rme32.c 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007
  1. /*
  2. * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
  3. *
  4. * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
  5. * Pilo Chambert <pilo.c@wanadoo.fr>
  6. *
  7. * Thanks to : Anders Torger <torger@ludd.luth.se>,
  8. * Henk Hesselink <henk@anda.nl>
  9. * for writing the digi96-driver
  10. * and RME for all informations.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. *
  27. * ****************************************************************************
  28. *
  29. * Note #1 "Sek'd models" ................................... martin 2002-12-07
  30. *
  31. * Identical soundcards by Sek'd were labeled:
  32. * RME Digi 32 = Sek'd Prodif 32
  33. * RME Digi 32 Pro = Sek'd Prodif 96
  34. * RME Digi 32/8 = Sek'd Prodif Gold
  35. *
  36. * ****************************************************************************
  37. *
  38. * Note #2 "full duplex mode" ............................... martin 2002-12-07
  39. *
  40. * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
  41. * in this mode. Rec data and play data are using the same buffer therefore. At
  42. * first you have got the playing bits in the buffer and then (after playing
  43. * them) they were overwitten by the captured sound of the CS8412/14. Both
  44. * modes (play/record) are running harmonically hand in hand in the same buffer
  45. * and you have only one start bit plus one interrupt bit to control this
  46. * paired action.
  47. * This is opposite to the latter rme96 where playing and capturing is totally
  48. * separated and so their full duplex mode is supported by alsa (using two
  49. * start bits and two interrupts for two different buffers).
  50. * But due to the wrong sequence of playing and capturing ALSA shows no solved
  51. * full duplex support for the rme32 at the moment. That's bad, but I'm not
  52. * able to solve it. Are you motivated enough to solve this problem now? Your
  53. * patch would be welcome!
  54. *
  55. * ****************************************************************************
  56. *
  57. * "The story after the long seeking" -- tiwai
  58. *
  59. * Ok, the situation regarding the full duplex is now improved a bit.
  60. * In the fullduplex mode (given by the module parameter), the hardware buffer
  61. * is split to halves for read and write directions at the DMA pointer.
  62. * That is, the half above the current DMA pointer is used for write, and
  63. * the half below is used for read. To mangle this strange behavior, an
  64. * software intermediate buffer is introduced. This is, of course, not good
  65. * from the viewpoint of the data transfer efficiency. However, this allows
  66. * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
  67. *
  68. * ****************************************************************************
  69. */
  70. #include <sound/driver.h>
  71. #include <linux/delay.h>
  72. #include <linux/init.h>
  73. #include <linux/interrupt.h>
  74. #include <linux/pci.h>
  75. #include <linux/slab.h>
  76. #include <linux/moduleparam.h>
  77. #include <sound/core.h>
  78. #include <sound/info.h>
  79. #include <sound/control.h>
  80. #include <sound/pcm.h>
  81. #include <sound/pcm_params.h>
  82. #include <sound/pcm-indirect.h>
  83. #include <sound/asoundef.h>
  84. #include <sound/initval.h>
  85. #include <asm/io.h>
  86. static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
  87. static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
  88. static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
  89. static int fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
  90. module_param_array(index, int, NULL, 0444);
  91. MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
  92. module_param_array(id, charp, NULL, 0444);
  93. MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
  94. module_param_array(enable, bool, NULL, 0444);
  95. MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
  96. module_param_array(fullduplex, bool, NULL, 0444);
  97. MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
  98. MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
  99. MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
  100. MODULE_LICENSE("GPL");
  101. MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}");
  102. /* Defines for RME Digi32 series */
  103. #define RME32_SPDIF_NCHANNELS 2
  104. /* Playback and capture buffer size */
  105. #define RME32_BUFFER_SIZE 0x20000
  106. /* IO area size */
  107. #define RME32_IO_SIZE 0x30000
  108. /* IO area offsets */
  109. #define RME32_IO_DATA_BUFFER 0x0
  110. #define RME32_IO_CONTROL_REGISTER 0x20000
  111. #define RME32_IO_GET_POS 0x20000
  112. #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
  113. #define RME32_IO_RESET_POS 0x20100
  114. /* Write control register bits */
  115. #define RME32_WCR_START (1 << 0) /* startbit */
  116. #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
  117. Setting the whole card to mono
  118. doesn't seem to be very useful.
  119. A software-solution can handle
  120. full-duplex with one direction in
  121. stereo and the other way in mono.
  122. So, the hardware should work all
  123. the time in stereo! */
  124. #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
  125. #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
  126. #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
  127. #define RME32_WCR_FREQ_1 (1 << 5)
  128. #define RME32_WCR_INP_0 (1 << 6) /* input switch */
  129. #define RME32_WCR_INP_1 (1 << 7)
  130. #define RME32_WCR_RESET (1 << 8) /* Reset address */
  131. #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
  132. #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
  133. #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
  134. #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
  135. #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
  136. #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
  137. #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
  138. #define RME32_WCR_BITPOS_FREQ_0 4
  139. #define RME32_WCR_BITPOS_FREQ_1 5
  140. #define RME32_WCR_BITPOS_INP_0 6
  141. #define RME32_WCR_BITPOS_INP_1 7
  142. /* Read control register bits */
  143. #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
  144. #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
  145. #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
  146. #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
  147. #define RME32_RCR_FREQ_1 (1 << 28)
  148. #define RME32_RCR_FREQ_2 (1 << 29)
  149. #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
  150. #define RME32_RCR_IRQ (1 << 31) /* interrupt */
  151. #define RME32_RCR_BITPOS_F0 27
  152. #define RME32_RCR_BITPOS_F1 28
  153. #define RME32_RCR_BITPOS_F2 29
  154. /* Input types */
  155. #define RME32_INPUT_OPTICAL 0
  156. #define RME32_INPUT_COAXIAL 1
  157. #define RME32_INPUT_INTERNAL 2
  158. #define RME32_INPUT_XLR 3
  159. /* Clock modes */
  160. #define RME32_CLOCKMODE_SLAVE 0
  161. #define RME32_CLOCKMODE_MASTER_32 1
  162. #define RME32_CLOCKMODE_MASTER_44 2
  163. #define RME32_CLOCKMODE_MASTER_48 3
  164. /* Block sizes in bytes */
  165. #define RME32_BLOCK_SIZE 8192
  166. /* Software intermediate buffer (max) size */
  167. #define RME32_MID_BUFFER_SIZE (1024*1024)
  168. /* Hardware revisions */
  169. #define RME32_32_REVISION 192
  170. #define RME32_328_REVISION_OLD 100
  171. #define RME32_328_REVISION_NEW 101
  172. #define RME32_PRO_REVISION_WITH_8412 192
  173. #define RME32_PRO_REVISION_WITH_8414 150
  174. struct rme32 {
  175. spinlock_t lock;
  176. int irq;
  177. unsigned long port;
  178. void __iomem *iobase;
  179. u32 wcreg; /* cached write control register value */
  180. u32 wcreg_spdif; /* S/PDIF setup */
  181. u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
  182. u32 rcreg; /* cached read control register value */
  183. u8 rev; /* card revision number */
  184. struct snd_pcm_substream *playback_substream;
  185. struct snd_pcm_substream *capture_substream;
  186. int playback_frlog; /* log2 of framesize */
  187. int capture_frlog;
  188. size_t playback_periodsize; /* in bytes, zero if not used */
  189. size_t capture_periodsize; /* in bytes, zero if not used */
  190. unsigned int fullduplex_mode;
  191. int running;
  192. struct snd_pcm_indirect playback_pcm;
  193. struct snd_pcm_indirect capture_pcm;
