security.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. /* things that live in dummy.c */
  19. extern struct security_operations dummy_security_ops;
  20. extern void security_fixup_ops(struct security_operations *ops);
  21. struct security_operations *security_ops; /* Initialized to NULL */
  22. unsigned long mmap_min_addr; /* 0 means no protection */
  23. static inline int verify(struct security_operations *ops)
  24. {
  25. /* verify the security_operations structure exists */
  26. if (!ops)
  27. return -EINVAL;
  28. security_fixup_ops(ops);
  29. return 0;
  30. }
  31. static void __init do_security_initcalls(void)
  32. {
  33. initcall_t *call;
  34. call = __security_initcall_start;
  35. while (call < __security_initcall_end) {
  36. (*call) ();
  37. call++;
  38. }
  39. }
  40. /**
  41. * security_init - initializes the security framework
  42. *
  43. * This should be called early in the kernel initialization sequence.
  44. */
  45. int __init security_init(void)
  46. {
  47. printk(KERN_INFO "Security Framework initialized\n");
  48. if (verify(&dummy_security_ops)) {
  49. printk(KERN_ERR "%s could not verify "
  50. "dummy_security_ops structure.\n", __FUNCTION__);
  51. return -EIO;
  52. }
  53. security_ops = &dummy_security_ops;
  54. do_security_initcalls();
  55. return 0;
  56. }
  57. /**
  58. * register_security - registers a security framework with the kernel
  59. * @ops: a pointer to the struct security_options that is to be registered
  60. *
  61. * This function is to allow a security module to register itself with the
  62. * kernel security subsystem. Some rudimentary checking is done on the @ops
  63. * value passed to this function.
  64. *
  65. * If there is already a security module registered with the kernel,
  66. * an error will be returned. Otherwise 0 is returned on success.
  67. */
  68. int register_security(struct security_operations *ops)
  69. {
  70. if (verify(ops)) {
  71. printk(KERN_DEBUG "%s could not verify "
  72. "security_operations structure.\n", __FUNCTION__);
  73. return -EINVAL;
  74. }
  75. if (security_ops != &dummy_security_ops)
  76. return -EAGAIN;
  77. security_ops = ops;
  78. return 0;
  79. }
  80. /**
  81. * mod_reg_security - allows security modules to be "stacked"
  82. * @name: a pointer to a string with the name of the security_options to be registered
  83. * @ops: a pointer to the struct security_options that is to be registered
  84. *
  85. * This function allows security modules to be stacked if the currently loaded
  86. * security module allows this to happen. It passes the @name and @ops to the
  87. * register_security function of the currently loaded security module.
  88. *
  89. * The return value depends on the currently loaded security module, with 0 as
  90. * success.
  91. */
  92. int mod_reg_security(const char *name, struct security_operations *ops)
  93. {
  94. if (verify(ops)) {
  95. printk(KERN_INFO "%s could not verify "
  96. "security operations.\n", __FUNCTION__);
  97. return -EINVAL;
  98. }
  99. if (ops == security_ops) {
  100. printk(KERN_INFO "%s security operations "
  101. "already registered.\n", __FUNCTION__);
  102. return -EINVAL;
  103. }
  104. return security_ops->register_security(name, ops);
  105. }
  106. /* Security operations */
  107. int security_ptrace(struct task_struct *parent, struct task_struct *child)
  108. {
  109. return security_ops->ptrace(parent, child);
  110. }
  111. int security_capget(struct task_struct *target,
  112. kernel_cap_t *effective,
  113. kernel_cap_t *inheritable,
  114. kernel_cap_t *permitted)
  115. {
  116. return security_ops->capget(target, effective, inheritable, permitted);
  117. }
  118. int security_capset_check(struct task_struct *target,
  119. kernel_cap_t *effective,
  120. kernel_cap_t *inheritable,
  121. kernel_cap_t *permitted)
  122. {
  123. return security_ops->capset_check(target, effective, inheritable, permitted);
  124. }
  125. void security_capset_set(struct task_struct *target,
  126. kernel_cap_t *effective,
  127. kernel_cap_t *inheritable,
  128. kernel_cap_t *permitted)
  129. {
  130. security_ops->capset_set(target, effective, inheritable, permitted);
  131. }
  132. int security_capable(struct task_struct *tsk, int cap)
  133. {
  134. return security_ops->capable(tsk, cap);
  135. }
  136. int security_acct(struct file *file)
  137. {
