file.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/highmem.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/string.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/mpage.h>
  26. #include <linux/falloc.h>
  27. #include <linux/swap.h>
  28. #include <linux/writeback.h>
  29. #include <linux/statfs.h>
  30. #include <linux/compat.h>
  31. #include <linux/slab.h>
  32. #include "ctree.h"
  33. #include "disk-io.h"
  34. #include "transaction.h"
  35. #include "btrfs_inode.h"
  36. #include "ioctl.h"
  37. #include "print-tree.h"
  38. #include "tree-log.h"
  39. #include "locking.h"
  40. #include "compat.h"
  41. #include "volumes.h"
  42. static struct kmem_cache *btrfs_inode_defrag_cachep;
  43. /*
  44. * when auto defrag is enabled we
  45. * queue up these defrag structs to remember which
  46. * inodes need defragging passes
  47. */
  48. struct inode_defrag {
  49. struct rb_node rb_node;
  50. /* objectid */
  51. u64 ino;
  52. /*
  53. * transid where the defrag was added, we search for
  54. * extents newer than this
  55. */
  56. u64 transid;
  57. /* root objectid */
  58. u64 root;
  59. /* last offset we were able to defrag */
  60. u64 last_offset;
  61. /* if we've wrapped around back to zero once already */
  62. int cycled;
  63. };
  64. static int __compare_inode_defrag(struct inode_defrag *defrag1,
  65. struct inode_defrag *defrag2)
  66. {
  67. if (defrag1->root > defrag2->root)
  68. return 1;
  69. else if (defrag1->root < defrag2->root)
  70. return -1;
  71. else if (defrag1->ino > defrag2->ino)
  72. return 1;
  73. else if (defrag1->ino < defrag2->ino)
  74. return -1;
  75. else
  76. return 0;
  77. }
  78. /* pop a record for an inode into the defrag tree. The lock
  79. * must be held already
  80. *
  81. * If you're inserting a record for an older transid than an
  82. * existing record, the transid already in the tree is lowered
  83. *
  84. * If an existing record is found the defrag item you
  85. * pass in is freed
  86. */
  87. static int __btrfs_add_inode_defrag(struct inode *inode,
  88. struct inode_defrag *defrag)
  89. {
  90. struct btrfs_root *root = BTRFS_I(inode)->root;
  91. struct inode_defrag *entry;
  92. struct rb_node **p;
  93. struct rb_node *parent = NULL;
  94. int ret;
  95. p = &root->fs_info->defrag_inodes.rb_node;
  96. while (*p) {
  97. parent = *p;
  98. entry = rb_entry(parent, struct inode_defrag, rb_node);
  99. ret = __compare_inode_defrag(defrag, entry);
  100. if (ret < 0)
  101. p = &parent->rb_left;
  102. else if (ret > 0)
  103. p = &parent->rb_right;
  104. else {
  105. /* if we're reinserting an entry for
  106. * an old defrag run, make sure to
  107. * lower the transid of our existing record
  108. */
  109. if (defrag->transid < entry->transid)
  110. entry->transid = defrag->transid;
  111. if (defrag->last_offset > entry->last_offset)
  112. entry->last_offset = defrag->last_offset;
  113. return -EEXIST;
  114. }
  115. }
  116. set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  117. rb_link_node(&defrag->rb_node, parent, p);
  118. rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
  119. return 0;
  120. }
  121. static inline int __need_auto_defrag(struct btrfs_root *root)
  122. {
  123. if (!btrfs_test_opt(root, AUTO_DEFRAG))
  124. return 0;
  125. if (btrfs_fs_closing(root->fs_info))
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * insert a defrag record for this inode if auto defrag is
  131. * enabled
  132. */
  133. int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
  134. struct inode *inode)
  135. {
  136. struct btrfs_root *root = BTRFS_I(inode)->root;
  137. struct inode_defrag *defrag;
  138. u64 transid;
  139. int ret;
  140. if (!__need_auto_defrag(root))
  141. return 0;
  142. if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
  143. return 0;
  144. if (trans)
  145. transid = trans->transid;
  146. else
  147. transid = BTRFS_I(inode)->root->last_trans;
  148. defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
  149. if (!defrag)
  150. return -ENOMEM;
  151. defrag->ino = btrfs_ino(inode);
  152. defrag->transid = transid;
  153. defrag->root = root->root_key.objectid;
  154. spin_lock(&root->fs_info->defrag_inodes_lock);
  155. if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
  156. /*
  157. * If we set IN_DEFRAG flag and evict the inode from memory,
  158. * and then re-read this inode, this new inode doesn't have
  159. * IN_DEFRAG flag. At the case, we may find the existed defrag.
  160. */
  161. ret = __btrfs_add_inode_defrag(inode, defrag);
  162. if (ret)
  163. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  164. } else {
  165. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  166. }
  167. spin_unlock(&root->fs_info->defrag_inodes_lock);
  168. return 0;
  169. }
  170. /*
  171. * Requeue the defrag object. If there is a defrag object that points to
  172. * the same inode in the tree, we will merge them together (by
  173. * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
  174. */
  175. void btrfs_requeue_inode_defrag(struct inode *inode,
  176. struct inode_defrag *defrag)
  177. {
  178. struct btrfs_root *root = BTRFS_I(inode)->root;
  179. int ret;
  180. if (!__need_auto_defrag(root))
  181. goto out;
  182. /*
  183. * Here we don't check the IN_DEFRAG flag, because we need merge
  184. * them together.
  185. */
  186. spin_lock(&root->fs_info->defrag_inodes_lock);
  187. ret = __btrfs_add_inode_defrag(inode, defrag);
  188. spin_unlock(&root->fs_info->defrag_inodes_lock);
  189. if (ret)
  190. goto out;
  191. return;
  192. out:
  193. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  194. }
  195. /*
  196. * pick the defragable inode that we want, if it doesn't exist, we will get
  197. * the next one.
  198. */
  199. static struct inode_defrag *
  200. btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
  201. {
  202. struct inode_defrag *entry = NULL;
  203. struct inode_defrag tmp;
  204. struct rb_node *p;
  205. struct rb_node *parent = NULL;
  206. int ret;
  207. tmp.ino = ino;
  208. tmp.root = root;
  209. spin_lock(&fs_info->defrag_inodes_lock);
  210. p = fs_info->defrag_inodes.rb_node;
  211. while (p) {
  212. parent = p;
  213. entry = rb_entry(parent, struct inode_defrag, rb_node);
  214. ret = __compare_inode_defrag(&tmp, entry);
  215. if (ret < 0)
  216. p = parent->rb_left;
  217. else if (ret > 0)
  218. p = parent->rb_right;
  219. else
  220. goto out;
  221. }
  222. if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
  223. parent = rb_next(parent);
  224. if (parent)
  225. entry = rb_entry(parent, struct inode_defrag, rb_node);
  226. else
  227. entry = NULL;
  228. }
  229. out:
  230. if (entry)
  231. rb_erase(parent, &fs_info->defrag_inodes);
  232. spin_unlock(&fs_info->defrag_inodes_lock);
  233. return entry;
  234. }
  235. void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
  236. {
  237. struct inode_defrag *defrag;
  238. struct rb_node *node;
  239. spin_lock(&fs_info->defrag_inodes_lock);
  240. node = rb_first(&fs_info->defrag_inodes);
  241. while (node) {
  242. rb_erase(node, &fs_info->defrag_inodes);
  243. defrag = rb_entry(node, struct inode_defrag, rb_node);
  244. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  245. if (need_resched()) {
  246. spin_unlock(&fs_info->defrag_inodes_lock);
  247. cond_resched();
  248. spin_lock(&fs_info->defrag_inodes_lock);
  249. }
  250. node = rb_first(&fs_info->defrag_inodes);
  251. }
  252. spin_unlock(&fs_info->defrag_inodes_lock);
  253. }
  254. #define BTRFS_DEFRAG_BATCH 1024
  255. static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
  256. struct inode_defrag *defrag)
  257. {
  258. struct btrfs_root *inode_root;
  259. struct inode *inode;
  260. struct btrfs_key key;
  261. struct btrfs_ioctl_defrag_range_args range;
  262. int num_defrag;
  263. /* get the inode */
  264. key.objectid = defrag->root;
  265. btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
  266. key.offset = (u64)-1;
  267. inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
  268. if (IS_ERR(inode_root)) {
  269. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  270. return PTR_ERR(inode_root);
  271. }
  272. key.objectid = defrag->ino;
  273. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  274. key.offset = 0;
  275. inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
  276. if (IS_ERR(inode)) {
  277. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  278. return PTR_ERR(inode);
  279. }
  280. /* do a chunk of defrag */
  281. clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
  282. memset(&range, 0, sizeof(range));
  283. range.len = (u64)-1;
  284. range.start = defrag->last_offset;
  285. sb_start_write(fs_info->sb);
  286. num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
  287. BTRFS_DEFRAG_BATCH);
  288. sb_end_write(fs_info->sb);
  289. /*
  290. * if we filled the whole defrag batch, there
  291. * must be more work to do. Queue this defrag
  292. * again
  293. */
  294. if (num_defrag == BTRFS_DEFRAG_BATCH) {
  295. defrag->last_offset = range.start;
  296. btrfs_requeue_inode_defrag(inode, defrag);
  297. } else if (defrag->last_offset && !defrag->cycled) {
  298. /*
  299. * we didn't fill our defrag batch, but
  300. * we didn't start at zero. Make sure we loop
  301. * around to the start of the file.
