sched.c 227 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. DEFINE_TRACE(sched_wait_task);
  112. DEFINE_TRACE(sched_wakeup);
  113. DEFINE_TRACE(sched_wakeup_new);
  114. DEFINE_TRACE(sched_switch);
  115. DEFINE_TRACE(sched_migrate_task);
  116. #ifdef CONFIG_SMP
  117. /*
  118. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  119. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  120. */
  121. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  122. {
  123. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  124. }
  125. /*
  126. * Each time a sched group cpu_power is changed,
  127. * we must compute its reciprocal value
  128. */
  129. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  130. {
  131. sg->__cpu_power += val;
  132. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  133. }
  134. #endif
  135. static inline int rt_policy(int policy)
  136. {
  137. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  138. return 1;
  139. return 0;
  140. }
  141. static inline int task_has_rt_policy(struct task_struct *p)
  142. {
  143. return rt_policy(p->policy);
  144. }
  145. /*
  146. * This is the priority-queue data structure of the RT scheduling class:
  147. */
  148. struct rt_prio_array {
  149. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  150. struct list_head queue[MAX_RT_PRIO];
  151. };
  152. struct rt_bandwidth {
  153. /* nests inside the rq lock: */
  154. spinlock_t rt_runtime_lock;
  155. ktime_t rt_period;
  156. u64 rt_runtime;
  157. struct hrtimer rt_period_timer;
  158. };
  159. static struct rt_bandwidth def_rt_bandwidth;
  160. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  161. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  162. {
  163. struct rt_bandwidth *rt_b =
  164. container_of(timer, struct rt_bandwidth, rt_period_timer);
  165. ktime_t now;
  166. int overrun;
  167. int idle = 0;
  168. for (;;) {
  169. now = hrtimer_cb_get_time(timer);
  170. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  171. if (!overrun)
  172. break;
  173. idle = do_sched_rt_period_timer(rt_b, overrun);
  174. }
  175. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  176. }
  177. static
  178. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  179. {
  180. rt_b->rt_period = ns_to_ktime(period);
  181. rt_b->rt_runtime = runtime;
  182. spin_lock_init(&rt_b->rt_runtime_lock);
  183. hrtimer_init(&rt_b->rt_period_timer,
  184. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  185. rt_b->rt_period_timer.function = sched_rt_period_timer;
  186. }
  187. static inline int rt_bandwidth_enabled(void)
  188. {
  189. return sysctl_sched_rt_runtime >= 0;
  190. }
  191. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. ktime_t now;
  194. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  195. return;
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. return;
  198. spin_lock(&rt_b->rt_runtime_lock);
  199. for (;;) {
  200. if (hrtimer_active(&rt_b->rt_period_timer))
  201. break;
  202. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  203. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  204. hrtimer_start_expires(&rt_b->rt_period_timer,
  205. HRTIMER_MODE_ABS);
  206. }
  207. spin_unlock(&rt_b->rt_runtime_lock);
  208. }
  209. #ifdef CONFIG_RT_GROUP_SCHED
  210. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  211. {
  212. hrtimer_cancel(&rt_b->rt_period_timer);
  213. }
  214. #endif
  215. /*
  216. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  217. * detach_destroy_domains and partition_sched_domains.
  218. */
  219. static DEFINE_MUTEX(sched_domains_mutex);
  220. #ifdef CONFIG_GROUP_SCHED
  221. #include <linux/cgroup.h>
  222. struct cfs_rq;
  223. static LIST_HEAD(task_groups);
  224. /* task group related information */
  225. struct task_group {
  226. #ifdef CONFIG_CGROUP_SCHED
  227. struct cgroup_subsys_state css;
  228. #endif
  229. #ifdef CONFIG_USER_SCHED
  230. uid_t uid;
  231. #endif
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. /* schedulable entities of this group on each cpu */
  234. struct sched_entity **se;
  235. /* runqueue "owned" by this group on each cpu */
  236. struct cfs_rq **cfs_rq;
  237. unsigned long shares;
  238. #endif
  239. #ifdef CONFIG_RT_GROUP_SCHED
  240. struct sched_rt_entity **rt_se;
  241. struct rt_rq **rt_rq;
  242. struct rt_bandwidth rt_bandwidth;
  243. #endif
  244. struct rcu_head rcu;
  245. struct list_head list;
  246. struct task_group *parent;
  247. struct list_head siblings;
  248. struct list_head children;
  249. };
  250. #ifdef CONFIG_USER_SCHED
  251. /* Helper function to pass uid information to create_sched_user() */
  252. void set_tg_uid(struct user_struct *user)
  253. {
  254. user->tg->uid = user->uid;
  255. }
  256. /*
  257. * Root task group.
  258. * Every UID task group (including init_task_group aka UID-0) will
  259. * be a child to this group.
  260. */
  261. struct task_group root_task_group;
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. /* Default task group's sched entity on each cpu */
  264. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  265. /* Default task group's cfs_rq on each cpu */
  266. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  267. #endif /* CONFIG_FAIR_GROUP_SCHED */
  268. #ifdef CONFIG_RT_GROUP_SCHED
  269. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  270. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  271. #endif /* CONFIG_RT_GROUP_SCHED */
  272. #else /* !CONFIG_USER_SCHED */
  273. #define root_task_group init_task_group
  274. #endif /* CONFIG_USER_SCHED */
  275. /* task_group_lock serializes add/remove of task groups and also changes to
  276. * a task group's cpu shares.
  277. */
  278. static DEFINE_SPINLOCK(task_group_lock);
  279. #ifdef CONFIG_FAIR_GROUP_SCHED
  280. #ifdef CONFIG_USER_SCHED
  281. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  282. #else /* !CONFIG_USER_SCHED */
  283. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  284. #endif /* CONFIG_USER_SCHED */
  285. /*
  286. * A weight of 0 or 1 can cause arithmetics problems.
  287. * A weight of a cfs_rq is the sum of weights of which entities
  288. * are queued on this cfs_rq, so a weight of a entity should not be
  289. * too large, so as the shares value of a task group.
  290. * (The default weight is 1024 - so there's no practical
  291. * limitation from this.)
  292. */
  293. #define MIN_SHARES 2
  294. #define MAX_SHARES (1UL << 18)
  295. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  296. #endif
  297. /* Default task group.
  298. * Every task in system belong to this group at bootup.
  299. */
  300. struct task_group init_task_group;
  301. /* return group to which a task belongs */
  302. static inline struct task_group *task_group(struct task_struct *p)
  303. {
  304. struct task_group *tg;
  305. #ifdef CONFIG_USER_SCHED
  306. rcu_read_lock();
  307. tg = __task_cred(p)->user->tg;
  308. rcu_read_unlock();
  309. #elif defined(CONFIG_CGROUP_SCHED)
  310. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  311. struct task_group, css);
  312. #else
  313. tg = &init_task_group;
  314. #endif
  315. return tg;
  316. }
  317. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  318. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  319. {
  320. #ifdef CONFIG_FAIR_GROUP_SCHED
  321. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  322. p->se.parent = task_group(p)->se[cpu];
  323. #endif
  324. #ifdef CONFIG_RT_GROUP_SCHED
  325. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  326. p->rt.parent = task_group(p)->rt_se[cpu];
  327. #endif
  328. }
  329. #else
  330. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  331. static inline struct task_group *task_group(struct task_struct *p)
  332. {
  333. return NULL;
  334. }
  335. #endif /* CONFIG_GROUP_SCHED */
  336. /* CFS-related fields in a runqueue */
  337. struct cfs_rq {
  338. struct load_weight load;
  339. unsigned long nr_running;
  340. u64 exec_clock;
  341. u64 min_vruntime;
  342. struct rb_root tasks_timeline;
  343. struct rb_node *rb_leftmost;
  344. struct list_head tasks;
  345. struct list_head *balance_iterator;
  346. /*
  347. * 'curr' points to currently running entity on this cfs_rq.
  348. * It is set to NULL otherwise (i.e when none are currently running).
  349. */
  350. struct sched_entity *curr, *next, *last;
  351. unsigned int nr_spread_over;
  352. #ifdef CONFIG_FAIR_GROUP_SCHED
  353. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  354. /*
  355. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  356. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  357. * (like users, containers etc.)
  358. *
  359. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  360. * list is used during load balance.
  361. */
  362. struct list_head leaf_cfs_rq_list;
  363. struct task_group *tg; /* group that "owns" this runqueue */
  364. #ifdef CONFIG_SMP
  365. /*
  366. * the part of load.weight contributed by tasks
  367. */
  368. unsigned long task_weight;
  369. /*
  370. * h_load = weight * f(tg)
  371. *
  372. * Where f(tg) is the recursive weight fraction assigned to
  373. * this group.
  374. */
  375. unsigned long h_load;
  376. /*
  377. * this cpu's part of tg->shares
  378. */
  379. unsigned long shares;
  380. /*
  381. * load.weight at the time we set shares
  382. */
  383. unsigned long rq_weight;
  384. #endif
  385. #endif
  386. };
  387. /* Real-Time classes' related field in a runqueue: */
  388. struct rt_rq {
  389. struct rt_prio_array active;
  390. unsigned long rt_nr_running;
  391. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  392. int highest_prio; /* highest queued rt task prio */
  393. #endif
  394. #ifdef CONFIG_SMP
  395. unsigned long rt_nr_migratory;
  396. int overloaded;
  397. #endif
  398. int rt_throttled;
  399. u64 rt_time;
  400. u64 rt_runtime;
  401. /* Nests inside the rq lock: */
  402. spinlock_t rt_runtime_lock;
  403. #ifdef CONFIG_RT_GROUP_SCHED
  404. unsigned long rt_nr_boosted;
  405. struct rq *rq;
  406. struct list_head leaf_rt_rq_list;
  407. struct task_group *tg;
  408. struct sched_rt_entity *rt_se;
  409. #endif
  410. };
  411. #ifdef CONFIG_SMP
  412. /*
  413. * We add the notion of a root-domain which will be used to define per-domain
  414. * variables. Each exclusive cpuset essentially defines an island domain by
  415. * fully partitioning the member cpus from any other cpuset. Whenever a new
  416. * exclusive cpuset is created, we also create and attach a new root-domain
  417. * object.
  418. *
  419. */
  420. struct root_domain {
  421. atomic_t refcount;
  422. cpumask_t span;
  423. cpumask_t online;
  424. /*
  425. * The "RT overload" flag: it gets set if a CPU has more than
  426. * one runnable RT task.
  427. */
  428. cpumask_t rto_mask;
  429. atomic_t rto_count;
  430. #ifdef CONFIG_SMP
  431. struct cpupri cpupri;
  432. #endif
  433. };
  434. /*
  435. * By default the system creates a single root-domain with all cpus as
  436. * members (mimicking the global state we have today).
  437. */
  438. static struct root_domain def_root_domain;
  439. #endif
  440. /*
  441. * This is the main, per-CPU runqueue data structure.
  442. *
  443. * Locking rule: those places that want to lock multiple runqueues
  444. * (such as the load balancing or the thread migration code), lock
  445. * acquire operations must be ordered by ascending &runqueue.
  446. */
  447. struct rq {
  448. /* runqueue lock: */
  449. spinlock_t lock;
  450. /*
  451. * nr_running and cpu_load should be in the same cacheline because
  452. * remote CPUs use both these fields when doing load calculation.
  453. */
  454. unsigned long nr_running;
  455. #define CPU_LOAD_IDX_MAX 5
  456. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  457. unsigned char idle_at_tick;
  458. #ifdef CONFIG_NO_HZ
  459. unsigned long last_tick_seen;
  460. unsigned char in_nohz_recently;
  461. #endif
  462. /* capture load from *all* tasks on this cpu: */
  463. struct load_weight load;
  464. unsigned long nr_load_updates;
  465. u64 nr_switches;
  466. struct cfs_rq cfs;
  467. struct rt_rq rt;
  468. #ifdef CONFIG_FAIR_GROUP_SCHED
  469. /* list of leaf cfs_rq on this cpu: */
  470. struct list_head leaf_cfs_rq_list;
  471. #endif
  472. #ifdef CONFIG_RT_GROUP_SCHED
  473. struct list_head leaf_rt_rq_list;
  474. #endif
  475. /*
  476. * This is part of a global counter where only the total sum
  477. * over all CPUs matters. A task can increase this counter on
  478. * one CPU and if it got migrated afterwards it may decrease
  479. * it on another CPU. Always updated under the runqueue lock:
  480. */
  481. unsigned long nr_uninterruptible;
  482. struct task_struct *curr, *idle;
  483. unsigned long next_balance;
  484. struct mm_struct *prev_mm;
  485. u64 clock;
  486. atomic_t nr_iowait;
  487. #ifdef CONFIG_SMP
  488. struct root_domain *rd;
  489. struct sched_domain *sd;
  490. /* For active balancing */
  491. int active_balance;
  492. int push_cpu;
  493. /* cpu of this runqueue: */
  494. int cpu;
  495. int online;
  496. unsigned long avg_load_per_task;
  497. struct task_struct *migration_thread;
  498. struct list_head migration_queue;
  499. #endif
  500. #ifdef CONFIG_SCHED_HRTICK
  501. #ifdef CONFIG_SMP
  502. int hrtick_csd_pending;
  503. struct call_single_data hrtick_csd;
  504. #endif
  505. struct hrtimer hrtick_timer;
  506. #endif
  507. #ifdef CONFIG_SCHEDSTATS
  508. /* latency stats */
  509. struct sched_info rq_sched_info;
  510. unsigned long long rq_cpu_time;
  511. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  512. /* sys_sched_yield() stats */
  513. unsigned int yld_exp_empty;
  514. unsigned int yld_act_empty;
  515. unsigned int yld_both_empty;
  516. unsigned int yld_count;
  517. /* schedule() stats */
  518. unsigned int sched_switch;
  519. unsigned int sched_count;
  520. unsigned int sched_goidle;
  521. /* try_to_wake_up() stats */
  522. unsigned int ttwu_count;
  523. unsigned int ttwu_local;
  524. /* BKL stats */
  525. unsigned int bkl_count;
  526. #endif
  527. };
  528. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  529. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  530. {
  531. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  532. }
  533. static inline int cpu_of(struct rq *rq)
  534. {
  535. #ifdef CONFIG_SMP
  536. return rq->cpu;
  537. #else
  538. return 0;
  539. #endif
  540. }
  541. /*
  542. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  543. * See detach_destroy_domains: synchronize_sched for details.
  544. *
  545. * The domain tree of any CPU may only be accessed from within
  546. * preempt-disabled sections.
  547. */
  548. #define for_each_domain(cpu, __sd) \
  549. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  550. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  551. #define this_rq() (&__get_cpu_var(runqueues))
  552. #define task_rq(p) cpu_rq(task_cpu(p))
  553. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  554. static inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. *
  569. * Returns true if the current cpu runqueue is locked.
  570. * This interface allows printk to be called with the runqueue lock
  571. * held and know whether or not it is OK to wake up the klogd.
  572. */
  573. int runqueue_is_locked(void)
  574. {
  575. int cpu = get_cpu();
  576. struct rq *rq = cpu_rq(cpu);
  577. int ret;
  578. ret = spin_is_locked(&rq->lock);
  579. put_cpu();
  580. return ret;
  581. }
  582. /*
  583. * Debugging: various feature bits
  584. */
  585. #define SCHED_FEAT(name, enabled) \
  586. __SCHED_FEAT_##name ,
  587. enum {
  588. #include "sched_features.h"
  589. };
  590. #undef SCHED_FEAT
  591. #define SCHED_FEAT(name, enabled) \
  592. (1UL << __SCHED_FEAT_##name) * enabled |
  593. const_debug unsigned int sysctl_sched_features =
  594. #include "sched_features.h"
  595. 0;
  596. #undef SCHED_FEAT
  597. #ifdef CONFIG_SCHED_DEBUG
  598. #define SCHED_FEAT(name, enabled) \
  599. #name ,
  600. static __read_mostly char *sched_feat_names[] = {
  601. #include "sched_features.h"
  602. NULL
  603. };
  604. #undef SCHED_FEAT
  605. static int sched_feat_show(struct seq_file *m, void *v)
  606. {
  607. int i;
  608. for (i = 0; sched_feat_names[i]; i++) {
  609. if (!(sysctl_sched_features & (1UL << i)))
  610. seq_puts(m, "NO_");
  611. seq_printf(m, "%s ", sched_feat_names[i]);
  612. }
  613. seq_puts(m, "\n");
  614. return 0;
  615. }
  616. static ssize_t
  617. sched_feat_write(struct file *filp, const char __user *ubuf,
  618. size_t cnt, loff_t *ppos)
  619. {
  620. char buf[64];
  621. char *cmp = buf;
  622. int neg = 0;
  623. int i;
  624. if (cnt > 63)
  625. cnt = 63;
  626. if (copy_from_user(&buf, ubuf, cnt))
  627. return -EFAULT;
  628. buf[cnt] = 0;
  629. if (strncmp(buf, "NO_", 3) == 0) {
  630. neg = 1;
  631. cmp += 3;
  632. }
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. int len = strlen(sched_feat_names[i]);
  635. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  636. if (neg)
  637. sysctl_sched_features &= ~(1UL << i);
  638. else
  639. sysctl_sched_features |= (1UL << i);
  640. break;
  641. }
  642. }
  643. if (!sched_feat_names[i])
  644. return -EINVAL;
  645. filp->f_pos += cnt;
  646. return cnt;
  647. }
  648. static int sched_feat_open(struct inode *inode, struct file *filp)
  649. {
  650. return single_open(filp, sched_feat_show, NULL);
  651. }
  652. static struct file_operations sched_feat_fops = {
  653. .open = sched_feat_open,
  654. .write = sched_feat_write,
  655. .read = seq_read,
  656. .llseek = seq_lseek,
  657. .release = single_release,
  658. };
  659. static __init int sched_init_debug(void)
  660. {
  661. debugfs_create_file("sched_features", 0644, NULL, NULL,
  662. &sched_feat_fops);
  663. return 0;
  664. }
  665. late_initcall(sched_init_debug);
  666. #endif
  667. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  668. /*
  669. * Number of tasks to iterate in a single balance run.
  670. * Limited because this is done with IRQs disabled.
  671. */
  672. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  673. /*
  674. * ratelimit for updating the group shares.
  675. * default: 0.25ms
  676. */
  677. unsigned int sysctl_sched_shares_ratelimit = 250000;
  678. /*
  679. * Inject some fuzzyness into changing the per-cpu group shares
  680. * this avoids remote rq-locks at the expense of fairness.
  681. * default: 4
  682. */
  683. unsigned int sysctl_sched_shares_thresh = 4;
  684. /*
  685. * period over which we measure -rt task cpu usage in us.
  686. * default: 1s
  687. */
  688. unsigned int sysctl_sched_rt_period = 1000000;
  689. static __read_mostly int scheduler_running;
  690. /*
  691. * part of the period that we allow rt tasks to run in us.
  692. * default: 0.95s
  693. */
  694. int sysctl_sched_rt_runtime = 950000;
  695. static inline u64 global_rt_period(void)
  696. {
  697. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  698. }
  699. static inline u64 global_rt_runtime(void)
  700. {
  701. if (sysctl_sched_rt_runtime < 0)
  702. return RUNTIME_INF;
  703. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  704. }
  705. #ifndef prepare_arch_switch
  706. # define prepare_arch_switch(next) do { } while (0)
  707. #endif
  708. #ifndef finish_arch_switch
  709. # define finish_arch_switch(prev) do { } while (0)
  710. #endif
  711. static inline int task_current(struct rq *rq, struct task_struct *p)
  712. {
  713. return rq->curr == p;
  714. }
  715. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  716. static inline int task_running(struct rq *rq, struct task_struct *p)
  717. {
  718. return task_current(rq, p);
  719. }
  720. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  721. {
  722. }
  723. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  724. {
  725. #ifdef CONFIG_DEBUG_SPINLOCK
  726. /* this is a valid case when another task releases the spinlock */
  727. rq->lock.owner = current;
  728. #endif
  729. /*
  730. * If we are tracking spinlock dependencies then we have to
  731. * fix up the runqueue lock - which gets 'carried over' from
  732. * prev into current:
  733. */
  734. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  735. spin_unlock_irq(&rq->lock);
  736. }
  737. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  738. static inline int task_running(struct rq *rq, struct task_struct *p)
  739. {
  740. #ifdef CONFIG_SMP
  741. return p->oncpu;
  742. #else
  743. return task_current(rq, p);
  744. #endif
  745. }
  746. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  747. {
  748. #ifdef CONFIG_SMP
  749. /*
  750. * We can optimise this out completely for !SMP, because the
  751. * SMP rebalancing from interrupt is the only thing that cares
  752. * here.
  753. */
  754. next->oncpu = 1;
  755. #endif
  756. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  757. spin_unlock_irq(&rq->lock);
  758. #else
  759. spin_unlock(&rq->lock);
  760. #endif
  761. }
  762. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  763. {
  764. #ifdef CONFIG_SMP
  765. /*
  766. * After ->oncpu is cleared, the task can be moved to a different CPU.
  767. * We must ensure this doesn't happen until the switch is completely
  768. * finished.
  769. */
  770. smp_wmb();
  771. prev->oncpu = 0;
  772. #endif
  773. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  774. local_irq_enable();
  775. #endif
  776. }
  777. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  778. /*
  779. * __task_rq_lock - lock the runqueue a given task resides on.
  780. * Must be called interrupts disabled.
  781. */
  782. static inline struct rq *__task_rq_lock(struct task_struct *p)
  783. __acquires(rq->lock)
  784. {
  785. for (;;) {
  786. struct rq *rq = task_rq(p);
  787. spin_lock(&rq->lock);
  788. if (likely(rq == task_rq(p)))
  789. return rq;
  790. spin_unlock(&rq->lock);
  791. }
  792. }
  793. /*
  794. * task_rq_lock - lock the runqueue a given task resides on and disable
  795. * interrupts. Note the ordering: we can safely lookup the task_rq without
  796. * explicitly disabling preemption.
  797. */
  798. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  799. __acquires(rq->lock)
  800. {
  801. struct rq *rq;
  802. for (;;) {
  803. local_irq_save(*flags);
  804. rq = task_rq(p);
  805. spin_lock(&rq->lock);
  806. if (likely(rq == task_rq(p)))
  807. return rq;
  808. spin_unlock_irqrestore(&rq->lock, *flags);
  809. }
  810. }
  811. void task_rq_unlock_wait(struct task_struct *p)
  812. {
  813. struct rq *rq = task_rq(p);
  814. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  815. spin_unlock_wait(&rq->lock);
  816. }
  817. static void __task_rq_unlock(struct rq *rq)
  818. __releases(rq->lock)
  819. {
  820. spin_unlock(&rq->lock);
  821. }
  822. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  823. __releases(rq->lock)
  824. {
  825. spin_unlock_irqrestore(&rq->lock, *flags);
  826. }
  827. /*
  828. * this_rq_lock - lock this runqueue and disable interrupts.
  829. */
  830. static struct rq *this_rq_lock(void)
  831. __acquires(rq->lock)
  832. {
  833. struct rq *rq;
  834. local_irq_disable();
  835. rq = this_rq();
  836. spin_lock(&rq->lock);
  837. return rq;
  838. }
  839. #ifdef CONFIG_SCHED_HRTICK
  840. /*
  841. * Use HR-timers to deliver accurate preemption points.
  842. *
  843. * Its all a bit involved since we cannot program an hrt while holding the
  844. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  845. * reschedule event.
  846. *
  847. * When we get rescheduled we reprogram the hrtick_timer outside of the
  848. * rq->lock.
  849. */
  850. /*
  851. * Use hrtick when:
  852. * - enabled by features
  853. * - hrtimer is actually high res
  854. */
  855. static inline int hrtick_enabled(struct rq *rq)
  856. {
  857. if (!sched_feat(HRTICK))
  858. return 0;
  859. if (!cpu_active(cpu_of(rq)))
  860. return 0;
  861. return hrtimer_is_hres_active(&rq->hrtick_timer);
  862. }
  863. static void hrtick_clear(struct rq *rq)
  864. {
  865. if (hrtimer_active(&rq->hrtick_timer))
  866. hrtimer_cancel(&rq->hrtick_timer);
  867. }
  868. /*
  869. * High-resolution timer tick.
  870. * Runs from hardirq context with interrupts disabled.
  871. */
  872. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  873. {
  874. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  875. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  876. spin_lock(&rq->lock);
  877. update_rq_clock(rq);
  878. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  879. spin_unlock(&rq->lock);
  880. return HRTIMER_NORESTART;
  881. }
  882. #ifdef CONFIG_SMP
  883. /*
  884. * called from hardirq (IPI) context
  885. */
  886. static void __hrtick_start(void *arg)
  887. {
  888. struct rq *rq = arg;
  889. spin_lock(&rq->lock);
  890. hrtimer_restart(&rq->hrtick_timer);
  891. rq->hrtick_csd_pending = 0;
  892. spin_unlock(&rq->lock);
  893. }
  894. /*
  895. * Called to set the hrtick timer state.
  896. *
  897. * called with rq->lock held and irqs disabled
  898. */
  899. static void hrtick_start(struct rq *rq, u64 delay)
  900. {
  901. struct hrtimer *timer = &rq->hrtick_timer;
  902. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  903. hrtimer_set_expires(timer, time);
  904. if (rq == this_rq()) {
  905. hrtimer_restart(timer);
  906. } else if (!rq->hrtick_csd_pending) {
  907. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  908. rq->hrtick_csd_pending = 1;
  909. }
  910. }
  911. static int
  912. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  913. {
  914. int cpu = (int)(long)hcpu;
  915. switch (action) {
  916. case CPU_UP_CANCELED:
  917. case CPU_UP_CANCELED_FROZEN:
  918. case CPU_DOWN_PREPARE:
  919. case CPU_DOWN_PREPARE_FROZEN:
  920. case CPU_DEAD:
  921. case CPU_DEAD_FROZEN:
  922. hrtick_clear(cpu_rq(cpu));
  923. return NOTIFY_OK;
  924. }
  925. return NOTIFY_DONE;
  926. }
  927. static __init void init_hrtick(void)
  928. {
  929. hotcpu_notifier(hotplug_hrtick, 0);
  930. }
  931. #else
  932. /*
  933. * Called to set the hrtick timer state.
  934. *
  935. * called with rq->lock held and irqs disabled
  936. */
  937. static void hrtick_start(struct rq *rq, u64 delay)
  938. {
  939. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  940. }
  941. static inline void init_hrtick(void)
  942. {
  943. }
  944. #endif /* CONFIG_SMP */
  945. static void init_rq_hrtick(struct rq *rq)
  946. {
  947. #ifdef CONFIG_SMP
  948. rq->hrtick_csd_pending = 0;
  949. rq->hrtick_csd.flags = 0;
  950. rq->hrtick_csd.func = __hrtick_start;
  951. rq->hrtick_csd.info = rq;
  952. #endif
  953. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  954. rq->hrtick_timer.function = hrtick;
  955. }
  956. #else /* CONFIG_SCHED_HRTICK */
  957. static inline void hrtick_clear(struct rq *rq)
  958. {
  959. }
  960. static inline void init_rq_hrtick(struct rq *rq)
  961. {
  962. }
  963. static inline void init_hrtick(void)
  964. {
  965. }
  966. #endif /* CONFIG_SCHED_HRTICK */
  967. /*
  968. * resched_task - mark a task 'to be rescheduled now'.
  969. *
  970. * On UP this means the setting of the need_resched flag, on SMP it
  971. * might also involve a cross-CPU call to trigger the scheduler on
  972. * the target CPU.
  973. */
  974. #ifdef CONFIG_SMP
  975. #ifndef tsk_is_polling
  976. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  977. #endif
  978. static void resched_task(struct task_struct *p)
  979. {
  980. int cpu;
  981. assert_spin_locked(&task_rq(p)->lock);
  982. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  983. return;
  984. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  985. cpu = task_cpu(p);
  986. if (cpu == smp_processor_id())
  987. return;
  988. /* NEED_RESCHED must be visible before we test polling */
  989. smp_mb();
  990. if (!tsk_is_polling(p))
  991. smp_send_reschedule(cpu);
  992. }
  993. static void resched_cpu(int cpu)
  994. {
  995. struct rq *rq = cpu_rq(cpu);
  996. unsigned long flags;
  997. if (!spin_trylock_irqsave(&rq->lock, flags))
  998. return;
  999. resched_task(cpu_curr(cpu));
  1000. spin_unlock_irqrestore(&rq->lock, flags);
  1001. }
  1002. #ifdef CONFIG_NO_HZ
  1003. /*
  1004. * When add_timer_on() enqueues a timer into the timer wheel of an
  1005. * idle CPU then this timer might expire before the next timer event
  1006. * which is scheduled to wake up that CPU. In case of a completely
  1007. * idle system the next event might even be infinite time into the
  1008. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1009. * leaves the inner idle loop so the newly added timer is taken into
  1010. * account when the CPU goes back to idle and evaluates the timer
  1011. * wheel for the next timer event.
  1012. */
  1013. void wake_up_idle_cpu(int cpu)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /*
  1019. * This is safe, as this function is called with the timer
  1020. * wheel base lock of (cpu) held. When the CPU is on the way
  1021. * to idle and has not yet set rq->curr to idle then it will
  1022. * be serialized on the timer wheel base lock and take the new
  1023. * timer into account automatically.
  1024. */
  1025. if (rq->curr != rq->idle)
  1026. return;
  1027. /*
  1028. * We can set TIF_RESCHED on the idle task of the other CPU
  1029. * lockless. The worst case is that the other CPU runs the
  1030. * idle task through an additional NOOP schedule()
  1031. */
  1032. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1033. /* NEED_RESCHED must be visible before we test polling */
  1034. smp_mb();
  1035. if (!tsk_is_polling(rq->idle))
  1036. smp_send_reschedule(cpu);
  1037. }
  1038. #endif /* CONFIG_NO_HZ */
  1039. #else /* !CONFIG_SMP */
  1040. static void resched_task(struct task_struct *p)
  1041. {
  1042. assert_spin_locked(&task_rq(p)->lock);
  1043. set_tsk_need_resched(p);
  1044. }
  1045. #endif /* CONFIG_SMP */
  1046. #if BITS_PER_LONG == 32
  1047. # define WMULT_CONST (~0UL)
  1048. #else
  1049. # define WMULT_CONST (1UL << 32)
  1050. #endif
  1051. #define WMULT_SHIFT 32
  1052. /*
  1053. * Shift right and round:
  1054. */
  1055. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1056. /*
  1057. * delta *= weight / lw
  1058. */
  1059. static unsigned long
  1060. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1061. struct load_weight *lw)
  1062. {
  1063. u64 tmp;
  1064. if (!lw->inv_weight) {
  1065. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1066. lw->inv_weight = 1;
  1067. else
  1068. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1069. / (lw->weight+1);
  1070. }
  1071. tmp = (u64)delta_exec * weight;
  1072. /*
  1073. * Check whether we'd overflow the 64-bit multiplication:
  1074. */
  1075. if (unlikely(tmp > WMULT_CONST))
  1076. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1077. WMULT_SHIFT/2);
  1078. else
  1079. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1080. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1081. }
  1082. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1083. {
  1084. lw->weight += inc;
  1085. lw->inv_weight = 0;
  1086. }
  1087. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1088. {
  1089. lw->weight -= dec;
  1090. lw->inv_weight = 0;
  1091. }
  1092. /*
  1093. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1094. * of tasks with abnormal "nice" values across CPUs the contribution that
  1095. * each task makes to its run queue's load is weighted according to its
  1096. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1097. * scaled version of the new time slice allocation that they receive on time
  1098. * slice expiry etc.
  1099. */
  1100. #define WEIGHT_IDLEPRIO 2
  1101. #define WMULT_IDLEPRIO (1 << 31)
  1102. /*
  1103. * Nice levels are multiplicative, with a gentle 10% change for every
  1104. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1105. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1106. * that remained on nice 0.
  1107. *
  1108. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1109. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1110. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1111. * If a task goes up by ~10% and another task goes down by ~10% then
  1112. * the relative distance between them is ~25%.)
  1113. */
  1114. static const int prio_to_weight[40] = {
  1115. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1116. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1117. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1118. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1119. /* 0 */ 1024, 820, 655, 526, 423,
  1120. /* 5 */ 335, 272, 215, 172, 137,
  1121. /* 10 */ 110, 87, 70, 56, 45,
  1122. /* 15 */ 36, 29, 23, 18, 15,
  1123. };
  1124. /*
  1125. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1126. *
  1127. * In cases where the weight does not change often, we can use the
  1128. * precalculated inverse to speed up arithmetics by turning divisions
  1129. * into multiplications:
  1130. */
  1131. static const u32 prio_to_wmult[40] = {
  1132. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1133. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1134. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1135. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1136. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1137. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1138. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1139. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1140. };
  1141. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1142. /*
  1143. * runqueue iterator, to support SMP load-balancing between different
  1144. * scheduling classes, without having to expose their internal data
  1145. * structures to the load-balancing proper:
  1146. */
  1147. struct rq_iterator {
  1148. void *arg;
  1149. struct task_struct *(*start)(void *);
  1150. struct task_struct *(*next)(void *);
  1151. };
  1152. #ifdef CONFIG_SMP
  1153. static unsigned long
  1154. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1155. unsigned long max_load_move, struct sched_domain *sd,
  1156. enum cpu_idle_type idle, int *all_pinned,
  1157. int *this_best_prio, struct rq_iterator *iterator);
  1158. static int
  1159. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1160. struct sched_domain *sd, enum cpu_idle_type idle,
  1161. struct rq_iterator *iterator);
  1162. #endif
  1163. #ifdef CONFIG_CGROUP_CPUACCT
  1164. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1165. #else
  1166. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1167. #endif
  1168. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1169. {
  1170. update_load_add(&rq->load, load);
  1171. }
  1172. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1173. {
  1174. update_load_sub(&rq->load, load);
  1175. }
  1176. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1177. typedef int (*tg_visitor)(struct task_group *, void *);
  1178. /*
  1179. * Iterate the full tree, calling @down when first entering a node and @up when
  1180. * leaving it for the final time.