  138. return security_ops->acct(file);
  139. }
  140. int security_sysctl(struct ctl_table *table, int op)
  141. {
  142. return security_ops->sysctl(table, op);
  143. }
  144. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  145. {
  146. return security_ops->quotactl(cmds, type, id, sb);
  147. }
  148. int security_quota_on(struct dentry *dentry)
  149. {
  150. return security_ops->quota_on(dentry);
  151. }
  152. int security_syslog(int type)
  153. {
  154. return security_ops->syslog(type);
  155. }
  156. int security_settime(struct timespec *ts, struct timezone *tz)
  157. {
  158. return security_ops->settime(ts, tz);
  159. }
  160. int security_vm_enough_memory(long pages)
  161. {
  162. return security_ops->vm_enough_memory(current->mm, pages);
  163. }
  164. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  165. {
  166. return security_ops->vm_enough_memory(mm, pages);
  167. }
  168. int security_bprm_alloc(struct linux_binprm *bprm)
  169. {
  170. return security_ops->bprm_alloc_security(bprm);
  171. }
  172. void security_bprm_free(struct linux_binprm *bprm)
  173. {
  174. security_ops->bprm_free_security(bprm);
  175. }
  176. void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
  177. {
  178. security_ops->bprm_apply_creds(bprm, unsafe);
  179. }
  180. void security_bprm_post_apply_creds(struct linux_binprm *bprm)
  181. {
  182. security_ops->bprm_post_apply_creds(bprm);
  183. }
  184. int security_bprm_set(struct linux_binprm *bprm)
  185. {
  186. return security_ops->bprm_set_security(bprm);
  187. }
  188. int security_bprm_check(struct linux_binprm *bprm)
  189. {
  190. return security_ops->bprm_check_security(bprm);
  191. }
  192. int security_bprm_secureexec(struct linux_binprm *bprm)
  193. {
  194. return security_ops->bprm_secureexec(bprm);
  195. }
  196. int security_sb_alloc(struct super_block *sb)
  197. {
  198. return security_ops->sb_alloc_security(sb);
  199. }
  200. void security_sb_free(struct super_block *sb)
  201. {
  202. security_ops->sb_free_security(sb);
  203. }
  204. int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
  205. {
  206. return security_ops->sb_copy_data(type, orig, copy);
  207. }
  208. int security_sb_kern_mount(struct super_block *sb, void *data)
  209. {
  210. return security_ops->sb_kern_mount(sb, data);
  211. }
  212. int security_sb_statfs(struct dentry *dentry)
  213. {
  214. return security_ops->sb_statfs(dentry);
  215. }
  216. int security_sb_mount(char *dev_name, struct nameidata *nd,
  217. char *type, unsigned long flags, void *data)
  218. {
  219. return security_ops->sb_mount(dev_name, nd, type, flags, data);
  220. }
  221. int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
  222. {
  223. return security_ops->sb_check_sb(mnt, nd);
  224. }
  225. int security_sb_umount(struct vfsmount *mnt, int flags)
  226. {
  227. return security_ops->sb_umount(mnt, flags);
  228. }
  229. void security_sb_umount_close(struct vfsmount *mnt)
  230. {
  231. security_ops->sb_umount_close(mnt);
  232. }
  233. void security_sb_umount_busy(struct vfsmount *mnt)
  234. {
  235. security_ops->sb_umount_busy(mnt);
  236. }
  237. void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
  238. {
  239. security_ops->sb_post_remount(mnt, flags, data);
  240. }
  241. void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
  242. {
  243. security_ops->sb_post_addmount(mnt, mountpoint_nd);
  244. }
  245. int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  246. {
  247. return security_ops->sb_pivotroot(old_nd, new_nd);
  248. }
  249. void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
  250. {
  251. security_ops->sb_post_pivotroot(old_nd, new_nd);
  252. }
  253. int security_sb_get_mnt_opts(const struct super_block *sb,
  254. char ***mount_options,
  255. int **flags, int *num_opts)
  256. {
  257. return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts);
  258. }
  259. int security_sb_set_mnt_opts(struct super_block *sb,
  260. char **mount_options,
  261. int *flags, int num_opts)
  262. {
  263. return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts);
  264. }
  265. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  266. struct super_block *newsb)
  267. {
  268. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  269. }
  270. int security_inode_alloc(struct inode *inode)
  271. {
  272. inode->i_security = NULL;
