ak4xxx-adda.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845
  1. /*
  2. * ALSA driver for AK4524 / AK4528 / AK4529 / AK4355 / AK4358 / AK4381
  3. * AD and DA converters
  4. *
  5. * Copyright (c) 2000-2004 Jaroslav Kysela <perex@perex.cz>,
  6. * Takashi Iwai <tiwai@suse.de>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. */
  23. #include <sound/driver.h>
  24. #include <asm/io.h>
  25. #include <linux/delay.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/init.h>
  28. #include <sound/core.h>
  29. #include <sound/control.h>
  30. #include <sound/tlv.h>
  31. #include <sound/ak4xxx-adda.h>
  32. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Takashi Iwai <tiwai@suse.de>");
  33. MODULE_DESCRIPTION("Routines for control of AK452x / AK43xx AD/DA converters");
  34. MODULE_LICENSE("GPL");
  35. /* write the given register and save the data to the cache */
  36. void snd_akm4xxx_write(struct snd_akm4xxx *ak, int chip, unsigned char reg,
  37. unsigned char val)
  38. {
  39. ak->ops.lock(ak, chip);
  40. ak->ops.write(ak, chip, reg, val);
  41. /* save the data */
  42. snd_akm4xxx_set(ak, chip, reg, val);
  43. ak->ops.unlock(ak, chip);
  44. }
  45. EXPORT_SYMBOL(snd_akm4xxx_write);
  46. /* reset procedure for AK4524 and AK4528 */
  47. static void ak4524_reset(struct snd_akm4xxx *ak, int state)
  48. {
  49. unsigned int chip;
  50. unsigned char reg, maxreg;
  51. if (ak->type == SND_AK4528)
  52. maxreg = 0x06;
  53. else
  54. maxreg = 0x08;
  55. for (chip = 0; chip < ak->num_dacs/2; chip++) {
  56. snd_akm4xxx_write(ak, chip, 0x01, state ? 0x00 : 0x03);
  57. if (state)
  58. continue;
  59. /* DAC volumes */
  60. for (reg = 0x04; reg < maxreg; reg++)
  61. snd_akm4xxx_write(ak, chip, reg,
  62. snd_akm4xxx_get(ak, chip, reg));
  63. }
  64. }
  65. /* reset procedure for AK4355 and AK4358 */
  66. static void ak4355_reset(struct snd_akm4xxx *ak, int state)
  67. {
  68. unsigned char reg;
  69. if (state) {
  70. snd_akm4xxx_write(ak, 0, 0x01, 0x02); /* reset and soft-mute */
  71. return;
  72. }
  73. for (reg = 0x00; reg < 0x0b; reg++)
  74. if (reg != 0x01)
  75. snd_akm4xxx_write(ak, 0, reg,
  76. snd_akm4xxx_get(ak, 0, reg));
  77. snd_akm4xxx_write(ak, 0, 0x01, 0x01); /* un-reset, unmute */
  78. }
  79. /* reset procedure for AK4381 */
  80. static void ak4381_reset(struct snd_akm4xxx *ak, int state)
  81. {
  82. unsigned int chip;
  83. unsigned char reg;
  84. for (chip = 0; chip < ak->num_dacs/2; chip++) {
  85. snd_akm4xxx_write(ak, chip, 0x00, state ? 0x0c : 0x0f);
  86. if (state)
  87. continue;
  88. for (reg = 0x01; reg < 0x05; reg++)
  89. snd_akm4xxx_write(ak, chip, reg,
  90. snd_akm4xxx_get(ak, chip, reg));
  91. }
  92. }
  93. /*
  94. * reset the AKM codecs
  95. * @state: 1 = reset codec, 0 = restore the registers
  96. *
  97. * assert the reset operation and restores the register values to the chips.