  1181. */
  1182. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1183. {
  1184. struct task_group *parent, *child;
  1185. int ret;
  1186. rcu_read_lock();
  1187. parent = &root_task_group;
  1188. down:
  1189. ret = (*down)(parent, data);
  1190. if (ret)
  1191. goto out_unlock;
  1192. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1193. parent = child;
  1194. goto down;
  1195. up:
  1196. continue;
  1197. }
  1198. ret = (*up)(parent, data);
  1199. if (ret)
  1200. goto out_unlock;
  1201. child = parent;
  1202. parent = parent->parent;
  1203. if (parent)
  1204. goto up;
  1205. out_unlock:
  1206. rcu_read_unlock();
  1207. return ret;
  1208. }
  1209. static int tg_nop(struct task_group *tg, void *data)
  1210. {
  1211. return 0;
  1212. }
  1213. #endif
  1214. #ifdef CONFIG_SMP
  1215. static unsigned long source_load(int cpu, int type);
  1216. static unsigned long target_load(int cpu, int type);
  1217. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1218. static unsigned long cpu_avg_load_per_task(int cpu)
  1219. {
  1220. struct rq *rq = cpu_rq(cpu);
  1221. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1222. if (nr_running)
  1223. rq->avg_load_per_task = rq->load.weight / nr_running;
  1224. else
  1225. rq->avg_load_per_task = 0;
  1226. return rq->avg_load_per_task;
  1227. }
  1228. #ifdef CONFIG_FAIR_GROUP_SCHED
  1229. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1230. /*
  1231. * Calculate and set the cpu's group shares.
  1232. */
  1233. static void
  1234. update_group_shares_cpu(struct task_group *tg, int cpu,
  1235. unsigned long sd_shares, unsigned long sd_rq_weight)
  1236. {
  1237. unsigned long shares;
  1238. unsigned long rq_weight;
  1239. if (!tg->se[cpu])
  1240. return;
  1241. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1242. /*
  1243. * \Sum shares * rq_weight
  1244. * shares = -----------------------
  1245. * \Sum rq_weight
  1246. *
  1247. */
  1248. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1249. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1250. if (abs(shares - tg->se[cpu]->load.weight) >
  1251. sysctl_sched_shares_thresh) {
  1252. struct rq *rq = cpu_rq(cpu);
  1253. unsigned long flags;
  1254. spin_lock_irqsave(&rq->lock, flags);
  1255. tg->cfs_rq[cpu]->shares = shares;
  1256. __set_se_shares(tg->se[cpu], shares);
  1257. spin_unlock_irqrestore(&rq->lock, flags);
  1258. }
  1259. }
  1260. /*
  1261. * Re-compute the task group their per cpu shares over the given domain.
  1262. * This needs to be done in a bottom-up fashion because the rq weight of a
  1263. * parent group depends on the shares of its child groups.
  1264. */
  1265. static int tg_shares_up(struct task_group *tg, void *data)
  1266. {
  1267. unsigned long weight, rq_weight = 0;
  1268. unsigned long shares = 0;
  1269. struct sched_domain *sd = data;
  1270. int i;
  1271. for_each_cpu_mask(i, sd->span) {
  1272. /*
  1273. * If there are currently no tasks on the cpu pretend there
  1274. * is one of average load so that when a new task gets to
  1275. * run here it will not get delayed by group starvation.
  1276. */
  1277. weight = tg->cfs_rq[i]->load.weight;
  1278. if (!weight)
  1279. weight = NICE_0_LOAD;
  1280. tg->cfs_rq[i]->rq_weight = weight;
  1281. rq_weight += weight;
  1282. shares += tg->cfs_rq[i]->shares;
  1283. }
  1284. if ((!shares && rq_weight) || shares > tg->shares)
  1285. shares = tg->shares;
  1286. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1287. shares = tg->shares;
  1288. for_each_cpu_mask(i, sd->span)
  1289. update_group_shares_cpu(tg, i, shares, rq_weight);
  1290. return 0;
  1291. }
  1292. /*
  1293. * Compute the cpu's hierarchical load factor for each task group.
  1294. * This needs to be done in a top-down fashion because the load of a child
  1295. * group is a fraction of its parents load.
  1296. */
  1297. static int tg_load_down(struct task_group *tg, void *data)
  1298. {
  1299. unsigned long load;
  1300. long cpu = (long)data;
  1301. if (!tg->parent) {
  1302. load = cpu_rq(cpu)->load.weight;
  1303. } else {
  1304. load = tg->parent->cfs_rq[cpu]->h_load;
  1305. load *= tg->cfs_rq[cpu]->shares;
  1306. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1307. }
  1308. tg->cfs_rq[cpu]->h_load = load;
  1309. return 0;
  1310. }
  1311. static void update_shares(struct sched_domain *sd)
  1312. {
  1313. u64 now = cpu_clock(raw_smp_processor_id());
  1314. s64 elapsed = now - sd->last_update;
  1315. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1316. sd->last_update = now;
  1317. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1318. }
  1319. }
  1320. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1321. {
  1322. spin_unlock(&rq->lock);
  1323. update_shares(sd);
  1324. spin_lock(&rq->lock);
  1325. }
  1326. static void update_h_load(long cpu)
  1327. {
  1328. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1329. }
  1330. #else
  1331. static inline void update_shares(struct sched_domain *sd)
  1332. {
  1333. }
  1334. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1335. {
  1336. }
  1337. #endif
  1338. /*
  1339. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1340. */
  1341. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1342. __releases(this_rq->lock)
  1343. __acquires(busiest->lock)
  1344. __acquires(this_rq->lock)
  1345. {
  1346. int ret = 0;
  1347. if (unlikely(!irqs_disabled())) {
  1348. /* printk() doesn't work good under rq->lock */
  1349. spin_unlock(&this_rq->lock);
  1350. BUG_ON(1);
  1351. }
  1352. if (unlikely(!spin_trylock(&busiest->lock))) {
  1353. if (busiest < this_rq) {
  1354. spin_unlock(&this_rq->lock);
  1355. spin_lock(&busiest->lock);
  1356. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1357. ret = 1;
  1358. } else
  1359. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1360. }
  1361. return ret;
  1362. }
  1363. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1364. __releases(busiest->lock)
  1365. {
  1366. spin_unlock(&busiest->lock);
  1367. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1368. }
  1369. #endif
  1370. #ifdef CONFIG_FAIR_GROUP_SCHED
  1371. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1372. {
  1373. #ifdef CONFIG_SMP
  1374. cfs_rq->shares = shares;
  1375. #endif
  1376. }
  1377. #endif
  1378. #include "sched_stats.h"
  1379. #include "sched_idletask.c"
  1380. #include "sched_fair.c"
  1381. #include "sched_rt.c"
  1382. #ifdef CONFIG_SCHED_DEBUG
  1383. # include "sched_debug.c"
  1384. #endif
  1385. #define sched_class_highest (&rt_sched_class)
  1386. #define for_each_class(class) \
  1387. for (class = sched_class_highest; class; class = class->next)
  1388. static void inc_nr_running(struct rq *rq)
  1389. {
  1390. rq->nr_running++;
  1391. }
  1392. static void dec_nr_running(struct rq *rq)
  1393. {
  1394. rq->nr_running--;
  1395. }
  1396. static void set_load_weight(struct task_struct *p)
  1397. {
  1398. if (task_has_rt_policy(p)) {
  1399. p->se.load.weight = prio_to_weight[0] * 2;
  1400. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1401. return;
  1402. }
  1403. /*
  1404. * SCHED_IDLE tasks get minimal weight:
  1405. */
  1406. if (p->policy == SCHED_IDLE) {
  1407. p->se.load.weight = WEIGHT_IDLEPRIO;
  1408. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1409. return;
  1410. }
  1411. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1412. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1413. }
  1414. static void update_avg(u64 *avg, u64 sample)
  1415. {
  1416. s64 diff = sample - *avg;
  1417. *avg += diff >> 3;
  1418. }
  1419. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1420. {
  1421. sched_info_queued(p);
  1422. p->sched_class->enqueue_task(rq, p, wakeup);
  1423. p->se.on_rq = 1;
  1424. }
  1425. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1426. {
  1427. if (sleep && p->se.last_wakeup) {
  1428. update_avg(&p->se.avg_overlap,
  1429. p->se.sum_exec_runtime - p->se.last_wakeup);
  1430. p->se.last_wakeup = 0;
  1431. }
  1432. sched_info_dequeued(p);
  1433. p->sched_class->dequeue_task(rq, p, sleep);
  1434. p->se.on_rq = 0;
  1435. }
  1436. /*
  1437. * __normal_prio - return the priority that is based on the static prio
  1438. */
  1439. static inline int __normal_prio(struct task_struct *p)
  1440. {
  1441. return p->static_prio;
  1442. }
  1443. /*
  1444. * Calculate the expected normal priority: i.e. priority
  1445. * without taking RT-inheritance into account. Might be
  1446. * boosted by interactivity modifiers. Changes upon fork,
  1447. * setprio syscalls, and whenever the interactivity
  1448. * estimator recalculates.
  1449. */
  1450. static inline int normal_prio(struct task_struct *p)
  1451. {
  1452. int prio;
  1453. if (task_has_rt_policy(p))
  1454. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1455. else
  1456. prio = __normal_prio(p);
  1457. return prio;
  1458. }
  1459. /*
  1460. * Calculate the current priority, i.e. the priority
  1461. * taken into account by the scheduler. This value might
  1462. * be boosted by RT tasks, or might be boosted by
  1463. * interactivity modifiers. Will be RT if the task got
  1464. * RT-boosted. If not then it returns p->normal_prio.
  1465. */
  1466. static int effective_prio(struct task_struct *p)
  1467. {
  1468. p->normal_prio = normal_prio(p);
  1469. /*
  1470. * If we are RT tasks or we were boosted to RT priority,
  1471. * keep the priority unchanged. Otherwise, update priority
  1472. * to the normal priority:
  1473. */
  1474. if (!rt_prio(p->prio))
  1475. return p->normal_prio;
  1476. return p->prio;
  1477. }
  1478. /*
  1479. * activate_task - move a task to the runqueue.
  1480. */
  1481. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1482. {
  1483. if (task_contributes_to_load(p))
  1484. rq->nr_uninterruptible--;
  1485. enqueue_task(rq, p, wakeup);
  1486. inc_nr_running(rq);
  1487. }
  1488. /*
  1489. * deactivate_task - remove a task from the runqueue.
  1490. */
  1491. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1492. {
  1493. if (task_contributes_to_load(p))
  1494. rq->nr_uninterruptible++;
  1495. dequeue_task(rq, p, sleep);
  1496. dec_nr_running(rq);
  1497. }
  1498. /**
  1499. * task_curr - is this task currently executing on a CPU?
  1500. * @p: the task in question.
  1501. */
  1502. inline int task_curr(const struct task_struct *p)
  1503. {
  1504. return cpu_curr(task_cpu(p)) == p;
  1505. }
  1506. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1507. {
  1508. set_task_rq(p, cpu);
  1509. #ifdef CONFIG_SMP
  1510. /*
  1511. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1512. * successfuly executed on another CPU. We must ensure that updates of
  1513. * per-task data have been completed by this moment.
  1514. */
  1515. smp_wmb();
  1516. task_thread_info(p)->cpu = cpu;
  1517. #endif
  1518. }
  1519. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1520. const struct sched_class *prev_class,
  1521. int oldprio, int running)
  1522. {
  1523. if (prev_class != p->sched_class) {
  1524. if (prev_class->switched_from)
  1525. prev_class->switched_from(rq, p, running);
  1526. p->sched_class->switched_to(rq, p, running);
  1527. } else
  1528. p->sched_class->prio_changed(rq, p, oldprio, running);
  1529. }
  1530. #ifdef CONFIG_SMP
  1531. /* Used instead of source_load when we know the type == 0 */
  1532. static unsigned long weighted_cpuload(const int cpu)
  1533. {
  1534. return cpu_rq(cpu)->load.weight;
  1535. }
  1536. /*
  1537. * Is this task likely cache-hot:
  1538. */
  1539. static int
  1540. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1541. {
  1542. s64 delta;
  1543. /*
  1544. * Buddy candidates are cache hot:
  1545. */
  1546. if (sched_feat(CACHE_HOT_BUDDY) &&
  1547. (&p->se == cfs_rq_of(&p->se)->next ||
  1548. &p->se == cfs_rq_of(&p->se)->last))
  1549. return 1;
  1550. if (p->sched_class != &fair_sched_class)
  1551. return 0;
  1552. if (sysctl_sched_migration_cost == -1)
  1553. return 1;
  1554. if (sysctl_sched_migration_cost == 0)
  1555. return 0;
  1556. delta = now - p->se.exec_start;
  1557. return delta < (s64)sysctl_sched_migration_cost;
  1558. }
  1559. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1560. {
  1561. int old_cpu = task_cpu(p);
  1562. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1563. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1564. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1565. u64 clock_offset;
  1566. clock_offset = old_rq->clock - new_rq->clock;
  1567. trace_sched_migrate_task(p, task_cpu(p), new_cpu);
  1568. #ifdef CONFIG_SCHEDSTATS
  1569. if (p->se.wait_start)
  1570. p->se.wait_start -= clock_offset;
  1571. if (p->se.sleep_start)
  1572. p->se.sleep_start -= clock_offset;
  1573. if (p->se.block_start)
  1574. p->se.block_start -= clock_offset;
  1575. if (old_cpu != new_cpu) {
  1576. schedstat_inc(p, se.nr_migrations);
  1577. if (task_hot(p, old_rq->clock, NULL))
  1578. schedstat_inc(p, se.nr_forced2_migrations);
  1579. }
  1580. #endif
  1581. p->se.vruntime -= old_cfsrq->min_vruntime -
  1582. new_cfsrq->min_vruntime;
  1583. __set_task_cpu(p, new_cpu);
  1584. }
  1585. struct migration_req {
  1586. struct list_head list;
  1587. struct task_struct *task;
  1588. int dest_cpu;
  1589. struct completion done;
  1590. };
  1591. /*
  1592. * The task's runqueue lock must be held.
  1593. * Returns true if you have to wait for migration thread.
  1594. */
  1595. static int
  1596. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1597. {
  1598. struct rq *rq = task_rq(p);
  1599. /*
  1600. * If the task is not on a runqueue (and not running), then
  1601. * it is sufficient to simply update the task's cpu field.
  1602. */
  1603. if (!p->se.on_rq && !task_running(rq, p)) {
  1604. set_task_cpu(p, dest_cpu);
  1605. return 0;
  1606. }
  1607. init_completion(&req->done);
  1608. req->task = p;
  1609. req->dest_cpu = dest_cpu;
  1610. list_add(&req->list, &rq->migration_queue);
  1611. return 1;
  1612. }
  1613. /*
  1614. * wait_task_inactive - wait for a thread to unschedule.
  1615. *
  1616. * If @match_state is nonzero, it's the @p->state value just checked and
  1617. * not expected to change. If it changes, i.e. @p might have woken up,
  1618. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1619. * we return a positive number (its total switch count). If a second call
  1620. * a short while later returns the same number, the caller can be sure that
  1621. * @p has remained unscheduled the whole time.
  1622. *
  1623. * The caller must ensure that the task *will* unschedule sometime soon,
  1624. * else this function might spin for a *long* time. This function can't
  1625. * be called with interrupts off, or it may introduce deadlock with
  1626. * smp_call_function() if an IPI is sent by the same process we are
  1627. * waiting to become inactive.
  1628. */
  1629. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1630. {
  1631. unsigned long flags;
  1632. int running, on_rq;
  1633. unsigned long ncsw;
  1634. struct rq *rq;
  1635. for (;;) {
  1636. /*
  1637. * We do the initial early heuristics without holding
  1638. * any task-queue locks at all. We'll only try to get
  1639. * the runqueue lock when things look like they will
  1640. * work out!
  1641. */
  1642. rq = task_rq(p);
  1643. /*
  1644. * If the task is actively running on another CPU
  1645. * still, just relax and busy-wait without holding
  1646. * any locks.
  1647. *
  1648. * NOTE! Since we don't hold any locks, it's not
  1649. * even sure that "rq" stays as the right runqueue!
  1650. * But we don't care, since "task_running()" will
  1651. * return false if the runqueue has changed and p
  1652. * is actually now running somewhere else!
  1653. */
  1654. while (task_running(rq, p)) {
  1655. if (match_state && unlikely(p->state != match_state))
  1656. return 0;
  1657. cpu_relax();
  1658. }
  1659. /*
  1660. * Ok, time to look more closely! We need the rq
  1661. * lock now, to be *sure*. If we're wrong, we'll
  1662. * just go back and repeat.
  1663. */
  1664. rq = task_rq_lock(p, &flags);
  1665. trace_sched_wait_task(rq, p);
  1666. running = task_running(rq, p);
  1667. on_rq = p->se.on_rq;
  1668. ncsw = 0;
  1669. if (!match_state || p->state == match_state)
  1670. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1671. task_rq_unlock(rq, &flags);
  1672. /*
  1673. * If it changed from the expected state, bail out now.
  1674. */
  1675. if (unlikely(!ncsw))
  1676. break;
  1677. /*
  1678. * Was it really running after all now that we
  1679. * checked with the proper locks actually held?
  1680. *
  1681. * Oops. Go back and try again..
  1682. */
  1683. if (unlikely(running)) {
  1684. cpu_relax();
  1685. continue;
  1686. }
  1687. /*
  1688. * It's not enough that it's not actively running,
  1689. * it must be off the runqueue _entirely_, and not
  1690. * preempted!
  1691. *
  1692. * So if it wa still runnable (but just not actively
  1693. * running right now), it's preempted, and we should
  1694. * yield - it could be a while.
  1695. */
  1696. if (unlikely(on_rq)) {
  1697. schedule_timeout_uninterruptible(1);
  1698. continue;
  1699. }
  1700. /*
  1701. * Ahh, all good. It wasn't running, and it wasn't
  1702. * runnable, which means that it will never become
  1703. * running in the future either. We're all done!
  1704. */
  1705. break;
  1706. }
  1707. return ncsw;
  1708. }
  1709. /***
  1710. * kick_process - kick a running thread to enter/exit the kernel
  1711. * @p: the to-be-kicked thread
  1712. *
  1713. * Cause a process which is running on another CPU to enter
  1714. * kernel-mode, without any delay. (to get signals handled.)
  1715. *
  1716. * NOTE: this function doesnt have to take the runqueue lock,
  1717. * because all it wants to ensure is that the remote task enters
  1718. * the kernel. If the IPI races and the task has been migrated
  1719. * to another CPU then no harm is done and the purpose has been
  1720. * achieved as well.
  1721. */
  1722. void kick_process(struct task_struct *p)
  1723. {
  1724. int cpu;
  1725. preempt_disable();
  1726. cpu = task_cpu(p);
  1727. if ((cpu != smp_processor_id()) && task_curr(p))
  1728. smp_send_reschedule(cpu);
  1729. preempt_enable();
  1730. }
  1731. /*
  1732. * Return a low guess at the load of a migration-source cpu weighted
  1733. * according to the scheduling class and "nice" value.
  1734. *
  1735. * We want to under-estimate the load of migration sources, to
  1736. * balance conservatively.
  1737. */
  1738. static unsigned long source_load(int cpu, int type)
  1739. {
  1740. struct rq *rq = cpu_rq(cpu);
  1741. unsigned long total = weighted_cpuload(cpu);
  1742. if (type == 0 || !sched_feat(LB_BIAS))
  1743. return total;
  1744. return min(rq->cpu_load[type-1], total);
  1745. }
  1746. /*
  1747. * Return a high guess at the load of a migration-target cpu weighted
  1748. * according to the scheduling class and "nice" value.
  1749. */
  1750. static unsigned long target_load(int cpu, int type)
  1751. {
  1752. struct rq *rq = cpu_rq(cpu);
  1753. unsigned long total = weighted_cpuload(cpu);
  1754. if (type == 0 || !sched_feat(LB_BIAS))
  1755. return total;
  1756. return max(rq->cpu_load[type-1], total);
  1757. }
  1758. /*
  1759. * find_idlest_group finds and returns the least busy CPU group within the
  1760. * domain.
  1761. */
  1762. static struct sched_group *
  1763. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1764. {
  1765. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1766. unsigned long min_load = ULONG_MAX, this_load = 0;
  1767. int load_idx = sd->forkexec_idx;
  1768. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1769. do {
  1770. unsigned long load, avg_load;
  1771. int local_group;
  1772. int i;
  1773. /* Skip over this group if it has no CPUs allowed */
  1774. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1775. continue;
  1776. local_group = cpu_isset(this_cpu, group->cpumask);
  1777. /* Tally up the load of all CPUs in the group */
  1778. avg_load = 0;
  1779. for_each_cpu_mask_nr(i, group->cpumask) {
  1780. /* Bias balancing toward cpus of our domain */
  1781. if (local_group)
  1782. load = source_load(i, load_idx);
  1783. else
  1784. load = target_load(i, load_idx);
  1785. avg_load += load;
  1786. }
  1787. /* Adjust by relative CPU power of the group */
  1788. avg_load = sg_div_cpu_power(group,
  1789. avg_load * SCHED_LOAD_SCALE);
  1790. if (local_group) {
  1791. this_load = avg_load;
  1792. this = group;
  1793. } else if (avg_load < min_load) {
  1794. min_load = avg_load;
  1795. idlest = group;
  1796. }
  1797. } while (group = group->next, group != sd->groups);
  1798. if (!idlest || 100*this_load < imbalance*min_load)
  1799. return NULL;
  1800. return idlest;
  1801. }
  1802. /*
  1803. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1804. */
  1805. static int
  1806. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1807. cpumask_t *tmp)
  1808. {
  1809. unsigned long load, min_load = ULONG_MAX;
  1810. int idlest = -1;
  1811. int i;
  1812. /* Traverse only the allowed CPUs */
  1813. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1814. for_each_cpu_mask_nr(i, *tmp) {
  1815. load = weighted_cpuload(i);
  1816. if (load < min_load || (load == min_load && i == this_cpu)) {
  1817. min_load = load;
  1818. idlest = i;
  1819. }
  1820. }
  1821. return idlest;
  1822. }
  1823. /*
  1824. * sched_balance_self: balance the current task (running on cpu) in domains
  1825. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1826. * SD_BALANCE_EXEC.
  1827. *
  1828. * Balance, ie. select the least loaded group.
  1829. *
  1830. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1831. *
  1832. * preempt must be disabled.
  1833. */
  1834. static int sched_balance_self(int cpu, int flag)
  1835. {
  1836. struct task_struct *t = current;
  1837. struct sched_domain *tmp, *sd = NULL;
  1838. for_each_domain(cpu, tmp) {
  1839. /*
  1840. * If power savings logic is enabled for a domain, stop there.
  1841. */
  1842. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1843. break;
  1844. if (tmp->flags & flag)
  1845. sd = tmp;
  1846. }
  1847. if (sd)
  1848. update_shares(sd);
  1849. while (sd) {
  1850. cpumask_t span, tmpmask;
  1851. struct sched_group *group;
  1852. int new_cpu, weight;
  1853. if (!(sd->flags & flag)) {
  1854. sd = sd->child;
  1855. continue;
  1856. }
  1857. span = sd->span;
  1858. group = find_idlest_group(sd, t, cpu);
  1859. if (!group) {
  1860. sd = sd->child;
  1861. continue;
  1862. }
  1863. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1864. if (new_cpu == -1 || new_cpu == cpu) {
  1865. /* Now try balancing at a lower domain level of cpu */
  1866. sd = sd->child;
  1867. continue;
  1868. }
  1869. /* Now try balancing at a lower domain level of new_cpu */
  1870. cpu = new_cpu;
  1871. sd = NULL;
  1872. weight = cpus_weight(span);
  1873. for_each_domain(cpu, tmp) {
  1874. if (weight <= cpus_weight(tmp->span))
  1875. break;
  1876. if (tmp->flags & flag)
  1877. sd = tmp;
  1878. }
  1879. /* while loop will break here if sd == NULL */
  1880. }
  1881. return cpu;
  1882. }
  1883. #endif /* CONFIG_SMP */
  1884. /***
  1885. * try_to_wake_up - wake up a thread
  1886. * @p: the to-be-woken-up thread
  1887. * @state: the mask of task states that can be woken
  1888. * @sync: do a synchronous wakeup?
  1889. *
  1890. * Put it on the run-queue if it's not already there. The "current"
  1891. * thread is always on the run-queue (except when the actual
  1892. * re-schedule is in progress), and as such you're allowed to do
  1893. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1894. * runnable without the overhead of this.
  1895. *
  1896. * returns failure only if the task is already active.
  1897. */
  1898. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1899. {
  1900. int cpu, orig_cpu, this_cpu, success = 0;
  1901. unsigned long flags;
  1902. long old_state;
  1903. struct rq *rq;
  1904. if (!sched_feat(SYNC_WAKEUPS))
  1905. sync = 0;
  1906. #ifdef CONFIG_SMP
  1907. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1908. struct sched_domain *sd;
  1909. this_cpu = raw_smp_processor_id();
  1910. cpu = task_cpu(p);
  1911. for_each_domain(this_cpu, sd) {
  1912. if (cpu_isset(cpu, sd->span)) {
  1913. update_shares(sd);
  1914. break;
  1915. }
  1916. }
  1917. }
  1918. #endif
  1919. smp_wmb();
  1920. rq = task_rq_lock(p, &flags);
  1921. update_rq_clock(rq);
  1922. old_state = p->state;
  1923. if (!(old_state & state))
  1924. goto out;
  1925. if (p->se.on_rq)
  1926. goto out_running;
  1927. cpu = task_cpu(p);
  1928. orig_cpu = cpu;
  1929. this_cpu = smp_processor_id();
  1930. #ifdef CONFIG_SMP
  1931. if (unlikely(task_running(rq, p)))
  1932. goto out_activate;
  1933. cpu = p->sched_class->select_task_rq(p, sync);
  1934. if (cpu != orig_cpu) {
  1935. set_task_cpu(p, cpu);
  1936. task_rq_unlock(rq, &flags);
  1937. /* might preempt at this point */
  1938. rq = task_rq_lock(p, &flags);
  1939. old_state = p->state;
  1940. if (!(old_state & state))
  1941. goto out;
  1942. if (p->se.on_rq)
  1943. goto out_running;
  1944. this_cpu = smp_processor_id();
  1945. cpu = task_cpu(p);
  1946. }
  1947. #ifdef CONFIG_SCHEDSTATS
  1948. schedstat_inc(rq, ttwu_count);
  1949. if (cpu == this_cpu)
  1950. schedstat_inc(rq, ttwu_local);
  1951. else {
  1952. struct sched_domain *sd;
  1953. for_each_domain(this_cpu, sd) {
  1954. if (cpu_isset(cpu, sd->span)) {
  1955. schedstat_inc(sd, ttwu_wake_remote);
  1956. break;
  1957. }
  1958. }
  1959. }
  1960. #endif /* CONFIG_SCHEDSTATS */
  1961. out_activate:
  1962. #endif /* CONFIG_SMP */
  1963. schedstat_inc(p, se.nr_wakeups);
  1964. if (sync)
  1965. schedstat_inc(p, se.nr_wakeups_sync);
  1966. if (orig_cpu != cpu)
  1967. schedstat_inc(p, se.nr_wakeups_migrate);
  1968. if (cpu == this_cpu)
  1969. schedstat_inc(p, se.nr_wakeups_local);
  1970. else
  1971. schedstat_inc(p, se.nr_wakeups_remote);
  1972. activate_task(rq, p, 1);
  1973. success = 1;
  1974. out_running:
  1975. trace_sched_wakeup(rq, p, success);
  1976. check_preempt_curr(rq, p, sync);
  1977. p->state = TASK_RUNNING;
  1978. #ifdef CONFIG_SMP
  1979. if (p->sched_class->task_wake_up)
  1980. p->sched_class->task_wake_up(rq, p);
  1981. #endif
  1982. out:
  1983. current->se.last_wakeup = current->se.sum_exec_runtime;
  1984. task_rq_unlock(rq, &flags);
  1985. return success;
  1986. }
  1987. int wake_up_process(struct task_struct *p)
  1988. {
  1989. return try_to_wake_up(p, TASK_ALL, 0);
  1990. }
  1991. EXPORT_SYMBOL(wake_up_process);
  1992. int wake_up_state(struct task_struct *p, unsigned int state)
  1993. {
  1994. return try_to_wake_up(p, state, 0);
  1995. }
  1996. /*
  1997. * Perform scheduler related setup for a newly forked process p.
  1998. * p is forked by current.
  1999. *
  2000. * __sched_fork() is basic setup used by init_idle() too:
  2001. */
  2002. static void __sched_fork(struct task_struct *p)
  2003. {
  2004. p->se.exec_start = 0;
  2005. p->se.sum_exec_runtime = 0;
  2006. p->se.prev_sum_exec_runtime = 0;
  2007. p->se.last_wakeup = 0;
  2008. p->se.avg_overlap = 0;
  2009. #ifdef CONFIG_SCHEDSTATS
  2010. p->se.wait_start = 0;
  2011. p->se.sum_sleep_runtime = 0;
  2012. p->se.sleep_start = 0;
  2013. p->se.block_start = 0;
  2014. p->se.sleep_max = 0;
  2015. p->se.block_max = 0;
  2016. p->se.exec_max = 0;
  2017. p->se.slice_max = 0;
  2018. p->se.wait_max = 0;
  2019. #endif
  2020. INIT_LIST_HEAD(&p->rt.run_list);
  2021. p->se.on_rq = 0;
  2022. INIT_LIST_HEAD(&p->se.group_node);
  2023. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2024. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2025. #endif
  2026. /*
  2027. * We mark the process as running here, but have not actually
  2028. * inserted it onto the runqueue yet. This guarantees that
  2029. * nobody will actually run it, and a signal or other external
  2030. * event cannot wake it up and insert it on the runqueue either.
  2031. */
  2032. p->state = TASK_RUNNING;
  2033. }
  2034. /*
  2035. * fork()/clone()-time setup:
  2036. */
  2037. void sched_fork(struct task_struct *p, int clone_flags)
  2038. {
  2039. int cpu = get_cpu();
  2040. __sched_fork(p);
  2041. #ifdef CONFIG_SMP
  2042. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2043. #endif
  2044. set_task_cpu(p, cpu);
  2045. /*
  2046. * Make sure we do not leak PI boosting priority to the child:
  2047. */
  2048. p->prio = current->normal_prio;
  2049. if (!rt_prio(p->prio))
  2050. p->sched_class = &fair_sched_class;
  2051. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2052. if (likely(sched_info_on()))
  2053. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2054. #endif
  2055. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2056. p->oncpu = 0;
  2057. #endif
  2058. #ifdef CONFIG_PREEMPT
  2059. /* Want to start with kernel preemption disabled. */
  2060. task_thread_info(p)->preempt_count = 1;
  2061. #endif
  2062. put_cpu();
  2063. }
  2064. /*
  2065. * wake_up_new_task - wake up a newly created task for the first time.
  2066. *
  2067. * This function will do some initial scheduler statistics housekeeping
  2068. * that must be done for every newly created context, then puts the task
  2069. * on the runqueue and wakes it.
  2070. */
  2071. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2072. {
  2073. unsigned long flags;
  2074. struct rq *rq;
  2075. rq = task_rq_lock(p, &flags);
  2076. BUG_ON(p->state != TASK_RUNNING);
  2077. update_rq_clock(rq);
  2078. p->prio = effective_prio(p);
  2079. if (!p->sched_class->task_new || !current->se.on_rq) {
  2080. activate_task(rq, p, 0);
  2081. } else {
  2082. /*
  2083. * Let the scheduling class do new task startup
  2084. * management (if any):
  2085. */
  2086. p->sched_class->task_new(rq, p);
  2087. inc_nr_running(rq);
  2088. }
  2089. trace_sched_wakeup_new(rq, p, 1);
  2090. check_preempt_curr(rq, p, 0);
  2091. #ifdef CONFIG_SMP
  2092. if (p->sched_class->task_wake_up)
  2093. p->sched_class->task_wake_up(rq, p);
  2094. #endif
  2095. task_rq_unlock(rq, &flags);
  2096. }
  2097. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2098. /**
  2099. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2100. * @notifier: notifier struct to register
  2101. */
  2102. void preempt_notifier_register(struct preempt_notifier *notifier)
  2103. {
  2104. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2105. }
  2106. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2107. /**
  2108. * preempt_notifier_unregister - no longer interested in preemption notifications
  2109. * @notifier: notifier struct to unregister
  2110. *
  2111. * This is safe to call from within a preemption notifier.
  2112. */
  2113. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2114. {
  2115. hlist_del(&notifier->link);
  2116. }
  2117. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2118. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2119. {
  2120. struct preempt_notifier *notifier;
  2121. struct hlist_node *node;
  2122. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2123. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2124. }
  2125. static void
  2126. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2127. struct task_struct *next)
  2128. {
  2129. struct preempt_notifier *notifier;
  2130. struct hlist_node *node;
  2131. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2132. notifier->ops->sched_out(notifier, next);
  2133. }
  2134. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2135. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2136. {
  2137. }
  2138. static void
  2139. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2140. struct task_struct *next)
  2141. {
  2142. }
  2143. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2144. /**
  2145. * prepare_task_switch - prepare to switch tasks
  2146. * @rq: the runqueue preparing to switch
  2147. * @prev: the current task that is being switched out
  2148. * @next: the task we are going to switch to.
  2149. *
  2150. * This is called with the rq lock held and interrupts off. It must
  2151. * be paired with a subsequent finish_task_switch after the context
  2152. * switch.
  2153. *
  2154. * prepare_task_switch sets up locking and calls architecture specific
  2155. * hooks.
  2156. */
  2157. static inline void
  2158. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2159. struct task_struct *next)
  2160. {
  2161. fire_sched_out_preempt_notifiers(prev, next);
  2162. prepare_lock_switch(rq, next);
  2163. prepare_arch_switch(next);
  2164. }
  2165. /**
  2166. * finish_task_switch - clean up after a task-switch
  2167. * @rq: runqueue associated with task-switch
  2168. * @prev: the thread we just switched away from.
  2169. *
  2170. * finish_task_switch must be called after the context switch, paired
  2171. * with a prepare_task_switch call before the context switch.
  2172. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2173. * and do any other architecture-specific cleanup actions.
  2174. *
  2175. * Note that we may have delayed dropping an mm in context_switch(). If
  2176. * so, we finish that here outside of the runqueue lock. (Doing it
  2177. * with the lock held can cause deadlocks; see schedule() for
  2178. * details.)
  2179. */
  2180. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2181. __releases(rq->lock)
  2182. {
  2183. struct mm_struct *mm = rq->prev_mm;
  2184. long prev_state;
  2185. rq->prev_mm = NULL;
  2186. /*
  2187. * A task struct has one reference for the use as "current".