  273. return security_ops->inode_alloc_security(inode);
  274. }
  275. void security_inode_free(struct inode *inode)
  276. {
  277. security_ops->inode_free_security(inode);
  278. }
  279. int security_inode_init_security(struct inode *inode, struct inode *dir,
  280. char **name, void **value, size_t *len)
  281. {
  282. if (unlikely(IS_PRIVATE(inode)))
  283. return -EOPNOTSUPP;
  284. return security_ops->inode_init_security(inode, dir, name, value, len);
  285. }
  286. EXPORT_SYMBOL(security_inode_init_security);
  287. int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
  288. {
  289. if (unlikely(IS_PRIVATE(dir)))
  290. return 0;
  291. return security_ops->inode_create(dir, dentry, mode);
  292. }
  293. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  294. struct dentry *new_dentry)
  295. {
  296. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  297. return 0;
  298. return security_ops->inode_link(old_dentry, dir, new_dentry);
  299. }
  300. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  301. {
  302. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  303. return 0;
  304. return security_ops->inode_unlink(dir, dentry);
  305. }
  306. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  307. const char *old_name)
  308. {
  309. if (unlikely(IS_PRIVATE(dir)))
  310. return 0;
  311. return security_ops->inode_symlink(dir, dentry, old_name);
  312. }
  313. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  314. {
  315. if (unlikely(IS_PRIVATE(dir)))
  316. return 0;
  317. return security_ops->inode_mkdir(dir, dentry, mode);
  318. }
  319. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  320. {
  321. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  322. return 0;
  323. return security_ops->inode_rmdir(dir, dentry);
  324. }
  325. int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
  326. {
  327. if (unlikely(IS_PRIVATE(dir)))
  328. return 0;
  329. return security_ops->inode_mknod(dir, dentry, mode, dev);
  330. }
  331. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  332. struct inode *new_dir, struct dentry *new_dentry)
  333. {
  334. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  335. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  336. return 0;
  337. return security_ops->inode_rename(old_dir, old_dentry,
  338. new_dir, new_dentry);
  339. }
  340. int security_inode_readlink(struct dentry *dentry)
  341. {
  342. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  343. return 0;
  344. return security_ops->inode_readlink(dentry);
  345. }
  346. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  347. {
  348. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  349. return 0;
  350. return security_ops->inode_follow_link(dentry, nd);
  351. }
  352. int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
  353. {
  354. if (unlikely(IS_PRIVATE(inode)))
  355. return 0;
  356. return security_ops->inode_permission(inode, mask, nd);
  357. }
  358. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  359. {
  360. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  361. return 0;
  362. return security_ops->inode_setattr(dentry, attr);
  363. }
  364. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  365. {
  366. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  367. return 0;
  368. return security_ops->inode_getattr(mnt, dentry);
  369. }
  370. void security_inode_delete(struct inode *inode)
  371. {
  372. if (unlikely(IS_PRIVATE(inode)))
  373. return;
  374. security_ops->inode_delete(inode);
  375. }
  376. int security_inode_setxattr(struct dentry *dentry, char *name,
  377. void *value, size_t size, int flags)
  378. {
  379. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  380. return 0;
  381. return security_ops->inode_setxattr(dentry, name, value, size, flags);
  382. }
  383. void security_inode_post_setxattr(struct dentry *dentry, char *name,
  384. void *value, size_t size, int flags)
  385. {
  386. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  387. return;
  388. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  389. }
  390. int security_inode_getxattr(struct dentry *dentry, char *name)
  391. {
  392. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  393. return 0;
  394. return security_ops->inode_getxattr(dentry, name);
  395. }
  396. int security_inode_listxattr(struct dentry *dentry)
  397. {