  302. */
  303. defrag->last_offset = 0;
  304. defrag->cycled = 1;
  305. btrfs_requeue_inode_defrag(inode, defrag);
  306. } else {
  307. kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
  308. }
  309. iput(inode);
  310. return 0;
  311. }
  312. /*
  313. * run through the list of inodes in the FS that need
  314. * defragging
  315. */
  316. int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
  317. {
  318. struct inode_defrag *defrag;
  319. u64 first_ino = 0;
  320. u64 root_objectid = 0;
  321. atomic_inc(&fs_info->defrag_running);
  322. while(1) {
  323. if (!__need_auto_defrag(fs_info->tree_root))
  324. break;
  325. /* find an inode to defrag */
  326. defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
  327. first_ino);
  328. if (!defrag) {
  329. if (root_objectid || first_ino) {
  330. root_objectid = 0;
  331. first_ino = 0;
  332. continue;
  333. } else {
  334. break;
  335. }
  336. }
  337. first_ino = defrag->ino + 1;
  338. root_objectid = defrag->root;
  339. __btrfs_run_defrag_inode(fs_info, defrag);
  340. }
  341. atomic_dec(&fs_info->defrag_running);
  342. /*
  343. * during unmount, we use the transaction_wait queue to
  344. * wait for the defragger to stop
  345. */
  346. wake_up(&fs_info->transaction_wait);
  347. return 0;
  348. }
  349. /* simple helper to fault in pages and copy. This should go away
  350. * and be replaced with calls into generic code.
  351. */
  352. static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
  353. size_t write_bytes,
  354. struct page **prepared_pages,
  355. struct iov_iter *i)
  356. {
  357. size_t copied = 0;
  358. size_t total_copied = 0;
  359. int pg = 0;
  360. int offset = pos & (PAGE_CACHE_SIZE - 1);
  361. while (write_bytes > 0) {
  362. size_t count = min_t(size_t,
  363. PAGE_CACHE_SIZE - offset, write_bytes);
  364. struct page *page = prepared_pages[pg];
  365. /*
  366. * Copy data from userspace to the current page
  367. *
  368. * Disable pagefault to avoid recursive lock since
  369. * the pages are already locked
  370. */
  371. pagefault_disable();
  372. copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
  373. pagefault_enable();
  374. /* Flush processor's dcache for this page */
  375. flush_dcache_page(page);
  376. /*
  377. * if we get a partial write, we can end up with
  378. * partially up to date pages. These add
  379. * a lot of complexity, so make sure they don't
  380. * happen by forcing this copy to be retried.
  381. *
  382. * The rest of the btrfs_file_write code will fall
  383. * back to page at a time copies after we return 0.
  384. */
  385. if (!PageUptodate(page) && copied < count)
  386. copied = 0;
  387. iov_iter_advance(i, copied);
  388. write_bytes -= copied;
  389. total_copied += copied;
  390. /* Return to btrfs_file_aio_write to fault page */
  391. if (unlikely(copied == 0))
  392. break;
  393. if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
  394. offset += copied;
  395. } else {
  396. pg++;
  397. offset = 0;
  398. }
  399. }
  400. return total_copied;
  401. }
  402. /*
  403. * unlocks pages after btrfs_file_write is done with them
  404. */
  405. void btrfs_drop_pages(struct page **pages, size_t num_pages)
  406. {
  407. size_t i;
  408. for (i = 0; i < num_pages; i++) {
  409. /* page checked is some magic around finding pages that
  410. * have been modified without going through btrfs_set_page_dirty
  411. * clear it here
  412. */
  413. ClearPageChecked(pages[i]);
  414. unlock_page(pages[i]);
  415. mark_page_accessed(pages[i]);
  416. page_cache_release(pages[i]);
  417. }
  418. }
  419. /*
  420. * after copy_from_user, pages need to be dirtied and we need to make
  421. * sure holes are created between the current EOF and the start of
  422. * any next extents (if required).
  423. *
  424. * this also makes the decision about creating an inline extent vs
  425. * doing real data extents, marking pages dirty and delalloc as required.
  426. */
  427. int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
  428. struct page **pages, size_t num_pages,
  429. loff_t pos, size_t write_bytes,
  430. struct extent_state **cached)
  431. {
  432. int err = 0;
  433. int i;
  434. u64 num_bytes;
  435. u64 start_pos;
  436. u64 end_of_last_block;
  437. u64 end_pos = pos + write_bytes;
  438. loff_t isize = i_size_read(inode);
  439. start_pos = pos & ~((u64)root->sectorsize - 1);
  440. num_bytes = (write_bytes + pos - start_pos +
  441. root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
  442. end_of_last_block = start_pos + num_bytes - 1;
  443. err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
  444. cached);
  445. if (err)
  446. return err;
  447. for (i = 0; i < num_pages; i++) {
  448. struct page *p = pages[i];
  449. SetPageUptodate(p);
  450. ClearPageChecked(p);
  451. set_page_dirty(p);
  452. }
  453. /*
  454. * we've only changed i_size in ram, and we haven't updated
  455. * the disk i_size. There is no need to log the inode
  456. * at this time.
  457. */
  458. if (end_pos > isize)
  459. i_size_write(inode, end_pos);
  460. return 0;
  461. }
  462. /*
  463. * this drops all the extents in the cache that intersect the range
  464. * [start, end]. Existing extents are split as required.
  465. */
  466. void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
  467. int skip_pinned)
  468. {
  469. struct extent_map *em;
  470. struct extent_map *split = NULL;
  471. struct extent_map *split2 = NULL;
  472. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  473. u64 len = end - start + 1;
  474. u64 gen;
  475. int ret;
  476. int testend = 1;
  477. unsigned long flags;
  478. int compressed = 0;
  479. WARN_ON(end < start);
  480. if (end == (u64)-1) {
  481. len = (u64)-1;
  482. testend = 0;
  483. }
  484. while (1) {
  485. int no_splits = 0;
  486. if (!split)
  487. split = alloc_extent_map();
  488. if (!split2)
  489. split2 = alloc_extent_map();
  490. if (!split || !split2)
  491. no_splits = 1;
  492. write_lock(&em_tree->lock);
  493. em = lookup_extent_mapping(em_tree, start, len);
  494. if (!em) {
  495. write_unlock(&em_tree->lock);
  496. break;
  497. }
  498. flags = em->flags;
  499. gen = em->generation;
  500. if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
  501. if (testend && em->start + em->len >= start + len) {
  502. free_extent_map(em);
  503. write_unlock(&em_tree->lock);
  504. break;
  505. }
  506. start = em->start + em->len;
  507. if (testend)
  508. len = start + len - (em->start + em->len);
  509. free_extent_map(em);
  510. write_unlock(&em_tree->lock);
  511. continue;
  512. }
  513. compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
  514. clear_bit(EXTENT_FLAG_PINNED, &em->flags);
  515. remove_extent_mapping(em_tree, em);
  516. if (no_splits)
  517. goto next;
  518. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  519. em->start < start) {
  520. split->start = em->start;
  521. split->len = start - em->start;
  522. split->orig_start = em->orig_start;
  523. split->block_start = em->block_start;
  524. if (compressed)
  525. split->block_len = em->block_len;
  526. else
  527. split->block_len = split->len;
  528. split->generation = gen;
  529. split->bdev = em->bdev;
  530. split->flags = flags;
  531. split->compress_type = em->compress_type;
  532. ret = add_extent_mapping(em_tree, split);
  533. BUG_ON(ret); /* Logic error */
  534. list_move(&split->list, &em_tree->modified_extents);
  535. free_extent_map(split);
  536. split = split2;
  537. split2 = NULL;
  538. }
  539. if (em->block_start < EXTENT_MAP_LAST_BYTE &&
  540. testend && em->start + em->len > start + len) {
  541. u64 diff = start + len - em->start;
  542. split->start = start + len;
  543. split->len = em->start + em->len - (start + len);
  544. split->bdev = em->bdev;
  545. split->flags = flags;
  546. split->compress_type = em->compress_type;
  547. split->generation = gen;
  548. if (compressed) {
  549. split->block_len = em->block_len;
  550. split->block_start = em->block_start;
  551. split->orig_start = em->orig_start;
  552. } else {
  553. split->block_len = split->len;
  554. split->block_start = em->block_start + diff;
  555. split->orig_start = split->start;
  556. }
  557. ret = add_extent_mapping(em_tree, split);
  558. BUG_ON(ret); /* Logic error */
  559. list_move(&split->list, &em_tree->modified_extents);
  560. free_extent_map(split);
  561. split = NULL;
  562. }
  563. next:
  564. write_unlock(&em_tree->lock);
  565. /* once for us */
  566. free_extent_map(em);
  567. /* once for the tree*/
  568. free_extent_map(em);
  569. }
  570. if (split)
  571. free_extent_map(split);
  572. if (split2)
  573. free_extent_map(split2);
  574. }
  575. /*
  576. * this is very complex, but the basic idea is to drop all extents
  577. * in the range start - end. hint_block is filled in with a block number
  578. * that would be a good hint to the block allocator for this file.
  579. *
  580. * If an extent intersects the range but is not entirely inside the range
  581. * it is either truncated or split. Anything entirely inside the range
  582. * is deleted from the tree.
