
  1089. attach_mnt(q, &path);
  1090. spin_unlock(&vfsmount_lock);
  1091. }
  1092. }
  1093. return res;
  1094. Enomem:
  1095. if (res) {
  1096. LIST_HEAD(umount_list);
  1097. spin_lock(&vfsmount_lock);
  1098. umount_tree(res, 0, &umount_list);
  1099. spin_unlock(&vfsmount_lock);
  1100. release_mounts(&umount_list);
  1101. }
  1102. return NULL;
  1103. }
  1104. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  1105. {
  1106. struct vfsmount *tree;
  1107. down_write(&namespace_sem);
  1108. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  1109. up_write(&namespace_sem);
  1110. return tree;
  1111. }
  1112. void drop_collected_mounts(struct vfsmount *mnt)
  1113. {
  1114. LIST_HEAD(umount_list);
  1115. down_write(&namespace_sem);
  1116. spin_lock(&vfsmount_lock);
  1117. umount_tree(mnt, 0, &umount_list);
  1118. spin_unlock(&vfsmount_lock);
  1119. up_write(&namespace_sem);
  1120. release_mounts(&umount_list);
  1121. }
  1122. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1123. {
  1124. struct vfsmount *p;
  1125. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1126. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1127. mnt_release_group_id(p);
  1128. }
  1129. }
  1130. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1131. {
  1132. struct vfsmount *p;
  1133. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1134. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1135. int err = mnt_alloc_group_id(p);
  1136. if (err) {
  1137. cleanup_group_ids(mnt, p);
  1138. return err;
  1139. }
  1140. }
  1141. }
  1142. return 0;
  1143. }
  1144. /*
  1145. * @source_mnt : mount tree to be attached
  1146. * @nd : place the mount tree @source_mnt is attached
  1147. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1148. * store the parent mount and mountpoint dentry.
  1149. * (done when source_mnt is moved)
  1150. *
  1151. * NOTE: in the table below explains the semantics when a source mount
  1152. * of a given type is attached to a destination mount of a given type.
  1153. * ---------------------------------------------------------------------------
  1154. * | BIND MOUNT OPERATION |
  1155. * |**************************************************************************
  1156. * | source-->| shared | private | slave | unbindable |
  1157. * | dest | | | | |
  1158. * | | | | | | |
  1159. * | v | | | | |
  1160. * |**************************************************************************
  1161. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1162. * | | | | | |
  1163. * |non-shared| shared (+) | private | slave (*) | invalid |
  1164. * ***************************************************************************
  1165. * A bind operation clones the source mount and mounts the clone on the
  1166. * destination mount.
  1167. *
  1168. * (++) the cloned mount is propagated to all the mounts in the propagation
  1169. * tree of the destination mount and the cloned mount is added to
  1170. * the peer group of the source mount.
  1171. * (+) the cloned mount is created under the destination mount and is marked
  1172. * as shared. The cloned mount is added to the peer group of the source
  1173. * mount.
  1174. * (+++) the mount is propagated to all the mounts in the propagation tree
  1175. * of the destination mount and the cloned mount is made slave
  1176. * of the same master as that of the source mount. The cloned mount
  1177. * is marked as 'shared and slave'.
  1178. * (*) the cloned mount is made a slave of the same master as that of the
  1179. * source mount.
  1180. *
  1181. * ---------------------------------------------------------------------------
  1182. * | MOVE MOUNT OPERATION |
  1183. * |**************************************************************************
  1184. * | source-->| shared | private | slave | unbindable |
  1185. * | dest | | | | |
  1186. * | | | | | | |
  1187. * | v | | | | |
  1188. * |**************************************************************************
  1189. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1190. * | | | | | |
  1191. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1192. * ***************************************************************************
  1193. *
  1194. * (+) the mount is moved to the destination. And is then propagated to
  1195. * all the mounts in the propagation tree of the destination mount.
  1196. * (+*) the mount is moved to the destination.
  1197. * (+++) the mount is moved to the destination and is then propagated to
  1198. * all the mounts belonging to the destination mount's propagation tree.
  1199. * the mount is marked as 'shared and slave'.
  1200. * (*) the mount continues to be a slave at the new location.
  1201. *
  1202. * if the source mount is a tree, the operations explained above is
  1203. * applied to each mount in the tree.
  1204. * Must be called without spinlocks held, since this function can sleep
  1205. * in allocations.