  98. */
  99. void snd_akm4xxx_reset(struct snd_akm4xxx *ak, int state)
  100. {
  101. switch (ak->type) {
  102. case SND_AK4524:
  103. case SND_AK4528:
  104. ak4524_reset(ak, state);
  105. break;
  106. case SND_AK4529:
  107. /* FIXME: needed for ak4529? */
  108. break;
  109. case SND_AK4355:
  110. case SND_AK4358:
  111. ak4355_reset(ak, state);
  112. break;
  113. case SND_AK4381:
  114. ak4381_reset(ak, state);
  115. break;
  116. default:
  117. break;
  118. }
  119. }
  120. EXPORT_SYMBOL(snd_akm4xxx_reset);
  121. /*
  122. * Volume conversion table for non-linear volumes
  123. * from -63.5dB (mute) to 0dB step 0.5dB
  124. *
  125. * Used for AK4524 input/ouput attenuation, AK4528, and
  126. * AK5365 input attenuation
  127. */
  128. static const unsigned char vol_cvt_datt[128] = {
  129. 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04,
  130. 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06,
  131. 0x06, 0x07, 0x07, 0x08, 0x08, 0x08, 0x09, 0x0a,
  132. 0x0a, 0x0b, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x0f,
  133. 0x10, 0x10, 0x11, 0x12, 0x12, 0x13, 0x13, 0x14,
  134. 0x15, 0x16, 0x17, 0x17, 0x18, 0x19, 0x1a, 0x1c,
  135. 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x23,
  136. 0x24, 0x25, 0x26, 0x28, 0x29, 0x2a, 0x2b, 0x2d,
  137. 0x2e, 0x30, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
  138. 0x37, 0x38, 0x39, 0x3b, 0x3c, 0x3e, 0x3f, 0x40,
  139. 0x41, 0x42, 0x43, 0x44, 0x46, 0x47, 0x48, 0x4a,
  140. 0x4b, 0x4d, 0x4e, 0x50, 0x51, 0x52, 0x53, 0x54,
  141. 0x55, 0x56, 0x58, 0x59, 0x5b, 0x5c, 0x5e, 0x5f,
  142. 0x60, 0x61, 0x62, 0x64, 0x65, 0x66, 0x67, 0x69,
  143. 0x6a, 0x6c, 0x6d, 0x6f, 0x70, 0x71, 0x72, 0x73,
  144. 0x75, 0x76, 0x77, 0x79, 0x7a, 0x7c, 0x7d, 0x7f,
  145. };
  146. /*
  147. * dB tables
  148. */
  149. static const DECLARE_TLV_DB_SCALE(db_scale_vol_datt, -6350, 50, 1);
  150. static const DECLARE_TLV_DB_SCALE(db_scale_8bit, -12750, 50, 1);
  151. static const DECLARE_TLV_DB_SCALE(db_scale_7bit, -6350, 50, 1);
  152. static const DECLARE_TLV_DB_LINEAR(db_scale_linear, TLV_DB_GAIN_MUTE, 0);
  153. /*
  154. * initialize all the ak4xxx chips
  155. */
  156. void snd_akm4xxx_init(struct snd_akm4xxx *ak)
  157. {
  158. static const unsigned char inits_ak4524[] = {
  159. 0x00, 0x07, /* 0: all power up */
  160. 0x01, 0x00, /* 1: ADC/DAC reset */
  161. 0x02, 0x60, /* 2: 24bit I2S */
  162. 0x03, 0x19, /* 3: deemphasis off */
  163. 0x01, 0x03, /* 1: ADC/DAC enable */
  164. 0x04, 0x00, /* 4: ADC left muted */
  165. 0x05, 0x00, /* 5: ADC right muted */
  166. 0x06, 0x00, /* 6: DAC left muted */
  167. 0x07, 0x00, /* 7: DAC right muted */
  168. 0xff, 0xff
  169. };
  170. static const unsigned char inits_ak4528[] = {
  171. 0x00, 0x07, /* 0: all power up */
  172. 0x01, 0x00, /* 1: ADC/DAC reset */
  173. 0x02, 0x60, /* 2: 24bit I2S */
  174. 0x03, 0x0d, /* 3: deemphasis off, turn LR highpass filters on */
  175. 0x01, 0x03, /* 1: ADC/DAC enable */
  176. 0x04, 0x00, /* 4: ADC left muted */
  177. 0x05, 0x00, /* 5: ADC right muted */
  178. 0xff, 0xff
  179. };
  180. static const unsigned char inits_ak4529[] = {
  181. 0x09, 0x01, /* 9: ATS=0, RSTN=1 */
  182. 0x0a, 0x3f, /* A: all power up, no zero/overflow detection */
  183. 0x00, 0x0c, /* 0: TDM=0, 24bit I2S, SMUTE=0 */
  184. 0x01, 0x00, /* 1: ACKS=0, ADC, loop off */
  185. 0x02, 0xff, /* 2: LOUT1 muted */
  186. 0x03, 0xff, /* 3: ROUT1 muted */
  187. 0x04, 0xff, /* 4: LOUT2 muted */
  188. 0x05, 0xff, /* 5: ROUT2 muted */