  2188. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2189. * schedule one last time. The schedule call will never return, and
  2190. * the scheduled task must drop that reference.
  2191. * The test for TASK_DEAD must occur while the runqueue locks are
  2192. * still held, otherwise prev could be scheduled on another cpu, die
  2193. * there before we look at prev->state, and then the reference would
  2194. * be dropped twice.
  2195. * Manfred Spraul <manfred@colorfullife.com>
  2196. */
  2197. prev_state = prev->state;
  2198. finish_arch_switch(prev);
  2199. finish_lock_switch(rq, prev);
  2200. #ifdef CONFIG_SMP
  2201. if (current->sched_class->post_schedule)
  2202. current->sched_class->post_schedule(rq);
  2203. #endif
  2204. fire_sched_in_preempt_notifiers(current);
  2205. if (mm)
  2206. mmdrop(mm);
  2207. if (unlikely(prev_state == TASK_DEAD)) {
  2208. /*
  2209. * Remove function-return probe instances associated with this
  2210. * task and put them back on the free list.
  2211. */
  2212. kprobe_flush_task(prev);
  2213. put_task_struct(prev);
  2214. }
  2215. }
  2216. /**
  2217. * schedule_tail - first thing a freshly forked thread must call.
  2218. * @prev: the thread we just switched away from.
  2219. */
  2220. asmlinkage void schedule_tail(struct task_struct *prev)
  2221. __releases(rq->lock)
  2222. {
  2223. struct rq *rq = this_rq();
  2224. finish_task_switch(rq, prev);
  2225. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2226. /* In this case, finish_task_switch does not reenable preemption */
  2227. preempt_enable();
  2228. #endif
  2229. if (current->set_child_tid)
  2230. put_user(task_pid_vnr(current), current->set_child_tid);
  2231. }
  2232. /*
  2233. * context_switch - switch to the new MM and the new
  2234. * thread's register state.
  2235. */
  2236. static inline void
  2237. context_switch(struct rq *rq, struct task_struct *prev,
  2238. struct task_struct *next)
  2239. {
  2240. struct mm_struct *mm, *oldmm;
  2241. prepare_task_switch(rq, prev, next);
  2242. trace_sched_switch(rq, prev, next);
  2243. mm = next->mm;
  2244. oldmm = prev->active_mm;
  2245. /*
  2246. * For paravirt, this is coupled with an exit in switch_to to
  2247. * combine the page table reload and the switch backend into
  2248. * one hypercall.
  2249. */
  2250. arch_enter_lazy_cpu_mode();
  2251. if (unlikely(!mm)) {
  2252. next->active_mm = oldmm;
  2253. atomic_inc(&oldmm->mm_count);
  2254. enter_lazy_tlb(oldmm, next);
  2255. } else
  2256. switch_mm(oldmm, mm, next);
  2257. if (unlikely(!prev->mm)) {
  2258. prev->active_mm = NULL;
  2259. rq->prev_mm = oldmm;
  2260. }
  2261. /*
  2262. * Since the runqueue lock will be released by the next
  2263. * task (which is an invalid locking op but in the case
  2264. * of the scheduler it's an obvious special-case), so we
  2265. * do an early lockdep release here:
  2266. */
  2267. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2268. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2269. #endif
  2270. /* Here we just switch the register state and the stack. */
  2271. switch_to(prev, next, prev);
  2272. barrier();
  2273. /*
  2274. * this_rq must be evaluated again because prev may have moved
  2275. * CPUs since it called schedule(), thus the 'rq' on its stack
  2276. * frame will be invalid.
  2277. */
  2278. finish_task_switch(this_rq(), prev);
  2279. }
  2280. /*
  2281. * nr_running, nr_uninterruptible and nr_context_switches:
  2282. *
  2283. * externally visible scheduler statistics: current number of runnable
  2284. * threads, current number of uninterruptible-sleeping threads, total
  2285. * number of context switches performed since bootup.
  2286. */
  2287. unsigned long nr_running(void)
  2288. {
  2289. unsigned long i, sum = 0;
  2290. for_each_online_cpu(i)
  2291. sum += cpu_rq(i)->nr_running;
  2292. return sum;
  2293. }
  2294. unsigned long nr_uninterruptible(void)
  2295. {
  2296. unsigned long i, sum = 0;
  2297. for_each_possible_cpu(i)
  2298. sum += cpu_rq(i)->nr_uninterruptible;
  2299. /*
  2300. * Since we read the counters lockless, it might be slightly
  2301. * inaccurate. Do not allow it to go below zero though:
  2302. */
  2303. if (unlikely((long)sum < 0))
  2304. sum = 0;
  2305. return sum;
  2306. }
  2307. unsigned long long nr_context_switches(void)
  2308. {
  2309. int i;
  2310. unsigned long long sum = 0;
  2311. for_each_possible_cpu(i)
  2312. sum += cpu_rq(i)->nr_switches;
  2313. return sum;
  2314. }
  2315. unsigned long nr_iowait(void)
  2316. {
  2317. unsigned long i, sum = 0;
  2318. for_each_possible_cpu(i)
  2319. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2320. return sum;
  2321. }
  2322. unsigned long nr_active(void)
  2323. {
  2324. unsigned long i, running = 0, uninterruptible = 0;
  2325. for_each_online_cpu(i) {
  2326. running += cpu_rq(i)->nr_running;
  2327. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2328. }
  2329. if (unlikely((long)uninterruptible < 0))
  2330. uninterruptible = 0;
  2331. return running + uninterruptible;
  2332. }
  2333. /*
  2334. * Update rq->cpu_load[] statistics. This function is usually called every
  2335. * scheduler tick (TICK_NSEC).
  2336. */
  2337. static void update_cpu_load(struct rq *this_rq)
  2338. {
  2339. unsigned long this_load = this_rq->load.weight;
  2340. int i, scale;
  2341. this_rq->nr_load_updates++;
  2342. /* Update our load: */
  2343. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2344. unsigned long old_load, new_load;
  2345. /* scale is effectively 1 << i now, and >> i divides by scale */
  2346. old_load = this_rq->cpu_load[i];
  2347. new_load = this_load;
  2348. /*
  2349. * Round up the averaging division if load is increasing. This
  2350. * prevents us from getting stuck on 9 if the load is 10, for
  2351. * example.
  2352. */
  2353. if (new_load > old_load)
  2354. new_load += scale-1;
  2355. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2356. }
  2357. }
  2358. #ifdef CONFIG_SMP
  2359. /*
  2360. * double_rq_lock - safely lock two runqueues
  2361. *
  2362. * Note this does not disable interrupts like task_rq_lock,
  2363. * you need to do so manually before calling.
  2364. */
  2365. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2366. __acquires(rq1->lock)
  2367. __acquires(rq2->lock)
  2368. {
  2369. BUG_ON(!irqs_disabled());
  2370. if (rq1 == rq2) {
  2371. spin_lock(&rq1->lock);
  2372. __acquire(rq2->lock); /* Fake it out ;) */
  2373. } else {
  2374. if (rq1 < rq2) {
  2375. spin_lock(&rq1->lock);
  2376. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2377. } else {
  2378. spin_lock(&rq2->lock);
  2379. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2380. }
  2381. }
  2382. update_rq_clock(rq1);
  2383. update_rq_clock(rq2);
  2384. }
  2385. /*
  2386. * double_rq_unlock - safely unlock two runqueues
  2387. *
  2388. * Note this does not restore interrupts like task_rq_unlock,
  2389. * you need to do so manually after calling.
  2390. */
  2391. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2392. __releases(rq1->lock)
  2393. __releases(rq2->lock)
  2394. {
  2395. spin_unlock(&rq1->lock);
  2396. if (rq1 != rq2)
  2397. spin_unlock(&rq2->lock);
  2398. else
  2399. __release(rq2->lock);
  2400. }
  2401. /*
  2402. * If dest_cpu is allowed for this process, migrate the task to it.
  2403. * This is accomplished by forcing the cpu_allowed mask to only
  2404. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2405. * the cpu_allowed mask is restored.
  2406. */
  2407. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2408. {
  2409. struct migration_req req;
  2410. unsigned long flags;
  2411. struct rq *rq;
  2412. rq = task_rq_lock(p, &flags);
  2413. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2414. || unlikely(!cpu_active(dest_cpu)))
  2415. goto out;
  2416. /* force the process onto the specified CPU */
  2417. if (migrate_task(p, dest_cpu, &req)) {
  2418. /* Need to wait for migration thread (might exit: take ref). */
  2419. struct task_struct *mt = rq->migration_thread;
  2420. get_task_struct(mt);
  2421. task_rq_unlock(rq, &flags);
  2422. wake_up_process(mt);
  2423. put_task_struct(mt);
  2424. wait_for_completion(&req.done);
  2425. return;
  2426. }
  2427. out:
  2428. task_rq_unlock(rq, &flags);
  2429. }
  2430. /*
  2431. * sched_exec - execve() is a valuable balancing opportunity, because at
  2432. * this point the task has the smallest effective memory and cache footprint.
  2433. */
  2434. void sched_exec(void)
  2435. {
  2436. int new_cpu, this_cpu = get_cpu();
  2437. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2438. put_cpu();
  2439. if (new_cpu != this_cpu)
  2440. sched_migrate_task(current, new_cpu);
  2441. }
  2442. /*
  2443. * pull_task - move a task from a remote runqueue to the local runqueue.
  2444. * Both runqueues must be locked.
  2445. */
  2446. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2447. struct rq *this_rq, int this_cpu)
  2448. {
  2449. deactivate_task(src_rq, p, 0);
  2450. set_task_cpu(p, this_cpu);
  2451. activate_task(this_rq, p, 0);
  2452. /*
  2453. * Note that idle threads have a prio of MAX_PRIO, for this test
  2454. * to be always true for them.
  2455. */
  2456. check_preempt_curr(this_rq, p, 0);
  2457. }
  2458. /*
  2459. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2460. */
  2461. static
  2462. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2463. struct sched_domain *sd, enum cpu_idle_type idle,
  2464. int *all_pinned)
  2465. {
  2466. /*
  2467. * We do not migrate tasks that are:
  2468. * 1) running (obviously), or
  2469. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2470. * 3) are cache-hot on their current CPU.
  2471. */
  2472. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2473. schedstat_inc(p, se.nr_failed_migrations_affine);
  2474. return 0;
  2475. }
  2476. *all_pinned = 0;
  2477. if (task_running(rq, p)) {
  2478. schedstat_inc(p, se.nr_failed_migrations_running);
  2479. return 0;
  2480. }
  2481. /*
  2482. * Aggressive migration if:
  2483. * 1) task is cache cold, or
  2484. * 2) too many balance attempts have failed.
  2485. */
  2486. if (!task_hot(p, rq->clock, sd) ||
  2487. sd->nr_balance_failed > sd->cache_nice_tries) {
  2488. #ifdef CONFIG_SCHEDSTATS
  2489. if (task_hot(p, rq->clock, sd)) {
  2490. schedstat_inc(sd, lb_hot_gained[idle]);
  2491. schedstat_inc(p, se.nr_forced_migrations);
  2492. }
  2493. #endif
  2494. return 1;
  2495. }
  2496. if (task_hot(p, rq->clock, sd)) {
  2497. schedstat_inc(p, se.nr_failed_migrations_hot);
  2498. return 0;
  2499. }
  2500. return 1;
  2501. }
  2502. static unsigned long
  2503. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2504. unsigned long max_load_move, struct sched_domain *sd,
  2505. enum cpu_idle_type idle, int *all_pinned,
  2506. int *this_best_prio, struct rq_iterator *iterator)
  2507. {
  2508. int loops = 0, pulled = 0, pinned = 0;
  2509. struct task_struct *p;
  2510. long rem_load_move = max_load_move;
  2511. if (max_load_move == 0)
  2512. goto out;
  2513. pinned = 1;
  2514. /*
  2515. * Start the load-balancing iterator:
  2516. */
  2517. p = iterator->start(iterator->arg);
  2518. next:
  2519. if (!p || loops++ > sysctl_sched_nr_migrate)
  2520. goto out;
  2521. if ((p->se.load.weight >> 1) > rem_load_move ||
  2522. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2523. p = iterator->next(iterator->arg);
  2524. goto next;
  2525. }
  2526. pull_task(busiest, p, this_rq, this_cpu);
  2527. pulled++;
  2528. rem_load_move -= p->se.load.weight;
  2529. /*
  2530. * We only want to steal up to the prescribed amount of weighted load.
  2531. */
  2532. if (rem_load_move > 0) {
  2533. if (p->prio < *this_best_prio)
  2534. *this_best_prio = p->prio;
  2535. p = iterator->next(iterator->arg);
  2536. goto next;
  2537. }
  2538. out:
  2539. /*
  2540. * Right now, this is one of only two places pull_task() is called,
  2541. * so we can safely collect pull_task() stats here rather than
  2542. * inside pull_task().
  2543. */
  2544. schedstat_add(sd, lb_gained[idle], pulled);
  2545. if (all_pinned)
  2546. *all_pinned = pinned;
  2547. return max_load_move - rem_load_move;
  2548. }
  2549. /*
  2550. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2551. * this_rq, as part of a balancing operation within domain "sd".
  2552. * Returns 1 if successful and 0 otherwise.
  2553. *
  2554. * Called with both runqueues locked.
  2555. */
  2556. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2557. unsigned long max_load_move,
  2558. struct sched_domain *sd, enum cpu_idle_type idle,
  2559. int *all_pinned)
  2560. {
  2561. const struct sched_class *class = sched_class_highest;
  2562. unsigned long total_load_moved = 0;
  2563. int this_best_prio = this_rq->curr->prio;
  2564. do {
  2565. total_load_moved +=
  2566. class->load_balance(this_rq, this_cpu, busiest,
  2567. max_load_move - total_load_moved,
  2568. sd, idle, all_pinned, &this_best_prio);
  2569. class = class->next;
  2570. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2571. break;
  2572. } while (class && max_load_move > total_load_moved);
  2573. return total_load_moved > 0;
  2574. }
  2575. static int
  2576. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2577. struct sched_domain *sd, enum cpu_idle_type idle,
  2578. struct rq_iterator *iterator)
  2579. {
  2580. struct task_struct *p = iterator->start(iterator->arg);
  2581. int pinned = 0;
  2582. while (p) {
  2583. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2584. pull_task(busiest, p, this_rq, this_cpu);
  2585. /*
  2586. * Right now, this is only the second place pull_task()
  2587. * is called, so we can safely collect pull_task()
  2588. * stats here rather than inside pull_task().
  2589. */
  2590. schedstat_inc(sd, lb_gained[idle]);
  2591. return 1;
  2592. }
  2593. p = iterator->next(iterator->arg);
  2594. }
  2595. return 0;
  2596. }
  2597. /*
  2598. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2599. * part of active balancing operations within "domain".
  2600. * Returns 1 if successful and 0 otherwise.
  2601. *
  2602. * Called with both runqueues locked.
  2603. */
  2604. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2605. struct sched_domain *sd, enum cpu_idle_type idle)
  2606. {
  2607. const struct sched_class *class;
  2608. for (class = sched_class_highest; class; class = class->next)
  2609. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2610. return 1;
  2611. return 0;
  2612. }
  2613. /*
  2614. * find_busiest_group finds and returns the busiest CPU group within the
  2615. * domain. It calculates and returns the amount of weighted load which
  2616. * should be moved to restore balance via the imbalance parameter.
  2617. */
  2618. static struct sched_group *
  2619. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2620. unsigned long *imbalance, enum cpu_idle_type idle,
  2621. int *sd_idle, const cpumask_t *cpus, int *balance)
  2622. {
  2623. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2624. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2625. unsigned long max_pull;
  2626. unsigned long busiest_load_per_task, busiest_nr_running;
  2627. unsigned long this_load_per_task, this_nr_running;
  2628. int load_idx, group_imb = 0;
  2629. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2630. int power_savings_balance = 1;
  2631. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2632. unsigned long min_nr_running = ULONG_MAX;
  2633. struct sched_group *group_min = NULL, *group_leader = NULL;
  2634. #endif
  2635. max_load = this_load = total_load = total_pwr = 0;
  2636. busiest_load_per_task = busiest_nr_running = 0;
  2637. this_load_per_task = this_nr_running = 0;
  2638. if (idle == CPU_NOT_IDLE)
  2639. load_idx = sd->busy_idx;
  2640. else if (idle == CPU_NEWLY_IDLE)
  2641. load_idx = sd->newidle_idx;
  2642. else
  2643. load_idx = sd->idle_idx;
  2644. do {
  2645. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2646. int local_group;
  2647. int i;
  2648. int __group_imb = 0;
  2649. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2650. unsigned long sum_nr_running, sum_weighted_load;
  2651. unsigned long sum_avg_load_per_task;
  2652. unsigned long avg_load_per_task;
  2653. local_group = cpu_isset(this_cpu, group->cpumask);
  2654. if (local_group)
  2655. balance_cpu = first_cpu(group->cpumask);
  2656. /* Tally up the load of all CPUs in the group */
  2657. sum_weighted_load = sum_nr_running = avg_load = 0;
  2658. sum_avg_load_per_task = avg_load_per_task = 0;
  2659. max_cpu_load = 0;
  2660. min_cpu_load = ~0UL;
  2661. for_each_cpu_mask_nr(i, group->cpumask) {
  2662. struct rq *rq;
  2663. if (!cpu_isset(i, *cpus))
  2664. continue;
  2665. rq = cpu_rq(i);
  2666. if (*sd_idle && rq->nr_running)
  2667. *sd_idle = 0;
  2668. /* Bias balancing toward cpus of our domain */
  2669. if (local_group) {
  2670. if (idle_cpu(i) && !first_idle_cpu) {
  2671. first_idle_cpu = 1;
  2672. balance_cpu = i;
  2673. }
  2674. load = target_load(i, load_idx);
  2675. } else {
  2676. load = source_load(i, load_idx);
  2677. if (load > max_cpu_load)
  2678. max_cpu_load = load;
  2679. if (min_cpu_load > load)
  2680. min_cpu_load = load;
  2681. }
  2682. avg_load += load;
  2683. sum_nr_running += rq->nr_running;
  2684. sum_weighted_load += weighted_cpuload(i);
  2685. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2686. }
  2687. /*
  2688. * First idle cpu or the first cpu(busiest) in this sched group
  2689. * is eligible for doing load balancing at this and above
  2690. * domains. In the newly idle case, we will allow all the cpu's
  2691. * to do the newly idle load balance.
  2692. */
  2693. if (idle != CPU_NEWLY_IDLE && local_group &&
  2694. balance_cpu != this_cpu && balance) {
  2695. *balance = 0;
  2696. goto ret;
  2697. }
  2698. total_load += avg_load;
  2699. total_pwr += group->__cpu_power;
  2700. /* Adjust by relative CPU power of the group */
  2701. avg_load = sg_div_cpu_power(group,
  2702. avg_load * SCHED_LOAD_SCALE);
  2703. /*
  2704. * Consider the group unbalanced when the imbalance is larger
  2705. * than the average weight of two tasks.
  2706. *
  2707. * APZ: with cgroup the avg task weight can vary wildly and
  2708. * might not be a suitable number - should we keep a
  2709. * normalized nr_running number somewhere that negates
  2710. * the hierarchy?
  2711. */
  2712. avg_load_per_task = sg_div_cpu_power(group,
  2713. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2714. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2715. __group_imb = 1;
  2716. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2717. if (local_group) {
  2718. this_load = avg_load;
  2719. this = group;
  2720. this_nr_running = sum_nr_running;
  2721. this_load_per_task = sum_weighted_load;
  2722. } else if (avg_load > max_load &&
  2723. (sum_nr_running > group_capacity || __group_imb)) {
  2724. max_load = avg_load;
  2725. busiest = group;
  2726. busiest_nr_running = sum_nr_running;
  2727. busiest_load_per_task = sum_weighted_load;
  2728. group_imb = __group_imb;
  2729. }
  2730. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2731. /*
  2732. * Busy processors will not participate in power savings
  2733. * balance.
  2734. */
  2735. if (idle == CPU_NOT_IDLE ||
  2736. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2737. goto group_next;
  2738. /*
  2739. * If the local group is idle or completely loaded
  2740. * no need to do power savings balance at this domain
  2741. */
  2742. if (local_group && (this_nr_running >= group_capacity ||
  2743. !this_nr_running))
  2744. power_savings_balance = 0;
  2745. /*
  2746. * If a group is already running at full capacity or idle,
  2747. * don't include that group in power savings calculations
  2748. */
  2749. if (!power_savings_balance || sum_nr_running >= group_capacity
  2750. || !sum_nr_running)
  2751. goto group_next;
  2752. /*
  2753. * Calculate the group which has the least non-idle load.
  2754. * This is the group from where we need to pick up the load
  2755. * for saving power
  2756. */
  2757. if ((sum_nr_running < min_nr_running) ||
  2758. (sum_nr_running == min_nr_running &&
  2759. first_cpu(group->cpumask) <
  2760. first_cpu(group_min->cpumask))) {
  2761. group_min = group;
  2762. min_nr_running = sum_nr_running;
  2763. min_load_per_task = sum_weighted_load /
  2764. sum_nr_running;
  2765. }
  2766. /*
  2767. * Calculate the group which is almost near its
  2768. * capacity but still has some space to pick up some load
  2769. * from other group and save more power
  2770. */
  2771. if (sum_nr_running <= group_capacity - 1) {
  2772. if (sum_nr_running > leader_nr_running ||
  2773. (sum_nr_running == leader_nr_running &&
  2774. first_cpu(group->cpumask) >
  2775. first_cpu(group_leader->cpumask))) {
  2776. group_leader = group;
  2777. leader_nr_running = sum_nr_running;
  2778. }
  2779. }
  2780. group_next:
  2781. #endif
  2782. group = group->next;
  2783. } while (group != sd->groups);
  2784. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2785. goto out_balanced;
  2786. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2787. if (this_load >= avg_load ||
  2788. 100*max_load <= sd->imbalance_pct*this_load)
  2789. goto out_balanced;
  2790. busiest_load_per_task /= busiest_nr_running;
  2791. if (group_imb)
  2792. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2793. /*
  2794. * We're trying to get all the cpus to the average_load, so we don't
  2795. * want to push ourselves above the average load, nor do we wish to
  2796. * reduce the max loaded cpu below the average load, as either of these
  2797. * actions would just result in more rebalancing later, and ping-pong
  2798. * tasks around. Thus we look for the minimum possible imbalance.
  2799. * Negative imbalances (*we* are more loaded than anyone else) will
  2800. * be counted as no imbalance for these purposes -- we can't fix that
  2801. * by pulling tasks to us. Be careful of negative numbers as they'll
  2802. * appear as very large values with unsigned longs.
  2803. */
  2804. if (max_load <= busiest_load_per_task)
  2805. goto out_balanced;
  2806. /*
  2807. * In the presence of smp nice balancing, certain scenarios can have
  2808. * max load less than avg load(as we skip the groups at or below
  2809. * its cpu_power, while calculating max_load..)
  2810. */
  2811. if (max_load < avg_load) {
  2812. *imbalance = 0;
  2813. goto small_imbalance;
  2814. }
  2815. /* Don't want to pull so many tasks that a group would go idle */
  2816. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2817. /* How much load to actually move to equalise the imbalance */
  2818. *imbalance = min(max_pull * busiest->__cpu_power,
  2819. (avg_load - this_load) * this->__cpu_power)
  2820. / SCHED_LOAD_SCALE;
  2821. /*
  2822. * if *imbalance is less than the average load per runnable task
  2823. * there is no gaurantee that any tasks will be moved so we'll have
  2824. * a think about bumping its value to force at least one task to be
  2825. * moved
  2826. */
  2827. if (*imbalance < busiest_load_per_task) {
  2828. unsigned long tmp, pwr_now, pwr_move;
  2829. unsigned int imbn;
  2830. small_imbalance:
  2831. pwr_move = pwr_now = 0;
  2832. imbn = 2;
  2833. if (this_nr_running) {
  2834. this_load_per_task /= this_nr_running;
  2835. if (busiest_load_per_task > this_load_per_task)
  2836. imbn = 1;
  2837. } else
  2838. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2839. if (max_load - this_load + busiest_load_per_task >=
  2840. busiest_load_per_task * imbn) {
  2841. *imbalance = busiest_load_per_task;
  2842. return busiest;
  2843. }
  2844. /*
  2845. * OK, we don't have enough imbalance to justify moving tasks,
  2846. * however we may be able to increase total CPU power used by
  2847. * moving them.
  2848. */
  2849. pwr_now += busiest->__cpu_power *
  2850. min(busiest_load_per_task, max_load);
  2851. pwr_now += this->__cpu_power *
  2852. min(this_load_per_task, this_load);
  2853. pwr_now /= SCHED_LOAD_SCALE;
  2854. /* Amount of load we'd subtract */
  2855. tmp = sg_div_cpu_power(busiest,
  2856. busiest_load_per_task * SCHED_LOAD_SCALE);
  2857. if (max_load > tmp)
  2858. pwr_move += busiest->__cpu_power *
  2859. min(busiest_load_per_task, max_load - tmp);
  2860. /* Amount of load we'd add */
  2861. if (max_load * busiest->__cpu_power <
  2862. busiest_load_per_task * SCHED_LOAD_SCALE)
  2863. tmp = sg_div_cpu_power(this,
  2864. max_load * busiest->__cpu_power);
  2865. else
  2866. tmp = sg_div_cpu_power(this,
  2867. busiest_load_per_task * SCHED_LOAD_SCALE);
  2868. pwr_move += this->__cpu_power *
  2869. min(this_load_per_task, this_load + tmp);
  2870. pwr_move /= SCHED_LOAD_SCALE;
  2871. /* Move if we gain throughput */
  2872. if (pwr_move > pwr_now)
  2873. *imbalance = busiest_load_per_task;
  2874. }
  2875. return busiest;
  2876. out_balanced:
  2877. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2878. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2879. goto ret;
  2880. if (this == group_leader && group_leader != group_min) {
  2881. *imbalance = min_load_per_task;
  2882. return group_min;
  2883. }
  2884. #endif
  2885. ret:
  2886. *imbalance = 0;
  2887. return NULL;
  2888. }
  2889. /*
  2890. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2891. */
  2892. static struct rq *
  2893. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2894. unsigned long imbalance, const cpumask_t *cpus)
  2895. {
  2896. struct rq *busiest = NULL, *rq;
  2897. unsigned long max_load = 0;
  2898. int i;
  2899. for_each_cpu_mask_nr(i, group->cpumask) {
  2900. unsigned long wl;
  2901. if (!cpu_isset(i, *cpus))
  2902. continue;
  2903. rq = cpu_rq(i);
  2904. wl = weighted_cpuload(i);
  2905. if (rq->nr_running == 1 && wl > imbalance)
  2906. continue;
  2907. if (wl > max_load) {
  2908. max_load = wl;
  2909. busiest = rq;
  2910. }
  2911. }
  2912. return busiest;
  2913. }
  2914. /*
  2915. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2916. * so long as it is large enough.
  2917. */
  2918. #define MAX_PINNED_INTERVAL 512
  2919. /*
  2920. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2921. * tasks if there is an imbalance.
  2922. */
  2923. static int load_balance(int this_cpu, struct rq *this_rq,
  2924. struct sched_domain *sd, enum cpu_idle_type idle,
  2925. int *balance, cpumask_t *cpus)
  2926. {
  2927. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2928. struct sched_group *group;
  2929. unsigned long imbalance;
  2930. struct rq *busiest;
  2931. unsigned long flags;
  2932. cpus_setall(*cpus);
  2933. /*
  2934. * When power savings policy is enabled for the parent domain, idle
  2935. * sibling can pick up load irrespective of busy siblings. In this case,
  2936. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2937. * portraying it as CPU_NOT_IDLE.
  2938. */
  2939. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2940. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2941. sd_idle = 1;
  2942. schedstat_inc(sd, lb_count[idle]);
  2943. redo:
  2944. update_shares(sd);
  2945. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2946. cpus, balance);
  2947. if (*balance == 0)
  2948. goto out_balanced;
  2949. if (!group) {
  2950. schedstat_inc(sd, lb_nobusyg[idle]);
  2951. goto out_balanced;
  2952. }
  2953. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2954. if (!busiest) {
  2955. schedstat_inc(sd, lb_nobusyq[idle]);
  2956. goto out_balanced;
  2957. }
  2958. BUG_ON(busiest == this_rq);
  2959. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2960. ld_moved = 0;
  2961. if (busiest->nr_running > 1) {
  2962. /*
  2963. * Attempt to move tasks. If find_busiest_group has found
  2964. * an imbalance but busiest->nr_running <= 1, the group is
  2965. * still unbalanced. ld_moved simply stays zero, so it is
  2966. * correctly treated as an imbalance.
  2967. */
  2968. local_irq_save(flags);
  2969. double_rq_lock(this_rq, busiest);
  2970. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2971. imbalance, sd, idle, &all_pinned);
  2972. double_rq_unlock(this_rq, busiest);
  2973. local_irq_restore(flags);
  2974. /*
  2975. * some other cpu did the load balance for us.
  2976. */
  2977. if (ld_moved && this_cpu != smp_processor_id())
  2978. resched_cpu(this_cpu);
  2979. /* All tasks on this runqueue were pinned by CPU affinity */
  2980. if (unlikely(all_pinned)) {
  2981. cpu_clear(cpu_of(busiest), *cpus);
  2982. if (!cpus_empty(*cpus))
  2983. goto redo;
  2984. goto out_balanced;
  2985. }
  2986. }
  2987. if (!ld_moved) {
  2988. schedstat_inc(sd, lb_failed[idle]);
  2989. sd->nr_balance_failed++;
  2990. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2991. spin_lock_irqsave(&busiest->lock, flags);
  2992. /* don't kick the migration_thread, if the curr
  2993. * task on busiest cpu can't be moved to this_cpu
  2994. */
  2995. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2996. spin_unlock_irqrestore(&busiest->lock, flags);
  2997. all_pinned = 1;
  2998. goto out_one_pinned;
  2999. }
  3000. if (!busiest->active_balance) {
  3001. busiest->active_balance = 1;
  3002. busiest->push_cpu = this_cpu;
  3003. active_balance = 1;
  3004. }
  3005. spin_unlock_irqrestore(&busiest->lock, flags);
  3006. if (active_balance)
  3007. wake_up_process(busiest->migration_thread);
  3008. /*
  3009. * We've kicked active balancing, reset the failure
  3010. * counter.
  3011. */
  3012. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3013. }
  3014. } else
  3015. sd->nr_balance_failed = 0;
  3016. if (likely(!active_balance)) {
  3017. /* We were unbalanced, so reset the balancing interval */
  3018. sd->balance_interval = sd->min_interval;
  3019. } else {
  3020. /*
  3021. * If we've begun active balancing, start to back off. This
  3022. * case may not be covered by the all_pinned logic if there
  3023. * is only 1 task on the busy runqueue (because we don't call
  3024. * move_tasks).
  3025. */
  3026. if (sd->balance_interval < sd->max_interval)
  3027. sd->balance_interval *= 2;
  3028. }
  3029. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3030. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3031. ld_moved = -1;
  3032. goto out;
  3033. out_balanced:
  3034. schedstat_inc(sd, lb_balanced[idle]);
  3035. sd->nr_balance_failed = 0;
  3036. out_one_pinned:
  3037. /* tune up the balancing interval */
  3038. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3039. (sd->balance_interval < sd->max_interval))
  3040. sd->balance_interval *= 2;
  3041. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3042. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3043. ld_moved = -1;
  3044. else
  3045. ld_moved = 0;
  3046. out:
  3047. if (ld_moved)
  3048. update_shares(sd);
  3049. return ld_moved;
  3050. }
  3051. /*
  3052. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3053. * tasks if there is an imbalance.
  3054. *
  3055. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3056. * this_rq is locked.
  3057. */
  3058. static int
  3059. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3060. cpumask_t *cpus)
  3061. {
  3062. struct sched_group *group;
  3063. struct rq *busiest = NULL;
  3064. unsigned long imbalance;
  3065. int ld_moved = 0;
  3066. int sd_idle = 0;
  3067. int all_pinned = 0;
  3068. cpus_setall(*cpus);
  3069. /*
  3070. * When power savings policy is enabled for the parent domain, idle
  3071. * sibling can pick up load irrespective of busy siblings. In this case,
  3072. * let the state of idle sibling percolate up as IDLE, instead of
  3073. * portraying it as CPU_NOT_IDLE.
  3074. */
  3075. if (sd->flags & SD_SHARE_CPUPOWER &&
  3076. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3077. sd_idle = 1;
  3078. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3079. redo:
  3080. update_shares_locked(this_rq, sd);
  3081. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3082. &sd_idle, cpus, NULL);
  3083. if (!group) {
  3084. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3085. goto out_balanced;
  3086. }
  3087. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3088. if (!busiest) {
  3089. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3090. goto out_balanced;
  3091. }
  3092. BUG_ON(busiest == this_rq);
  3093. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3094. ld_moved = 0;
  3095. if (busiest->nr_running > 1) {
  3096. /* Attempt to move tasks */
  3097. double_lock_balance(this_rq, busiest);
  3098. /* this_rq->clock is already updated */
  3099. update_rq_clock(busiest);
  3100. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3101. imbalance, sd, CPU_NEWLY_IDLE,
  3102. &all_pinned);
  3103. double_unlock_balance(this_rq, busiest);
  3104. if (unlikely(all_pinned)) {
  3105. cpu_clear(cpu_of(busiest), *cpus);
  3106. if (!cpus_empty(*cpus))
  3107. goto redo;
  3108. }
  3109. }
  3110. if (!ld_moved) {
  3111. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3112. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3113. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3114. return -1;
  3115. } else
  3116. sd->nr_balance_failed = 0;
  3117. update_shares_locked(this_rq, sd);
  3118. return ld_moved;
  3119. out_balanced:
  3120. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3121. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3122. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3123. return -1;
  3124. sd->nr_balance_failed = 0;
  3125. return 0;
  3126. }
  3127. /*
  3128. * idle_balance is called by schedule() if this_cpu is about to become
  3129. * idle. Attempts to pull tasks from other CPUs.