  398. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  399. return 0;
  400. return security_ops->inode_listxattr(dentry);
  401. }
  402. int security_inode_removexattr(struct dentry *dentry, char *name)
  403. {
  404. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  405. return 0;
  406. return security_ops->inode_removexattr(dentry, name);
  407. }
  408. int security_inode_need_killpriv(struct dentry *dentry)
  409. {
  410. return security_ops->inode_need_killpriv(dentry);
  411. }
  412. int security_inode_killpriv(struct dentry *dentry)
  413. {
  414. return security_ops->inode_killpriv(dentry);
  415. }
  416. int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
  417. {
  418. if (unlikely(IS_PRIVATE(inode)))
  419. return 0;
  420. return security_ops->inode_getsecurity(inode, name, buffer, size, err);
  421. }
  422. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  423. {
  424. if (unlikely(IS_PRIVATE(inode)))
  425. return 0;
  426. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  427. }
  428. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  429. {
  430. if (unlikely(IS_PRIVATE(inode)))
  431. return 0;
  432. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  433. }
  434. int security_file_permission(struct file *file, int mask)
  435. {
  436. return security_ops->file_permission(file, mask);
  437. }
  438. int security_file_alloc(struct file *file)
  439. {
  440. return security_ops->file_alloc_security(file);
  441. }
  442. void security_file_free(struct file *file)
  443. {
  444. security_ops->file_free_security(file);
  445. }
  446. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  447. {
  448. return security_ops->file_ioctl(file, cmd, arg);
  449. }
  450. int security_file_mmap(struct file *file, unsigned long reqprot,
  451. unsigned long prot, unsigned long flags,
  452. unsigned long addr, unsigned long addr_only)
  453. {
  454. return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  455. }
  456. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  457. unsigned long prot)
  458. {
  459. return security_ops->file_mprotect(vma, reqprot, prot);
  460. }
  461. int security_file_lock(struct file *file, unsigned int cmd)
  462. {
  463. return security_ops->file_lock(file, cmd);
  464. }
  465. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  466. {
  467. return security_ops->file_fcntl(file, cmd, arg);
  468. }
  469. int security_file_set_fowner(struct file *file)
  470. {
  471. return security_ops->file_set_fowner(file);
  472. }
  473. int security_file_send_sigiotask(struct task_struct *tsk,
  474. struct fown_struct *fown, int sig)
  475. {
  476. return security_ops->file_send_sigiotask(tsk, fown, sig);
  477. }
  478. int security_file_receive(struct file *file)
  479. {
  480. return security_ops->file_receive(file);
  481. }
  482. int security_dentry_open(struct file *file)
  483. {
  484. return security_ops->dentry_open(file);
  485. }
  486. int security_task_create(unsigned long clone_flags)
  487. {
  488. return security_ops->task_create(clone_flags);
  489. }
  490. int security_task_alloc(struct task_struct *p)
  491. {
  492. return security_ops->task_alloc_security(p);
  493. }
  494. void security_task_free(struct task_struct *p)
  495. {
  496. security_ops->task_free_security(p);
  497. }
  498. int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
  499. {
  500. return security_ops->task_setuid(id0, id1, id2, flags);
  501. }
  502. int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
  503. uid_t old_suid, int flags)
  504. {
  505. return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
  506. }
  507. int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
  508. {
  509. return security_ops->task_setgid(id0, id1, id2, flags);
  510. }
  511. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  512. {
  513. return security_ops->task_setpgid(p, pgid);
  514. }
  515. int security_task_getpgid(struct task_struct *p)
  516. {
  517. return security_ops->task_getpgid(p);
  518. }
  519. int security_task_getsid(struct task_struct *p)
  520. {
  521. return security_ops->task_getsid(p);
  522. }
  523. void security_task_getsecid(struct task_struct *p, u32 *secid)
  524. {
  525. security_ops->task_getsecid(p, secid);
  526. }
  527. EXPORT_SYMBOL(security_task_getsecid);
  528. int security_task_setgroups(struct group_info *group_info)
  529. {
