rt2500pci.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500pci
  19. Abstract: rt2500pci device specific routines.
  20. Supported chipsets: RT2560.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2500pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2500pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2500pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2500pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2500pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. static const struct rt2x00debug rt2500pci_rt2x00debug = {
  160. .owner = THIS_MODULE,
  161. .csr = {
  162. .read = rt2x00pci_register_read,
  163. .write = rt2x00pci_register_write,
  164. .flags = RT2X00DEBUGFS_OFFSET,
  165. .word_base = CSR_REG_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = CSR_REG_SIZE / sizeof(u32),
  168. },
  169. .eeprom = {
  170. .read = rt2x00_eeprom_read,
  171. .write = rt2x00_eeprom_write,
  172. .word_base = EEPROM_BASE,
  173. .word_size = sizeof(u16),
  174. .word_count = EEPROM_SIZE / sizeof(u16),
  175. },
  176. .bbp = {
  177. .read = rt2500pci_bbp_read,
  178. .write = rt2500pci_bbp_write,
  179. .word_base = BBP_BASE,
  180. .word_size = sizeof(u8),
  181. .word_count = BBP_SIZE / sizeof(u8),
  182. },
  183. .rf = {
  184. .read = rt2x00_rf_read,
  185. .write = rt2500pci_rf_write,
  186. .word_base = RF_BASE,
  187. .word_size = sizeof(u32),
  188. .word_count = RF_SIZE / sizeof(u32),
  189. },
  190. };
  191. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  192. #ifdef CONFIG_RT2X00_LIB_RFKILL
  193. static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  194. {
  195. u32 reg;
  196. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  197. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  198. }
  199. #else
  200. #define rt2500pci_rfkill_poll NULL
  201. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  202. #ifdef CONFIG_RT2X00_LIB_LEDS
  203. static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
  204. enum led_brightness brightness)
  205. {
  206. struct rt2x00_led *led =
  207. container_of(led_cdev, struct rt2x00_led, led_dev);
  208. unsigned int enabled = brightness != LED_OFF;
  209. u32 reg;
  210. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  211. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  212. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  213. else if (led->type == LED_TYPE_ACTIVITY)
  214. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  215. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  216. }
  217. static int rt2500pci_blink_set(struct led_classdev *led_cdev,
  218. unsigned long *delay_on,
  219. unsigned long *delay_off)
  220. {
  221. struct rt2x00_led *led =
  222. container_of(led_cdev, struct rt2x00_led, led_dev);
  223. u32 reg;
  224. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  225. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  226. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  227. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  228. return 0;
  229. }
  230. static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
  231. struct rt2x00_led *led,
  232. enum led_type type)
  233. {
  234. led->rt2x00dev = rt2x00dev;
  235. led->type = type;
  236. led->led_dev.brightness_set = rt2500pci_brightness_set;
  237. led->led_dev.blink_set = rt2500pci_blink_set;
  238. led->flags = LED_INITIALIZED;
  239. }
  240. #endif /* CONFIG_RT2X00_LIB_LEDS */
  241. /*
  242. * Configuration handlers.
  243. */
  244. static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
  245. const unsigned int filter_flags)
  246. {
  247. u32 reg;
  248. /*
  249. * Start configuration steps.
  250. * Note that the version error will always be dropped
  251. * and broadcast frames will always be accepted since
  252. * there is no filter for it at this time.
  253. */
  254. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  255. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  256. !(filter_flags & FIF_FCSFAIL));
  257. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  258. !(filter_flags & FIF_PLCPFAIL));
  259. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  260. !(filter_flags & FIF_CONTROL));
  261. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  262. !(filter_flags & FIF_PROMISC_IN_BSS));
  263. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  264. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  265. !rt2x00dev->intf_ap_count);
  266. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  267. rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
  268. !(filter_flags & FIF_ALLMULTI));
  269. rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
  270. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  271. }
  272. static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
  273. struct rt2x00_intf *intf,
  274. struct rt2x00intf_conf *conf,
  275. const unsigned int flags)
  276. {
  277. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, QID_BEACON);
  278. unsigned int bcn_preload;
  279. u32 reg;
  280. if (flags & CONFIG_UPDATE_TYPE) {
  281. /*
  282. * Enable beacon config
  283. */
  284. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  285. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  286. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  287. rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
  288. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  289. /*
  290. * Enable synchronisation.
  291. */
  292. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  293. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  294. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  295. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  296. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  297. }
  298. if (flags & CONFIG_UPDATE_MAC)
  299. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  300. conf->mac, sizeof(conf->mac));
  301. if (flags & CONFIG_UPDATE_BSSID)
  302. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  303. conf->bssid, sizeof(conf->bssid));
  304. }
  305. static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
  306. struct rt2x00lib_erp *erp)
  307. {
  308. int preamble_mask;
  309. u32 reg;
  310. /*
  311. * When short preamble is enabled, we should set bit 0x08
  312. */
  313. preamble_mask = erp->short_preamble << 3;
  314. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  315. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  316. erp->ack_timeout);
  317. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  318. erp->ack_consume_time);
  319. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  320. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  321. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  322. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  323. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
  324. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  325. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  326. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  327. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  328. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
  329. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  330. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  331. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  332. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  333. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
  334. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  335. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  336. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  337. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  338. rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
  339. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  340. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  341. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  342. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  343. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  344. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  345. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  346. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  347. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  348. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  349. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  350. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  351. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  352. }
  353. static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
  354. struct antenna_setup *ant)
  355. {
  356. u32 reg;
  357. u8 r14;
  358. u8 r2;
  359. /*
  360. * We should never come here because rt2x00lib is supposed
  361. * to catch this and send us the correct antenna explicitely.