  1206. */
  1207. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1208. struct path *path, struct path *parent_path)
  1209. {
  1210. LIST_HEAD(tree_list);
  1211. struct vfsmount *dest_mnt = path->mnt;
  1212. struct dentry *dest_dentry = path->dentry;
  1213. struct vfsmount *child, *p;
  1214. int err;
  1215. if (IS_MNT_SHARED(dest_mnt)) {
  1216. err = invent_group_ids(source_mnt, true);
  1217. if (err)
  1218. goto out;
  1219. }
  1220. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1221. if (err)
  1222. goto out_cleanup_ids;
  1223. if (IS_MNT_SHARED(dest_mnt)) {
  1224. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1225. set_mnt_shared(p);
  1226. }
  1227. spin_lock(&vfsmount_lock);
  1228. if (parent_path) {
  1229. detach_mnt(source_mnt, parent_path);
  1230. attach_mnt(source_mnt, path);
  1231. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1232. } else {
  1233. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1234. commit_tree(source_mnt);
  1235. }
  1236. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1237. list_del_init(&child->mnt_hash);
  1238. commit_tree(child);
  1239. }
  1240. spin_unlock(&vfsmount_lock);
  1241. return 0;
  1242. out_cleanup_ids:
  1243. if (IS_MNT_SHARED(dest_mnt))
  1244. cleanup_group_ids(source_mnt, NULL);
  1245. out:
  1246. return err;
  1247. }
  1248. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1249. {
  1250. int err;
  1251. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1252. return -EINVAL;
  1253. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1254. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1255. return -ENOTDIR;
  1256. err = -ENOENT;
  1257. mutex_lock(&path->dentry->d_inode->i_mutex);
  1258. if (IS_DEADDIR(path->dentry->d_inode))
  1259. goto out_unlock;
  1260. err = security_sb_check_sb(mnt, path);
  1261. if (err)
  1262. goto out_unlock;
  1263. err = -ENOENT;
  1264. if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
  1265. err = attach_recursive_mnt(mnt, path, NULL);
  1266. out_unlock:
  1267. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1268. if (!err)
  1269. security_sb_post_addmount(mnt, path);
  1270. return err;
  1271. }
  1272. /*
  1273. * recursively change the type of the mountpoint.
  1274. * noinline this do_mount helper to save do_mount stack space.
  1275. */
  1276. static noinline int do_change_type(struct nameidata *nd, int flag)
  1277. {
  1278. struct vfsmount *m, *mnt = nd->path.mnt;
  1279. int recurse = flag & MS_REC;
  1280. int type = flag & ~MS_REC;
  1281. int err = 0;
  1282. if (!capable(CAP_SYS_ADMIN))
  1283. return -EPERM;
  1284. if (nd->path.dentry != nd->path.mnt->mnt_root)
  1285. return -EINVAL;
  1286. down_write(&namespace_sem);
  1287. if (type == MS_SHARED) {
  1288. err = invent_group_ids(mnt, recurse);
  1289. if (err)
  1290. goto out_unlock;
  1291. }
  1292. spin_lock(&vfsmount_lock);
  1293. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1294. change_mnt_propagation(m, type);
  1295. spin_unlock(&vfsmount_lock);
  1296. out_unlock:
  1297. up_write(&namespace_sem);
  1298. return err;
  1299. }
  1300. /*
  1301. * do loopback mount.
  1302. * noinline this do_mount helper to save do_mount stack space.
  1303. */
  1304. static noinline int do_loopback(struct nameidata *nd, char *old_name,
  1305. int recurse)
  1306. {
  1307. struct nameidata old_nd;
  1308. struct vfsmount *mnt = NULL;
  1309. int err = mount_is_safe(nd);
  1310. if (err)
  1311. return err;
  1312. if (!old_name || !*old_name)
  1313. return -EINVAL;
  1314. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  1315. if (err)
  1316. return err;
  1317. down_write(&namespace_sem);
  1318. err = -EINVAL;
  1319. if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
  1320. goto out;
  1321. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  1322. goto out;
  1323. err = -ENOMEM;
  1324. if (recurse)
  1325. mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
  1326. else
  1327. mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
  1328. if (!mnt)
  1329. goto out;
  1330. err = graft_tree(mnt, &nd->path);
  1331. if (err) {
  1332. LIST_HEAD(umount_list);
  1333. spin_lock(&vfsmount_lock);
  1334. umount_tree(mnt, 0, &umount_list);
  1335. spin_unlock(&vfsmount_lock);
  1336. release_mounts(&umount_list);
  1337. }
  1338. out:
  1339. up_write(&namespace_sem);
  1340. path_put(&old_nd.path);
  1341. return err;
  1342. }
  1343. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1344. {
  1345. int error = 0;
  1346. int readonly_request = 0;
  1347. if (ms_flags & MS_RDONLY)
  1348. readonly_request = 1;
  1349. if (readonly_request == __mnt_is_readonly(mnt))
  1350. return 0;
  1351. if (readonly_request)
  1352. error = mnt_make_readonly(mnt);
  1353. else
  1354. __mnt_unmake_readonly(mnt);
  1355. return error;
  1356. }
  1357. /*
  1358. * change filesystem flags. dir should be a physical root of filesystem.