  530. return security_ops->task_setgroups(group_info);
  531. }
  532. int security_task_setnice(struct task_struct *p, int nice)
  533. {
  534. return security_ops->task_setnice(p, nice);
  535. }
  536. int security_task_setioprio(struct task_struct *p, int ioprio)
  537. {
  538. return security_ops->task_setioprio(p, ioprio);
  539. }
  540. int security_task_getioprio(struct task_struct *p)
  541. {
  542. return security_ops->task_getioprio(p);
  543. }
  544. int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
  545. {
  546. return security_ops->task_setrlimit(resource, new_rlim);
  547. }
  548. int security_task_setscheduler(struct task_struct *p,
  549. int policy, struct sched_param *lp)
  550. {
  551. return security_ops->task_setscheduler(p, policy, lp);
  552. }
  553. int security_task_getscheduler(struct task_struct *p)
  554. {
  555. return security_ops->task_getscheduler(p);
  556. }
  557. int security_task_movememory(struct task_struct *p)
  558. {
  559. return security_ops->task_movememory(p);
  560. }
  561. int security_task_kill(struct task_struct *p, struct siginfo *info,
  562. int sig, u32 secid)
  563. {
  564. return security_ops->task_kill(p, info, sig, secid);
  565. }
  566. int security_task_wait(struct task_struct *p)
  567. {
  568. return security_ops->task_wait(p);
  569. }
  570. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  571. unsigned long arg4, unsigned long arg5)
  572. {
  573. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  574. }
  575. void security_task_reparent_to_init(struct task_struct *p)
  576. {
  577. security_ops->task_reparent_to_init(p);
  578. }
  579. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  580. {
  581. security_ops->task_to_inode(p, inode);
  582. }
  583. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  584. {
  585. return security_ops->ipc_permission(ipcp, flag);
  586. }
  587. int security_msg_msg_alloc(struct msg_msg *msg)
  588. {
  589. return security_ops->msg_msg_alloc_security(msg);
  590. }
  591. void security_msg_msg_free(struct msg_msg *msg)
  592. {
  593. security_ops->msg_msg_free_security(msg);
  594. }
  595. int security_msg_queue_alloc(struct msg_queue *msq)
  596. {
  597. return security_ops->msg_queue_alloc_security(msq);
  598. }
  599. void security_msg_queue_free(struct msg_queue *msq)
  600. {
  601. security_ops->msg_queue_free_security(msq);
  602. }
  603. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  604. {
  605. return security_ops->msg_queue_associate(msq, msqflg);
  606. }
  607. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  608. {
  609. return security_ops->msg_queue_msgctl(msq, cmd);
  610. }
  611. int security_msg_queue_msgsnd(struct msg_queue *msq,
  612. struct msg_msg *msg, int msqflg)
  613. {
  614. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  615. }
  616. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  617. struct task_struct *target, long type, int mode)
  618. {
  619. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  620. }
  621. int security_shm_alloc(struct shmid_kernel *shp)
  622. {
  623. return security_ops->shm_alloc_security(shp);
  624. }
  625. void security_shm_free(struct shmid_kernel *shp)
  626. {
  627. security_ops->shm_free_security(shp);
  628. }
  629. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  630. {
  631. return security_ops->shm_associate(shp, shmflg);
  632. }
  633. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  634. {
  635. return security_ops->shm_shmctl(shp, cmd);
  636. }
  637. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  638. {
  639. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  640. }
  641. int security_sem_alloc(struct sem_array *sma)
  642. {
  643. return security_ops->sem_alloc_security(sma);
  644. }
  645. void security_sem_free(struct sem_array *sma)
  646. {
  647. security_ops->sem_free_security(sma);
  648. }
  649. int security_sem_associate(struct sem_array *sma, int semflg)
  650. {
  651. return security_ops->sem_associate(sma, semflg);
  652. }
  653. int security_sem_semctl(struct sem_array *sma, int cmd)
  654. {
  655. return security_ops->sem_semctl(sma, cmd);
  656. }
  657. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  658. unsigned nsops, int alter)
  659. {
  660. return security_ops->sem_semop(sma, sops, nsops, alter);
  661. }
  662. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  663. {