  362. */
  363. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  364. ant->tx == ANTENNA_SW_DIVERSITY);
  365. rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
  366. rt2500pci_bbp_read(rt2x00dev, 14, &r14);
  367. rt2500pci_bbp_read(rt2x00dev, 2, &r2);
  368. /*
  369. * Configure the TX antenna.
  370. */
  371. switch (ant->tx) {
  372. case ANTENNA_A:
  373. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  374. rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
  375. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
  376. break;
  377. case ANTENNA_B:
  378. default:
  379. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  380. rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
  381. rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
  382. break;
  383. }
  384. /*
  385. * Configure the RX antenna.
  386. */
  387. switch (ant->rx) {
  388. case ANTENNA_A:
  389. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  390. break;
  391. case ANTENNA_B:
  392. default:
  393. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  394. break;
  395. }
  396. /*
  397. * RT2525E and RT5222 need to flip TX I/Q
  398. */
  399. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  400. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  401. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  402. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
  403. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
  404. /*
  405. * RT2525E does not need RX I/Q Flip.
  406. */
  407. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  408. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  409. } else {
  410. rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
  411. rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
  412. }
  413. rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
  414. rt2500pci_bbp_write(rt2x00dev, 14, r14);
  415. rt2500pci_bbp_write(rt2x00dev, 2, r2);
  416. }
  417. static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
  418. struct rf_channel *rf, const int txpower)
  419. {
  420. u8 r70;
  421. /*
  422. * Set TXpower.
  423. */
  424. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  425. /*
  426. * Switch on tuning bits.
  427. * For RT2523 devices we do not need to update the R1 register.
  428. */
  429. if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
  430. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  431. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  432. /*
  433. * For RT2525 we should first set the channel to half band higher.
  434. */
  435. if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  436. static const u32 vals[] = {
  437. 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
  438. 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
  439. 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
  440. 0x00080d2e, 0x00080d3a
  441. };
  442. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  443. rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  444. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  445. if (rf->rf4)
  446. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  447. }
  448. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  449. rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
  450. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  451. if (rf->rf4)
  452. rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
  453. /*
  454. * Channel 14 requires the Japan filter bit to be set.
  455. */
  456. r70 = 0x46;
  457. rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
  458. rt2500pci_bbp_write(rt2x00dev, 70, r70);
  459. msleep(1);
  460. /*
  461. * Switch off tuning bits.
  462. * For RT2523 devices we do not need to update the R1 register.
  463. */
  464. if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  465. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  466. rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
  467. }
  468. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  469. rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
  470. /*
  471. * Clear false CRC during channel switch.
  472. */
  473. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  474. }
  475. static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
  476. const int txpower)
  477. {
  478. u32 rf3;
  479. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  480. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  481. rt2500pci_rf_write(rt2x00dev, 3, rf3);
  482. }
  483. static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  484. struct rt2x00lib_conf *libconf)
  485. {
  486. u32 reg;
  487. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  488. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  489. libconf->conf->long_frame_max_tx_count);
  490. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  491. libconf->conf->short_frame_max_tx_count);
  492. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  493. }
  494. static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
  495. struct rt2x00lib_conf *libconf)
  496. {
  497. u32 reg;
  498. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  499. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  500. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  501. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  502. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  503. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  504. libconf->conf->beacon_int * 16);
  505. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  506. libconf->conf->beacon_int * 16);
  507. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  508. }
  509. static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
  510. struct rt2x00lib_conf *libconf,
  511. const unsigned int flags)
  512. {
  513. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  514. rt2500pci_config_channel(rt2x00dev, &libconf->rf,
  515. libconf->conf->power_level);
  516. if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
  517. !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
  518. rt2500pci_config_txpower(rt2x00dev,
  519. libconf->conf->power_level);
  520. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  521. rt2500pci_config_retry_limit(rt2x00dev, libconf);
  522. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  523. rt2500pci_config_duration(rt2x00dev, libconf);
  524. }
  525. /*
  526. * Link tuning
  527. */
  528. static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
  529. struct link_qual *qual)
  530. {
  531. u32 reg;
  532. /*
  533. * Update FCS error count from register.
  534. */
  535. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  536. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  537. /*
  538. * Update False CCA count from register.
  539. */
  540. rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
  541. qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
  542. }
  543. static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  544. {
  545. rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
  546. rt2x00dev->link.vgc_level = 0x48;
  547. }
  548. static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  549. {
  550. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  551. u8 r17;
  552. /*
  553. * To prevent collisions with MAC ASIC on chipsets
  554. * up to version C the link tuning should halt after 20
  555. * seconds while being associated.