  583. */
  584. int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
  585. struct btrfs_root *root, struct inode *inode,
  586. struct btrfs_path *path, u64 start, u64 end,
  587. u64 *drop_end, int drop_cache)
  588. {
  589. struct extent_buffer *leaf;
  590. struct btrfs_file_extent_item *fi;
  591. struct btrfs_key key;
  592. struct btrfs_key new_key;
  593. u64 ino = btrfs_ino(inode);
  594. u64 search_start = start;
  595. u64 disk_bytenr = 0;
  596. u64 num_bytes = 0;
  597. u64 extent_offset = 0;
  598. u64 extent_end = 0;
  599. int del_nr = 0;
  600. int del_slot = 0;
  601. int extent_type;
  602. int recow;
  603. int ret;
  604. int modify_tree = -1;
  605. int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
  606. int found = 0;
  607. if (drop_cache)
  608. btrfs_drop_extent_cache(inode, start, end - 1, 0);
  609. if (start >= BTRFS_I(inode)->disk_i_size)
  610. modify_tree = 0;
  611. while (1) {
  612. recow = 0;
  613. ret = btrfs_lookup_file_extent(trans, root, path, ino,
  614. search_start, modify_tree);
  615. if (ret < 0)
  616. break;
  617. if (ret > 0 && path->slots[0] > 0 && search_start == start) {
  618. leaf = path->nodes[0];
  619. btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
  620. if (key.objectid == ino &&
  621. key.type == BTRFS_EXTENT_DATA_KEY)
  622. path->slots[0]--;
  623. }
  624. ret = 0;
  625. next_slot:
  626. leaf = path->nodes[0];
  627. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  628. BUG_ON(del_nr > 0);
  629. ret = btrfs_next_leaf(root, path);
  630. if (ret < 0)
  631. break;
  632. if (ret > 0) {
  633. ret = 0;
  634. break;
  635. }
  636. leaf = path->nodes[0];
  637. recow = 1;
  638. }
  639. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  640. if (key.objectid > ino ||
  641. key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
  642. break;
  643. fi = btrfs_item_ptr(leaf, path->slots[0],
  644. struct btrfs_file_extent_item);
  645. extent_type = btrfs_file_extent_type(leaf, fi);
  646. if (extent_type == BTRFS_FILE_EXTENT_REG ||
  647. extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
  648. disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  649. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  650. extent_offset = btrfs_file_extent_offset(leaf, fi);
  651. extent_end = key.offset +
  652. btrfs_file_extent_num_bytes(leaf, fi);
  653. } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
  654. extent_end = key.offset +
  655. btrfs_file_extent_inline_len(leaf, fi);
  656. } else {
  657. WARN_ON(1);
  658. extent_end = search_start;
  659. }
  660. if (extent_end <= search_start) {
  661. path->slots[0]++;
  662. goto next_slot;
  663. }
  664. found = 1;
  665. search_start = max(key.offset, start);
  666. if (recow || !modify_tree) {
  667. modify_tree = -1;
  668. btrfs_release_path(path);
  669. continue;
  670. }
  671. /*
  672. * | - range to drop - |
  673. * | -------- extent -------- |
  674. */
  675. if (start > key.offset && end < extent_end) {
  676. BUG_ON(del_nr > 0);
  677. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  678. memcpy(&new_key, &key, sizeof(new_key));
  679. new_key.offset = start;
  680. ret = btrfs_duplicate_item(trans, root, path,
  681. &new_key);
  682. if (ret == -EAGAIN) {
  683. btrfs_release_path(path);
  684. continue;
  685. }
  686. if (ret < 0)
  687. break;
  688. leaf = path->nodes[0];
  689. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  690. struct btrfs_file_extent_item);
  691. btrfs_set_file_extent_num_bytes(leaf, fi,
  692. start - key.offset);
  693. fi = btrfs_item_ptr(leaf, path->slots[0],
  694. struct btrfs_file_extent_item);
  695. extent_offset += start - key.offset;
  696. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  697. btrfs_set_file_extent_num_bytes(leaf, fi,
  698. extent_end - start);
  699. btrfs_mark_buffer_dirty(leaf);
  700. if (update_refs && disk_bytenr > 0) {
  701. ret = btrfs_inc_extent_ref(trans, root,
  702. disk_bytenr, num_bytes, 0,
  703. root->root_key.objectid,
  704. new_key.objectid,
  705. start - extent_offset, 0);
  706. BUG_ON(ret); /* -ENOMEM */
  707. }
  708. key.offset = start;
  709. }
  710. /*
  711. * | ---- range to drop ----- |
  712. * | -------- extent -------- |
  713. */
  714. if (start <= key.offset && end < extent_end) {
  715. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  716. memcpy(&new_key, &key, sizeof(new_key));
  717. new_key.offset = end;
  718. btrfs_set_item_key_safe(trans, root, path, &new_key);
  719. extent_offset += end - key.offset;
  720. btrfs_set_file_extent_offset(leaf, fi, extent_offset);
  721. btrfs_set_file_extent_num_bytes(leaf, fi,
  722. extent_end - end);
  723. btrfs_mark_buffer_dirty(leaf);
  724. if (update_refs && disk_bytenr > 0)
  725. inode_sub_bytes(inode, end - key.offset);
  726. break;
  727. }
  728. search_start = extent_end;
  729. /*
  730. * | ---- range to drop ----- |
  731. * | -------- extent -------- |
  732. */
  733. if (start > key.offset && end >= extent_end) {
  734. BUG_ON(del_nr > 0);
  735. BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
  736. btrfs_set_file_extent_num_bytes(leaf, fi,
  737. start - key.offset);
  738. btrfs_mark_buffer_dirty(leaf);
  739. if (update_refs && disk_bytenr > 0)
  740. inode_sub_bytes(inode, extent_end - start);
  741. if (end == extent_end)
  742. break;
  743. path->slots[0]++;
  744. goto next_slot;
  745. }
  746. /*
  747. * | ---- range to drop ----- |
  748. * | ------ extent ------ |
  749. */
  750. if (start <= key.offset && end >= extent_end) {
  751. if (del_nr == 0) {
  752. del_slot = path->slots[0];
  753. del_nr = 1;
  754. } else {
  755. BUG_ON(del_slot + del_nr != path->slots[0]);
  756. del_nr++;
  757. }
  758. if (update_refs &&
  759. extent_type == BTRFS_FILE_EXTENT_INLINE) {
  760. inode_sub_bytes(inode,
  761. extent_end - key.offset);
  762. extent_end = ALIGN(extent_end,
  763. root->sectorsize);
  764. } else if (update_refs && disk_bytenr > 0) {
  765. ret = btrfs_free_extent(trans, root,
  766. disk_bytenr, num_bytes, 0,
  767. root->root_key.objectid,
  768. key.objectid, key.offset -
  769. extent_offset, 0);
  770. BUG_ON(ret); /* -ENOMEM */
  771. inode_sub_bytes(inode,
  772. extent_end - key.offset);
  773. }
  774. if (end == extent_end)
  775. break;
  776. if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
  777. path->slots[0]++;
  778. goto next_slot;
  779. }
  780. ret = btrfs_del_items(trans, root, path, del_slot,
  781. del_nr);
  782. if (ret) {
  783. btrfs_abort_transaction(trans, root, ret);
  784. break;
  785. }
  786. del_nr = 0;
  787. del_slot = 0;
  788. btrfs_release_path(path);
  789. continue;
  790. }
  791. BUG_ON(1);
  792. }
  793. if (!ret && del_nr > 0) {
  794. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  795. if (ret)
  796. btrfs_abort_transaction(trans, root, ret);
  797. }
  798. if (drop_end)
  799. *drop_end = found ? min(end, extent_end) : end;
  800. btrfs_release_path(path);
  801. return ret;
  802. }
  803. int btrfs_drop_extents(struct btrfs_trans_handle *trans,
  804. struct btrfs_root *root, struct inode *inode, u64 start,
  805. u64 end, int drop_cache)
  806. {
  807. struct btrfs_path *path;
  808. int ret;
  809. path = btrfs_alloc_path();
  810. if (!path)
  811. return -ENOMEM;
  812. ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
  813. drop_cache);
  814. btrfs_free_path(path);
  815. return ret;
  816. }
  817. static int extent_mergeable(struct extent_buffer *leaf, int slot,
  818. u64 objectid, u64 bytenr, u64 orig_offset,
  819. u64 *start, u64 *end)
  820. {
  821. struct btrfs_file_extent_item *fi;
  822. struct btrfs_key key;
  823. u64 extent_end;
  824. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  825. return 0;
  826. btrfs_item_key_to_cpu(leaf, &key, slot);
  827. if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
  828. return 0;
  829. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  830. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
  831. btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
  832. btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
  833. btrfs_file_extent_compression(leaf, fi) ||
  834. btrfs_file_extent_encryption(leaf, fi) ||
  835. btrfs_file_extent_other_encoding(leaf, fi))
  836. return 0;
  837. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  838. if ((*start && *start != key.offset) || (*end && *end != extent_end))
  839. return 0;
  840. *start = key.offset;
  841. *end = extent_end;
  842. return 1;
  843. }
  844. /*
  845. * Mark extent in the range start - end as written.
  846. *
  847. * This changes extent type from 'pre-allocated' to 'regular'. If only
  848. * part of extent is marked as written, the extent will be split into
  849. * two or three.