  664. if (unlikely(inode && IS_PRIVATE(inode)))
  665. return;
  666. security_ops->d_instantiate(dentry, inode);
  667. }
  668. EXPORT_SYMBOL(security_d_instantiate);
  669. int security_getprocattr(struct task_struct *p, char *name, char **value)
  670. {
  671. return security_ops->getprocattr(p, name, value);
  672. }
  673. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  674. {
  675. return security_ops->setprocattr(p, name, value, size);
  676. }
  677. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  678. {
  679. return security_ops->netlink_send(sk, skb);
  680. }
  681. int security_netlink_recv(struct sk_buff *skb, int cap)
  682. {
  683. return security_ops->netlink_recv(skb, cap);
  684. }
  685. EXPORT_SYMBOL(security_netlink_recv);
  686. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  687. {
  688. return security_ops->secid_to_secctx(secid, secdata, seclen);
  689. }
  690. EXPORT_SYMBOL(security_secid_to_secctx);
  691. int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
  692. {
  693. return security_ops->secctx_to_secid(secdata, seclen, secid);
  694. }
  695. EXPORT_SYMBOL(security_secctx_to_secid);
  696. void security_release_secctx(char *secdata, u32 seclen)
  697. {
  698. return security_ops->release_secctx(secdata, seclen);
  699. }
  700. EXPORT_SYMBOL(security_release_secctx);
  701. #ifdef CONFIG_SECURITY_NETWORK
  702. int security_unix_stream_connect(struct socket *sock, struct socket *other,
  703. struct sock *newsk)
  704. {
  705. return security_ops->unix_stream_connect(sock, other, newsk);
  706. }
  707. EXPORT_SYMBOL(security_unix_stream_connect);
  708. int security_unix_may_send(struct socket *sock, struct socket *other)
  709. {
  710. return security_ops->unix_may_send(sock, other);
  711. }
  712. EXPORT_SYMBOL(security_unix_may_send);
  713. int security_socket_create(int family, int type, int protocol, int kern)
  714. {
  715. return security_ops->socket_create(family, type, protocol, kern);
  716. }
  717. int security_socket_post_create(struct socket *sock, int family,
  718. int type, int protocol, int kern)
  719. {
  720. return security_ops->socket_post_create(sock, family, type,
  721. protocol, kern);
  722. }
  723. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  724. {
  725. return security_ops->socket_bind(sock, address, addrlen);
  726. }
  727. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  728. {
  729. return security_ops->socket_connect(sock, address, addrlen);
  730. }
  731. int security_socket_listen(struct socket *sock, int backlog)
  732. {
  733. return security_ops->socket_listen(sock, backlog);
  734. }
  735. int security_socket_accept(struct socket *sock, struct socket *newsock)
  736. {
  737. return security_ops->socket_accept(sock, newsock);
  738. }
  739. void security_socket_post_accept(struct socket *sock, struct socket *newsock)
  740. {
  741. security_ops->socket_post_accept(sock, newsock);
  742. }
  743. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  744. {
  745. return security_ops->socket_sendmsg(sock, msg, size);
  746. }
  747. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  748. int size, int flags)
  749. {
  750. return security_ops->socket_recvmsg(sock, msg, size, flags);
  751. }
  752. int security_socket_getsockname(struct socket *sock)
  753. {
  754. return security_ops->socket_getsockname(sock);
  755. }
  756. int security_socket_getpeername(struct socket *sock)
  757. {
  758. return security_ops->socket_getpeername(sock);
  759. }
  760. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  761. {
  762. return security_ops->socket_getsockopt(sock, level, optname);
  763. }
  764. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  765. {
  766. return security_ops->socket_setsockopt(sock, level, optname);
  767. }
  768. int security_socket_shutdown(struct socket *sock, int how)
  769. {
  770. return security_ops->socket_shutdown(sock, how);
  771. }
  772. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  773. {
  774. return security_ops->socket_sock_rcv_skb(sk, skb);
  775. }
  776. EXPORT_SYMBOL(security_sock_rcv_skb);
  777. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  778. int __user *optlen, unsigned len)
  779. {
  780. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  781. }
  782. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  783. {