  556. */
  557. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
  558. rt2x00dev->intf_associated &&
  559. rt2x00dev->link.count > 20)
  560. return;
  561. rt2500pci_bbp_read(rt2x00dev, 17, &r17);
  562. /*
  563. * Chipset versions C and lower should directly continue
  564. * to the dynamic CCA tuning. Chipset version D and higher
  565. * should go straight to dynamic CCA tuning when they
  566. * are not associated.
  567. */
  568. if (rt2x00_rev(&rt2x00dev->chip) < RT2560_VERSION_D ||
  569. !rt2x00dev->intf_associated)
  570. goto dynamic_cca_tune;
  571. /*
  572. * A too low RSSI will cause too much false CCA which will
  573. * then corrupt the R17 tuning. To remidy this the tuning should
  574. * be stopped (While making sure the R17 value will not exceed limits)
  575. */
  576. if (rssi < -80 && rt2x00dev->link.count > 20) {
  577. if (r17 >= 0x41) {
  578. r17 = rt2x00dev->link.vgc_level;
  579. rt2500pci_bbp_write(rt2x00dev, 17, r17);
  580. }
  581. return;
  582. }
  583. /*
  584. * Special big-R17 for short distance
  585. */
  586. if (rssi >= -58) {
  587. if (r17 != 0x50)
  588. rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
  589. return;
  590. }
  591. /*
  592. * Special mid-R17 for middle distance
  593. */
  594. if (rssi >= -74) {
  595. if (r17 != 0x41)
  596. rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
  597. return;
  598. }
  599. /*
  600. * Leave short or middle distance condition, restore r17
  601. * to the dynamic tuning range.
  602. */
  603. if (r17 >= 0x41) {
  604. rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
  605. return;
  606. }
  607. dynamic_cca_tune:
  608. /*
  609. * R17 is inside the dynamic tuning range,
  610. * start tuning the link based on the false cca counter.
  611. */
  612. if (rt2x00dev->link.qual.false_cca > 512 && r17 < 0x40) {
  613. rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
  614. rt2x00dev->link.vgc_level = r17;
  615. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > 0x32) {
  616. rt2500pci_bbp_write(rt2x00dev, 17, --r17);
  617. rt2x00dev->link.vgc_level = r17;
  618. }
  619. }
  620. /*
  621. * Initialization functions.
  622. */
  623. static bool rt2500pci_get_entry_state(struct queue_entry *entry)
  624. {
  625. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  626. u32 word;
  627. if (entry->queue->qid == QID_RX) {
  628. rt2x00_desc_read(entry_priv->desc, 0, &word);
  629. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  630. } else {
  631. rt2x00_desc_read(entry_priv->desc, 0, &word);
  632. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  633. rt2x00_get_field32(word, TXD_W0_VALID));
  634. }
  635. }
  636. static void rt2500pci_clear_entry(struct queue_entry *entry)
  637. {
  638. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  639. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  640. u32 word;
  641. if (entry->queue->qid == QID_RX) {
  642. rt2x00_desc_read(entry_priv->desc, 1, &word);
  643. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  644. rt2x00_desc_write(entry_priv->desc, 1, word);
  645. rt2x00_desc_read(entry_priv->desc, 0, &word);
  646. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  647. rt2x00_desc_write(entry_priv->desc, 0, word);
  648. } else {
  649. rt2x00_desc_read(entry_priv->desc, 0, &word);
  650. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  651. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  652. rt2x00_desc_write(entry_priv->desc, 0, word);
  653. }
  654. }
  655. static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
  656. {
  657. struct queue_entry_priv_pci *entry_priv;
  658. u32 reg;
  659. /*
  660. * Initialize registers.
  661. */
  662. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  663. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  664. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  665. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  666. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  667. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  668. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  669. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  670. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  671. entry_priv->desc_dma);
  672. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  673. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  674. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  675. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  676. entry_priv->desc_dma);
  677. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  678. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  679. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  680. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  681. entry_priv->desc_dma);
  682. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  683. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  684. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  685. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  686. entry_priv->desc_dma);
  687. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  688. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  689. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  690. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  691. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  692. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  693. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  694. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  695. entry_priv->desc_dma);
  696. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  697. return 0;
  698. }
  699. static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
  700. {
  701. u32 reg;
  702. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  703. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  704. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
  705. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  706. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  707. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  708. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  709. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  710. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  711. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  712. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  713. rt2x00dev->rx->data_size / 128);
  714. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  715. /*
  716. * Always use CWmin and CWmax set in descriptor.
  717. */
  718. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  719. rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
  720. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  721. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  722. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  723. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  724. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  725. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  726. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  727. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  728. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  729. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  730. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  731. rt2x00pci_register_write(rt2x00dev, CNT3, 0);
  732. rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
  733. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
  734. rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
  735. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
  736. rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
  737. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
  738. rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
  739. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
  740. rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
  741. rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
  742. rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
  743. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
  744. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
  745. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
  746. rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
  747. rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
  748. rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
  749. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
  750. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
  751. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
  752. rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
  753. rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
  754. rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
  755. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
  756. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
  757. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
  758. rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
  759. rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
  760. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  761. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
  762. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  763. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
  764. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  765. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
  766. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  767. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
  768. rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
  769. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  770. rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
  771. rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
  772. rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
  773. rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
  774. rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
  775. rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
  776. rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
  777. rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
  778. rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
  779. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  780. rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
  781. rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
  782. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  783. return -EBUSY;
  784. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
  785. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  786. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  787. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  788. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  789. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  790. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  791. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
  792. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
  793. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  794. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
  795. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
  796. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  797. rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
  798. rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
  799. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  800. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  801. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  802. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  803. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  804. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  805. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  806. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  807. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  808. /*
  809. * We must clear the FCS and FIFO error count.