  194. struct snd_card *card;
  195. struct snd_pcm *spdif_pcm;
  196. struct snd_pcm *adat_pcm;
  197. struct pci_dev *pci;
  198. struct snd_kcontrol *spdif_ctl;
  199. };
  200. static struct pci_device_id snd_rme32_ids[] = {
  201. {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32,
  202. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
  203. {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8,
  204. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
  205. {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO,
  206. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
  207. {0,}
  208. };
  209. MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
  210. #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
  211. #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
  212. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
  213. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
  214. static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
  215. static void snd_rme32_proc_init(struct rme32 * rme32);
  216. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
  217. static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
  218. {
  219. return (readl(rme32->iobase + RME32_IO_GET_POS)
  220. & RME32_RCR_AUDIO_ADDR_MASK);
  221. }
  222. /* silence callback for halfduplex mode */
  223. static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
  224. snd_pcm_uframes_t pos,
  225. snd_pcm_uframes_t count)
  226. {
  227. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  228. count <<= rme32->playback_frlog;
  229. pos <<= rme32->playback_frlog;
  230. memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
  231. return 0;
  232. }
  233. /* copy callback for halfduplex mode */
  234. static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
  235. snd_pcm_uframes_t pos,
  236. void __user *src, snd_pcm_uframes_t count)
  237. {
  238. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  239. count <<= rme32->playback_frlog;
  240. pos <<= rme32->playback_frlog;
  241. if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  242. src, count))
  243. return -EFAULT;
  244. return 0;
  245. }
  246. /* copy callback for halfduplex mode */
  247. static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
  248. snd_pcm_uframes_t pos,
  249. void __user *dst, snd_pcm_uframes_t count)
  250. {
  251. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  252. count <<= rme32->capture_frlog;
  253. pos <<= rme32->capture_frlog;
  254. if (copy_to_user_fromio(dst,
  255. rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  256. count))
  257. return -EFAULT;
  258. return 0;
  259. }
  260. /*
  261. * SPDIF I/O capabilities (half-duplex mode)
  262. */
  263. static struct snd_pcm_hardware snd_rme32_spdif_info = {
  264. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  265. SNDRV_PCM_INFO_MMAP_VALID |
  266. SNDRV_PCM_INFO_INTERLEAVED |
  267. SNDRV_PCM_INFO_PAUSE |
  268. SNDRV_PCM_INFO_SYNC_START),
  269. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  270. SNDRV_PCM_FMTBIT_S32_LE),
  271. .rates = (SNDRV_PCM_RATE_32000 |
  272. SNDRV_PCM_RATE_44100 |
  273. SNDRV_PCM_RATE_48000),
  274. .rate_min = 32000,
  275. .rate_max = 48000,
  276. .channels_min = 2,
  277. .channels_max = 2,
  278. .buffer_bytes_max = RME32_BUFFER_SIZE,
  279. .period_bytes_min = RME32_BLOCK_SIZE,
  280. .period_bytes_max = RME32_BLOCK_SIZE,
  281. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  282. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  283. .fifo_size = 0,
  284. };
  285. /*
  286. * ADAT I/O capabilities (half-duplex mode)
  287. */
  288. static struct snd_pcm_hardware snd_rme32_adat_info =
  289. {
  290. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  291. SNDRV_PCM_INFO_MMAP_VALID |
  292. SNDRV_PCM_INFO_INTERLEAVED |
  293. SNDRV_PCM_INFO_PAUSE |
  294. SNDRV_PCM_INFO_SYNC_START),
  295. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  296. .rates = (SNDRV_PCM_RATE_44100 |
  297. SNDRV_PCM_RATE_48000),
  298. .rate_min = 44100,
  299. .rate_max = 48000,
  300. .channels_min = 8,
  301. .channels_max = 8,
  302. .buffer_bytes_max = RME32_BUFFER_SIZE,
  303. .period_bytes_min = RME32_BLOCK_SIZE,
  304. .period_bytes_max = RME32_BLOCK_SIZE,
  305. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  306. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  307. .fifo_size = 0,
  308. };
  309. /*
  310. * SPDIF I/O capabilities (full-duplex mode)
  311. */
  312. static struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
  313. .info = (SNDRV_PCM_INFO_MMAP |
  314. SNDRV_PCM_INFO_MMAP_VALID |
  315. SNDRV_PCM_INFO_INTERLEAVED |
  316. SNDRV_PCM_INFO_PAUSE |
  317. SNDRV_PCM_INFO_SYNC_START),
  318. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  319. SNDRV_PCM_FMTBIT_S32_LE),
  320. .rates = (SNDRV_PCM_RATE_32000 |
  321. SNDRV_PCM_RATE_44100 |
  322. SNDRV_PCM_RATE_48000),
  323. .rate_min = 32000,
  324. .rate_max = 48000,
  325. .channels_min = 2,
  326. .channels_max = 2,
  327. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  328. .period_bytes_min = RME32_BLOCK_SIZE,
  329. .period_bytes_max = RME32_BLOCK_SIZE,
  330. .periods_min = 2,
  331. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  332. .fifo_size = 0,
  333. };
  334. /*
  335. * ADAT I/O capabilities (full-duplex mode)
  336. */
  337. static struct snd_pcm_hardware snd_rme32_adat_fd_info =
  338. {
  339. .info = (SNDRV_PCM_INFO_MMAP |
  340. SNDRV_PCM_INFO_MMAP_VALID |
  341. SNDRV_PCM_INFO_INTERLEAVED |
  342. SNDRV_PCM_INFO_PAUSE |
  343. SNDRV_PCM_INFO_SYNC_START),
  344. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  345. .rates = (SNDRV_PCM_RATE_44100 |
  346. SNDRV_PCM_RATE_48000),
  347. .rate_min = 44100,
  348. .rate_max = 48000,
  349. .channels_min = 8,
  350. .channels_max = 8,
  351. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  352. .period_bytes_min = RME32_BLOCK_SIZE,
  353. .period_bytes_max = RME32_BLOCK_SIZE,
  354. .periods_min = 2,
  355. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  356. .fifo_size = 0,
  357. };
  358. static void snd_rme32_reset_dac(struct rme32 *rme32)
  359. {
  360. writel(rme32->wcreg | RME32_WCR_PD,
  361. rme32->iobase + RME32_IO_CONTROL_REGISTER);
  362. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  363. }
  364. static int snd_rme32_playback_getrate(struct rme32 * rme32)
  365. {
  366. int rate;
  367. rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  368. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  369. switch (rate) {
  370. case 1:
  371. rate = 32000;
  372. break;
  373. case 2:
  374. rate = 44100;
  375. break;
  376. case 3:
  377. rate = 48000;
  378. break;
  379. default:
  380. return -1;
  381. }
  382. return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
  383. }
  384. static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
  385. {
  386. int n;
  387. *is_adat = 0;
  388. if (rme32->rcreg & RME32_RCR_LOCK) {
  389. /* ADAT rate */
  390. *is_adat = 1;
  391. }
  392. if (rme32->rcreg & RME32_RCR_ERF) {
  393. return -1;
  394. }
  395. /* S/PDIF rate */
  396. n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
  397. (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
  398. (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
  399. if (RME32_PRO_WITH_8414(rme32))
  400. switch (n) { /* supporting the CS8414 */
  401. case 0:
  402. case 1:
  403. case 2:
  404. return -1;
  405. case 3:
  406. return 96000;
  407. case 4:
  408. return 88200;
  409. case 5:
  410. return 48000;
  411. case 6:
  412. return 44100;
  413. case 7:
  414. return 32000;
  415. default:
  416. return -1;
  417. break;
  418. }
  419. else
  420. switch (n) { /* supporting the CS8412 */
  421. case 0:
  422. return -1;
  423. case 1:
  424. return 48000;
  425. case 2:
  426. return 44100;
  427. case 3:
  428. return 32000;
  429. case 4:
  430. return 48000;
  431. case 5:
  432. return 44100;
  433. case 6:
  434. return 44056;
  435. case 7:
  436. return 32000;
  437. default:
  438. break;
  439. }
  440. return -1;
  441. }
  442. static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
  443. {
  444. int ds;
  445. ds = rme32->wcreg & RME32_WCR_DS_BM;
  446. switch (rate) {
  447. case 32000:
  448. rme32->wcreg &= ~RME32_WCR_DS_BM;
  449. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  450. ~RME32_WCR_FREQ_1;