  1359. * If you've mounted a non-root directory somewhere and want to do remount
  1360. * on it - tough luck.
  1361. * noinline this do_mount helper to save do_mount stack space.
  1362. */
  1363. static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  1364. void *data)
  1365. {
  1366. int err;
  1367. struct super_block *sb = nd->path.mnt->mnt_sb;
  1368. if (!capable(CAP_SYS_ADMIN))
  1369. return -EPERM;
  1370. if (!check_mnt(nd->path.mnt))
  1371. return -EINVAL;
  1372. if (nd->path.dentry != nd->path.mnt->mnt_root)
  1373. return -EINVAL;
  1374. down_write(&sb->s_umount);
  1375. if (flags & MS_BIND)
  1376. err = change_mount_flags(nd->path.mnt, flags);
  1377. else
  1378. err = do_remount_sb(sb, flags, data, 0);
  1379. if (!err)
  1380. nd->path.mnt->mnt_flags = mnt_flags;
  1381. up_write(&sb->s_umount);
  1382. if (!err)
  1383. security_sb_post_remount(nd->path.mnt, flags, data);
  1384. return err;
  1385. }
  1386. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1387. {
  1388. struct vfsmount *p;
  1389. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1390. if (IS_MNT_UNBINDABLE(p))
  1391. return 1;
  1392. }
  1393. return 0;
  1394. }
  1395. /*
  1396. * noinline this do_mount helper to save do_mount stack space.
  1397. */
  1398. static noinline int do_move_mount(struct nameidata *nd, char *old_name)
  1399. {
  1400. struct nameidata old_nd;
  1401. struct path parent_path;
  1402. struct vfsmount *p;
  1403. int err = 0;
  1404. if (!capable(CAP_SYS_ADMIN))
  1405. return -EPERM;
  1406. if (!old_name || !*old_name)
  1407. return -EINVAL;
  1408. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  1409. if (err)
  1410. return err;
  1411. down_write(&namespace_sem);
  1412. while (d_mountpoint(nd->path.dentry) &&
  1413. follow_down(&nd->path.mnt, &nd->path.dentry))
  1414. ;
  1415. err = -EINVAL;
  1416. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  1417. goto out;
  1418. err = -ENOENT;
  1419. mutex_lock(&nd->path.dentry->d_inode->i_mutex);
  1420. if (IS_DEADDIR(nd->path.dentry->d_inode))
  1421. goto out1;
  1422. if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
  1423. goto out1;
  1424. err = -EINVAL;
  1425. if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
  1426. goto out1;
  1427. if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
  1428. goto out1;
  1429. if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
  1430. S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
  1431. goto out1;
  1432. /*
  1433. * Don't move a mount residing in a shared parent.
  1434. */
  1435. if (old_nd.path.mnt->mnt_parent &&
  1436. IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
  1437. goto out1;
  1438. /*
  1439. * Don't move a mount tree containing unbindable mounts to a destination
  1440. * mount which is shared.
  1441. */
  1442. if (IS_MNT_SHARED(nd->path.mnt) &&
  1443. tree_contains_unbindable(old_nd.path.mnt))
  1444. goto out1;
  1445. err = -ELOOP;
  1446. for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
  1447. if (p == old_nd.path.mnt)
  1448. goto out1;
  1449. err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
  1450. if (err)
  1451. goto out1;
  1452. /* if the mount is moved, it should no longer be expire
  1453. * automatically */
  1454. list_del_init(&old_nd.path.mnt->mnt_expire);
  1455. out1:
  1456. mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
  1457. out:
  1458. up_write(&namespace_sem);
  1459. if (!err)
  1460. path_put(&parent_path);
  1461. path_put(&old_nd.path);
  1462. return err;
  1463. }
  1464. /*
  1465. * create a new mount for userspace and request it to be added into the
  1466. * namespace's tree
  1467. * noinline this do_mount helper to save do_mount stack space.