  810. * These registers are cleared on read,
  811. * so we may pass a useless variable to store the value.
  812. */
  813. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  814. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  815. return 0;
  816. }
  817. static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  818. {
  819. unsigned int i;
  820. u8 value;
  821. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  822. rt2500pci_bbp_read(rt2x00dev, 0, &value);
  823. if ((value != 0xff) && (value != 0x00))
  824. return 0;
  825. udelay(REGISTER_BUSY_DELAY);
  826. }
  827. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  828. return -EACCES;
  829. }
  830. static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  831. {
  832. unsigned int i;
  833. u16 eeprom;
  834. u8 reg_id;
  835. u8 value;
  836. if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
  837. return -EACCES;
  838. rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
  839. rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
  840. rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
  841. rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
  842. rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
  843. rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
  844. rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
  845. rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
  846. rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
  847. rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
  848. rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
  849. rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
  850. rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
  851. rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
  852. rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
  853. rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
  854. rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
  855. rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
  856. rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
  857. rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
  858. rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
  859. rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
  860. rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
  861. rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
  862. rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
  863. rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
  864. rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
  865. rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
  866. rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
  867. rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
  868. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  869. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  870. if (eeprom != 0xffff && eeprom != 0x0000) {
  871. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  872. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  873. rt2500pci_bbp_write(rt2x00dev, reg_id, value);
  874. }
  875. }
  876. return 0;
  877. }
  878. /*
  879. * Device state switch handlers.
  880. */
  881. static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  882. enum dev_state state)
  883. {
  884. u32 reg;
  885. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  886. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  887. (state == STATE_RADIO_RX_OFF) ||
  888. (state == STATE_RADIO_RX_OFF_LINK));
  889. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  890. }
  891. static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  892. enum dev_state state)
  893. {
  894. int mask = (state == STATE_RADIO_IRQ_OFF);
  895. u32 reg;
  896. /*
  897. * When interrupts are being enabled, the interrupt registers
  898. * should clear the register to assure a clean state.
  899. */
  900. if (state == STATE_RADIO_IRQ_ON) {
  901. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  902. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  903. }
  904. /*
  905. * Only toggle the interrupts bits we are going to use.
  906. * Non-checked interrupt bits are disabled by default.
  907. */
  908. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  909. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  910. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  911. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  912. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  913. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  914. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  915. }
  916. static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  917. {
  918. /*
  919. * Initialize all registers.
  920. */
  921. if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
  922. rt2500pci_init_registers(rt2x00dev) ||
  923. rt2500pci_init_bbp(rt2x00dev)))
  924. return -EIO;
  925. return 0;
  926. }
  927. static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  928. {
  929. u32 reg;
  930. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  931. /*
  932. * Disable synchronisation.
  933. */
  934. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  935. /*
  936. * Cancel RX and TX.
  937. */
  938. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  939. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  940. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  941. }
  942. static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
  943. enum dev_state state)
  944. {
  945. u32 reg;
  946. unsigned int i;
  947. char put_to_sleep;
  948. char bbp_state;
  949. char rf_state;
  950. put_to_sleep = (state != STATE_AWAKE);
  951. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  952. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  953. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  954. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  955. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  956. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  957. /*
  958. * Device is not guaranteed to be in the requested state yet.
  959. * We must wait until the register indicates that the
  960. * device has entered the correct state.
  961. */
  962. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  963. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  964. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  965. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  966. if (bbp_state == state && rf_state == state)
  967. return 0;
  968. msleep(10);
  969. }
  970. return -EBUSY;
  971. }
  972. static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  973. enum dev_state state)
  974. {
  975. int retval = 0;
  976. switch (state) {
  977. case STATE_RADIO_ON:
  978. retval = rt2500pci_enable_radio(rt2x00dev);
  979. break;
  980. case STATE_RADIO_OFF:
  981. rt2500pci_disable_radio(rt2x00dev);
  982. break;
  983. case STATE_RADIO_RX_ON:
  984. case STATE_RADIO_RX_ON_LINK:
  985. case STATE_RADIO_RX_OFF:
  986. case STATE_RADIO_RX_OFF_LINK:
  987. rt2500pci_toggle_rx(rt2x00dev, state);
  988. break;
  989. case STATE_RADIO_IRQ_ON:
  990. case STATE_RADIO_IRQ_OFF:
  991. rt2500pci_toggle_irq(rt2x00dev, state);
  992. break;
  993. case STATE_DEEP_SLEEP:
  994. case STATE_SLEEP:
  995. case STATE_STANDBY:
  996. case STATE_AWAKE:
  997. retval = rt2500pci_set_state(rt2x00dev, state);
  998. break;
  999. default:
  1000. retval = -ENOTSUPP;
  1001. break;
  1002. }
  1003. if (unlikely(retval))
  1004. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  1005. state, retval);
  1006. return retval;
  1007. }
  1008. /*
  1009. * TX descriptor initialization
  1010. */
  1011. static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  1012. struct sk_buff *skb,
  1013. struct txentry_desc *txdesc)
  1014. {
  1015. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  1016. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  1017. __le32 *txd = skbdesc->desc;
  1018. u32 word;
  1019. /*
  1020. * Start writing the descriptor words.