  451. break;
  452. case 44100:
  453. rme32->wcreg &= ~RME32_WCR_DS_BM;
  454. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  455. ~RME32_WCR_FREQ_0;
  456. break;
  457. case 48000:
  458. rme32->wcreg &= ~RME32_WCR_DS_BM;
  459. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  460. RME32_WCR_FREQ_1;
  461. break;
  462. case 64000:
  463. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  464. return -EINVAL;
  465. rme32->wcreg |= RME32_WCR_DS_BM;
  466. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  467. ~RME32_WCR_FREQ_1;
  468. break;
  469. case 88200:
  470. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  471. return -EINVAL;
  472. rme32->wcreg |= RME32_WCR_DS_BM;
  473. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  474. ~RME32_WCR_FREQ_0;
  475. break;
  476. case 96000:
  477. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  478. return -EINVAL;
  479. rme32->wcreg |= RME32_WCR_DS_BM;
  480. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  481. RME32_WCR_FREQ_1;
  482. break;
  483. default:
  484. return -EINVAL;
  485. }
  486. if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
  487. (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
  488. {
  489. /* change to/from double-speed: reset the DAC (if available) */
  490. snd_rme32_reset_dac(rme32);
  491. } else {
  492. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  493. }
  494. return 0;
  495. }
  496. static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
  497. {
  498. switch (mode) {
  499. case RME32_CLOCKMODE_SLAVE:
  500. /* AutoSync */
  501. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
  502. ~RME32_WCR_FREQ_1;
  503. break;
  504. case RME32_CLOCKMODE_MASTER_32:
  505. /* Internal 32.0kHz */
  506. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  507. ~RME32_WCR_FREQ_1;
  508. break;
  509. case RME32_CLOCKMODE_MASTER_44:
  510. /* Internal 44.1kHz */
  511. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
  512. RME32_WCR_FREQ_1;
  513. break;
  514. case RME32_CLOCKMODE_MASTER_48:
  515. /* Internal 48.0kHz */
  516. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  517. RME32_WCR_FREQ_1;
  518. break;
  519. default:
  520. return -EINVAL;
  521. }
  522. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  523. return 0;
  524. }
  525. static int snd_rme32_getclockmode(struct rme32 * rme32)
  526. {
  527. return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  528. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  529. }
  530. static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
  531. {
  532. switch (type) {
  533. case RME32_INPUT_OPTICAL:
  534. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
  535. ~RME32_WCR_INP_1;
  536. break;
  537. case RME32_INPUT_COAXIAL:
  538. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
  539. ~RME32_WCR_INP_1;
  540. break;
  541. case RME32_INPUT_INTERNAL:
  542. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
  543. RME32_WCR_INP_1;
  544. break;
  545. case RME32_INPUT_XLR:
  546. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
  547. RME32_WCR_INP_1;
  548. break;
  549. default:
  550. return -EINVAL;
  551. }
  552. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  553. return 0;
  554. }
  555. static int snd_rme32_getinputtype(struct rme32 * rme32)
  556. {
  557. return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
  558. (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
  559. }
  560. static void
  561. snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
  562. {
  563. int frlog;
  564. if (n_channels == 2) {
  565. frlog = 1;
  566. } else {
  567. /* assume 8 channels */
  568. frlog = 3;
  569. }
  570. if (is_playback) {
  571. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  572. rme32->playback_frlog = frlog;
  573. } else {
  574. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  575. rme32->capture_frlog = frlog;
  576. }
  577. }
  578. static int snd_rme32_setformat(struct rme32 * rme32, int format)
  579. {
  580. switch (format) {
  581. case SNDRV_PCM_FORMAT_S16_LE:
  582. rme32->wcreg &= ~RME32_WCR_MODE24;
  583. break;
  584. case SNDRV_PCM_FORMAT_S32_LE:
  585. rme32->wcreg |= RME32_WCR_MODE24;
  586. break;
  587. default:
  588. return -EINVAL;
  589. }
  590. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  591. return 0;
  592. }
  593. static int
  594. snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
  595. struct snd_pcm_hw_params *params)
  596. {
  597. int err, rate, dummy;
  598. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  599. struct snd_pcm_runtime *runtime = substream->runtime;
  600. if (rme32->fullduplex_mode) {
  601. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  602. if (err < 0)
  603. return err;
  604. } else {
  605. runtime->dma_area = (void __force *)(rme32->iobase +
  606. RME32_IO_DATA_BUFFER);
  607. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  608. runtime->dma_bytes = RME32_BUFFER_SIZE;
  609. }
  610. spin_lock_irq(&rme32->lock);
  611. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  612. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  613. /* AutoSync */
  614. if ((int)params_rate(params) != rate) {
  615. spin_unlock_irq(&rme32->lock);
  616. return -EIO;
  617. }
  618. } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
  619. spin_unlock_irq(&rme32->lock);
  620. return err;
  621. }
  622. if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
  623. spin_unlock_irq(&rme32->lock);
  624. return err;
  625. }
  626. snd_rme32_setframelog(rme32, params_channels(params), 1);
  627. if (rme32->capture_periodsize != 0) {
  628. if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
  629. spin_unlock_irq(&rme32->lock);
  630. return -EBUSY;
  631. }
  632. }
  633. rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
  634. /* S/PDIF setup */
  635. if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
  636. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  637. rme32->wcreg |= rme32->wcreg_spdif_stream;
  638. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  639. }
  640. spin_unlock_irq(&rme32->lock);
  641. return 0;
  642. }
  643. static int
  644. snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
  645. struct snd_pcm_hw_params *params)
  646. {
  647. int err, isadat, rate;
  648. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  649. struct snd_pcm_runtime *runtime = substream->runtime;
  650. if (rme32->fullduplex_mode) {
  651. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  652. if (err < 0)
  653. return err;
  654. } else {
  655. runtime->dma_area = (void __force *)rme32->iobase +
  656. RME32_IO_DATA_BUFFER;
  657. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  658. runtime->dma_bytes = RME32_BUFFER_SIZE;
  659. }
  660. spin_lock_irq(&rme32->lock);
  661. /* enable AutoSync for record-preparing */
  662. rme32->wcreg |= RME32_WCR_AUTOSYNC;
  663. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  664. if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
  665. spin_unlock_irq(&rme32->lock);
  666. return err;
  667. }
  668. if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
  669. spin_unlock_irq(&rme32->lock);
  670. return err;
  671. }
  672. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  673. if ((int)params_rate(params) != rate) {
  674. spin_unlock_irq(&rme32->lock);
  675. return -EIO;
  676. }
  677. if ((isadat && runtime->hw.channels_min == 2) ||
  678. (!isadat && runtime->hw.channels_min == 8)) {
  679. spin_unlock_irq(&rme32->lock);
  680. return -EIO;
  681. }
  682. }
  683. /* AutoSync off for recording */
  684. rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
  685. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  686. snd_rme32_setframelog(rme32, params_channels(params), 0);
  687. if (rme32->playback_periodsize != 0) {
  688. if (params_period_size(params) << rme32->capture_frlog !=
  689. rme32->playback_periodsize) {
  690. spin_unlock_irq(&rme32->lock);
  691. return -EBUSY;
  692. }
  693. }
  694. rme32->capture_periodsize =
  695. params_period_size(params) << rme32->capture_frlog;
  696. spin_unlock_irq(&rme32->lock);
  697. return 0;
  698. }
  699. static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream)
  700. {
  701. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  702. if (! rme32->fullduplex_mode)