  1468. */
  1469. static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
  1470. int mnt_flags, char *name, void *data)
  1471. {
  1472. struct vfsmount *mnt;
  1473. if (!type || !memchr(type, 0, PAGE_SIZE))
  1474. return -EINVAL;
  1475. /* we need capabilities... */
  1476. if (!capable(CAP_SYS_ADMIN))
  1477. return -EPERM;
  1478. mnt = do_kern_mount(type, flags, name, data);
  1479. if (IS_ERR(mnt))
  1480. return PTR_ERR(mnt);
  1481. return do_add_mount(mnt, nd, mnt_flags, NULL);
  1482. }
  1483. /*
  1484. * add a mount into a namespace's mount tree
  1485. * - provide the option of adding the new mount to an expiration list
  1486. */
  1487. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  1488. int mnt_flags, struct list_head *fslist)
  1489. {
  1490. int err;
  1491. down_write(&namespace_sem);
  1492. /* Something was mounted here while we slept */
  1493. while (d_mountpoint(nd->path.dentry) &&
  1494. follow_down(&nd->path.mnt, &nd->path.dentry))
  1495. ;
  1496. err = -EINVAL;
  1497. if (!check_mnt(nd->path.mnt))
  1498. goto unlock;
  1499. /* Refuse the same filesystem on the same mount point */
  1500. err = -EBUSY;
  1501. if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
  1502. nd->path.mnt->mnt_root == nd->path.dentry)
  1503. goto unlock;
  1504. err = -EINVAL;
  1505. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1506. goto unlock;
  1507. newmnt->mnt_flags = mnt_flags;
  1508. if ((err = graft_tree(newmnt, &nd->path)))
  1509. goto unlock;
  1510. if (fslist) /* add to the specified expiration list */
  1511. list_add_tail(&newmnt->mnt_expire, fslist);
  1512. up_write(&namespace_sem);
  1513. return 0;
  1514. unlock:
  1515. up_write(&namespace_sem);
  1516. mntput(newmnt);
  1517. return err;
  1518. }
  1519. EXPORT_SYMBOL_GPL(do_add_mount);
  1520. /*
  1521. * process a list of expirable mountpoints with the intent of discarding any
  1522. * mountpoints that aren't in use and haven't been touched since last we came
  1523. * here
  1524. */
  1525. void mark_mounts_for_expiry(struct list_head *mounts)
  1526. {
  1527. struct vfsmount *mnt, *next;
  1528. LIST_HEAD(graveyard);
  1529. LIST_HEAD(umounts);
  1530. if (list_empty(mounts))
  1531. return;
  1532. down_write(&namespace_sem);
  1533. spin_lock(&vfsmount_lock);
  1534. /* extract from the expiration list every vfsmount that matches the
  1535. * following criteria:
  1536. * - only referenced by its parent vfsmount
  1537. * - still marked for expiry (marked on the last call here; marks are
  1538. * cleared by mntput())
  1539. */
  1540. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1541. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1542. propagate_mount_busy(mnt, 1))
  1543. continue;
  1544. list_move(&mnt->mnt_expire, &graveyard);
  1545. }
  1546. while (!list_empty(&graveyard)) {
  1547. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1548. touch_mnt_namespace(mnt->mnt_ns);
  1549. umount_tree(mnt, 1, &umounts);
  1550. }
  1551. spin_unlock(&vfsmount_lock);
  1552. up_write(&namespace_sem);
  1553. release_mounts(&umounts);
  1554. }
  1555. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1556. /*
  1557. * Ripoff of 'select_parent()'
  1558. *
  1559. * search the list of submounts for a given mountpoint, and move any
  1560. * shrinkable submounts to the 'graveyard' list.
  1561. */
  1562. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1563. {
  1564. struct vfsmount *this_parent = parent;
  1565. struct list_head *next;
  1566. int found = 0;
  1567. repeat:
  1568. next = this_parent->mnt_mounts.next;
  1569. resume:
  1570. while (next != &this_parent->mnt_mounts) {
  1571. struct list_head *tmp = next;
  1572. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1573. next = tmp->next;
  1574. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1575. continue;
  1576. /*
  1577. * Descend a level if the d_mounts list is non-empty.