  850. */
  851. int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
  852. struct inode *inode, u64 start, u64 end)
  853. {
  854. struct btrfs_root *root = BTRFS_I(inode)->root;
  855. struct extent_buffer *leaf;
  856. struct btrfs_path *path;
  857. struct btrfs_file_extent_item *fi;
  858. struct btrfs_key key;
  859. struct btrfs_key new_key;
  860. u64 bytenr;
  861. u64 num_bytes;
  862. u64 extent_end;
  863. u64 orig_offset;
  864. u64 other_start;
  865. u64 other_end;
  866. u64 split;
  867. int del_nr = 0;
  868. int del_slot = 0;
  869. int recow;
  870. int ret;
  871. u64 ino = btrfs_ino(inode);
  872. path = btrfs_alloc_path();
  873. if (!path)
  874. return -ENOMEM;
  875. again:
  876. recow = 0;
  877. split = start;
  878. key.objectid = ino;
  879. key.type = BTRFS_EXTENT_DATA_KEY;
  880. key.offset = split;
  881. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  882. if (ret < 0)
  883. goto out;
  884. if (ret > 0 && path->slots[0] > 0)
  885. path->slots[0]--;
  886. leaf = path->nodes[0];
  887. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  888. BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
  889. fi = btrfs_item_ptr(leaf, path->slots[0],
  890. struct btrfs_file_extent_item);
  891. BUG_ON(btrfs_file_extent_type(leaf, fi) !=
  892. BTRFS_FILE_EXTENT_PREALLOC);
  893. extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
  894. BUG_ON(key.offset > start || extent_end < end);
  895. bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
  896. num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
  897. orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
  898. memcpy(&new_key, &key, sizeof(new_key));
  899. if (start == key.offset && end < extent_end) {
  900. other_start = 0;
  901. other_end = start;
  902. if (extent_mergeable(leaf, path->slots[0] - 1,
  903. ino, bytenr, orig_offset,
  904. &other_start, &other_end)) {
  905. new_key.offset = end;
  906. btrfs_set_item_key_safe(trans, root, path, &new_key);
  907. fi = btrfs_item_ptr(leaf, path->slots[0],
  908. struct btrfs_file_extent_item);
  909. btrfs_set_file_extent_generation(leaf, fi,
  910. trans->transid);
  911. btrfs_set_file_extent_num_bytes(leaf, fi,
  912. extent_end - end);
  913. btrfs_set_file_extent_offset(leaf, fi,
  914. end - orig_offset);
  915. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  916. struct btrfs_file_extent_item);
  917. btrfs_set_file_extent_generation(leaf, fi,
  918. trans->transid);
  919. btrfs_set_file_extent_num_bytes(leaf, fi,
  920. end - other_start);
  921. btrfs_mark_buffer_dirty(leaf);
  922. goto out;
  923. }
  924. }
  925. if (start > key.offset && end == extent_end) {
  926. other_start = end;
  927. other_end = 0;
  928. if (extent_mergeable(leaf, path->slots[0] + 1,
  929. ino, bytenr, orig_offset,
  930. &other_start, &other_end)) {
  931. fi = btrfs_item_ptr(leaf, path->slots[0],
  932. struct btrfs_file_extent_item);
  933. btrfs_set_file_extent_num_bytes(leaf, fi,
  934. start - key.offset);
  935. btrfs_set_file_extent_generation(leaf, fi,
  936. trans->transid);
  937. path->slots[0]++;
  938. new_key.offset = start;
  939. btrfs_set_item_key_safe(trans, root, path, &new_key);
  940. fi = btrfs_item_ptr(leaf, path->slots[0],
  941. struct btrfs_file_extent_item);
  942. btrfs_set_file_extent_generation(leaf, fi,
  943. trans->transid);
  944. btrfs_set_file_extent_num_bytes(leaf, fi,
  945. other_end - start);
  946. btrfs_set_file_extent_offset(leaf, fi,
  947. start - orig_offset);
  948. btrfs_mark_buffer_dirty(leaf);
  949. goto out;
  950. }
  951. }
  952. while (start > key.offset || end < extent_end) {
  953. if (key.offset == start)
  954. split = end;
  955. new_key.offset = split;
  956. ret = btrfs_duplicate_item(trans, root, path, &new_key);
  957. if (ret == -EAGAIN) {
  958. btrfs_release_path(path);
  959. goto again;
  960. }
  961. if (ret < 0) {
  962. btrfs_abort_transaction(trans, root, ret);
  963. goto out;
  964. }
  965. leaf = path->nodes[0];
  966. fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
  967. struct btrfs_file_extent_item);
  968. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  969. btrfs_set_file_extent_num_bytes(leaf, fi,
  970. split - key.offset);
  971. fi = btrfs_item_ptr(leaf, path->slots[0],
  972. struct btrfs_file_extent_item);
  973. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  974. btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
  975. btrfs_set_file_extent_num_bytes(leaf, fi,
  976. extent_end - split);
  977. btrfs_mark_buffer_dirty(leaf);
  978. ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
  979. root->root_key.objectid,
  980. ino, orig_offset, 0);
  981. BUG_ON(ret); /* -ENOMEM */
  982. if (split == start) {
  983. key.offset = start;
  984. } else {
  985. BUG_ON(start != key.offset);
  986. path->slots[0]--;
  987. extent_end = end;
  988. }
  989. recow = 1;
  990. }
  991. other_start = end;
  992. other_end = 0;
  993. if (extent_mergeable(leaf, path->slots[0] + 1,
  994. ino, bytenr, orig_offset,
  995. &other_start, &other_end)) {
  996. if (recow) {
  997. btrfs_release_path(path);
  998. goto again;
  999. }
  1000. extent_end = other_end;
  1001. del_slot = path->slots[0] + 1;
  1002. del_nr++;
  1003. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1004. 0, root->root_key.objectid,
  1005. ino, orig_offset, 0);
  1006. BUG_ON(ret); /* -ENOMEM */
  1007. }
  1008. other_start = 0;
  1009. other_end = start;
  1010. if (extent_mergeable(leaf, path->slots[0] - 1,
  1011. ino, bytenr, orig_offset,
  1012. &other_start, &other_end)) {
  1013. if (recow) {
  1014. btrfs_release_path(path);
  1015. goto again;
  1016. }
  1017. key.offset = other_start;
  1018. del_slot = path->slots[0];
  1019. del_nr++;
  1020. ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
  1021. 0, root->root_key.objectid,
  1022. ino, orig_offset, 0);
  1023. BUG_ON(ret); /* -ENOMEM */
  1024. }
  1025. if (del_nr == 0) {
  1026. fi = btrfs_item_ptr(leaf, path->slots[0],
  1027. struct btrfs_file_extent_item);
  1028. btrfs_set_file_extent_type(leaf, fi,
  1029. BTRFS_FILE_EXTENT_REG);
  1030. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1031. btrfs_mark_buffer_dirty(leaf);
  1032. } else {
  1033. fi = btrfs_item_ptr(leaf, del_slot - 1,
  1034. struct btrfs_file_extent_item);
  1035. btrfs_set_file_extent_type(leaf, fi,
  1036. BTRFS_FILE_EXTENT_REG);
  1037. btrfs_set_file_extent_generation(leaf, fi, trans->transid);
  1038. btrfs_set_file_extent_num_bytes(leaf, fi,
  1039. extent_end - key.offset);
  1040. btrfs_mark_buffer_dirty(leaf);
  1041. ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
  1042. if (ret < 0) {
  1043. btrfs_abort_transaction(trans, root, ret);
  1044. goto out;
  1045. }
  1046. }
  1047. out:
  1048. btrfs_free_path(path);
  1049. return 0;
  1050. }
  1051. /*
  1052. * on error we return an unlocked page and the error value
  1053. * on success we return a locked page and 0
  1054. */
  1055. static int prepare_uptodate_page(struct page *page, u64 pos,
  1056. bool force_uptodate)
  1057. {
  1058. int ret = 0;
  1059. if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
  1060. !PageUptodate(page)) {
  1061. ret = btrfs_readpage(NULL, page);
  1062. if (ret)
  1063. return ret;
  1064. lock_page(page);
  1065. if (!PageUptodate(page)) {
  1066. unlock_page(page);
  1067. return -EIO;
  1068. }
  1069. }
  1070. return 0;
  1071. }
  1072. /*
  1073. * this gets pages into the page cache and locks them down, it also properly
  1074. * waits for data=ordered extents to finish before allowing the pages to be
  1075. * modified.