  3130. */
  3131. static void idle_balance(int this_cpu, struct rq *this_rq)
  3132. {
  3133. struct sched_domain *sd;
  3134. int pulled_task = 0;
  3135. unsigned long next_balance = jiffies + HZ;
  3136. cpumask_t tmpmask;
  3137. for_each_domain(this_cpu, sd) {
  3138. unsigned long interval;
  3139. if (!(sd->flags & SD_LOAD_BALANCE))
  3140. continue;
  3141. if (sd->flags & SD_BALANCE_NEWIDLE)
  3142. /* If we've pulled tasks over stop searching: */
  3143. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3144. sd, &tmpmask);
  3145. interval = msecs_to_jiffies(sd->balance_interval);
  3146. if (time_after(next_balance, sd->last_balance + interval))
  3147. next_balance = sd->last_balance + interval;
  3148. if (pulled_task)
  3149. break;
  3150. }
  3151. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3152. /*
  3153. * We are going idle. next_balance may be set based on
  3154. * a busy processor. So reset next_balance.
  3155. */
  3156. this_rq->next_balance = next_balance;
  3157. }
  3158. }
  3159. /*
  3160. * active_load_balance is run by migration threads. It pushes running tasks
  3161. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3162. * running on each physical CPU where possible, and avoids physical /
  3163. * logical imbalances.
  3164. *
  3165. * Called with busiest_rq locked.
  3166. */
  3167. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3168. {
  3169. int target_cpu = busiest_rq->push_cpu;
  3170. struct sched_domain *sd;
  3171. struct rq *target_rq;
  3172. /* Is there any task to move? */
  3173. if (busiest_rq->nr_running <= 1)
  3174. return;
  3175. target_rq = cpu_rq(target_cpu);
  3176. /*
  3177. * This condition is "impossible", if it occurs
  3178. * we need to fix it. Originally reported by
  3179. * Bjorn Helgaas on a 128-cpu setup.
  3180. */
  3181. BUG_ON(busiest_rq == target_rq);
  3182. /* move a task from busiest_rq to target_rq */
  3183. double_lock_balance(busiest_rq, target_rq);
  3184. update_rq_clock(busiest_rq);
  3185. update_rq_clock(target_rq);
  3186. /* Search for an sd spanning us and the target CPU. */
  3187. for_each_domain(target_cpu, sd) {
  3188. if ((sd->flags & SD_LOAD_BALANCE) &&
  3189. cpu_isset(busiest_cpu, sd->span))
  3190. break;
  3191. }
  3192. if (likely(sd)) {
  3193. schedstat_inc(sd, alb_count);
  3194. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3195. sd, CPU_IDLE))
  3196. schedstat_inc(sd, alb_pushed);
  3197. else
  3198. schedstat_inc(sd, alb_failed);
  3199. }
  3200. double_unlock_balance(busiest_rq, target_rq);
  3201. }
  3202. #ifdef CONFIG_NO_HZ
  3203. static struct {
  3204. atomic_t load_balancer;
  3205. cpumask_t cpu_mask;
  3206. } nohz ____cacheline_aligned = {
  3207. .load_balancer = ATOMIC_INIT(-1),
  3208. .cpu_mask = CPU_MASK_NONE,
  3209. };
  3210. /*
  3211. * This routine will try to nominate the ilb (idle load balancing)
  3212. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3213. * load balancing on behalf of all those cpus. If all the cpus in the system
  3214. * go into this tickless mode, then there will be no ilb owner (as there is
  3215. * no need for one) and all the cpus will sleep till the next wakeup event
  3216. * arrives...
  3217. *
  3218. * For the ilb owner, tick is not stopped. And this tick will be used
  3219. * for idle load balancing. ilb owner will still be part of
  3220. * nohz.cpu_mask..
  3221. *
  3222. * While stopping the tick, this cpu will become the ilb owner if there
  3223. * is no other owner. And will be the owner till that cpu becomes busy
  3224. * or if all cpus in the system stop their ticks at which point
  3225. * there is no need for ilb owner.
  3226. *
  3227. * When the ilb owner becomes busy, it nominates another owner, during the
  3228. * next busy scheduler_tick()
  3229. */
  3230. int select_nohz_load_balancer(int stop_tick)
  3231. {
  3232. int cpu = smp_processor_id();
  3233. if (stop_tick) {
  3234. cpu_set(cpu, nohz.cpu_mask);
  3235. cpu_rq(cpu)->in_nohz_recently = 1;
  3236. /*
  3237. * If we are going offline and still the leader, give up!
  3238. */
  3239. if (!cpu_active(cpu) &&
  3240. atomic_read(&nohz.load_balancer) == cpu) {
  3241. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3242. BUG();
  3243. return 0;
  3244. }
  3245. /* time for ilb owner also to sleep */
  3246. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3247. if (atomic_read(&nohz.load_balancer) == cpu)
  3248. atomic_set(&nohz.load_balancer, -1);
  3249. return 0;
  3250. }
  3251. if (atomic_read(&nohz.load_balancer) == -1) {
  3252. /* make me the ilb owner */
  3253. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3254. return 1;
  3255. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3256. return 1;
  3257. } else {
  3258. if (!cpu_isset(cpu, nohz.cpu_mask))
  3259. return 0;
  3260. cpu_clear(cpu, nohz.cpu_mask);
  3261. if (atomic_read(&nohz.load_balancer) == cpu)
  3262. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3263. BUG();
  3264. }
  3265. return 0;
  3266. }
  3267. #endif
  3268. static DEFINE_SPINLOCK(balancing);
  3269. /*
  3270. * It checks each scheduling domain to see if it is due to be balanced,
  3271. * and initiates a balancing operation if so.
  3272. *
  3273. * Balancing parameters are set up in arch_init_sched_domains.
  3274. */
  3275. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3276. {
  3277. int balance = 1;
  3278. struct rq *rq = cpu_rq(cpu);
  3279. unsigned long interval;
  3280. struct sched_domain *sd;
  3281. /* Earliest time when we have to do rebalance again */
  3282. unsigned long next_balance = jiffies + 60*HZ;
  3283. int update_next_balance = 0;
  3284. int need_serialize;
  3285. cpumask_t tmp;
  3286. for_each_domain(cpu, sd) {
  3287. if (!(sd->flags & SD_LOAD_BALANCE))
  3288. continue;
  3289. interval = sd->balance_interval;
  3290. if (idle != CPU_IDLE)
  3291. interval *= sd->busy_factor;
  3292. /* scale ms to jiffies */
  3293. interval = msecs_to_jiffies(interval);
  3294. if (unlikely(!interval))
  3295. interval = 1;
  3296. if (interval > HZ*NR_CPUS/10)
  3297. interval = HZ*NR_CPUS/10;
  3298. need_serialize = sd->flags & SD_SERIALIZE;
  3299. if (need_serialize) {
  3300. if (!spin_trylock(&balancing))
  3301. goto out;
  3302. }
  3303. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3304. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3305. /*
  3306. * We've pulled tasks over so either we're no
  3307. * longer idle, or one of our SMT siblings is
  3308. * not idle.
  3309. */
  3310. idle = CPU_NOT_IDLE;
  3311. }
  3312. sd->last_balance = jiffies;
  3313. }
  3314. if (need_serialize)
  3315. spin_unlock(&balancing);
  3316. out:
  3317. if (time_after(next_balance, sd->last_balance + interval)) {
  3318. next_balance = sd->last_balance + interval;
  3319. update_next_balance = 1;
  3320. }
  3321. /*
  3322. * Stop the load balance at this level. There is another
  3323. * CPU in our sched group which is doing load balancing more
  3324. * actively.
  3325. */
  3326. if (!balance)
  3327. break;
  3328. }
  3329. /*
  3330. * next_balance will be updated only when there is a need.
  3331. * When the cpu is attached to null domain for ex, it will not be
  3332. * updated.
  3333. */
  3334. if (likely(update_next_balance))
  3335. rq->next_balance = next_balance;
  3336. }
  3337. /*
  3338. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3339. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3340. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3341. */
  3342. static void run_rebalance_domains(struct softirq_action *h)
  3343. {
  3344. int this_cpu = smp_processor_id();
  3345. struct rq *this_rq = cpu_rq(this_cpu);
  3346. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3347. CPU_IDLE : CPU_NOT_IDLE;
  3348. rebalance_domains(this_cpu, idle);
  3349. #ifdef CONFIG_NO_HZ
  3350. /*
  3351. * If this cpu is the owner for idle load balancing, then do the
  3352. * balancing on behalf of the other idle cpus whose ticks are
  3353. * stopped.
  3354. */
  3355. if (this_rq->idle_at_tick &&
  3356. atomic_read(&nohz.load_balancer) == this_cpu) {
  3357. cpumask_t cpus = nohz.cpu_mask;
  3358. struct rq *rq;
  3359. int balance_cpu;
  3360. cpu_clear(this_cpu, cpus);
  3361. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3362. /*
  3363. * If this cpu gets work to do, stop the load balancing
  3364. * work being done for other cpus. Next load
  3365. * balancing owner will pick it up.
  3366. */
  3367. if (need_resched())
  3368. break;
  3369. rebalance_domains(balance_cpu, CPU_IDLE);
  3370. rq = cpu_rq(balance_cpu);
  3371. if (time_after(this_rq->next_balance, rq->next_balance))
  3372. this_rq->next_balance = rq->next_balance;
  3373. }
  3374. }
  3375. #endif
  3376. }
  3377. /*
  3378. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3379. *
  3380. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3381. * idle load balancing owner or decide to stop the periodic load balancing,
  3382. * if the whole system is idle.
  3383. */
  3384. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3385. {
  3386. #ifdef CONFIG_NO_HZ
  3387. /*
  3388. * If we were in the nohz mode recently and busy at the current
  3389. * scheduler tick, then check if we need to nominate new idle
  3390. * load balancer.
  3391. */
  3392. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3393. rq->in_nohz_recently = 0;
  3394. if (atomic_read(&nohz.load_balancer) == cpu) {
  3395. cpu_clear(cpu, nohz.cpu_mask);
  3396. atomic_set(&nohz.load_balancer, -1);
  3397. }
  3398. if (atomic_read(&nohz.load_balancer) == -1) {
  3399. /*
  3400. * simple selection for now: Nominate the
  3401. * first cpu in the nohz list to be the next
  3402. * ilb owner.
  3403. *
  3404. * TBD: Traverse the sched domains and nominate
  3405. * the nearest cpu in the nohz.cpu_mask.
  3406. */
  3407. int ilb = first_cpu(nohz.cpu_mask);
  3408. if (ilb < nr_cpu_ids)
  3409. resched_cpu(ilb);
  3410. }
  3411. }
  3412. /*
  3413. * If this cpu is idle and doing idle load balancing for all the
  3414. * cpus with ticks stopped, is it time for that to stop?
  3415. */
  3416. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3417. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3418. resched_cpu(cpu);
  3419. return;
  3420. }
  3421. /*
  3422. * If this cpu is idle and the idle load balancing is done by
  3423. * someone else, then no need raise the SCHED_SOFTIRQ
  3424. */
  3425. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3426. cpu_isset(cpu, nohz.cpu_mask))
  3427. return;
  3428. #endif
  3429. if (time_after_eq(jiffies, rq->next_balance))
  3430. raise_softirq(SCHED_SOFTIRQ);
  3431. }
  3432. #else /* CONFIG_SMP */
  3433. /*
  3434. * on UP we do not need to balance between CPUs:
  3435. */
  3436. static inline void idle_balance(int cpu, struct rq *rq)
  3437. {
  3438. }
  3439. #endif
  3440. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3441. EXPORT_PER_CPU_SYMBOL(kstat);
  3442. /*
  3443. * Return any ns on the sched_clock that have not yet been banked in
  3444. * @p in case that task is currently running.
  3445. */
  3446. unsigned long long task_delta_exec(struct task_struct *p)
  3447. {
  3448. unsigned long flags;
  3449. struct rq *rq;
  3450. u64 ns = 0;
  3451. rq = task_rq_lock(p, &flags);
  3452. if (task_current(rq, p)) {
  3453. u64 delta_exec;
  3454. update_rq_clock(rq);
  3455. delta_exec = rq->clock - p->se.exec_start;
  3456. if ((s64)delta_exec > 0)
  3457. ns = delta_exec;
  3458. }
  3459. task_rq_unlock(rq, &flags);
  3460. return ns;
  3461. }
  3462. /*
  3463. * Account user cpu time to a process.
  3464. * @p: the process that the cpu time gets accounted to
  3465. * @cputime: the cpu time spent in user space since the last update
  3466. * @cputime_scaled: cputime scaled by cpu frequency
  3467. */
  3468. void account_user_time(struct task_struct *p, cputime_t cputime,
  3469. cputime_t cputime_scaled)
  3470. {
  3471. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3472. cputime64_t tmp;
  3473. /* Add user time to process. */
  3474. p->utime = cputime_add(p->utime, cputime);
  3475. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3476. account_group_user_time(p, cputime);
  3477. /* Add user time to cpustat. */
  3478. tmp = cputime_to_cputime64(cputime);
  3479. if (TASK_NICE(p) > 0)
  3480. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3481. else
  3482. cpustat->user = cputime64_add(cpustat->user, tmp);
  3483. /* Account for user time used */
  3484. acct_update_integrals(p);
  3485. }
  3486. /*
  3487. * Account guest cpu time to a process.
  3488. * @p: the process that the cpu time gets accounted to
  3489. * @cputime: the cpu time spent in virtual machine since the last update
  3490. * @cputime_scaled: cputime scaled by cpu frequency
  3491. */
  3492. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  3493. cputime_t cputime_scaled)
  3494. {
  3495. cputime64_t tmp;
  3496. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3497. tmp = cputime_to_cputime64(cputime);
  3498. /* Add guest time to process. */
  3499. p->utime = cputime_add(p->utime, cputime);
  3500. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  3501. account_group_user_time(p, cputime);
  3502. p->gtime = cputime_add(p->gtime, cputime);
  3503. /* Add guest time to cpustat. */
  3504. cpustat->user = cputime64_add(cpustat->user, tmp);
  3505. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3506. }
  3507. /*
  3508. * Account system cpu time to a process.
  3509. * @p: the process that the cpu time gets accounted to
  3510. * @hardirq_offset: the offset to subtract from hardirq_count()
  3511. * @cputime: the cpu time spent in kernel space since the last update
  3512. * @cputime_scaled: cputime scaled by cpu frequency
  3513. */
  3514. void account_system_time(struct task_struct *p, int hardirq_offset,
  3515. cputime_t cputime, cputime_t cputime_scaled)
  3516. {
  3517. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3518. cputime64_t tmp;
  3519. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3520. account_guest_time(p, cputime, cputime_scaled);
  3521. return;
  3522. }
  3523. /* Add system time to process. */
  3524. p->stime = cputime_add(p->stime, cputime);
  3525. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  3526. account_group_system_time(p, cputime);
  3527. /* Add system time to cpustat. */
  3528. tmp = cputime_to_cputime64(cputime);
  3529. if (hardirq_count() - hardirq_offset)
  3530. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3531. else if (softirq_count())
  3532. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3533. else
  3534. cpustat->system = cputime64_add(cpustat->system, tmp);
  3535. /* Account for system time used */
  3536. acct_update_integrals(p);
  3537. }
  3538. /*
  3539. * Account for involuntary wait time.
  3540. * @steal: the cpu time spent in involuntary wait
  3541. */
  3542. void account_steal_time(cputime_t cputime)
  3543. {
  3544. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3545. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3546. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  3547. }
  3548. /*
  3549. * Account for idle time.
  3550. * @cputime: the cpu time spent in idle wait
  3551. */
  3552. void account_idle_time(cputime_t cputime)
  3553. {
  3554. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3555. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  3556. struct rq *rq = this_rq();
  3557. if (atomic_read(&rq->nr_iowait) > 0)
  3558. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  3559. else
  3560. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  3561. }
  3562. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  3563. /*
  3564. * Account a single tick of cpu time.
  3565. * @p: the process that the cpu time gets accounted to
  3566. * @user_tick: indicates if the tick is a user or a system tick
  3567. */
  3568. void account_process_tick(struct task_struct *p, int user_tick)
  3569. {
  3570. cputime_t one_jiffy = jiffies_to_cputime(1);
  3571. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  3572. struct rq *rq = this_rq();
  3573. if (user_tick)
  3574. account_user_time(p, one_jiffy, one_jiffy_scaled);
  3575. else if (p != rq->idle)
  3576. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  3577. one_jiffy_scaled);
  3578. else
  3579. account_idle_time(one_jiffy);
  3580. }
  3581. /*
  3582. * Account multiple ticks of steal time.
  3583. * @p: the process from which the cpu time has been stolen
  3584. * @ticks: number of stolen ticks
  3585. */
  3586. void account_steal_ticks(unsigned long ticks)
  3587. {
  3588. account_steal_time(jiffies_to_cputime(ticks));
  3589. }
  3590. /*
  3591. * Account multiple ticks of idle time.
  3592. * @ticks: number of stolen ticks
  3593. */
  3594. void account_idle_ticks(unsigned long ticks)
  3595. {
  3596. account_idle_time(jiffies_to_cputime(ticks));
  3597. }
  3598. #endif
  3599. /*
  3600. * Use precise platform statistics if available:
  3601. */
  3602. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3603. cputime_t task_utime(struct task_struct *p)
  3604. {
  3605. return p->utime;
  3606. }
  3607. cputime_t task_stime(struct task_struct *p)
  3608. {
  3609. return p->stime;
  3610. }
  3611. #else
  3612. cputime_t task_utime(struct task_struct *p)
  3613. {
  3614. clock_t utime = cputime_to_clock_t(p->utime),
  3615. total = utime + cputime_to_clock_t(p->stime);
  3616. u64 temp;
  3617. /*
  3618. * Use CFS's precise accounting:
  3619. */
  3620. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3621. if (total) {
  3622. temp *= utime;
  3623. do_div(temp, total);
  3624. }
  3625. utime = (clock_t)temp;
  3626. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3627. return p->prev_utime;
  3628. }
  3629. cputime_t task_stime(struct task_struct *p)
  3630. {
  3631. clock_t stime;
  3632. /*
  3633. * Use CFS's precise accounting. (we subtract utime from
  3634. * the total, to make sure the total observed by userspace
  3635. * grows monotonically - apps rely on that):
  3636. */
  3637. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3638. cputime_to_clock_t(task_utime(p));
  3639. if (stime >= 0)
  3640. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3641. return p->prev_stime;
  3642. }
  3643. #endif
  3644. inline cputime_t task_gtime(struct task_struct *p)
  3645. {
  3646. return p->gtime;
  3647. }
  3648. /*
  3649. * This function gets called by the timer code, with HZ frequency.
  3650. * We call it with interrupts disabled.
  3651. *
  3652. * It also gets called by the fork code, when changing the parent's
  3653. * timeslices.
  3654. */
  3655. void scheduler_tick(void)
  3656. {
  3657. int cpu = smp_processor_id();
  3658. struct rq *rq = cpu_rq(cpu);
  3659. struct task_struct *curr = rq->curr;
  3660. sched_clock_tick();
  3661. spin_lock(&rq->lock);
  3662. update_rq_clock(rq);
  3663. update_cpu_load(rq);
  3664. curr->sched_class->task_tick(rq, curr, 0);
  3665. spin_unlock(&rq->lock);
  3666. #ifdef CONFIG_SMP
  3667. rq->idle_at_tick = idle_cpu(cpu);
  3668. trigger_load_balance(rq, cpu);
  3669. #endif
  3670. }
  3671. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3672. defined(CONFIG_PREEMPT_TRACER))
  3673. static inline unsigned long get_parent_ip(unsigned long addr)
  3674. {
  3675. if (in_lock_functions(addr)) {
  3676. addr = CALLER_ADDR2;
  3677. if (in_lock_functions(addr))
  3678. addr = CALLER_ADDR3;
  3679. }
  3680. return addr;
  3681. }
  3682. void __kprobes add_preempt_count(int val)
  3683. {
  3684. #ifdef CONFIG_DEBUG_PREEMPT
  3685. /*
  3686. * Underflow?
  3687. */
  3688. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3689. return;
  3690. #endif
  3691. preempt_count() += val;
  3692. #ifdef CONFIG_DEBUG_PREEMPT
  3693. /*
  3694. * Spinlock count overflowing soon?
  3695. */
  3696. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3697. PREEMPT_MASK - 10);
  3698. #endif
  3699. if (preempt_count() == val)
  3700. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3701. }
  3702. EXPORT_SYMBOL(add_preempt_count);
  3703. void __kprobes sub_preempt_count(int val)
  3704. {
  3705. #ifdef CONFIG_DEBUG_PREEMPT
  3706. /*
  3707. * Underflow?
  3708. */
  3709. if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
  3710. return;
  3711. /*
  3712. * Is the spinlock portion underflowing?
  3713. */
  3714. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3715. !(preempt_count() & PREEMPT_MASK)))
  3716. return;
  3717. #endif
  3718. if (preempt_count() == val)
  3719. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3720. preempt_count() -= val;
  3721. }
  3722. EXPORT_SYMBOL(sub_preempt_count);
  3723. #endif
  3724. /*
  3725. * Print scheduling while atomic bug:
  3726. */
  3727. static noinline void __schedule_bug(struct task_struct *prev)
  3728. {
  3729. struct pt_regs *regs = get_irq_regs();
  3730. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3731. prev->comm, prev->pid, preempt_count());
  3732. debug_show_held_locks(prev);
  3733. print_modules();
  3734. if (irqs_disabled())
  3735. print_irqtrace_events(prev);
  3736. if (regs)
  3737. show_regs(regs);
  3738. else
  3739. dump_stack();
  3740. }
  3741. /*
  3742. * Various schedule()-time debugging checks and statistics:
  3743. */
  3744. static inline void schedule_debug(struct task_struct *prev)
  3745. {
  3746. /*
  3747. * Test if we are atomic. Since do_exit() needs to call into
  3748. * schedule() atomically, we ignore that path for now.
  3749. * Otherwise, whine if we are scheduling when we should not be.
  3750. */
  3751. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3752. __schedule_bug(prev);
  3753. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3754. schedstat_inc(this_rq(), sched_count);
  3755. #ifdef CONFIG_SCHEDSTATS
  3756. if (unlikely(prev->lock_depth >= 0)) {
  3757. schedstat_inc(this_rq(), bkl_count);
  3758. schedstat_inc(prev, sched_info.bkl_count);
  3759. }
  3760. #endif
  3761. }
  3762. /*
  3763. * Pick up the highest-prio task:
  3764. */
  3765. static inline struct task_struct *
  3766. pick_next_task(struct rq *rq, struct task_struct *prev)
  3767. {
  3768. const struct sched_class *class;
  3769. struct task_struct *p;
  3770. /*
  3771. * Optimization: we know that if all tasks are in
  3772. * the fair class we can call that function directly:
  3773. */
  3774. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3775. p = fair_sched_class.pick_next_task(rq);
  3776. if (likely(p))
  3777. return p;
  3778. }
  3779. class = sched_class_highest;
  3780. for ( ; ; ) {
  3781. p = class->pick_next_task(rq);
  3782. if (p)
  3783. return p;
  3784. /*
  3785. * Will never be NULL as the idle class always
  3786. * returns a non-NULL p:
  3787. */
  3788. class = class->next;
  3789. }
  3790. }
  3791. /*
  3792. * schedule() is the main scheduler function.
  3793. */
  3794. asmlinkage void __sched schedule(void)
  3795. {
  3796. struct task_struct *prev, *next;
  3797. unsigned long *switch_count;
  3798. struct rq *rq;
  3799. int cpu;
  3800. need_resched:
  3801. preempt_disable();
  3802. cpu = smp_processor_id();
  3803. rq = cpu_rq(cpu);
  3804. rcu_qsctr_inc(cpu);
  3805. prev = rq->curr;
  3806. switch_count = &prev->nivcsw;
  3807. release_kernel_lock(prev);
  3808. need_resched_nonpreemptible:
  3809. schedule_debug(prev);
  3810. if (sched_feat(HRTICK))
  3811. hrtick_clear(rq);
  3812. spin_lock_irq(&rq->lock);
  3813. update_rq_clock(rq);
  3814. clear_tsk_need_resched(prev);
  3815. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3816. if (unlikely(signal_pending_state(prev->state, prev)))
  3817. prev->state = TASK_RUNNING;
  3818. else
  3819. deactivate_task(rq, prev, 1);
  3820. switch_count = &prev->nvcsw;
  3821. }
  3822. #ifdef CONFIG_SMP
  3823. if (prev->sched_class->pre_schedule)
  3824. prev->sched_class->pre_schedule(rq, prev);
  3825. #endif
  3826. if (unlikely(!rq->nr_running))
  3827. idle_balance(cpu, rq);
  3828. prev->sched_class->put_prev_task(rq, prev);
  3829. next = pick_next_task(rq, prev);
  3830. if (likely(prev != next)) {
  3831. sched_info_switch(prev, next);
  3832. rq->nr_switches++;
  3833. rq->curr = next;
  3834. ++*switch_count;
  3835. context_switch(rq, prev, next); /* unlocks the rq */
  3836. /*
  3837. * the context switch might have flipped the stack from under
  3838. * us, hence refresh the local variables.
  3839. */
  3840. cpu = smp_processor_id();
  3841. rq = cpu_rq(cpu);
  3842. } else
  3843. spin_unlock_irq(&rq->lock);
  3844. if (unlikely(reacquire_kernel_lock(current) < 0))
  3845. goto need_resched_nonpreemptible;
  3846. preempt_enable_no_resched();
  3847. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3848. goto need_resched;
  3849. }
  3850. EXPORT_SYMBOL(schedule);
  3851. #ifdef CONFIG_PREEMPT
  3852. /*
  3853. * this is the entry point to schedule() from in-kernel preemption
  3854. * off of preempt_enable. Kernel preemptions off return from interrupt
  3855. * occur there and call schedule directly.
  3856. */
  3857. asmlinkage void __sched preempt_schedule(void)
  3858. {
  3859. struct thread_info *ti = current_thread_info();
  3860. /*
  3861. * If there is a non-zero preempt_count or interrupts are disabled,
  3862. * we do not want to preempt the current task. Just return..
  3863. */
  3864. if (likely(ti->preempt_count || irqs_disabled()))
  3865. return;
  3866. do {
  3867. add_preempt_count(PREEMPT_ACTIVE);
  3868. schedule();
  3869. sub_preempt_count(PREEMPT_ACTIVE);
  3870. /*
  3871. * Check again in case we missed a preemption opportunity
  3872. * between schedule and now.
  3873. */
  3874. barrier();
  3875. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3876. }
  3877. EXPORT_SYMBOL(preempt_schedule);
  3878. /*
  3879. * this is the entry point to schedule() from kernel preemption
  3880. * off of irq context.
  3881. * Note, that this is called and return with irqs disabled. This will
  3882. * protect us against recursive calling from irq.
  3883. */
  3884. asmlinkage void __sched preempt_schedule_irq(void)
  3885. {
  3886. struct thread_info *ti = current_thread_info();
  3887. /* Catch callers which need to be fixed */
  3888. BUG_ON(ti->preempt_count || !irqs_disabled());
  3889. do {
  3890. add_preempt_count(PREEMPT_ACTIVE);
  3891. local_irq_enable();
  3892. schedule();
  3893. local_irq_disable();
  3894. sub_preempt_count(PREEMPT_ACTIVE);
  3895. /*
  3896. * Check again in case we missed a preemption opportunity
  3897. * between schedule and now.
  3898. */
  3899. barrier();
  3900. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3901. }
  3902. #endif /* CONFIG_PREEMPT */
  3903. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3904. void *key)
  3905. {
  3906. return try_to_wake_up(curr->private, mode, sync);
  3907. }
  3908. EXPORT_SYMBOL(default_wake_function);
  3909. /*
  3910. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3911. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3912. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3913. *
  3914. * There are circumstances in which we can try to wake a task which has already
  3915. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3916. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3917. */
  3918. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3919. int nr_exclusive, int sync, void *key)
  3920. {
  3921. wait_queue_t *curr, *next;
  3922. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3923. unsigned flags = curr->flags;
  3924. if (curr->func(curr, mode, sync, key) &&
  3925. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3926. break;
  3927. }
  3928. }
  3929. /**
  3930. * __wake_up - wake up threads blocked on a waitqueue.
  3931. * @q: the waitqueue
  3932. * @mode: which threads
  3933. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3934. * @key: is directly passed to the wakeup function
  3935. */
  3936. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3937. int nr_exclusive, void *key)
  3938. {
  3939. unsigned long flags;
  3940. spin_lock_irqsave(&q->lock, flags);
  3941. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3942. spin_unlock_irqrestore(&q->lock, flags);
  3943. }
  3944. EXPORT_SYMBOL(__wake_up);
  3945. /*
  3946. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3947. */
  3948. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3949. {
  3950. __wake_up_common(q, mode, 1, 0, NULL);
  3951. }
  3952. /**
  3953. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3954. * @q: the waitqueue
  3955. * @mode: which threads
  3956. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3957. *
  3958. * The sync wakeup differs that the waker knows that it will schedule
  3959. * away soon, so while the target thread will be woken up, it will not
  3960. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3961. * with each other. This can prevent needless bouncing between CPUs.
  3962. *
  3963. * On UP it can prevent extra preemption.
  3964. */
  3965. void
  3966. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3967. {
  3968. unsigned long flags;
  3969. int sync = 1;
  3970. if (unlikely(!q))
  3971. return;
  3972. if (unlikely(!nr_exclusive))
  3973. sync = 0;
  3974. spin_lock_irqsave(&q->lock, flags);
  3975. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3976. spin_unlock_irqrestore(&q->lock, flags);
  3977. }
  3978. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3979. /**
  3980. * complete: - signals a single thread waiting on this completion
  3981. * @x: holds the state of this particular completion
  3982. *
  3983. * This will wake up a single thread waiting on this completion. Threads will be
  3984. * awakened in the same order in which they were queued.
  3985. *
  3986. * See also complete_all(), wait_for_completion() and related routines.
  3987. */
  3988. void complete(struct completion *x)
  3989. {
  3990. unsigned long flags;
  3991. spin_lock_irqsave(&x->wait.lock, flags);
  3992. x->done++;
  3993. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3994. spin_unlock_irqrestore(&x->wait.lock, flags);
  3995. }
  3996. EXPORT_SYMBOL(complete);
  3997. /**
  3998. * complete_all: - signals all threads waiting on this completion
  3999. * @x: holds the state of this particular completion
  4000. *
  4001. * This will wake up all threads waiting on this particular completion event.
  4002. */
  4003. void complete_all(struct completion *x)
  4004. {
  4005. unsigned long flags;
  4006. spin_lock_irqsave(&x->wait.lock, flags);
  4007. x->done += UINT_MAX/2;
  4008. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4009. spin_unlock_irqrestore(&x->wait.lock, flags);
  4010. }
  4011. EXPORT_SYMBOL(complete_all);
  4012. static inline long __sched
  4013. do_wait_for_common(struct completion *x, long timeout, int state)
  4014. {
  4015. if (!x->done) {
  4016. DECLARE_WAITQUEUE(wait, current);
  4017. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4018. __add_wait_queue_tail(&x->wait, &wait);
  4019. do {
  4020. if (signal_pending_state(state, current)) {
  4021. timeout = -ERESTARTSYS;
  4022. break;
  4023. }
  4024. __set_current_state(state);
  4025. spin_unlock_irq(&x->wait.lock);
  4026. timeout = schedule_timeout(timeout);
  4027. spin_lock_irq(&x->wait.lock);
  4028. } while (!x->done && timeout);
  4029. __remove_wait_queue(&x->wait, &wait);
  4030. if (!x->done)
  4031. return timeout;
  4032. }
  4033. x->done--;
  4034. return timeout ?: 1;
  4035. }
  4036. static long __sched
  4037. wait_for_common(struct completion *x, long timeout, int state)
  4038. {
  4039. might_sleep();
  4040. spin_lock_irq(&x->wait.lock);
  4041. timeout = do_wait_for_common(x, timeout, state);
  4042. spin_unlock_irq(&x->wait.lock);
  4043. return timeout;
  4044. }
  4045. /**
  4046. * wait_for_completion: - waits for completion of a task
  4047. * @x: holds the state of this particular completion
  4048. *
  4049. * This waits to be signaled for completion of a specific task. It is NOT
  4050. * interruptible and there is no timeout.
  4051. *
  4052. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4053. * and interrupt capability. Also see complete().
  4054. */
  4055. void __sched wait_for_completion(struct completion *x)
  4056. {
  4057. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4058. }
  4059. EXPORT_SYMBOL(wait_for_completion);
  4060. /**
  4061. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4062. * @x: holds the state of this particular completion
  4063. * @timeout: timeout value in jiffies
  4064. *
  4065. * This waits for either a completion of a specific task to be signaled or for a
  4066. * specified timeout to expire. The timeout is in jiffies. It is not
  4067. * interruptible.
  4068. */
  4069. unsigned long __sched
  4070. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4071. {
  4072. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4073. }
  4074. EXPORT_SYMBOL(wait_for_completion_timeout);
  4075. /**
  4076. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4077. * @x: holds the state of this particular completion
  4078. *
  4079. * This waits for completion of a specific task to be signaled. It is
  4080. * interruptible.
  4081. */
  4082. int __sched wait_for_completion_interruptible(struct completion *x)
  4083. {
  4084. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4085. if (t == -ERESTARTSYS)
  4086. return t;
  4087. return 0;
  4088. }
  4089. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4090. /**
  4091. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4092. * @x: holds the state of this particular completion
  4093. * @timeout: timeout value in jiffies
  4094. *
  4095. * This waits for either a completion of a specific task to be signaled or for a
  4096. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4097. */
  4098. unsigned long __sched
  4099. wait_for_completion_interruptible_timeout(struct completion *x,
  4100. unsigned long timeout)
  4101. {
  4102. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4103. }
  4104. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4105. /**
  4106. * wait_for_completion_killable: - waits for completion of a task (killable)
  4107. * @x: holds the state of this particular completion
  4108. *
  4109. * This waits to be signaled for completion of a specific task. It can be
  4110. * interrupted by a kill signal.
  4111. */
  4112. int __sched wait_for_completion_killable(struct completion *x)
  4113. {
  4114. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4115. if (t == -ERESTARTSYS)
  4116. return t;
  4117. return 0;
  4118. }
  4119. EXPORT_SYMBOL(wait_for_completion_killable);
  4120. /**
  4121. * try_wait_for_completion - try to decrement a completion without blocking
  4122. * @x: completion structure
  4123. *
  4124. * Returns: 0 if a decrement cannot be done without blocking
  4125. * 1 if a decrement succeeded.