  1578. */
  1579. if (!list_empty(&mnt->mnt_mounts)) {
  1580. this_parent = mnt;
  1581. goto repeat;
  1582. }
  1583. if (!propagate_mount_busy(mnt, 1)) {
  1584. list_move_tail(&mnt->mnt_expire, graveyard);
  1585. found++;
  1586. }
  1587. }
  1588. /*
  1589. * All done at this level ... ascend and resume the search
  1590. */
  1591. if (this_parent != parent) {
  1592. next = this_parent->mnt_child.next;
  1593. this_parent = this_parent->mnt_parent;
  1594. goto resume;
  1595. }
  1596. return found;
  1597. }
  1598. /*
  1599. * process a list of expirable mountpoints with the intent of discarding any
  1600. * submounts of a specific parent mountpoint
  1601. */
  1602. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1603. {
  1604. LIST_HEAD(graveyard);
  1605. struct vfsmount *m;
  1606. /* extract submounts of 'mountpoint' from the expiration list */
  1607. while (select_submounts(mnt, &graveyard)) {
  1608. while (!list_empty(&graveyard)) {
  1609. m = list_first_entry(&graveyard, struct vfsmount,
  1610. mnt_expire);
  1611. touch_mnt_namespace(mnt->mnt_ns);
  1612. umount_tree(mnt, 1, umounts);
  1613. }
  1614. }
  1615. }
  1616. /*
  1617. * Some copy_from_user() implementations do not return the exact number of
  1618. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1619. * Note that this function differs from copy_from_user() in that it will oops
  1620. * on bad values of `to', rather than returning a short copy.
  1621. */
  1622. static long exact_copy_from_user(void *to, const void __user * from,
  1623. unsigned long n)
  1624. {
  1625. char *t = to;
  1626. const char __user *f = from;
  1627. char c;
  1628. if (!access_ok(VERIFY_READ, from, n))
  1629. return n;
  1630. while (n) {
  1631. if (__get_user(c, f)) {
  1632. memset(t, 0, n);
  1633. break;
  1634. }
  1635. *t++ = c;
  1636. f++;
  1637. n--;
  1638. }
  1639. return n;
  1640. }
  1641. int copy_mount_options(const void __user * data, unsigned long *where)
  1642. {
  1643. int i;
  1644. unsigned long page;
  1645. unsigned long size;
  1646. *where = 0;
  1647. if (!data)
  1648. return 0;
  1649. if (!(page = __get_free_page(GFP_KERNEL)))
  1650. return -ENOMEM;
  1651. /* We only care that *some* data at the address the user
  1652. * gave us is valid. Just in case, we'll zero
  1653. * the remainder of the page.
  1654. */
  1655. /* copy_from_user cannot cross TASK_SIZE ! */
  1656. size = TASK_SIZE - (unsigned long)data;
  1657. if (size > PAGE_SIZE)
  1658. size = PAGE_SIZE;
  1659. i = size - exact_copy_from_user((void *)page, data, size);
  1660. if (!i) {
  1661. free_page(page);
  1662. return -EFAULT;
  1663. }
  1664. if (i != PAGE_SIZE)
  1665. memset((char *)page + i, 0, PAGE_SIZE - i);
  1666. *where = page;
  1667. return 0;
  1668. }
  1669. /*
  1670. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1671. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1672. *
  1673. * data is a (void *) that can point to any structure up to
  1674. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1675. * information (or be NULL).
  1676. *
  1677. * Pre-0.97 versions of mount() didn't have a flags word.
  1678. * When the flags word was introduced its top half was required
  1679. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1680. * Therefore, if this magic number is present, it carries no information
  1681. * and must be discarded.
  1682. */
  1683. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1684. unsigned long flags, void *data_page)
  1685. {
  1686. struct nameidata nd;
  1687. int retval = 0;
  1688. int mnt_flags = 0;
  1689. /* Discard magic */
  1690. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1691. flags &= ~MS_MGC_MSK;
  1692. /* Basic sanity checks */
  1693. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1694. return -EINVAL;
  1695. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1696. return -EINVAL;
  1697. if (data_page)
  1698. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1699. /* Separate the per-mountpoint flags */
  1700. if (flags & MS_NOSUID)
  1701. mnt_flags |= MNT_NOSUID;
  1702. if (flags & MS_NODEV)
  1703. mnt_flags |= MNT_NODEV;
  1704. if (flags & MS_NOEXEC)
  1705. mnt_flags |= MNT_NOEXEC;
  1706. if (flags & MS_NOATIME)
  1707. mnt_flags |= MNT_NOATIME;
  1708. if (flags & MS_NODIRATIME)
  1709. mnt_flags |= MNT_NODIRATIME;
  1710. if (flags & MS_RELATIME)
  1711. mnt_flags |= MNT_RELATIME;
  1712. if (flags & MS_RDONLY)
  1713. mnt_flags |= MNT_READONLY;
  1714. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1715. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
  1716. /* ... and get the mountpoint */
  1717. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1718. if (retval)
  1719. return retval;
  1720. retval = security_sb_mount(dev_name, &nd.path,
  1721. type_page, flags, data_page);
  1722. if (retval)
  1723. goto dput_out;
  1724. if (flags & MS_REMOUNT)
  1725. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1726. data_page);
  1727. else if (flags & MS_BIND)
  1728. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1729. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1730. retval = do_change_type(&nd, flags);
  1731. else if (flags & MS_MOVE)
  1732. retval = do_move_mount(&nd, dev_name);
  1733. else
  1734. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1735. dev_name, data_page);
  1736. dput_out:
  1737. path_put(&nd.path);
  1738. return retval;
  1739. }
  1740. /*
  1741. * Allocate a new namespace structure and populate it with contents
  1742. * copied from the namespace of the passed in task structure.