  703. return 0;
  704. return snd_pcm_lib_free_pages(substream);
  705. }
  706. static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
  707. {
  708. if (!from_pause) {
  709. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  710. }
  711. rme32->wcreg |= RME32_WCR_START;
  712. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  713. }
  714. static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
  715. {
  716. /*
  717. * Check if there is an unconfirmed IRQ, if so confirm it, or else
  718. * the hardware will not stop generating interrupts
  719. */
  720. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  721. if (rme32->rcreg & RME32_RCR_IRQ) {
  722. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  723. }
  724. rme32->wcreg &= ~RME32_WCR_START;
  725. if (rme32->wcreg & RME32_WCR_SEL)
  726. rme32->wcreg |= RME32_WCR_MUTE;
  727. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  728. if (! to_pause)
  729. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  730. }
  731. static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
  732. {
  733. struct rme32 *rme32 = (struct rme32 *) dev_id;
  734. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  735. if (!(rme32->rcreg & RME32_RCR_IRQ)) {
  736. return IRQ_NONE;
  737. } else {
  738. if (rme32->capture_substream) {
  739. snd_pcm_period_elapsed(rme32->capture_substream);
  740. }
  741. if (rme32->playback_substream) {
  742. snd_pcm_period_elapsed(rme32->playback_substream);
  743. }
  744. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  745. }
  746. return IRQ_HANDLED;
  747. }
  748. static unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
  749. static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
  750. .count = ARRAY_SIZE(period_bytes),
  751. .list = period_bytes,
  752. .mask = 0
  753. };
  754. static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
  755. {
  756. if (! rme32->fullduplex_mode) {
  757. snd_pcm_hw_constraint_minmax(runtime,
  758. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  759. RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
  760. snd_pcm_hw_constraint_list(runtime, 0,
  761. SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
  762. &hw_constraints_period_bytes);
  763. }
  764. }
  765. static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
  766. {
  767. int rate, dummy;
  768. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  769. struct snd_pcm_runtime *runtime = substream->runtime;
  770. snd_pcm_set_sync(substream);
  771. spin_lock_irq(&rme32->lock);
  772. if (rme32->playback_substream != NULL) {
  773. spin_unlock_irq(&rme32->lock);
  774. return -EBUSY;
  775. }
  776. rme32->wcreg &= ~RME32_WCR_ADAT;
  777. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  778. rme32->playback_substream = substream;
  779. spin_unlock_irq(&rme32->lock);
  780. if (rme32->fullduplex_mode)
  781. runtime->hw = snd_rme32_spdif_fd_info;
  782. else
  783. runtime->hw = snd_rme32_spdif_info;
  784. if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
  785. runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  786. runtime->hw.rate_max = 96000;
  787. }
  788. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  789. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  790. /* AutoSync */
  791. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  792. runtime->hw.rate_min = rate;
  793. runtime->hw.rate_max = rate;
  794. }
  795. snd_rme32_set_buffer_constraint(rme32, runtime);
  796. rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
  797. rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  798. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  799. SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
  800. return 0;
  801. }
  802. static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
  803. {
  804. int isadat, rate;
  805. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  806. struct snd_pcm_runtime *runtime = substream->runtime;
  807. snd_pcm_set_sync(substream);
  808. spin_lock_irq(&rme32->lock);
  809. if (rme32->capture_substream != NULL) {
  810. spin_unlock_irq(&rme32->lock);
  811. return -EBUSY;
  812. }
  813. rme32->capture_substream = substream;
  814. spin_unlock_irq(&rme32->lock);
  815. if (rme32->fullduplex_mode)
  816. runtime->hw = snd_rme32_spdif_fd_info;
  817. else
  818. runtime->hw = snd_rme32_spdif_info;
  819. if (RME32_PRO_WITH_8414(rme32)) {
  820. runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  821. runtime->hw.rate_max = 96000;
  822. }
  823. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  824. if (isadat) {
  825. return -EIO;
  826. }
  827. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  828. runtime->hw.rate_min = rate;
  829. runtime->hw.rate_max = rate;
  830. }
  831. snd_rme32_set_buffer_constraint(rme32, runtime);
  832. return 0;
  833. }
  834. static int
  835. snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
  836. {
  837. int rate, dummy;
  838. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  839. struct snd_pcm_runtime *runtime = substream->runtime;
  840. snd_pcm_set_sync(substream);
  841. spin_lock_irq(&rme32->lock);
  842. if (rme32->playback_substream != NULL) {
  843. spin_unlock_irq(&rme32->lock);
  844. return -EBUSY;
  845. }
  846. rme32->wcreg |= RME32_WCR_ADAT;
  847. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  848. rme32->playback_substream = substream;
  849. spin_unlock_irq(&rme32->lock);
  850. if (rme32->fullduplex_mode)
  851. runtime->hw = snd_rme32_adat_fd_info;
  852. else
  853. runtime->hw = snd_rme32_adat_info;
  854. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  855. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  856. /* AutoSync */
  857. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  858. runtime->hw.rate_min = rate;
  859. runtime->hw.rate_max = rate;
  860. }
  861. snd_rme32_set_buffer_constraint(rme32, runtime);
  862. return 0;
  863. }
  864. static int
  865. snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
  866. {
  867. int isadat, rate;
  868. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  869. struct snd_pcm_runtime *runtime = substream->runtime;
  870. if (rme32->fullduplex_mode)
  871. runtime->hw = snd_rme32_adat_fd_info;
  872. else
  873. runtime->hw = snd_rme32_adat_info;
  874. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  875. if (!isadat) {
  876. return -EIO;
  877. }
  878. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  879. runtime->hw.rate_min = rate;
  880. runtime->hw.rate_max = rate;
  881. }
  882. snd_pcm_set_sync(substream);
  883. spin_lock_irq(&rme32->lock);
  884. if (rme32->capture_substream != NULL) {
  885. spin_unlock_irq(&rme32->lock);
  886. return -EBUSY;
  887. }
  888. rme32->capture_substream = substream;
  889. spin_unlock_irq(&rme32->lock);
  890. snd_rme32_set_buffer_constraint(rme32, runtime);
  891. return 0;
  892. }
  893. static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
  894. {
  895. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  896. int spdif = 0;
  897. spin_lock_irq(&rme32->lock);
  898. rme32->playback_substream = NULL;
  899. rme32->playback_periodsize = 0;
  900. spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
  901. spin_unlock_irq(&rme32->lock);
  902. if (spdif) {
  903. rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  904. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  905. SNDRV_CTL_EVENT_MASK_INFO,
  906. &rme32->spdif_ctl->id);
  907. }
  908. return 0;
  909. }
  910. static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
  911. {
  912. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  913. spin_lock_irq(&rme32->lock);
  914. rme32->capture_substream = NULL;
  915. rme32->capture_periodsize = 0;
  916. spin_unlock(&rme32->lock);
  917. return 0;
  918. }
  919. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
  920. {
  921. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  922. spin_lock_irq(&rme32->lock);
  923. if (rme32->fullduplex_mode) {
  924. memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
  925. rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  926. rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  927. } else {
  928. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  929. }
  930. if (rme32->wcreg & RME32_WCR_SEL)
  931. rme32->wcreg &= ~RME32_WCR_MUTE;