  4126. *
  4127. * If a completion is being used as a counting completion,
  4128. * attempt to decrement the counter without blocking. This
  4129. * enables us to avoid waiting if the resource the completion
  4130. * is protecting is not available.
  4131. */
  4132. bool try_wait_for_completion(struct completion *x)
  4133. {
  4134. int ret = 1;
  4135. spin_lock_irq(&x->wait.lock);
  4136. if (!x->done)
  4137. ret = 0;
  4138. else
  4139. x->done--;
  4140. spin_unlock_irq(&x->wait.lock);
  4141. return ret;
  4142. }
  4143. EXPORT_SYMBOL(try_wait_for_completion);
  4144. /**
  4145. * completion_done - Test to see if a completion has any waiters
  4146. * @x: completion structure
  4147. *
  4148. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4149. * 1 if there are no waiters.
  4150. *
  4151. */
  4152. bool completion_done(struct completion *x)
  4153. {
  4154. int ret = 1;
  4155. spin_lock_irq(&x->wait.lock);
  4156. if (!x->done)
  4157. ret = 0;
  4158. spin_unlock_irq(&x->wait.lock);
  4159. return ret;
  4160. }
  4161. EXPORT_SYMBOL(completion_done);
  4162. static long __sched
  4163. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4164. {
  4165. unsigned long flags;
  4166. wait_queue_t wait;
  4167. init_waitqueue_entry(&wait, current);
  4168. __set_current_state(state);
  4169. spin_lock_irqsave(&q->lock, flags);
  4170. __add_wait_queue(q, &wait);
  4171. spin_unlock(&q->lock);
  4172. timeout = schedule_timeout(timeout);
  4173. spin_lock_irq(&q->lock);
  4174. __remove_wait_queue(q, &wait);
  4175. spin_unlock_irqrestore(&q->lock, flags);
  4176. return timeout;
  4177. }
  4178. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4179. {
  4180. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4181. }
  4182. EXPORT_SYMBOL(interruptible_sleep_on);
  4183. long __sched
  4184. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4185. {
  4186. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4187. }
  4188. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4189. void __sched sleep_on(wait_queue_head_t *q)
  4190. {
  4191. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4192. }
  4193. EXPORT_SYMBOL(sleep_on);
  4194. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4195. {
  4196. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4197. }
  4198. EXPORT_SYMBOL(sleep_on_timeout);
  4199. #ifdef CONFIG_RT_MUTEXES
  4200. /*
  4201. * rt_mutex_setprio - set the current priority of a task
  4202. * @p: task
  4203. * @prio: prio value (kernel-internal form)
  4204. *
  4205. * This function changes the 'effective' priority of a task. It does
  4206. * not touch ->normal_prio like __setscheduler().
  4207. *
  4208. * Used by the rt_mutex code to implement priority inheritance logic.
  4209. */
  4210. void rt_mutex_setprio(struct task_struct *p, int prio)
  4211. {
  4212. unsigned long flags;
  4213. int oldprio, on_rq, running;
  4214. struct rq *rq;
  4215. const struct sched_class *prev_class = p->sched_class;
  4216. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4217. rq = task_rq_lock(p, &flags);
  4218. update_rq_clock(rq);
  4219. oldprio = p->prio;
  4220. on_rq = p->se.on_rq;
  4221. running = task_current(rq, p);
  4222. if (on_rq)
  4223. dequeue_task(rq, p, 0);
  4224. if (running)
  4225. p->sched_class->put_prev_task(rq, p);
  4226. if (rt_prio(prio))
  4227. p->sched_class = &rt_sched_class;
  4228. else
  4229. p->sched_class = &fair_sched_class;
  4230. p->prio = prio;
  4231. if (running)
  4232. p->sched_class->set_curr_task(rq);
  4233. if (on_rq) {
  4234. enqueue_task(rq, p, 0);
  4235. check_class_changed(rq, p, prev_class, oldprio, running);
  4236. }
  4237. task_rq_unlock(rq, &flags);
  4238. }
  4239. #endif
  4240. void set_user_nice(struct task_struct *p, long nice)
  4241. {
  4242. int old_prio, delta, on_rq;
  4243. unsigned long flags;
  4244. struct rq *rq;
  4245. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4246. return;
  4247. /*
  4248. * We have to be careful, if called from sys_setpriority(),
  4249. * the task might be in the middle of scheduling on another CPU.
  4250. */
  4251. rq = task_rq_lock(p, &flags);
  4252. update_rq_clock(rq);
  4253. /*
  4254. * The RT priorities are set via sched_setscheduler(), but we still
  4255. * allow the 'normal' nice value to be set - but as expected
  4256. * it wont have any effect on scheduling until the task is
  4257. * SCHED_FIFO/SCHED_RR:
  4258. */
  4259. if (task_has_rt_policy(p)) {
  4260. p->static_prio = NICE_TO_PRIO(nice);
  4261. goto out_unlock;
  4262. }
  4263. on_rq = p->se.on_rq;
  4264. if (on_rq)
  4265. dequeue_task(rq, p, 0);
  4266. p->static_prio = NICE_TO_PRIO(nice);
  4267. set_load_weight(p);
  4268. old_prio = p->prio;
  4269. p->prio = effective_prio(p);
  4270. delta = p->prio - old_prio;
  4271. if (on_rq) {
  4272. enqueue_task(rq, p, 0);
  4273. /*
  4274. * If the task increased its priority or is running and
  4275. * lowered its priority, then reschedule its CPU:
  4276. */
  4277. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4278. resched_task(rq->curr);
  4279. }
  4280. out_unlock:
  4281. task_rq_unlock(rq, &flags);
  4282. }
  4283. EXPORT_SYMBOL(set_user_nice);
  4284. /*
  4285. * can_nice - check if a task can reduce its nice value
  4286. * @p: task
  4287. * @nice: nice value
  4288. */
  4289. int can_nice(const struct task_struct *p, const int nice)
  4290. {
  4291. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4292. int nice_rlim = 20 - nice;
  4293. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4294. capable(CAP_SYS_NICE));
  4295. }
  4296. #ifdef __ARCH_WANT_SYS_NICE
  4297. /*
  4298. * sys_nice - change the priority of the current process.
  4299. * @increment: priority increment
  4300. *
  4301. * sys_setpriority is a more generic, but much slower function that
  4302. * does similar things.
  4303. */
  4304. asmlinkage long sys_nice(int increment)
  4305. {
  4306. long nice, retval;
  4307. /*
  4308. * Setpriority might change our priority at the same moment.
  4309. * We don't have to worry. Conceptually one call occurs first
  4310. * and we have a single winner.
  4311. */
  4312. if (increment < -40)
  4313. increment = -40;
  4314. if (increment > 40)
  4315. increment = 40;
  4316. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4317. if (nice < -20)
  4318. nice = -20;
  4319. if (nice > 19)
  4320. nice = 19;
  4321. if (increment < 0 && !can_nice(current, nice))
  4322. return -EPERM;
  4323. retval = security_task_setnice(current, nice);
  4324. if (retval)
  4325. return retval;
  4326. set_user_nice(current, nice);
  4327. return 0;
  4328. }
  4329. #endif
  4330. /**
  4331. * task_prio - return the priority value of a given task.
  4332. * @p: the task in question.
  4333. *
  4334. * This is the priority value as seen by users in /proc.
  4335. * RT tasks are offset by -200. Normal tasks are centered
  4336. * around 0, value goes from -16 to +15.
  4337. */
  4338. int task_prio(const struct task_struct *p)
  4339. {
  4340. return p->prio - MAX_RT_PRIO;
  4341. }
  4342. /**
  4343. * task_nice - return the nice value of a given task.
  4344. * @p: the task in question.
  4345. */
  4346. int task_nice(const struct task_struct *p)
  4347. {
  4348. return TASK_NICE(p);
  4349. }
  4350. EXPORT_SYMBOL(task_nice);
  4351. /**
  4352. * idle_cpu - is a given cpu idle currently?
  4353. * @cpu: the processor in question.
  4354. */
  4355. int idle_cpu(int cpu)
  4356. {
  4357. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4358. }
  4359. /**
  4360. * idle_task - return the idle task for a given cpu.
  4361. * @cpu: the processor in question.
  4362. */
  4363. struct task_struct *idle_task(int cpu)
  4364. {
  4365. return cpu_rq(cpu)->idle;
  4366. }
  4367. /**
  4368. * find_process_by_pid - find a process with a matching PID value.
  4369. * @pid: the pid in question.
  4370. */
  4371. static struct task_struct *find_process_by_pid(pid_t pid)
  4372. {
  4373. return pid ? find_task_by_vpid(pid) : current;
  4374. }
  4375. /* Actually do priority change: must hold rq lock. */
  4376. static void
  4377. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4378. {
  4379. BUG_ON(p->se.on_rq);
  4380. p->policy = policy;
  4381. switch (p->policy) {
  4382. case SCHED_NORMAL:
  4383. case SCHED_BATCH:
  4384. case SCHED_IDLE:
  4385. p->sched_class = &fair_sched_class;
  4386. break;
  4387. case SCHED_FIFO:
  4388. case SCHED_RR:
  4389. p->sched_class = &rt_sched_class;
  4390. break;
  4391. }
  4392. p->rt_priority = prio;
  4393. p->normal_prio = normal_prio(p);
  4394. /* we are holding p->pi_lock already */
  4395. p->prio = rt_mutex_getprio(p);
  4396. set_load_weight(p);
  4397. }
  4398. /*
  4399. * check the target process has a UID that matches the current process's
  4400. */
  4401. static bool check_same_owner(struct task_struct *p)
  4402. {
  4403. const struct cred *cred = current_cred(), *pcred;
  4404. bool match;
  4405. rcu_read_lock();
  4406. pcred = __task_cred(p);
  4407. match = (cred->euid == pcred->euid ||
  4408. cred->euid == pcred->uid);
  4409. rcu_read_unlock();
  4410. return match;
  4411. }
  4412. static int __sched_setscheduler(struct task_struct *p, int policy,
  4413. struct sched_param *param, bool user)
  4414. {
  4415. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4416. unsigned long flags;
  4417. const struct sched_class *prev_class = p->sched_class;
  4418. struct rq *rq;
  4419. /* may grab non-irq protected spin_locks */
  4420. BUG_ON(in_interrupt());
  4421. recheck:
  4422. /* double check policy once rq lock held */
  4423. if (policy < 0)
  4424. policy = oldpolicy = p->policy;
  4425. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4426. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4427. policy != SCHED_IDLE)
  4428. return -EINVAL;
  4429. /*
  4430. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4431. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4432. * SCHED_BATCH and SCHED_IDLE is 0.
  4433. */
  4434. if (param->sched_priority < 0 ||
  4435. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4436. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4437. return -EINVAL;
  4438. if (rt_policy(policy) != (param->sched_priority != 0))
  4439. return -EINVAL;
  4440. /*
  4441. * Allow unprivileged RT tasks to decrease priority:
  4442. */
  4443. if (user && !capable(CAP_SYS_NICE)) {
  4444. if (rt_policy(policy)) {
  4445. unsigned long rlim_rtprio;
  4446. if (!lock_task_sighand(p, &flags))
  4447. return -ESRCH;
  4448. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4449. unlock_task_sighand(p, &flags);
  4450. /* can't set/change the rt policy */
  4451. if (policy != p->policy && !rlim_rtprio)
  4452. return -EPERM;
  4453. /* can't increase priority */
  4454. if (param->sched_priority > p->rt_priority &&
  4455. param->sched_priority > rlim_rtprio)
  4456. return -EPERM;
  4457. }
  4458. /*
  4459. * Like positive nice levels, dont allow tasks to
  4460. * move out of SCHED_IDLE either:
  4461. */
  4462. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4463. return -EPERM;
  4464. /* can't change other user's priorities */
  4465. if (!check_same_owner(p))
  4466. return -EPERM;
  4467. }
  4468. if (user) {
  4469. #ifdef CONFIG_RT_GROUP_SCHED
  4470. /*
  4471. * Do not allow realtime tasks into groups that have no runtime
  4472. * assigned.
  4473. */
  4474. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4475. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4476. return -EPERM;
  4477. #endif
  4478. retval = security_task_setscheduler(p, policy, param);
  4479. if (retval)
  4480. return retval;
  4481. }
  4482. /*
  4483. * make sure no PI-waiters arrive (or leave) while we are
  4484. * changing the priority of the task:
  4485. */
  4486. spin_lock_irqsave(&p->pi_lock, flags);
  4487. /*
  4488. * To be able to change p->policy safely, the apropriate
  4489. * runqueue lock must be held.
  4490. */
  4491. rq = __task_rq_lock(p);
  4492. /* recheck policy now with rq lock held */
  4493. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4494. policy = oldpolicy = -1;
  4495. __task_rq_unlock(rq);
  4496. spin_unlock_irqrestore(&p->pi_lock, flags);
  4497. goto recheck;
  4498. }
  4499. update_rq_clock(rq);
  4500. on_rq = p->se.on_rq;
  4501. running = task_current(rq, p);
  4502. if (on_rq)
  4503. deactivate_task(rq, p, 0);
  4504. if (running)
  4505. p->sched_class->put_prev_task(rq, p);
  4506. oldprio = p->prio;
  4507. __setscheduler(rq, p, policy, param->sched_priority);
  4508. if (running)
  4509. p->sched_class->set_curr_task(rq);
  4510. if (on_rq) {
  4511. activate_task(rq, p, 0);
  4512. check_class_changed(rq, p, prev_class, oldprio, running);
  4513. }
  4514. __task_rq_unlock(rq);
  4515. spin_unlock_irqrestore(&p->pi_lock, flags);
  4516. rt_mutex_adjust_pi(p);
  4517. return 0;
  4518. }
  4519. /**
  4520. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4521. * @p: the task in question.
  4522. * @policy: new policy.
  4523. * @param: structure containing the new RT priority.
  4524. *
  4525. * NOTE that the task may be already dead.
  4526. */
  4527. int sched_setscheduler(struct task_struct *p, int policy,
  4528. struct sched_param *param)
  4529. {
  4530. return __sched_setscheduler(p, policy, param, true);
  4531. }
  4532. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4533. /**
  4534. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4535. * @p: the task in question.
  4536. * @policy: new policy.
  4537. * @param: structure containing the new RT priority.
  4538. *
  4539. * Just like sched_setscheduler, only don't bother checking if the
  4540. * current context has permission. For example, this is needed in
  4541. * stop_machine(): we create temporary high priority worker threads,
  4542. * but our caller might not have that capability.
  4543. */
  4544. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4545. struct sched_param *param)
  4546. {
  4547. return __sched_setscheduler(p, policy, param, false);
  4548. }
  4549. static int
  4550. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4551. {
  4552. struct sched_param lparam;
  4553. struct task_struct *p;
  4554. int retval;
  4555. if (!param || pid < 0)
  4556. return -EINVAL;
  4557. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4558. return -EFAULT;
  4559. rcu_read_lock();
  4560. retval = -ESRCH;
  4561. p = find_process_by_pid(pid);
  4562. if (p != NULL)
  4563. retval = sched_setscheduler(p, policy, &lparam);
  4564. rcu_read_unlock();
  4565. return retval;
  4566. }
  4567. /**
  4568. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4569. * @pid: the pid in question.
  4570. * @policy: new policy.
  4571. * @param: structure containing the new RT priority.
  4572. */
  4573. asmlinkage long
  4574. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4575. {
  4576. /* negative values for policy are not valid */
  4577. if (policy < 0)
  4578. return -EINVAL;
  4579. return do_sched_setscheduler(pid, policy, param);
  4580. }
  4581. /**
  4582. * sys_sched_setparam - set/change the RT priority of a thread
  4583. * @pid: the pid in question.
  4584. * @param: structure containing the new RT priority.
  4585. */
  4586. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4587. {
  4588. return do_sched_setscheduler(pid, -1, param);
  4589. }
  4590. /**
  4591. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4592. * @pid: the pid in question.
  4593. */
  4594. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4595. {
  4596. struct task_struct *p;
  4597. int retval;
  4598. if (pid < 0)
  4599. return -EINVAL;
  4600. retval = -ESRCH;
  4601. read_lock(&tasklist_lock);
  4602. p = find_process_by_pid(pid);
  4603. if (p) {
  4604. retval = security_task_getscheduler(p);
  4605. if (!retval)
  4606. retval = p->policy;
  4607. }
  4608. read_unlock(&tasklist_lock);
  4609. return retval;
  4610. }
  4611. /**
  4612. * sys_sched_getscheduler - get the RT priority of a thread
  4613. * @pid: the pid in question.
  4614. * @param: structure containing the RT priority.
  4615. */
  4616. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4617. {
  4618. struct sched_param lp;
  4619. struct task_struct *p;
  4620. int retval;
  4621. if (!param || pid < 0)
  4622. return -EINVAL;
  4623. read_lock(&tasklist_lock);
  4624. p = find_process_by_pid(pid);
  4625. retval = -ESRCH;
  4626. if (!p)
  4627. goto out_unlock;
  4628. retval = security_task_getscheduler(p);
  4629. if (retval)
  4630. goto out_unlock;
  4631. lp.sched_priority = p->rt_priority;
  4632. read_unlock(&tasklist_lock);
  4633. /*
  4634. * This one might sleep, we cannot do it with a spinlock held ...
  4635. */
  4636. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4637. return retval;
  4638. out_unlock:
  4639. read_unlock(&tasklist_lock);
  4640. return retval;
  4641. }
  4642. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4643. {
  4644. cpumask_t cpus_allowed;
  4645. cpumask_t new_mask = *in_mask;
  4646. struct task_struct *p;
  4647. int retval;
  4648. get_online_cpus();
  4649. read_lock(&tasklist_lock);
  4650. p = find_process_by_pid(pid);
  4651. if (!p) {
  4652. read_unlock(&tasklist_lock);
  4653. put_online_cpus();
  4654. return -ESRCH;
  4655. }
  4656. /*
  4657. * It is not safe to call set_cpus_allowed with the
  4658. * tasklist_lock held. We will bump the task_struct's
  4659. * usage count and then drop tasklist_lock.
  4660. */
  4661. get_task_struct(p);
  4662. read_unlock(&tasklist_lock);
  4663. retval = -EPERM;
  4664. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4665. goto out_unlock;
  4666. retval = security_task_setscheduler(p, 0, NULL);
  4667. if (retval)
  4668. goto out_unlock;
  4669. cpuset_cpus_allowed(p, &cpus_allowed);
  4670. cpus_and(new_mask, new_mask, cpus_allowed);
  4671. again:
  4672. retval = set_cpus_allowed_ptr(p, &new_mask);
  4673. if (!retval) {
  4674. cpuset_cpus_allowed(p, &cpus_allowed);
  4675. if (!cpus_subset(new_mask, cpus_allowed)) {
  4676. /*
  4677. * We must have raced with a concurrent cpuset
  4678. * update. Just reset the cpus_allowed to the
  4679. * cpuset's cpus_allowed
  4680. */
  4681. new_mask = cpus_allowed;
  4682. goto again;
  4683. }
  4684. }
  4685. out_unlock:
  4686. put_task_struct(p);
  4687. put_online_cpus();
  4688. return retval;
  4689. }
  4690. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4691. cpumask_t *new_mask)
  4692. {
  4693. if (len < sizeof(cpumask_t)) {
  4694. memset(new_mask, 0, sizeof(cpumask_t));
  4695. } else if (len > sizeof(cpumask_t)) {
  4696. len = sizeof(cpumask_t);
  4697. }
  4698. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4699. }
  4700. /**
  4701. * sys_sched_setaffinity - set the cpu affinity of a process
  4702. * @pid: pid of the process
  4703. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4704. * @user_mask_ptr: user-space pointer to the new cpu mask
  4705. */
  4706. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4707. unsigned long __user *user_mask_ptr)
  4708. {
  4709. cpumask_t new_mask;
  4710. int retval;
  4711. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4712. if (retval)
  4713. return retval;
  4714. return sched_setaffinity(pid, &new_mask);
  4715. }
  4716. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4717. {
  4718. struct task_struct *p;
  4719. int retval;
  4720. get_online_cpus();
  4721. read_lock(&tasklist_lock);
  4722. retval = -ESRCH;
  4723. p = find_process_by_pid(pid);
  4724. if (!p)
  4725. goto out_unlock;
  4726. retval = security_task_getscheduler(p);
  4727. if (retval)
  4728. goto out_unlock;
  4729. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4730. out_unlock:
  4731. read_unlock(&tasklist_lock);
  4732. put_online_cpus();
  4733. return retval;
  4734. }
  4735. /**
  4736. * sys_sched_getaffinity - get the cpu affinity of a process
  4737. * @pid: pid of the process
  4738. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4739. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4740. */
  4741. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4742. unsigned long __user *user_mask_ptr)
  4743. {
  4744. int ret;
  4745. cpumask_t mask;
  4746. if (len < sizeof(cpumask_t))
  4747. return -EINVAL;
  4748. ret = sched_getaffinity(pid, &mask);
  4749. if (ret < 0)
  4750. return ret;
  4751. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4752. return -EFAULT;
  4753. return sizeof(cpumask_t);
  4754. }
  4755. /**
  4756. * sys_sched_yield - yield the current processor to other threads.
  4757. *
  4758. * This function yields the current CPU to other tasks. If there are no
  4759. * other threads running on this CPU then this function will return.
  4760. */
  4761. asmlinkage long sys_sched_yield(void)
  4762. {
  4763. struct rq *rq = this_rq_lock();
  4764. schedstat_inc(rq, yld_count);
  4765. current->sched_class->yield_task(rq);
  4766. /*
  4767. * Since we are going to call schedule() anyway, there's
  4768. * no need to preempt or enable interrupts:
  4769. */
  4770. __release(rq->lock);
  4771. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4772. _raw_spin_unlock(&rq->lock);
  4773. preempt_enable_no_resched();
  4774. schedule();
  4775. return 0;
  4776. }
  4777. static void __cond_resched(void)
  4778. {
  4779. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4780. __might_sleep(__FILE__, __LINE__);
  4781. #endif
  4782. /*
  4783. * The BKS might be reacquired before we have dropped
  4784. * PREEMPT_ACTIVE, which could trigger a second
  4785. * cond_resched() call.
  4786. */
  4787. do {
  4788. add_preempt_count(PREEMPT_ACTIVE);
  4789. schedule();
  4790. sub_preempt_count(PREEMPT_ACTIVE);
  4791. } while (need_resched());
  4792. }
  4793. int __sched _cond_resched(void)
  4794. {
  4795. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4796. system_state == SYSTEM_RUNNING) {
  4797. __cond_resched();
  4798. return 1;
  4799. }
  4800. return 0;
  4801. }
  4802. EXPORT_SYMBOL(_cond_resched);
  4803. /*
  4804. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4805. * call schedule, and on return reacquire the lock.
  4806. *
  4807. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4808. * operations here to prevent schedule() from being called twice (once via
  4809. * spin_unlock(), once by hand).
  4810. */
  4811. int cond_resched_lock(spinlock_t *lock)
  4812. {
  4813. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4814. int ret = 0;
  4815. if (spin_needbreak(lock) || resched) {
  4816. spin_unlock(lock);
  4817. if (resched && need_resched())
  4818. __cond_resched();
  4819. else
  4820. cpu_relax();
  4821. ret = 1;
  4822. spin_lock(lock);
  4823. }
  4824. return ret;
  4825. }
  4826. EXPORT_SYMBOL(cond_resched_lock);
  4827. int __sched cond_resched_softirq(void)
  4828. {
  4829. BUG_ON(!in_softirq());
  4830. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4831. local_bh_enable();
  4832. __cond_resched();
  4833. local_bh_disable();
  4834. return 1;
  4835. }
  4836. return 0;
  4837. }
  4838. EXPORT_SYMBOL(cond_resched_softirq);
  4839. /**
  4840. * yield - yield the current processor to other threads.
  4841. *
  4842. * This is a shortcut for kernel-space yielding - it marks the
  4843. * thread runnable and calls sys_sched_yield().
  4844. */
  4845. void __sched yield(void)
  4846. {
  4847. set_current_state(TASK_RUNNING);
  4848. sys_sched_yield();
  4849. }
  4850. EXPORT_SYMBOL(yield);
  4851. /*
  4852. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4853. * that process accounting knows that this is a task in IO wait state.
  4854. *
  4855. * But don't do that if it is a deliberate, throttling IO wait (this task
  4856. * has set its backing_dev_info: the queue against which it should throttle)
  4857. */
  4858. void __sched io_schedule(void)
  4859. {
  4860. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4861. delayacct_blkio_start();
  4862. atomic_inc(&rq->nr_iowait);
  4863. schedule();
  4864. atomic_dec(&rq->nr_iowait);
  4865. delayacct_blkio_end();
  4866. }
  4867. EXPORT_SYMBOL(io_schedule);
  4868. long __sched io_schedule_timeout(long timeout)
  4869. {
  4870. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4871. long ret;
  4872. delayacct_blkio_start();
  4873. atomic_inc(&rq->nr_iowait);
  4874. ret = schedule_timeout(timeout);
  4875. atomic_dec(&rq->nr_iowait);
  4876. delayacct_blkio_end();
  4877. return ret;
  4878. }
  4879. /**
  4880. * sys_sched_get_priority_max - return maximum RT priority.
  4881. * @policy: scheduling class.
  4882. *
  4883. * this syscall returns the maximum rt_priority that can be used
  4884. * by a given scheduling class.
  4885. */
  4886. asmlinkage long sys_sched_get_priority_max(int policy)
  4887. {
  4888. int ret = -EINVAL;
  4889. switch (policy) {
  4890. case SCHED_FIFO:
  4891. case SCHED_RR:
  4892. ret = MAX_USER_RT_PRIO-1;
  4893. break;
  4894. case SCHED_NORMAL:
  4895. case SCHED_BATCH:
  4896. case SCHED_IDLE:
  4897. ret = 0;
  4898. break;
  4899. }
  4900. return ret;
  4901. }
  4902. /**
  4903. * sys_sched_get_priority_min - return minimum RT priority.
  4904. * @policy: scheduling class.
  4905. *
  4906. * this syscall returns the minimum rt_priority that can be used
  4907. * by a given scheduling class.
  4908. */
  4909. asmlinkage long sys_sched_get_priority_min(int policy)
  4910. {
  4911. int ret = -EINVAL;
  4912. switch (policy) {
  4913. case SCHED_FIFO:
  4914. case SCHED_RR:
  4915. ret = 1;
  4916. break;
  4917. case SCHED_NORMAL:
  4918. case SCHED_BATCH:
  4919. case SCHED_IDLE:
  4920. ret = 0;
  4921. }
  4922. return ret;
  4923. }
  4924. /**
  4925. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4926. * @pid: pid of the process.
  4927. * @interval: userspace pointer to the timeslice value.
  4928. *
  4929. * this syscall writes the default timeslice value of a given process
  4930. * into the user-space timespec buffer. A value of '0' means infinity.
  4931. */
  4932. asmlinkage
  4933. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4934. {
  4935. struct task_struct *p;
  4936. unsigned int time_slice;
  4937. int retval;
  4938. struct timespec t;
  4939. if (pid < 0)
  4940. return -EINVAL;
  4941. retval = -ESRCH;
  4942. read_lock(&tasklist_lock);
  4943. p = find_process_by_pid(pid);
  4944. if (!p)
  4945. goto out_unlock;
  4946. retval = security_task_getscheduler(p);
  4947. if (retval)
  4948. goto out_unlock;
  4949. /*
  4950. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4951. * tasks that are on an otherwise idle runqueue:
  4952. */
  4953. time_slice = 0;
  4954. if (p->policy == SCHED_RR) {
  4955. time_slice = DEF_TIMESLICE;
  4956. } else if (p->policy != SCHED_FIFO) {
  4957. struct sched_entity *se = &p->se;
  4958. unsigned long flags;
  4959. struct rq *rq;
  4960. rq = task_rq_lock(p, &flags);
  4961. if (rq->cfs.load.weight)
  4962. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4963. task_rq_unlock(rq, &flags);
  4964. }
  4965. read_unlock(&tasklist_lock);
  4966. jiffies_to_timespec(time_slice, &t);
  4967. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4968. return retval;
  4969. out_unlock:
  4970. read_unlock(&tasklist_lock);
  4971. return retval;
  4972. }
  4973. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4974. void sched_show_task(struct task_struct *p)
  4975. {
  4976. unsigned long free = 0;
  4977. unsigned state;
  4978. state = p->state ? __ffs(p->state) + 1 : 0;
  4979. printk(KERN_INFO "%-13.13s %c", p->comm,
  4980. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4981. #if BITS_PER_LONG == 32
  4982. if (state == TASK_RUNNING)
  4983. printk(KERN_CONT " running ");
  4984. else
  4985. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4986. #else
  4987. if (state == TASK_RUNNING)
  4988. printk(KERN_CONT " running task ");
  4989. else
  4990. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4991. #endif
  4992. #ifdef CONFIG_DEBUG_STACK_USAGE
  4993. {
  4994. unsigned long *n = end_of_stack(p);
  4995. while (!*n)
  4996. n++;
  4997. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4998. }
  4999. #endif
  5000. printk(KERN_CONT "%5lu %5d %6d\n", free,
  5001. task_pid_nr(p), task_pid_nr(p->real_parent));
  5002. show_stack(p, NULL);
  5003. }
  5004. void show_state_filter(unsigned long state_filter)
  5005. {
  5006. struct task_struct *g, *p;
  5007. #if BITS_PER_LONG == 32
  5008. printk(KERN_INFO
  5009. " task PC stack pid father\n");
  5010. #else
  5011. printk(KERN_INFO
  5012. " task PC stack pid father\n");
  5013. #endif
  5014. read_lock(&tasklist_lock);
  5015. do_each_thread(g, p) {
  5016. /*
  5017. * reset the NMI-timeout, listing all files on a slow
  5018. * console might take alot of time:
  5019. */
  5020. touch_nmi_watchdog();
  5021. if (!state_filter || (p->state & state_filter))
  5022. sched_show_task(p);
  5023. } while_each_thread(g, p);
  5024. touch_all_softlockup_watchdogs();
  5025. #ifdef CONFIG_SCHED_DEBUG
  5026. sysrq_sched_debug_show();
  5027. #endif
  5028. read_unlock(&tasklist_lock);
  5029. /*
  5030. * Only show locks if all tasks are dumped:
  5031. */
  5032. if (state_filter == -1)
  5033. debug_show_all_locks();
  5034. }
  5035. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5036. {
  5037. idle->sched_class = &idle_sched_class;
  5038. }
  5039. /**
  5040. * init_idle - set up an idle thread for a given CPU
  5041. * @idle: task in question
  5042. * @cpu: cpu the idle task belongs to
  5043. *
  5044. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5045. * flag, to make booting more robust.
  5046. */
  5047. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5048. {
  5049. struct rq *rq = cpu_rq(cpu);
  5050. unsigned long flags;
  5051. spin_lock_irqsave(&rq->lock, flags);
  5052. __sched_fork(idle);
  5053. idle->se.exec_start = sched_clock();
  5054. idle->prio = idle->normal_prio = MAX_PRIO;
  5055. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5056. __set_task_cpu(idle, cpu);
  5057. rq->curr = rq->idle = idle;
  5058. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5059. idle->oncpu = 1;
  5060. #endif
  5061. spin_unlock_irqrestore(&rq->lock, flags);
  5062. /* Set the preempt count _outside_ the spinlocks! */
  5063. #if defined(CONFIG_PREEMPT)
  5064. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5065. #else
  5066. task_thread_info(idle)->preempt_count = 0;
  5067. #endif
  5068. /*
  5069. * The idle tasks have their own, simple scheduling class:
  5070. */
  5071. idle->sched_class = &idle_sched_class;
  5072. ftrace_graph_init_task(idle);
  5073. }
  5074. /*
  5075. * In a system that switches off the HZ timer nohz_cpu_mask
  5076. * indicates which cpus entered this state. This is used
  5077. * in the rcu update to wait only for active cpus. For system
  5078. * which do not switch off the HZ timer nohz_cpu_mask should
  5079. * always be CPU_MASK_NONE.
  5080. */
  5081. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5082. /*
  5083. * Increase the granularity value when there are more CPUs,
  5084. * because with more CPUs the 'effective latency' as visible
  5085. * to users decreases. But the relationship is not linear,
  5086. * so pick a second-best guess by going with the log2 of the
  5087. * number of CPUs.
  5088. *
  5089. * This idea comes from the SD scheduler of Con Kolivas:
  5090. */
  5091. static inline void sched_init_granularity(void)
  5092. {
  5093. unsigned int factor = 1 + ilog2(num_online_cpus());
  5094. const unsigned long limit = 200000000;
  5095. sysctl_sched_min_granularity *= factor;
  5096. if (sysctl_sched_min_granularity > limit)
  5097. sysctl_sched_min_granularity = limit;
  5098. sysctl_sched_latency *= factor;
  5099. if (sysctl_sched_latency > limit)
  5100. sysctl_sched_latency = limit;
  5101. sysctl_sched_wakeup_granularity *= factor;
  5102. sysctl_sched_shares_ratelimit *= factor;
  5103. }
  5104. #ifdef CONFIG_SMP
  5105. /*
  5106. * This is how migration works:
  5107. *
  5108. * 1) we queue a struct migration_req structure in the source CPU's
  5109. * runqueue and wake up that CPU's migration thread.
  5110. * 2) we down() the locked semaphore => thread blocks.
  5111. * 3) migration thread wakes up (implicitly it forces the migrated
  5112. * thread off the CPU)
  5113. * 4) it gets the migration request and checks whether the migrated
  5114. * task is still in the wrong runqueue.
  5115. * 5) if it's in the wrong runqueue then the migration thread removes
  5116. * it and puts it into the right queue.
  5117. * 6) migration thread up()s the semaphore.
  5118. * 7) we wake up and the migration is done.
  5119. */
  5120. /*
  5121. * Change a given task's CPU affinity. Migrate the thread to a
  5122. * proper CPU and schedule it away if the CPU it's executing on
  5123. * is removed from the allowed bitmask.
  5124. *
  5125. * NOTE: the caller must have a valid reference to the task, the
  5126. * task must not exit() & deallocate itself prematurely. The
  5127. * call is not atomic; no spinlocks may be held.