  1743. */
  1744. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1745. struct fs_struct *fs)
  1746. {
  1747. struct mnt_namespace *new_ns;
  1748. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1749. struct vfsmount *p, *q;
  1750. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1751. if (!new_ns)
  1752. return ERR_PTR(-ENOMEM);
  1753. atomic_set(&new_ns->count, 1);
  1754. INIT_LIST_HEAD(&new_ns->list);
  1755. init_waitqueue_head(&new_ns->poll);
  1756. new_ns->event = 0;
  1757. down_write(&namespace_sem);
  1758. /* First pass: copy the tree topology */
  1759. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1760. CL_COPY_ALL | CL_EXPIRE);
  1761. if (!new_ns->root) {
  1762. up_write(&namespace_sem);
  1763. kfree(new_ns);
  1764. return ERR_PTR(-ENOMEM);;
  1765. }
  1766. spin_lock(&vfsmount_lock);
  1767. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1768. spin_unlock(&vfsmount_lock);
  1769. /*
  1770. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1771. * as belonging to new namespace. We have already acquired a private
  1772. * fs_struct, so tsk->fs->lock is not needed.
  1773. */
  1774. p = mnt_ns->root;
  1775. q = new_ns->root;
  1776. while (p) {
  1777. q->mnt_ns = new_ns;
  1778. if (fs) {
  1779. if (p == fs->root.mnt) {
  1780. rootmnt = p;
  1781. fs->root.mnt = mntget(q);
  1782. }
  1783. if (p == fs->pwd.mnt) {
  1784. pwdmnt = p;
  1785. fs->pwd.mnt = mntget(q);
  1786. }
  1787. if (p == fs->altroot.mnt) {
  1788. altrootmnt = p;
  1789. fs->altroot.mnt = mntget(q);
  1790. }
  1791. }
  1792. p = next_mnt(p, mnt_ns->root);
  1793. q = next_mnt(q, new_ns->root);
  1794. }
  1795. up_write(&namespace_sem);
  1796. if (rootmnt)
  1797. mntput(rootmnt);
  1798. if (pwdmnt)
  1799. mntput(pwdmnt);
  1800. if (altrootmnt)
  1801. mntput(altrootmnt);
  1802. return new_ns;
  1803. }
  1804. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1805. struct fs_struct *new_fs)
  1806. {
  1807. struct mnt_namespace *new_ns;
  1808. BUG_ON(!ns);
  1809. get_mnt_ns(ns);
  1810. if (!(flags & CLONE_NEWNS))
  1811. return ns;
  1812. new_ns = dup_mnt_ns(ns, new_fs);
  1813. put_mnt_ns(ns);
  1814. return new_ns;
  1815. }
  1816. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1817. char __user * type, unsigned long flags,
  1818. void __user * data)
  1819. {
  1820. int retval;
  1821. unsigned long data_page;
  1822. unsigned long type_page;
  1823. unsigned long dev_page;
  1824. char *dir_page;
  1825. retval = copy_mount_options(type, &type_page);
  1826. if (retval < 0)
  1827. return retval;
  1828. dir_page = getname(dir_name);
  1829. retval = PTR_ERR(dir_page);
  1830. if (IS_ERR(dir_page))
  1831. goto out1;
  1832. retval = copy_mount_options(dev_name, &dev_page);
  1833. if (retval < 0)
  1834. goto out2;
  1835. retval = copy_mount_options(data, &data_page);
  1836. if (retval < 0)
  1837. goto out3;
  1838. lock_kernel();
  1839. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1840. flags, (void *)data_page);
  1841. unlock_kernel();
  1842. free_page(data_page);
  1843. out3:
  1844. free_page(dev_page);
  1845. out2:
  1846. putname(dir_page);
  1847. out1:
  1848. free_page(type_page);
  1849. return retval;
  1850. }
  1851. /*
  1852. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1853. * It can block. Requires the big lock held.