  1021. */
  1022. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1023. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1024. rt2x00_desc_write(entry_priv->desc, 1, word);
  1025. rt2x00_desc_read(txd, 2, &word);
  1026. rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
  1027. rt2x00_set_field32(&word, TXD_W2_AIFS, txdesc->aifs);
  1028. rt2x00_set_field32(&word, TXD_W2_CWMIN, txdesc->cw_min);
  1029. rt2x00_set_field32(&word, TXD_W2_CWMAX, txdesc->cw_max);
  1030. rt2x00_desc_write(txd, 2, word);
  1031. rt2x00_desc_read(txd, 3, &word);
  1032. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  1033. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  1034. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, txdesc->length_low);
  1035. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, txdesc->length_high);
  1036. rt2x00_desc_write(txd, 3, word);
  1037. rt2x00_desc_read(txd, 10, &word);
  1038. rt2x00_set_field32(&word, TXD_W10_RTS,
  1039. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  1040. rt2x00_desc_write(txd, 10, word);
  1041. rt2x00_desc_read(txd, 0, &word);
  1042. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  1043. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  1044. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  1045. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  1046. rt2x00_set_field32(&word, TXD_W0_ACK,
  1047. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  1048. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  1049. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  1050. rt2x00_set_field32(&word, TXD_W0_OFDM,
  1051. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  1052. rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
  1053. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  1054. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  1055. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  1056. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
  1057. rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
  1058. rt2x00_desc_write(txd, 0, word);
  1059. }
  1060. /*
  1061. * TX data initialization
  1062. */
  1063. static void rt2500pci_write_beacon(struct queue_entry *entry)
  1064. {
  1065. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  1066. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1067. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  1068. u32 word;
  1069. u32 reg;
  1070. /*
  1071. * Disable beaconing while we are reloading the beacon data,
  1072. * otherwise we might be sending out invalid data.
  1073. */
  1074. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1075. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  1076. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  1077. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  1078. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1079. /*
  1080. * Replace rt2x00lib allocated descriptor with the
  1081. * pointer to the _real_ hardware descriptor.
  1082. * After that, map the beacon to DMA and update the
  1083. * descriptor.
  1084. */
  1085. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  1086. skbdesc->desc = entry_priv->desc;
  1087. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  1088. rt2x00_desc_read(entry_priv->desc, 1, &word);
  1089. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  1090. rt2x00_desc_write(entry_priv->desc, 1, word);
  1091. }
  1092. static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  1093. const enum data_queue_qid queue)
  1094. {
  1095. u32 reg;
  1096. if (queue == QID_BEACON) {
  1097. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  1098. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  1099. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  1100. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  1101. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  1102. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  1103. }
  1104. return;
  1105. }
  1106. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  1107. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  1108. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  1109. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  1110. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  1111. }
  1112. /*
  1113. * RX control handlers
  1114. */
  1115. static void rt2500pci_fill_rxdone(struct queue_entry *entry,
  1116. struct rxdone_entry_desc *rxdesc)
  1117. {
  1118. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  1119. u32 word0;
  1120. u32 word2;
  1121. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  1122. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  1123. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  1124. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  1125. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  1126. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  1127. /*
  1128. * Obtain the status about this packet.
  1129. * When frame was received with an OFDM bitrate,
  1130. * the signal is the PLCP value. If it was received with
  1131. * a CCK bitrate the signal is the rate in 100kbit/s.
  1132. */
  1133. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
  1134. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
  1135. entry->queue->rt2x00dev->rssi_offset;
  1136. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1137. if (rt2x00_get_field32(word0, RXD_W0_OFDM))
  1138. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1139. else
  1140. rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
  1141. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1142. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1143. }
  1144. /*
  1145. * Interrupt functions.
  1146. */
  1147. static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
  1148. const enum data_queue_qid queue_idx)
  1149. {
  1150. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1151. struct queue_entry_priv_pci *entry_priv;
  1152. struct queue_entry *entry;
  1153. struct txdone_entry_desc txdesc;
  1154. u32 word;
  1155. while (!rt2x00queue_empty(queue)) {
  1156. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1157. entry_priv = entry->priv_data;
  1158. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1159. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1160. !rt2x00_get_field32(word, TXD_W0_VALID))
  1161. break;
  1162. /*
  1163. * Obtain the status about this packet.
  1164. */
  1165. txdesc.flags = 0;
  1166. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1167. case 0: /* Success */
  1168. case 1: /* Success with retry */
  1169. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1170. break;
  1171. case 2: /* Failure, excessive retries */
  1172. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1173. /* Don't break, this is a failed frame! */
  1174. default: /* Failure */
  1175. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1176. }
  1177. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1178. rt2x00lib_txdone(entry, &txdesc);
  1179. }
  1180. }
  1181. static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
  1182. {
  1183. struct rt2x00_dev *rt2x00dev = dev_instance;
  1184. u32 reg;
  1185. /*
  1186. * Get the interrupt sources & saved to local variable.