  5128. */
  5129. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5130. {
  5131. struct migration_req req;
  5132. unsigned long flags;
  5133. struct rq *rq;
  5134. int ret = 0;
  5135. rq = task_rq_lock(p, &flags);
  5136. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5137. ret = -EINVAL;
  5138. goto out;
  5139. }
  5140. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5141. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5142. ret = -EINVAL;
  5143. goto out;
  5144. }
  5145. if (p->sched_class->set_cpus_allowed)
  5146. p->sched_class->set_cpus_allowed(p, new_mask);
  5147. else {
  5148. p->cpus_allowed = *new_mask;
  5149. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5150. }
  5151. /* Can the task run on the task's current CPU? If so, we're done */
  5152. if (cpu_isset(task_cpu(p), *new_mask))
  5153. goto out;
  5154. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5155. /* Need help from migration thread: drop lock and wait. */
  5156. task_rq_unlock(rq, &flags);
  5157. wake_up_process(rq->migration_thread);
  5158. wait_for_completion(&req.done);
  5159. tlb_migrate_finish(p->mm);
  5160. return 0;
  5161. }
  5162. out:
  5163. task_rq_unlock(rq, &flags);
  5164. return ret;
  5165. }
  5166. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5167. /*
  5168. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5169. * this because either it can't run here any more (set_cpus_allowed()
  5170. * away from this CPU, or CPU going down), or because we're
  5171. * attempting to rebalance this task on exec (sched_exec).
  5172. *
  5173. * So we race with normal scheduler movements, but that's OK, as long
  5174. * as the task is no longer on this CPU.
  5175. *
  5176. * Returns non-zero if task was successfully migrated.
  5177. */
  5178. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5179. {
  5180. struct rq *rq_dest, *rq_src;
  5181. int ret = 0, on_rq;
  5182. if (unlikely(!cpu_active(dest_cpu)))
  5183. return ret;
  5184. rq_src = cpu_rq(src_cpu);
  5185. rq_dest = cpu_rq(dest_cpu);
  5186. double_rq_lock(rq_src, rq_dest);
  5187. /* Already moved. */
  5188. if (task_cpu(p) != src_cpu)
  5189. goto done;
  5190. /* Affinity changed (again). */
  5191. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5192. goto fail;
  5193. on_rq = p->se.on_rq;
  5194. if (on_rq)
  5195. deactivate_task(rq_src, p, 0);
  5196. set_task_cpu(p, dest_cpu);
  5197. if (on_rq) {
  5198. activate_task(rq_dest, p, 0);
  5199. check_preempt_curr(rq_dest, p, 0);
  5200. }
  5201. done:
  5202. ret = 1;
  5203. fail:
  5204. double_rq_unlock(rq_src, rq_dest);
  5205. return ret;
  5206. }
  5207. /*
  5208. * migration_thread - this is a highprio system thread that performs
  5209. * thread migration by bumping thread off CPU then 'pushing' onto
  5210. * another runqueue.
  5211. */
  5212. static int migration_thread(void *data)
  5213. {
  5214. int cpu = (long)data;
  5215. struct rq *rq;
  5216. rq = cpu_rq(cpu);
  5217. BUG_ON(rq->migration_thread != current);
  5218. set_current_state(TASK_INTERRUPTIBLE);
  5219. while (!kthread_should_stop()) {
  5220. struct migration_req *req;
  5221. struct list_head *head;
  5222. spin_lock_irq(&rq->lock);
  5223. if (cpu_is_offline(cpu)) {
  5224. spin_unlock_irq(&rq->lock);
  5225. goto wait_to_die;
  5226. }
  5227. if (rq->active_balance) {
  5228. active_load_balance(rq, cpu);
  5229. rq->active_balance = 0;
  5230. }
  5231. head = &rq->migration_queue;
  5232. if (list_empty(head)) {
  5233. spin_unlock_irq(&rq->lock);
  5234. schedule();
  5235. set_current_state(TASK_INTERRUPTIBLE);
  5236. continue;
  5237. }
  5238. req = list_entry(head->next, struct migration_req, list);
  5239. list_del_init(head->next);
  5240. spin_unlock(&rq->lock);
  5241. __migrate_task(req->task, cpu, req->dest_cpu);
  5242. local_irq_enable();
  5243. complete(&req->done);
  5244. }
  5245. __set_current_state(TASK_RUNNING);
  5246. return 0;
  5247. wait_to_die:
  5248. /* Wait for kthread_stop */
  5249. set_current_state(TASK_INTERRUPTIBLE);
  5250. while (!kthread_should_stop()) {
  5251. schedule();
  5252. set_current_state(TASK_INTERRUPTIBLE);
  5253. }
  5254. __set_current_state(TASK_RUNNING);
  5255. return 0;
  5256. }
  5257. #ifdef CONFIG_HOTPLUG_CPU
  5258. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5259. {
  5260. int ret;
  5261. local_irq_disable();
  5262. ret = __migrate_task(p, src_cpu, dest_cpu);
  5263. local_irq_enable();
  5264. return ret;
  5265. }
  5266. /*
  5267. * Figure out where task on dead CPU should go, use force if necessary.
  5268. */
  5269. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5270. {
  5271. unsigned long flags;
  5272. cpumask_t mask;
  5273. struct rq *rq;
  5274. int dest_cpu;
  5275. do {
  5276. /* On same node? */
  5277. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5278. cpus_and(mask, mask, p->cpus_allowed);
  5279. dest_cpu = any_online_cpu(mask);
  5280. /* On any allowed CPU? */
  5281. if (dest_cpu >= nr_cpu_ids)
  5282. dest_cpu = any_online_cpu(p->cpus_allowed);
  5283. /* No more Mr. Nice Guy. */
  5284. if (dest_cpu >= nr_cpu_ids) {
  5285. cpumask_t cpus_allowed;
  5286. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5287. /*
  5288. * Try to stay on the same cpuset, where the
  5289. * current cpuset may be a subset of all cpus.
  5290. * The cpuset_cpus_allowed_locked() variant of
  5291. * cpuset_cpus_allowed() will not block. It must be
  5292. * called within calls to cpuset_lock/cpuset_unlock.
  5293. */
  5294. rq = task_rq_lock(p, &flags);
  5295. p->cpus_allowed = cpus_allowed;
  5296. dest_cpu = any_online_cpu(p->cpus_allowed);
  5297. task_rq_unlock(rq, &flags);
  5298. /*
  5299. * Don't tell them about moving exiting tasks or
  5300. * kernel threads (both mm NULL), since they never
  5301. * leave kernel.
  5302. */
  5303. if (p->mm && printk_ratelimit()) {
  5304. printk(KERN_INFO "process %d (%s) no "
  5305. "longer affine to cpu%d\n",
  5306. task_pid_nr(p), p->comm, dead_cpu);
  5307. }
  5308. }
  5309. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5310. }
  5311. /*
  5312. * While a dead CPU has no uninterruptible tasks queued at this point,
  5313. * it might still have a nonzero ->nr_uninterruptible counter, because
  5314. * for performance reasons the counter is not stricly tracking tasks to
  5315. * their home CPUs. So we just add the counter to another CPU's counter,
  5316. * to keep the global sum constant after CPU-down:
  5317. */
  5318. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5319. {
  5320. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5321. unsigned long flags;
  5322. local_irq_save(flags);
  5323. double_rq_lock(rq_src, rq_dest);
  5324. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5325. rq_src->nr_uninterruptible = 0;
  5326. double_rq_unlock(rq_src, rq_dest);
  5327. local_irq_restore(flags);
  5328. }
  5329. /* Run through task list and migrate tasks from the dead cpu. */
  5330. static void migrate_live_tasks(int src_cpu)
  5331. {
  5332. struct task_struct *p, *t;
  5333. read_lock(&tasklist_lock);
  5334. do_each_thread(t, p) {
  5335. if (p == current)
  5336. continue;
  5337. if (task_cpu(p) == src_cpu)
  5338. move_task_off_dead_cpu(src_cpu, p);
  5339. } while_each_thread(t, p);
  5340. read_unlock(&tasklist_lock);
  5341. }
  5342. /*
  5343. * Schedules idle task to be the next runnable task on current CPU.
  5344. * It does so by boosting its priority to highest possible.
  5345. * Used by CPU offline code.
  5346. */
  5347. void sched_idle_next(void)
  5348. {
  5349. int this_cpu = smp_processor_id();
  5350. struct rq *rq = cpu_rq(this_cpu);
  5351. struct task_struct *p = rq->idle;
  5352. unsigned long flags;
  5353. /* cpu has to be offline */
  5354. BUG_ON(cpu_online(this_cpu));
  5355. /*
  5356. * Strictly not necessary since rest of the CPUs are stopped by now
  5357. * and interrupts disabled on the current cpu.
  5358. */
  5359. spin_lock_irqsave(&rq->lock, flags);
  5360. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5361. update_rq_clock(rq);
  5362. activate_task(rq, p, 0);
  5363. spin_unlock_irqrestore(&rq->lock, flags);
  5364. }
  5365. /*
  5366. * Ensures that the idle task is using init_mm right before its cpu goes
  5367. * offline.
  5368. */
  5369. void idle_task_exit(void)
  5370. {
  5371. struct mm_struct *mm = current->active_mm;
  5372. BUG_ON(cpu_online(smp_processor_id()));
  5373. if (mm != &init_mm)
  5374. switch_mm(mm, &init_mm, current);
  5375. mmdrop(mm);
  5376. }
  5377. /* called under rq->lock with disabled interrupts */
  5378. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5379. {
  5380. struct rq *rq = cpu_rq(dead_cpu);
  5381. /* Must be exiting, otherwise would be on tasklist. */
  5382. BUG_ON(!p->exit_state);
  5383. /* Cannot have done final schedule yet: would have vanished. */
  5384. BUG_ON(p->state == TASK_DEAD);
  5385. get_task_struct(p);
  5386. /*
  5387. * Drop lock around migration; if someone else moves it,
  5388. * that's OK. No task can be added to this CPU, so iteration is
  5389. * fine.
  5390. */
  5391. spin_unlock_irq(&rq->lock);
  5392. move_task_off_dead_cpu(dead_cpu, p);
  5393. spin_lock_irq(&rq->lock);
  5394. put_task_struct(p);
  5395. }
  5396. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5397. static void migrate_dead_tasks(unsigned int dead_cpu)
  5398. {
  5399. struct rq *rq = cpu_rq(dead_cpu);
  5400. struct task_struct *next;
  5401. for ( ; ; ) {
  5402. if (!rq->nr_running)
  5403. break;
  5404. update_rq_clock(rq);
  5405. next = pick_next_task(rq, rq->curr);
  5406. if (!next)
  5407. break;
  5408. next->sched_class->put_prev_task(rq, next);
  5409. migrate_dead(dead_cpu, next);
  5410. }
  5411. }
  5412. #endif /* CONFIG_HOTPLUG_CPU */
  5413. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5414. static struct ctl_table sd_ctl_dir[] = {
  5415. {
  5416. .procname = "sched_domain",
  5417. .mode = 0555,
  5418. },
  5419. {0, },
  5420. };
  5421. static struct ctl_table sd_ctl_root[] = {
  5422. {
  5423. .ctl_name = CTL_KERN,
  5424. .procname = "kernel",
  5425. .mode = 0555,
  5426. .child = sd_ctl_dir,
  5427. },
  5428. {0, },
  5429. };
  5430. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5431. {
  5432. struct ctl_table *entry =
  5433. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5434. return entry;
  5435. }
  5436. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5437. {
  5438. struct ctl_table *entry;
  5439. /*
  5440. * In the intermediate directories, both the child directory and
  5441. * procname are dynamically allocated and could fail but the mode
  5442. * will always be set. In the lowest directory the names are
  5443. * static strings and all have proc handlers.
  5444. */
  5445. for (entry = *tablep; entry->mode; entry++) {
  5446. if (entry->child)
  5447. sd_free_ctl_entry(&entry->child);
  5448. if (entry->proc_handler == NULL)
  5449. kfree(entry->procname);
  5450. }
  5451. kfree(*tablep);
  5452. *tablep = NULL;
  5453. }
  5454. static void
  5455. set_table_entry(struct ctl_table *entry,
  5456. const char *procname, void *data, int maxlen,
  5457. mode_t mode, proc_handler *proc_handler)
  5458. {
  5459. entry->procname = procname;
  5460. entry->data = data;
  5461. entry->maxlen = maxlen;
  5462. entry->mode = mode;
  5463. entry->proc_handler = proc_handler;
  5464. }
  5465. static struct ctl_table *
  5466. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5467. {
  5468. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5469. if (table == NULL)
  5470. return NULL;
  5471. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5472. sizeof(long), 0644, proc_doulongvec_minmax);
  5473. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5474. sizeof(long), 0644, proc_doulongvec_minmax);
  5475. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5476. sizeof(int), 0644, proc_dointvec_minmax);
  5477. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5478. sizeof(int), 0644, proc_dointvec_minmax);
  5479. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5480. sizeof(int), 0644, proc_dointvec_minmax);
  5481. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5482. sizeof(int), 0644, proc_dointvec_minmax);
  5483. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5484. sizeof(int), 0644, proc_dointvec_minmax);
  5485. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5486. sizeof(int), 0644, proc_dointvec_minmax);
  5487. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5488. sizeof(int), 0644, proc_dointvec_minmax);
  5489. set_table_entry(&table[9], "cache_nice_tries",
  5490. &sd->cache_nice_tries,
  5491. sizeof(int), 0644, proc_dointvec_minmax);
  5492. set_table_entry(&table[10], "flags", &sd->flags,
  5493. sizeof(int), 0644, proc_dointvec_minmax);
  5494. set_table_entry(&table[11], "name", sd->name,
  5495. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5496. /* &table[12] is terminator */
  5497. return table;
  5498. }
  5499. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5500. {
  5501. struct ctl_table *entry, *table;
  5502. struct sched_domain *sd;
  5503. int domain_num = 0, i;
  5504. char buf[32];
  5505. for_each_domain(cpu, sd)
  5506. domain_num++;
  5507. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5508. if (table == NULL)
  5509. return NULL;
  5510. i = 0;
  5511. for_each_domain(cpu, sd) {
  5512. snprintf(buf, 32, "domain%d", i);
  5513. entry->procname = kstrdup(buf, GFP_KERNEL);
  5514. entry->mode = 0555;
  5515. entry->child = sd_alloc_ctl_domain_table(sd);
  5516. entry++;
  5517. i++;
  5518. }
  5519. return table;
  5520. }
  5521. static struct ctl_table_header *sd_sysctl_header;
  5522. static void register_sched_domain_sysctl(void)
  5523. {
  5524. int i, cpu_num = num_online_cpus();
  5525. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5526. char buf[32];
  5527. WARN_ON(sd_ctl_dir[0].child);
  5528. sd_ctl_dir[0].child = entry;
  5529. if (entry == NULL)
  5530. return;
  5531. for_each_online_cpu(i) {
  5532. snprintf(buf, 32, "cpu%d", i);
  5533. entry->procname = kstrdup(buf, GFP_KERNEL);
  5534. entry->mode = 0555;
  5535. entry->child = sd_alloc_ctl_cpu_table(i);
  5536. entry++;
  5537. }
  5538. WARN_ON(sd_sysctl_header);
  5539. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5540. }
  5541. /* may be called multiple times per register */
  5542. static void unregister_sched_domain_sysctl(void)
  5543. {
  5544. if (sd_sysctl_header)
  5545. unregister_sysctl_table(sd_sysctl_header);
  5546. sd_sysctl_header = NULL;
  5547. if (sd_ctl_dir[0].child)
  5548. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5549. }
  5550. #else
  5551. static void register_sched_domain_sysctl(void)
  5552. {
  5553. }
  5554. static void unregister_sched_domain_sysctl(void)
  5555. {
  5556. }
  5557. #endif
  5558. static void set_rq_online(struct rq *rq)
  5559. {
  5560. if (!rq->online) {
  5561. const struct sched_class *class;
  5562. cpu_set(rq->cpu, rq->rd->online);
  5563. rq->online = 1;
  5564. for_each_class(class) {
  5565. if (class->rq_online)
  5566. class->rq_online(rq);
  5567. }
  5568. }
  5569. }
  5570. static void set_rq_offline(struct rq *rq)
  5571. {
  5572. if (rq->online) {
  5573. const struct sched_class *class;
  5574. for_each_class(class) {
  5575. if (class->rq_offline)
  5576. class->rq_offline(rq);
  5577. }
  5578. cpu_clear(rq->cpu, rq->rd->online);
  5579. rq->online = 0;
  5580. }
  5581. }
  5582. /*
  5583. * migration_call - callback that gets triggered when a CPU is added.
  5584. * Here we can start up the necessary migration thread for the new CPU.
  5585. */
  5586. static int __cpuinit
  5587. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5588. {
  5589. struct task_struct *p;
  5590. int cpu = (long)hcpu;
  5591. unsigned long flags;
  5592. struct rq *rq;
  5593. switch (action) {
  5594. case CPU_UP_PREPARE:
  5595. case CPU_UP_PREPARE_FROZEN:
  5596. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5597. if (IS_ERR(p))
  5598. return NOTIFY_BAD;
  5599. kthread_bind(p, cpu);
  5600. /* Must be high prio: stop_machine expects to yield to it. */
  5601. rq = task_rq_lock(p, &flags);
  5602. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5603. task_rq_unlock(rq, &flags);
  5604. cpu_rq(cpu)->migration_thread = p;
  5605. break;
  5606. case CPU_ONLINE:
  5607. case CPU_ONLINE_FROZEN:
  5608. /* Strictly unnecessary, as first user will wake it. */
  5609. wake_up_process(cpu_rq(cpu)->migration_thread);
  5610. /* Update our root-domain */
  5611. rq = cpu_rq(cpu);
  5612. spin_lock_irqsave(&rq->lock, flags);
  5613. if (rq->rd) {
  5614. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5615. set_rq_online(rq);
  5616. }
  5617. spin_unlock_irqrestore(&rq->lock, flags);
  5618. break;
  5619. #ifdef CONFIG_HOTPLUG_CPU
  5620. case CPU_UP_CANCELED:
  5621. case CPU_UP_CANCELED_FROZEN:
  5622. if (!cpu_rq(cpu)->migration_thread)
  5623. break;
  5624. /* Unbind it from offline cpu so it can run. Fall thru. */
  5625. kthread_bind(cpu_rq(cpu)->migration_thread,
  5626. any_online_cpu(cpu_online_map));
  5627. kthread_stop(cpu_rq(cpu)->migration_thread);
  5628. cpu_rq(cpu)->migration_thread = NULL;
  5629. break;
  5630. case CPU_DEAD:
  5631. case CPU_DEAD_FROZEN:
  5632. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5633. migrate_live_tasks(cpu);
  5634. rq = cpu_rq(cpu);
  5635. kthread_stop(rq->migration_thread);
  5636. rq->migration_thread = NULL;
  5637. /* Idle task back to normal (off runqueue, low prio) */
  5638. spin_lock_irq(&rq->lock);
  5639. update_rq_clock(rq);
  5640. deactivate_task(rq, rq->idle, 0);
  5641. rq->idle->static_prio = MAX_PRIO;
  5642. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5643. rq->idle->sched_class = &idle_sched_class;
  5644. migrate_dead_tasks(cpu);
  5645. spin_unlock_irq(&rq->lock);
  5646. cpuset_unlock();
  5647. migrate_nr_uninterruptible(rq);
  5648. BUG_ON(rq->nr_running != 0);
  5649. /*
  5650. * No need to migrate the tasks: it was best-effort if
  5651. * they didn't take sched_hotcpu_mutex. Just wake up
  5652. * the requestors.
  5653. */
  5654. spin_lock_irq(&rq->lock);
  5655. while (!list_empty(&rq->migration_queue)) {
  5656. struct migration_req *req;
  5657. req = list_entry(rq->migration_queue.next,
  5658. struct migration_req, list);
  5659. list_del_init(&req->list);
  5660. spin_unlock_irq(&rq->lock);
  5661. complete(&req->done);
  5662. spin_lock_irq(&rq->lock);
  5663. }
  5664. spin_unlock_irq(&rq->lock);
  5665. break;
  5666. case CPU_DYING:
  5667. case CPU_DYING_FROZEN:
  5668. /* Update our root-domain */
  5669. rq = cpu_rq(cpu);
  5670. spin_lock_irqsave(&rq->lock, flags);
  5671. if (rq->rd) {
  5672. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5673. set_rq_offline(rq);
  5674. }
  5675. spin_unlock_irqrestore(&rq->lock, flags);
  5676. break;
  5677. #endif
  5678. }
  5679. return NOTIFY_OK;
  5680. }
  5681. /* Register at highest priority so that task migration (migrate_all_tasks)
  5682. * happens before everything else.
  5683. */
  5684. static struct notifier_block __cpuinitdata migration_notifier = {
  5685. .notifier_call = migration_call,
  5686. .priority = 10
  5687. };
  5688. static int __init migration_init(void)
  5689. {
  5690. void *cpu = (void *)(long)smp_processor_id();
  5691. int err;
  5692. /* Start one for the boot CPU: */
  5693. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5694. BUG_ON(err == NOTIFY_BAD);
  5695. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5696. register_cpu_notifier(&migration_notifier);
  5697. return err;
  5698. }
  5699. early_initcall(migration_init);
  5700. #endif
  5701. #ifdef CONFIG_SMP
  5702. #ifdef CONFIG_SCHED_DEBUG
  5703. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5704. cpumask_t *groupmask)
  5705. {
  5706. struct sched_group *group = sd->groups;
  5707. char str[256];
  5708. cpulist_scnprintf(str, sizeof(str), sd->span);
  5709. cpus_clear(*groupmask);
  5710. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5711. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5712. printk("does not load-balance\n");
  5713. if (sd->parent)
  5714. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5715. " has parent");
  5716. return -1;
  5717. }
  5718. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5719. if (!cpu_isset(cpu, sd->span)) {
  5720. printk(KERN_ERR "ERROR: domain->span does not contain "
  5721. "CPU%d\n", cpu);
  5722. }
  5723. if (!cpu_isset(cpu, group->cpumask)) {
  5724. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5725. " CPU%d\n", cpu);
  5726. }
  5727. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5728. do {
  5729. if (!group) {
  5730. printk("\n");
  5731. printk(KERN_ERR "ERROR: group is NULL\n");
  5732. break;
  5733. }
  5734. if (!group->__cpu_power) {
  5735. printk(KERN_CONT "\n");
  5736. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5737. "set\n");
  5738. break;
  5739. }
  5740. if (!cpus_weight(group->cpumask)) {
  5741. printk(KERN_CONT "\n");
  5742. printk(KERN_ERR "ERROR: empty group\n");
  5743. break;
  5744. }
  5745. if (cpus_intersects(*groupmask, group->cpumask)) {
  5746. printk(KERN_CONT "\n");
  5747. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5748. break;
  5749. }
  5750. cpus_or(*groupmask, *groupmask, group->cpumask);
  5751. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5752. printk(KERN_CONT " %s", str);
  5753. group = group->next;
  5754. } while (group != sd->groups);
  5755. printk(KERN_CONT "\n");
  5756. if (!cpus_equal(sd->span, *groupmask))
  5757. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5758. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5759. printk(KERN_ERR "ERROR: parent span is not a superset "
  5760. "of domain->span\n");
  5761. return 0;
  5762. }
  5763. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5764. {
  5765. cpumask_t *groupmask;
  5766. int level = 0;
  5767. if (!sd) {
  5768. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5769. return;
  5770. }
  5771. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5772. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5773. if (!groupmask) {
  5774. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5775. return;
  5776. }
  5777. for (;;) {
  5778. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5779. break;
  5780. level++;
  5781. sd = sd->parent;
  5782. if (!sd)
  5783. break;
  5784. }
  5785. kfree(groupmask);
  5786. }
  5787. #else /* !CONFIG_SCHED_DEBUG */
  5788. # define sched_domain_debug(sd, cpu) do { } while (0)
  5789. #endif /* CONFIG_SCHED_DEBUG */
  5790. static int sd_degenerate(struct sched_domain *sd)
  5791. {
  5792. if (cpus_weight(sd->span) == 1)
  5793. return 1;
  5794. /* Following flags need at least 2 groups */
  5795. if (sd->flags & (SD_LOAD_BALANCE |
  5796. SD_BALANCE_NEWIDLE |
  5797. SD_BALANCE_FORK |
  5798. SD_BALANCE_EXEC |
  5799. SD_SHARE_CPUPOWER |
  5800. SD_SHARE_PKG_RESOURCES)) {
  5801. if (sd->groups != sd->groups->next)
  5802. return 0;
  5803. }
  5804. /* Following flags don't use groups */
  5805. if (sd->flags & (SD_WAKE_IDLE |
  5806. SD_WAKE_AFFINE |
  5807. SD_WAKE_BALANCE))
  5808. return 0;
  5809. return 1;
  5810. }
  5811. static int
  5812. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5813. {
  5814. unsigned long cflags = sd->flags, pflags = parent->flags;
  5815. if (sd_degenerate(parent))
  5816. return 1;
  5817. if (!cpus_equal(sd->span, parent->span))
  5818. return 0;
  5819. /* Does parent contain flags not in child? */
  5820. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5821. if (cflags & SD_WAKE_AFFINE)
  5822. pflags &= ~SD_WAKE_BALANCE;
  5823. /* Flags needing groups don't count if only 1 group in parent */
  5824. if (parent->groups == parent->groups->next) {
  5825. pflags &= ~(SD_LOAD_BALANCE |
  5826. SD_BALANCE_NEWIDLE |
  5827. SD_BALANCE_FORK |
  5828. SD_BALANCE_EXEC |
  5829. SD_SHARE_CPUPOWER |
  5830. SD_SHARE_PKG_RESOURCES);
  5831. if (nr_node_ids == 1)
  5832. pflags &= ~SD_SERIALIZE;
  5833. }
  5834. if (~cflags & pflags)
  5835. return 0;
  5836. return 1;
  5837. }
  5838. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5839. {
  5840. unsigned long flags;
  5841. spin_lock_irqsave(&rq->lock, flags);
  5842. if (rq->rd) {
  5843. struct root_domain *old_rd = rq->rd;
  5844. if (cpu_isset(rq->cpu, old_rd->online))
  5845. set_rq_offline(rq);
  5846. cpu_clear(rq->cpu, old_rd->span);
  5847. if (atomic_dec_and_test(&old_rd->refcount))
  5848. kfree(old_rd);
  5849. }
  5850. atomic_inc(&rd->refcount);
  5851. rq->rd = rd;
  5852. cpu_set(rq->cpu, rd->span);
  5853. if (cpu_isset(rq->cpu, cpu_online_map))
  5854. set_rq_online(rq);
  5855. spin_unlock_irqrestore(&rq->lock, flags);
  5856. }
  5857. static void init_rootdomain(struct root_domain *rd)
  5858. {
  5859. memset(rd, 0, sizeof(*rd));
  5860. cpus_clear(rd->span);
  5861. cpus_clear(rd->online);
  5862. cpupri_init(&rd->cpupri);
  5863. }
  5864. static void init_defrootdomain(void)
  5865. {
  5866. init_rootdomain(&def_root_domain);
  5867. atomic_set(&def_root_domain.refcount, 1);
  5868. }
  5869. static struct root_domain *alloc_rootdomain(void)
  5870. {
  5871. struct root_domain *rd;
  5872. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5873. if (!rd)
  5874. return NULL;
  5875. init_rootdomain(rd);
  5876. return rd;
  5877. }
  5878. /*
  5879. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5880. * hold the hotplug lock.
  5881. */
  5882. static void
  5883. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5884. {
  5885. struct rq *rq = cpu_rq(cpu);
  5886. struct sched_domain *tmp;
  5887. /* Remove the sched domains which do not contribute to scheduling. */
  5888. for (tmp = sd; tmp; ) {
  5889. struct sched_domain *parent = tmp->parent;
  5890. if (!parent)
  5891. break;
  5892. if (sd_parent_degenerate(tmp, parent)) {
  5893. tmp->parent = parent->parent;
  5894. if (parent->parent)
  5895. parent->parent->child = tmp;
  5896. } else
  5897. tmp = tmp->parent;
  5898. }
  5899. if (sd && sd_degenerate(sd)) {
  5900. sd = sd->parent;
  5901. if (sd)
  5902. sd->child = NULL;
  5903. }
  5904. sched_domain_debug(sd, cpu);
  5905. rq_attach_root(rq, rd);
  5906. rcu_assign_pointer(rq->sd, sd);
  5907. }
  5908. /* cpus with isolated domains */
  5909. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5910. /* Setup the mask of cpus configured for isolated domains */
  5911. static int __init isolated_cpu_setup(char *str)
  5912. {
  5913. static int __initdata ints[NR_CPUS];
  5914. int i;
  5915. str = get_options(str, ARRAY_SIZE(ints), ints);
  5916. cpus_clear(cpu_isolated_map);
  5917. for (i = 1; i <= ints[0]; i++)
  5918. if (ints[i] < NR_CPUS)
  5919. cpu_set(ints[i], cpu_isolated_map);
  5920. return 1;
  5921. }
  5922. __setup("isolcpus=", isolated_cpu_setup);
  5923. /*
  5924. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5925. * to a function which identifies what group(along with sched group) a CPU
  5926. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5927. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5928. *
  5929. * init_sched_build_groups will build a circular linked list of the groups
  5930. * covered by the given span, and will set each group's ->cpumask correctly,
  5931. * and ->cpu_power to 0.
  5932. */
  5933. static void
  5934. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5935. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5936. struct sched_group **sg,
  5937. cpumask_t *tmpmask),
  5938. cpumask_t *covered, cpumask_t *tmpmask)
  5939. {
  5940. struct sched_group *first = NULL, *last = NULL;
  5941. int i;
  5942. cpus_clear(*covered);
  5943. for_each_cpu_mask_nr(i, *span) {
  5944. struct sched_group *sg;
  5945. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5946. int j;
  5947. if (cpu_isset(i, *covered))
  5948. continue;
  5949. cpus_clear(sg->cpumask);
  5950. sg->__cpu_power = 0;
  5951. for_each_cpu_mask_nr(j, *span) {
  5952. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5953. continue;
  5954. cpu_set(j, *covered);
  5955. cpu_set(j, sg->cpumask);
  5956. }
  5957. if (!first)
  5958. first = sg;
  5959. if (last)
  5960. last->next = sg;
  5961. last = sg;
  5962. }
  5963. last->next = first;
  5964. }
  5965. #define SD_NODES_PER_DOMAIN 16
  5966. #ifdef CONFIG_NUMA
  5967. /**
  5968. * find_next_best_node - find the next node to include in a sched_domain
  5969. * @node: node whose sched_domain we're building
  5970. * @used_nodes: nodes already in the sched_domain
  5971. *
  5972. * Find the next node to include in a given scheduling domain. Simply
  5973. * finds the closest node not already in the @used_nodes map.
  5974. *
  5975. * Should use nodemask_t.
  5976. */
  5977. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5978. {
  5979. int i, n, val, min_val, best_node = 0;
  5980. min_val = INT_MAX;
  5981. for (i = 0; i < nr_node_ids; i++) {
  5982. /* Start at @node */
  5983. n = (node + i) % nr_node_ids;
  5984. if (!nr_cpus_node(n))
  5985. continue;
  5986. /* Skip already used nodes */
  5987. if (node_isset(n, *used_nodes))
  5988. continue;
  5989. /* Simple min distance search */
  5990. val = node_distance(node, n);
  5991. if (val < min_val) {
  5992. min_val = val;
  5993. best_node = n;
  5994. }
  5995. }
  5996. node_set(best_node, *used_nodes);
  5997. return best_node;
  5998. }
  5999. /**
  6000. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6001. * @node: node whose cpumask we're constructing
  6002. * @span: resulting cpumask
  6003. *
  6004. * Given a node, construct a good cpumask for its sched_domain to span. It
  6005. * should be one that prevents unnecessary balancing, but also spreads tasks
  6006. * out optimally.
  6007. */
  6008. static void sched_domain_node_span(int node, cpumask_t *span)
  6009. {
  6010. nodemask_t used_nodes;
  6011. node_to_cpumask_ptr(nodemask, node);
  6012. int i;
  6013. cpus_clear(*span);
  6014. nodes_clear(used_nodes);
  6015. cpus_or(*span, *span, *nodemask);
  6016. node_set(node, used_nodes);
  6017. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6018. int next_node = find_next_best_node(node, &used_nodes);
  6019. node_to_cpumask_ptr_next(nodemask, next_node);
  6020. cpus_or(*span, *span, *nodemask);
  6021. }
  6022. }
  6023. #endif /* CONFIG_NUMA */
  6024. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6025. /*
  6026. * SMT sched-domains:
  6027. */
  6028. #ifdef CONFIG_SCHED_SMT
  6029. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6030. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6031. static int
  6032. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6033. cpumask_t *unused)
  6034. {
  6035. if (sg)
  6036. *sg = &per_cpu(sched_group_cpus, cpu);
  6037. return cpu;
  6038. }
  6039. #endif /* CONFIG_SCHED_SMT */
  6040. /*
  6041. * multi-core sched-domains:
  6042. */
  6043. #ifdef CONFIG_SCHED_MC
  6044. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6045. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6046. #endif /* CONFIG_SCHED_MC */
  6047. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6048. static int
  6049. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6050. cpumask_t *mask)
  6051. {
  6052. int group;
  6053. *mask = per_cpu(cpu_sibling_map, cpu);
  6054. cpus_and(*mask, *mask, *cpu_map);
  6055. group = first_cpu(*mask);
  6056. if (sg)
  6057. *sg = &per_cpu(sched_group_core, group);
  6058. return group;
  6059. }
  6060. #elif defined(CONFIG_SCHED_MC)
  6061. static int
  6062. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6063. cpumask_t *unused)
  6064. {
  6065. if (sg)
  6066. *sg = &per_cpu(sched_group_core, cpu);
  6067. return cpu;
  6068. }
  6069. #endif
  6070. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6071. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6072. static int
  6073. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6074. cpumask_t *mask)
  6075. {
  6076. int group;
  6077. #ifdef CONFIG_SCHED_MC
  6078. *mask = cpu_coregroup_map(cpu);
  6079. cpus_and(*mask, *mask, *cpu_map);
  6080. group = first_cpu(*mask);
  6081. #elif defined(CONFIG_SCHED_SMT)
  6082. *mask = per_cpu(cpu_sibling_map, cpu);
  6083. cpus_and(*mask, *mask, *cpu_map);
  6084. group = first_cpu(*mask);
  6085. #else
  6086. group = cpu;
  6087. #endif
  6088. if (sg)
  6089. *sg = &per_cpu(sched_group_phys, group);
  6090. return group;
  6091. }
  6092. #ifdef CONFIG_NUMA
  6093. /*
  6094. * The init_sched_build_groups can't handle what we want to do with node
  6095. * groups, so roll our own. Now each node has its own list of groups which
  6096. * gets dynamically allocated.