  1854. */
  1855. void set_fs_root(struct fs_struct *fs, struct path *path)
  1856. {
  1857. struct path old_root;
  1858. write_lock(&fs->lock);
  1859. old_root = fs->root;
  1860. fs->root = *path;
  1861. path_get(path);
  1862. write_unlock(&fs->lock);
  1863. if (old_root.dentry)
  1864. path_put(&old_root);
  1865. }
  1866. /*
  1867. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1868. * It can block. Requires the big lock held.
  1869. */
  1870. void set_fs_pwd(struct fs_struct *fs, struct path *path)
  1871. {
  1872. struct path old_pwd;
  1873. write_lock(&fs->lock);
  1874. old_pwd = fs->pwd;
  1875. fs->pwd = *path;
  1876. path_get(path);
  1877. write_unlock(&fs->lock);
  1878. if (old_pwd.dentry)
  1879. path_put(&old_pwd);
  1880. }
  1881. static void chroot_fs_refs(struct path *old_root, struct path *new_root)
  1882. {
  1883. struct task_struct *g, *p;
  1884. struct fs_struct *fs;
  1885. read_lock(&tasklist_lock);
  1886. do_each_thread(g, p) {
  1887. task_lock(p);
  1888. fs = p->fs;
  1889. if (fs) {
  1890. atomic_inc(&fs->count);
  1891. task_unlock(p);
  1892. if (fs->root.dentry == old_root->dentry
  1893. && fs->root.mnt == old_root->mnt)
  1894. set_fs_root(fs, new_root);
  1895. if (fs->pwd.dentry == old_root->dentry
  1896. && fs->pwd.mnt == old_root->mnt)
  1897. set_fs_pwd(fs, new_root);
  1898. put_fs_struct(fs);
  1899. } else
  1900. task_unlock(p);
  1901. } while_each_thread(g, p);
  1902. read_unlock(&tasklist_lock);
  1903. }
  1904. /*
  1905. * pivot_root Semantics:
  1906. * Moves the root file system of the current process to the directory put_old,
  1907. * makes new_root as the new root file system of the current process, and sets
  1908. * root/cwd of all processes which had them on the current root to new_root.
  1909. *
  1910. * Restrictions:
  1911. * The new_root and put_old must be directories, and must not be on the
  1912. * same file system as the current process root. The put_old must be
  1913. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1914. * pointed to by put_old must yield the same directory as new_root. No other
  1915. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1916. *
  1917. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1918. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1919. * in this situation.
  1920. *
  1921. * Notes:
  1922. * - we don't move root/cwd if they are not at the root (reason: if something
  1923. * cared enough to change them, it's probably wrong to force them elsewhere)
  1924. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1925. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1926. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1927. * first.
  1928. */
  1929. asmlinkage long sys_pivot_root(const char __user * new_root,
  1930. const char __user * put_old)
  1931. {
  1932. struct vfsmount *tmp;
  1933. struct nameidata new_nd, old_nd;
  1934. struct path parent_path, root_parent, root;
  1935. int error;
  1936. if (!capable(CAP_SYS_ADMIN))
  1937. return -EPERM;
  1938. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1939. &new_nd);
  1940. if (error)
  1941. goto out0;
  1942. error = -EINVAL;
  1943. if (!check_mnt(new_nd.path.mnt))
  1944. goto out1;
  1945. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1946. if (error)
  1947. goto out1;
  1948. error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
  1949. if (error) {
  1950. path_put(&old_nd.path);
  1951. goto out1;
  1952. }
  1953. read_lock(&current->fs->lock);
  1954. root = current->fs->root;
  1955. path_get(&current->fs->root);
  1956. read_unlock(&current->fs->lock);
  1957. down_write(&namespace_sem);
  1958. mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
  1959. error = -EINVAL;
  1960. if (IS_MNT_SHARED(old_nd.path.mnt) ||
  1961. IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
  1962. IS_MNT_SHARED(root.mnt->mnt_parent))
  1963. goto out2;
  1964. if (!check_mnt(root.mnt))
  1965. goto out2;
  1966. error = -ENOENT;
  1967. if (IS_DEADDIR(new_nd.path.dentry->d_inode))
  1968. goto out2;
  1969. if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
  1970. goto out2;