  1076. */
  1077. static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
  1078. struct page **pages, size_t num_pages,
  1079. loff_t pos, unsigned long first_index,
  1080. size_t write_bytes, bool force_uptodate)
  1081. {
  1082. struct extent_state *cached_state = NULL;
  1083. int i;
  1084. unsigned long index = pos >> PAGE_CACHE_SHIFT;
  1085. struct inode *inode = fdentry(file)->d_inode;
  1086. gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
  1087. int err = 0;
  1088. int faili = 0;
  1089. u64 start_pos;
  1090. u64 last_pos;
  1091. start_pos = pos & ~((u64)root->sectorsize - 1);
  1092. last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
  1093. again:
  1094. for (i = 0; i < num_pages; i++) {
  1095. pages[i] = find_or_create_page(inode->i_mapping, index + i,
  1096. mask | __GFP_WRITE);
  1097. if (!pages[i]) {
  1098. faili = i - 1;
  1099. err = -ENOMEM;
  1100. goto fail;
  1101. }
  1102. if (i == 0)
  1103. err = prepare_uptodate_page(pages[i], pos,
  1104. force_uptodate);
  1105. if (i == num_pages - 1)
  1106. err = prepare_uptodate_page(pages[i],
  1107. pos + write_bytes, false);
  1108. if (err) {
  1109. page_cache_release(pages[i]);
  1110. faili = i - 1;
  1111. goto fail;
  1112. }
  1113. wait_on_page_writeback(pages[i]);
  1114. }
  1115. err = 0;
  1116. if (start_pos < inode->i_size) {
  1117. struct btrfs_ordered_extent *ordered;
  1118. lock_extent_bits(&BTRFS_I(inode)->io_tree,
  1119. start_pos, last_pos - 1, 0, &cached_state);
  1120. ordered = btrfs_lookup_first_ordered_extent(inode,
  1121. last_pos - 1);
  1122. if (ordered &&
  1123. ordered->file_offset + ordered->len > start_pos &&
  1124. ordered->file_offset < last_pos) {
  1125. btrfs_put_ordered_extent(ordered);
  1126. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1127. start_pos, last_pos - 1,
  1128. &cached_state, GFP_NOFS);
  1129. for (i = 0; i < num_pages; i++) {
  1130. unlock_page(pages[i]);
  1131. page_cache_release(pages[i]);
  1132. }
  1133. btrfs_wait_ordered_range(inode, start_pos,
  1134. last_pos - start_pos);
  1135. goto again;
  1136. }
  1137. if (ordered)
  1138. btrfs_put_ordered_extent(ordered);
  1139. clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
  1140. last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
  1141. EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
  1142. 0, 0, &cached_state, GFP_NOFS);
  1143. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1144. start_pos, last_pos - 1, &cached_state,
  1145. GFP_NOFS);
  1146. }
  1147. for (i = 0; i < num_pages; i++) {
  1148. if (clear_page_dirty_for_io(pages[i]))
  1149. account_page_redirty(pages[i]);
  1150. set_page_extent_mapped(pages[i]);
  1151. WARN_ON(!PageLocked(pages[i]));
  1152. }
  1153. return 0;
  1154. fail:
  1155. while (faili >= 0) {
  1156. unlock_page(pages[faili]);
  1157. page_cache_release(pages[faili]);
  1158. faili--;
  1159. }
  1160. return err;
  1161. }
  1162. static noinline ssize_t __btrfs_buffered_write(struct file *file,
  1163. struct iov_iter *i,
  1164. loff_t pos)
  1165. {
  1166. struct inode *inode = fdentry(file)->d_inode;
  1167. struct btrfs_root *root = BTRFS_I(inode)->root;
  1168. struct page **pages = NULL;
  1169. unsigned long first_index;
  1170. size_t num_written = 0;
  1171. int nrptrs;
  1172. int ret = 0;
  1173. bool force_page_uptodate = false;
  1174. nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
  1175. PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
  1176. (sizeof(struct page *)));
  1177. nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
  1178. nrptrs = max(nrptrs, 8);
  1179. pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
  1180. if (!pages)
  1181. return -ENOMEM;
  1182. first_index = pos >> PAGE_CACHE_SHIFT;
  1183. while (iov_iter_count(i) > 0) {
  1184. size_t offset = pos & (PAGE_CACHE_SIZE - 1);
  1185. size_t write_bytes = min(iov_iter_count(i),
  1186. nrptrs * (size_t)PAGE_CACHE_SIZE -
  1187. offset);
  1188. size_t num_pages = (write_bytes + offset +
  1189. PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
  1190. size_t dirty_pages;
  1191. size_t copied;
  1192. WARN_ON(num_pages > nrptrs);
  1193. /*
  1194. * Fault pages before locking them in prepare_pages
  1195. * to avoid recursive lock
  1196. */
  1197. if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
  1198. ret = -EFAULT;
  1199. break;
  1200. }
  1201. ret = btrfs_delalloc_reserve_space(inode,
  1202. num_pages << PAGE_CACHE_SHIFT);
  1203. if (ret)
  1204. break;
  1205. /*
  1206. * This is going to setup the pages array with the number of
  1207. * pages we want, so we don't really need to worry about the
  1208. * contents of pages from loop to loop
  1209. */
  1210. ret = prepare_pages(root, file, pages, num_pages,
  1211. pos, first_index, write_bytes,
  1212. force_page_uptodate);
  1213. if (ret) {
  1214. btrfs_delalloc_release_space(inode,
  1215. num_pages << PAGE_CACHE_SHIFT);
  1216. break;
  1217. }
  1218. copied = btrfs_copy_from_user(pos, num_pages,
  1219. write_bytes, pages, i);
  1220. /*
  1221. * if we have trouble faulting in the pages, fall
  1222. * back to one page at a time
  1223. */
  1224. if (copied < write_bytes)
  1225. nrptrs = 1;
  1226. if (copied == 0) {
  1227. force_page_uptodate = true;
  1228. dirty_pages = 0;
  1229. } else {
  1230. force_page_uptodate = false;
  1231. dirty_pages = (copied + offset +
  1232. PAGE_CACHE_SIZE - 1) >>
  1233. PAGE_CACHE_SHIFT;
  1234. }
  1235. /*
  1236. * If we had a short copy we need to release the excess delaloc
  1237. * bytes we reserved. We need to increment outstanding_extents
  1238. * because btrfs_delalloc_release_space will decrement it, but
  1239. * we still have an outstanding extent for the chunk we actually
  1240. * managed to copy.
  1241. */
  1242. if (num_pages > dirty_pages) {
  1243. if (copied > 0) {
  1244. spin_lock(&BTRFS_I(inode)->lock);
  1245. BTRFS_I(inode)->outstanding_extents++;
  1246. spin_unlock(&BTRFS_I(inode)->lock);
  1247. }
  1248. btrfs_delalloc_release_space(inode,
  1249. (num_pages - dirty_pages) <<
  1250. PAGE_CACHE_SHIFT);
  1251. }
  1252. if (copied > 0) {
  1253. ret = btrfs_dirty_pages(root, inode, pages,
  1254. dirty_pages, pos, copied,
  1255. NULL);
  1256. if (ret) {
  1257. btrfs_delalloc_release_space(inode,
  1258. dirty_pages << PAGE_CACHE_SHIFT);
  1259. btrfs_drop_pages(pages, num_pages);
  1260. break;
  1261. }
  1262. }
  1263. btrfs_drop_pages(pages, num_pages);
  1264. cond_resched();
  1265. balance_dirty_pages_ratelimited_nr(inode->i_mapping,
  1266. dirty_pages);
  1267. if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
  1268. btrfs_btree_balance_dirty(root);
  1269. pos += copied;
  1270. num_written += copied;
  1271. }
  1272. kfree(pages);
  1273. return num_written ? num_written : ret;
  1274. }
  1275. static ssize_t __btrfs_direct_write(struct kiocb *iocb,
  1276. const struct iovec *iov,
  1277. unsigned long nr_segs, loff_t pos,
  1278. loff_t *ppos, size_t count, size_t ocount)
  1279. {
  1280. struct file *file = iocb->ki_filp;
  1281. struct iov_iter i;
  1282. ssize_t written;
  1283. ssize_t written_buffered;
  1284. loff_t endbyte;
  1285. int err;
  1286. written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
  1287. count, ocount);
  1288. if (written < 0 || written == count)
  1289. return written;
  1290. pos += written;
  1291. count -= written;
  1292. iov_iter_init(&i, iov, nr_segs, count, written);
  1293. written_buffered = __btrfs_buffered_write(file, &i, pos);
  1294. if (written_buffered < 0) {
  1295. err = written_buffered;
  1296. goto out;
  1297. }
  1298. endbyte = pos + written_buffered - 1;
  1299. err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
  1300. if (err)
  1301. goto out;
  1302. written += written_buffered;
  1303. *ppos = pos + written_buffered;
  1304. invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
  1305. endbyte >> PAGE_CACHE_SHIFT);
  1306. out:
  1307. return written ? written : err;
  1308. }
  1309. static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
  1310. const struct iovec *iov,
  1311. unsigned long nr_segs, loff_t pos)
  1312. {
  1313. struct file *file = iocb->ki_filp;
  1314. struct inode *inode = fdentry(file)->d_inode;
  1315. struct btrfs_root *root = BTRFS_I(inode)->root;
  1316. loff_t *ppos = &iocb->ki_pos;
  1317. u64 start_pos;
  1318. ssize_t num_written = 0;
  1319. ssize_t err = 0;
  1320. size_t count, ocount;
  1321. sb_start_write(inode->i_sb);
  1322. mutex_lock(&inode->i_mutex);
  1323. err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
  1324. if (err) {
  1325. mutex_unlock(&inode->i_mutex);
  1326. goto out;
  1327. }
  1328. count = ocount;
  1329. current->backing_dev_info = inode->i_mapping->backing_dev_info;
  1330. err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
  1331. if (err) {
  1332. mutex_unlock(&inode->i_mutex);
  1333. goto out;
  1334. }
  1335. if (count == 0) {
  1336. mutex_unlock(&inode->i_mutex);
  1337. goto out;
  1338. }
  1339. err = file_remove_suid(file);
  1340. if (err) {
  1341. mutex_unlock(&inode->i_mutex);
  1342. goto out;
  1343. }
  1344. /*
  1345. * If BTRFS flips readonly due to some impossible error
  1346. * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
  1347. * although we have opened a file as writable, we have
  1348. * to stop this write operation to ensure FS consistency.