  6097. */
  6098. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6099. static struct sched_group ***sched_group_nodes_bycpu;
  6100. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6101. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6102. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6103. struct sched_group **sg, cpumask_t *nodemask)
  6104. {
  6105. int group;
  6106. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6107. cpus_and(*nodemask, *nodemask, *cpu_map);
  6108. group = first_cpu(*nodemask);
  6109. if (sg)
  6110. *sg = &per_cpu(sched_group_allnodes, group);
  6111. return group;
  6112. }
  6113. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6114. {
  6115. struct sched_group *sg = group_head;
  6116. int j;
  6117. if (!sg)
  6118. return;
  6119. do {
  6120. for_each_cpu_mask_nr(j, sg->cpumask) {
  6121. struct sched_domain *sd;
  6122. sd = &per_cpu(phys_domains, j);
  6123. if (j != first_cpu(sd->groups->cpumask)) {
  6124. /*
  6125. * Only add "power" once for each
  6126. * physical package.
  6127. */
  6128. continue;
  6129. }
  6130. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6131. }
  6132. sg = sg->next;
  6133. } while (sg != group_head);
  6134. }
  6135. #endif /* CONFIG_NUMA */
  6136. #ifdef CONFIG_NUMA
  6137. /* Free memory allocated for various sched_group structures */
  6138. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6139. {
  6140. int cpu, i;
  6141. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6142. struct sched_group **sched_group_nodes
  6143. = sched_group_nodes_bycpu[cpu];
  6144. if (!sched_group_nodes)
  6145. continue;
  6146. for (i = 0; i < nr_node_ids; i++) {
  6147. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6148. *nodemask = node_to_cpumask(i);
  6149. cpus_and(*nodemask, *nodemask, *cpu_map);
  6150. if (cpus_empty(*nodemask))
  6151. continue;
  6152. if (sg == NULL)
  6153. continue;
  6154. sg = sg->next;
  6155. next_sg:
  6156. oldsg = sg;
  6157. sg = sg->next;
  6158. kfree(oldsg);
  6159. if (oldsg != sched_group_nodes[i])
  6160. goto next_sg;
  6161. }
  6162. kfree(sched_group_nodes);
  6163. sched_group_nodes_bycpu[cpu] = NULL;
  6164. }
  6165. }
  6166. #else /* !CONFIG_NUMA */
  6167. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6168. {
  6169. }
  6170. #endif /* CONFIG_NUMA */
  6171. /*
  6172. * Initialize sched groups cpu_power.
  6173. *
  6174. * cpu_power indicates the capacity of sched group, which is used while
  6175. * distributing the load between different sched groups in a sched domain.
  6176. * Typically cpu_power for all the groups in a sched domain will be same unless
  6177. * there are asymmetries in the topology. If there are asymmetries, group
  6178. * having more cpu_power will pickup more load compared to the group having
  6179. * less cpu_power.
  6180. *
  6181. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6182. * the maximum number of tasks a group can handle in the presence of other idle
  6183. * or lightly loaded groups in the same sched domain.
  6184. */
  6185. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6186. {
  6187. struct sched_domain *child;
  6188. struct sched_group *group;
  6189. WARN_ON(!sd || !sd->groups);
  6190. if (cpu != first_cpu(sd->groups->cpumask))
  6191. return;
  6192. child = sd->child;
  6193. sd->groups->__cpu_power = 0;
  6194. /*
  6195. * For perf policy, if the groups in child domain share resources
  6196. * (for example cores sharing some portions of the cache hierarchy
  6197. * or SMT), then set this domain groups cpu_power such that each group
  6198. * can handle only one task, when there are other idle groups in the
  6199. * same sched domain.
  6200. */
  6201. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6202. (child->flags &
  6203. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6204. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6205. return;
  6206. }
  6207. /*
  6208. * add cpu_power of each child group to this groups cpu_power
  6209. */
  6210. group = child->groups;
  6211. do {
  6212. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6213. group = group->next;
  6214. } while (group != child->groups);
  6215. }
  6216. /*
  6217. * Initializers for schedule domains
  6218. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6219. */
  6220. #ifdef CONFIG_SCHED_DEBUG
  6221. # define SD_INIT_NAME(sd, type) sd->name = #type
  6222. #else
  6223. # define SD_INIT_NAME(sd, type) do { } while (0)
  6224. #endif
  6225. #define SD_INIT(sd, type) sd_init_##type(sd)
  6226. #define SD_INIT_FUNC(type) \
  6227. static noinline void sd_init_##type(struct sched_domain *sd) \
  6228. { \
  6229. memset(sd, 0, sizeof(*sd)); \
  6230. *sd = SD_##type##_INIT; \
  6231. sd->level = SD_LV_##type; \
  6232. SD_INIT_NAME(sd, type); \
  6233. }
  6234. SD_INIT_FUNC(CPU)
  6235. #ifdef CONFIG_NUMA
  6236. SD_INIT_FUNC(ALLNODES)
  6237. SD_INIT_FUNC(NODE)
  6238. #endif
  6239. #ifdef CONFIG_SCHED_SMT
  6240. SD_INIT_FUNC(SIBLING)
  6241. #endif
  6242. #ifdef CONFIG_SCHED_MC
  6243. SD_INIT_FUNC(MC)
  6244. #endif
  6245. /*
  6246. * To minimize stack usage kmalloc room for cpumasks and share the
  6247. * space as the usage in build_sched_domains() dictates. Used only
  6248. * if the amount of space is significant.
  6249. */
  6250. struct allmasks {
  6251. cpumask_t tmpmask; /* make this one first */
  6252. union {
  6253. cpumask_t nodemask;
  6254. cpumask_t this_sibling_map;
  6255. cpumask_t this_core_map;
  6256. };
  6257. cpumask_t send_covered;
  6258. #ifdef CONFIG_NUMA
  6259. cpumask_t domainspan;
  6260. cpumask_t covered;
  6261. cpumask_t notcovered;
  6262. #endif
  6263. };
  6264. #if NR_CPUS > 128
  6265. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6266. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6267. {
  6268. *masks = kmalloc(sizeof(**masks), GFP_KERNEL);
  6269. }
  6270. static inline void sched_cpumask_free(struct allmasks *masks)
  6271. {
  6272. kfree(masks);
  6273. }
  6274. #else
  6275. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6276. static inline void sched_cpumask_alloc(struct allmasks **masks)
  6277. { }
  6278. static inline void sched_cpumask_free(struct allmasks *masks)
  6279. { }
  6280. #endif
  6281. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6282. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6283. static int default_relax_domain_level = -1;
  6284. static int __init setup_relax_domain_level(char *str)
  6285. {
  6286. unsigned long val;
  6287. val = simple_strtoul(str, NULL, 0);
  6288. if (val < SD_LV_MAX)
  6289. default_relax_domain_level = val;
  6290. return 1;
  6291. }
  6292. __setup("relax_domain_level=", setup_relax_domain_level);
  6293. static void set_domain_attribute(struct sched_domain *sd,
  6294. struct sched_domain_attr *attr)
  6295. {
  6296. int request;
  6297. if (!attr || attr->relax_domain_level < 0) {
  6298. if (default_relax_domain_level < 0)
  6299. return;
  6300. else
  6301. request = default_relax_domain_level;
  6302. } else
  6303. request = attr->relax_domain_level;
  6304. if (request < sd->level) {
  6305. /* turn off idle balance on this domain */
  6306. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6307. } else {
  6308. /* turn on idle balance on this domain */
  6309. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6310. }
  6311. }
  6312. /*
  6313. * Build sched domains for a given set of cpus and attach the sched domains
  6314. * to the individual cpus
  6315. */
  6316. static int __build_sched_domains(const cpumask_t *cpu_map,
  6317. struct sched_domain_attr *attr)
  6318. {
  6319. int i;
  6320. struct root_domain *rd;
  6321. SCHED_CPUMASK_DECLARE(allmasks);
  6322. cpumask_t *tmpmask;
  6323. #ifdef CONFIG_NUMA
  6324. struct sched_group **sched_group_nodes = NULL;
  6325. int sd_allnodes = 0;
  6326. /*
  6327. * Allocate the per-node list of sched groups
  6328. */
  6329. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6330. GFP_KERNEL);
  6331. if (!sched_group_nodes) {
  6332. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6333. return -ENOMEM;
  6334. }
  6335. #endif
  6336. rd = alloc_rootdomain();
  6337. if (!rd) {
  6338. printk(KERN_WARNING "Cannot alloc root domain\n");
  6339. #ifdef CONFIG_NUMA
  6340. kfree(sched_group_nodes);
  6341. #endif
  6342. return -ENOMEM;
  6343. }
  6344. /* get space for all scratch cpumask variables */
  6345. sched_cpumask_alloc(&allmasks);
  6346. if (!allmasks) {
  6347. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6348. kfree(rd);
  6349. #ifdef CONFIG_NUMA
  6350. kfree(sched_group_nodes);
  6351. #endif
  6352. return -ENOMEM;
  6353. }
  6354. tmpmask = (cpumask_t *)allmasks;
  6355. #ifdef CONFIG_NUMA
  6356. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6357. #endif
  6358. /*
  6359. * Set up domains for cpus specified by the cpu_map.
  6360. */
  6361. for_each_cpu_mask_nr(i, *cpu_map) {
  6362. struct sched_domain *sd = NULL, *p;
  6363. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6364. *nodemask = node_to_cpumask(cpu_to_node(i));
  6365. cpus_and(*nodemask, *nodemask, *cpu_map);
  6366. #ifdef CONFIG_NUMA
  6367. if (cpus_weight(*cpu_map) >
  6368. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6369. sd = &per_cpu(allnodes_domains, i);
  6370. SD_INIT(sd, ALLNODES);
  6371. set_domain_attribute(sd, attr);
  6372. sd->span = *cpu_map;
  6373. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6374. p = sd;
  6375. sd_allnodes = 1;
  6376. } else
  6377. p = NULL;
  6378. sd = &per_cpu(node_domains, i);
  6379. SD_INIT(sd, NODE);
  6380. set_domain_attribute(sd, attr);
  6381. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6382. sd->parent = p;
  6383. if (p)
  6384. p->child = sd;
  6385. cpus_and(sd->span, sd->span, *cpu_map);
  6386. #endif
  6387. p = sd;
  6388. sd = &per_cpu(phys_domains, i);
  6389. SD_INIT(sd, CPU);
  6390. set_domain_attribute(sd, attr);
  6391. sd->span = *nodemask;
  6392. sd->parent = p;
  6393. if (p)
  6394. p->child = sd;
  6395. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6396. #ifdef CONFIG_SCHED_MC
  6397. p = sd;
  6398. sd = &per_cpu(core_domains, i);
  6399. SD_INIT(sd, MC);
  6400. set_domain_attribute(sd, attr);
  6401. sd->span = cpu_coregroup_map(i);
  6402. cpus_and(sd->span, sd->span, *cpu_map);
  6403. sd->parent = p;
  6404. p->child = sd;
  6405. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6406. #endif
  6407. #ifdef CONFIG_SCHED_SMT
  6408. p = sd;
  6409. sd = &per_cpu(cpu_domains, i);
  6410. SD_INIT(sd, SIBLING);
  6411. set_domain_attribute(sd, attr);
  6412. sd->span = per_cpu(cpu_sibling_map, i);
  6413. cpus_and(sd->span, sd->span, *cpu_map);
  6414. sd->parent = p;
  6415. p->child = sd;
  6416. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6417. #endif
  6418. }
  6419. #ifdef CONFIG_SCHED_SMT
  6420. /* Set up CPU (sibling) groups */
  6421. for_each_cpu_mask_nr(i, *cpu_map) {
  6422. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6423. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6424. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6425. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6426. if (i != first_cpu(*this_sibling_map))
  6427. continue;
  6428. init_sched_build_groups(this_sibling_map, cpu_map,
  6429. &cpu_to_cpu_group,
  6430. send_covered, tmpmask);
  6431. }
  6432. #endif
  6433. #ifdef CONFIG_SCHED_MC
  6434. /* Set up multi-core groups */
  6435. for_each_cpu_mask_nr(i, *cpu_map) {
  6436. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6437. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6438. *this_core_map = cpu_coregroup_map(i);
  6439. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6440. if (i != first_cpu(*this_core_map))
  6441. continue;
  6442. init_sched_build_groups(this_core_map, cpu_map,
  6443. &cpu_to_core_group,
  6444. send_covered, tmpmask);
  6445. }
  6446. #endif
  6447. /* Set up physical groups */
  6448. for (i = 0; i < nr_node_ids; i++) {
  6449. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6450. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6451. *nodemask = node_to_cpumask(i);
  6452. cpus_and(*nodemask, *nodemask, *cpu_map);
  6453. if (cpus_empty(*nodemask))
  6454. continue;
  6455. init_sched_build_groups(nodemask, cpu_map,
  6456. &cpu_to_phys_group,
  6457. send_covered, tmpmask);
  6458. }
  6459. #ifdef CONFIG_NUMA
  6460. /* Set up node groups */
  6461. if (sd_allnodes) {
  6462. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6463. init_sched_build_groups(cpu_map, cpu_map,
  6464. &cpu_to_allnodes_group,
  6465. send_covered, tmpmask);
  6466. }
  6467. for (i = 0; i < nr_node_ids; i++) {
  6468. /* Set up node groups */
  6469. struct sched_group *sg, *prev;
  6470. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6471. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6472. SCHED_CPUMASK_VAR(covered, allmasks);
  6473. int j;
  6474. *nodemask = node_to_cpumask(i);
  6475. cpus_clear(*covered);
  6476. cpus_and(*nodemask, *nodemask, *cpu_map);
  6477. if (cpus_empty(*nodemask)) {
  6478. sched_group_nodes[i] = NULL;
  6479. continue;
  6480. }
  6481. sched_domain_node_span(i, domainspan);
  6482. cpus_and(*domainspan, *domainspan, *cpu_map);
  6483. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6484. if (!sg) {
  6485. printk(KERN_WARNING "Can not alloc domain group for "
  6486. "node %d\n", i);
  6487. goto error;
  6488. }
  6489. sched_group_nodes[i] = sg;
  6490. for_each_cpu_mask_nr(j, *nodemask) {
  6491. struct sched_domain *sd;
  6492. sd = &per_cpu(node_domains, j);
  6493. sd->groups = sg;
  6494. }
  6495. sg->__cpu_power = 0;
  6496. sg->cpumask = *nodemask;
  6497. sg->next = sg;
  6498. cpus_or(*covered, *covered, *nodemask);
  6499. prev = sg;
  6500. for (j = 0; j < nr_node_ids; j++) {
  6501. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6502. int n = (i + j) % nr_node_ids;
  6503. node_to_cpumask_ptr(pnodemask, n);
  6504. cpus_complement(*notcovered, *covered);
  6505. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6506. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6507. if (cpus_empty(*tmpmask))
  6508. break;
  6509. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6510. if (cpus_empty(*tmpmask))
  6511. continue;
  6512. sg = kmalloc_node(sizeof(struct sched_group),
  6513. GFP_KERNEL, i);
  6514. if (!sg) {
  6515. printk(KERN_WARNING
  6516. "Can not alloc domain group for node %d\n", j);
  6517. goto error;
  6518. }
  6519. sg->__cpu_power = 0;
  6520. sg->cpumask = *tmpmask;
  6521. sg->next = prev->next;
  6522. cpus_or(*covered, *covered, *tmpmask);
  6523. prev->next = sg;
  6524. prev = sg;
  6525. }
  6526. }
  6527. #endif
  6528. /* Calculate CPU power for physical packages and nodes */
  6529. #ifdef CONFIG_SCHED_SMT
  6530. for_each_cpu_mask_nr(i, *cpu_map) {
  6531. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6532. init_sched_groups_power(i, sd);
  6533. }
  6534. #endif
  6535. #ifdef CONFIG_SCHED_MC
  6536. for_each_cpu_mask_nr(i, *cpu_map) {
  6537. struct sched_domain *sd = &per_cpu(core_domains, i);
  6538. init_sched_groups_power(i, sd);
  6539. }
  6540. #endif
  6541. for_each_cpu_mask_nr(i, *cpu_map) {
  6542. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6543. init_sched_groups_power(i, sd);
  6544. }
  6545. #ifdef CONFIG_NUMA
  6546. for (i = 0; i < nr_node_ids; i++)
  6547. init_numa_sched_groups_power(sched_group_nodes[i]);
  6548. if (sd_allnodes) {
  6549. struct sched_group *sg;
  6550. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6551. tmpmask);
  6552. init_numa_sched_groups_power(sg);
  6553. }
  6554. #endif
  6555. /* Attach the domains */
  6556. for_each_cpu_mask_nr(i, *cpu_map) {
  6557. struct sched_domain *sd;
  6558. #ifdef CONFIG_SCHED_SMT
  6559. sd = &per_cpu(cpu_domains, i);
  6560. #elif defined(CONFIG_SCHED_MC)
  6561. sd = &per_cpu(core_domains, i);
  6562. #else
  6563. sd = &per_cpu(phys_domains, i);
  6564. #endif
  6565. cpu_attach_domain(sd, rd, i);
  6566. }
  6567. sched_cpumask_free(allmasks);
  6568. return 0;
  6569. #ifdef CONFIG_NUMA
  6570. error:
  6571. free_sched_groups(cpu_map, tmpmask);
  6572. sched_cpumask_free(allmasks);
  6573. kfree(rd);
  6574. return -ENOMEM;
  6575. #endif
  6576. }
  6577. static int build_sched_domains(const cpumask_t *cpu_map)
  6578. {
  6579. return __build_sched_domains(cpu_map, NULL);
  6580. }
  6581. static cpumask_t *doms_cur; /* current sched domains */
  6582. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6583. static struct sched_domain_attr *dattr_cur;
  6584. /* attribues of custom domains in 'doms_cur' */
  6585. /*
  6586. * Special case: If a kmalloc of a doms_cur partition (array of
  6587. * cpumask_t) fails, then fallback to a single sched domain,
  6588. * as determined by the single cpumask_t fallback_doms.
  6589. */
  6590. static cpumask_t fallback_doms;
  6591. /*
  6592. * arch_update_cpu_topology lets virtualized architectures update the
  6593. * cpu core maps. It is supposed to return 1 if the topology changed
  6594. * or 0 if it stayed the same.
  6595. */
  6596. int __attribute__((weak)) arch_update_cpu_topology(void)
  6597. {
  6598. return 0;
  6599. }
  6600. /*
  6601. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6602. * For now this just excludes isolated cpus, but could be used to
  6603. * exclude other special cases in the future.
  6604. */
  6605. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6606. {
  6607. int err;
  6608. arch_update_cpu_topology();
  6609. ndoms_cur = 1;
  6610. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6611. if (!doms_cur)
  6612. doms_cur = &fallback_doms;
  6613. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6614. dattr_cur = NULL;
  6615. err = build_sched_domains(doms_cur);
  6616. register_sched_domain_sysctl();
  6617. return err;
  6618. }
  6619. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6620. cpumask_t *tmpmask)
  6621. {
  6622. free_sched_groups(cpu_map, tmpmask);
  6623. }
  6624. /*
  6625. * Detach sched domains from a group of cpus specified in cpu_map
  6626. * These cpus will now be attached to the NULL domain
  6627. */
  6628. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6629. {
  6630. cpumask_t tmpmask;
  6631. int i;
  6632. for_each_cpu_mask_nr(i, *cpu_map)
  6633. cpu_attach_domain(NULL, &def_root_domain, i);
  6634. synchronize_sched();
  6635. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6636. }
  6637. /* handle null as "default" */
  6638. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6639. struct sched_domain_attr *new, int idx_new)
  6640. {
  6641. struct sched_domain_attr tmp;
  6642. /* fast path */
  6643. if (!new && !cur)
  6644. return 1;
  6645. tmp = SD_ATTR_INIT;
  6646. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6647. new ? (new + idx_new) : &tmp,
  6648. sizeof(struct sched_domain_attr));
  6649. }
  6650. /*
  6651. * Partition sched domains as specified by the 'ndoms_new'
  6652. * cpumasks in the array doms_new[] of cpumasks. This compares
  6653. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6654. * It destroys each deleted domain and builds each new domain.
  6655. *
  6656. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6657. * The masks don't intersect (don't overlap.) We should setup one
  6658. * sched domain for each mask. CPUs not in any of the cpumasks will
  6659. * not be load balanced. If the same cpumask appears both in the
  6660. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6661. * it as it is.
  6662. *
  6663. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6664. * ownership of it and will kfree it when done with it. If the caller
  6665. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  6666. * ndoms_new == 1, and partition_sched_domains() will fallback to
  6667. * the single partition 'fallback_doms', it also forces the domains
  6668. * to be rebuilt.
  6669. *
  6670. * If doms_new == NULL it will be replaced with cpu_online_map.
  6671. * ndoms_new == 0 is a special case for destroying existing domains,
  6672. * and it will not create the default domain.
  6673. *
  6674. * Call with hotplug lock held
  6675. */
  6676. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6677. struct sched_domain_attr *dattr_new)
  6678. {
  6679. int i, j, n;
  6680. int new_topology;
  6681. mutex_lock(&sched_domains_mutex);
  6682. /* always unregister in case we don't destroy any domains */
  6683. unregister_sched_domain_sysctl();
  6684. /* Let architecture update cpu core mappings. */
  6685. new_topology = arch_update_cpu_topology();
  6686. n = doms_new ? ndoms_new : 0;
  6687. /* Destroy deleted domains */
  6688. for (i = 0; i < ndoms_cur; i++) {
  6689. for (j = 0; j < n && !new_topology; j++) {
  6690. if (cpus_equal(doms_cur[i], doms_new[j])
  6691. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6692. goto match1;
  6693. }
  6694. /* no match - a current sched domain not in new doms_new[] */
  6695. detach_destroy_domains(doms_cur + i);
  6696. match1:
  6697. ;
  6698. }
  6699. if (doms_new == NULL) {
  6700. ndoms_cur = 0;
  6701. doms_new = &fallback_doms;
  6702. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6703. WARN_ON_ONCE(dattr_new);
  6704. }
  6705. /* Build new domains */
  6706. for (i = 0; i < ndoms_new; i++) {
  6707. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6708. if (cpus_equal(doms_new[i], doms_cur[j])
  6709. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6710. goto match2;
  6711. }
  6712. /* no match - add a new doms_new */
  6713. __build_sched_domains(doms_new + i,
  6714. dattr_new ? dattr_new + i : NULL);
  6715. match2:
  6716. ;
  6717. }
  6718. /* Remember the new sched domains */
  6719. if (doms_cur != &fallback_doms)
  6720. kfree(doms_cur);
  6721. kfree(dattr_cur); /* kfree(NULL) is safe */
  6722. doms_cur = doms_new;
  6723. dattr_cur = dattr_new;
  6724. ndoms_cur = ndoms_new;
  6725. register_sched_domain_sysctl();
  6726. mutex_unlock(&sched_domains_mutex);
  6727. }
  6728. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6729. int arch_reinit_sched_domains(void)
  6730. {
  6731. get_online_cpus();
  6732. /* Destroy domains first to force the rebuild */
  6733. partition_sched_domains(0, NULL, NULL);
  6734. rebuild_sched_domains();
  6735. put_online_cpus();
  6736. return 0;
  6737. }
  6738. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6739. {
  6740. int ret;
  6741. if (buf[0] != '0' && buf[0] != '1')
  6742. return -EINVAL;
  6743. if (smt)
  6744. sched_smt_power_savings = (buf[0] == '1');
  6745. else
  6746. sched_mc_power_savings = (buf[0] == '1');
  6747. ret = arch_reinit_sched_domains();
  6748. return ret ? ret : count;
  6749. }
  6750. #ifdef CONFIG_SCHED_MC
  6751. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6752. char *page)
  6753. {
  6754. return sprintf(page, "%u\n", sched_mc_power_savings);
  6755. }
  6756. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6757. const char *buf, size_t count)
  6758. {
  6759. return sched_power_savings_store(buf, count, 0);
  6760. }
  6761. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6762. sched_mc_power_savings_show,
  6763. sched_mc_power_savings_store);
  6764. #endif
  6765. #ifdef CONFIG_SCHED_SMT
  6766. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6767. char *page)
  6768. {
  6769. return sprintf(page, "%u\n", sched_smt_power_savings);
  6770. }
  6771. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6772. const char *buf, size_t count)
  6773. {
  6774. return sched_power_savings_store(buf, count, 1);
  6775. }
  6776. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6777. sched_smt_power_savings_show,
  6778. sched_smt_power_savings_store);
  6779. #endif
  6780. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6781. {
  6782. int err = 0;
  6783. #ifdef CONFIG_SCHED_SMT
  6784. if (smt_capable())
  6785. err = sysfs_create_file(&cls->kset.kobj,
  6786. &attr_sched_smt_power_savings.attr);
  6787. #endif
  6788. #ifdef CONFIG_SCHED_MC
  6789. if (!err && mc_capable())
  6790. err = sysfs_create_file(&cls->kset.kobj,
  6791. &attr_sched_mc_power_savings.attr);
  6792. #endif
  6793. return err;
  6794. }
  6795. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6796. #ifndef CONFIG_CPUSETS
  6797. /*
  6798. * Add online and remove offline CPUs from the scheduler domains.
  6799. * When cpusets are enabled they take over this function.
  6800. */
  6801. static int update_sched_domains(struct notifier_block *nfb,
  6802. unsigned long action, void *hcpu)
  6803. {
  6804. switch (action) {
  6805. case CPU_ONLINE:
  6806. case CPU_ONLINE_FROZEN:
  6807. case CPU_DEAD:
  6808. case CPU_DEAD_FROZEN:
  6809. partition_sched_domains(1, NULL, NULL);
  6810. return NOTIFY_OK;
  6811. default:
  6812. return NOTIFY_DONE;
  6813. }
  6814. }
  6815. #endif
  6816. static int update_runtime(struct notifier_block *nfb,
  6817. unsigned long action, void *hcpu)
  6818. {
  6819. int cpu = (int)(long)hcpu;
  6820. switch (action) {
  6821. case CPU_DOWN_PREPARE:
  6822. case CPU_DOWN_PREPARE_FROZEN:
  6823. disable_runtime(cpu_rq(cpu));
  6824. return NOTIFY_OK;
  6825. case CPU_DOWN_FAILED:
  6826. case CPU_DOWN_FAILED_FROZEN:
  6827. case CPU_ONLINE:
  6828. case CPU_ONLINE_FROZEN:
  6829. enable_runtime(cpu_rq(cpu));
  6830. return NOTIFY_OK;
  6831. default:
  6832. return NOTIFY_DONE;
  6833. }
  6834. }
  6835. void __init sched_init_smp(void)
  6836. {
  6837. cpumask_t non_isolated_cpus;
  6838. #if defined(CONFIG_NUMA)
  6839. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6840. GFP_KERNEL);
  6841. BUG_ON(sched_group_nodes_bycpu == NULL);
  6842. #endif
  6843. get_online_cpus();
  6844. mutex_lock(&sched_domains_mutex);
  6845. arch_init_sched_domains(&cpu_online_map);
  6846. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6847. if (cpus_empty(non_isolated_cpus))
  6848. cpu_set(smp_processor_id(), non_isolated_cpus);
  6849. mutex_unlock(&sched_domains_mutex);
  6850. put_online_cpus();
  6851. #ifndef CONFIG_CPUSETS
  6852. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6853. hotcpu_notifier(update_sched_domains, 0);
  6854. #endif
  6855. /* RT runtime code needs to handle some hotplug events */
  6856. hotcpu_notifier(update_runtime, 0);
  6857. init_hrtick();
  6858. /* Move init over to a non-isolated CPU */
  6859. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6860. BUG();
  6861. sched_init_granularity();
  6862. }
  6863. #else
  6864. void __init sched_init_smp(void)
  6865. {
  6866. sched_init_granularity();
  6867. }
  6868. #endif /* CONFIG_SMP */
  6869. int in_sched_functions(unsigned long addr)
  6870. {
  6871. return in_lock_functions(addr) ||
  6872. (addr >= (unsigned long)__sched_text_start
  6873. && addr < (unsigned long)__sched_text_end);
  6874. }
  6875. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6876. {
  6877. cfs_rq->tasks_timeline = RB_ROOT;
  6878. INIT_LIST_HEAD(&cfs_rq->tasks);
  6879. #ifdef CONFIG_FAIR_GROUP_SCHED
  6880. cfs_rq->rq = rq;
  6881. #endif
  6882. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6883. }
  6884. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6885. {
  6886. struct rt_prio_array *array;
  6887. int i;
  6888. array = &rt_rq->active;
  6889. for (i = 0; i < MAX_RT_PRIO; i++) {
  6890. INIT_LIST_HEAD(array->queue + i);
  6891. __clear_bit(i, array->bitmap);
  6892. }
  6893. /* delimiter for bitsearch: */
  6894. __set_bit(MAX_RT_PRIO, array->bitmap);
  6895. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6896. rt_rq->highest_prio = MAX_RT_PRIO;
  6897. #endif
  6898. #ifdef CONFIG_SMP
  6899. rt_rq->rt_nr_migratory = 0;
  6900. rt_rq->overloaded = 0;
  6901. #endif
  6902. rt_rq->rt_time = 0;
  6903. rt_rq->rt_throttled = 0;
  6904. rt_rq->rt_runtime = 0;
  6905. spin_lock_init(&rt_rq->rt_runtime_lock);
  6906. #ifdef CONFIG_RT_GROUP_SCHED
  6907. rt_rq->rt_nr_boosted = 0;
  6908. rt_rq->rq = rq;
  6909. #endif
  6910. }
  6911. #ifdef CONFIG_FAIR_GROUP_SCHED
  6912. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6913. struct sched_entity *se, int cpu, int add,
  6914. struct sched_entity *parent)
  6915. {
  6916. struct rq *rq = cpu_rq(cpu);
  6917. tg->cfs_rq[cpu] = cfs_rq;
  6918. init_cfs_rq(cfs_rq, rq);
  6919. cfs_rq->tg = tg;
  6920. if (add)
  6921. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6922. tg->se[cpu] = se;
  6923. /* se could be NULL for init_task_group */
  6924. if (!se)
  6925. return;
  6926. if (!parent)
  6927. se->cfs_rq = &rq->cfs;
  6928. else
  6929. se->cfs_rq = parent->my_q;
  6930. se->my_q = cfs_rq;
  6931. se->load.weight = tg->shares;
  6932. se->load.inv_weight = 0;
  6933. se->parent = parent;
  6934. }
  6935. #endif
  6936. #ifdef CONFIG_RT_GROUP_SCHED
  6937. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6938. struct sched_rt_entity *rt_se, int cpu, int add,
  6939. struct sched_rt_entity *parent)
  6940. {
  6941. struct rq *rq = cpu_rq(cpu);
  6942. tg->rt_rq[cpu] = rt_rq;
  6943. init_rt_rq(rt_rq, rq);
  6944. rt_rq->tg = tg;
  6945. rt_rq->rt_se = rt_se;
  6946. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6947. if (add)
  6948. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6949. tg->rt_se[cpu] = rt_se;
  6950. if (!rt_se)
  6951. return;
  6952. if (!parent)
  6953. rt_se->rt_rq = &rq->rt;
  6954. else
  6955. rt_se->rt_rq = parent->my_q;
  6956. rt_se->my_q = rt_rq;
  6957. rt_se->parent = parent;
  6958. INIT_LIST_HEAD(&rt_se->run_list);
  6959. }
  6960. #endif
  6961. void __init sched_init(void)
  6962. {
  6963. int i, j;
  6964. unsigned long alloc_size = 0, ptr;
  6965. #ifdef CONFIG_FAIR_GROUP_SCHED
  6966. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6967. #endif
  6968. #ifdef CONFIG_RT_GROUP_SCHED
  6969. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6970. #endif
  6971. #ifdef CONFIG_USER_SCHED
  6972. alloc_size *= 2;
  6973. #endif
  6974. /*
  6975. * As sched_init() is called before page_alloc is setup,
  6976. * we use alloc_bootmem().
  6977. */
  6978. if (alloc_size) {
  6979. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6980. #ifdef CONFIG_FAIR_GROUP_SCHED
  6981. init_task_group.se = (struct sched_entity **)ptr;
  6982. ptr += nr_cpu_ids * sizeof(void **);
  6983. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6984. ptr += nr_cpu_ids * sizeof(void **);
  6985. #ifdef CONFIG_USER_SCHED
  6986. root_task_group.se = (struct sched_entity **)ptr;
  6987. ptr += nr_cpu_ids * sizeof(void **);
  6988. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6989. ptr += nr_cpu_ids * sizeof(void **);
  6990. #endif /* CONFIG_USER_SCHED */
  6991. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6992. #ifdef CONFIG_RT_GROUP_SCHED
  6993. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6994. ptr += nr_cpu_ids * sizeof(void **);
  6995. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6996. ptr += nr_cpu_ids * sizeof(void **);
  6997. #ifdef CONFIG_USER_SCHED
  6998. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6999. ptr += nr_cpu_ids * sizeof(void **);
  7000. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7001. ptr += nr_cpu_ids * sizeof(void **);
  7002. #endif /* CONFIG_USER_SCHED */
  7003. #endif /* CONFIG_RT_GROUP_SCHED */
  7004. }
  7005. #ifdef CONFIG_SMP
  7006. init_defrootdomain();
  7007. #endif
  7008. init_rt_bandwidth(&def_rt_bandwidth,
  7009. global_rt_period(), global_rt_runtime());
  7010. #ifdef CONFIG_RT_GROUP_SCHED
  7011. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7012. global_rt_period(), global_rt_runtime());
  7013. #ifdef CONFIG_USER_SCHED
  7014. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7015. global_rt_period(), RUNTIME_INF);
  7016. #endif /* CONFIG_USER_SCHED */
  7017. #endif /* CONFIG_RT_GROUP_SCHED */
  7018. #ifdef CONFIG_GROUP_SCHED
  7019. list_add(&init_task_group.list, &task_groups);
  7020. INIT_LIST_HEAD(&init_task_group.children);
  7021. #ifdef CONFIG_USER_SCHED
  7022. INIT_LIST_HEAD(&root_task_group.children);
  7023. init_task_group.parent = &root_task_group;
  7024. list_add(&init_task_group.siblings, &root_task_group.children);
  7025. #endif /* CONFIG_USER_SCHED */
  7026. #endif /* CONFIG_GROUP_SCHED */
  7027. for_each_possible_cpu(i) {
  7028. struct rq *rq;
  7029. rq = cpu_rq(i);
  7030. spin_lock_init(&rq->lock);
  7031. rq->nr_running = 0;
  7032. init_cfs_rq(&rq->cfs, rq);
  7033. init_rt_rq(&rq->rt, rq);
  7034. #ifdef CONFIG_FAIR_GROUP_SCHED
  7035. init_task_group.shares = init_task_group_load;
  7036. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7037. #ifdef CONFIG_CGROUP_SCHED
  7038. /*
  7039. * How much cpu bandwidth does init_task_group get?