  932. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  933. spin_unlock_irq(&rme32->lock);
  934. return 0;
  935. }
  936. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
  937. {
  938. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  939. spin_lock_irq(&rme32->lock);
  940. if (rme32->fullduplex_mode) {
  941. memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
  942. rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  943. rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
  944. rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  945. } else {
  946. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  947. }
  948. spin_unlock_irq(&rme32->lock);
  949. return 0;
  950. }
  951. static int
  952. snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  953. {
  954. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  955. struct snd_pcm_substream *s;
  956. spin_lock(&rme32->lock);
  957. snd_pcm_group_for_each_entry(s, substream) {
  958. if (s != rme32->playback_substream &&
  959. s != rme32->capture_substream)
  960. continue;
  961. switch (cmd) {
  962. case SNDRV_PCM_TRIGGER_START:
  963. rme32->running |= (1 << s->stream);
  964. if (rme32->fullduplex_mode) {
  965. /* remember the current DMA position */
  966. if (s == rme32->playback_substream) {
  967. rme32->playback_pcm.hw_io =
  968. rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  969. } else {
  970. rme32->capture_pcm.hw_io =
  971. rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  972. }
  973. }
  974. break;
  975. case SNDRV_PCM_TRIGGER_STOP:
  976. rme32->running &= ~(1 << s->stream);
  977. break;
  978. }
  979. snd_pcm_trigger_done(s, substream);
  980. }
  981. /* prefill playback buffer */
  982. if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) {
  983. snd_pcm_group_for_each_entry(s, substream) {
  984. if (s == rme32->playback_substream) {
  985. s->ops->ack(s);
  986. break;
  987. }
  988. }
  989. }
  990. switch (cmd) {
  991. case SNDRV_PCM_TRIGGER_START:
  992. if (rme32->running && ! RME32_ISWORKING(rme32))
  993. snd_rme32_pcm_start(rme32, 0);
  994. break;
  995. case SNDRV_PCM_TRIGGER_STOP:
  996. if (! rme32->running && RME32_ISWORKING(rme32))
  997. snd_rme32_pcm_stop(rme32, 0);
  998. break;
  999. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  1000. if (rme32->running && RME32_ISWORKING(rme32))
  1001. snd_rme32_pcm_stop(rme32, 1);
  1002. break;
  1003. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  1004. if (rme32->running && ! RME32_ISWORKING(rme32))
  1005. snd_rme32_pcm_start(rme32, 1);
  1006. break;
  1007. }
  1008. spin_unlock(&rme32->lock);
  1009. return 0;
  1010. }
  1011. /* pointer callback for halfduplex mode */
  1012. static snd_pcm_uframes_t
  1013. snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
  1014. {
  1015. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1016. return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
  1017. }
  1018. static snd_pcm_uframes_t
  1019. snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
  1020. {
  1021. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1022. return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
  1023. }
  1024. /* ack and pointer callbacks for fullduplex mode */
  1025. static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
  1026. struct snd_pcm_indirect *rec, size_t bytes)
  1027. {
  1028. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1029. memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1030. substream->runtime->dma_area + rec->sw_data, bytes);
  1031. }
  1032. static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
  1033. {
  1034. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1035. struct snd_pcm_indirect *rec, *cprec;
  1036. rec = &rme32->playback_pcm;
  1037. cprec = &rme32->capture_pcm;
  1038. spin_lock(&rme32->lock);
  1039. rec->hw_queue_size = RME32_BUFFER_SIZE;
  1040. if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
  1041. rec->hw_queue_size -= cprec->hw_ready;
  1042. spin_unlock(&rme32->lock);
  1043. snd_pcm_indirect_playback_transfer(substream, rec,
  1044. snd_rme32_pb_trans_copy);
  1045. return 0;
  1046. }
  1047. static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
  1048. struct snd_pcm_indirect *rec, size_t bytes)
  1049. {
  1050. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1051. memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
  1052. rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1053. bytes);
  1054. }
  1055. static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
  1056. {
  1057. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1058. snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
  1059. snd_rme32_cp_trans_copy);
  1060. return 0;
  1061. }
  1062. static snd_pcm_uframes_t
  1063. snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
  1064. {
  1065. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1066. return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
  1067. snd_rme32_pcm_byteptr(rme32));
  1068. }
  1069. static snd_pcm_uframes_t
  1070. snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
  1071. {
  1072. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1073. return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
  1074. snd_rme32_pcm_byteptr(rme32));
  1075. }
  1076. /* for halfduplex mode */
  1077. static struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
  1078. .open = snd_rme32_playback_spdif_open,
  1079. .close = snd_rme32_playback_close,
  1080. .ioctl = snd_pcm_lib_ioctl,
  1081. .hw_params = snd_rme32_playback_hw_params,
  1082. .hw_free = snd_rme32_pcm_hw_free,
  1083. .prepare = snd_rme32_playback_prepare,
  1084. .trigger = snd_rme32_pcm_trigger,
  1085. .pointer = snd_rme32_playback_pointer,
  1086. .copy = snd_rme32_playback_copy,
  1087. .silence = snd_rme32_playback_silence,
  1088. .mmap = snd_pcm_lib_mmap_iomem,
  1089. };
  1090. static struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
  1091. .open = snd_rme32_capture_spdif_open,
  1092. .close = snd_rme32_capture_close,
  1093. .ioctl = snd_pcm_lib_ioctl,
  1094. .hw_params = snd_rme32_capture_hw_params,
  1095. .hw_free = snd_rme32_pcm_hw_free,
  1096. .prepare = snd_rme32_capture_prepare,
  1097. .trigger = snd_rme32_pcm_trigger,
  1098. .pointer = snd_rme32_capture_pointer,
  1099. .copy = snd_rme32_capture_copy,
  1100. .mmap = snd_pcm_lib_mmap_iomem,
  1101. };
  1102. static struct snd_pcm_ops snd_rme32_playback_adat_ops = {
  1103. .open = snd_rme32_playback_adat_open,
  1104. .close = snd_rme32_playback_close,
  1105. .ioctl = snd_pcm_lib_ioctl,
  1106. .hw_params = snd_rme32_playback_hw_params,
  1107. .prepare = snd_rme32_playback_prepare,
  1108. .trigger = snd_rme32_pcm_trigger,
  1109. .pointer = snd_rme32_playback_pointer,
  1110. .copy = snd_rme32_playback_copy,
  1111. .silence = snd_rme32_playback_silence,
  1112. .mmap = snd_pcm_lib_mmap_iomem,
  1113. };
  1114. static struct snd_pcm_ops snd_rme32_capture_adat_ops = {
  1115. .open = snd_rme32_capture_adat_open,
  1116. .close = snd_rme32_capture_close,
  1117. .ioctl = snd_pcm_lib_ioctl,
  1118. .hw_params = snd_rme32_capture_hw_params,
  1119. .prepare = snd_rme32_capture_prepare,
  1120. .trigger = snd_rme32_pcm_trigger,
  1121. .pointer = snd_rme32_capture_pointer,
  1122. .copy = snd_rme32_capture_copy,
  1123. .mmap = snd_pcm_lib_mmap_iomem,
  1124. };
  1125. /* for fullduplex mode */
  1126. static struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
  1127. .open = snd_rme32_playback_spdif_open,
  1128. .close = snd_rme32_playback_close,
  1129. .ioctl = snd_pcm_lib_ioctl,
  1130. .hw_params = snd_rme32_playback_hw_params,
  1131. .hw_free = snd_rme32_pcm_hw_free,
  1132. .prepare = snd_rme32_playback_prepare,
  1133. .trigger = snd_rme32_pcm_trigger,
  1134. .pointer = snd_rme32_playback_fd_pointer,
  1135. .ack = snd_rme32_playback_fd_ack,
  1136. };
  1137. static struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
  1138. .open = snd_rme32_capture_spdif_open,
  1139. .close = snd_rme32_capture_close,
  1140. .ioctl = snd_pcm_lib_ioctl,
  1141. .hw_params = snd_rme32_capture_hw_params,
  1142. .hw_free = snd_rme32_pcm_hw_free,
  1143. .prepare = snd_rme32_capture_prepare,
  1144. .trigger = snd_rme32_pcm_trigger,
  1145. .pointer = snd_rme32_capture_fd_pointer,
  1146. .ack = snd_rme32_capture_fd_ack,
  1147. };
  1148. static struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