  1187. * Write register value back to clear pending interrupts.
  1188. */
  1189. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1190. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1191. if (!reg)
  1192. return IRQ_NONE;
  1193. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1194. return IRQ_HANDLED;
  1195. /*
  1196. * Handle interrupts, walk through all bits
  1197. * and run the tasks, the bits are checked in order of
  1198. * priority.
  1199. */
  1200. /*
  1201. * 1 - Beacon timer expired interrupt.
  1202. */
  1203. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1204. rt2x00lib_beacondone(rt2x00dev);
  1205. /*
  1206. * 2 - Rx ring done interrupt.
  1207. */
  1208. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1209. rt2x00pci_rxdone(rt2x00dev);
  1210. /*
  1211. * 3 - Atim ring transmit done interrupt.
  1212. */
  1213. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1214. rt2500pci_txdone(rt2x00dev, QID_ATIM);
  1215. /*
  1216. * 4 - Priority ring transmit done interrupt.
  1217. */
  1218. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1219. rt2500pci_txdone(rt2x00dev, QID_AC_BE);
  1220. /*
  1221. * 5 - Tx ring transmit done interrupt.
  1222. */
  1223. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1224. rt2500pci_txdone(rt2x00dev, QID_AC_BK);
  1225. return IRQ_HANDLED;
  1226. }
  1227. /*
  1228. * Device probe functions.
  1229. */
  1230. static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1231. {
  1232. struct eeprom_93cx6 eeprom;
  1233. u32 reg;
  1234. u16 word;
  1235. u8 *mac;
  1236. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1237. eeprom.data = rt2x00dev;
  1238. eeprom.register_read = rt2500pci_eepromregister_read;
  1239. eeprom.register_write = rt2500pci_eepromregister_write;
  1240. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1241. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1242. eeprom.reg_data_in = 0;
  1243. eeprom.reg_data_out = 0;
  1244. eeprom.reg_data_clock = 0;
  1245. eeprom.reg_chip_select = 0;
  1246. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1247. EEPROM_SIZE / sizeof(u16));
  1248. /*
  1249. * Start validation of the data that has been read.
  1250. */
  1251. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1252. if (!is_valid_ether_addr(mac)) {
  1253. random_ether_addr(mac);
  1254. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1255. }
  1256. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1257. if (word == 0xffff) {
  1258. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1259. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1260. ANTENNA_SW_DIVERSITY);
  1261. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1262. ANTENNA_SW_DIVERSITY);
  1263. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1264. LED_MODE_DEFAULT);
  1265. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1266. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1267. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1268. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1269. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1270. }
  1271. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1272. if (word == 0xffff) {
  1273. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1274. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1275. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1276. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1277. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1278. }
  1279. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1280. if (word == 0xffff) {
  1281. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1282. DEFAULT_RSSI_OFFSET);
  1283. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1284. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1285. }
  1286. return 0;
  1287. }
  1288. static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1289. {
  1290. u32 reg;
  1291. u16 value;
  1292. u16 eeprom;
  1293. /*
  1294. * Read EEPROM word for configuration.
  1295. */
  1296. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1297. /*
  1298. * Identify RF chipset.
  1299. */
  1300. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1301. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1302. rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
  1303. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1304. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1305. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1306. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1307. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1308. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1309. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1310. return -ENODEV;
  1311. }
  1312. /*
  1313. * Identify default antenna configuration.
  1314. */
  1315. rt2x00dev->default_ant.tx =
  1316. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1317. rt2x00dev->default_ant.rx =
  1318. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1319. /*
  1320. * Store led mode, for correct led behaviour.
  1321. */
  1322. #ifdef CONFIG_RT2X00_LIB_LEDS
  1323. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1324. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1325. if (value == LED_MODE_TXRX_ACTIVITY)
  1326. rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1327. LED_TYPE_ACTIVITY);
  1328. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1329. /*
  1330. * Detect if this device has an hardware controlled radio.
  1331. */
  1332. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1333. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1334. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1335. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1336. /*
  1337. * Check if the BBP tuning should be enabled.
  1338. */
  1339. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1340. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1341. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1342. /*
  1343. * Read the RSSI <-> dBm offset information.