  7040. *
  7041. * In case of task-groups formed thr' the cgroup filesystem, it
  7042. * gets 100% of the cpu resources in the system. This overall
  7043. * system cpu resource is divided among the tasks of
  7044. * init_task_group and its child task-groups in a fair manner,
  7045. * based on each entity's (task or task-group's) weight
  7046. * (se->load.weight).
  7047. *
  7048. * In other words, if init_task_group has 10 tasks of weight
  7049. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7050. * then A0's share of the cpu resource is:
  7051. *
  7052. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7053. *
  7054. * We achieve this by letting init_task_group's tasks sit
  7055. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7056. */
  7057. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7058. #elif defined CONFIG_USER_SCHED
  7059. root_task_group.shares = NICE_0_LOAD;
  7060. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7061. /*
  7062. * In case of task-groups formed thr' the user id of tasks,
  7063. * init_task_group represents tasks belonging to root user.
  7064. * Hence it forms a sibling of all subsequent groups formed.
  7065. * In this case, init_task_group gets only a fraction of overall
  7066. * system cpu resource, based on the weight assigned to root
  7067. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7068. * by letting tasks of init_task_group sit in a separate cfs_rq
  7069. * (init_cfs_rq) and having one entity represent this group of
  7070. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7071. */
  7072. init_tg_cfs_entry(&init_task_group,
  7073. &per_cpu(init_cfs_rq, i),
  7074. &per_cpu(init_sched_entity, i), i, 1,
  7075. root_task_group.se[i]);
  7076. #endif
  7077. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7078. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7079. #ifdef CONFIG_RT_GROUP_SCHED
  7080. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7081. #ifdef CONFIG_CGROUP_SCHED
  7082. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7083. #elif defined CONFIG_USER_SCHED
  7084. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7085. init_tg_rt_entry(&init_task_group,
  7086. &per_cpu(init_rt_rq, i),
  7087. &per_cpu(init_sched_rt_entity, i), i, 1,
  7088. root_task_group.rt_se[i]);
  7089. #endif
  7090. #endif
  7091. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7092. rq->cpu_load[j] = 0;
  7093. #ifdef CONFIG_SMP
  7094. rq->sd = NULL;
  7095. rq->rd = NULL;
  7096. rq->active_balance = 0;
  7097. rq->next_balance = jiffies;
  7098. rq->push_cpu = 0;
  7099. rq->cpu = i;
  7100. rq->online = 0;
  7101. rq->migration_thread = NULL;
  7102. INIT_LIST_HEAD(&rq->migration_queue);
  7103. rq_attach_root(rq, &def_root_domain);
  7104. #endif
  7105. init_rq_hrtick(rq);
  7106. atomic_set(&rq->nr_iowait, 0);
  7107. }
  7108. set_load_weight(&init_task);
  7109. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7110. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7111. #endif
  7112. #ifdef CONFIG_SMP
  7113. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7114. #endif
  7115. #ifdef CONFIG_RT_MUTEXES
  7116. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7117. #endif
  7118. /*
  7119. * The boot idle thread does lazy MMU switching as well:
  7120. */
  7121. atomic_inc(&init_mm.mm_count);
  7122. enter_lazy_tlb(&init_mm, current);
  7123. /*
  7124. * Make us the idle thread. Technically, schedule() should not be
  7125. * called from this thread, however somewhere below it might be,
  7126. * but because we are the idle thread, we just pick up running again
  7127. * when this runqueue becomes "idle".
  7128. */
  7129. init_idle(current, smp_processor_id());
  7130. /*
  7131. * During early bootup we pretend to be a normal task:
  7132. */
  7133. current->sched_class = &fair_sched_class;
  7134. scheduler_running = 1;
  7135. }
  7136. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7137. void __might_sleep(char *file, int line)
  7138. {
  7139. #ifdef in_atomic
  7140. static unsigned long prev_jiffy; /* ratelimiting */
  7141. if ((!in_atomic() && !irqs_disabled()) ||
  7142. system_state != SYSTEM_RUNNING || oops_in_progress)
  7143. return;
  7144. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7145. return;
  7146. prev_jiffy = jiffies;
  7147. printk(KERN_ERR
  7148. "BUG: sleeping function called from invalid context at %s:%d\n",
  7149. file, line);
  7150. printk(KERN_ERR
  7151. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7152. in_atomic(), irqs_disabled(),
  7153. current->pid, current->comm);
  7154. debug_show_held_locks(current);
  7155. if (irqs_disabled())
  7156. print_irqtrace_events(current);
  7157. dump_stack();
  7158. #endif
  7159. }
  7160. EXPORT_SYMBOL(__might_sleep);
  7161. #endif
  7162. #ifdef CONFIG_MAGIC_SYSRQ
  7163. static void normalize_task(struct rq *rq, struct task_struct *p)
  7164. {
  7165. int on_rq;
  7166. update_rq_clock(rq);
  7167. on_rq = p->se.on_rq;
  7168. if (on_rq)
  7169. deactivate_task(rq, p, 0);
  7170. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7171. if (on_rq) {
  7172. activate_task(rq, p, 0);
  7173. resched_task(rq->curr);
  7174. }
  7175. }
  7176. void normalize_rt_tasks(void)
  7177. {
  7178. struct task_struct *g, *p;
  7179. unsigned long flags;
  7180. struct rq *rq;
  7181. read_lock_irqsave(&tasklist_lock, flags);
  7182. do_each_thread(g, p) {
  7183. /*
  7184. * Only normalize user tasks:
  7185. */
  7186. if (!p->mm)
  7187. continue;
  7188. p->se.exec_start = 0;
  7189. #ifdef CONFIG_SCHEDSTATS
  7190. p->se.wait_start = 0;
  7191. p->se.sleep_start = 0;
  7192. p->se.block_start = 0;
  7193. #endif
  7194. if (!rt_task(p)) {
  7195. /*
  7196. * Renice negative nice level userspace
  7197. * tasks back to 0:
  7198. */
  7199. if (TASK_NICE(p) < 0 && p->mm)
  7200. set_user_nice(p, 0);
  7201. continue;
  7202. }
  7203. spin_lock(&p->pi_lock);
  7204. rq = __task_rq_lock(p);
  7205. normalize_task(rq, p);
  7206. __task_rq_unlock(rq);
  7207. spin_unlock(&p->pi_lock);
  7208. } while_each_thread(g, p);
  7209. read_unlock_irqrestore(&tasklist_lock, flags);
  7210. }
  7211. #endif /* CONFIG_MAGIC_SYSRQ */
  7212. #ifdef CONFIG_IA64
  7213. /*
  7214. * These functions are only useful for the IA64 MCA handling.
  7215. *
  7216. * They can only be called when the whole system has been
  7217. * stopped - every CPU needs to be quiescent, and no scheduling
  7218. * activity can take place. Using them for anything else would
  7219. * be a serious bug, and as a result, they aren't even visible
  7220. * under any other configuration.
  7221. */
  7222. /**
  7223. * curr_task - return the current task for a given cpu.
  7224. * @cpu: the processor in question.
  7225. *
  7226. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7227. */
  7228. struct task_struct *curr_task(int cpu)
  7229. {
  7230. return cpu_curr(cpu);
  7231. }
  7232. /**
  7233. * set_curr_task - set the current task for a given cpu.
  7234. * @cpu: the processor in question.
  7235. * @p: the task pointer to set.
  7236. *
  7237. * Description: This function must only be used when non-maskable interrupts
  7238. * are serviced on a separate stack. It allows the architecture to switch the
  7239. * notion of the current task on a cpu in a non-blocking manner. This function
  7240. * must be called with all CPU's synchronized, and interrupts disabled, the
  7241. * and caller must save the original value of the current task (see
  7242. * curr_task() above) and restore that value before reenabling interrupts and
  7243. * re-starting the system.
  7244. *
  7245. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7246. */
  7247. void set_curr_task(int cpu, struct task_struct *p)
  7248. {
  7249. cpu_curr(cpu) = p;
  7250. }
  7251. #endif
  7252. #ifdef CONFIG_FAIR_GROUP_SCHED
  7253. static void free_fair_sched_group(struct task_group *tg)
  7254. {
  7255. int i;
  7256. for_each_possible_cpu(i) {
  7257. if (tg->cfs_rq)
  7258. kfree(tg->cfs_rq[i]);
  7259. if (tg->se)
  7260. kfree(tg->se[i]);
  7261. }
  7262. kfree(tg->cfs_rq);
  7263. kfree(tg->se);
  7264. }
  7265. static
  7266. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7267. {
  7268. struct cfs_rq *cfs_rq;
  7269. struct sched_entity *se;
  7270. struct rq *rq;
  7271. int i;
  7272. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7273. if (!tg->cfs_rq)
  7274. goto err;
  7275. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7276. if (!tg->se)
  7277. goto err;
  7278. tg->shares = NICE_0_LOAD;
  7279. for_each_possible_cpu(i) {
  7280. rq = cpu_rq(i);
  7281. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  7282. GFP_KERNEL, cpu_to_node(i));
  7283. if (!cfs_rq)
  7284. goto err;
  7285. se = kzalloc_node(sizeof(struct sched_entity),
  7286. GFP_KERNEL, cpu_to_node(i));
  7287. if (!se)
  7288. goto err;
  7289. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  7290. }
  7291. return 1;
  7292. err:
  7293. return 0;
  7294. }
  7295. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7296. {
  7297. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7298. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7299. }
  7300. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7301. {
  7302. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7303. }
  7304. #else /* !CONFG_FAIR_GROUP_SCHED */
  7305. static inline void free_fair_sched_group(struct task_group *tg)
  7306. {
  7307. }
  7308. static inline
  7309. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7310. {
  7311. return 1;
  7312. }
  7313. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7314. {
  7315. }
  7316. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7317. {
  7318. }
  7319. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7320. #ifdef CONFIG_RT_GROUP_SCHED
  7321. static void free_rt_sched_group(struct task_group *tg)
  7322. {
  7323. int i;
  7324. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7325. for_each_possible_cpu(i) {
  7326. if (tg->rt_rq)
  7327. kfree(tg->rt_rq[i]);
  7328. if (tg->rt_se)
  7329. kfree(tg->rt_se[i]);
  7330. }
  7331. kfree(tg->rt_rq);
  7332. kfree(tg->rt_se);
  7333. }
  7334. static
  7335. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7336. {
  7337. struct rt_rq *rt_rq;
  7338. struct sched_rt_entity *rt_se;
  7339. struct rq *rq;
  7340. int i;
  7341. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7342. if (!tg->rt_rq)
  7343. goto err;
  7344. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7345. if (!tg->rt_se)
  7346. goto err;
  7347. init_rt_bandwidth(&tg->rt_bandwidth,
  7348. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7349. for_each_possible_cpu(i) {
  7350. rq = cpu_rq(i);
  7351. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  7352. GFP_KERNEL, cpu_to_node(i));
  7353. if (!rt_rq)
  7354. goto err;
  7355. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  7356. GFP_KERNEL, cpu_to_node(i));
  7357. if (!rt_se)
  7358. goto err;
  7359. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  7360. }
  7361. return 1;
  7362. err:
  7363. return 0;
  7364. }
  7365. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7366. {
  7367. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7368. &cpu_rq(cpu)->leaf_rt_rq_list);
  7369. }
  7370. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7371. {
  7372. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7373. }
  7374. #else /* !CONFIG_RT_GROUP_SCHED */
  7375. static inline void free_rt_sched_group(struct task_group *tg)
  7376. {
  7377. }
  7378. static inline
  7379. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7380. {
  7381. return 1;
  7382. }
  7383. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7384. {
  7385. }
  7386. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7387. {
  7388. }
  7389. #endif /* CONFIG_RT_GROUP_SCHED */
  7390. #ifdef CONFIG_GROUP_SCHED
  7391. static void free_sched_group(struct task_group *tg)
  7392. {
  7393. free_fair_sched_group(tg);
  7394. free_rt_sched_group(tg);
  7395. kfree(tg);
  7396. }
  7397. /* allocate runqueue etc for a new task group */
  7398. struct task_group *sched_create_group(struct task_group *parent)
  7399. {
  7400. struct task_group *tg;
  7401. unsigned long flags;
  7402. int i;
  7403. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7404. if (!tg)
  7405. return ERR_PTR(-ENOMEM);
  7406. if (!alloc_fair_sched_group(tg, parent))
  7407. goto err;
  7408. if (!alloc_rt_sched_group(tg, parent))
  7409. goto err;
  7410. spin_lock_irqsave(&task_group_lock, flags);
  7411. for_each_possible_cpu(i) {
  7412. register_fair_sched_group(tg, i);
  7413. register_rt_sched_group(tg, i);
  7414. }
  7415. list_add_rcu(&tg->list, &task_groups);
  7416. WARN_ON(!parent); /* root should already exist */
  7417. tg->parent = parent;
  7418. INIT_LIST_HEAD(&tg->children);
  7419. list_add_rcu(&tg->siblings, &parent->children);
  7420. spin_unlock_irqrestore(&task_group_lock, flags);
  7421. return tg;
  7422. err:
  7423. free_sched_group(tg);
  7424. return ERR_PTR(-ENOMEM);
  7425. }
  7426. /* rcu callback to free various structures associated with a task group */
  7427. static void free_sched_group_rcu(struct rcu_head *rhp)
  7428. {
  7429. /* now it should be safe to free those cfs_rqs */
  7430. free_sched_group(container_of(rhp, struct task_group, rcu));
  7431. }
  7432. /* Destroy runqueue etc associated with a task group */
  7433. void sched_destroy_group(struct task_group *tg)
  7434. {
  7435. unsigned long flags;
  7436. int i;
  7437. spin_lock_irqsave(&task_group_lock, flags);
  7438. for_each_possible_cpu(i) {
  7439. unregister_fair_sched_group(tg, i);
  7440. unregister_rt_sched_group(tg, i);
  7441. }
  7442. list_del_rcu(&tg->list);
  7443. list_del_rcu(&tg->siblings);
  7444. spin_unlock_irqrestore(&task_group_lock, flags);
  7445. /* wait for possible concurrent references to cfs_rqs complete */
  7446. call_rcu(&tg->rcu, free_sched_group_rcu);
  7447. }
  7448. /* change task's runqueue when it moves between groups.
  7449. * The caller of this function should have put the task in its new group
  7450. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7451. * reflect its new group.
  7452. */
  7453. void sched_move_task(struct task_struct *tsk)
  7454. {
  7455. int on_rq, running;
  7456. unsigned long flags;
  7457. struct rq *rq;
  7458. rq = task_rq_lock(tsk, &flags);
  7459. update_rq_clock(rq);
  7460. running = task_current(rq, tsk);
  7461. on_rq = tsk->se.on_rq;
  7462. if (on_rq)
  7463. dequeue_task(rq, tsk, 0);
  7464. if (unlikely(running))
  7465. tsk->sched_class->put_prev_task(rq, tsk);
  7466. set_task_rq(tsk, task_cpu(tsk));
  7467. #ifdef CONFIG_FAIR_GROUP_SCHED
  7468. if (tsk->sched_class->moved_group)
  7469. tsk->sched_class->moved_group(tsk);
  7470. #endif
  7471. if (unlikely(running))
  7472. tsk->sched_class->set_curr_task(rq);
  7473. if (on_rq)
  7474. enqueue_task(rq, tsk, 0);
  7475. task_rq_unlock(rq, &flags);
  7476. }
  7477. #endif /* CONFIG_GROUP_SCHED */
  7478. #ifdef CONFIG_FAIR_GROUP_SCHED
  7479. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7480. {
  7481. struct cfs_rq *cfs_rq = se->cfs_rq;
  7482. int on_rq;
  7483. on_rq = se->on_rq;
  7484. if (on_rq)
  7485. dequeue_entity(cfs_rq, se, 0);
  7486. se->load.weight = shares;
  7487. se->load.inv_weight = 0;
  7488. if (on_rq)
  7489. enqueue_entity(cfs_rq, se, 0);
  7490. }
  7491. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7492. {
  7493. struct cfs_rq *cfs_rq = se->cfs_rq;
  7494. struct rq *rq = cfs_rq->rq;
  7495. unsigned long flags;
  7496. spin_lock_irqsave(&rq->lock, flags);
  7497. __set_se_shares(se, shares);
  7498. spin_unlock_irqrestore(&rq->lock, flags);
  7499. }
  7500. static DEFINE_MUTEX(shares_mutex);
  7501. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7502. {
  7503. int i;
  7504. unsigned long flags;
  7505. /*
  7506. * We can't change the weight of the root cgroup.
  7507. */
  7508. if (!tg->se[0])
  7509. return -EINVAL;
  7510. if (shares < MIN_SHARES)
  7511. shares = MIN_SHARES;
  7512. else if (shares > MAX_SHARES)
  7513. shares = MAX_SHARES;
  7514. mutex_lock(&shares_mutex);
  7515. if (tg->shares == shares)
  7516. goto done;
  7517. spin_lock_irqsave(&task_group_lock, flags);
  7518. for_each_possible_cpu(i)
  7519. unregister_fair_sched_group(tg, i);
  7520. list_del_rcu(&tg->siblings);
  7521. spin_unlock_irqrestore(&task_group_lock, flags);
  7522. /* wait for any ongoing reference to this group to finish */
  7523. synchronize_sched();
  7524. /*
  7525. * Now we are free to modify the group's share on each cpu
  7526. * w/o tripping rebalance_share or load_balance_fair.
  7527. */
  7528. tg->shares = shares;
  7529. for_each_possible_cpu(i) {
  7530. /*
  7531. * force a rebalance
  7532. */
  7533. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7534. set_se_shares(tg->se[i], shares);
  7535. }
  7536. /*
  7537. * Enable load balance activity on this group, by inserting it back on
  7538. * each cpu's rq->leaf_cfs_rq_list.
  7539. */
  7540. spin_lock_irqsave(&task_group_lock, flags);
  7541. for_each_possible_cpu(i)
  7542. register_fair_sched_group(tg, i);
  7543. list_add_rcu(&tg->siblings, &tg->parent->children);
  7544. spin_unlock_irqrestore(&task_group_lock, flags);
  7545. done:
  7546. mutex_unlock(&shares_mutex);
  7547. return 0;
  7548. }
  7549. unsigned long sched_group_shares(struct task_group *tg)
  7550. {
  7551. return tg->shares;
  7552. }
  7553. #endif
  7554. #ifdef CONFIG_RT_GROUP_SCHED
  7555. /*
  7556. * Ensure that the real time constraints are schedulable.
  7557. */
  7558. static DEFINE_MUTEX(rt_constraints_mutex);
  7559. static unsigned long to_ratio(u64 period, u64 runtime)
  7560. {
  7561. if (runtime == RUNTIME_INF)
  7562. return 1ULL << 20;
  7563. return div64_u64(runtime << 20, period);
  7564. }
  7565. /* Must be called with tasklist_lock held */
  7566. static inline int tg_has_rt_tasks(struct task_group *tg)
  7567. {
  7568. struct task_struct *g, *p;
  7569. do_each_thread(g, p) {
  7570. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7571. return 1;
  7572. } while_each_thread(g, p);
  7573. return 0;
  7574. }
  7575. struct rt_schedulable_data {
  7576. struct task_group *tg;
  7577. u64 rt_period;
  7578. u64 rt_runtime;
  7579. };
  7580. static int tg_schedulable(struct task_group *tg, void *data)
  7581. {
  7582. struct rt_schedulable_data *d = data;
  7583. struct task_group *child;
  7584. unsigned long total, sum = 0;
  7585. u64 period, runtime;
  7586. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7587. runtime = tg->rt_bandwidth.rt_runtime;
  7588. if (tg == d->tg) {
  7589. period = d->rt_period;
  7590. runtime = d->rt_runtime;
  7591. }
  7592. /*
  7593. * Cannot have more runtime than the period.
  7594. */
  7595. if (runtime > period && runtime != RUNTIME_INF)
  7596. return -EINVAL;
  7597. /*
  7598. * Ensure we don't starve existing RT tasks.
  7599. */
  7600. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7601. return -EBUSY;
  7602. total = to_ratio(period, runtime);
  7603. /*
  7604. * Nobody can have more than the global setting allows.
  7605. */
  7606. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7607. return -EINVAL;
  7608. /*
  7609. * The sum of our children's runtime should not exceed our own.
  7610. */
  7611. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7612. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7613. runtime = child->rt_bandwidth.rt_runtime;
  7614. if (child == d->tg) {
  7615. period = d->rt_period;
  7616. runtime = d->rt_runtime;
  7617. }
  7618. sum += to_ratio(period, runtime);
  7619. }
  7620. if (sum > total)
  7621. return -EINVAL;
  7622. return 0;
  7623. }
  7624. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7625. {
  7626. struct rt_schedulable_data data = {
  7627. .tg = tg,
  7628. .rt_period = period,
  7629. .rt_runtime = runtime,
  7630. };
  7631. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7632. }
  7633. static int tg_set_bandwidth(struct task_group *tg,
  7634. u64 rt_period, u64 rt_runtime)
  7635. {
  7636. int i, err = 0;
  7637. mutex_lock(&rt_constraints_mutex);
  7638. read_lock(&tasklist_lock);
  7639. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7640. if (err)
  7641. goto unlock;
  7642. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7643. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7644. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7645. for_each_possible_cpu(i) {
  7646. struct rt_rq *rt_rq = tg->rt_rq[i];
  7647. spin_lock(&rt_rq->rt_runtime_lock);
  7648. rt_rq->rt_runtime = rt_runtime;
  7649. spin_unlock(&rt_rq->rt_runtime_lock);
  7650. }
  7651. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7652. unlock:
  7653. read_unlock(&tasklist_lock);
  7654. mutex_unlock(&rt_constraints_mutex);
  7655. return err;
  7656. }
  7657. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7658. {
  7659. u64 rt_runtime, rt_period;
  7660. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7661. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7662. if (rt_runtime_us < 0)
  7663. rt_runtime = RUNTIME_INF;
  7664. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7665. }
  7666. long sched_group_rt_runtime(struct task_group *tg)
  7667. {
  7668. u64 rt_runtime_us;
  7669. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7670. return -1;
  7671. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7672. do_div(rt_runtime_us, NSEC_PER_USEC);
  7673. return rt_runtime_us;
  7674. }
  7675. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7676. {
  7677. u64 rt_runtime, rt_period;
  7678. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7679. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7680. if (rt_period == 0)
  7681. return -EINVAL;
  7682. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7683. }
  7684. long sched_group_rt_period(struct task_group *tg)
  7685. {
  7686. u64 rt_period_us;
  7687. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7688. do_div(rt_period_us, NSEC_PER_USEC);
  7689. return rt_period_us;
  7690. }
  7691. static int sched_rt_global_constraints(void)
  7692. {
  7693. u64 runtime, period;
  7694. int ret = 0;
  7695. if (sysctl_sched_rt_period <= 0)
  7696. return -EINVAL;
  7697. runtime = global_rt_runtime();
  7698. period = global_rt_period();
  7699. /*
  7700. * Sanity check on the sysctl variables.
  7701. */
  7702. if (runtime > period && runtime != RUNTIME_INF)
  7703. return -EINVAL;
  7704. mutex_lock(&rt_constraints_mutex);
  7705. read_lock(&tasklist_lock);
  7706. ret = __rt_schedulable(NULL, 0, 0);
  7707. read_unlock(&tasklist_lock);
  7708. mutex_unlock(&rt_constraints_mutex);
  7709. return ret;
  7710. }
  7711. #else /* !CONFIG_RT_GROUP_SCHED */
  7712. static int sched_rt_global_constraints(void)
  7713. {
  7714. unsigned long flags;
  7715. int i;
  7716. if (sysctl_sched_rt_period <= 0)
  7717. return -EINVAL;
  7718. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7719. for_each_possible_cpu(i) {
  7720. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7721. spin_lock(&rt_rq->rt_runtime_lock);
  7722. rt_rq->rt_runtime = global_rt_runtime();
  7723. spin_unlock(&rt_rq->rt_runtime_lock);
  7724. }
  7725. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7726. return 0;
  7727. }
  7728. #endif /* CONFIG_RT_GROUP_SCHED */
  7729. int sched_rt_handler(struct ctl_table *table, int write,
  7730. struct file *filp, void __user *buffer, size_t *lenp,
  7731. loff_t *ppos)
  7732. {
  7733. int ret;
  7734. int old_period, old_runtime;
  7735. static DEFINE_MUTEX(mutex);
  7736. mutex_lock(&mutex);
  7737. old_period = sysctl_sched_rt_period;
  7738. old_runtime = sysctl_sched_rt_runtime;
  7739. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7740. if (!ret && write) {
  7741. ret = sched_rt_global_constraints();
  7742. if (ret) {
  7743. sysctl_sched_rt_period = old_period;
  7744. sysctl_sched_rt_runtime = old_runtime;
  7745. } else {
  7746. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7747. def_rt_bandwidth.rt_period =
  7748. ns_to_ktime(global_rt_period());
  7749. }
  7750. }
  7751. mutex_unlock(&mutex);
  7752. return ret;
  7753. }
  7754. #ifdef CONFIG_CGROUP_SCHED
  7755. /* return corresponding task_group object of a cgroup */
  7756. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7757. {
  7758. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7759. struct task_group, css);
  7760. }
  7761. static struct cgroup_subsys_state *
  7762. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7763. {
  7764. struct task_group *tg, *parent;
  7765. if (!cgrp->parent) {
  7766. /* This is early initialization for the top cgroup */
  7767. return &init_task_group.css;
  7768. }
  7769. parent = cgroup_tg(cgrp->parent);
  7770. tg = sched_create_group(parent);
  7771. if (IS_ERR(tg))
  7772. return ERR_PTR(-ENOMEM);
  7773. return &tg->css;
  7774. }
  7775. static void
  7776. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7777. {
  7778. struct task_group *tg = cgroup_tg(cgrp);
  7779. sched_destroy_group(tg);
  7780. }
  7781. static int
  7782. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7783. struct task_struct *tsk)
  7784. {
  7785. #ifdef CONFIG_RT_GROUP_SCHED
  7786. /* Don't accept realtime tasks when there is no way for them to run */
  7787. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7788. return -EINVAL;
  7789. #else
  7790. /* We don't support RT-tasks being in separate groups */
  7791. if (tsk->sched_class != &fair_sched_class)
  7792. return -EINVAL;
  7793. #endif
  7794. return 0;
  7795. }
  7796. static void
  7797. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7798. struct cgroup *old_cont, struct task_struct *tsk)
  7799. {
  7800. sched_move_task(tsk);
  7801. }
  7802. #ifdef CONFIG_FAIR_GROUP_SCHED
  7803. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7804. u64 shareval)
  7805. {
  7806. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7807. }
  7808. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7809. {
  7810. struct task_group *tg = cgroup_tg(cgrp);
  7811. return (u64) tg->shares;
  7812. }
  7813. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7814. #ifdef CONFIG_RT_GROUP_SCHED
  7815. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7816. s64 val)
  7817. {
  7818. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7819. }
  7820. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7821. {
  7822. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7823. }
  7824. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7825. u64 rt_period_us)
  7826. {
  7827. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7828. }
  7829. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7830. {
  7831. return sched_group_rt_period(cgroup_tg(cgrp));
  7832. }
  7833. #endif /* CONFIG_RT_GROUP_SCHED */
  7834. static struct cftype cpu_files[] = {
  7835. #ifdef CONFIG_FAIR_GROUP_SCHED
  7836. {
  7837. .name = "shares",
  7838. .read_u64 = cpu_shares_read_u64,
  7839. .write_u64 = cpu_shares_write_u64,
  7840. },
  7841. #endif
  7842. #ifdef CONFIG_RT_GROUP_SCHED
  7843. {
  7844. .name = "rt_runtime_us",
  7845. .read_s64 = cpu_rt_runtime_read,
  7846. .write_s64 = cpu_rt_runtime_write,
  7847. },
  7848. {
  7849. .name = "rt_period_us",
  7850. .read_u64 = cpu_rt_period_read_uint,
  7851. .write_u64 = cpu_rt_period_write_uint,
  7852. },
  7853. #endif
  7854. };
  7855. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7856. {
  7857. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7858. }
  7859. struct cgroup_subsys cpu_cgroup_subsys = {
  7860. .name = "cpu",
  7861. .create = cpu_cgroup_create,
  7862. .destroy = cpu_cgroup_destroy,
  7863. .can_attach = cpu_cgroup_can_attach,
  7864. .attach = cpu_cgroup_attach,
  7865. .populate = cpu_cgroup_populate,
  7866. .subsys_id = cpu_cgroup_subsys_id,
  7867. .early_init = 1,
  7868. };
  7869. #endif /* CONFIG_CGROUP_SCHED */
  7870. #ifdef CONFIG_CGROUP_CPUACCT
  7871. /*
  7872. * CPU accounting code for task groups.
  7873. *
  7874. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7875. * (balbir@in.ibm.com).
  7876. */
  7877. /* track cpu usage of a group of tasks and its child groups */
  7878. struct cpuacct {
  7879. struct cgroup_subsys_state css;
  7880. /* cpuusage holds pointer to a u64-type object on every cpu */
  7881. u64 *cpuusage;
  7882. struct cpuacct *parent;
  7883. };
  7884. struct cgroup_subsys cpuacct_subsys;
  7885. /* return cpu accounting group corresponding to this container */
  7886. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7887. {
  7888. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7889. struct cpuacct, css);
  7890. }
  7891. /* return cpu accounting group to which this task belongs */
  7892. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7893. {
  7894. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7895. struct cpuacct, css);
  7896. }
  7897. /* create a new cpu accounting group */
  7898. static struct cgroup_subsys_state *cpuacct_create(
  7899. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7900. {
  7901. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7902. if (!ca)
  7903. return ERR_PTR(-ENOMEM);
  7904. ca->cpuusage = alloc_percpu(u64);
  7905. if (!ca->cpuusage) {
  7906. kfree(ca);
  7907. return ERR_PTR(-ENOMEM);
  7908. }
  7909. if (cgrp->parent)
  7910. ca->parent = cgroup_ca(cgrp->parent);
  7911. return &ca->css;
  7912. }
  7913. /* destroy an existing cpu accounting group */
  7914. static void
  7915. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7916. {
  7917. struct cpuacct *ca = cgroup_ca(cgrp);
  7918. free_percpu(ca->cpuusage);
  7919. kfree(ca);
  7920. }
  7921. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7922. {
  7923. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7924. u64 data;
  7925. #ifndef CONFIG_64BIT
  7926. /*
  7927. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7928. */
  7929. spin_lock_irq(&cpu_rq(cpu)->lock);
  7930. data = *cpuusage;
  7931. spin_unlock_irq(&cpu_rq(cpu)->lock);
  7932. #else
  7933. data = *cpuusage;
  7934. #endif
  7935. return data;
  7936. }
  7937. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7938. {
  7939. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  7940. #ifndef CONFIG_64BIT
  7941. /*
  7942. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7943. */
  7944. spin_lock_irq(&cpu_rq(cpu)->lock);
  7945. *cpuusage = val;
  7946. spin_unlock_irq(&cpu_rq(cpu)->lock);
  7947. #else
  7948. *cpuusage = val;
  7949. #endif
  7950. }
  7951. /* return total cpu usage (in nanoseconds) of a group */
  7952. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7953. {
  7954. struct cpuacct *ca = cgroup_ca(cgrp);
  7955. u64 totalcpuusage = 0;
  7956. int i;
  7957. for_each_present_cpu(i)
  7958. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7959. return totalcpuusage;
  7960. }
  7961. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7962. u64 reset)
  7963. {
  7964. struct cpuacct *ca = cgroup_ca(cgrp);
  7965. int err = 0;
  7966. int i;
  7967. if (reset) {
  7968. err = -EINVAL;
  7969. goto out;
  7970. }
  7971. for_each_present_cpu(i)
  7972. cpuacct_cpuusage_write(ca, i, 0);
  7973. out:
  7974. return err;
  7975. }
  7976. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7977. struct seq_file *m)
  7978. {
  7979. struct cpuacct *ca = cgroup_ca(cgroup);
  7980. u64 percpu;
  7981. int i;
  7982. for_each_present_cpu(i) {
  7983. percpu = cpuacct_cpuusage_read(ca, i);
  7984. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7985. }
  7986. seq_printf(m, "\n");
  7987. return 0;
  7988. }
  7989. static struct cftype files[] = {
  7990. {
  7991. .name = "usage",
  7992. .read_u64 = cpuusage_read,
  7993. .write_u64 = cpuusage_write,
  7994. },
  7995. {
  7996. .name = "usage_percpu",
  7997. .read_seq_string = cpuacct_percpu_seq_read,
  7998. },
  7999. };
  8000. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8001. {
  8002. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8003. }
  8004. /*
  8005. * charge this task's execution time to its accounting group.
  8006. *
  8007. * called with rq->lock held.
  8008. */
  8009. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8010. {
  8011. struct cpuacct *ca;
  8012. int cpu;
  8013. if (!cpuacct_subsys.active)
  8014. return;
  8015. cpu = task_cpu(tsk);
  8016. ca = task_ca(tsk);
  8017. for (; ca; ca = ca->parent) {
  8018. u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
  8019. *cpuusage += cputime;
  8020. }
  8021. }
  8022. struct cgroup_subsys cpuacct_subsys = {
  8023. .name = "cpuacct",
  8024. .create = cpuacct_create,
  8025. .destroy = cpuacct_destroy,
  8026. .populate = cpuacct_populate,
  8027. .subsys_id = cpuacct_subsys_id,
  8028. };
  8029. #endif /* CONFIG_CGROUP_CPUACCT */