  1349. */
  1350. if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  1351. mutex_unlock(&inode->i_mutex);
  1352. err = -EROFS;
  1353. goto out;
  1354. }
  1355. err = file_update_time(file);
  1356. if (err) {
  1357. mutex_unlock(&inode->i_mutex);
  1358. goto out;
  1359. }
  1360. start_pos = round_down(pos, root->sectorsize);
  1361. if (start_pos > i_size_read(inode)) {
  1362. err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
  1363. if (err) {
  1364. mutex_unlock(&inode->i_mutex);
  1365. goto out;
  1366. }
  1367. }
  1368. if (unlikely(file->f_flags & O_DIRECT)) {
  1369. num_written = __btrfs_direct_write(iocb, iov, nr_segs,
  1370. pos, ppos, count, ocount);
  1371. } else {
  1372. struct iov_iter i;
  1373. iov_iter_init(&i, iov, nr_segs, count, num_written);
  1374. num_written = __btrfs_buffered_write(file, &i, pos);
  1375. if (num_written > 0)
  1376. *ppos = pos + num_written;
  1377. }
  1378. mutex_unlock(&inode->i_mutex);
  1379. /*
  1380. * we want to make sure fsync finds this change
  1381. * but we haven't joined a transaction running right now.
  1382. *
  1383. * Later on, someone is sure to update the inode and get the
  1384. * real transid recorded.
  1385. *
  1386. * We set last_trans now to the fs_info generation + 1,
  1387. * this will either be one more than the running transaction
  1388. * or the generation used for the next transaction if there isn't
  1389. * one running right now.
  1390. */
  1391. BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
  1392. if (num_written > 0 || num_written == -EIOCBQUEUED) {
  1393. err = generic_write_sync(file, pos, num_written);
  1394. if (err < 0 && num_written > 0)
  1395. num_written = err;
  1396. }
  1397. out:
  1398. sb_end_write(inode->i_sb);
  1399. current->backing_dev_info = NULL;
  1400. return num_written ? num_written : err;
  1401. }
  1402. int btrfs_release_file(struct inode *inode, struct file *filp)
  1403. {
  1404. /*
  1405. * ordered_data_close is set by settattr when we are about to truncate
  1406. * a file from a non-zero size to a zero size. This tries to
  1407. * flush down new bytes that may have been written if the
  1408. * application were using truncate to replace a file in place.
  1409. */
  1410. if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
  1411. &BTRFS_I(inode)->runtime_flags)) {
  1412. btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
  1413. if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
  1414. filemap_flush(inode->i_mapping);
  1415. }
  1416. if (filp->private_data)
  1417. btrfs_ioctl_trans_end(filp);
  1418. return 0;
  1419. }
  1420. /*
  1421. * fsync call for both files and directories. This logs the inode into
  1422. * the tree log instead of forcing full commits whenever possible.
  1423. *
  1424. * It needs to call filemap_fdatawait so that all ordered extent updates are
  1425. * in the metadata btree are up to date for copying to the log.
  1426. *
  1427. * It drops the inode mutex before doing the tree log commit. This is an
  1428. * important optimization for directories because holding the mutex prevents
  1429. * new operations on the dir while we write to disk.
  1430. */
  1431. int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  1432. {
  1433. struct dentry *dentry = file->f_path.dentry;
  1434. struct inode *inode = dentry->d_inode;
  1435. struct btrfs_root *root = BTRFS_I(inode)->root;
  1436. int ret = 0;
  1437. struct btrfs_trans_handle *trans;
  1438. trace_btrfs_sync_file(file, datasync);
  1439. /*
  1440. * We write the dirty pages in the range and wait until they complete
  1441. * out of the ->i_mutex. If so, we can flush the dirty pages by
  1442. * multi-task, and make the performance up.
  1443. */
  1444. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  1445. if (ret)
  1446. return ret;
  1447. mutex_lock(&inode->i_mutex);
  1448. /*
  1449. * We flush the dirty pages again to avoid some dirty pages in the
  1450. * range being left.
  1451. */
  1452. atomic_inc(&root->log_batch);
  1453. btrfs_wait_ordered_range(inode, start, end - start + 1);
  1454. atomic_inc(&root->log_batch);
  1455. /*
  1456. * check the transaction that last modified this inode
  1457. * and see if its already been committed
  1458. */
  1459. if (!BTRFS_I(inode)->last_trans) {
  1460. mutex_unlock(&inode->i_mutex);
  1461. goto out;
  1462. }
  1463. /*
  1464. * if the last transaction that changed this file was before
  1465. * the current transaction, we can bail out now without any
  1466. * syncing
  1467. */
  1468. smp_mb();
  1469. if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
  1470. BTRFS_I(inode)->last_trans <=
  1471. root->fs_info->last_trans_committed) {
  1472. BTRFS_I(inode)->last_trans = 0;
  1473. /*
  1474. * We'v had everything committed since the last time we were
  1475. * modified so clear this flag in case it was set for whatever
  1476. * reason, it's no longer relevant.
  1477. */
  1478. clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1479. &BTRFS_I(inode)->runtime_flags);
  1480. mutex_unlock(&inode->i_mutex);
  1481. goto out;
  1482. }
  1483. /*
  1484. * ok we haven't committed the transaction yet, lets do a commit
  1485. */
  1486. if (file->private_data)
  1487. btrfs_ioctl_trans_end(file);
  1488. trans = btrfs_start_transaction(root, 0);
  1489. if (IS_ERR(trans)) {
  1490. ret = PTR_ERR(trans);
  1491. mutex_unlock(&inode->i_mutex);
  1492. goto out;
  1493. }
  1494. ret = btrfs_log_dentry_safe(trans, root, dentry);
  1495. if (ret < 0) {
  1496. mutex_unlock(&inode->i_mutex);
  1497. goto out;
  1498. }
  1499. /* we've logged all the items and now have a consistent
  1500. * version of the file in the log. It is possible that
  1501. * someone will come in and modify the file, but that's
  1502. * fine because the log is consistent on disk, and we
  1503. * have references to all of the file's extents
  1504. *
  1505. * It is possible that someone will come in and log the
  1506. * file again, but that will end up using the synchronization
  1507. * inside btrfs_sync_log to keep things safe.
  1508. */
  1509. mutex_unlock(&inode->i_mutex);
  1510. if (ret != BTRFS_NO_LOG_SYNC) {
  1511. if (ret > 0) {
  1512. ret = btrfs_commit_transaction(trans, root);
  1513. } else {
  1514. ret = btrfs_sync_log(trans, root);
  1515. if (ret == 0)
  1516. ret = btrfs_end_transaction(trans, root);
  1517. else
  1518. ret = btrfs_commit_transaction(trans, root);
  1519. }
  1520. } else {
  1521. ret = btrfs_end_transaction(trans, root);
  1522. }
  1523. out:
  1524. return ret > 0 ? -EIO : ret;
  1525. }
  1526. static const struct vm_operations_struct btrfs_file_vm_ops = {
  1527. .fault = filemap_fault,
  1528. .page_mkwrite = btrfs_page_mkwrite,
  1529. .remap_pages = generic_file_remap_pages,
  1530. };
  1531. static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
  1532. {
  1533. struct address_space *mapping = filp->f_mapping;
  1534. if (!mapping->a_ops->readpage)
  1535. return -ENOEXEC;
  1536. file_accessed(filp);
  1537. vma->vm_ops = &btrfs_file_vm_ops;
  1538. return 0;
  1539. }
  1540. static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
  1541. int slot, u64 start, u64 end)
  1542. {
  1543. struct btrfs_file_extent_item *fi;
  1544. struct btrfs_key key;
  1545. if (slot < 0 || slot >= btrfs_header_nritems(leaf))
  1546. return 0;
  1547. btrfs_item_key_to_cpu(leaf, &key, slot);
  1548. if (key.objectid != btrfs_ino(inode) ||
  1549. key.type != BTRFS_EXTENT_DATA_KEY)
  1550. return 0;
  1551. fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
  1552. if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
  1553. return 0;
  1554. if (btrfs_file_extent_disk_bytenr(leaf, fi))
  1555. return 0;
  1556. if (key.offset == end)
  1557. return 1;
  1558. if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
  1559. return 1;
  1560. return 0;
  1561. }
  1562. static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
  1563. struct btrfs_path *path, u64 offset, u64 end)
  1564. {
  1565. struct btrfs_root *root = BTRFS_I(inode)->root;
  1566. struct extent_buffer *leaf;
  1567. struct btrfs_file_extent_item *fi;
  1568. struct extent_map *hole_em;
  1569. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  1570. struct btrfs_key key;
  1571. int ret;
  1572. key.objectid = btrfs_ino(inode);
  1573. key.type = BTRFS_EXTENT_DATA_KEY;
  1574. key.offset = offset;
  1575. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  1576. if (ret < 0)
  1577. return ret;
  1578. BUG_ON(!ret);
  1579. leaf = path->nodes[0];
  1580. if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
  1581. u64 num_bytes;
  1582. path->slots[0]--;
  1583. fi = btrfs_item_ptr(leaf, path->slots[0],
  1584. struct btrfs_file_extent_item);