  1149. .open = snd_rme32_playback_adat_open,
  1150. .close = snd_rme32_playback_close,
  1151. .ioctl = snd_pcm_lib_ioctl,
  1152. .hw_params = snd_rme32_playback_hw_params,
  1153. .prepare = snd_rme32_playback_prepare,
  1154. .trigger = snd_rme32_pcm_trigger,
  1155. .pointer = snd_rme32_playback_fd_pointer,
  1156. .ack = snd_rme32_playback_fd_ack,
  1157. };
  1158. static struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
  1159. .open = snd_rme32_capture_adat_open,
  1160. .close = snd_rme32_capture_close,
  1161. .ioctl = snd_pcm_lib_ioctl,
  1162. .hw_params = snd_rme32_capture_hw_params,
  1163. .prepare = snd_rme32_capture_prepare,
  1164. .trigger = snd_rme32_pcm_trigger,
  1165. .pointer = snd_rme32_capture_fd_pointer,
  1166. .ack = snd_rme32_capture_fd_ack,
  1167. };
  1168. static void snd_rme32_free(void *private_data)
  1169. {
  1170. struct rme32 *rme32 = (struct rme32 *) private_data;
  1171. if (rme32 == NULL) {
  1172. return;
  1173. }
  1174. if (rme32->irq >= 0) {
  1175. snd_rme32_pcm_stop(rme32, 0);
  1176. free_irq(rme32->irq, (void *) rme32);
  1177. rme32->irq = -1;
  1178. }
  1179. if (rme32->iobase) {
  1180. iounmap(rme32->iobase);
  1181. rme32->iobase = NULL;
  1182. }
  1183. if (rme32->port) {
  1184. pci_release_regions(rme32->pci);
  1185. rme32->port = 0;
  1186. }
  1187. pci_disable_device(rme32->pci);
  1188. }
  1189. static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
  1190. {
  1191. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1192. rme32->spdif_pcm = NULL;
  1193. }
  1194. static void
  1195. snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
  1196. {
  1197. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1198. rme32->adat_pcm = NULL;
  1199. }
  1200. static int __devinit snd_rme32_create(struct rme32 * rme32)
  1201. {
  1202. struct pci_dev *pci = rme32->pci;
  1203. int err;
  1204. rme32->irq = -1;
  1205. spin_lock_init(&rme32->lock);
  1206. if ((err = pci_enable_device(pci)) < 0)
  1207. return err;
  1208. if ((err = pci_request_regions(pci, "RME32")) < 0)
  1209. return err;
  1210. rme32->port = pci_resource_start(rme32->pci, 0);
  1211. if ((rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE)) == 0) {
  1212. snd_printk(KERN_ERR "unable to remap memory region 0x%lx-0x%lx\n",
  1213. rme32->port, rme32->port + RME32_IO_SIZE - 1);
  1214. return -ENOMEM;
  1215. }
  1216. if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED,
  1217. "RME32", rme32)) {
  1218. snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
  1219. return -EBUSY;
  1220. }
  1221. rme32->irq = pci->irq;
  1222. /* read the card's revision number */
  1223. pci_read_config_byte(pci, 8, &rme32->rev);
  1224. /* set up ALSA pcm device for S/PDIF */
  1225. if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) {
  1226. return err;
  1227. }
  1228. rme32->spdif_pcm->private_data = rme32;
  1229. rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
  1230. strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
  1231. if (rme32->fullduplex_mode) {
  1232. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1233. &snd_rme32_playback_spdif_fd_ops);
  1234. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1235. &snd_rme32_capture_spdif_fd_ops);
  1236. snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1237. snd_dma_continuous_data(GFP_KERNEL),
  1238. 0, RME32_MID_BUFFER_SIZE);
  1239. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1240. } else {
  1241. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1242. &snd_rme32_playback_spdif_ops);
  1243. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1244. &snd_rme32_capture_spdif_ops);
  1245. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1246. }
  1247. /* set up ALSA pcm device for ADAT */
  1248. if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
  1249. (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
  1250. /* ADAT is not available on DIGI32 and DIGI32 Pro */
  1251. rme32->adat_pcm = NULL;
  1252. }
  1253. else {
  1254. if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
  1255. 1, 1, &rme32->adat_pcm)) < 0)
  1256. {
  1257. return err;
  1258. }
  1259. rme32->adat_pcm->private_data = rme32;
  1260. rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
  1261. strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
  1262. if (rme32->fullduplex_mode) {
  1263. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1264. &snd_rme32_playback_adat_fd_ops);
  1265. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1266. &snd_rme32_capture_adat_fd_ops);
  1267. snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1268. snd_dma_continuous_data(GFP_KERNEL),
  1269. 0, RME32_MID_BUFFER_SIZE);
  1270. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1271. } else {
  1272. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1273. &snd_rme32_playback_adat_ops);
  1274. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1275. &snd_rme32_capture_adat_ops);
  1276. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1277. }
  1278. }
  1279. rme32->playback_periodsize = 0;
  1280. rme32->capture_periodsize = 0;
  1281. /* make sure playback/capture is stopped, if by some reason active */
  1282. snd_rme32_pcm_stop(rme32, 0);
  1283. /* reset DAC */
  1284. snd_rme32_reset_dac(rme32);
  1285. /* reset buffer pointer */
  1286. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  1287. /* set default values in registers */
  1288. rme32->wcreg = RME32_WCR_SEL | /* normal playback */
  1289. RME32_WCR_INP_0 | /* input select */
  1290. RME32_WCR_MUTE; /* muting on */
  1291. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1292. /* init switch interface */
  1293. if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) {
  1294. return err;
  1295. }
  1296. /* init proc interface */
  1297. snd_rme32_proc_init(rme32);
  1298. rme32->capture_substream = NULL;
  1299. rme32->playback_substream = NULL;
  1300. return 0;
  1301. }
  1302. /*
  1303. * proc interface
  1304. */
  1305. static void
  1306. snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
  1307. {
  1308. int n;
  1309. struct rme32 *rme32 = (struct rme32 *) entry->private_data;
  1310. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1311. snd_iprintf(buffer, rme32->card->longname);
  1312. snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
  1313. snd_iprintf(buffer, "\nGeneral settings\n");
  1314. if (rme32->fullduplex_mode)
  1315. snd_iprintf(buffer, " Full-duplex mode\n");
  1316. else
  1317. snd_iprintf(buffer, " Half-duplex mode\n");
  1318. if (RME32_PRO_WITH_8414(rme32)) {
  1319. snd_iprintf(buffer, " receiver: CS8414\n");
  1320. } else {
  1321. snd_iprintf(buffer, " receiver: CS8412\n");
  1322. }
  1323. if (rme32->wcreg & RME32_WCR_MODE24) {
  1324. snd_iprintf(buffer, " format: 24 bit");
  1325. } else {
  1326. snd_iprintf(buffer, " format: 16 bit");
  1327. }
  1328. if (rme32->wcreg & RME32_WCR_MONO) {
  1329. snd_iprintf(buffer, ", Mono\n");
  1330. } else {
  1331. snd_iprintf(buffer, ", Stereo\n");
  1332. }
  1333. snd_iprintf(buffer, "\nInput settings\n");
  1334. switch (snd_rme32_getinputtype(rme32)) {
  1335. case RME32_INPUT_OPTICAL:
  1336. snd_iprintf(buffer, " input: optical");
  1337. break;
  1338. case RME32_INPUT_COAXIAL:
  1339. snd_iprintf(buffer, " input: coaxial");
  1340. break;
  1341. case RME32_INPUT_INTERNAL:
  1342. snd_iprintf(buffer, " input: internal");
  1343. break;
  1344. case RME32_INPUT_XLR:
  1345. snd_iprintf(buffer, " input: XLR");
  1346. break;
  1347. }
  1348. if (snd_rme32_capture_getrate(rme32, &n) < 0) {
  1349. snd_iprintf(buffer, "\n sample rate: no valid signal\n");
  1350. } else {
  1351. if (n) {
  1352. snd_iprintf(buffer, " (8 channels)\n");
  1353. } else {
  1354. snd_iprintf(buffer, " (2 channels)\n");
  1355. }
  1356. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1357. snd_rme32_capture_getrate(rme32, &n));
  1358. }
  1359. snd_iprintf(buffer, "\nOutput settings\n");
  1360. if (rme32->wcreg & RME32_WCR_SEL) {
  1361. snd_iprintf(buffer, " output signal: normal playback");
  1362. } else {
  1363. snd_iprintf(buffer, " output signal: same as input");
  1364. }
  1365. if (rme32->wcreg & RME32_WCR_MUTE) {
  1366. snd_iprintf(buffer, " (muted)\n");
  1367. } else {
  1368. snd_iprintf(buffer, "\n");
  1369. }
  1370. /* master output frequency */
  1371. if (!