  1344. */
  1345. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1346. rt2x00dev->rssi_offset =
  1347. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1348. return 0;
  1349. }
  1350. /*
  1351. * RF value list for RF2522
  1352. * Supports: 2.4 GHz
  1353. */
  1354. static const struct rf_channel rf_vals_bg_2522[] = {
  1355. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1356. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1357. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1358. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1359. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1360. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1361. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1362. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1363. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1364. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1365. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1366. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1367. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1368. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1369. };
  1370. /*
  1371. * RF value list for RF2523
  1372. * Supports: 2.4 GHz
  1373. */
  1374. static const struct rf_channel rf_vals_bg_2523[] = {
  1375. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1376. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1377. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1378. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1379. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1380. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1381. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1382. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1383. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1384. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1385. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1386. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1387. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1388. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1389. };
  1390. /*
  1391. * RF value list for RF2524
  1392. * Supports: 2.4 GHz
  1393. */
  1394. static const struct rf_channel rf_vals_bg_2524[] = {
  1395. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1396. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1397. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1398. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1399. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1400. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1401. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1402. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1403. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1404. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1405. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1406. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1407. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1408. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1409. };
  1410. /*
  1411. * RF value list for RF2525
  1412. * Supports: 2.4 GHz
  1413. */
  1414. static const struct rf_channel rf_vals_bg_2525[] = {
  1415. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1416. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1417. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1418. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1419. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1420. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1421. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1422. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1423. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1424. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1425. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1426. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1427. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1428. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1429. };
  1430. /*
  1431. * RF value list for RF2525e
  1432. * Supports: 2.4 GHz
  1433. */
  1434. static const struct rf_channel rf_vals_bg_2525e[] = {
  1435. { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
  1436. { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
  1437. { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
  1438. { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
  1439. { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
  1440. { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
  1441. { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
  1442. { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
  1443. { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
  1444. { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
  1445. { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
  1446. { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
  1447. { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
  1448. { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
  1449. };
  1450. /*
  1451. * RF value list for RF5222
  1452. * Supports: 2.4 GHz & 5.2 GHz
  1453. */
  1454. static const struct rf_channel rf_vals_5222[] = {
  1455. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1456. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1457. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1458. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1459. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1460. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1461. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1462. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1463. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1464. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1465. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1466. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1467. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1468. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1469. /* 802.11 UNI / HyperLan 2 */
  1470. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1471. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1472. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1473. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1474. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1475. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1476. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1477. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1478. /* 802.11 HyperLan 2 */
  1479. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1480. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1481. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1482. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1483. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1484. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1485. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1486. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1487. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1488. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1489. /* 802.11 UNII */
  1490. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1491. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1492. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1493. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1494. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1495. };
  1496. static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1497. {
  1498. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1499. struct channel_info *info;
  1500. char *tx_power;
  1501. unsigned int i;
  1502. /*
  1503. * Initialize all hw fields.
  1504. */
  1505. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1506. IEEE80211_HW_SIGNAL_DBM;
  1507. rt2x00dev->hw->extra_tx_headroom = 0;
  1508. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1509. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1510. rt2x00_eeprom_addr(rt2x00dev,
  1511. EEPROM_MAC_ADDR_0));
  1512. /*
  1513. * Initialize hw_mode information.
  1514. */
  1515. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1516. spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
  1517. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1518. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1519. spec->channels = rf_vals_bg_2522;
  1520. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1521. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1522. spec->channels = rf_vals_bg_2523;
  1523. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1524. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1525. spec->channels = rf_vals_bg_2524;
  1526. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1527. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1528. spec->channels = rf_vals_bg_2525;
  1529. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1530. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1531. spec->channels = rf_vals_bg_2525e;
  1532. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1533. spec->supported_bands |= SUPPORT_BAND_5GHZ;
  1534. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1535. spec->channels = rf_vals_5222;
  1536. }
  1537. /*
  1538. * Create channel information array
  1539. */
  1540. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1541. if (!info)
  1542. return -ENOMEM;
  1543. spec->channels_info = info;
  1544. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1545. for (i = 0; i < 14; i++)
  1546. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1547. if (spec->num_channels > 14) {
  1548. for (i = 14; i < spec->num_channels; i++)
  1549. info[i].tx_power1 = DEFAULT_TXPOWER;
  1550. }
  1551. return 0;
  1552. }
  1553. static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1554. {
  1555. int retval;
  1556. /*
  1557. * Allocate eeprom data.
  1558. */
  1559. retval = rt2500pci_validate_eeprom(rt2x00dev);
  1560. if (retval)
  1561. return retval;
  1562. retval = rt2500pci_init_eeprom(rt2x00dev);
  1563. if (retval)
  1564. return retval;
  1565. /*
  1566. * Initialize hw specifications.
  1567. */
  1568. retval = rt2500pci_probe_hw_mode(rt2x00dev);
  1569. if (retval)
  1570. return retval;
  1571. /*
  1572. * This device requires the atim queue and DMA-mapped skbs.
  1573. */
  1574. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1575. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1576. /*
  1577. * Set the rssi offset.
  1578. */
  1579. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1580. return 0;
  1581. }
  1582. /*
  1583. * IEEE80211 stack callback functions.