  1971. if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
  1972. goto out2;
  1973. error = -EBUSY;
  1974. if (new_nd.path.mnt == root.mnt ||
  1975. old_nd.path.mnt == root.mnt)
  1976. goto out2; /* loop, on the same file system */
  1977. error = -EINVAL;
  1978. if (root.mnt->mnt_root != root.dentry)
  1979. goto out2; /* not a mountpoint */
  1980. if (root.mnt->mnt_parent == root.mnt)
  1981. goto out2; /* not attached */
  1982. if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
  1983. goto out2; /* not a mountpoint */
  1984. if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
  1985. goto out2; /* not attached */
  1986. /* make sure we can reach put_old from new_root */
  1987. tmp = old_nd.path.mnt;
  1988. spin_lock(&vfsmount_lock);
  1989. if (tmp != new_nd.path.mnt) {
  1990. for (;;) {
  1991. if (tmp->mnt_parent == tmp)
  1992. goto out3; /* already mounted on put_old */
  1993. if (tmp->mnt_parent == new_nd.path.mnt)
  1994. break;
  1995. tmp = tmp->mnt_parent;
  1996. }
  1997. if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
  1998. goto out3;
  1999. } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
  2000. goto out3;
  2001. detach_mnt(new_nd.path.mnt, &parent_path);
  2002. detach_mnt(root.mnt, &root_parent);
  2003. /* mount old root on put_old */
  2004. attach_mnt(root.mnt, &old_nd.path);
  2005. /* mount new_root on / */
  2006. attach_mnt(new_nd.path.mnt, &root_parent);
  2007. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2008. spin_unlock(&vfsmount_lock);
  2009. chroot_fs_refs(&root, &new_nd.path);
  2010. security_sb_post_pivotroot(&root, &new_nd.path);
  2011. error = 0;
  2012. path_put(&root_parent);
  2013. path_put(&parent_path);
  2014. out2:
  2015. mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
  2016. up_write(&namespace_sem);
  2017. path_put(&root);
  2018. path_put(&old_nd.path);
  2019. out1:
  2020. path_put(&new_nd.path);
  2021. out0:
  2022. return error;
  2023. out3:
  2024. spin_unlock(&vfsmount_lock);
  2025. goto out2;
  2026. }
  2027. static void __init init_mount_tree(void)
  2028. {
  2029. struct vfsmount *mnt;
  2030. struct mnt_namespace *ns;
  2031. struct path root;
  2032. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2033. if (IS_ERR(mnt))
  2034. panic("Can't create rootfs");
  2035. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  2036. if (!ns)
  2037. panic("Can't allocate initial namespace");
  2038. atomic_set(&ns->count, 1);
  2039. INIT_LIST_HEAD(&ns->list);
  2040. init_waitqueue_head(&ns->poll);
  2041. ns->event = 0;
  2042. list_add(&mnt->mnt_list, &ns->list);
  2043. ns->root = mnt;
  2044. mnt->mnt_ns = ns;
  2045. init_task.nsproxy->mnt_ns = ns;
  2046. get_mnt_ns(ns);
  2047. root.mnt = ns->root;
  2048. root.dentry = ns->root->mnt_root;
  2049. set_fs_pwd(current->fs, &root);
  2050. set_fs_root(current->fs, &root);
  2051. }
  2052. void __init mnt_init(void)
  2053. {
  2054. unsigned u;
  2055. int err;
  2056. init_rwsem(&namespace_sem);
  2057. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2058. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2059. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2060. if (!mount_hashtable)
  2061. panic("Failed to allocate mount hash table\n");
  2062. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2063. for (u = 0; u < HASH_SIZE; u++)
  2064. INIT_LIST_HEAD(&mount_hashtable[u]);
  2065. err = sysfs_init();
  2066. if (err)
  2067. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2068. __FUNCTION__, err);
  2069. fs_kobj = kobject_create_and_add("fs", NULL);
  2070. if (!fs_kobj)
  2071. printk(KERN_WARNING "%s: kobj create error\n", __FUNCTION__);
  2072. init_rootfs();
  2073. init_mount_tree();
  2074. }
  2075. void __put_mnt_ns(struct mnt_namespace *ns)
  2076. {
  2077. struct vfsmount *root = ns->root;
  2078. LIST_HEAD(umount_list);
  2079. ns->root = NULL;
  2080. spin_unlock(&vfsmount_lock);
  2081. down_write(&namespace_sem);
  2082. spin_lock(&vfsmount_lock);
  2083. umount_tree(root, 0, &umount_list);
  2084. spin_unlock(&vfsmount_lock);
  2085. up_write(&namespace_sem);
  2086. release_mounts(&umount_list);
  2087. kfree(ns);
  2088. }