  189. 0x06, 0xff, /* 6: LOUT3 muted */
  190. 0x07, 0xff, /* 7: ROUT3 muted */
  191. 0x0b, 0xff, /* B: LOUT4 muted */
  192. 0x0c, 0xff, /* C: ROUT4 muted */
  193. 0x08, 0x55, /* 8: deemphasis all off */
  194. 0xff, 0xff
  195. };
  196. static const unsigned char inits_ak4355[] = {
  197. 0x01, 0x02, /* 1: reset and soft-mute */
  198. 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
  199. * disable DZF, sharp roll-off, RSTN#=0 */
  200. 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
  201. // 0x02, 0x2e, /* quad speed */
  202. 0x03, 0x01, /* 3: de-emphasis off */
  203. 0x04, 0x00, /* 4: LOUT1 volume muted */
  204. 0x05, 0x00, /* 5: ROUT1 volume muted */
  205. 0x06, 0x00, /* 6: LOUT2 volume muted */
  206. 0x07, 0x00, /* 7: ROUT2 volume muted */
  207. 0x08, 0x00, /* 8: LOUT3 volume muted */
  208. 0x09, 0x00, /* 9: ROUT3 volume muted */
  209. 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
  210. 0x01, 0x01, /* 1: un-reset, unmute */
  211. 0xff, 0xff
  212. };
  213. static const unsigned char inits_ak4358[] = {
  214. 0x01, 0x02, /* 1: reset and soft-mute */
  215. 0x00, 0x06, /* 0: mode3(i2s), disable auto-clock detect,
  216. * disable DZF, sharp roll-off, RSTN#=0 */
  217. 0x02, 0x0e, /* 2: DA's power up, normal speed, RSTN#=0 */
  218. // 0x02, 0x2e, /* quad speed */
  219. 0x03, 0x01, /* 3: de-emphasis off */
  220. 0x04, 0x00, /* 4: LOUT1 volume muted */
  221. 0x05, 0x00, /* 5: ROUT1 volume muted */
  222. 0x06, 0x00, /* 6: LOUT2 volume muted */
  223. 0x07, 0x00, /* 7: ROUT2 volume muted */
  224. 0x08, 0x00, /* 8: LOUT3 volume muted */
  225. 0x09, 0x00, /* 9: ROUT3 volume muted */
  226. 0x0b, 0x00, /* b: LOUT4 volume muted */
  227. 0x0c, 0x00, /* c: ROUT4 volume muted */
  228. 0x0a, 0x00, /* a: DATT speed=0, ignore DZF */
  229. 0x01, 0x01, /* 1: un-reset, unmute */
  230. 0xff, 0xff
  231. };
  232. static const unsigned char inits_ak4381[] = {
  233. 0x00, 0x0c, /* 0: mode3(i2s), disable auto-clock detect */
  234. 0x01, 0x02, /* 1: de-emphasis off, normal speed,
  235. * sharp roll-off, DZF off */
  236. // 0x01, 0x12, /* quad speed */
  237. 0x02, 0x00, /* 2: DZF disabled */
  238. 0x03, 0x00, /* 3: LATT 0 */
  239. 0x04, 0x00, /* 4: RATT 0 */
  240. 0x00, 0x0f, /* 0: power-up, un-reset */
  241. 0xff, 0xff
  242. };
  243. int chip, num_chips;
  244. const unsigned char *ptr, *inits;
  245. unsigned char reg, data;
  246. memset(ak->images, 0, sizeof(ak->images));
  247. memset(ak->volumes, 0, sizeof(ak->volumes));
  248. switch (ak->type) {
  249. case SND_AK4524:
  250. inits = inits_ak4524;
  251. num_chips = ak->num_dacs / 2;
  252. break;
  253. case SND_AK4528:
  254. inits = inits_ak4528;
  255. num_chips = ak->num_dacs / 2;
  256. break;
  257. case SND_AK4529:
  258. inits = inits_ak4529;
  259. num_chips = 1;
  260. break;
  261. case SND_AK4355:
  262. inits = inits_ak4355;
  263. num_chips = 1;
  264. break;
  265. case SND_AK4358:
  266. inits = inits_ak4358;
  267. num_chips = 1;
  268. break;
  269. case SND_AK4381:
  270. inits = inits_ak4381;
  271. num_chips = ak->num_dacs / 2;
  272. break;
  273. case SND_AK5365:
  274. /* FIXME: any init sequence? */
  275. return;
  276. default:
  277. snd_BUG();
  278. return;
  279. }
  280. for (chip = 0; chip < num_chips; chip++) {
  281. ptr = inits;
  282. while (*ptr != 0xff) {
  283. reg = *ptr++;
  284. data = *ptr++;
  285. snd_akm4xxx_write(ak, chip, reg, data);
  286. }
  287. }
  288. }
  289. EXPORT_SYMBOL(snd_akm4xxx_init);
  290. /*
  291. * Mixer callbacks
  292. */