  1585. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
  1586. end - offset;
  1587. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1588. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1589. btrfs_set_file_extent_offset(leaf, fi, 0);
  1590. btrfs_mark_buffer_dirty(leaf);
  1591. goto out;
  1592. }
  1593. if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
  1594. u64 num_bytes;
  1595. path->slots[0]++;
  1596. key.offset = offset;
  1597. btrfs_set_item_key_safe(trans, root, path, &key);
  1598. fi = btrfs_item_ptr(leaf, path->slots[0],
  1599. struct btrfs_file_extent_item);
  1600. num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
  1601. offset;
  1602. btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
  1603. btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
  1604. btrfs_set_file_extent_offset(leaf, fi, 0);
  1605. btrfs_mark_buffer_dirty(leaf);
  1606. goto out;
  1607. }
  1608. btrfs_release_path(path);
  1609. ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
  1610. 0, 0, end - offset, 0, end - offset,
  1611. 0, 0, 0);
  1612. if (ret)
  1613. return ret;
  1614. out:
  1615. btrfs_release_path(path);
  1616. hole_em = alloc_extent_map();
  1617. if (!hole_em) {
  1618. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1619. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1620. &BTRFS_I(inode)->runtime_flags);
  1621. } else {
  1622. hole_em->start = offset;
  1623. hole_em->len = end - offset;
  1624. hole_em->orig_start = offset;
  1625. hole_em->block_start = EXTENT_MAP_HOLE;
  1626. hole_em->block_len = 0;
  1627. hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
  1628. hole_em->compress_type = BTRFS_COMPRESS_NONE;
  1629. hole_em->generation = trans->transid;
  1630. do {
  1631. btrfs_drop_extent_cache(inode, offset, end - 1, 0);
  1632. write_lock(&em_tree->lock);
  1633. ret = add_extent_mapping(em_tree, hole_em);
  1634. if (!ret)
  1635. list_move(&hole_em->list,
  1636. &em_tree->modified_extents);
  1637. write_unlock(&em_tree->lock);
  1638. } while (ret == -EEXIST);
  1639. free_extent_map(hole_em);
  1640. if (ret)
  1641. set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
  1642. &BTRFS_I(inode)->runtime_flags);
  1643. }
  1644. return 0;
  1645. }
  1646. static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
  1647. {
  1648. struct btrfs_root *root = BTRFS_I(inode)->root;
  1649. struct extent_state *cached_state = NULL;
  1650. struct btrfs_path *path;
  1651. struct btrfs_block_rsv *rsv;
  1652. struct btrfs_trans_handle *trans;
  1653. u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
  1654. u64 lockstart = (offset + mask) & ~mask;
  1655. u64 lockend = ((offset + len) & ~mask) - 1;
  1656. u64 cur_offset = lockstart;
  1657. u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
  1658. u64 drop_end;
  1659. int ret = 0;
  1660. int err = 0;
  1661. bool same_page = (offset >> PAGE_CACHE_SHIFT) ==
  1662. ((offset + len) >> PAGE_CACHE_SHIFT);
  1663. btrfs_wait_ordered_range(inode, offset, len);
  1664. mutex_lock(&inode->i_mutex);
  1665. if (offset >= inode->i_size) {
  1666. mutex_unlock(&inode->i_mutex);
  1667. return 0;
  1668. }
  1669. /*
  1670. * Only do this if we are in the same page and we aren't doing the
  1671. * entire page.
  1672. */
  1673. if (same_page && len < PAGE_CACHE_SIZE) {
  1674. ret = btrfs_truncate_page(inode, offset, len, 0);
  1675. mutex_unlock(&inode->i_mutex);
  1676. return ret;
  1677. }
  1678. /* zero back part of the first page */
  1679. ret = btrfs_truncate_page(inode, offset, 0, 0);
  1680. if (ret) {
  1681. mutex_unlock(&inode->i_mutex);
  1682. return ret;
  1683. }
  1684. /* zero the front end of the last page */
  1685. ret = btrfs_truncate_page(inode, offset + len, 0, 1);
  1686. if (ret) {
  1687. mutex_unlock(&inode->i_mutex);
  1688. return ret;
  1689. }
  1690. if (lockend < lockstart) {
  1691. mutex_unlock(&inode->i_mutex);
  1692. return 0;
  1693. }
  1694. while (1) {
  1695. struct btrfs_ordered_extent *ordered;
  1696. truncate_pagecache_range(inode, lockstart, lockend);
  1697. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1698. 0, &cached_state);
  1699. ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
  1700. /*
  1701. * We need to make sure we have no ordered extents in this range
  1702. * and nobody raced in and read a page in this range, if we did
  1703. * we need to try again.
  1704. */
  1705. if ((!ordered ||
  1706. (ordered->file_offset + ordered->len < lockstart ||
  1707. ordered->file_offset > lockend)) &&
  1708. !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
  1709. lockend, EXTENT_UPTODATE, 0,
  1710. cached_state)) {
  1711. if (ordered)
  1712. btrfs_put_ordered_extent(ordered);
  1713. break;
  1714. }
  1715. if (ordered)
  1716. btrfs_put_ordered_extent(ordered);
  1717. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
  1718. lockend, &cached_state, GFP_NOFS);
  1719. btrfs_wait_ordered_range(inode, lockstart,
  1720. lockend - lockstart + 1);
  1721. }
  1722. path = btrfs_alloc_path();
  1723. if (!path) {
  1724. ret = -ENOMEM;
  1725. goto out;
  1726. }
  1727. rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
  1728. if (!rsv) {
  1729. ret = -ENOMEM;
  1730. goto out_free;
  1731. }
  1732. rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
  1733. rsv->failfast = 1;
  1734. /*
  1735. * 1 - update the inode
  1736. * 1 - removing the extents in the range
  1737. * 1 - adding the hole extent
  1738. */
  1739. trans = btrfs_start_transaction(root, 3);
  1740. if (IS_ERR(trans)) {
  1741. err = PTR_ERR(trans);
  1742. goto out_free;
  1743. }
  1744. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
  1745. min_size);
  1746. BUG_ON(ret);
  1747. trans->block_rsv = rsv;
  1748. while (cur_offset < lockend) {
  1749. ret = __btrfs_drop_extents(trans, root, inode, path,
  1750. cur_offset, lockend + 1,
  1751. &drop_end, 1);
  1752. if (ret != -ENOSPC)
  1753. break;
  1754. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1755. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1756. if (ret) {
  1757. err = ret;
  1758. break;
  1759. }
  1760. cur_offset = drop_end;
  1761. ret = btrfs_update_inode(trans, root, inode);
  1762. if (ret) {
  1763. err = ret;
  1764. break;
  1765. }
  1766. btrfs_end_transaction(trans, root);
  1767. btrfs_btree_balance_dirty(root);
  1768. trans = btrfs_start_transaction(root, 3);
  1769. if (IS_ERR(trans)) {
  1770. ret = PTR_ERR(trans);
  1771. trans = NULL;
  1772. break;
  1773. }
  1774. ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
  1775. rsv, min_size);
  1776. BUG_ON(ret); /* shouldn't happen */
  1777. trans->block_rsv = rsv;
  1778. }
  1779. if (ret) {
  1780. err = ret;
  1781. goto out_trans;
  1782. }
  1783. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1784. ret = fill_holes(trans, inode, path, cur_offset, drop_end);
  1785. if (ret) {
  1786. err = ret;
  1787. goto out_trans;
  1788. }
  1789. out_trans:
  1790. if (!trans)
  1791. goto out_free;
  1792. inode_inc_iversion(inode);
  1793. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  1794. trans->block_rsv = &root->fs_info->trans_block_rsv;
  1795. ret = btrfs_update_inode(trans, root, inode);
  1796. btrfs_end_transaction(trans, root);
  1797. btrfs_btree_balance_dirty(root);
  1798. out_free:
  1799. btrfs_free_path(path);
  1800. btrfs_free_block_rsv(root, rsv);
  1801. out:
  1802. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  1803. &cached_state, GFP_NOFS);
  1804. mutex_unlock(&inode->i_mutex);
  1805. if (ret && !err)
  1806. err = ret;
  1807. return err;
  1808. }
  1809. static long btrfs_fallocate(struct file *file, int mode,
  1810. loff_t offset, loff_t len)
  1811. {
  1812. struct inode *inode = file->f_path.dentry->d_inode;
  1813. struct extent_state *cached_state = NULL;
  1814. u64 cur_offset;
  1815. u64 last_byte;
  1816. u64 alloc_start;
  1817. u64 alloc_end;
  1818. u64 alloc_hint = 0;
  1819. u64 locked_end;
  1820. struct extent_map *em;
  1821. int blocksize = BTRFS_I(inode)->root->sectorsize;
  1822. int ret;
  1823. alloc_start = round_down(offset, blocksize);
  1824. alloc_end = round_up(offset + len, blocksize);
  1825. /* Make sure we aren't being give some crap mode */
  1826. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  1827. return -EOPNOTSUPP;
  1828. if (mode & FALLOC_FL_PUNCH_HOLE)
  1829. return btrfs_punch_hole(inode, offset, len);
  1830. /*
  1831. * Make sure we have enough space before we do the
  1832. * allocation.
  1833. */
  1834. ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start + 1);
  1835. if (ret)
  1836. return ret;
  1837. /*
  1838. * wait for ordered IO before we have any locks. We'll loop again
  1839. * below with the locks held.