  1372. ((!(rme32->wcreg & RME32_WCR_FREQ_0))
  1373. && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
  1374. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1375. snd_rme32_playback_getrate(rme32));
  1376. }
  1377. if (rme32->rcreg & RME32_RCR_KMODE) {
  1378. snd_iprintf(buffer, " sample clock source: AutoSync\n");
  1379. } else {
  1380. snd_iprintf(buffer, " sample clock source: Internal\n");
  1381. }
  1382. if (rme32->wcreg & RME32_WCR_PRO) {
  1383. snd_iprintf(buffer, " format: AES/EBU (professional)\n");
  1384. } else {
  1385. snd_iprintf(buffer, " format: IEC958 (consumer)\n");
  1386. }
  1387. if (rme32->wcreg & RME32_WCR_EMP) {
  1388. snd_iprintf(buffer, " emphasis: on\n");
  1389. } else {
  1390. snd_iprintf(buffer, " emphasis: off\n");
  1391. }
  1392. }
  1393. static void __devinit snd_rme32_proc_init(struct rme32 * rme32)
  1394. {
  1395. struct snd_info_entry *entry;
  1396. if (! snd_card_proc_new(rme32->card, "rme32", &entry))
  1397. snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read);
  1398. }
  1399. /*
  1400. * control interface
  1401. */
  1402. #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
  1403. static int
  1404. snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
  1405. struct snd_ctl_elem_value *ucontrol)
  1406. {
  1407. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1408. spin_lock_irq(&rme32->lock);
  1409. ucontrol->value.integer.value[0] =
  1410. rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
  1411. spin_unlock_irq(&rme32->lock);
  1412. return 0;
  1413. }
  1414. static int
  1415. snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
  1416. struct snd_ctl_elem_value *ucontrol)
  1417. {
  1418. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1419. unsigned int val;
  1420. int change;
  1421. val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
  1422. spin_lock_irq(&rme32->lock);
  1423. val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
  1424. change = val != rme32->wcreg;
  1425. if (ucontrol->value.integer.value[0])
  1426. val &= ~RME32_WCR_MUTE;
  1427. else
  1428. val |= RME32_WCR_MUTE;
  1429. rme32->wcreg = val;
  1430. writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1431. spin_unlock_irq(&rme32->lock);
  1432. return change;
  1433. }
  1434. static int
  1435. snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
  1436. struct snd_ctl_elem_info *uinfo)
  1437. {
  1438. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1439. static char *texts[4] = { "Optical", "Coaxial", "Internal", "XLR" };
  1440. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1441. uinfo->count = 1;
  1442. switch (rme32->pci->device) {
  1443. case PCI_DEVICE_ID_RME_DIGI32:
  1444. case PCI_DEVICE_ID_RME_DIGI32_8:
  1445. uinfo->value.enumerated.items = 3;
  1446. break;
  1447. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1448. uinfo->value.enumerated.items = 4;
  1449. break;
  1450. default:
  1451. snd_BUG();
  1452. break;
  1453. }
  1454. if (uinfo->value.enumerated.item >
  1455. uinfo->value.enumerated.items - 1) {
  1456. uinfo->value.enumerated.item =
  1457. uinfo->value.enumerated.items - 1;
  1458. }
  1459. strcpy(uinfo->value.enumerated.name,
  1460. texts[uinfo->value.enumerated.item]);
  1461. return 0;
  1462. }
  1463. static int
  1464. snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
  1465. struct snd_ctl_elem_value *ucontrol)
  1466. {
  1467. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1468. unsigned int items = 3;
  1469. spin_lock_irq(&rme32->lock);
  1470. ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
  1471. switch (rme32->pci->device) {
  1472. case PCI_DEVICE_ID_RME_DIGI32:
  1473. case PCI_DEVICE_ID_RME_DIGI32_8:
  1474. items = 3;
  1475. break;
  1476. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1477. items = 4;
  1478. break;
  1479. default:
  1480. snd_BUG();
  1481. break;
  1482. }
  1483. if (ucontrol->value.enumerated.item[0] >= items) {
  1484. ucontrol->value.enumerated.item[0] = items - 1;
  1485. }
  1486. spin_unlock_irq(&rme32->lock);
  1487. return 0;
  1488. }
  1489. static int
  1490. snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
  1491. struct snd_ctl_elem_value *ucontrol)
  1492. {
  1493. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1494. unsigned int val;
  1495. int change, items = 3;
  1496. switch (rme32->pci->device) {
  1497. case PCI_DEVICE_ID_RME_DIGI32:
  1498. case PCI_DEVICE_ID_RME_DIGI32_8:
  1499. items = 3;
  1500. break;
  1501. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1502. items = 4;
  1503. break;
  1504. default:
  1505. snd_BUG();
  1506. break;
  1507. }
  1508. val = ucontrol->value.enumerated.item[0] % items;
  1509. spin_lock_irq(&rme32->lock);
  1510. change = val != (unsigned int)snd_rme32_getinputtype(rme32);
  1511. snd_rme32_setinputtype(rme32, val);
  1512. spin_unlock_irq(&rme32->lock);
  1513. return change;
  1514. }
  1515. static int
  1516. snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
  1517. struct snd_ctl_elem_info *uinfo)
  1518. {
  1519. static char *texts[4] = { "AutoSync",
  1520. "Internal 32.0kHz",
  1521. "Internal 44.1kHz",
  1522. "Internal 48.0kHz" };
  1523. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  1524. uinfo->count = 1;
  1525. uinfo->value.enumerated.items = 4;
  1526. if (uinfo->value.enumerated.item > 3) {
  1527. uinfo->value.enumerated.item = 3;
  1528. }
  1529. strcpy(uinfo->value.enumerated.name,
  1530. texts[uinfo->value.enumerated.item]);
  1531. return 0;
  1532. }
  1533. static int
  1534. snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
  1535. struct snd_ctl_elem_value *ucontrol)
  1536. {
  1537. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1538. spin_lock_irq(&rme32->lock);
  1539. ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
  1540. spin_unlock_irq(&rme32->lock);
  1541. return 0;
  1542. }
  1543. static int
  1544. snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
  1545. struct snd_ctl_elem_value *ucontrol)
  1546. {
  1547. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1548. unsigned int val;
  1549. int change;
  1550. val = ucontrol->value.enumerated.item[0] % 3;
  1551. spin_lock_irq(&rme32->lock);
  1552. change = val != (unsigned int)snd_rme32_getclockmode(rme32);
  1553. snd_rme32_setclockmode(rme32, val);
  1554. spin_unlock_irq(&rme32->lock);
  1555. return change;
  1556. }
  1557. static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
  1558. {
  1559. u32 val = 0;
  1560. val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
  1561. if (val & RME32_WCR_PRO)
  1562. val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1563. else
  1564. val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1565. return val;
  1566. }
  1567. static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
  1568. {
  1569. aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
  1570. if (val & RME32_WCR_PRO)
  1571. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
  1572. else
  1573. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
  1574. }
  1575. static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
  1576. struct snd_ctl_elem_info *uinfo)
  1577. {
  1578. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1579. uinfo->count = 1;
  1580. return 0;
  1581. }