  293. #define AK_IPGA (1<<20) /* including IPGA */
  294. #define AK_VOL_CVT (1<<21) /* need dB conversion */
  295. #define AK_NEEDSMSB (1<<22) /* need MSB update bit */
  296. #define AK_INVERT (1<<23) /* data is inverted */
  297. #define AK_GET_CHIP(val) (((val) >> 8) & 0xff)
  298. #define AK_GET_ADDR(val) ((val) & 0xff)
  299. #define AK_GET_SHIFT(val) (((val) >> 16) & 0x0f)
  300. #define AK_GET_VOL_CVT(val) (((val) >> 21) & 1)
  301. #define AK_GET_IPGA(val) (((val) >> 20) & 1)
  302. #define AK_GET_NEEDSMSB(val) (((val) >> 22) & 1)
  303. #define AK_GET_INVERT(val) (((val) >> 23) & 1)
  304. #define AK_GET_MASK(val) (((val) >> 24) & 0xff)
  305. #define AK_COMPOSE(chip,addr,shift,mask) \
  306. (((chip) << 8) | (addr) | ((shift) << 16) | ((mask) << 24))
  307. static int snd_akm4xxx_volume_info(struct snd_kcontrol *kcontrol,
  308. struct snd_ctl_elem_info *uinfo)
  309. {
  310. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  311. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  312. uinfo->count = 1;
  313. uinfo->value.integer.min = 0;
  314. uinfo->value.integer.max = mask;
  315. return 0;
  316. }
  317. static int snd_akm4xxx_volume_get(struct snd_kcontrol *kcontrol,
  318. struct snd_ctl_elem_value *ucontrol)
  319. {
  320. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  321. int chip = AK_GET_CHIP(kcontrol->private_value);
  322. int addr = AK_GET_ADDR(kcontrol->private_value);
  323. ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr);
  324. return 0;
  325. }
  326. static int put_ak_reg(struct snd_kcontrol *kcontrol, int addr,
  327. unsigned char nval)
  328. {
  329. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  330. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  331. int chip = AK_GET_CHIP(kcontrol->private_value);
  332. if (snd_akm4xxx_get_vol(ak, chip, addr) == nval)
  333. return 0;
  334. snd_akm4xxx_set_vol(ak, chip, addr, nval);
  335. if (AK_GET_VOL_CVT(kcontrol->private_value) && nval < 128)
  336. nval = vol_cvt_datt[nval];
  337. if (AK_GET_IPGA(kcontrol->private_value) && nval >= 128)
  338. nval++; /* need to correct + 1 since both 127 and 128 are 0dB */
  339. if (AK_GET_INVERT(kcontrol->private_value))
  340. nval = mask - nval;
  341. if (AK_GET_NEEDSMSB(kcontrol->private_value))
  342. nval |= 0x80;
  343. snd_akm4xxx_write(ak, chip, addr, nval);
  344. return 1;
  345. }
  346. static int snd_akm4xxx_volume_put(struct snd_kcontrol *kcontrol,
  347. struct snd_ctl_elem_value *ucontrol)
  348. {
  349. return put_ak_reg(kcontrol, AK_GET_ADDR(kcontrol->private_value),
  350. ucontrol->value.integer.value[0]);
  351. }
  352. static int snd_akm4xxx_stereo_volume_info(struct snd_kcontrol *kcontrol,
  353. struct snd_ctl_elem_info *uinfo)
  354. {
  355. unsigned int mask = AK_GET_MASK(kcontrol->private_value);
  356. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  357. uinfo->count = 2;
  358. uinfo->value.integer.min = 0;
  359. uinfo->value.integer.max = mask;
  360. return 0;
  361. }
  362. static int snd_akm4xxx_stereo_volume_get(struct snd_kcontrol *kcontrol,
  363. struct snd_ctl_elem_value *ucontrol)
  364. {
  365. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  366. int chip = AK_GET_CHIP(kcontrol->private_value);
  367. int addr = AK_GET_ADDR(kcontrol->private_value);
  368. ucontrol->value.integer.value[0] = snd_akm4xxx_get_vol(ak, chip, addr);
  369. ucontrol->value.integer.value[1] = snd_akm4xxx_get_vol(ak, chip, addr+1);
  370. return 0;
  371. }