  1840. */
  1841. btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
  1842. mutex_lock(&inode->i_mutex);
  1843. ret = inode_newsize_ok(inode, alloc_end);
  1844. if (ret)
  1845. goto out;
  1846. if (alloc_start > inode->i_size) {
  1847. ret = btrfs_cont_expand(inode, i_size_read(inode),
  1848. alloc_start);
  1849. if (ret)
  1850. goto out;
  1851. }
  1852. locked_end = alloc_end - 1;
  1853. while (1) {
  1854. struct btrfs_ordered_extent *ordered;
  1855. /* the extent lock is ordered inside the running
  1856. * transaction
  1857. */
  1858. lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
  1859. locked_end, 0, &cached_state);
  1860. ordered = btrfs_lookup_first_ordered_extent(inode,
  1861. alloc_end - 1);
  1862. if (ordered &&
  1863. ordered->file_offset + ordered->len > alloc_start &&
  1864. ordered->file_offset < alloc_end) {
  1865. btrfs_put_ordered_extent(ordered);
  1866. unlock_extent_cached(&BTRFS_I(inode)->io_tree,
  1867. alloc_start, locked_end,
  1868. &cached_state, GFP_NOFS);
  1869. /*
  1870. * we can't wait on the range with the transaction
  1871. * running or with the extent lock held
  1872. */
  1873. btrfs_wait_ordered_range(inode, alloc_start,
  1874. alloc_end - alloc_start);
  1875. } else {
  1876. if (ordered)
  1877. btrfs_put_ordered_extent(ordered);
  1878. break;
  1879. }
  1880. }
  1881. cur_offset = alloc_start;
  1882. while (1) {
  1883. u64 actual_end;
  1884. em = btrfs_get_extent(inode, NULL, 0, cur_offset,
  1885. alloc_end - cur_offset, 0);
  1886. if (IS_ERR_OR_NULL(em)) {
  1887. if (!em)
  1888. ret = -ENOMEM;
  1889. else
  1890. ret = PTR_ERR(em);
  1891. break;
  1892. }
  1893. last_byte = min(extent_map_end(em), alloc_end);
  1894. actual_end = min_t(u64, extent_map_end(em), offset + len);
  1895. last_byte = ALIGN(last_byte, blocksize);
  1896. if (em->block_start == EXTENT_MAP_HOLE ||
  1897. (cur_offset >= inode->i_size &&
  1898. !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
  1899. ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
  1900. last_byte - cur_offset,
  1901. 1 << inode->i_blkbits,
  1902. offset + len,
  1903. &alloc_hint);
  1904. if (ret < 0) {
  1905. free_extent_map(em);
  1906. break;
  1907. }
  1908. } else if (actual_end > inode->i_size &&
  1909. !(mode & FALLOC_FL_KEEP_SIZE)) {
  1910. /*
  1911. * We didn't need to allocate any more space, but we
  1912. * still extended the size of the file so we need to
  1913. * update i_size.
  1914. */
  1915. inode->i_ctime = CURRENT_TIME;
  1916. i_size_write(inode, actual_end);
  1917. btrfs_ordered_update_i_size(inode, actual_end, NULL);
  1918. }
  1919. free_extent_map(em);
  1920. cur_offset = last_byte;
  1921. if (cur_offset >= alloc_end) {
  1922. ret = 0;
  1923. break;
  1924. }
  1925. }
  1926. unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
  1927. &cached_state, GFP_NOFS);
  1928. out:
  1929. mutex_unlock(&inode->i_mutex);
  1930. /* Let go of our reservation. */
  1931. btrfs_free_reserved_data_space(inode, alloc_end - alloc_start + 1);
  1932. return ret;
  1933. }
  1934. static int find_desired_extent(struct inode *inode, loff_t *offset, int origin)
  1935. {
  1936. struct btrfs_root *root = BTRFS_I(inode)->root;
  1937. struct extent_map *em;
  1938. struct extent_state *cached_state = NULL;
  1939. u64 lockstart = *offset;
  1940. u64 lockend = i_size_read(inode);
  1941. u64 start = *offset;
  1942. u64 orig_start = *offset;
  1943. u64 len = i_size_read(inode);
  1944. u64 last_end = 0;
  1945. int ret = 0;
  1946. lockend = max_t(u64, root->sectorsize, lockend);
  1947. if (lockend <= lockstart)
  1948. lockend = lockstart + root->sectorsize;
  1949. len = lockend - lockstart + 1;
  1950. len = max_t(u64, len, root->sectorsize);
  1951. if (inode->i_size == 0)
  1952. return -ENXIO;
  1953. lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
  1954. &cached_state);
  1955. /*
  1956. * Delalloc is such a pain. If we have a hole and we have pending
  1957. * delalloc for a portion of the hole we will get back a hole that
  1958. * exists for the entire range since it hasn't been actually written
  1959. * yet. So to take care of this case we need to look for an extent just
  1960. * before the position we want in case there is outstanding delalloc
  1961. * going on here.
  1962. */
  1963. if (origin == SEEK_HOLE && start != 0) {
  1964. if (start <= root->sectorsize)
  1965. em = btrfs_get_extent_fiemap(inode, NULL, 0, 0,
  1966. root->sectorsize, 0);
  1967. else
  1968. em = btrfs_get_extent_fiemap(inode, NULL, 0,
  1969. start - root->sectorsize,
  1970. root->sectorsize, 0);
  1971. if (IS_ERR(em)) {
  1972. ret = PTR_ERR(em);
  1973. goto out;
  1974. }
  1975. last_end = em->start + em->len;
  1976. if (em->block_start == EXTENT_MAP_DELALLOC)
  1977. last_end = min_t(u64, last_end, inode->i_size);
  1978. free_extent_map(em);
  1979. }
  1980. while (1) {
  1981. em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
  1982. if (IS_ERR(em)) {
  1983. ret = PTR_ERR(em);
  1984. break;
  1985. }
  1986. if (em->block_start == EXTENT_MAP_HOLE) {
  1987. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  1988. if (last_end <= orig_start) {
  1989. free_extent_map(em);
  1990. ret = -ENXIO;
  1991. break;
  1992. }
  1993. }
  1994. if (origin == SEEK_HOLE) {
  1995. *offset = start;
  1996. free_extent_map(em);
  1997. break;
  1998. }
  1999. } else {
  2000. if (origin == SEEK_DATA) {
  2001. if (em->block_start == EXTENT_MAP_DELALLOC) {
  2002. if (start >= inode->i_size) {
  2003. free_extent_map(em);
  2004. ret = -ENXIO;
  2005. break;
  2006. }
  2007. }
  2008. *offset = start;
  2009. free_extent_map(em);
  2010. break;
  2011. }
  2012. }
  2013. start = em->start + em->len;
  2014. last_end = em->start + em->len;
  2015. if (em->block_start == EXTENT_MAP_DELALLOC)
  2016. last_end = min_t(u64, last_end, inode->i_size);
  2017. if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
  2018. free_extent_map(em);
  2019. ret = -ENXIO;
  2020. break;
  2021. }
  2022. free_extent_map(em);
  2023. cond_resched();
  2024. }
  2025. if (!ret)
  2026. *offset = min(*offset, inode->i_size);
  2027. out:
  2028. unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
  2029. &cached_state, GFP_NOFS);
  2030. return ret;
  2031. }
  2032. static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int origin)
  2033. {
  2034. struct inode *inode = file->f_mapping->host;
  2035. int ret;
  2036. mutex_lock(&inode->i_mutex);
  2037. switch (origin) {
  2038. case SEEK_END:
  2039. case SEEK_CUR:
  2040. offset = generic_file_llseek(file, offset, origin);
  2041. goto out;
  2042. case SEEK_DATA:
  2043. case SEEK_HOLE:
  2044. if (offset >= i_size_read(inode)) {
  2045. mutex_unlock(&inode->i_mutex);
  2046. return -ENXIO;
  2047. }
  2048. ret = find_desired_extent(inode, &offset, origin);
  2049. if (ret) {
  2050. mutex_unlock(&inode->i_mutex);
  2051. return ret;
  2052. }
  2053. }
  2054. if (offset < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET)) {
  2055. offset = -EINVAL;
  2056. goto out;
  2057. }
  2058. if (offset > inode->i_sb->s_maxbytes) {
  2059. offset = -EINVAL;
  2060. goto out;
  2061. }
  2062. /* Special lock needed here? */
  2063. if (offset != file->f_pos) {
  2064. file->f_pos = offset;
  2065. file->f_version = 0;
  2066. }
  2067. out:
  2068. mutex_unlock(&inode->i_mutex);
  2069. return offset;
  2070. }
  2071. const struct file_operations btrfs_file_operations = {
  2072. .llseek = btrfs_file_llseek,
  2073. .read = do_sync_read,
  2074. .write = do_sync_write,
  2075. .aio_read = generic_file_aio_read,
  2076. .splice_read = generic_file_splice_read,
  2077. .aio_write = btrfs_file_aio_write,
  2078. .mmap = btrfs_file_mmap,
  2079. .open = generic_file_open,
  2080. .release = btrfs_release_file,
  2081. .fsync = btrfs_sync_file,
  2082. .fallocate = btrfs_fallocate,
  2083. .unlocked_ioctl = btrfs_ioctl,
  2084. #ifdef CONFIG_COMPAT
  2085. .compat_ioctl = btrfs_ioctl,
  2086. #endif
  2087. };
  2088. void btrfs_auto_defrag_exit(void)
  2089. {
  2090. if (btrfs_inode_defrag_cachep)
  2091. kmem_cache_destroy(btrfs_inode_defrag_cachep);
  2092. }
  2093. int btrfs_auto_defrag_init(void)
  2094. {
  2095. btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
  2096. sizeof(struct inode_defrag), 0,
  2097. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  2098. NULL);
  2099. if (!btrfs_inode_defrag_cachep)
  2100. return -ENOMEM;
  2101. return 0;
  2102. }