  1582. static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
  1583. struct snd_ctl_elem_value *ucontrol)
  1584. {
  1585. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1586. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1587. rme32->wcreg_spdif);
  1588. return 0;
  1589. }
  1590. static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
  1591. struct snd_ctl_elem_value *ucontrol)
  1592. {
  1593. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1594. int change;
  1595. u32 val;
  1596. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1597. spin_lock_irq(&rme32->lock);
  1598. change = val != rme32->wcreg_spdif;
  1599. rme32->wcreg_spdif = val;
  1600. spin_unlock_irq(&rme32->lock);
  1601. return change;
  1602. }
  1603. static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
  1604. struct snd_ctl_elem_info *uinfo)
  1605. {
  1606. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1607. uinfo->count = 1;
  1608. return 0;
  1609. }
  1610. static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
  1611. struct snd_ctl_elem_value *
  1612. ucontrol)
  1613. {
  1614. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1615. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1616. rme32->wcreg_spdif_stream);
  1617. return 0;
  1618. }
  1619. static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
  1620. struct snd_ctl_elem_value *
  1621. ucontrol)
  1622. {
  1623. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1624. int change;
  1625. u32 val;
  1626. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1627. spin_lock_irq(&rme32->lock);
  1628. change = val != rme32->wcreg_spdif_stream;
  1629. rme32->wcreg_spdif_stream = val;
  1630. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  1631. rme32->wcreg |= val;
  1632. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1633. spin_unlock_irq(&rme32->lock);
  1634. return change;
  1635. }
  1636. static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
  1637. struct snd_ctl_elem_info *uinfo)
  1638. {
  1639. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1640. uinfo->count = 1;
  1641. return 0;
  1642. }
  1643. static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1644. struct snd_ctl_elem_value *
  1645. ucontrol)
  1646. {
  1647. ucontrol->value.iec958.status[0] = kcontrol->private_value;
  1648. return 0;
  1649. }
  1650. static struct snd_kcontrol_new snd_rme32_controls[] = {
  1651. {
  1652. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1653. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  1654. .info = snd_rme32_control_spdif_info,
  1655. .get = snd_rme32_control_spdif_get,
  1656. .put = snd_rme32_control_spdif_put
  1657. },
  1658. {
  1659. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  1660. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1661. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  1662. .info = snd_rme32_control_spdif_stream_info,
  1663. .get = snd_rme32_control_spdif_stream_get,
  1664. .put = snd_rme32_control_spdif_stream_put
  1665. },
  1666. {
  1667. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1668. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1669. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  1670. .info = snd_rme32_control_spdif_mask_info,
  1671. .get = snd_rme32_control_spdif_mask_get,
  1672. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
  1673. },
  1674. {
  1675. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1676. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1677. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
  1678. .info = snd_rme32_control_spdif_mask_info,
  1679. .get = snd_rme32_control_spdif_mask_get,
  1680. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
  1681. },
  1682. {
  1683. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1684. .name = "Input Connector",
  1685. .info = snd_rme32_info_inputtype_control,
  1686. .get = snd_rme32_get_inputtype_control,
  1687. .put = snd_rme32_put_inputtype_control
  1688. },
  1689. {
  1690. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1691. .name = "Loopback Input",
  1692. .info = snd_rme32_info_loopback_control,
  1693. .get = snd_rme32_get_loopback_control,
  1694. .put = snd_rme32_put_loopback_control
  1695. },
  1696. {
  1697. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1698. .name = "Sample Clock Source",
  1699. .info = snd_rme32_info_clockmode_control,
  1700. .get = snd_rme32_get_clockmode_control,
  1701. .put = snd_rme32_put_clockmode_control
  1702. }
  1703. };
  1704. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
  1705. {
  1706. int idx, err;
  1707. struct snd_kcontrol *kctl;
  1708. for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
  1709. if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0)
  1710. return err;
  1711. if (idx == 1) /* IEC958 (S/PDIF) Stream */
  1712. rme32->spdif_ctl = kctl;
  1713. }
  1714. return 0;
  1715. }
  1716. /*
  1717. * Card initialisation
  1718. */
  1719. static void snd_rme32_card_free(struct snd_card *card)
  1720. {
  1721. snd_rme32_free(card->private_data);
  1722. }
  1723. static int __devinit
  1724. snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
  1725. {
  1726. static int dev;
  1727. struct rme32 *rme32;
  1728. struct snd_card *card;
  1729. int err;
  1730. if (dev >= SNDRV_CARDS) {
  1731. return -ENODEV;
  1732. }
  1733. if (!enable[dev]) {
  1734. dev++;
  1735. return -ENOENT;
  1736. }
  1737. if ((card = snd_card_new(index[dev], id[dev], THIS_MODULE,
  1738. sizeof(struct rme32))) == NULL)
  1739. return -ENOMEM;
  1740. card->private_free = snd_rme32_card_free;
  1741. rme32 = (struct rme32 *) card->private_data;
  1742. rme32->card = card;
  1743. rme32->pci = pci;
  1744. snd_card_set_dev(card, &pci->dev);
  1745. if (fullduplex[dev])
  1746. rme32->fullduplex_mode = 1;
  1747. if ((err = snd_rme32_create(rme32)) < 0) {
  1748. snd_card_free(card);
  1749. return err;
  1750. }
  1751. strcpy(card->driver, "Digi32");
  1752. switch (rme32->pci->device) {
  1753. case PCI_DEVICE_ID_RME_DIGI32:
  1754. strcpy(card->shortname, "RME Digi32");
  1755. break;
  1756. case PCI_DEVICE_ID_RME_DIGI32_8:
  1757. strcpy(card->shortname, "RME Digi32/8");
  1758. break;
  1759. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1760. strcpy(card->shortname, "RME Digi32 PRO");
  1761. break;
  1762. }
  1763. sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
  1764. card->shortname, rme32->rev, rme32->port, rme32->irq);
  1765. if ((err = snd_card_register(card)) < 0) {
  1766. snd_card_free(card);
  1767. return err;
  1768. }
  1769. pci_set_drvdata(pci, card);
  1770. dev++;
  1771. return 0;
  1772. }
  1773. static void __devexit snd_rme32_remove(struct pci_dev *pci)
  1774. {
  1775. snd_card_free(pci_get_drvdata(pci));
  1776. pci_set_drvdata(pci, NULL);
  1777. }
  1778. static struct pci_driver driver = {
  1779. .name = "RME Digi32",
  1780. .id_table = snd_rme32_ids,
  1781. .probe = snd_rme32_probe,
  1782. .remove = __devexit_p(snd_rme32_remove),
  1783. };
  1784. static int __init alsa_card_rme32_init(void)
  1785. {
  1786. return pci_register_driver(&driver);
  1787. }
  1788. static void __exit alsa_card_rme32_exit(void)
  1789. {
  1790. pci_unregister_driver(&driver);
  1791. }
  1792. module_init(alsa_card_rme32_init)
  1793. module_exit(alsa_card_rme32_exit)