  1584. */
  1585. static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
  1586. {
  1587. struct rt2x00_dev *rt2x00dev = hw->priv;
  1588. u64 tsf;
  1589. u32 reg;
  1590. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1591. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1592. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1593. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1594. return tsf;
  1595. }
  1596. static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
  1597. {
  1598. struct rt2x00_dev *rt2x00dev = hw->priv;
  1599. u32 reg;
  1600. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1601. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1602. }
  1603. static const struct ieee80211_ops rt2500pci_mac80211_ops = {
  1604. .tx = rt2x00mac_tx,
  1605. .start = rt2x00mac_start,
  1606. .stop = rt2x00mac_stop,
  1607. .add_interface = rt2x00mac_add_interface,
  1608. .remove_interface = rt2x00mac_remove_interface,
  1609. .config = rt2x00mac_config,
  1610. .config_interface = rt2x00mac_config_interface,
  1611. .configure_filter = rt2x00mac_configure_filter,
  1612. .get_stats = rt2x00mac_get_stats,
  1613. .bss_info_changed = rt2x00mac_bss_info_changed,
  1614. .conf_tx = rt2x00mac_conf_tx,
  1615. .get_tx_stats = rt2x00mac_get_tx_stats,
  1616. .get_tsf = rt2500pci_get_tsf,
  1617. .tx_last_beacon = rt2500pci_tx_last_beacon,
  1618. };
  1619. static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
  1620. .irq_handler = rt2500pci_interrupt,
  1621. .probe_hw = rt2500pci_probe_hw,
  1622. .initialize = rt2x00pci_initialize,
  1623. .uninitialize = rt2x00pci_uninitialize,
  1624. .get_entry_state = rt2500pci_get_entry_state,
  1625. .clear_entry = rt2500pci_clear_entry,
  1626. .set_device_state = rt2500pci_set_device_state,
  1627. .rfkill_poll = rt2500pci_rfkill_poll,
  1628. .link_stats = rt2500pci_link_stats,
  1629. .reset_tuner = rt2500pci_reset_tuner,
  1630. .link_tuner = rt2500pci_link_tuner,
  1631. .write_tx_desc = rt2500pci_write_tx_desc,
  1632. .write_tx_data = rt2x00pci_write_tx_data,
  1633. .write_beacon = rt2500pci_write_beacon,
  1634. .kick_tx_queue = rt2500pci_kick_tx_queue,
  1635. .fill_rxdone = rt2500pci_fill_rxdone,
  1636. .config_filter = rt2500pci_config_filter,
  1637. .config_intf = rt2500pci_config_intf,
  1638. .config_erp = rt2500pci_config_erp,
  1639. .config_ant = rt2500pci_config_ant,
  1640. .config = rt2500pci_config,
  1641. };
  1642. static const struct data_queue_desc rt2500pci_queue_rx = {
  1643. .entry_num = RX_ENTRIES,
  1644. .data_size = DATA_FRAME_SIZE,
  1645. .desc_size = RXD_DESC_SIZE,
  1646. .priv_size = sizeof(struct queue_entry_priv_pci),
  1647. };
  1648. static const struct data_queue_desc rt2500pci_queue_tx = {
  1649. .entry_num = TX_ENTRIES,
  1650. .data_size = DATA_FRAME_SIZE,
  1651. .desc_size = TXD_DESC_SIZE,
  1652. .priv_size = sizeof(struct queue_entry_priv_pci),
  1653. };
  1654. static const struct data_queue_desc rt2500pci_queue_bcn = {
  1655. .entry_num = BEACON_ENTRIES,
  1656. .data_size = MGMT_FRAME_SIZE,
  1657. .desc_size = TXD_DESC_SIZE,
  1658. .priv_size = sizeof(struct queue_entry_priv_pci),
  1659. };
  1660. static const struct data_queue_desc rt2500pci_queue_atim = {
  1661. .entry_num = ATIM_ENTRIES,
  1662. .data_size = DATA_FRAME_SIZE,
  1663. .desc_size = TXD_DESC_SIZE,
  1664. .priv_size = sizeof(struct queue_entry_priv_pci),
  1665. };
  1666. static const struct rt2x00_ops rt2500pci_ops = {
  1667. .name = KBUILD_MODNAME,
  1668. .max_sta_intf = 1,
  1669. .max_ap_intf = 1,
  1670. .eeprom_size = EEPROM_SIZE,
  1671. .rf_size = RF_SIZE,
  1672. .tx_queues = NUM_TX_QUEUES,
  1673. .rx = &rt2500pci_queue_rx,
  1674. .tx = &rt2500pci_queue_tx,
  1675. .bcn = &rt2500pci_queue_bcn,
  1676. .atim = &rt2500pci_queue_atim,
  1677. .lib = &rt2500pci_rt2x00_ops,
  1678. .hw = &rt2500pci_mac80211_ops,
  1679. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1680. .debugfs = &rt2500pci_rt2x00debug,
  1681. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1682. };
  1683. /*
  1684. * RT2500pci module information.
  1685. */
  1686. static struct pci_device_id rt2500pci_device_table[] = {
  1687. { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
  1688. { 0, }
  1689. };
  1690. MODULE_AUTHOR(DRV_PROJECT);
  1691. MODULE_VERSION(DRV_VERSION);
  1692. MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
  1693. MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
  1694. MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
  1695. MODULE_LICENSE("GPL");
  1696. static struct pci_driver rt2500pci_driver = {
  1697. .name = KBUILD_MODNAME,
  1698. .id_table = rt2500pci_device_table,
  1699. .probe = rt2x00pci_probe,
  1700. .remove = __devexit_p(rt2x00pci_remove),
  1701. .suspend = rt2x00pci_suspend,
  1702. .resume = rt2x00pci_resume,
  1703. };
  1704. static int __init rt2500pci_init(void)
  1705. {
  1706. return pci_register_driver(&rt2500pci_driver);
  1707. }
  1708. static void __exit rt2500pci_exit(void)
  1709. {
  1710. pci_unregister_driver(&rt2500pci_driver);
  1711. }
  1712. module_init(rt2500pci_init);
  1713. module_exit(rt2500pci_exit);