  372. static int snd_akm4xxx_stereo_volume_put(struct snd_kcontrol *kcontrol,
  373. struct snd_ctl_elem_value *ucontrol)
  374. {
  375. int addr = AK_GET_ADDR(kcontrol->private_value);
  376. int change;
  377. change = put_ak_reg(kcontrol, addr, ucontrol->value.integer.value[0]);
  378. change |= put_ak_reg(kcontrol, addr + 1,
  379. ucontrol->value.integer.value[1]);
  380. return change;
  381. }
  382. static int snd_akm4xxx_deemphasis_info(struct snd_kcontrol *kcontrol,
  383. struct snd_ctl_elem_info *uinfo)
  384. {
  385. static char *texts[4] = {
  386. "44.1kHz", "Off", "48kHz", "32kHz",
  387. };
  388. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  389. uinfo->count = 1;
  390. uinfo->value.enumerated.items = 4;
  391. if (uinfo->value.enumerated.item >= 4)
  392. uinfo->value.enumerated.item = 3;
  393. strcpy(uinfo->value.enumerated.name,
  394. texts[uinfo->value.enumerated.item]);
  395. return 0;
  396. }
  397. static int snd_akm4xxx_deemphasis_get(struct snd_kcontrol *kcontrol,
  398. struct snd_ctl_elem_value *ucontrol)
  399. {
  400. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  401. int chip = AK_GET_CHIP(kcontrol->private_value);
  402. int addr = AK_GET_ADDR(kcontrol->private_value);
  403. int shift = AK_GET_SHIFT(kcontrol->private_value);
  404. ucontrol->value.enumerated.item[0] =
  405. (snd_akm4xxx_get(ak, chip, addr) >> shift) & 3;
  406. return 0;
  407. }
  408. static int snd_akm4xxx_deemphasis_put(struct snd_kcontrol *kcontrol,
  409. struct snd_ctl_elem_value *ucontrol)
  410. {
  411. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  412. int chip = AK_GET_CHIP(kcontrol->private_value);
  413. int addr = AK_GET_ADDR(kcontrol->private_value);
  414. int shift = AK_GET_SHIFT(kcontrol->private_value);
  415. unsigned char nval = ucontrol->value.enumerated.item[0] & 3;
  416. int change;
  417. nval = (nval << shift) |
  418. (snd_akm4xxx_get(ak, chip, addr) & ~(3 << shift));
  419. change = snd_akm4xxx_get(ak, chip, addr) != nval;
  420. if (change)
  421. snd_akm4xxx_write(ak, chip, addr, nval);
  422. return change;
  423. }
  424. #define ak4xxx_switch_info snd_ctl_boolean_mono_info
  425. static int ak4xxx_switch_get(struct snd_kcontrol *kcontrol,
  426. struct snd_ctl_elem_value *ucontrol)
  427. {
  428. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  429. int chip = AK_GET_CHIP(kcontrol->private_value);
  430. int addr = AK_GET_ADDR(kcontrol->private_value);
  431. int shift = AK_GET_SHIFT(kcontrol->private_value);
  432. int invert = AK_GET_INVERT(kcontrol->private_value);
  433. /* we observe the (1<<shift) bit only */
  434. unsigned char val = snd_akm4xxx_get(ak, chip, addr) & (1<<shift);
  435. if (invert)
  436. val = ! val;
  437. ucontrol->value.integer.value[0] = (val & (1<<shift)) != 0;
  438. return 0;
  439. }
  440. static int ak4xxx_switch_put(struct snd_kcontrol *kcontrol,
  441. struct snd_ctl_elem_value *ucontrol)
  442. {
  443. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  444. int chip = AK_GET_CHIP(kcontrol->private_value);
  445. int addr = AK_GET_ADDR(kcontrol->private_value);
  446. int shift = AK_GET_SHIFT(kcontrol->private_value);
  447. int invert = AK_GET_INVERT(kcontrol->private_value);
  448. long flag = ucontrol->value.integer.value[0];
  449. unsigned char val, oval;
  450. int change;
  451. if (invert)
  452. flag = ! flag;
  453. oval = snd_akm4xxx_get(ak, chip, addr);
  454. if (flag)
  455. val = oval | (1<<shift);
  456. else
  457. val = oval & ~(1<<shift);
  458. change = (oval != val);