  784. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  785. }
  786. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  787. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  788. {
  789. return security_ops->sk_alloc_security(sk, family, priority);
  790. }
  791. void security_sk_free(struct sock *sk)
  792. {
  793. return security_ops->sk_free_security(sk);
  794. }
  795. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  796. {
  797. return security_ops->sk_clone_security(sk, newsk);
  798. }
  799. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  800. {
  801. security_ops->sk_getsecid(sk, &fl->secid);
  802. }
  803. EXPORT_SYMBOL(security_sk_classify_flow);
  804. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  805. {
  806. security_ops->req_classify_flow(req, fl);
  807. }
  808. EXPORT_SYMBOL(security_req_classify_flow);
  809. void security_sock_graft(struct sock *sk, struct socket *parent)
  810. {
  811. security_ops->sock_graft(sk, parent);
  812. }
  813. EXPORT_SYMBOL(security_sock_graft);
  814. int security_inet_conn_request(struct sock *sk,
  815. struct sk_buff *skb, struct request_sock *req)
  816. {
  817. return security_ops->inet_conn_request(sk, skb, req);
  818. }
  819. EXPORT_SYMBOL(security_inet_conn_request);
  820. void security_inet_csk_clone(struct sock *newsk,
  821. const struct request_sock *req)
  822. {
  823. security_ops->inet_csk_clone(newsk, req);
  824. }
  825. void security_inet_conn_established(struct sock *sk,
  826. struct sk_buff *skb)
  827. {
  828. security_ops->inet_conn_established(sk, skb);
  829. }
  830. #endif /* CONFIG_SECURITY_NETWORK */
  831. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  832. int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
  833. {
  834. return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
  835. }
  836. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  837. int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
  838. {
  839. return security_ops->xfrm_policy_clone_security(old, new);
  840. }
  841. void security_xfrm_policy_free(struct xfrm_policy *xp)
  842. {
  843. security_ops->xfrm_policy_free_security(xp);
  844. }
  845. EXPORT_SYMBOL(security_xfrm_policy_free);
  846. int security_xfrm_policy_delete(struct xfrm_policy *xp)
  847. {
  848. return security_ops->xfrm_policy_delete_security(xp);
  849. }
  850. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  851. {
  852. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  853. }
  854. EXPORT_SYMBOL(security_xfrm_state_alloc);
  855. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  856. struct xfrm_sec_ctx *polsec, u32 secid)
  857. {
  858. if (!polsec)
  859. return 0;
  860. /*
  861. * We want the context to be taken from secid which is usually
  862. * from the sock.
  863. */
  864. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  865. }
  866. int security_xfrm_state_delete(struct xfrm_state *x)
  867. {
  868. return security_ops->xfrm_state_delete_security(x);
  869. }
  870. EXPORT_SYMBOL(security_xfrm_state_delete);
  871. void security_xfrm_state_free(struct xfrm_state *x)
  872. {
  873. security_ops->xfrm_state_free_security(x);
  874. }
  875. int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
  876. {
  877. return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
  878. }
  879. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  880. struct xfrm_policy *xp, struct flowi *fl)
  881. {
  882. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  883. }
  884. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  885. {
  886. return security_ops->xfrm_decode_session(skb, secid, 1);
  887. }
  888. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  889. {
  890. int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
  891. BUG_ON(rc);
  892. }
  893. EXPORT_SYMBOL(security_skb_classify_flow);
  894. #endif /* CONFIG_SECURITY_NETWORK_XFRM */
  895. #ifdef CONFIG_KEYS
  896. int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
  897. {
  898. return security_ops->key_alloc(key, tsk, flags);
  899. }
  900. void security_key_free(struct key *key)
  901. {
  902. security_ops->key_free(key);
  903. }
  904. int security_key_permission(key_ref_t key_ref,
  905. struct task_struct *context, key_perm_t perm)
  906. {
  907. return security_ops->key_permission(key_ref, context, perm);
  908. }
  909. #endif /* CONFIG_KEYS */