  459. if (change)
  460. snd_akm4xxx_write(ak, chip, addr, val);
  461. return change;
  462. }
  463. #define AK5365_NUM_INPUTS 5
  464. static int ak4xxx_capture_source_info(struct snd_kcontrol *kcontrol,
  465. struct snd_ctl_elem_info *uinfo)
  466. {
  467. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  468. int mixer_ch = AK_GET_SHIFT(kcontrol->private_value);
  469. const char **input_names;
  470. int num_names, idx;
  471. input_names = ak->adc_info[mixer_ch].input_names;
  472. num_names = 0;
  473. while (num_names < AK5365_NUM_INPUTS && input_names[num_names])
  474. ++num_names;
  475. uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
  476. uinfo->count = 1;
  477. uinfo->value.enumerated.items = num_names;
  478. idx = uinfo->value.enumerated.item;
  479. if (idx >= num_names)
  480. return -EINVAL;
  481. strncpy(uinfo->value.enumerated.name, input_names[idx],
  482. sizeof(uinfo->value.enumerated.name));
  483. return 0;
  484. }
  485. static int ak4xxx_capture_source_get(struct snd_kcontrol *kcontrol,
  486. struct snd_ctl_elem_value *ucontrol)
  487. {
  488. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  489. int chip = AK_GET_CHIP(kcontrol->private_value);
  490. int addr = AK_GET_ADDR(kcontrol->private_value);
  491. int mask = AK_GET_MASK(kcontrol->private_value);
  492. unsigned char val;
  493. val = snd_akm4xxx_get(ak, chip, addr) & mask;
  494. ucontrol->value.enumerated.item[0] = val;
  495. return 0;
  496. }
  497. static int ak4xxx_capture_source_put(struct snd_kcontrol *kcontrol,
  498. struct snd_ctl_elem_value *ucontrol)
  499. {
  500. struct snd_akm4xxx *ak = snd_kcontrol_chip(kcontrol);
  501. int chip = AK_GET_CHIP(kcontrol->private_value);
  502. int addr = AK_GET_ADDR(kcontrol->private_value);
  503. int mask = AK_GET_MASK(kcontrol->private_value);
  504. unsigned char oval, val;
  505. oval = snd_akm4xxx_get(ak, chip, addr);
  506. val = oval & ~mask;
  507. val |= ucontrol->value.enumerated.item[0] & mask;
  508. if (val != oval) {
  509. snd_akm4xxx_write(ak, chip, addr, val);
  510. return 1;
  511. }
  512. return 0;
  513. }
  514. /*
  515. * build AK4xxx controls
  516. */
  517. static int build_dac_controls(struct snd_akm4xxx *ak)
  518. {
  519. int idx, err, mixer_ch, num_stereo;
  520. struct snd_kcontrol_new knew;
  521. mixer_ch = 0;
  522. for (idx = 0; idx < ak->num_dacs; ) {
  523. /* mute control for Revolution 7.1 - AK4381 */
  524. if (ak->type == SND_AK4381
  525. && ak->dac_info[mixer_ch].switch_name) {
  526. memset(&knew, 0, sizeof(knew));
  527. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  528. knew.count = 1;
  529. knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
  530. knew.name = ak->dac_info[mixer_ch].switch_name;
  531. knew.info = ak4xxx_switch_info;
  532. knew.get = ak4xxx_switch_get;
  533. knew.put = ak4xxx_switch_put;
  534. knew.access = 0;
  535. /* register 1, bit 0 (SMUTE): 0 = normal operation,
  536. 1 = mute */
  537. knew.private_value =
  538. AK_COMPOSE(idx/2, 1, 0, 0) | AK_INVERT;
  539. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  540. if (err < 0)
  541. return err;
  542. }
  543. memset(&knew, 0, sizeof(knew));
  544. if (! ak->dac_info || ! ak->dac_info[mixer_ch].name) {
  545. knew.name = "DAC Volume";
  546. knew.index = mixer_ch + ak->idx_offset * 2;
  547. num_stereo = 1;
  548. } else {
  549. knew.name = ak->dac_info[mixer_ch].name;
  550. num_stereo = ak->dac_info[mixer_ch].num_channels;
  551. }
  552. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  553. knew.count = 1;
  554. knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  555. SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  556. if (num_stereo == 2) {
  557. knew.info = snd_akm4xxx_stereo_volume_info;
  558. knew.get = snd_akm4xxx_stereo_volume_get;
  559. knew.put = snd_akm4xxx_stereo_volume_put;
  560. } else {
  561. knew.info = snd_akm4xxx_volume_info;
  562. knew.get = snd_akm4xxx_volume_get;
  563. knew.put = snd_akm4xxx_volume_put;
  564. }
  565. switch (ak->type) {
  566. case SND_AK4524:
  567. /* register 6 & 7 */
  568. knew.private_value =
  569. AK_COMPOSE(idx/2, (idx%2) + 6, 0, 127) |
  570. AK_VOL_CVT;
  571. knew.tlv.p = db_scale_vol_datt;
  572. break;
  573. case SND_AK4528:
  574. /* register 4 & 5 */
  575. knew.private_value =
  576. AK_COMPOSE(idx/2, (idx%2) + 4, 0, 127) |
  577. AK_VOL_CVT;
  578. knew.tlv.p = db_scale_vol_datt;
  579. break;
  580. case SND_AK4529: {
  581. /* registers 2-7 and b,c */
  582. int val = idx < 6 ? idx + 2 : (idx - 6) + 0xb;
  583. knew.private_value =
  584. AK_COMPOSE(0, val, 0, 255) | AK_INVERT;
  585. knew.tlv.p = db_scale_8bit;
  586. break;
  587. }
  588. case SND_AK4355:
  589. /* register 4-9, chip #0 only */
  590. knew.private_value = AK_COMPOSE(0, idx + 4, 0, 255);
  591. knew.tlv.p = db_scale_8bit;
  592. break;
  593. case SND_AK4358: {
  594. /* register 4-9 and 11-12, chip #0 only */
  595. int addr = idx < 6 ? idx + 4 : idx + 5;
  596. knew.private_value =
  597. AK_COMPOSE(0, addr, 0, 127) | AK_NEEDSMSB;
  598. knew.tlv.p = db_scale_7bit;
  599. break;
  600. }
  601. case SND_AK4381:
  602. /* register 3 & 4 */
  603. knew.private_value =
  604. AK_COMPOSE(idx/2, (idx%2) + 3, 0, 255);
  605. knew.tlv.p = db_scale_linear;
  606. break;
  607. default:
  608. return -EINVAL;
  609. }
  610. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  611. if (err < 0)
  612. return err;
  613. idx += num_stereo;
  614. mixer_ch++;
  615. }
  616. return 0;
  617. }
  618. static int build_adc_controls(struct snd_akm4xxx *ak)
  619. {
  620. int idx, err, mixer_ch, num_stereo;
  621. struct snd_kcontrol_new knew;
  622. mixer_ch = 0;
  623. for (idx = 0; idx < ak->num_adcs;) {
  624. memset(&knew, 0, sizeof(knew));
  625. if (! ak->adc_info || ! ak->adc_info[mixer_ch].name) {
  626. knew.name = "ADC Volume";
  627. knew.index = mixer_ch + ak->idx_offset * 2;
  628. num_stereo = 1;
  629. } else {
  630. knew.name = ak->adc_info[mixer_ch].name;
  631. num_stereo = ak->adc_info[mixer_ch].num_channels;
  632. }
  633. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  634. knew.count = 1;
  635. knew.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  636. SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  637. if (num_stereo == 2) {
  638. knew.info = snd_akm4xxx_stereo_volume_info;
  639. knew.get = snd_akm4xxx_stereo_volume_get;
  640. knew.put = snd_akm4xxx_stereo_volume_put;
  641. } else {
  642. knew.info = snd_akm4xxx_volume_info;
  643. knew.get = snd_akm4xxx_volume_get;
  644. knew.put = snd_akm4xxx_volume_put;
  645. }
  646. /* register 4 & 5 */
  647. if (ak->type == SND_AK5365)
  648. knew.private_value =
  649. AK_COMPOSE(idx/2, (idx%2) + 4, 0, 151) |
  650. AK_VOL_CVT | AK_IPGA;
  651. else
  652. knew.private_value =
  653. AK_COMPOSE(idx/2, (idx%2) + 4, 0, 163) |
  654. AK_VOL_CVT | AK_IPGA;
  655. knew.tlv.p = db_scale_vol_datt;
  656. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  657. if (err < 0)
  658. return err;
  659. if (ak->type == SND_AK5365 && (idx % 2) == 0) {
  660. if (! ak->adc_info ||
  661. ! ak->adc_info[mixer_ch].switch_name) {
  662. knew.name = "Capture Switch";
  663. knew.index = mixer_ch + ak->idx_offset * 2;
  664. } else
  665. knew.name = ak->adc_info[mixer_ch].switch_name;
  666. knew.info = ak4xxx_switch_info;
  667. knew.get = ak4xxx_switch_get;
  668. knew.put = ak4xxx_switch_put;
  669. knew.access = 0;
  670. /* register 2, bit 0 (SMUTE): 0 = normal operation,
  671. 1 = mute */
  672. knew.private_value =
  673. AK_COMPOSE(idx/2, 2, 0, 0) | AK_INVERT;
  674. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  675. if (err < 0)
  676. return err;
  677. memset(&knew, 0, sizeof(knew));
  678. knew.name = ak->adc_info[mixer_ch].selector_name;
  679. if (!knew.name) {
  680. knew.name = "Capture Channel";
  681. knew.index = mixer_ch + ak->idx_offset * 2;
  682. }
  683. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  684. knew.info = ak4xxx_capture_source_info;
  685. knew.get = ak4xxx_capture_source_get;
  686. knew.put = ak4xxx_capture_source_put;
  687. knew.access = 0;
  688. /* input selector control: reg. 1, bits 0-2.
  689. * mis-use 'shift' to pass mixer_ch */
  690. knew.private_value
  691. = AK_COMPOSE(idx/2, 1, mixer_ch, 0x07);
  692. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  693. if (err < 0)
  694. return err;
  695. }
  696. idx += num_stereo;
  697. mixer_ch++;
  698. }
  699. return 0;
  700. }
  701. static int build_deemphasis(struct snd_akm4xxx *ak, int num_emphs)
  702. {
  703. int idx, err;
  704. struct snd_kcontrol_new knew;
  705. for (idx = 0; idx < num_emphs; idx++) {
  706. memset(&knew, 0, sizeof(knew));
  707. knew.name = "Deemphasis";
  708. knew.index = idx + ak->idx_offset;
  709. knew.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
  710. knew.count = 1;
  711. knew.info = snd_akm4xxx_deemphasis_info;
  712. knew.get = snd_akm4xxx_deemphasis_get;
  713. knew.put = snd_akm4xxx_deemphasis_put;
  714. switch (ak->type) {
  715. case SND_AK4524:
  716. case SND_AK4528:
  717. /* register 3 */
  718. knew.private_value = AK_COMPOSE(idx, 3, 0, 0);
  719. break;
  720. case SND_AK4529: {
  721. int shift = idx == 3 ? 6 : (2 - idx) * 2;
  722. /* register 8 with shift */
  723. knew.private_value = AK_COMPOSE(0, 8, shift, 0);
  724. break;
  725. }
  726. case SND_AK4355:
  727. case SND_AK4358:
  728. knew.private_value = AK_COMPOSE(idx, 3, 0, 0);
  729. break;
  730. case SND_AK4381:
  731. knew.private_value = AK_COMPOSE(idx, 1, 1, 0);
  732. break;
  733. default:
  734. return -EINVAL;
  735. }
  736. err = snd_ctl_add(ak->card, snd_ctl_new1(&knew, ak));
  737. if (err < 0)
  738. return err;
  739. }
  740. return 0;
  741. }
  742. int snd_akm4xxx_build_controls(struct snd_akm4xxx *ak)
  743. {
  744. int err, num_emphs;
  745. err = build_dac_controls(ak);
  746. if (err < 0)
  747. return err;
  748. err = build_adc_controls(ak);
  749. if (err < 0)
  750. return err;
  751. if (ak->type == SND_AK4355 || ak->type == SND_AK4358)
  752. num_emphs = 1;
  753. else
  754. num_emphs = ak->num_dacs / 2;
  755. err = build_deemphasis(ak, num_emphs);
  756. if (err < 0)
  757. return err;
  758. return 0;
  759. }
  760. EXPORT_SYMBOL(snd_akm4xxx_build_controls);
  761. static int __init alsa_akm4xxx_module_init(void)
  762. {
  763. return 0;
  764. }
  765. static void __exit alsa_akm4xxx_module_exit(void)
  766. {
  767. }
  768. module_init(alsa_akm4xxx_module_init)
  769. module_exit(alsa_akm4xxx_module_exit)